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Abstract:
This thesis is a study of approaches to leveraging historical
data for increasing power in randomised clinical trials (RCTs)
with a continuously measured efficacy outcome. Existing
methods based on populating the control arm with a synthetic
control arm (SCA) fail to strictly control the type I error rate.
Therefore, we focus on the novel statistical method of using
digital twins (artificially generated patients receiving control
medication) in an analysis of covariance (ANCOVA) model.

We show analytically that under certain assumptions, by ad-
justing for the predicted outcome of a digital twin in an AN-
COVA model, we obtain asymptotic efficiency of the average
treatment effect estimator among a large class of estimators.
This efficiency gain can then be used to decrease the sample
size needed in a trial, while maintaining the same power and
strictly controlling the type I error rate.

In a simulation study, we compare the performance of an ex-
isting SCA approach with the performance of the novel dig-
ital twins approach in terms of power gain and type I error
rate control. Under several scenarios, we find that the SCA
approach provides at best only modest gains in power and is
unreliable in terms of controlling the type I error rate. Con-
versely, the digital twins approach provides strict type I error
control and a substantial increase in power, even when as-
sumptions on analytical results are violated.

Lastly, we evaluate the method of digital twins in real world
data originating from RCTs previously conducted at Novo
Nordisk A/S. We find that the method manages to decrease
the required number of subjects in a trial from 83 to 72, with
possible improvements by further fine-tuning the method.
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1 | Introduction

Randomised clinical trials (RCTs) are conducted with the intent to demonstrate efficacy and
safety of a new drug. In this thesis, we will consider RCTs that measure efficacy by the change
in a continuously measured outcome after being exposed to the new drug. The participants of
RCTs are randomly assigned to either the new drug or a control group receiving placebo or a
standard of care drug, and the difference between the outcomes of the two groups is then used to
estimate a treatment effect. By this randomised allocation procedure, it is ensured that observed
changes in the outcome of the participants can be ascribed to the new drug and are not in fact
caused by confounding factors.

Conducting a clinical trial often requires a large number of participants. However, many reasons
exist for wanting to minimise the required number of participants needed to be recruited for clin-
ical trials. A large number of participants comes with large economic costs and a long timeline of
the trial. Enabling faster clinical trials at a lower cost would provide essential medical treatment
to patients in need. In some specific areas, such as pediatric clinical trials, or trials involving
rare diseases, recruitment of large groups of participants even constitute a major challenge in the
first place. Other considerations such as ethical issues may also be present when large groups of
patients are required to be part of the control group of a clinical trial in order to provide certainty
when assessing the efficacy of a new drug.

Since medical organisations often possess large amounts of data from the control groups of past
clinical trials, one way to increase the efficiency of current trials would be to leverage this data
in the current trial using statistical methods. Such methods should ensure large statistical power
in regard to detecting a relevant effect size and control the type I error probability such that a
non-effective drug is not approved. In this thesis, we investigate the effect of using the novel
approach of digital twins in regard to increasing study power in clinical trials by decreasing vari-
ability of the estimated treatment effect. Furthermore, we compare this approach to an existing
method based on the propensity score, which aims to leverage historical data to increase power
in randomised clinical trials.

Within observational studies, methods based on the propensity score provide a well established
approach that allows for comparing groups of observations that are not otherwise directly com-
parable in regard to observed confounding factors. A method using propensity score matching
(PSM) has been proposed for the situation in which data from multiple sources are available.
This method was recently adapted to the context of RCTs, suggesting to construct an external
control arm (SCA) from historical data patients, working as a supplement to an already present
control group. In this way, the method seeks to eliminate the effect of confounders while in-
creasing the number of participants, yielding a larger power so that fewer participants need to be
recruited. However, this SCA approach comes with no guarantee of strictly controlling the type I
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error probability. In addition, the method relies on using only information from the small subset
of historical control arm participants that are matched to the patients in the current treatment arm.
For these reasons, we find it relevant to investigate the potential gains of employing novel statis-
tical methods that strictly control the type I error probability while using as much information as
possible from historical data to increase power in current clinical trials.

A digital twin is an artificial patient not receiving the new drug. This artificial patient has a clini-
cal record generated by a machine learning model trained on historical data. For each participant
in the current RCT, a clinical record of a digital twin having the same baseline characteristics is
generated. The clinical record of each digital twin contains a predicted outcome of the partici-
pant in the (hypothetical) scenario that they received the control treatment. Theoretically, using
an analysis of covariace (ANCOVA) model to adjust for the predicted outcomes of these digital
twins, the asymptotic variance of the estimated treatment effect is decreased, thereby increasing
the power. Thus fewer patients are needed for the clinical trial, thereby enabling smaller and
hence more efficient trials.

1.1 Reader’s Guide
Chapters 2–4 provide relevant theoretical aspects of randomised clinical trials, sample size cal-
culations and an existing PSM based SCA method for leveraging historical data. Chapters 5–8
describe and discuss analytical properties of the novel approach of digital twins for leveraging
historical data as well as investigating its empirical performance in simulated and real world data.

We begin with chapter 2 by introducing the framework and notation of the thesis, and describing
some common statistically desirable characteristics of randomised clinical trials. We discuss
several types of randomisation, and we show that when we randomise participants, the known
and unknown confounders will be evenly distributed between the treatment and control arms.
Throughout the thesis, we will be using different specifications of the AN(C)OVA model to
estimate the efficacy of a drug in terms of the average treatment effect. Therefore, the chapter
also contains a description of how the AN(C)OVA model can be used to obtain such an estimate.
In this context, we discuss the benefits of adjusting for covariates, while introducing some of the
regulatory guidelines for covariate adjustment.

We continue in chapter 3 by outlining the most common considerations when conducting a sam-
ple size calculation in clinical trials. Specifically, we derive formulas for both ANOVA and
ANCOVA models for determining the required sample size when a desired power is chosen at
a specific significance level. The chapter provides the formal basis for the potential reduction
in required sample size obtainable by increasing the number of participants in the trial (which
is the method suggested by the SCA approach) and prognostic covariate adjustment (which is
the method suggested by the digital twin approach). Furthermore, we discuss how vulnerable
the ANCOVA model is in regard to estimating the treatment effect, type I error probability, and
power when the model assumptions are violated within RCTs. The chapter ends with briefly
considering how to adjust the sample size in the case of multiple endpoints of the trial, which are
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considerations that often need to be taken in practice. However, we limit our primary focus of
the thesis to considering the situation of a single outcome with a single hypothesis to investigate
one endpoint.

The SCA approach is described in chapter 4, where we consider how propensity score matching
can be used both in the contexts of the current trial including only a treatment arm and when
a control arm is present as well. We begin by describing some specific assumptions for the
historical data in order for this to be well suited for use in a current trial. We describe how
propensity score matching can be theoretically used to match historical patients to patients in the
current treatment arm based on known confounders. Additionally, we describe how the method
can be adjusted to the context of two-arm trials with the intention to account for unobserved
confounders as well. Our purpose of considering this approach is to compare it to the novel
approach of digital twins in terms of suitability for increasing the power while controlling the
type I error.

The novel approach of digital twins is then treated in chapter 5, where we delve into the large
theoretical background of using digital twins with ANCOVA models to estimate the average
treatment effect. First, the concept of digital twins is presented, showing how these can be
utilised in an ANCOVA model to estimate the average treatment effect. The goal of the chapter
is to prove analytical results stating that the average treatment estimator incorporating digital
twins in the analysis is the estimator that obtains the lowest asymptotic variance and therefore
the largest asymptotic power among a large class of estimators. For that purpose, we begin by
describing the concept of influence functions to prove several results regarding the asymptotic
variance of various average treatment effect estimators utilising digital twins. We then use these
asymptotic results to show that the efficiency gain of using digital twins can be exploited in order
to decrease the required sample size of a trial.

In chapter 6, we conduct a simulation study in order to compare the performance of the SCA
and digital twin approaches in terms of leveraging historical data. Specifically, we investigate
how large efficiency gain can be achieved in different scenarios in a finite sample setting using
different (machine learning) prognostic models to predict outcomes of digital twins. We also
examine whether the type I error rate is controlled. We consider the performance of both meth-
ods in scenarios that are optimal in terms of the asymptotic results presented in chapter 5, and
more realistic scenarios in terms of data distributions and model specifications. Additionally, we
compare the methods to models not leveraging historical data as well as investigating sample
size calculations based on approximation formulas described in chapter 3.

In chapter 7 we investigate whether digital twins can be used to increase power in an RCT
intended for demonstrating efficacy of insulin products used for treating patients diagnosed with
type 2 diabetes. Specifically, we use real world data originating from three RCTs previously
conducted by Novo Nordisk A/S in order to examine the degree to which the number of patients
required for recruitment to a current trial can be limited by using the digital twin approach.

Chapter 8 provides a discussion of the digital twins approach in regard to regulatory considera-
tions, other approaches for leveraging historical data, and on some possible future developments
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of the method. The chapter discusses a recent draft opinion from the European Medicines Agency
(EMA) on the use of digital twins, another method used in a trial previously approved by the U.S.
Food and Drug Administration (FDA), as well as our own reflections based on the analytical and
empirical results contained in previous chapters of the thesis.

The appendix contains some of the most comprehensive parts of technical derivations neces-
sary to reach conclusions throughout the thesis. In addition, further results from the simulation
study and information regarding the data used in the case study are contained in the appendix.
References to all specific parts of the appendix are made throughout the thesis.

Throughout the thesis, derivations will sometimes involve long equations, using several assump-
tions and properties throughout. Generally, all explanations are placed after the equations. All
examples, remarks, lemmas, corollaries, propositions and theorems are finished by û, and proofs
are finished by ⌅.

4
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2 | Randomised Clinical Trials

In this chapter, we will describe how randomised clinical trials can be used to estimate the aver-
age treatment effect of some medical intervention. We will begin by describing the concept of
randomised clinical trials, proceeding with introducing relevant notation and estimands describ-
ing the treatment effect, which are both used throughout the thesis. We will then continue with
describing the benefits of randomisation in regard to establishing a causal relationship, and how
different forms of randomisation can be conducted in practice. We will then briefly describe how
ANOVA and ANCOVA models can be used to estimate the treatment effect in RCTs, and how
using the ANCOVA model with adjustment for covariates can be beneficial.

Clinical trials are studies of the effect and safety of a medical intervention on a specific human
population. Often clinical trials are used to assess the intervention compared to placebo or stan-
dard of care. Before the intervention is approved to proceed to human clinical trials, extensive
preclinical trials in animals must be run. Among clinical trials, a randomised clinical trial (or
randomised controlled trial) (RCT) is considered to generate the most reliable type of evidence.
This is because RCTs are less biased than e.g. cohort studies due to its ability to distribute the
confounders across the two groups, as we will show later.

An RCT proceeds by first assessing the eligibility of each patient according to inclusion and
exclusion criteria specified in a pre-specified protocol. Thereafter the patients are randomly
assigned to a treatment sequence, and throughout the study period, multiple research site visits
are conducted to evaluate and record blood measurements, physical and cognitive condition etc.
through a number of parameters. These visits are planned and registered in the protocol. Often
in an RCT, both the patients, clinicians and data scientists are blinded to the treatment, meaning
that group allocation is concealed [1, 2].

There are four phases of clinical trials, each with a specific purpose. Phase I studies are per-
formed on a small sample of usually around 20-80 people and have a short course of treatment
to evaluate the safety and dosage of a drug in the relevant population. Furthermore, it is used
to assess the pharmacokinetics and pharmacodynamics of the drug which can be used to design
the phase II and III studies. As an example, the half-life of a drug should be used to determine
the duration of the study, to ensure that the participants reach a steady state. This is also used to
determine the duration of the wash-out period necessary to avoid carryover effects between treat-
ments in cross-over studies, where the patients are exposed to and switched between all treatment
arms [1, 2]. Sometimes several phase I studies are performed for an intervention, and for some of
these a control group might not be present. In these cases, the single-arm trials could potentially
benefit from using historical data as an external control arm in order to get early indications of
the drugs efficacy.

Phase II studies are longer studies usually including around 100-300 patients to further inves-
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tigate the safety and tolerability, but also preliminary results about the therapeutic effect of the
drug. It is also possible to investigate the short-term side effects of the drug. Phase I and II trials
can also be used for early stage proof of concept to obtain preliminary evidence of efficacy for a
clinically relevant endpoint [1, 3].

A phase III trial should instead provide pivotal information about the effectiveness and safety of a
drug, and therefore the duration and sample size is increased. Around 300-3000 patients should
usually participate, and the duration should be increased such that the long-term side effects
can be assessed. Between these phases, an interim analysis is made to determine whether the
drug should proceed to the next development state [1, 4]. After phase III, the drug is evaluated
for approval by medical authorities as for example European Medicines Agency (EMA) or the
U.S. Food and Drug Administration (FDA), and, after approval, the drug is moved to phase
IV. The drug’s effectiveness and safety is now monitored in a larger population for example by
conducting a prospective cohort study.

2.1 Notation and Framework
In the setting of a two-arm clinical trial with n observations having a continuous endpoint (out-
come), we let the stochastic variable Yi denote the outcome of observation i (which we will refer
to as a participant, patient or subject). We let Y pre

i
be the outcome measured before the interven-

tion of interest (at baseline), and Y post
i

be the outcome measured after some prespecified time
period receiving a medical intervention. Then by Yi, we will usually mean the change from base-
line of the endpoint, being the difference between Y post and Y pre. However, it can also denote
the outcome after receiving the intervention, that is, Yi “ Y post

i
. Furthermore, we let Xi denote

the stochastic 1 ˆ p row vector of baseline covariates, and denote by Wi the binary treatment
assignment variable defined as Wi :“ r"patient i is allocated to receive novel treatment"s.

Following this notation, observation i is a triple pXi,Wi, Yiq, and the data set can be denoted as
pX,W,Yq P X n ˆ t0, 1un ˆRn, where X is the sample space of the Xi’s, allowing covariates to
be continuous, binary and categorical. When doing linear analyses, we denote the design matrix
by D, specifying the relevant form in each case. Throughout the thesis, we will abuse notation
and use f and p interchangeably to denote a probability density function, a probability mass
function, or a mixture distribution function.

Unless otherwise specified, we assume that all data vectors pXi,Wi, Yiq are independent and
identically distributed, meaning that the stochastic data vector of an arbitrary subject can be
denoted as pX,W, Y q. However, as we will see in section 2.2.1, for some cases of randomisation,
correlation is introduced through the treatment assignment Wi. We say that patient i belongs
to the treatment group if the realisation of Wi is wi “ 1, and that patient i belongs to the
control group if wi “ 0. Thus, the treatment group consists of patients allocated to receive
the medical intervention of interest, whereas the control group consists of patients allocated to
receive placebo or standard of care. In the rest of this thesis, we will only consider two-arm and
single-arm clinical trials.
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In order to estimate the treatment effect, we will work in the framework of a Rubin causal model
[5, 6], where we have two potential outcomes, Yip1q and Yip0q, for patient i, denoting the stochas-
tic variables describing the outcome of patient i under, respectively, treatment and no treatment.
However, we will only observe the potential outcome corresponding to the treatment actually
assigned to the patient. Formally, this means that we can denote any realisation of the outcome
of patient i as yi “ yipwiq. Since we observe n realisations of the random vector pXi,Wi, Yiq,
we will observe n1 :“

∞
n

i“1 wi patients in the treatment group and n0 :“
∞

n

i“1 1 ´ wi patients in
the control group. The treatment effect of patient i, which is unobserved, is then yip1q ´ yip0q.
However, our goal is to estimate an average treatment effect across the n individuals.

We have three estimands to describe average treatment effects, namely the average treatment
effect (ATE), the average treatment effect of the treated (ATT) and the average treatment effect
of the control group (ATC). These are formally defined [5] as

ATE :“ ErY p1qs ´ ErY p0qs
ATT :“ E

“
Y p1q

ˇ̌
W “ 1

‰
´ E

“
Y p0q

ˇ̌
W “ 1

‰

ATC :“ E
“
Y p1q

ˇ̌
W “ 0

‰
´ E

“
Y p0q

ˇ̌
W “ 0

‰
.

(2.1)

We can think of the ATE as the treatment effect across the whole sample consisting of n patients,
that is, the average effect of moving the entire population from the control group to the treatment
group. The ATT can be thought of as the average treatment effect of the patients that are treated.
Similarly, ATC is the average treatment effect of the control group patients. Depending on the
context, usually the ATE or the ATT is of interest [7].

Later, we will also use the conditional forms of these estimands, which are formally defined [5]
as

CATEpXq :“ ErY p1q |Xs ´ ErY p0q |Xs
CATTpXq :“ E

“
Y p1q

ˇ̌
X,W “ 1

‰
´ E

“
Y p0q

ˇ̌
X,W “ 1

‰

CATCpXq :“ E
“
Y p1q

ˇ̌
X,W “ 0

‰
´ E

“
Y p0q

ˇ̌
X,W “ 0

‰
,

(2.2)

which are in general stochastic, being functions of the stochastic vector X .

In clinical trials, multiple outcomes are often of interest. These outcomes can e.g. be categorised
as the primary endpoint of interest and secondary endpoints. A primary endpoint is a prespecified
outcome that directly addresses the hypothesis of the trial, and it is confirmatory in the sense
that it should be tested for significance. Furthermore, multiple secondary outcomes can be of
interest. These can be confirmatory or exploratory, the latter in the sense that tests for statistical
significance are not conducted.

The next sections describe how randomisation together with AN(C)OVA models can be used to
estimate the average treatment effect measured by some continuous outcome.
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2.2 Randomisation
This section is based on chapter 1 in [8].

The main goal of an efficacy trial is to collect data that enable describing a causal relationship
between the intervention and the outcome to determine the ATE. Human response to an interven-
tion W depends on patient characteristics X , and therefore the control group must be comparable
to the treatment group, because differences between patient characteristics may otherwise con-
found the result. In regard to ensuring such comparability, the RCT design is considered to be
the golden standard in clinical studies. Randomisation is the process of assigning participants to
a treatment arm, such that there is equal probability for each person to be assigned to any given
group.

However, randomisation sometimes poses and ethical dilemma, since the patients are assigned
to either the treatment- or control group by chance and not by e.g. a physical judgement of
their well being by a physician. This means that some patients will be exposed to a potentially
beneficial intervention, but the intervention could also prove to be harmful or toxic. On the other
hand, in trials involving treatments for a disease with no known treatment or cure, the control
group could potentially be denied a beneficial treatment or cure. One may argue that since the
trial often involves a novel drug, a physician would be in a state of equipoise, and therefore
randomisation is not unethical. Contrary, a physician would often have some a priori knowledge
about the treatments effect on a disease, especially in the later phase III studies. This poses
another dilemma between what is best for the individual and what is best for the public health [8,
pp. 9–12].

Having these considerations in mind, it may be argued that the use of historical cohorts of patients
with no treatment or standard of care should be used as control groups, and that this would
be more ethical than randomisation. As already mentioned, in some areas such as pediatric
clinical trials and trials involving rare diseases, a more practical issue persists; within these areas,
recruitment of large patient groups for clinical trials remains a major challenge [9, 10]. However,
the direct use of historical controls as an external comparator can lead to skewed results, since
the control group might differ from the treatment group in characteristics that may confound the
study outcome. Both from a practical and ethical point of view, it can thus be beneficial to use
other methods for incorporating historical data in order to decrease the required sample size in
clinical trials [8, pp. 9–12]. It is possible to combine the benefits of randomisation with the use
of historical controls, enabling the use of a smaller control group. This can ensure being able to
more efficiently show efficacy of drugs and thus quicker let new drugs reach patients. Two ways
of doing so will be presented in chapters 4 and 5.

In order to formally characterize the overall benefit of randomisation, we will define a confound-
ing covariate X as a stochastic variable both influencing the exposure W and the outcome Y .
This can result in estimating a false association between W and Y . Using Judea Pearl’s causal
calculus, a formal definition of confounding effects can be stated. In order to do so, we first we
define the do-operator, which indicates an action or intervention. In a directed graphical model,
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dopwq implies that we remove edges going into the point associated to W , but preserves the
edges going out of this point. We then define Bayesian conditioning as ppy |wq where w is an
observed variable, and causal conditioning as p

`
y | dopwq

˘
, where the specific value w is forced.

Then W and Y are not confounded if and only if

p
`
y | dopwq

˘
“ ppy |wq (2.3)

for all values of w and y [11, 12]. In the framework of causal calculus, randomisation thus entails
that no edges are going into the point associated to W , so that Y and W are not confounded
according to the definition (2.3).

The main reason for random assignment to a treatment sequence is to prevent selection bias,
which occurs when the randomisation process is not conducted properly, e.g. when the allocation
W is affected by covariates X , or when an e.g. deterministic allocation scheme prevents the
allocation from being blinded for the analysts and medical professionals conducting the study [8,
p. 79]. Randomisation does this by controlling the probability of the groups differing in regard
to the observed and unobserved confounders, and, as we will show later, this probability tends to
0 when n Ñ 8. In observational studies, this comparability between groups can be attempted
for by matching observations based only on known covariates, which we will discuss further in
chapter 4.

Formally, the randomisation in an RCT ensures that
`
Y p0q, Y p1q

˘
KK W, (2.4)

since the treatment allocation is assigned randomly. Thus, in this setting, we have

E
“
Y p1q

‰
´ E

“
Y p0q

‰
“ E

“
Y p1q

ˇ̌
W “ 1

‰
´ E

“
Y p0q

ˇ̌
W “ 1

‰

“ E
“
Y p1q

ˇ̌
W “ 0

‰
´ E

“
Y p0q

ˇ̌
W “ 0

‰ (2.5)

meaning that the estimands ATE, ATT and ATC in equation (2.1) are equal [6, 7].

In the following sections, we will describe how randomisation can be achieved in practice.

2.2.1 Complete and Forced Balance Randomisation

This section is based on chapters 3 and 4 in [8].

We denote by Wk “ tW1,W2, . . . ,Wku information on the treatment assignment of the first
k § n patients. If W1,W2, . . . ,Wn are independent Bernoulli distributed variables with PpWi “
1q “ 1{2 for each i, then the randomisation is called complete randomisation. This type of
randomisation does not guarantee equally sized groups but there is no selection bias, since each
patient is equally likely to be assigned to the treatment or control group, independent of what
the previous patients have been assigned to. We then have that n1pnq “ ∞

n

i“1 Wi has a binomial
distribution with mean n{2 and variance n{4. Then since n0pnq “ n ´ n1pnq, it follows that
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Dn :“ n1pnq ´ n0pnq “ 2n1pnq ´ n has mean 0 and variance n. This implies that the mean
difference between the group sizes is 0.

Using the central limit theorem, n1pnq is asymptotically normally distributed, which thus also
holds for Dn, so that for large n, 1?

n
Dn « N p0, 1q. We can use this to determine a formula

that describes the approximate probability of imbalances of size " ° 0. Specifically, we have for
large n, that

P
`
|Dn| ° "

˘
“ P

ˆ
1?
n
Dn ° "?

n

˙
` P

ˆ
1?
n
Dn † ´"?

n

˙
« 1 ´ �

ˆ
"?
n

˙
`

˜
�

ˆ ´"?
n

˙¸

“ 1 ´ �
ˆ

"?
n

˙
`

˜
1 ´ �

ˆ
"?
n

˙¸
“ 2

˜
1 ´ �

ˆ
"?
n

˙¸
, (2.6)

for � denoting the standard normal cumulative distribution function. The formula can be used
in designing trials with a complete randomisation scheme. From the formula, we see that the
probability of an absolute group size imbalance Dn of any fixed size " converges to 1. However,
similar calculations show that the probability of a relative imbalance Dn{n of arbitrary fixed size
" ° 0 can be expressed as 2

´
1 ´ �

`
"
?
n

˘¯
, which converges to 0.

Even though the complete randomisation scheme does not necessarily create equally sized groups,
the treatment estimate in a linear model remains unbiased, but imbalance decreases the power
as we will see later. To insure balanced in group sizes, a forced balance randomisation can be
used, where the number of patients assigned to treatment 1 and 0 is exactly n{2. Due to the el-
igibility criteria checked before randomisation, the total number of patients randomised is often
not known at the stage of trial design, and therefore these randomisation schemes can be used
in blocks, where patients are randomised within blocks. Several forced balance randomisation
schemes exist, and an example of such a randomisation scheme is the random allocation scheme.

Example 2.2.1. Random allocation scheme
For the random allocation scheme, an allocation rule is defined as

E
“
Wj

ˇ̌
Wj´1

‰
“

n

2 ´ n1pj ´ 1q
n ´ pj ´ 1q , j “ 2, 3, . . . , n, (2.7)

with ErW1s “ PpW1 “ 1q “ 1{2. We note that the randomisation rule is itself a random variable
with expected value

PpWj “ 1q “ ErWjs “ E
”
E

“
Wj

ˇ̌
Wj´1

‰ı
“ E

«
n

2 ´ ∞
j´1
i“1 Wi

n ´ pj ´ 1q

�
“

n

2 ´ pj ´ 1q1
2

n ´ pj ´ 1q “ 1

2
, (2.8)

where the fourth equality follows by iteratively solving the equation for j “ 2, 3, . . . , n. Having
e.g. n “ 100, and the first 49 patients being allocated as n1p49q “ 28 and n0p49q “ 21,
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patient number 50 will be allocated to treatment 1 with probability p50 ´ 28q{51 “ 22{51. This
randomisation rule have some limitations. For example when n{2 patients have been allocated
to a treatment, the rest of the patients will have allocation rule all equal to 1 or 0 meaning that
the conditional allocations are deterministic. Thereby a selection bias can occur. û
Forced balance randomisation will in general control the probability of the covariates differing
by a specific amount. We start by deriving this for the case of one-dimensional covariate vectors.
Let the covariates X1, X2, . . . , Xn for each patient be independent of the treatment assignment
and mutually independent with mean µ and variance �2. Furthermore, we let PpW “ 1q “
ErW s “ ⇡1 P s0, 1r and X1 “ ∞

n

i“1
WiXi
n⇡1

and X0 “ ∞
n

i“1
p1´WiqXi

np1´⇡1q . Under forced balance
randomisation, n⇡1 “ n1 and np1´ ⇡1q “ n0, so X1 and X0 are sample means of the covariates
in the treatment and control group, respectively. Using linearity of the (conditional) expected
value, we get

E
”
X1 ´ X0

ı
“ EWn

»

–E
«

nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

ˇ̌
ˇ̌
ˇ W1,W2, . . . ,Wn

�fi

fl

“
nÿ

i“1

EWnrWisµ
n⇡1

´
nÿ

i“1

EWnr1 ´ Wisµ
np1 ´ ⇡1q

“
nÿ

i“1

µ

n
´

nÿ

i“1

µ

n
“ 0.

(2.9)

Therefore the expected value of the differences in covariate values is 0, no matter the value of ⇡1.
From the above derivation it is seen that this is also true when relaxing the assumption of µi “ µ
for all i, with µi denoting the expected value of the covariate belonging to the ith subject.

In case of deterministic allocation, which we present in the next example, the expected difference
in group means is also 0 when µi “ µ for all i. The assumption that µi “ µ for all i is sometimes
unrealistic in practice since e.g. time trends could occur. When the assumption is violated,
deterministic allocation does not ensure equal expected group means. This is due to the fact that
this allocation scheme does not satisfy the general assumptions worded above, as ⇡1 needs to be
defined differently as a consequence of the determinism of the treatment assignment.

Example 2.2.2. Deterministic allocation scheme
From equation (2.9) we see that if the Wi’s are deterministic, and we in this case define ⇡1 “
1
n

∞
n

i“1 Wi P s0, 1r as the deterministic allocation ratio, then for example given that the first n⇡1
patients are allocated to treatment 1 and the last np1 ´ ⇡1q patients to treatment 0, we have

E
”
X1 ´ X0

ı
“ E

«
nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

�
“

nÿ

i“1

Wiµ

n⇡1
´

nÿ

i“1

p1 ´ Wiqµ
np1 ´ ⇡1q

“
n⇡1ÿ

i“1

µ

n⇡1
´

np1´⇡1qÿ

i“1

µ

np1 ´ ⇡1q “ 0.

(2.10)
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Thus, we have balanced groups in this case, but in practice such a deterministic allocation scheme
is not used since this will disturb the blinding. Moreover, if µi ‰ µ, the expected difference
would not equal 0. û
Returning to the general case of forced balance randomisation, we have by the law of total
variance that

Var
”
X1 ´ X0

ı
“ EWn

»

–Var
«

nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

ˇ̌
ˇ̌
ˇ W1,W2, . . . ,Wn

�fi

fl

` VarWn

»

–E
«

nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

ˇ̌
ˇ̌
ˇ W1,W2, . . . ,Wn

�fi

fl .

(2.11)

We begin by regarding the last term, which is equal to

VarWn

»

–E
«

nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

ˇ̌
ˇ̌
ˇ W1,W2, . . . ,Wn

�fi

fl

“ VarWn

«
nÿ

i“1

Wiµ

n⇡1
´

nÿ

i“1

p1 ´ Wiqµ
np1 ´ ⇡1q

�
“ VarWn

«
µ

nÿ

i“1

Wi

n⇡1
´ µ

nÿ

i“1

p1 ´ Wiq
np1 ´ ⇡1q

�

“ VarWn rµ ´ µs “ 0,

(2.12)

where we have used linearity of the conditional expected value in the first equality while re-
garding each Wi as constant and in the last equality we use that forced balance randomisation
is assumed, such that the sums each equal 1. We can then determine the variance of the group
difference as

Var
”
X1 ´ X0

ı
“ EWn

»

–Var
«

nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

ˇ̌
ˇ̌
ˇ W1,W2, . . . ,Wn

�fi

fl

“ �2

pn⇡1q2
nÿ

i“1

EWn

“
W 2

i

‰
` �2

`
np1 ´ ⇡1q

˘2
nÿ

i“1

EWn

“
p1 ´ Wiq2

‰

“ �2

pn⇡1q2
nÿ

i“1

EWn rWis ` �2

`
np1 ´ ⇡1q

˘2
nÿ

i“1

EWn

“
p1 ´ Wiq

‰

“ �2

n⇡1
` �2

np1 ´ ⇡1q “ �2

n⇡1p1 ´ ⇡1q
.

(2.13)

In the second equality we use that by conditioning on Wn we can regard each Wi as a constant
and thereby use linearity of variance since the Xi’s are independent across i “ 1, 2, . . . , n. Taking
the variance on each term we obtain W 2

i
times the variance, but since Wi is either 1 or 0, we have

12



Randomised Clinical Trials Aalborg University

W 2
i

“ Wi and p1´Wiq2 “ 1´Wi, which is used in the third equality. Then by (2.9), (2.13) and
Chebyshev’s inequality, we have that for any " ° 0

P
ˆ���X1 ´ X0

��� • "

˙
§ 1

"2

˜
�2

n⇡1p1 ´ ⇡1q

¸
, (2.14)

which goes to 0 as n Ñ 8. Therefore, for large enough n, the probability of the difference in
covariate values being larger than " becomes negligible. We also note that for any n, the obtained
bound on the difference is smallest when ⇡1 “ 1{2.

Remark. Rosenberger and Lachin [8] state in the beginning of their section 4.2, that the variance
in equation (2.12) is equal to 0 for different means µi. However, after getting in touch with the
authors, they confirmed that this does not seem to hold in general. û
The derivation was done for Xi being one dimensional. The same arguments can be used for
Xi being of dimension p, and replacing �2 by a positive definite matrix ⌃ and µ by a vector
of the mean values. The same arguments hold as for the one-dimensional case, with the same
derivations until equation (2.13), in which case we get, analogously, that

Var
”
X1 ´ X0

ı
“ EWn

»

–Var
«

nÿ

i“1

WiXi

n⇡1
´

nÿ

i“1

p1 ´ WiqXi

np1 ´ ⇡1q

ˇ̌
ˇ̌
ˇ W1,W2, . . . ,Wn

�fi

fl

“ ⌃

pn⇡1q2
nÿ

i“1

EWn

“
W 2

i

‰
` ⌃

`
np1 ´ ⇡1q

˘2
nÿ

i“1

EWn

“
p1 ´ Wiq2

‰

“ ¨ ¨ ¨ “ ⌃

n⇡1p1 ´ ⇡1q
.

(2.15)

From the multivariate Chebyshov’s inequality, we obtain that for any " ° 0

P
˜c´

X1 ´ X0

¯J
⌃´1

`
n⇡1p1 ´ ⇡1q

˘ ´
X1 ´ X0

¯
• "

a
n⇡1p1 ´ ⇡1q

¸

“ P
˜c´

X1 ´ X0

¯J
⌃´1

´
X1 ´ X0

¯
• "

¸
§ 1

"2
p

n⇡1p1 ´ ⇡1q .
(2.16)

As for the one-dimensional case, we obtain that the upper bound goes to 0 as n Ñ 8, and in
practice for large n with p †† n, the probability becomes negligible.
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2.2.2 Stratified Randomisation

This section is based on chapter 7 in [8].

In clinical trials we observe covariates, which are presumed to be associated with the outcome
for each patient. Even though randomisation seeks to minimize the heterogeneity of the groups
in order to remove bias, imbalances can occur in practice. For example in multicenter trials,
the difference in clinical center could cause heterogeneity of the groups. This is due to the
clinics differing in demographics, patient populations and compliance in regard to the protocol.
Therefore the number of patients randomised to each group within a clinic should be balanced to
minimise bias. In the event that there is imbalance in regard to a prognostic categorical covariate,
a stratified-adjusted analysis can be used by adjusting for this covariate. We note that here that
the term stratified does not refer to estimating different treatment effects for different levels of the
categorical covariate, which could be obtained by a subgroup analysis within strata, or including
an interaction term in the ANCOVA model introduced later in equation (2.20). The trial design
can also ensure balance in regard to that specific covariate through stratified randomisation.

Stratified randomisation is a part of the trial design and takes place before the actual randomi-
sation of subjects. The participants are grouped according to their values of some prognostic
covariates and then randomised within these strata. For instance, when stratifying in regard to
clinic (total of 10 clinics) and sex, there should be a randomisation sequence (obtained from an
allocation rule) for each stratum and therefore a total of 20 randomisation sequences. When a
forced balance randomisation is used, the probability of each subject being assigned to treatment
1 or 0 only depends on the prior assignments of subjects in the same stratum. For example, a
female at clinic 3 would be randomised only depending on the assignment of other females at
clinic 3. For some randomisation schemes we only have asymptotic assurance of equally sized
treatment- and control groups, and therefore there is a positive probability of having imbalances
in group sizes. This means that when we randomise in each stratum, these imbalances become
additive and this can result in larger overall imbalance. For few large strata, the probability of
this occurring is smaller. When using the random allocation rule, there will be no imbalance in
the group sizes of each stratum unless the number of subjects in a stratum is not even.

A stratified-adjusted analysis is done at the end of the study when all the data is collected. This
can be carried out in combination with or without a stratified randomisation. Here the prognostic
covariates are incorporated in the analysis. The procedure is determined by the specific model
used, and we will discuss this for the ANCOVA model described in section 2.3. Some argue
that it suffices to conduct a stratified-adjusted analysis without stratified randomisation, since the
randomisation itself seeks to avoid imbalances in the covariate values, at least when n is large,
and since small imbalances do not affect the results by much when they are adjusted for in the
analysis [8, p. 135].
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2.3 AN(C)OVA in Randomised Clinical Trials
Analysis of variance (ANOVA) is a classical method of estimating the average treatment effect in
RCTs across the two treatment groups. In general, ANOVA is a collection of statistical models
used to analyze the difference between means of groups. In the context of RCTs, one-way
ANOVA can be used to estimate the treatment effect as the coefficient �W in the linear model

Yi “ �0 ` Wi�W ` "i (2.17)

where the Wi’s are independent of "i „ N
`
0, �2

Y

˘
and the "i’s are mutually independent. That

is, we assume that the model

Y |W „ N
`
�0 ` W�W , �2

Y

˘
(2.18)

is appropriate. The maximum likelihood estimate (MLE) p�0 of the intercept is the mean outcome
value of subjects in the control group, and the mean outcome in the treatment group is p�0 ` p�W
such that the ML estimate p�W is the difference of means in the two study arms, as seen by
appendix A.1.

From the ANOVA model we can estimate ATE by p�W . This can be seen since for an RCT

ATE “ E
“
Y p1q

‰
´ E

“
Y p0q

‰

“ E
“
Y p1q

ˇ̌
W “ 1

‰
´ E

“
Y p0q

ˇ̌
W “ 0

‰

“ E rY | W “ 1s ´ E rY | W “ 0s “ p�0 ` �W q ´ �0 “ �W ,

(2.19)

where the second equality follows from the property in equation (2.4) [6, 7], the third equality
follows from the definition of Y pW q and the fourth equality follows from taking conditional
expectations in the model specification (2.18). From equation (2.5), we get that p�W can be
interpreted as ATE, ATT and ATC.

Analysis of covariance (ANCOVA) can be utilised as a method of estimating the average treatment
effect similarly to the ANOVA using a normal linear model. However, the ANCOVA model
does so while adjusting for prognostic baseline covariates, that is, baseline covariates that are
anticipated to be associated with the primary endpoint. For ease of notation, we will assume that
the p-dimensional vector of baseline covariates Xi for subject i consists of all prognostic baseline
covariates. Formally we seek to estimate �W in the linear model

Yi “ �0 ` Wi�W ` Xi�X ` "i, (2.20)

where "i „ N
`
0, �2

˘
are mutually independent, and we assume that Wi and Xi are mutually

independent (due to randomisation) and each independent of the "i’s. That is, we assume that the
model

Y |W,X „ N
`
�0 ` W�W ` X�X , �

2
˘

(2.21)
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is appropriate. Furthermore, not including the treatment assignment variable in the design matrix
of the linear model, we assume that the columns of the n ˆ pp ` 1q design matrix r1 Xs has
rank p ` 1. We notice that from this model specification, we assume a homogeneous treatment
effect across covariate values since we have no interaction effects between treatment and other
covariates. From a geometric point of view, we obtain parallel hyper-planes across the treatment
categories, since �X is the same across the treatment groups. From this model specification,
taking conditional expectation in case W “ 0 and W “ 1, we get �W “ E

“
Y p1q

ˇ̌
X

‰
´

E
“
Y p0q

ˇ̌
X

‰
“ CATE, which in this case is not stochastic since we do not model interaction

effects, whereby the terms including X cancel out. Taking unconditional expectation we also
obtain �W “ ATE. Later, in section 3.5 we show that in an RCT, even though assumptions of
the ANCOVA model are violated, the ANCOVA ATE estimator is consistent.

In appendix A.3 we derive an explicit expression of the ANCOVA ML estimator of an equivalent,
reparametrised model. Specifically, we see that the ANCOVA ML estimator in equation (A.15),
like the ANOVA ML estimator, contains the difference of group means between the two study
arms. However in this case, we adjust for the difference of group means for all covariates and
weigh these by their parameters, respectively.

The adjustment serves as a method to account for chance imbalances in the baseline covariates
across the randomised study arms. Adjusting for highly prognostic covariates has furthermore
been shown to lead to substantial increase in power over the ANOVA method in simulation
studies based on previously conducted RCTs [13]. In chapter 3, we will delve into the theoretical
background of how this gain in power is achieved. Specifically, we will show that the power
increases when the standard error decreases. The improvement in power thus occurs since more
of the variation in the outcome between patients is explained by the added covariates, leading to
a smaller residual standard error, and thereby a smaller standard error of the treatment estimate,
as we will show in section 2.3.1. Therefore, even when there, by chance, is a perfect or near
perfect balance in the baseline covariates across the study arms, adjusting for covariates using
ANCOVA can increase the power.

Some practical considerations need to be taken when estimating the ATE in a clinical trial. As an
example, even though it is the intention that all patients allocated to the treatment group actually
receives the treatment of interest, in practice a number of participants will withdraw from the
study or deviate from the protocol, e.g. due to adverse events. An analysis method relevant when
deviations or withdrawals are present is the intention-to-treat principle, where all randomised
patients are included in the analysis no matter if any intercurrent event or deviations from the
protocol happens. An intercurrent event is an event preventing the patient from being on the
assigned intervention. In the analysis, we will then consider these patients as belonging to the
treatment- and control groups according to which group the participant was originally assigned
to. If a patient withdraws from the study, investigators should still try to collect the measurements
indicated by the protocol. The intention-to-treat principle is different from the per protocol and
as-treated principles, where patients are considered as belonging to the group according to the
actual treatment received. According to the per protocol principle, patients deviating from the
protocol should be excluded from the analysis, as opposed to the as-treated principle.
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For the two latter procedures, the benefits of randomisation are not preserved, meaning that we
do not ensure expected balance between the groups in regard to prognostic covariates. Thus,
when patients are not analysed according to their intended treatment assignment, the risk of bias
will increase when estimating the ATE. Specifically, these approaches can lead to spuriously
concluding that the intervention is effective [14]. In a clinical setting, this would be particularly
alarming since approval could lead to patients being exposed to a potentially ineffective drug.

Conversely, the intention-to-treat principle does preserve the benefits of randomisation. There
can still be substantial non-adherence to the protocol, but in this case, the intention-to-treat prin-
ciple will in worst case underestimate the magnitude of the effect of the intervention relative
to the situation of perfect adherence. This is due to empirical evidence suggesting that, even
when controlling for known prognostic factors, patients tend to do better when they adhere to
the protocol regardless of whether they receive treatment or not. Thus, if an intervention is truly
effective, the intention-to-treat principle will still not allow for inflated type I errors. In this way,
the principle provides an unbiased estimate of the ATE at the level of adherence in the study [14],
making the results comparable to the effect of a drug in a real-world setting, where patients are
not perfectly compliant.

2.3.1 Benefits of Covariate Adjustment in RCTs

Randomisation ensures independence between the treatment allocation and other (observed and
unobserved) covariates. This means that when we wish to find the treatment effect, we can
choose to control for other covariates than treatment without running the risk of introducing bias
to the treatment effect estimate. In fact, controlling for other covariates through ANCOVA is
quite common in clinical studies. This practice is also known as covariate adjustment. The hope
is to reduce the variance of the �W estimate. For a normal linear model with design matrix
D “ r1W Xs, we have

Var
´

p�
¯

“ �2
´
DJD

¯´1
(2.22)

for the MLE of � “ p�0, �W , �XqJ. When introducing (more) covariates in X, we would re-
duce the residual error �2, thus reducing the variance as desired. However, the matrix factor in
equation (2.22) also changes when introducing covariates, thus not guaranteeing a reduction in
variance. However, as we will now show, we expect a reduction in variance of p�W when intro-
ducing (more) covariates inX, when we are in the setup of an RCT. However, we run the risk of
overfitting and thereby underestimating the true variance �2.

Specifically, we start by showing that under an RCT, we have expected orthogonality of the
demeaned W and the demeaned covariates. Under exact orthogonality, we can show then that
the ANOVA treatment estimator is unbiased, and that we expect the same estimator from the
ANCOVA model, but with lower variance.

We can demean W and the covariates and still obtain equivalent results. This can be seen by
considering a model which is transformed with the orthogonal projection of the 1-column of
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the design matrix. From the Frisch-Waugh-Lovell (FWL) theorem [15, p. 69], we get for the
orthogonal projection M0 “ In ´ P0 “ In ´ 1p1J

1q´1
1

J of the 1-vector, that

M0Y “ M0W�W ` M0X�X ` " (2.23)

provides a regression with the same ML estimate and errors as the model in equation (2.20).
Hence, properties of this model also hold for the non-transformed model. The model is cen-
tralised in the sense that for any conformable vector v, M0v :“ rv “ v ´ v, where v denotes the
empirical mean of the entries in v.

In practice, we do not have complete orthogonality between ÄW and rX, but we expect the or-
thogonality to be more precise when a sufficient number of patients are included and hence
randomised. Using that E

”
rX

ı
“ 0 “ E

”
ÄW

ı
, we have that

Cov
´
ÄW, rX

¯
“ E

”
ÄW rX

ı
` E

”
ÄW

ı
E

”
rX

ı
“ E

”
ÄW rX

ı
. (2.24)

In the case of an RCT, the treatment allocation is randomised, so we have independence between
X and W , yielding CovpW,Xq “ 0, which means by equation (2.24), that E

”
ÄW rX

ı
“ 0. That

is, in case of an RCT, we have expected orthogonality between ÄW and rX.

The following example [15, pp. 112-114] illustrates that, in general for linear models, including
too many covariates never causes bias if all the regressors, from the linear data generating pro-
cess, are present. Only the efficiency of the estimator is affected, unless overspecified regressors
are orthogonal to the true data generating regressors.

Example 2.3.1. Overspecification in linear models
Suppose some stochastic outcomeY is generated by a stochastic design matrixX1 containing p1
covariates, by the linear relation

Y “ X1�1 ` ", (2.25)

where the covariates are independent of " „ N n

`
0, �2In

˘
and we denote the corresponding ML

estimate of �1 as p�TRUE
1 . We say that the model is overspecified if we try to model the data by

additionally using some other design matrixX2 of dimension p2 as

Y “ X1�1 `X2�2 ` ". (2.26)

Since the overspecified model is a special case of the correct model with �2 “ 0, the correct
model is contained within the overspecified model.

The FWL theorem gives that the ML estimate of �1 in the regression (2.26) of Y on X1 and X2

is numerically identical to the ML estimate of �1 in the model

M2Y “ M2X1�1 ` " (2.27)
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with the same error terms, and where M2 “ In ´X2pXJ
2X2qXJ

2 is the orthogonal projection of
the column space of X2. Thus, estimating the model (2.27), we can express the ML estimate of
�1 as

p�OS
1 “

´
pM2X1qJM2X1

¯´1

pM2X1qJM2Y “
´
XJ

1M2X1

¯´1

XJ
1M2Y. (2.28)

This estimator is unbiased since

E
”

p�OS
1

ı
“ E

”
pXJ

1M2X1q´1XJ
1M2pX1�1 ` "q

ı
“ �1 ` E

”
pXJ

1M2X1q´1XJ
1M2"

ı

“ �1 ` E
”
pXJ

1M2X1q´1XJ
1M2 E

“
" |X1,X2

‰ı
“ �1

(2.29)

using law of total expectation and the independence between covariates and the error terms. The
variance of the estimator is given by

Var
´

p�OS
1

¯
“ �2pXJ

1M2X1q´1. (2.30)

As we will now show, the estimators in the overspecified model are inefficient. Specifically, the
variances of the regression coefficient estimators are smaller when estimating from the correctly
specified model than when overspecifying the model with regressors that are not orthogonal to the
true regressors. We can prove this by showing that Var

´
p�OS
1

¯
´ Var

´
p�TRUE
1

¯
is positive semi-

definite, meaning that all diagonal elements of this difference are non-negative. This is equivalent

to showing that Var
´

p�TRUE
1

¯´1

´ Var
´

p�OS
1

¯´1

is positive semi-definite, which follows from
lemma A.5.1, which is stated and proved in appendix A.5. If we let P2 “ In ´ M2 denote the
orthogonal projection onto the column space ofX2, we indeed see that

Var
´

p�TRUE
1

¯´1

´ Var
´

p�OS
1

¯´1

“ �´2pXJ
1X1q ´ �´2pXJ

1M2X1q “ �´2
´
XJ

1 pIn ´ M2qX1

¯

“ �´2pXJ
1 P2X1q “ �´2pXJ

1 P
J
2 P2X1q (2.31)

“ �´2pX1P2qJpX1P2q

is positive semi-definite. Note here that the true residual variances �2 from the correctly specified
model and the overspecified model are the same, since the true �2 is 0. Moreover, in the case
where the overspecified regressors are orthogonal to the true data generating regressors, we have
P2X1 “ 0, making the overspecified estimator efficient. û
In the case of an RCT, using demeaned data, we have expected ortogonality, and therefore we
expect that overspecification will not affect the effiency of the estimator by much. Specifically,
using example 2.3.1 with X1 “ W, we have expected orthogonality with any covariates X2,
overspecified or not.

In the opposite situation, that is, in the case of underspecification, where we fail to include some
data generating regressors, we risk encountering biased and inconsistent estimators, as we will
illustrate for the linear model in the next example.
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Example 2.3.2. Underspecification in linear models
Consider the reverse situation than in example 2.3.1, that is, where (2.26) is the data generating
process while we try to estimate it using the model in (2.25). We regard this model as misspec-
ified, since the specified model does not collapse to the data generating model for any choice of
parameters. Then we see that our ML estimate is given by

p�US
1 “ pXJ

1X1q´1XJ
1Y “ pXJ

1X1q´1XJ
1 pX1�1 `X2�2 ` "q

“ �1 ` pXJ
1X1q´1XJ

1X2�2 ` pXJ
1X1q´1XJ

1 ".
(2.32)

In expectation this is equal to �1 `E
“
pXJ

1X1q´1XJ
1X2�2

‰
using law of total expectation and the

assumption of independence between regressors and the error term on the third term. Thus, in the
case of underspecification, the �1 estimator is biased unless the omitted regressors are orthogonal
to the ones used in the model, that is, ifXJ

1X2 “ 0. We refer to this property as omitted variable
bias. In the case of non-orthogonality, the second term is non-zero even asymptotically, so in
addition to the estimator being biased, it is inconsistent as well [15, pp. 114-115]. û
Recall that in the setting of an RCT, using demeaned data, we have expected orthogonality be-
tween rX and ÄW. From example 2.3.2 we then see that under orthogonality, if data is generated
by a linear model from a number of covariates, the ATE estimates obtained from an ANOVA
model or an underspecified ANCOVA model is unbiased, even though these are underspecified.
In the following example, we see that under orthogonality, the ANCOVA and ANOVA estimators
coincide.

Example 2.3.3. Relation between ANOVA and ANCOVA ATE estimators
Assuming exact orthogonalityXJW “ 0, we get from the ANCOVA model specification that

«
p�W
p�X

�
“

¨

˝
«
WJ

XJ

� ”
W X

ı
˛

‚
´1 «

WJ

XJ

�
Y “

«
WJW WJX
XJW XJX

�´1 «
WJY
XJY

�

“
«
WJW 0

0 XJX

�´1 «
WJY
XJY

�
“

«
pWJWq´1

0

0 pXJXq´1

�«
WJY
XJY

�

“
«

pWJWq´1WJY
pXJXq´1XJY

�
.

(2.33)

We recognise the entries of the last vector as the respective � estimates when running a regression
with only W and X, respectively. Specifically, this means that we expect that the p�W estimate
will be the same if we choose to include X in the regressions as if we do not adjust for baseline
covariates (as for the ANOVA model). Later, in section 5.3.1, we will show more formally that
the estimators are consistent, and thus that this holds in the asymptotic case, also holds when
the ANCOVA model includes interaction effects between treatment allocation and all baseline
covariates.
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However, as we will now show, we expect the variance to decrease by adjusting for baseline
covariates when assuming a specific model. We will consider a model where W and X are not
orthogonal but instead we have demeaned W and X , such that in the case of an RCT we expect
them to be orthogonal. Afterwards this model is transformed with the projection orthogonal to
the space spanned by the columns in X. From the FWL theorem, we get for the orthogonal
projection M rX “ In ´ P rX “ In ´ rXp rXJ rXq´1 rXJ, that we get an equivalent way of obtaining
p�W by determining the ML estimates on

M rX
rY “ M rX

ÄW�W ` " (2.34)

Now, we can express the variance of the estimated treatment effect from the ANCOVA model as

Var
´

p�W
¯

“ �2
´
ÄWJM rX

ÄW
¯´1

« �2
´
ÄWJÄW

¯´1
(2.35)

where the approximate equality follows since we expect rX to be orthogonal to ÄW. When rX
and ÄW are exactly orthogonal, we have an exact equality. The variance expression in (2.35) is
the same as if we had just used W as covariate, but now we have a smaller error variance �2

since X is also included in the model. This is due to the error variance in the ANCOVA model
(2.21) being smaller than the error variance in the ANOVA model (2.18). From this, under exact
orthogonality between ÄW and rX, we can see that when adjusting for covariates X , the standard
error of the treatment estimator becomes smaller as the explanatory ability of X on Y increases.

This heuristic derivation could lead to the conclusion that we should adjust for all potential prog-
nostic baseline covariates, since these are independent of W and could decrease the variance.
While introducing baseline covariates in X that are not orthogonal to W , we potentially inflate

the factor
´
ÄWJM rX

ÄW
¯´1

in equation (2.35), this does not happen when X and W are orthog-
onal. However, adjusting for many potentially prognostic coviariates, we run the risk of also
adjusting for covariates that are not related to Y . Adjusting for covariates not related to Y will
in general cause only a modest inflation of the variance estimate of the treatment estimator, also
due to a loss of degrees of freedom, which inflates the estimate p�2. However, if such covariates
show signs of correlation to Y due to chance, this mistakenly decreases the variance estimate.
This indicates that problems with overfitting are present, leading to a misleadingly low variance
estimate of the treatment estimate, which inflates the type I error.

We note that these conclusions are based on assumptions of the true data generating process,
namely that it can be described by a normal linear model Yi “ Wi�W ` Xi�X ` "i with "i „
N p0, �2q. However, these assumptions are not guaranteed to hold in practice. As an example,
as we will later show in theorem 5.3.6, there are cases in which an ATE estimator obtained from
an adjusted ANCOVA model has larger variance than its unadjusted counterpart. Specifically,
when ⇡1 ‰ ⇡0 and the relation between the covariates and the outcome is not the same across the
treatment and control arms (which could be the case when the treatment effect is heterogeneous),
the variance of the adjusted estimator could be larger if interaction effects are not modelled. In
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the case of a heterogeneous treatment effect, the model specified without interaction terms would
have heteroskedastic error terms if ⇡1 ‰ ⇡0. Heuristically, this is the case since parts of the mean
value structure is not explained if an interaction term WX is not included in the model, meaning
that the residual variance is larger for either the treatment or the control group, whichever has
the smallest number of participants (since minimising the squared residuals to obtain the MLE
entails that each observation is weighted equally). This heteroskedasticity means that the first
expression in (2.35) is not in fact the true variance. In section 3.5, we will return to the question
of how to account for this in practice. û
As the example shows, adjusting for prognostic covariates reduces the variance, but whereas
adjusting for covariates not related to the outcome is not expected to mistakingly decrease the
variance estimate, it can happen due to chance. This is a reason why considerations need to be
taken in regard to covariate adjustment.

2.3.2 Regulatory Guidelines for Covariate Adjustment

There are several considerations to be made when adjusting for covariates in RCTs, and both
EMA, The International Council for Harmonisation of Technical Requirements for Pharmaceu-
ticals for Human Use (ICH) in cooperation with EMA, and FDA have published guidelines for
baseline covariate adjustment in clinical trials [16, 17, 18]. Baseline covariates that are known to
be highly prognostic, and are specified as such in the protocol prior to the recording of the base-
line values, should be included as covariates in the primary analysis. In general, few covariates
should be included in the primary analysis, and justification on the use of each covariate should
be provided. Some baseline values should always be included:

• If some covariate is stratified upon in the randomisation to ensure balance of treatments
across the covariate, the covariate should be adjusted for in the analysis, except the case
where the stratification was done purely for an administrative reason so the covariate is not
expected to be related to the outcome.

• In case of a continuous primary outcome, the baseline value of this covariate should be
included as a covariate whether the primary outcome is defined as "raw outcome" or the
"change from baseline".

Adjustment for baseline covariates should not be included in the primary analysis if this was
not prespecified, even if baseline imbalances are observed. This is to avoid analysts engaging
in "fishing expeditions", creating different covariate adjusted models, and then "focus on the
covariate model that best accentuates the estimate and/or statistical significance of the treat-
ment difference" [19, 20]. Generally, no covariates measured after the randomisation should be
included, as these have potentially been affected by the treatment.
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3 | Sample Size Calculations

In this chapter, we will describe methods for sample size calculations for the ANOVA model z-
and t-tests as well as for the ANCOVA model t-test. Furthermore, we will discuss how vulnerable
the ANCOVA model is to violations of some of its assumptions on the true data generating
process, and how to alleviate such potential violations. We conclude the chapter by considering
corrections to the sample size calculations when multiple hypotheses need to be tested.

3.1 General Considerations
The overall goal when conducting sample size calculations is to determine the number of partici-
pants in a trial required to ensure a prespecified power 1´�, where � is the probability of a type
II error. The power is calculated dependent on the specific statistical test that will be applied at
a significance level ↵. The basic elements of a sample size calculation is an H0-hypothesis and
alternative H1-hypothesis involving a test statistic T and a rejection region R↵. The probability
of type I error can then be expressed as

P pT P R↵ | H0q “ ↵. (3.1)

In the case of the alternative hypothesis being true, the power can be expressed as

P pT P R↵ | H1q “ 1 ´ �. (3.2)

In other words, the power is a measure of how likely we are to correctly reject the null hypothesis,
using a specific test with a certain sample size. The aim of sample size calculations is then
to determine the minimum sample size required such that equation (3.2) is fulfilled for some
specified � while ensuring a type I error rate of ↵, according to equation (3.1).

We consider the case where T is continuous and the test problem is one-sided with large values
being critical to H0, that is, the H0-hypothesis is rejected for sufficiently large values of T . In
this situation we have R↵ “ sc↵,8r for some critical value c↵ P R. We let F0 and F1 denote the
cumulative distribution functions of T under the H0- and H1-hypothesis, respectively. We then
have

F0pc↵q “ P pT † c↵ | H0q “ 1 ´ ↵

F1pc↵q “ P pT † c↵ | H1q “ �.
(3.3)

Assuming that the inverses of F0 and F1 exist, we obtain

c↵ “ F´1
0 p1 ´ ↵q “ F´1

1 p�q ñ F1

`
F´1
0 p1 ´ ↵q

˘
“ �. (3.4)
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From the right hand side of equation (3.4) we see the relation between the significance level, ↵,
and the probability of making a type II error, �. If we fix the sample size n and then decrease
↵, then 1 ´ ↵ moves closer to 1, meaning that F´1

0 p1 ´ ↵q increases, implying that � increases.
Thus, when decreasing the significance level and hence the probability of making a type I error,
the price to be paid is in the form of decreasing power.

Usually F1 depends on n, and therefore we can use equation (3.4) to determine n. By solving
the equation for a prespecified �, we would often not obtain an integer n. Therefore we seek
to obtain the smallest positive integer n such that F0pc↵q “ 1 ´ ↵ while F1pc↵q § �, thereby
maintaining a power of at least 1 ´ �. Since F1 and its inverse are increasing functions, we then
wish to obtain the smallest positive integer n such that

F´1
0 p1 ´ ↵q § F´1

1 p�q ñ F1

`
F´1
0 p1 ´ ↵q

˘
§ �. (3.5)

From these equations we see that we need to fix some desired ↵ and �. Furthermore, we should
know the distribution of the test statistic under H0, that is F0, to be able to perform the test in
equation (3.1). From F0 and ↵, we can determine the critical value c↵ required to perform this
test from equation (3.3). As we will derive in the following sections, F0 (and hence c↵) is not
dependent on n for the ANOVA model z- and t-tests and the ANCOVA model t-test. Lastly,
we regard F1 as a function of n to determine the required n for the desired ↵ and � [21, pp.
14–15]. We now provide an example which will prove to be useful when considering sample
size calculations for the ANOVA model z- and t-tests and for the ANCOVA model t-test.

Example 3.1.1. F0 and F1 being normal distributions with known standard deviation
We assume that T is a test statistic satisfying T |H0 „ N

`
0, 2

0

˘
and T |H1 „ N

`
cpnq, 2

1

˘

with known  2
0 and  2

1 . This means that when the H1-hypothesis is true, the mean of the test
statistic T is shifted by cpnq ° 0. This implies that T |H0 “ Z 0 and T |H1 “ cpnq ` Z 1 for
Z „ N p0, 1q, and we thus get

F´1
0 p1 ´ ↵q “ z1´↵ 0 (3.6)

and

F´1
1 p�q “ cpnq ` z� 1 “ cpnq ´ z1´� 1, (3.7)

with zp denoting the p’th quantile of the standard normal cumulative distribution function. Now
using the first part of equation (3.4), we get

cpnq “ z1´↵ 0 ` z1´� 1, (3.8)

which should then be solved for n [21, p. 16]. û
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The conducted hypotheses and corresponding tests should be chosen according to the aim of the
clinical trial. Specifically, a trial can be a superiority trial, non-inferiority trial or equivalence
trial. Denoting the true average treatment effect by � “ E

“
Y p1q ´ Y p0q

‰
, we assume without

loss of generality that � ° 0 implies that the treatment group has a better outcome.

A trial is a superiority trial if the aim is to show that a treatment is superior to a control treatment.
In such a trial, the null hypothesis and alternative hypothesis are

H0 : � § �s and H1 : � ° �s, (3.9)

where �s • 0 is a predetermined superiority margin. In a non-inferiority trial we seek to
show that the treatment is not worse than the control by more than some prespecified amount.
Therefore, the null hypothesis and alternative hypotheses are

H0 : � § ´�ni and H1 : � ° ´�ni, (3.10)

where �ni • 0 is a predetermined non-inferiority margin. Lastly, in an equivalence trial the aim
is to show that� P r´�e,�es, with�e • 0 being a prespecified equivalence margin. Therefore
we have

H0 : |�| ´�e ° 0 and H1 : |�| ´�e § 0. (3.11)

In practice an equivalence trial is often not used, since the non-inferiority trial contains the equiv-
alence hypothesis but enables the possibility for the treatment to show superiority. The values of
�s,�ni and�e depend on the specific context of the trial and scale of the outcome variable [22].

As described earlier, when drop-outs are present due to e.g. violation of the protocol or adverse
events, we use the intention-to-treat principle. If data is incomplete, values should be imputed
using a multiple imputation method. This would lead to a loss in power due to a loss in infor-
mation, and hence withdrawals should be taken into account when determining the sample size.
A method for doing so is to assume a withdrawal rate and then adjust the sample size conserva-
tively. Specifically, if a sample size calculation gives a required sample size of nss, then we could
instead recruit n “ nss{p1 ´ qq participants, where q is the assumed dropout rate. If the dropout
rate is expected to differ between the treatment and control group, this correction would be done
groupwise for n0 and n1. This would imply that the power is not less than the desired value,
since the method conservatively assumes that the withdrawals do not provide any information in
regard to the primary outcome of the patients that dropped out [21, p. 10].

3.2 ANOVA Model z-test
We will now derive sample size formulas for normally distributed outcomes with known standard
deviation in the context of a superiority trial, using an ANOVA model to estimate the ATE. Often
�2
w

is not known in practice, which is an issue we will return to later. For now, we consider
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the setup where the outcome variables Ywj „ N pµw, �2
w

q are mutually independent for w “
0, 1 and j “ 1, 2, . . . , nwpnq. We note that this setup entails a violation of the assumption of
homoskedasticity of the normal linear model, but as we will show, the distribution of the z-test
statistic still holds when we account for this.

Under a superiority trial in which � ° 0 implies that the treatment group has a better outcome,
we wish to test the hypotheses in equation (3.9). Thereby we have a one-sided test problem given
by

H0 : �´�s § 0 and H1 : �´�s ° 0. (3.12)

To test this hypothesis we can use the z-test statistic given by

Z “ Y 1 ´ Y 0 ´�sb
1

n1pnq�
2
1 ` 1

n0pnq�
2
0

, (3.13)

where we estimate µw by the group mean Y w “ 1
nwpnq

∞
nwpnq
j“1 Ywj , corresponding to the ANOVA

ML estimate seen in appendix A.1. Then Y 1 ´ Y 0 follows a normal distribution with

E
”
Y 1 ´ Y 0

ı
“ µ1 ´ µ0 “ � (3.14)

and

Var
´
Y 1 ´ Y 0

¯
“ 1

n1pnq�
2
1 ` 1

n0pnq�
2
0. (3.15)

This implies that

Z „ N

¨

˚̋ µ1 ´ µ0 ´�sb
1

n1pnq�
2
1 ` 1

n0pnq�
2
0

, 1

˛

‹‚. (3.16)

The null hypothesis includes the situation where � ´�s “ 0, in which case the mean value of
the Z statistic is 0. In the remaining situations of � ´�s † 0, the mean value of the Z statistic
is smaller than 0 with the same variance. That is, if�´�s “ 0, we get the largest critical value
z1´↵, meaning that R↵ is as small as possible. Since we wish to reject all possible cases of H0

being true, we look at the situation where�´�s “ 0, entailing that Z „ N p0, 1q. The rejection
region is then R↵ “ tz | z ° z1´↵u for a significance level ↵, since these values are critical to
H0. Therefore we can use example 3.1.1 to write the mean parameter of the z-test statistic under
H1 as

cpnq “ µ1 ´ µ0 ´�sb
1

n1pnq�
2
1 ` 1

n0pnq�
2
0

“ z1´↵ ` z1´�, (3.17)
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which should be solved for n. If we assume equally sized groups, we obtain

µ1 ´ µ0 ´�sb
1

n1pnqp�2
1 ` �2

0q
“ z1´↵ ` z1´�

ñ µ1 ´ µ0 ´�s

z1´↵ ` z1´�

“
d

1

n1pnqp�2
1 ` �2

0q

ñ
ˆ

z1´↵ ` z1´�

µ1 ´ µ0 ´�s

b
�2
1 ` �2

0

˙2

“ n1pnq “ n

2
.

(3.18)

If we instead assume homoskedasticity, that is, �1 “ �0 “ �Y , and let the ratio of the groups
sizes be r “ n1pnq

n0pnq , we have

z1´↵ ` z1´� “ µ1 ´ µ0 ´�sb
n0pnq`n1pnq
n1pnqn0pnq �

2
Y

“
d

n1pnqn0pnq
n0pnq ` n1pnq

µ1 ´ µ0 ´�s

�Y

“
c

r

p1 ` rq2
`
n0pnq ` n1pnq

˘µ1 ´ µ0 ´�s

�Y
,

(3.19)

using that

n1pnqn0pnq
n0pnq ` n1pnq “ n1pnq

n0pnq

ˆ
n0pnq

n0pnq ` n1pnq

˙2 `
n0pnq ` n1pnq

˘

“ r

¨

˝ 1

n0pnq`n1pnq
n0pnq

˛

‚
2

`
n0pnq ` n1pnq

˘

“ r

p1 ` rq2
`
n0pnq ` n1pnq

˘
.

(3.20)

Therefore we have

n “ n0pnq ` n1pnq “ p1 ` rq2
r

pz1´↵ ` z1´�q2
ˆ

�Y
µ1 ´ µ0 ´�s

˙2

. (3.21)

In general, the group wise sample sizes are given in terms of r by the relations

n1pnq “
ˆ

r

1 ` r

˙
n and n0pnq “

ˆ
1

1 ` r

˙
n. (3.22)

In practice, trying to determine a sample size from a desired allocation ratio could lead to non-
integer values of the group sample sizes, which should then be rounded up to ensure a power of
at least 1 ´ �. Such a rounding could lead to slight differences in the allocation ratio r. Another
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alternative when r is an integer would be to round to the smallest positive integer which r ` 1

divides. For example if r “ 3 and we have obtained n “ 162.4 we would obtain a sample size of
n “ 164. Thereby, we have the same allocation ratio as before. If we had instead rounded each
group we would have 162.4 ¨ 3{4 “ 121.8 rounded to 122 and 162.4 ¨ 1{4 “ 40.6 rounded to 41.
This gives an allocation ratio of 122{41 “ 2.98.

Instead of finding the sample size from a fixed allocation ratio, we can investigate which al-
location ratio is optimal in regard to minimising the required sample size, which we do in the
following example.

Example 3.2.1. Required sample size as a function of the allocation ratio
We wish to investigate the impact of the allocation ratio on the required n in the situation of
�1 “ �0 “ �Y . Specifically, we wish to obtain the most optimal allocation ratio such that
the required n is as small as possible. For that purpose, we will regard the required n in the
representation (3.21) as a function of the allocation ratio r ° 0. Disregarding the constant factor,
the first and second order derivatives are given as

n1prq “ 2p1 ` rq
r

´ p1 ` rq2
r2

“ r2 ´ 1

r2
“ 1 ´ 1

r2

n2prq “ 2r

r2
´ 2pr2 ´ 1q

r3
“ 2

r3
° 0,

(3.23)

so nprq is minimised when r “ 1 meaning that we have equally sized groups.

The percentage-wise increase of the total required sample size compared to balanced allocation
is given by

nprq ´ np1q
np1q “

´
p1`rq2

r
´ 4

¯
pz1´↵ ` z1´�q2

´
�Y

µ1´µ0´�s

¯2

4pz1´↵ ` z1´�q2
´

�Y
µ1´µ0´�s

¯2

“ p1 ` rq2
4r

´ 1 “ 1 ` r2 ` 2r ´ 4r

4r
“ pr ´ 1q2

4r
.

(3.24)

From this we see that for imbalances such as r “ 3{2 or r “ 2 we have a 4.16% and 12.5%
increase in the required sample size, respectively. For more extreme imbalances such as r “ 4

and r “ 6 we have a 56.25% and 104.16% increase, respectively. û
Example 3.2.1 shows that an allocation ratio of 1 always provides the smallest required sample
size when we wish to investigate the efficacy of a drug. However, considerations regarding ethics,
the power to detect adverse events in the treatment group, the expected rate of dropouts and the
economic cost of the study could require a non-balanced allocation ratio [23].

If we had instead considered a non-inferiority trial we would have obtained similar results just
substituting ´�s with �ni [21, pp. 19–21].
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From equation (3.21) we see what in general is needed to determine a sample size that ensures
a type I error rate of ↵ and a desired power of 1 ´ �. The significance level ↵ is needed, and
we see that as ↵ decreases, z1´↵ increases, yielding an increase in the required n. In the ICH E9
Guideline [17, p. 27], it is stated that: "The approach of setting type I errors for one-sided tests at
half the conventional type I error used in two-sided tests is preferable in regulatory settings." This
ensures consistency between the confidence intervals for one-sided tests and the corresponding
two-sided tests. In practice this means that we should require the same sample size regardless of
whether we conduct a one-sided or two-sided test. Thus, in practice a one-sided test should be
conducted with a significance level of ↵{2. Furthermore, we need to predetermine the desired
power 1 ´ � of the analysis. Again we see that if � decreases, the required n increases. We
also need an assumed effect size µ1 ´ µ0 together with the superiority or non-inferiority margin.
The smaller the assumed effect size is, the larger n is needed to have a 1 ´ � probability of
determining this effect. Increasing the margin also increases the required n. Lastly, we need the
allocation ratio r, which we have already shown leads to the smallest n when we have equally
sized groups.

In general we want a low probability of conducting a type I error, since such an error would
lead to approval of a potentially non-effective or worse drug. In medical research a two-sided
significance level of ↵ “ 0.05 is the standard approach [21, p. 8]. Now, replacing ↵ with ↵{2
in equation (3.21) according to the ICH Guidelines, we can determine the cost of more power in
terms of required increase in n. For example, having predetermined ↵{2 “ 0.025, µ1 ´µ0 “ 10,
�s “ 5, �Y “ 20 and r “ 1 we can determine that going from 0.8 to 0.9 in power would yield
an increase in the required n by a factor 1.34. In general, there is a tendency of a large increase
in the required sample size when increasing the desired power from 80% [21, p. 22]. Because of
such a large increase in required sample size, a larger probability of type II errors are generally
accepted than for the type I error. In general, clinical trials usually have a power of at least 80%
[24]. On the other hand, if the trial cannot be repeated, a low � is needed, since a type II error in
this case could lead to never determining the potential of the drug [21, p. 8].

Equation (3.18) shows a sample size formula in case of equally sized groups, and (3.21) shows
what is needed when we assume constant variance across the treatment- and control groups. Spe-
cifically, we see that the calculation is based on known variance, with larger variance implying a
larger required sample size; in order to maintain certainty in the estimate when data varies a lot,
we need more participants. The variance is called a nuisance parameter, since it is not a part of
the hypothesis under investigation but still is a part of the calculation of power. In practice the
variance can be estimated by the previously conducted phase I or II trials, the preclinical trial or
by some other a priori knowledge. The a priori knowledge can be obtained from a meta-analysis
of a collection of previous trials. Since there is uncertainty in regard to the estimated nuisance
parameter, a sensitivity analysis should be conducted, where the sample size is calculated for
multiple values of the parameter. It has been shown analytically that the probability of obtaining
the planned power is less than 50% when using a sample variance estimate for the z-test. This
illustrates the importance of a sensitivity analysis. It has also been shown analytically that if we
use the upper boundary of a p1 ´ �q-confidence interval for an estimate p�2

Y
in place of �2

Y
, then

there is a probability of 1 ´ � of gaining a power of 1 ´ � for the z-test [21, p. 27] [25].
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3.3 ANOVA Model t-test
We consider the same setup as in section 3.2, but now with unknown variance �2

Y
“ VarpY pwqq

for w “ 0, 1, which is assumed to be the same across the treatment- and control groups. Again,
we start by considering the superiority trial with the same hypotheses as in section 3.2.

We denote the standard ANOVA pooled sample standard deviation as

SY “
d`

n1pnq ´ 1
˘
S2
1 `

`
n0pnq ´ 1

˘
S2
0

n1pnq ` n0pnq ´ 2

(3.25)

where the estimates of the group variances are

S2
w

“ 1

nwpnq ´ 1

nwpnqÿ

j“1

´
Ywj ´ Y w

¯2

, w “ 0, 1. (3.26)

We note that S2
Y

is the usual unbiased variance estimator p�2
Y

for this normal linear model, since
a subject in group w is predicted by the group mean Y w. This is also described in appendix A.2.

The ANOVA model t-test statistic is then defined by

TANOVA “ Y 1 ´ Y 0 ´�sc
yVar

´
Y 1 ´ Y 0

¯ “

b
n1pnqn0pnq
n1pnq`n0pnq

´
Y 1 ´ Y 0 ´�s

¯

SY

, (3.27)

where

Var
´
Y 1 ´ Y 0

¯
“ Var

´
Y 1

¯
` Var

´
Y 0

¯
“

ˆ
1

n1pnq ` 1

n0pnq

˙
�2
Y

“ n1pnq ` n0pnq
n1pnqn0pnq �2

Y

(3.28)

is estimated by

yVar
´
Y 1 ´ Y 0

¯
“ n1pnq ` n0pnq

n1pnqn0pnq S2
Y
. (3.29)

Since S2
Y

is the standard variance estimator from a normal linear model, we have that

S2
Y

„ �2
Y

n1pnq ` n0pnq ´ 2
�2

`
n1pnq ` n0pnq ´ 2

˘
, (3.30)
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with Y 1 and Y 0 being independent of S2
Y

, making the numerator and denominator in equation
(3.27) independent. Notice that from the distribution, we can conclude that S2

Y
is an unbiased

estimate of �2
Y

, since the expected value of the scaled �2-distribution on the right hand side is 1.

As in section 3.2 with � ´�s “ 0 being the situation with R↵ as small as possible in the case
of H0 being true, we have

Y 1 ´ Y 0 ´�sc´
1

n1pnq ` 1
n0pnq

¯
�2
Y

“

b
n1pnqn0pnq
n1pnq`n0pnq

´
Y 1 ´ Y 0 ´�s

¯

�Y
„ N p0, 1q, (3.31)

under the H0-hypothesis.

From independence of the numerator and denominator of the last expression in equation (3.27),
using the definition of the central Student’s t-distribution together with (3.31) and (3.30), the
t-statistic has the distribution

TANOVA “

b
n1pnqn0pnq
n1pnq`n0pnq

´
Y 1 ´ Y 0 ´�s

¯ N
�Y

a
S2
Y

{�2
Y

„ t
`
n1pnq ` n0pnq ´ 2

˘ (3.32)

under the H0-hypothesis.

For the one-sided test, the rejection region is R↵ “
 
t

ˇ̌
t ° t1´↵{2, n1pnq`n0pnq´2

(
using the ICH

E9 guideline for the significance level. Under H1 we use the definition of the non-central Stu-
dent’s t-distribution, where the non-centrality parameter is defined as the mean of the numerator
in (3.32). This numerator coincides with the z-test statistic in (3.13), which has the mean speci-
fied in (3.16). That is, the non-centrality parameter can be expressed as

cpnq “
c

r

p1 ` rq2 ¨ n ¨ µ1 ´ µ0 ´�s

�Y
, (3.33)

using equation (3.19). Thus, cpnq again depends on �Y , and in practice one can use an estimated
variance. As with the z-test, a sensitivity analysis should therefore be conducted using different
estimates for �Y .

According to equation (3.5) we can use the cumulative distribution functions for the t-distribution
F0 “ Ft,n´2,0 and F1 “ Ft,n´2,cpnq with n ´ 2 degrees of freedom, and non-centrality parameter
equal to 0 and cpnq, respectively, to determine the smallest positive integer n such that

F´1
t,n´2,0p1 ´ ↵{2q § F´1

t,n´2,cpnqp�q. (3.34)

The equation can be solved iteratively by inserting an nk on the right hand side for the k’th
iteration and then determining the smallest integer nk`1 such that the inequality holds, using
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nk`1 on the left hand side. This nk`1 is then used to evaluate the right hand side, starting the next
iteration. The iterations continue until nk “ nk`1. A good starting point could be the n found
by conducting a z-test assuming a specific value of �Y . As for the z-test, it can be shown that an
allocation ratio of r “ 1 results in the smallest required n. An alternative to iteratively solving
for n, the solution can be approximated as described in the next section.

3.3.1 Approximation Formulas

Different approximations for the solution of equation (3.34) have been proposed. In practice it
is no problem to use the iterative method, but to illustrate that a larger sample is needed for the
t-test, we will introduce an approximate solution. An approximation that has proven to be good
in practice is the Guenther and Schouten approximation [26, 27] [21, p. 25], which is given by

nGS,0pnq “ 1 ` r

r
pz1´↵{2 ` z1´�q2

ˆ
�Y

µ1 ´ µ0 ´�s

˙2

` pz1´↵{2q2
2p1 ` rq (3.35)

and

nGS,1pnq “ rnGS,0pnq, (3.36)

where �Y is replaced by an estimate in practice, and we can again either round the total sample
size or each group sample to obtain integer values. The first term in equation (3.35) is motivated
by the t-distribution being approximately normal for a large n. We could then use that n “
p1 ` rqn0 in equation (3.21) to obtain the first term. The last term is a correction, since the
t-distribution is only approximately normal. Thus, we have

nGS “ nGS,0pnq ` nGS,1pnq

“ p1 ` rq
˜
1 ` r

r
pz1´↵{2 ` z1´�q2

ˆ
�Y

µ1 ´ µ0 ´�s

˙2

` pz1´↵{2q2
2p1 ` rq

¸

“ nz-test ` pz1´↵{2q2
2

.

(3.37)

Therefore if ↵ “ 0.05 we have pz1´↵{2q2
2 “ 1.92 meaning that the required sample size increases

by 2 when using the t-test instead of the z-test.

Again, if we instead consider a non-inferiority trial, we can obtain similar results just substituting
�s with ´�ni.

All considerations at the end of section 3.2 also apply to this case of the t-test, where choices have
to be made about significance level, power, assumed effect size, margin and nuisance parameter
when wishing to determine a sample size, whether we wish to solve iteratively or approximately.
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3.4 ANCOVA Model t-test
We will now derive sample size formulas for the ANCOVA model described in section 2.3. We
start by considering the case of adjustment for one covariate, and we will then generalise to the
case of adjusting for several covariates. The results are mostly based on [28] and [25], in which
most equations are not explicitly derived. Where this is the case, we carry out the calculations,
the most comprehensive of which are placed in appendices A.3 and A.4.

3.4.1 Univariable Covariate Adjustment

We first consider the case of adjusting for one random covariate Xwj , with w “ 1, 0 indicating
the treatment- and control group, respectively, and j “ 1, 2, . . . , nw indicating the patient number
in the corresponding group, and equivalently for the response Ywj . To determine the MLE in the
ANCOVA model (2.20), we can write an equivalent reparametrised form of the ANCOVA model
as

Ywj “ p1 ´ wq�0 ` w�1 ` Xwj�X ` "wj, j “ 1, 2, . . . , nw, w “ 0, 1, (3.38)

where " “ r"11, "12, . . . , "0n0sJ „ N
`
0, diag

n1`n0
p�2, �2, . . . , �2q

˘
and we again assume that

the Xwj’s are mutually independent, the Ywj’s are mutually independent, and all the Xwj’s and
Ywj’s are independent of ". We denote the design matrix of this model as D, which is explicitly
defined in appendix A.3. Furthermore, using the assumption of homoskedasticity, we denote as
�2
Y

the variance of Y pwq for w “ 0, 1, by �2
X

the variance of the covariate, and the correlation
as ⇢ “ �XY {p�X�Y q, for �XY denoting the covariance between X and Y . From this model
specification, we get �1 ´ �0 “ CATE “ ATE, as seen in section 2.3.

In the case of a superiority trial, the H0 and H1-hypotheses can then be formulated according to
the new parametrisation as

H0 : p�1 ´ �0q ´�s § 0 and H1 : p�1 ´ �0q ´�s ° 0. (3.39)

In appendix A.3, the ML estimate for the control and treatment group coefficients are derived as

p�k “ ´Xk
p�X ` Y k, k “ 0, 1, (3.40)

using the estimator of �X in equation (A.12). This gives an unbiased ATE estimator as p�1 ´ p�0.
The variance of the ATE estimator is derived in appendix A.4 as

Var
´

p�1 ´ p�0
¯

“

¨

˚̊
˝

´
X1 ´ X0

¯2

S2
X

pn ´ 2q ` n´1
1 ` n´1

0

˛

‹‹‚�
2, (3.41)
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where

SX “

gffe
∞1

w“0

∞
nw

j“1

´
Xwj ´ Xw

¯2

n ´ 2
(3.42)

is a pooled variance estimator of the covariate. In appendix A.4 an unbiased estimate of the
variance is derived as

yVar
´

p�1 ´ p�0
¯

“

¨

˚̊
˝

´
X1 ´ X0

¯2

S2
X

pn ´ 2q ` n´1
1 ` n´1

0

˛

‹‹‚p�2

“

¨

˚̊
˝

´
X1 ´ X0

¯2

S2
X

pn ´ 2q ` n´1
1 ` n´1

0

˛

‹‹‚
n ´ 2

n ´ 3
S2
Y

`
1 ´ p⇢2

˘
,

(3.43)

using the usual unbiased estimator of �2 given as

p�2 “ pY ´Dp�qJpY ´Dp�q
n ´ 3

„ �2

n ´ 3
�2pn ´ 3q, (3.44)

and a pooled estimate of the correlation between X and Y is given as

p⇢ “
∞1

w“0

∞
nw

j“1

´
Xwj ´ Xw

¯ ´
Ywj ´ Y w

¯

c
∞1

w“0

∞
nw

j“1

´
Xwj ´ Xw

¯2∞1
w“0

∞
nw

j“1

´
Ywj ´ Y w

¯2
. (3.45)

Similar to section 3.3, the t-test statistic is given by

TANCOVA “
p�1 ´ p�0 ´�sc
yVar

´
p�1 ´ p�0

¯ . (3.46)

As in section 3.2 with p�1 ´ p�0 ´ �s “ 0 being the situation with R↵ as small as possible in
the case of H0 being true, we have that the numerator of the t-test statistic divided by the true
variance has the distribution

p�1 ´ p�0 ´�sc
�2

´
pX1´X0q2
S
2
Xpn´2q ` n´1

1 ` n´1
0

¯ „ N p0, 1q, (3.47)
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under the H0-hypothesis. Therefore under the H0-hypothesis and using the definition of the
central Student’s t-distribution with p�2 and p� being independent, we have from (3.43), (3.44)
and (3.47), that

TANCOVA “

´
p�1 ´ p�0 ´�s

¯ Nc
�2

´
pX1´X0q2
S
2
Xpn´2q ` n´1

1 ` n´1
0

¯

d
yVar

´
p�1 ´ p�0

¯ N
�2

´
pX1´X0q2
S
2
Xpn´2q ` n´1

1 ` n´1
0

¯

“

´
p�1 ´ p�0 ´�s

¯ Nc
�2

´
pX1´X0q2
S
2
Xpn´2q ` n´1

1 ` n´1
0

¯

d

p�2

N
�2

„ tpn ´ 3q.

(3.48)

This is again a one-sided test, and the rejection region is R↵ “
 
t

ˇ̌
t ° t1´↵{2,n´3

(
, where we

again use the ICH E9 guideline for the significance level [21, pp. 29–30].

Under the H1-hypothesis we can use the definition of the non-central Student’s t-distribution,
where the non-centrality parameter is the expectation of the numerator of the ANCOVA t-test
statistic (3.46) divided by the true variance Var

´
p�1 ´ p�0

¯
. According to Kieser [21, p. 30], the

non-centrality parameter can be expressed as

cpnq “ E

»

———–
p�1 ´ p�0 ´�sc

�2
´

pX1´X0q2
S
2
Xpn´2q ` n´1

1 ` n´1
0

¯

fi

���fl “
c

rn

p1 ` rq2
�1 ´ �0 ´�s

�Y
a
1 ´ ⇢2

. (3.49)

Later, in equation (5.126), we will arrive at this conclusion in the asymptotic case. We note
that the non-centrality parameter only differs from the non-centrality parameter for the t-test
given in equation (3.33) by a factor 1{

a
1 ´ ⇢2. This implies that the two coincides for ⇢ “ 0.

Thus, when the covariate that we adjust for is uncorrelated to the outcome variable Y , the test
reduces to a t-test in an ANOVA model. This is consistent with the intuition that it only makes
sense to adjust for covariates that are related to the outcome. In the opposite case of ⇢ being
numerically large,

a
1 ´ ⇢2 decreases, so cpnq becomes large, making it more likely to reject the

null hypothesis in the case of H1 being true, thus gaining more power for a fixed sample size of
n. This is consistent with the intuition that when X explains more of the variation in Y , we can
be more certain that differences in the treatment- and control groups can be ascribed to treatment
allocation.

We will show that this intuition translates directly to the t-test statistics of the ANCOVA and
ANOVA models. We begin by considering the last expression of the variance estimate in equation
(3.43). For sample sizes in clinical trials, we often have sufficiently large n, so that n´2

n´3 « 1.
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Furthermore, since the patients are randomly allocated to the treatment- and control groups, the
covariates are equally distributed between the two groups in expectation, as seen in section 2.2.1.
This, and n being sufficiently large, implies that pX1´X0q2

S
2
Xpn´2q is small for large n. Therefore, we

neglect this term in the variance estimate, and we get

yVar
´

p�1 ´ p�0
¯

«
`
1 ´ p⇢2

˘
S2
Y

`
n´1
1 ` n´1

0

˘
. (3.50)

We can then approximate the ANCOVA t-test statistic (3.46) by

TANCOVA «
p�1 ´ p�0 ´�sb

p1 ´ p⇢2qS2
Y

`
n´1
1 ` n´1

0

˘ . (3.51)

Thus, this test statistic corresponds to the ANOVA test statistic in equation (3.32) but multiplied
by the factor 1{

a
1 ´ p⇢2.

Using the non-centrality parameter in (3.49), we can use equation (3.5) where we use the cumu-
lative distribution functions for the t-distribution F0 “ Ft,n´3,0 and F1 “ Ft,n´3,cpnq to determine
the smallest positive integer n such that

F´1
t,n´3,0p1 ´ ↵{2q § F´1

t,n´3,cpnqp�q. (3.52)

To obtain the minimum required sample size, we should again solve this iteratively by using the
same procedure as for the ANOVA model t-test, discussed after equation (3.34). Furthermore, as
for the ANOVA model t- and z-tests, it can be shown that the optimal allocation ratio is r “ 1 in
regard to minimising the required sample size. Alternatively, one can approximate the required
sample size as described in the following section.

3.4.2 Approximation Formulas

In the following, we will derive some closed form approximation formulas for the required sam-
ple size. A central t-distribution converges towards a standard normal distribution implying that
asymptotically, TANCOVA

d›Ñ N p0, 1q under the H0-hypothesis. Similarly we obtain that asymp-
totically TANCOVA´cpnq d›Ñ N p0, 1q under the H1-hypothesis. Thus, we can use example 3.1.1
to approximately express the non-centrality parameter in equation (3.49) as

c
rn

p1 ` rq2
�1 ´ �0 ´�s

�Y
a
1 ´ ⇢2

« z1´↵{2 ` z1´�, (3.53)

which should be solved for n. This results in the Frison-Pocock approximation formula [29] [21,
p. 31], which is given by

nFP “ p1 ` rq2
r

pz1´↵{2 ` z1´�q2 �2
Y

p1 ´ ⇢2q
p�1 ´ �0 ´�sq2

. (3.54)
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As in section 3.3, the Guenther-Schouten correction can now be used to adjust the sample size
when approximating a t-distribution by a normal distribution. That is, we can approximate the
required sample size by

nGS “ nFP ` pz1´↵{2q2
2

. (3.55)

Again, using a significance level of ↵ “ 0.05, the required sample size would be increased by
2. To determine n1 and n0, we can use equation (3.22) and either round the total sample size to
an integer, or round each group sample to obtain integer values. In practice this approximation
is very close to the exact sample size obtained from solving equation (3.52) for the smallest
possible n.

From the approximation formulas derived in equations (3.54) and (3.55), we see that the sample
size can be considerably decreased by using an ANCOVA model instead of an ANOVA model,
since we in this case multiply the required sample size by a factor of 1 ´ ⇢2. For instance if
⇢ “ 0.5, the n found in equation (3.21), coming from the z-test, is multiplied by p1 ´ 0.52q “
0.75, thereby reducing the required sample size by 25% compared to the ANOVA model. For the
t-test, the sample size calculations coming from the ANOVA and ANCOVA model are corrected
from the z-test by the same negligible term pz1´↵{2q2

2 , and thus this calculated relative decrease
in sample size, using ANCOVA over ANOVA, also holds almost exactly for the t-test. If the
correlation is 0.7, the sample size is reduced by almost 50%. It is not unrealistic that the covariate
that we adjust for is correlated to the outcome by a large magnitude. For example if we want
to evaluate the end-of-treatment value or change from baseline in respect to some outcome,
then we should adjust by the baseline value of the outcome variable, which is in accordance
with regulatory guidelines as described in section 2.3.2. The baseline value is typically highly
correlated to the outcome variable [21, pp. 30–32]. Thereby we obtain a substantial decrease of
the required sample size.

In the case of a non-inferiority trial, we could obtain similar results substituting ´�s by �ni.

All considerations at the end of section 3.2 also apply to this case of the ANCOVA model, where
choices have to be made about significance level, power, assumed effect size, margin and nui-
sance parameters when wishing to determine a sample size, whether we wish to solve iteratively
or approximately. In this case, both the variance and correlation coefficient are nuisance param-
eters, and it can be necessary to perform sensitivity analysis in regard to both parameters.

3.4.3 Multivariable Covariate Adjustment

We will now consider the case where we adjust by multiple covariates. The section is based
on [30]. In this case we let pYwj, Xwjq “ pYwj, X1

wj
, X2

wj
, . . . , Xp

wj
q be random independent

observations for w “ 0, 1 and j “ 1, . . . , nw. Again, we consider an equivalent form of the
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ANCOVA model parametrised as

Ywj “ p1 ´ wq�0 ` w�1 `
pÿ

k“1

Xk

wj
�Xk ` "wj, j “ 1, 2, . . . , nw, w “ 0, 1, (3.56)

where " “ r"11, "12, . . . , "0n0sJ „ N
`
0, diag

n1`n0
p�2, �2, . . . , �2q

˘
and we again assume that

the Ywj’s are mutually independent. Furthermore, we denote by �2
Y

the variance of the outcome,
⌃X the covariance matrix of the covariates, and �XY a p-dimensional column vector consisting
of the covariance between the outcome variable and each covariate.

We will again consider a superiority trial, where the H0 and H1-hypotheses are given as in equa-
tion (3.39). The ML estimates of �0 and �1 are normally distributed and hence their difference
is normally distributed as well. By standardising the difference by the variance, we obtain a
standard normal distribution under the H0-hypothesis. Similarly to the univariable case in equa-
tion (3.43), Zimmermann et al. [30] shows that an unbiased variance estimate is given by both
expressions

yVar
´

p�1 ´ p�0
¯

“
ˆ

1

n1
` 1

n0
` XJ

d

´
pn ´ 2qp⌃X

¯´1

Xd

˙
p�2

“
ˆ

1

n1
` 1

n0
` XJ

d

´
pn ´ 2qp⌃X

¯´1

Xd

˙
n ´ 2

n ´ 2 ´ p
p�2
Y

p1 ´ pR2q,
(3.57)

where Xd :“
´
X

1
1 ´ X

1
0, . . . , X

p

1 ´ X
p

0

¯J
. Furthermore, the estimated pooled multiple correla-

tion coefficient between the outcome and the covariates is given as

pR2
:“ p�J

XY
p⌃´1
X

p�XY

p�2
Y

, (3.58)

where p�XY and p⌃X are all (co)variance estimates similar to the ones in equations (3.45) and
(3.42). Furthermore, p�2

Y
is the standard unbiased estimator of �2

Y
.

To determine p�2 we can use the variance estimate similar to the one given in equation (3.44), but
where we replace the denominator with n´ 2´ p instead of n´ 3 to obtain unbiasedness. More
specifically, this estimator then follows �

2

n´2´p
�2pn ´ 2 ´ pq, and thus by a similar argument as

for the univariable case, it can be shown that

TANCOVA “
p�1 ´ p�0 ´�sc
yVar

´
p�1 ´ p�0

¯ „ tpn ´ 2 ´ pq. (3.59)

In [30] the non-centrality parameter is shown to be

cpnq “ �1 ´ �0 ´�sd´
1
n1

` 1
n0

` XJ
d

`
pn ´ 2q⌃X

˘´1
Xd

¯
�2
Y

ˆ
1 ´ �

J
XY ⌃

´1
X �XY

�
2
Y

˙ .
(3.60)
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Using the non-centrality parameter, we could determine a sample size by iteratively solving

F´1
t,n´2´p,0p1 ´ ↵{2q § F´1

t,n´2´p,cpnqp�q. (3.61)

Alternatively, one could again approximate the sample size as described in the following section.

3.4.4 Approximation Formulas

We will now introduce some different approximation formulas for a one-sided test with signifi-
cance level ↵{2. A basic approximation formula, derived by again using that the t-distribution is
approximately normal, is given by

nA “ p1 ` rq2
r

pz1´↵{2 ` z1´�q2�2
Y

p1 ´ R2q
p�1 ´ �0 ´�sq2

, (3.62)

which corresponds to the multivariate version of the Frison-Pocock approximation in equation
(3.54).

Again a Guenther-Schouten correction can be used when approximating the t-distribution by a
normal distribution, that is

nGS “ nA ` pz1´↵{2q2
2

. (3.63)

A more conservative approximation is the degrees-of-freedom adjustment given by

nDF “ nA

nA ´ 2

nA ´ 2 ´ p
. (3.64)

Multiplying by this factor can be heuristically motivated by the nA´2
nA´2´p

factor in equation (3.57),
which does not appear in the variance expression in the denominator of equation (3.60), meaning
heuristically that we should adjust for it. This approximation is more conservative in the sense
that nA´2

nA´2´p
° 1 when p • 1, thus estimating a larger required n to obtain the desired amount

of power with a given significance level. Combining the Guenther-Schouten and degrees-of-
freedom corrections, we obtain an even more conservative approximation given by

nGS,DF “ nDF ` pz1´↵{2q2
2

. (3.65)

3.5 Violations of AN(C)OVA Model Assumptions
Until now, we have assumed that the underlying data generating process is an AN(C)OVA model.
Specifically, we assume e.g. that the mean value structure is linear, that the errors are ho-
moskedastic and that the outcome is normally distributed. Based on the ANCOVA model as-
sumptions, we have argued that we are able to provide an unbiased estimate of the ATE and,
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through the t-test, to control the type I error rate as well as calculate a sample size that attains a
certain level of power. Since it is necessary to assume an underlying ANCOVA model to reach
these conclusions, we find it relevant to question to which degree these desirable properties hold
when data is not generated from a distribution that satisfies these somewhat strict assumptions.

We will show that in an RCT, even though the ANCOVA model assumptions are violated, the
ANCOVA model ATE estimator is still consistent, in the sense that zATE P›Ñ ATE as n Ñ 8
[31]. Specifically, we will use the ANCOVA model ATE estimator as the second entry in p� “`
DJD

˘´1
DJY, where the design matrix is specified as D “ r1 W Xs.

We enforce only mild assumptions about the true data generating process within the RCT, namely
that

X „ UX , ErXs “ 0

W „ UW , ErW s “ PpW “ 1q “ ⇡1
Y pW q “ µW pXq ` "Y , Er"Y s “ 0,

(3.66)

for some arbitrary distributions UX , UW and "Y „ UY , and some arbitrary mean value structure
µW pXq. In e.g. a complete randomisation scheme, we would have UW “ Bernoullip1{2q.
We will still assume that W P t0, 1u is the randomised treatment allocation and that X are
baseline covariates (recorded pre-treatment) such that W KK X . Additionally, we assume that
"Y KK X , so that all effect of X on Y is contained in µW pXq, and that all observations are
mutually independent, which is ensured in an RCT with a suitable randomisation scheme.

We note that the ANCOVA model assumptions constitute a more strict subset of these very
non-exclusive assumptions. Specifically, we have not assumed any normal distribution of the
error terms or linearity of the mean value structure. The assumption of W KK X is ensured by
randomisation and ErXs “ 0 can be ensured by demeaning the covariates.

In order to show consistency of the ANCOVA ATE estimator under these violations of the AN-
COVA model, we first use properties of the probability limit to conclude that

plim p� “ plim

ˆ´
DJD

¯´1
˙
plim

´
DJY

¯
“ plim

´
DJD

¯´1

plim

´
DJY

¯

“ plim

ˆ
1

n
DJD

˙´1

plim

ˆ
1

n
DJY

˙
“ E

”
DJD

ı´1

E
”
DJY

ı
,

(3.67)

for plim denoting the probability limit as n Ñ 8, and where the last equality follows from the
law of large numbers used entry-wise [15, pp. 94–96]. Later we will derive the two factors in the
last expression in equation (3.67). These are given in equations (5.55) and (5.54). From these
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expressions, we get that

plim zATE “ ´ 1

1 ´ ⇡1
ErY s ` 1

⇡1p1 ´ ⇡1q ErW sErY p1qs

“ ´ 1

1 ´ ⇡1

´
⇡1 E

“
µ1pXq

‰
` p1 ´ ⇡1qE

“
µ0pXq

‰¯
` 1

⇡1p1 ´ ⇡1q
⇡1 E

“
µ1pXq

‰

“ 1

1 ´ ⇡1

´
E

“
µ1pXq

‰
´ ⇡1 E

“
µ1pXq

‰¯
´ E

“
µ0pXq

‰
(3.68)

“ E
“
µ1pXq

‰
´ E

“
µ0pXq

‰
“ ATE,

where we have used in the second equality that

ErY s “ ErWY p1q ` p1 ´ W qY p0qs
“ E

“
W pµ1pXq ` "Y q ` p1 ´ W qpµ0pXq ` "Y q

‰

“ ErW sE
“
µ1pXq

‰
` Er1 ´ W sE

“
µ0pXq

‰

“ ⇡1 E
“
µ1pXq

‰
` p1 ´ ⇡1qE

“
µ0pXq

‰
,

(3.69)

thus implying that the ATE estimate is still consistent.

We can question how strict the assumption of data following a normal distribution is in regard
to the t-tests allegedly following a t-distribution. For the ANOVA model t-test we can use the
central limit theorem to conclude that the difference in the mean values in the numerator in
(3.27) is approximately normal for sufficiently large n, even though the outcome is not normally
distributed. Similarly for the ANCOVA model t-test, it has been shown that the t-test is robust
to violation of the assumption of normality of the outcome [21, p. 32].

Another question regards the denominator of the t-test statistic, namely the estimated variance,
under violations of the ANCOVA model. Under the assumptions of a normal linear model, in-
cluding the assumption of ⌃ “ �2In, the variance of the OLS estimator is given as �2pDJDq´1.
However, when these assumptions of homoskedasticity or the assumption of no correlation be-
tween errors of the observations are violated, the OLS estimator of the ATE is still unbiased (if the
remaining normal linear model assumptions hold true), but inefficient due to the Gauss-Markov
theorem [15, p. 107]. The variance of the OLS estimator instead takes the sandwich-form

Var
´

p�
¯

“ pDJDq´1DJ
⌃DpDJDq´1 “

ˆ
1

n
DJD

˙´1
1

n2
DJ
⌃D

ˆ
1

n
DJD

˙´1

, (3.70)

so that the asymptotic covariance matrix of the OLS estimates is given as

nVar
´

p�
¯

“ plim

ˆ
1

n
DJD

˙´1

plim

ˆ
1

n
DJ
⌃D

˙
plim

ˆ
1

n
DJD

˙´1

, (3.71)
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assuming that the limits exist [15, pp. 196–200]. In RCTs, we have reason to believe that the
observations are independent, at least when the randomisation scheme is chosen accordingly.
However, the assumption of homoskedasticity could be violated.

To account for heteroskedasticity, White [32] suggested estimating the asymptotic variance in
(3.71) while taking possible heteroskedasticity into account. We will refer to the resulting covari-
ance matrix of the OLS estimators as heteroskedasticity-robust, or heteroskedasticity consistent
(HC) estimators of the OLS estimator variance. Specifically, White proved that under certain
conditions, including existence of the limits, that the expression (3.71) can be consistently esti-
mated when heteroskedasticity is present by substituting the true data covariance matrix ⌃ with
an estimated diagonal matrix p⌃ “ diagpp�2

1, p�2
2 . . . , p�2

n
q with p�2

i
being the squared residual of ob-

servation i. The nˆn matrix ⌃ cannot in itself be estimated consistently, but White showed that
the fixed dimension pp`2qˆpp`2q "meat" matrix 1

n
DJ
⌃D can indeed be estimated consistently

when n Ñ 8 using the suggested estimator p⌃ of ⌃. The limits of the remaining "bread" matrices`
1
n
DJD

˘´1 follow from the law of large numbers when the covariates are well-behaved, that is,
not e.g. containing a linear time trend [15, pp. 94–96]. In practice, exchanging ⌃ with p⌃, the
expression after the first equality in (3.70) is used [15, pp. 196–200].

To account for having a finite sample in practice when using the consistent estimator, MacKinnon
and White [33] suggested different correction factors. The simplest of these is a degrees of free-
dom correction by the name HC1, where we take into account the fact that the squared residuals
are not unbiased estimates of the true error variance, by multiplying the meat matrix by the fac-
tor n{

`
n ´ pp ` 2q

˘
. Other corrections, like the HC3 correction, which is suggested to use in

practice by Long and Ervin [34], inflates the residuals corresponding to observations with large
leverage by multiplying the ith squared residual by 1{p1 ´ hiq2, where the leverage hi is the i’th
diagonal element of the projection matrix PX “ XpXJXq´1XJ [33, 15, p. 200].

There seems to be no overall consensus in the literature on the necessity of these heteroskedasticity-
robust estimators. Schuler et al. [35] claim that such robust estimators are in fact also robust to
misspecification of the ANCOVA model, and the FDA [18] suggests to use heteroskedasticity
robust estimation of the ATE variance estimates. However, according to a recent paper by Wang
et al. [36], the model dependent estimators are in themselves robust to arbitrary misspecifications
of the ANCOVA model in the setting of RCTs by still being consistent.

Hence, though the ANCOVA model has strict model assumptions, we see that in the setting of
an RCT, violation of assumptions do not affect the consistency of the ANCOVA ATE estimator
or the consistency of the model dependent standard deviation estimator, potentially making nec-
essary steps in the form of robust estimation. Consequently, the type I error rate and sample size
calculations are asymptotically robust to misspecification of the ANCOVA model.

3.6 Multiple Hypotheses Testing
So far, we have presented sample size calculations when considering power of hypothesis tests
regarding a primary endpoint Y . However, clinical trials typically seek to investigate one primary
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outcome as well as multiple secondary confirmatory outcomes. This means that multiple signi-
ficance tests should be conducted, and when testing for multiple outcomes, a significant result is
likely to occur for at least one test simply due to sampling error. For instance if m independent
tests should be conducted each at significance level ↵, and all the corresponding H0-hypotheses
are true, the probability of at least one type I error is 1 ´ p1 ´ ↵qm. Thus, the required sample
size should be adjusted for the purpose of correcting for this fact. Multiple ways of adjusting for
the multiplicity of endpoints exist, some of which will be shortly described in the following.

One way to reduce the multiplicity problem is to clearly decide the main objective of the trial,
and to make sure that the objective is not answered by multiple tests. For example when testing
change in one outcome from baseline, we should only test for the change until the last measure-
ment taken and not any intermediate measurements.

When a safety variable is part of the labeling claim, multiplicity should still be taken into account
as it must be treated as a secondary confirmatory endpoint. If the trial is not specifically designed
to evaluate one specific safety outcome but safety is a secondary objective, the overall safety
should be assessed, and then there are often no prior hypotheses, so many plausible analyses and
numerous safety findings could be of concern. This means that in the case of an adverse event
(AE), p-values are of limited value to the investigator since the raised safety concern would
depend on the seriousness and severity of the AE and not only the presence of an AE. Thus, a
non-significant difference between the interventions would still not lead to the conclusion that
the treatments are equivalent in regard to safety. In this case, multiple statistical tests would be
performed to properly determine if the treatment causes potential risks, and thus an adjustment
for multiplicity would be counterproductive. Therefore it is clear that in this situation there is no
control over the type I error and the plausibility of any significant findings should be evaluated
depending on prior knowledge of the pharmacology of the treatment [37, p. 8] [38, p. 8].

When conducting multiple tests, we wish to control the family-wise error rate (FWER) defined
as the probability of making at least one type I error in a family of tests specified in the protocol.
Two methods for controlling this error rate is introduced in the following two examples. We begin
by describing the fixed testing sequence, which is appropriate when we have a specified order of
the tests in the protocol, e.g. when having primary and secondary confirmatory outcomes.

Example 3.6.1. Fixed testing sequence
In trials where the confirmatory endpoints can be ordered in regard to for example clinical mean-
ingfulness, a procedure called fixed testing sequence can be used. The endpoints are tested in
a predetermined sequence specified in the protocol, meaning that the hypotheses are ordered as
Hp1q

0 ,Hp2q
0 , . . . ,Hpmq

0 . Then each Hpiq
0 , i “ 1, 2, . . . , k § m is tested one at a time, starting from

i “ 1, at the same significance level ↵, until the first non-significant result k is obtained. That is,
the hypotheses are tested in a prespecified order until Hpkq

0 is not rejected. This procedure is also
referred to as a closed test procedure [39]. In proposition B.1.1 in appendix B.1, we show that
the FWER is bounded by ↵ for this procedure. û
When there is no natural ordering of the hypotheses H1

0,H2
0, . . . ,Hm

0 , we need an alternative to
the fixed testing sequence procedure, which we present in the next example.
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Example 3.6.2. Bonferroni corrections
The simple Bonferroni method is to reject Hi

0 if the associated p-value fulfills pi † ↵i with∞
m

i“1 ↵i “ ↵. Often ↵i “ ↵{m, which yields a procedure called the unweighted simple Bonfer-
roni method.

A mix of the Bonferroni procedure and the fixed testing sequence procedure is the Holm’s se-
quentially rejective Bonferroni method. The testing sequence is sorted according to the lowest
to highest p-value which we denote by pp1q, pp2q, . . . , ppmq. According to this procedure, the hy-
potheses are tested sequentially, and Hpiq

0 is rejected if ppiq † ↵{pm ´ i ` 1q. If Hpiq
0 is not

rejected, the procedure stops, and otherwise proceed to test Hpi`1q
0 .

Both procedures have the FWER bounded by ↵, as we show in propositions B.2.1 and B.2.2 in
appendix B.2. û
As described by equation (3.4), decreasing the probability of type I error decreases the power
when using the same n. This implies that when using the unweighted simple Bonferroni method,
the power suffers increasingly with m, being the price of controlling the FWER while being
able to test all the hypotheses. For the Bonferroni-Holm procedure, we control the FWER while
increasing the power compared to the simple approach, but we run the risk of not being able to
test all hypotheses. For the fixed testing sequence procedure, we again control the FWER, and
since all tests are performed on a significance level of ↵, the power does not suffer. However, the
Bonferroni-Holm procedure makes it more likely to be able to test all hypotheses, since we are
allowed to ascendingly arrange the p-values, but each test is more easily non-rejected due to the
smaller significance level [40, 41].

For the fixed sequence procedure and the simple Bonferroni correction, we have prefixed sig-
nificance levels at which each hypothesis is tested. On the other hand, the Bonferroni-Holm
procedure is dependent on data, since the level applied to a specific hypothesis is not known
beforehand. Thus, it can be more challenging to determine the sample size for the Bonferroni-
Holm procedure compared to the fixed sequence procedure and the simple Bonferroni procedure
since it is not known which significance level should be applied to the specific H0-hypothesis in
the planning phase of a trial. Vickerstaff et al. [42] suggest to use a simulation based approach
when the levels are data driven.

We can derive sample size calculation methods applicable for the prefixed level procedures. To
be able to do so, we need to extend the definition of power for multiple hypotheses testing, which
can be done in several ways. The probability of rejecting all false H0-hypotheses is called the
conjunctive power, whereas the probability of rejecting at least one false H0-hypothesis is called
the disjunctive power.

Example 3.6.3. Sample size calculation for prefixed level procedures
We let the prefixed levels be given by ↵i for i “ 1, 2, . . . ,m, such that the testing procedure en-
sures that FWER § ↵ for a prespecified significance level ↵. Since the power is the probability
of correctly rejecting a false H0-hypothesis, we will assume that all H0-hypotheses are false in
order to calculate the power.
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If the aim is to ensure a conjunctive power of at least 1 ´ �, we can calculate the sample size
based on the significance level ↵i and power 1 ´ �{m for all i “ 1, 2, . . . ,m. Then taking the
maximum of all of these sample sizes, we would obtain a conjunctive power of at least 1 ´ �.
This follows since under the specified alternative hypotheses, we have

P
˜

m£

i“1

tpi † ↵iu
¸

“ 1 ´ P
˜

m§

i“1

tpi • ↵iu
¸

• 1 ´
mÿ

i“1

Pppi • ↵iq

“ 1 ´ m ¨ �
m

“ 1 ´ �.

(3.72)

In the inequality we use the Bonferroni inequality, which generally states that for a countable set
of events A1, A2, A3, . . .,

P
˜ 8§

i“1

Ai

¸
§

8ÿ

i“1

PpAiq. (3.73)

In the second equality we use that under the alternative hypothesis the probability of conducting
a type II error is �{m.

To obtain a disjunctive power of at least 1 ´ �, we can calculate the sample size based on the
significance level ↵i and power 1 ´ � for all i “ 1, 2, . . . ,m. Again we should then take the
maximum of all of these sample sizes. This follows since under the alternative hypotheses, we
then have

P
˜

m§

i“1

tpi † ↵iu
¸

• P ppk † ↵kq “ 1 ´ �, (3.74)

for any k P t1, 2, . . . ,mu [21, pp. 133–135]. û
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4 | Synthetic Control Arms

In this chapter, we will describe an approach to using historical data, both in the setting where
the current trial includes only a treatment arm and the setting where a control arm is present as
well. Namely, we will describe the approach of using synthetic control arms (SCAs). When
using historical controls in single-arm trials as an external comparator, it enables estimation of
the ATE. In the case of a current control group being populated with historical control group
patients, we get a larger n, so the variance of the treatment estimate decreases, and thus the
power increases.

Throughout this thesis we assume that we have access to a historical data set of n1 independent
and identically distributed observations pX1,Y1q P X n

1 ˆ Rn
1 , which are also independent from

the observations in the current trial data set. Recall that the covariates X in the current RCT
fulfills X P X , meaning that the same covariates are recorded in the historical dataset as in the
current RCT. However, the covariate distribution in the historical data is potentially different than
that in the current RCT. The "best-case" scenario is ppX 1, Y 1q “ p

`
X, Y p0q

˘
, where p denotes

the joint distribution. In this case, where the joint distribution of a subject’s covariates and
(potential control) outcome is the same for the historical and current RCT patients, the historical
population gives maximal information on the RCT control arm. This best case scenario rarely
presents itself in practice, but methods presented in this and the next chapter can be utilised to
increase power, ideally even though the distributions deviate from each other.

When using the SCA approach, we seek to populate the data set with similar patients as those in
the treatment group with control group patients of historical clinical trials, either in the situation
where a current control group is present or in the context of a single-arm trial. However, in both
cases the estimated treatment effect is susceptible to bias if we are not cautious about which
historical control group patients we choose to include, which has risk of inflating the type I error
[43]. That is, specific to this approach, where we seek to use external controls directly in the
analysis, the historical data should be comparable to the current data. Specifically, Pocock [44]
suggested that in the context of using historical data with a current RCT, the historical control
group should meet the following six criteria:

1." Such a group must have received a precisely defined standard treatment which must be the
same as the treatment for the randomized controls.

2. The group must have been part of a recent clinical study which contained the same re-
quirements for patient eligibility.

3. The methods of treatment evaluation must be the same.

4. The distributions of important patient characteristics in the group should be comparable
with those in the new trial.
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5. The previous study must have been performed in the same organization with largely the
same clinical investigators.

6. There must be no other indications leading one to expect differing results between the
randomized and historical controls."

In general, these conditions are very strict in the sense that they narrow the data which is useful
for historical controls down to RCTs which are highly similar to the current RCT, ensuring that
bias does not occur when comparing the outcome of treatment and control group patients.

As we will elaborate in the following, there are methods that seek to relax some of the assump-
tions. One class of approaches for doing so is based on using the propensity score, presented
in the next section, which is used to match the historical control group patients to the treatment
population in order to mimic this group in regard to known confounders. Using matching based
on the propensity score, patients from control groups of previously conducted clinical trials can
be matched to current treatment group patients based on a propensity score. The matched pa-
tients originating from historical control groups then constitute an SCA, which can be used as an
external comparator arm for the treatment arm.

Ideally, matching by the propensity score will ensure unbiasedness of the treatment estimate.
Criterion 2 can be fulfilled by matching with only the patients from historical control groups
that are eligible in regard to the current RCT. Furthermore, as we will show, the criteria relaxed
by using propensity score matching for constructing a synthetic control arm are criterion 4 (by
matching patients that are similar to those in the treatment group), 5 and 6 (by modelling the bias
between the current and historical treatment groups, when a current control group is present).

4.1 Propensity Score Matching
Propensity score matching is a subcategory of general methods with an overall goal of controlling
for differences in observed confounders between a treatment and control group. The control for
confounders is to ensure that the observed differences in outcome between a treatment group
and some historical controls can be attributed to the treatment itself. In other words, the method
seeks to remove (or reduce) the bias induced by comparing two groups that are dissimilar in
regard to observed baseline confounders in order to enable causal inference [43]. The method
was originally intended for non-randomised comparative studies such as the situation where all
patients are exposed to treatment and we wish to compare their outcome with historical controls.
However, the method has been developed such that it can be used in the context where some
concurrent randomised control patients are present as well [43, 45].

The overall idea of propensity score methods is to account for differences between two groups,
namely the treatment and control groups, making them comparable. Formally, this could be
achieved by a balancing score, which Rosenbaum and Rubin [46] defines as a function b satisfy-
ing

X KK W | bpXq, (4.1)
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where X denotes (confounding) covariates. That is, the balancing score is a function such that
the conditional distribution of X | bpXq is the same for patients in the treatment- and control
groups, respectively. In other words, b is a function satisfying that there is no difference in the
distribution of (confounding) covariates X between the treatment- and control groups when bpXq
is given.

A trivial choice of b is the identity bpxq “ x, which makes statement (4.1) true. One way to
use this in practice would be matching patients from the treatment group with patients in the
historical control groups based on x, being all confounding covariates. However, this quickly
becomes infeasible as the number of confounders grows, due to the curse of dimensionality.
This is why a scalar balancing score, b : X Ñ R, is preferred. Rosenbaum and Rubin [46]
showed that the propensity score, defined by

epxq :“ P pW “ 1 | X “ xq , (4.2)

where x are baseline confounders, is in fact a balancing score. Intuitively, this is a balancing
score since matching a historical control based on the probability of that control being in the
treatment group, each pair of matched patients could, based on the covariates, just as well have
their treatment assignments swapped, entailing that the treatment allocation does not depend on
X . In practice, the propensity score is estimated using a propensity score model. This model
is fitted using all patients, and is estimated for all patients. That is, the propensity score is esti-
mated for patients both in the treatment group as well as in the historical controls and, if present,
current controls. The model for estimating the propensity score can be chosen freely among e.g.
traditional models such as logistic or probit regression, or models such as classification trees and
forests [7].

Austin [7] describes several methods for using the propensity score, including matching, stratifi-
cation, inverse probability of treatment weighting and covariate adjustment. Among these meth-
ods, matching has been shown to achieve best results in reducing differences in confounders
between the treatment and control groups when we have access to a rich amount of high-quality
historical data [43, 7]. Therefore we will focus on this method. In the following, we will de-
scribe methods for matching on the propensity score both in the case of single-arm trials, where
no current controls are present, and in the case of two-arm trials where a current control group is
present.

In case of both a single-arm and multi-arm trial, we wish to estimate the ATE in the population
in the current trial. In the case of a single arm trial, the population consists of only patients
in the treatment group, meaning that ATT among all patients and ATE among the current trial
patients are the same. For the two-arm setting, we see from the condition in (2.5) that ATT and
ATE coincides in a randomised setting, that is, within the current trial population. Furthermore,
the ATT among patients in the current trial and all patients coincide. That is, in both cases, our
estimand of interest is the ATT among all patients.

We will now introduce an important assumption that is needed in order to estimate the ATT. We
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say that the treatment assignment is strongly ignorable given X , if
`
Y p0q, Y p1q

˘
KK W | X and 0 † P

`
W “ 1 | X

˘
† 1. (4.3)

If this is the case, then treatment assignment is also strongly ignorable given any balancing score,
in particular the propensity score. That is,

`
Y p0q, Y p1q

˘
KK W | epXq and 0 † P

`
W “ 1

ˇ̌
epXq

˘
† 1. (4.4)

This important property ensures that at any given value of the propensity score, the potential
outcomes of a patient in the treatment group is directly comparable to the potential outcomes of
a patient in the control group with the same propensity score. This ensures that the difference
between outcomes of such patients can be ascribed to the treatment assignment. Thus, matching
each treatment group patient to one or more control group patients on their propensity score
entails being able to perform causal inference between the outcome and treatment assignment.

We can think of the matching based on the propensity score as controlling for the tendency of
e.g. older patients to be in the historical controls more frequently than in our treatment group.
It would presumably affect the results if we e.g. used a random subset of the controls instead of
matching using the propensity score. In this case, matching on the propensity score, we control
for the confounding effect of age. The procedure is called pseudo-randomisation because we
match patients in the treatment group with similar patients in the control groups. In that way, the
method seeks to ensure that the included patients have an equal chance of being in the treatment
and control group, as if they were randomly assigned to treatment or control in regard to the
confounders included in the propensity score.

Formally, we will use the assumption of strong ignorability to obtain an unbiased estimate of the
ATT. We will later see that the unbiased estimate is obtained using the relation

ATT “ E
“
Y p1q

ˇ̌
W “ 1

‰
´ E

“
Y p0q

ˇ̌
W “ 1

‰

“ EepXq |W“1

”
E

“
Y p1q

ˇ̌
epXq,W “ 1

‰
´ E

“
Y p0q

ˇ̌
epXq,W “ 1

‰ı

“ EepXq |W“1

”
E

“
Y p1q

ˇ̌
epXq,W “ 1

‰
´ E

“
Y p0q

ˇ̌
epXq,W “ 0

‰ı
,

(4.5)

where the assumption of strong ignorability is used in the last equality [46, 6].

In practice, we will need to justify the assumption of strong ignorability given X , since we then
have fulfillment of the necessary assumption of strong igonrability given epXq. This will then
ensure that the above relation can be used to find an estimator of the ATT. However, the assump-
tion of strong ignorability given X is indeed a strong assumption. By equation (2.3) the first
part of the assumption implies that the treatment assignment is unconfounded with

`
Y p0q, Y p1q

˘

given X . This is referred to as the assumption of unconfoundedness [5]. This entails that all con-
founders of the treatment effect are contained in X . This is the reason for also referring to the
assumption as the assumption of no unobserved confounders [46]. The assumption of no unob-
served confounders is rarely reasonable in practice, and this will also disturb the causal inference.
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The second part of the assumption is referred to as the assumption of overlap, since it entails that
patients have a positive probability of belonging to both the treatment and control group across
the whole sample space of the confounders. This is to ensure that the propensity score can be
used e.g. to find relevant matches in the historical data for every patient in the treatment group.

We note, however, that using the propensity score in general requires the propensity score model
to be adequately specified, since epXq is not known in practice and hence need to be estimated.
If the estimated propensity score does not resemble the true propensity score, the relation in
equation (4.4) cannot be expected to hold when we use an estimate of epXq. Another problem
that arises in practice when using for example the logistic model is that it is not possible to test
the assumption of overlap directly from the model. This is due to the model never estimating
probabilities of exactly 0 and 1. In section 4.2, we return to some methods for assessing the
propensity score model.

4.1.1 Estimating the ATT

The method of propensity score matching relies on matching (preferably) each of the patients
in the treatment group with one or more patients in a pooled group of possible controls. In the
context of a single-arm trial, this group consists of some historical controls, and in the context
of a two-arm trial, it refers to the pooled group of current controls and historical controls. Even
though our aim will be to construct an actual control group from this pool of possible control
group patients, we will refer to the pooled group of possible controls simply as the control group
or the controls.

Matching can be carried out in several ways, here exemplified in the case of one-to-one matching,
where each treated patient is matched to a single control group patient based on the propensity
score. For greedy matching, patients in the treatment group are selected randomly in turn and
matched with the patient in the control group with the smallest absolute difference according to
the propensity score. This is carried out until every patient in the treatment group is matched to
a unique control group patient. It can also be carried out by optimal matching, where the sum of
absolute deviations across all pairs are minimised. Comparison between the two methods sug-
gests that optimal matching does not perform better than greedy matching in regard to balancing
covariate values between treatment and control group patients [7, 47].

These procedures do not guarantee that treatment group patients are in fact matched with highly
similar control group patients, since there is no guarantee of patients with highly similar propen-
sity scores exist in the control group. This is why a rich amount of historical data is needed for
this method to work well. However, we can use a caliper, which is a pre-specified range of the
propensity score that patients can be matched within. If no patients in the control group has a
propensity score within the caliper of a treatment group patient’s propensity score, we will then
need to discard this treatment patient from the analysis. For continuous outcomes, a caliper width
of 0.2 times the standard deviation of the logit of the propensity score have been shown to work
well [48].
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The methods just described use matching without replacement. Matching with replacement is
also possible, but the variance estimate of the treatment effect then needs to be adjusted according
to the resulting correlation structure since more of the same information is used [7].

When matching has been carried out, we can use the relation in equation (4.5) to obtain an
unbiased estimate of the ATT as

zATT “ 1

n1

ÿ

i:wi“1

¨

˝yip1q ´ 1

Mi

Miÿ

j“1

pyi,jp0q

˛

‚, (4.6)

where Mi is the number of patients from control groups matched (based on the propensity score)
to patient i in the treatment group, having outcomes pyi,jp0q [5, 43]. That is, we seek to estimate
the counterfactual (unobserved) outcome yip0q of the treatment group patients with the observed
outcome of patients in the control group, which are similar according to (preferably all) con-
founding covariates.

The fact that the entity in equation (4.6) reasonably estimates the ATT can be seen from equation
(4.5). Here, the outer expectation with regard to the distribution of epXq |W “ 1 is estimated
through the sample mean of outcomes for patients having propensity scores distributed as in
the treatment group. The entities E

“
Y p1q

ˇ̌
epXq,W “ 1

‰
and E

“
Y p0q

ˇ̌
epXq,W “ 0

‰
are then

estimated through the observed yip1q and 1
Mi

∞
Mi

j“1 pyi,jp0q, which are all outcomes for patients
having similar propensity scores epxiq since they are matched based on this criterion. Estimating
the expectations using sample means, we obtain unbiasedness of the estimate if we were able to
use the true propensity scores.

A perhaps more intuitive way to see that the ATT is estimated from equation (4.6), comes from
the fact that we discard from the estimate the observations in the control group that are not similar
to the patients in the treatment group [45]. In a similar manner, control group patients could be
matched to a treatment group patient (and discarding the remaining treatment group patients
from the analysis), thereby obtaining an estimate of ATC.

The estimator in equation (4.6) implicitly assumes that there exists at least one match for each
patient in the treatment group. If such a match does not exist, e.g. in the situation where a narrow
caliper is used, we are forced to discard treated patients without a match, based on their propen-
sity score epXq. Thus, we do not get an appropriate estimate of the ATT since the propensity
scores cannot be assumed to be realisations of the distribution of epXq |W “ 1. This is again a
reason why a rich amount of data is needed for the method to work well. In such a situation, we
are able to choose Mi large while maintaining similarity between the propensity scores between
treated patients and their matches, and thus the variance of the estimator decreases.

Example 4.1.1. Fixed number of matches
In the case of choosing a fixed number Mi “ M of matches for each treatment group patient
i “ 1, . . . , n1, we get that the estimate corresponds to fitting a simple ANOVA model to equation
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(2.17), where control group patients have been added to the data set. This is seen since we then
have

zATT “ 1

n1

ÿ

i:wi“1

¨

˝yip1q ´ 1

M

Mÿ

j“1

pyi,jp0q

˛

‚

“ 1

n1

ÿ

i:wi“1

yip1q ´ 1

n1M

ÿ

i:wi“1

Mÿ

j“1

pyi,jp0q

“ yp1q ´ pyp0q “ p�W ,

(4.7)

which is the standard ANOVA treatment estimate of the pooled data as seen in appendix A.1.
Choosing Mi “ 1 for all i “ 1, . . . , n1, we retrieve an estimate of the ATT based on one-to-one
matching. From equation (4.7), we see that in this situation, the one-to-one matching ANOVA
estimate reduces to

zATT “ 1

n1

ÿ

i:wi“1

`
yip1q ´ pyip0q

˘
. (4.8)

As shown earlier, benefits in terms of reduced variance of the ATT estimator can be achieved
by adjusting for chance imbalances with an ANCOVA model instead of an ANOVA model. In
the context of matching on propensity scores, the covariate imbalances between the treatment-
and matched control groups are due to chance from the property in equation (4.1), and we would
hence not expect the treatment estimate to change when using the ANCOVA estimator instead of
the ANOVA estimator. û
When estimating the estimator in equation (4.6), there is no consensus in the literature as to how
the synthetic control arm patients should be regarded. Some argue that the treated and untreated
patients should be considered as n1 `∞

n1

i“1 Mi independent observations, causing the usual vari-
ance estimate of the ML estimator to be appropriate. Others argue that the observations are
dependent since the control group patients are chosen through the propensity score. In this latter
case, the variance estimate and significance test of the treatment estimate could consider data
as a paired sample of n1 paired observations yip1q and 1

Mi

∞
Mi

j“1 pyi,jp0q, running an AN(C)OVA
model t-test on the observations yip1q ´ 1

Mi

∞
Mi

j“1 pyi,jp0q [7, 5]. This would increase the vari-
ance estimate compared to regarding the observations as independent, since we would decrease
n by regarding matched observations as if they were the same individual. Another approach to
modeling the covariance between observations is described in example 4.1.2.

Example 4.1.2. Cluster-robust estimation of the ATE variance
Another approach to handling correlation between matched observations is to model the covari-
ance matrix ⌃ of " in the ANOVA model (2.17) or the ANCOVA model (2.20) accordingly while
still using the ATE estimate p�W [49].
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As we have seen, under violations of the assumptions of the normal linear model that the error
terms are homoskedastic and have no autocorrelation, the variance of the OLS estimator takes the
sandwich form in (3.70). It is possible to estimate the pp`2qˆpp`2q matrix A :“ DJ

⌃D assum-
ing not only heteroskedasticity, but also a cluster-structure of the observations, where non-zero
covariances between matched patients are modelled. We group matched patients in the clusters
g “ 1, 2, . . . , G and denoting by Yg the response column vector of patients in cluster g, Dg the
design matrix with a row for each patient in cluster g and "g the error column vector for each
patient in cluster g. We denote the corresponding reordered entities as rD “

“
DJ

1 D
J
2 . . . DJ

G

‰J,
rY “

`
YJ

1 ,Y
J
2 , . . . ,Y

J
G

˘J and r" “
`
"J
1 , "

J
2 , . . . , "

J
G

˘J. Hence, we can represent the model as

rY “ rD� ` r", (4.9)

and then, according to Cameron et al. [50], under suitable conditions, we can consistently esti-
mate A by

pA “ rDJ pr⌃rD “ rDJ

»

————–

p"1p"J
1 0 ¨ ¨ ¨ 0

0 p"2p"J
2 0

...
... 0

. . . 0

0 ¨ ¨ ¨ 0 p"Gp"J
G

fi

����fl
rD “

Gÿ

g“1

DJ
g

p"gp"J
g
Dg. (4.10)

When using this estimator of A in equation (3.70), we will refer to the method as cluster-robust
estimation of the covariance matrix. Heuristically, consistency of pA is due to pr⌃ becoming rel-
atively more sparse as G Ñ 8 [50]. To take into account that in practice, the sample size is
finite, the cluster-robust estimator can be corrected by the correction factors suggested for the
HC estimators introduced in section 3.5. û
We can use the methods described in section 3.3, 3.4.1 and 3.4.3 to perform sample size calcula-
tions for PSM since estimating the treatment effect just reduces to using ANOVA or ANCOVA
and potentially using robust estimation of the standard deviation.

4.1.2 Propensity Score Matching in Clinical Trials

In the single-arm case, the method just described constructs a synthetic control arm with data
from historical control groups as an external comparator in order to estimate the treatment effect
in a current clinical trial without a control arm. In the two-arm setting, we can use propensity
score matching to improve the power in estimating the treatment effect in a current RCT, where
some control group patients are already present. In this section, we will describe an extension of
a procedure, which ensures the use of all current control group patients that have been part of the
randomisation in the current clinical trial.

So far, the described matching procedure have not taken into account the potential outcome
differences between different sources of historical control groups due to unobserved confounders.
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Stuart and Rubin [45] proposed a procedure for one-to-one propensity score matching in the
setting of observational studies where data from multiple external control groups are available.
The procedure involves matching the patients in the treatment group to historical controls on
observed confounders, as well as estimating the outcome bias between control groups induced
by unobserved confounders. It is then possible to use this estimated bias between control groups
with the aim of removing the bias in the estimated treatment effect by implicitly taking these
unobserved confounders into account.

The procedure was adapted to the setting of confirmatory clinical trials by Lim et al. [43],
ensuring that all control arm patients from the current RCT are used in the treatment effect esti-
mation in equation (4.6). We describe the adapted procedure in further details in the following,
where we denote by AT, CC and HC the active treatment arm, the current control arm and the
pool of possible historical controls, respectively. Furthermore, we assume that |AT| ° |CC| and
|HC| ° |AT| ´|CC|. The procedure can be described as follows:

1. Estimate a model for the propensity scores of belonging to AT, using all patients from AT,
CC and HC. That is, the CC and HC groups are pooled to one large control group. These
propensity scores are used in all of the following steps.

2. Construct the group of matched patients CC:AT by the following procedure:

• Calculate all pairwise differences between propensity scores of patients in CC and
AT.

• Match the pair with the smallest difference in propensity scores. In case of ties,
choose one pair randomly among the tied pairs with lowest differences in propensity
scores.

• Iterate the above step, but consider only unmatched pairs in each iteration. Iterate
until every patient in CC is matched with a unique patient in AT.

• Name the group of matched patients from AT and CC by CC:AT.

3. Construct the group of patients CC:HC consisting of matched patients in CC and HC,
where all patients in CC is matched with a unique patient in HC. Use the procedure
described in step 2.

4. Construct the group of matched patients AT:HC, considering only the subset of patients
in AT which are not matched with patients in CC in step 2. All patients in this subset of
AT should be matched with a unique patient in HC. Use the procedure described in step
2.

5. Estimate the bias in control group outcome in HC by using the observations in CC as
reference. Specifically, assume that the outcome is normally distributed and fit a normal
linear model on the CC:HC data, specified as

Yp0q “ ↵ ` �IHC `X� ` ", (4.11)
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where IHC is the column vector of indicators of whether the patient is in HC, X is the
design matrix with p columns being the covariates used for the model of the propensity
score, and " „ N

`
0, �2I

˘
. Denote the estimated bias as p�. This is an estimate of the

difference in the outcomes between HC and CC patients. The intention is to estimate the
outcome bias among HC patients induced by factors not included inX, that is, unobserved
confounders.

The reason for only using patients from HC that are matched to patients in CC is to not
impose the linearity assumption of the effect of X on Y to the complete space of X in HC,
but instead to impose it to only the subset of HC where X is similar between CC and HC.

Another implicit assumption made in this step is that the group effect � is constant across
all values of X , that is, there is no interaction effects. In practice we could choose to
specify a model that accounts for this, but simulation studies indicate that the method is
not sensitive to violation of this assumption [45]. Heuristically, this seems reasonable since
the covariate distributions among the CC and HC patients in the CC:HC group are similar.

6. In order to take the uncertainty of estimating the bias � in step 5 into account, we now wish
to sample estimates of the bias term a number of times using the estimated linear model.
Denoting the design matrix for this model as D “ r1 IHC Xs, we have that

p� „ N
ˆ
�, �2

”
pDJDq´1

ı

2,2

˙
(4.12)

p�2 „ �2

nc ´ pp ` 2q�
2

`
nc ´ pp ` 2q

˘
. (4.13)

from standard results of the normal linear model (4.11).

Instead of sampling an estimate of �, we can take a Bayesian approach and regard � and
�2 as being stochastic, and sample them instead. Specifically, we wish to sample around
p�, using a realisation of the variance �2

“
pDJDq´1

‰
2,2

. If we denote by nc the number of
patients in CC:HC and by Scale-inv-�2 the scaled inverse �2 distribution, we get from
equation (4.13) that

˜
�2

`
nc ´ pp ` 2q

˘
p�2

¸´1

„ �2
`
nc ´ pp ` 2q

˘

ñ �2 „ Scale-inv-�2
`
nc ´ pp ` 2q, p�2

˘
.

(4.14)

Having sampled a value s2 from Scale-inv-�2
`
nc ´ pp ` 2q, p�2

˘
, we can sample an esti-

mated bias d from the conditional distribution

� | s2 „ N
ˆ

p�, s2
”
pDJDq´1

ı

2,2

˙
. (4.15)
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7. We will now estimate the ATT, using the matched groups AT:CC and AT:HC, correcting
the outcomes of the historical control group patients with the estimated bias from step 6.
We can estimate it from e.g. the ANOVA estimate in equation (4.8) by using that for each
treated patient i in AT, we have

pyip0q “
#
yCC
i

p0q if the matched patient is in CC

yHC
i

p0q ´ d if the matched patient is in HC
, (4.16)

where yCC
i

p0q denotes the outcome of the patient in CC matched with patient i in AT:CC,
and equivalently for yHC

i
p0q. That is, we correct for the bias induced by using a HC control

group patient rather than a control group patient from the CC control group. We then
estimate the ATT by an appropriate regression method, from which we also get an estimate
pu of the variance u of zATT. Here, a cluster-robust estimation of VarpzATTq can be used.

8. By iterating steps 6-7 B times, we provide a data-driven way of taking the uncertainty of
estimating the bias into account when estimating ATT and the variance of the estimator.
Specifically, we let zATTb be the bth treatment estimate, and we then estimate ATT by the
empirical mean

zATT “ 1

B

Bÿ

b“1

zATTb. (4.17)

Stuart and Rubin [45] suggest to estimate the variance of zATT ´ ATT by

yVar
´

zATT ´ ATT

¯
“ 1

B

Bÿ

b“1

pub `
ˆ
1 ` 1

B

˙
¨ 1

B ´ 1

Bÿ

b“1

´
zATT ´ zATTb

¯2

, (4.18)

where pub is the estimated within-sample variance estimate of zATTb´ATT, and the second
factor in the second term is the between-sample variance. Using an ANCOVA model to
estimate each zATTb instead of an ANOVA model can potentially decrease both the within-
sample and between-sample variance. Assuming that zATTb, estimated from a normal
linear model, is normally distributed, zATT is also normally distributed.

In the original procedure proposed by Stuart and Rubin [45], the CC:AT group is constructed in
a more general way by an extended caliper method, where only patients in CC with a propensity
score within a pre-specified margin of the propensity scores of patients in AT are considered. The
rest of the patients in AT are then matched with patients in HC. In this original formulation, the
size of the extended caliper reflects the preference for matching patients from AT with patients
in CC rather than HC. That is, for small extended calipers, patients in CC have the risk of being
discarded, which is arguably a bad choice when CC consists of patients randomised to the control
group rather than being a non-randomised control cohort. In this regard, the modification made
by Lim et al. [43] consists of choosing this extended caliper to be 8.
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An assumption for the original procedure to work is that the treatment assignment mechanism
into AT and CC is strongly ignorable given X . In practice, strong ignorability with regard to
X means that AT and CC are comparable when we control for X [45]; that is, no confounding
covariates are present apart from those in X . Heuristically, this means that the bias-correction in
step 7 of the procedure ensures comparability between AT and the part of HC we match to AT,
since we match on the confounders in X . Furthermore, the bias-correction ensures comparability
to CC, which is again comparable to AT. The reason for the bias-correction is then that strong
ignorability is not assumed for treatment assignment into the group of patients in AT:HC. In
practice, this is not fulfilled since HC could be obtained from different geographical regions
or different clinics. We notice that in the setup of CC coming from a randomised trial, the
assumption of strong ignorability between AT and CC is fulfilled due to randomisation [46].

We note that even though the method described here seeks to take potential bias induced by
unobserved confounders into account, no existing research seems to have provided any analytical
guarantee that the type I error rate is controlled. We suspect that type I error rate inflation could
occur due to bias in the ATE estimate induced by misspecification of the propensity score model
as well as the quality and distribution of historical data.

4.2 Balance Diagnostics and Variable Selection
Before using propensity score matching to estimate the ATT, the quality of the obtained matches
should be assessed by using balance diagnostics. These are tools for evaluating whether the
condition in equation (4.1) is fulfilled for the estimated propensity score. That is, we wish to
examine whether the baseline confounders X are distributed equally among the group of treated
patients and the group of matched control group patients. We know that the condition holds for
the true propensity score epXq. Thus, non-fulfillment of the condition suggests that good matches
for all treatment group patients do not exist in the historical control group, or the model used for
the propensity score is wrongly specified. In the latter case, the propensity score model needs
to be revised, e.g. by choosing a different model class or including other covariates, interaction
terms or non-linear relationships [7].

One balancing diagnostic consists in evaluating the empirically standardised differences of the
means of continuous covariates and, for dichotomous outcomes, the prevalence, between treated
and their matched non-treated patients. These standardised differences, in case of matching with
a fixed number M , are defined as

continuous :“
x1 ´ x0b

s
2
1`s

2
0

2

dichotomous :“
pp1 ´ pp0b

pp1p1´pp1q`pp0p1´pp0q
2

,
(4.19)

where x, s2 and pp denote the sample means, sample variances and prevalences of the covariates
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for patients in the treated and non-treated group, respectively, depending on the subscript. That is,
the standardised differences measures the degree to which the mean values and prevalences differ
between treated and non-treated patients, standardised by the pooled sample standard deviation.
If the standardised differences are high (conventionally 0.1), this indicates that the propensity
score model needs to be re-evaluated [7].

In the case of many-to-one matching with a differing number Mi of matches for each treatment
group patient, we need to weight the standardised differences corresponding to the estimate in
equation (4.6). Here, we will use the weighted sample mean and variances instead. Defining the
weights as ai “ 1{Mi and assuming that dichotomous variables are coded as 0 for non-presence
and 1 for presence of the covariate, these are defined [51] by

xw “ ppw “
∞

nw

k“1 akxk∞
nw

k“1 ak

s2
w

“
∞

nw

k“1 ak`∞
nw

k“1 ak
˘2 ´ ∞

nw

k“1 a
2
k

nwÿ

k“1

akpxk ´ xwq2.
(4.20)

The condition in equation (4.1) can further be assessed by e.g. visual inspection of empirical dis-
tribution functions (for continuous covariates) or histograms (for categorical and/or continuous
covarites) of the covariate in question, for the treatment and non-treatment groups, respectively.

Another important question regards which covariates should be included in the model for the
propensity score. Since the propensity score is defined as P pW “ 1 | X “ xq, there are theo-
retical reasons for including all covariates that are affecting the treatment variable among the
pooled data. However, since the role of the propensity score is to balance confounders between
treated and non-treated patients, the goal is to include the confounders and potential confounders.
Potential confounders are baseline covariates suspected (e.g. from existing literature) to affect
the treatment. The most important aspect in this regard is to include all confounding covariates
so that the assumption of no unobserved confounders is fulfilled and to not include covariates
measured after treatment assignment. However, including more than these covariates have been
shown to increase the variance of the treatment estimate without reducing the bias. Furthermore,
it seems that a greater number of matches are possible when only these covariates are included.
However, in practice, it can be difficult to identify only the true and potential confounders, and
failing to include these results in the strong ignorability assumption to not be fulfilled. In many
applications, most covariates measured at patient-level are potential confounders [7].
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5 | Digital Twins

In this chapter we will describe another approach to using historical data when conducting clin-
ical trials, namely the use of digital twins. We will focus exclusively on the use of digital twins
for two-arm trials, but the method can be extended for use in single arm trials. Similar to the
SCA approach the main goal is to estimate the ATE, but in this case the synthetic observations
will not be directly included as observations pooled with data from the current RCT. Instead the
idea behind digital twins is to use historical data to train a model which can be used to get predic-
tions of the potential control outcome of subjects in a clinical trial and use this as an adjustment
covariate in the ANCOVA model given in equation (2.20).

The main purpose of this chapter is to describe the benefits and derive useful asymptotic theo-
retical properties of estimating the ATE using digital twins with the ANCOVA model previously
described. In order to do so, we will work with results regarding (efficient) influence functions.
Therefore, we describe this general setup in section 5.2, and conclude the section by stating an
important result. This result is then used in section 5.3, where we derive important theoretical
properties of using digital twins. Based on some of these results, we will describe in section 5.4
how to carry out sample size calculations when using digital twins.

Throughout this chapter, we use the notation for the historical data introduced in the beginning
of chapter 4. We generally assume a setup an RCT, where the randomisation scheme ensures
that the Wi’s of the current data points are independent, hence making the current data IID. Also,
similar considerations regarding the quality of the historical data as those stated in chapter 4
suggested by Pocock [44] should be made. However, as we will later discover, any violation of
these does not lead to an increase in the type I error rate as was the case for the SCA approach.
However, such violations could potentially lead to smaller benefit in terms of power by using the
method of digital twins.

5.1 The Digital Twins Approach
We will use the concept of digital twins described by Unlearn.AI and examine whether their use
of digital twins can be theoretically justified. Specifically, we will follow Schuler et al. [35]
published by Unlearn.AI, in which the theoretical benefits of using digital twins are derived. The
article was peer reviewed and published during the process of writing this thesis [52]. Due to
working with the unpublished paper, we went thoroughly through the proofs. Furthermore, the
article contains only few details concerning the theoretical derivations, and thus we wanted to go
thoroughly through the details.

In order to introduce the concept of the digital twin approach, we begin by considering some
learning algorithm, which, trained on the historical dataset pX 1, Y 1q, outputs a prediction model
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m : X Ñ R. Then the treatment effect �W is estimated using the current RCT data pXi,Wi, Yiq,
e.g. from the model

Yi “ �0 ` Wi�W ` mpXiq�m ` "i, (5.1)

where "i „ N
`
0, �2

˘
are mutually independent, and we assume that Wi and Xi are mutually

independent (due to randomisation) and each independent of the "i’s.

We will seek to construct m such that mpxiq is a prediction of the expected outcome of patient i
in the case they do not receive the treatment. We will refer to this artificial patient not receiving
treatment as the digital twin of patient i. Therefore, we will refer to mpxiq as the predicted
outcome of this digital twin. As specified by (5.1), the construction of digital twins are carried
out for both patients receiving the treatment and for patients that are in the control group. The
reason for constructing m in this way is that, as we will show (under specific conditions), the
model that gives the lowest asymptotic variance of the ATE estimator is the conditional mean,
mpXiq “ ErYip0q |Xis. This conditional mean is referred to as the prognostic score, which is
why we will refer to m as being a prognostic model. The prognostic model itself can be chosen
as desired. Specifically, we will examine random, linear, LASSO and random forest prognostic
models in the following chapters.

Schuler et al. [35] argue that adjusting for an estimated prognostic score is merely a formalisation
of the well-established ad-hoc procedure of adjusting for prognostic covariates in clinical trials.
As an example, the body mass index, the Charlson comorbidity index and the Framingham risk
scores can indeed be regarded as obtained from simplified prognostic models, and the baseline
measurements themselves can also be regarded as (more) rudimentary prognostic scores. In
this sense, adjusting for an estimated prognostic score based on a more refined model m only
provides a formalisation of prognostic covariate adjustment. Hence the model in equation (5.1)
is just a special case of an ANCOVA model.

For this reason we obtain an important property of the model; we do not expect the ML estimator
p�W to change when introducing mpXq to the regression in the setting of an RCT, but we get a
more efficient estimate. This can be seen from example 2.3.3, where adjustment is with regard to
mpXq instead of X itself. Here, we use that X and W are independent and thus in expectation
X andW are orthogonal, as well as ensuring independence between mpXq and W , just by using
that m is some function of X . This also ensures that adjusting for the outcome of a digital
twin using the ANCOVA model does not introduce bias of the ATE estimator, even when the
prognostic model is itself biased. Furthermore, under the assumption of an underlying ANCOVA
model (since the model is a special case of an ANCOVA model), the ATE estimate follows an
exact t-distribution, thus ensuring strict control of the type I error.

Overall, the main difference from the SCA approach is that no patients from control groups
of previous clinical trials or simulated digital twins are added explicitly as new patients to the
data when running the regression in (5.1). Instead, these patients are used to train the prognostic
model. In this way we obtain analytically guaranteed control over the type I error rate, as opposed
to the SCA approach.
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However, using digital twins in single-arm studies is an SCA approach which requires the as-
sumption that the prognostic model precisely predicts the expected outcome under the control
arm, meaning that the ATE can be modelled as e.g.

Yi ´ mpXiq “ �1 ` "i, (5.2)

with "i „ N p0, �2q being independent for each i. This is similar to the paired t-test suggested in
section 4.1.1, where the external control observations are included as being paired to an internal
observation from the treatment group. Using equation (5.2) the treatment is deemed effective if
the null hypothesis �1 § �s is rejected at significance level ↵ [53, p. 5]. However, in this case
several concerns, similar to the concerns in the SCA approach, are present, one of which being
that if the model does not provide an unbiased prediction of the expected value of the outcome,
the ATE estimate would be biased, potentially increasing the type I error probability.

5.2 (Efficient) Influence Functions
In this section we will introduce the setup of using influence functions as a part of statistical in-
ference. For our purposes, the aim is to use influence functions to derive asymptotic distributions
of different ATE estimators. Specifically, the efficient influence function of the ATE estimand
will be used to obtain the most efficient ATE estimator which turns out to be an estimator utilis-
ing digital twins. This introduction is not carried out in all details, and should only be considered
as an intuitive explanation. The derivations are mostly based on [54] and [35] in which most
equations are not explicitly derived. Where this is the case, we carry out the calculations, the
most comprehensive of which are placed in appendix C.1.

The starting point of most statistical analyses is in modelling data with some (semi-)parametric
model, which is in our case could be one of the previously specified AN(C)OVA models. In
the setup of influence functions, our point of departure is nonparametric estimation. This means
that we instead consider functionals of the cumulative distribution function F of the true data
generating distribution (which is e.g. assumed to be normal with a linear mean structure under an
AN(C)OVA model). Notice here that in general, the cumulative distribution function F : O Ñ R,
where O is the sample space of the observations, is well defined without any assumption of a
parametric model, and uniquely defines the true distribution. We can then define our estimand of
interest from a functional  . If e.g. the interest is in the mean of the outcome Y P O, we can
define  by

 pF q “ EF rY s “
ª
y dF “

ª
yfpyq dy. (5.3)

with the last equality holding true only when F is continuously differentiable and fpyq “ F 1pyq
for all y. If we instead want to determine the ATE from F being the true distribution of an
observation O “ pX,W, Y q P O, we have

ATEpF q “ EF rY p1qs ´ EF rY p0qs “ EF

“
EF rY p1q |Xs ´ EF rY p0q |Xs

‰
, (5.4)
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where the second equality is obtained by the law of total expectation. We note that the inner
expectations are with regard to the distribution of Y |W “ w,X for w “ 0, 1, respectively,
and the outer expectation is with regard to the distribution of X , where all distributions are in
accordance with pX,W, Y q having simultaneous distribution function F .

Estimators of the above estimands  pF q can be obtained by substituting F by an estimator
pFn of the true distribution. If pFn is e.g. chosen as the empirical distribution function for the
observations y1, y1, . . . , yn, the estimator for the mean is

 

´
pFn

¯
“ 1

n

nÿ

i“1

yi. (5.5)

In order to obtain an estimator for the ATE, we can replace F with F ˚ being any candidate dis-
tribution of pX,W, Y q such that the marginal distribution of X equals the empirical distribution
of X and the conditional distribution of Y given X and W has conditional mean equal to an
estimator pE rY | X “ x,W “ ws. In this case we would obtain

ATE pF ˚q “ 1

n

nÿ

i“1

pE rY | X “ xi,W “ 1s ´ pE rY | X “ xi,W “ 0s . (5.6)

Here pE rY | X “ x,W “ ws could be an estimate obtained from some model as the ANCOVA
or ANOVA model.

We want to understand how sensitive  p¨q is to changes in the true distribution function F in the
direction of pFn. In order to do so, we begin by regarding how  p¨q changes in the direction of a
fixed deterministic distribution F ˚, where the support of F ˚ is contained in the support of F . We
then define the parametric submodel as the cumulative distribution function Ft “ tF ˚ `p1´ tqF
for t P r0, 1s. Then, if the pathwise (or directional) derivative

lim
tÑ0`

ˆ
 pFtq ´ pF q

t

˙
“ d pFtq

dt

����
t“0

(5.7)

exists, we define it as the Gâteaux derivative of at F in the direction F ˚. This derivative shares
many of the same properties as the ordinary derivative, such as the chain and product rules [54].
We define a parametric submodel as regular if it satisfies that F ˚pOq{F pOq has finite variance
for the stochastic variable O P O. This ensures that dFt

dt

��
t“0

is well-defined [54, p. 3]. When
(5.7) exists for all regular parametric submodels, we say that  is pathwise differentiable.

According to Hines et al. [54], we define the efficient influence function of a pathwise differen-
tiable estimand as a function 'F : O Ñ R that fulfills

d pFtq
dt

����
t“0

“ EF˚
“
'F pOq

‰
(5.8)
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for any F ˚ that makes Ft regular. The left hand side describes how sensitive the estimand is to
changes of F in the direction of F ˚. This implies that we can think intuitively of the efficient
influence function evaluated at some point o˚ stemming from the distribution F ˚ as describing
the sensitivity of the estimand when F changes in the direction of F ˚.

As already noted, if we instead of the true data distribution F use an approximated distribution
(usually specified through a parametrised distribution), we would obtain an estimator of the es-
timand. When determining the Gâteaux derivative of this estimator and using this derivative to
determine a function that satisfies equation (5.8), we would obtain the influence function for this
estimator. Thus, the efficient influence function is the specific influence function of the estimand
which is obtained by using the true distribution. Thus, sometimes we will exclude the subscript
from ' since it will be clear from the context if it is the efficient influence function or an influence
function linked to some non-true distribution.

Influence functions can be used to determine the asymptotic distribution of a regular and asymp-
totically linear (RAL) estimator. The definition of a RAL estimator can be found in [55]. A
regular estimator  pF ˚q of  pF q can be informally thought of as an estimator where small
changes in F does not affect the asymptotic distribution of  pF ˚q. Regularity is a smoothness
assumption on  pF ˚q that ensures that estimators which require knowledge of the true distribu-
tion F are ruled out by requiring that the estimator is reasonable also when the true distribution
is shifted by an arbitrarily small amount [31]. An asymptotically linear estimator is informally
an estimator where the error between  pF ˚q and  pF q for any specific n can be approximately
written as a linear function with mean 0. Asymptotic linearity allows us to assess the asymptotic
distribution of the estimator [31]. As it is beyond the scope of this thesis, we will not delve into
further details of RAL estimators. For our purposes, it is enough to know that most reasonable
estimarors are RAL, as noted in [55]. Furthermore, Tsiatis et al. [56, p. 27] note that the most
efficient regular estimator is asymptotically linear [57]. For these reasons we will not show that
specific estimators are indeed RAL in this thesis.

According to [54] and [56, pp. 41–42], any RAL estimator  pF ˚q has the limiting distribution

?
n

`
 pF ˚q ´ pF q

˘
d›Ñ N

´
0,EF

“
'F˚pOq2

‰¯
, (5.9)

where  pF ˚q is the estimator from the distribution F ˚ using n observations, and where 'F˚

is the influence function of the estimator  pF ˚q. It can be shown that the estimator using the
true cumulative distribution F obtains the lowest asymptotic variance among the class of RAL
estimators [58].

5.2.1 Efficient Influence Functions of the ATE and Population Mean

In this section we wish to derive the efficient influence functions of the ATE and the population
mean, which can be done since these estimands are both pathwise differentiable [54]. We do this
in accordance with Hines et al. [54], meaning that we will make use of a strategy, where we
utilise a cumulative distribution function F ˚ “ Ho˚ assigning the probability 1 of a stochastic
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variable taking a fixed value o˚. In order to formally define this cumulative distribution function
Ho˚ , we will need the Dirac delta function. For our purpose, we will first define the Dirac delta
function associated to the point o˚ P R and evaluated at any set A Ñ R as the measure

o˚pAq “
#
1 if o˚ P A

0 if o˚ R A
. (5.10)

Later, we will generalise the Dirac measure to the case where o, o˚ P Rk. The Heaviside step
function H can be expressed as the Lebesgue integral with respect to the Dirac measure, since

Ho˚poq “
ª

o

´8
d o˚puq “ o˚

`
s ´ 8, os

˘
“

#
1 if o • o˚

0 if o † o˚ . (5.11)

We can regard the Heaviside function as the cumulative distribution function of a random variable
with probability 1 of taking the value o˚. That is, we can heuristically regard o˚ as the corre-
sponding density function of this distribution. For some o˚puq-measurable function g : R Ñ R,
we then have

ª
gpuq d o˚puq “

ª
gpuq dHo˚puq, (5.12)

where the left hand side is the Lebesgue integral and the right hand side is the Riemann-Stieltjes
integral. The equality is obtained directly from the definitions of the Lebesgue- and Riemann-
Stieltjes integrals and using equation (5.11) to see that both sides equal gpo˚q. The function H is
discontinuous, but had it been continuously differentiable and g continuous, the right hand side
would equal

≥
gpuq o˚puq du. In the following, we will sometimes abuse notation and denote

the integral in (5.12) in this way.

Using the parametric submodel

Ftpoq “ tHo˚poq ` p1 ´ tqF poq, (5.13)

the efficient influence function from equation (5.8) reduces to

d pFtq
dt

����
t“0

“ EHo˚
“
'F pOq

‰
“
ª
'F poq dHo˚poq “ 'F po˚q. (5.14)

Thus, using this parametric submodel, we can derive the efficient influence function evaluated in
o˚ of an estimand by taking the Gâteaux derivative.

For some fixed o˚ “ po˚
1 , o

˚
2 , . . . , o

˚
k
q P Rk and arbitrary A “ pA1, A2, . . . , Akq Ñ Rk, the Dirac

delta function is generalised by the product measure o˚pAq “ o
˚
1
pA1q o

˚
2
pA2q ¨ ¨ ¨ o

˚
k
pAkq.

Using this generalisation, in the case of the ATE, we have that o denotes a realisation of the
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stochastic vector pX,W, Y q. Similar arguments as the above can be employed to obtain equiv-
alent results. We also note that the previous calculations and following derivations are done for
continuous observations o, but in the case of discrete observations or a mixed distribution, in-
tegrals can be swapped by sums, and the Dirac delta function can be replaced by an indicator
function that directly specifies the probability mass function [54].

We are now ready use equation (5.14) to determine the efficient influence function of the popu-
lation mean estimand in equation (5.3), which will be done in the following lemma. This lemma
will be used later to prove properties of using digital twins in theorem 5.3.11.

Lemma 5.2.1.
The efficient influence function of the population mean estimand  pF q in equation (5.3) is given
as

'pyq “ y ´ pF q (5.15)

[54]. û
To see why this holds, we define the parametric submodel Ft correspondingly, perturbing F in the
direction of the cumulative distribution of a single point o˚, which in this case is y˚. Specifically,
for t P r0, 1s, we use the parametric submodel Ft in equation (5.13). We then obtain

Ftpoq “ tHo˚poq ` p1 ´ tqF poq “ t o˚
`
s ´ 8, os

˘
` p1 ´ tqF poq

“ t

ª
o

´8
o˚puq du ` p1 ´ tq

ª
o

´8
fpuq du “

ª
o

´8
t o˚puq ` p1 ´ tqfpuq du, (5.16)

where the second to last and last equality is heuristic in the sense that the integral is with respect
to the Dirac measure but we abuse notation to write it with respect to the Lebesgue measure.
Using this parametric submodel with the population mean estimand and o˚ “ y˚, we get

 pFtq “ t

ª
y y˚pyq dy ` p1 ´ tq

ª
yfpyq dy “ ty˚ ` p1 ´ tq pF q. (5.17)

Taking the Gâteaux derivative, we now obtain

d pFtq
dt

����
t“0

“ lim
tÑ0`

ˆ
ty˚ ` p1 ´ tq pF q ´ pF q

t

˙
“ y˚ ´ pF q. (5.18)

Now using equation (5.14) we have heuristically proved the lemma.

We will now derive the efficient influence function of the ATE estimand. We will start by stating
and heuristically proving lemma 5.2.2 using the same parametric submodel as in equation (5.13).
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Lemma 5.2.2.
Let f denote the probability density function consistent with some cumulative distribution func-
tion F , and define the estimand  pF q “ fpoq for some fixed o. Then the Gâteaux derivative
of f at o in the direction o˚, that is, using the parametric submodel in equation (5.13), can be
expressed as

d pFtq
dt

����
t“0

“ dftpoq
dt

����
t“0

“ o˚poq ´ fpoq (5.19)

[54]. û
To see why this holds, we first note that  pF q “ fpoq is the functional taking as input a cumu-
lative distribution function and gives the associated density function evaluated at o. We then use
the parametric submodel in equation (5.13), and follow the multidimensional equivalent steps as
in (5.16) to obtain

 pFtq “ ftpoq “ t o˚poq ` p1 ´ tqfpoq. (5.20)

We then get from the definition of the Gâteaux derivative that

d pFtq
dt

����
t“0

“ lim
tÑ0`

ˆ
t o˚poq ` p1 ´ tqfpoq ´ fpoq

t

˙
“ o˚poq ´ fpoq. (5.21)

We can now use this lemma to determine the efficient influence function of the ATE.

Lemma 5.2.3.
The efficient influence function of the ATE estimand is 'ATE “ '1 ´ '0, where

'1px, w, yq “ w

f p1 | xq
`
y ´ �1px, F q

˘
` �1px, F q ´ 1pF q

'0px, w, yq “ 1 ´ w

f p0 | xq
`
y ´ �0px, F q

˘
` �0px, F q ´ 0pF q

(5.22)

and

�wpx, F q “ EF rY | X “ x,W “ ws
 wpF q “ EF

“
EF rY |X,W “ ws

‰ (5.23)

for w “ 0, 1 and pX,W, Y q „ F [54, 35]. û
Proof. We can express the ATE as

ATEpF q “  1pF q ´ 0pF q. (5.24)
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We will then work with  1 and abuse notation, writing ft as conditional and marginal distribu-
tions of X , W and Y , under a parametric submodel Ft, and similarly for the true density function
f associated with F . Then, we get

 1pFtq “
ª ª

yftpy |W “ 1, X “ xq dy ftpxq dx “
ª ª

y
ftpx, 1, yqftpxq

ftp1, xq dy dx. (5.25)

Now, we wish to evaluate d 1pFtq
dt

��
t“0

. Here, we specify the parametric submodel as in equation
(5.13). Having done so, and using equation (5.14), we thus obtain an expression of the influence
function as the Gâteaux derivative. Assuming regularity conditions (so that the order of integra-
tion and Gâteaux derivative can be interchanged) and using lemma 5.2.2, the product- and chain
rules of the Gâteaux derivative and properties of the Dirac delta function, we obtain

d 1pFtq
dt

����
t“0

“ w˚p1q
f p1 | x˚q

`
y˚ ´ �1px˚, F q

˘
` �1px˚, F q ´ 1pF q “ '1px˚, w˚, y˚q, (5.26)

which we derive in further details in appendix C.1. These derivations can also be carried out
exchanging W “ 1 with W “ 0, obtaining that

d 0pFtq
dt

����
t“0

“ w˚p0q
f p0 | x˚q

`
y˚ ´ �0px˚, F q

˘
` �0px˚, F q ´ 0pF q “ '0px˚, w˚, y˚q. (5.27)

Using linearity of the Gâteaux derivative, we then get that the efficient influence function of the
ATE evaluated in px˚, w˚, y˚q can be expressed as

'ATEpx˚, w˚, y˚q “ d 1pFtq
dt

����
t“0

´ d 0pFtq
dt

����
t“0

“ '1px˚, w˚, y˚q ´ '0px˚, w˚, y˚q. (5.28)

Hence, taking the efficient influence function with a general input px, w, yq P X ˆ t0, 1u ˆ R,
we get the result. ⌅

Note that the lemma holds in general, even when the assumptions of an RCT are not met, as we
have assumed for this whole chapter. Using the lemma, we can directly get an expression of the
efficient influence function of the ATE estimand when in the case of an RCT that will be useful
in proving statements later in the chapter. Furthermore, in the rest of the chapter, we will use that
W KK X in an RCT, and hence fpw |xq “ fpwq. Therefore as in section 2.2.1 we can define

fp1q “ ErW s “ ⇡1, fp0q “ Er1 ´ W s “ ⇡0. (5.29)

Corollary 5.2.4.
The efficient influence function of the ATE estimand can be written as

'ATEpX,W, Y q “ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
(5.30)

´ W ´ ⇡1
⇡0⇡1

´
⇡1

`
ErY p0q |Xs ´ ErY p0qs

˘
` ⇡0

`
ErY p1q |Xs ´ ErY p1qs

˘¯
,

where the relevant expectations are taken with regard to the true distribution F [54, 35]. û
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Proof. By similar arguments as in (2.19), we have that �w “ E rY | X,W “ ws “ ErY pwq |Xs
in the case of an RCT. By lemma 5.2.3, we can then express the efficient influence function of
the ATE estimand as

'ATEpX,W, Y q “ W

⇡1

`
Y ´ ErY p1q |Xs

˘
` ErY p1q |Xs ´ E

“
ErY p1q |Xs

‰

´
ˆ
1 ´ W

⇡0

`
Y ´ ErY p0q |Xs

˘
` ErY p0q |Xs ´ E

“
ErY p0q |Xs

‰˙

“ W

⇡1
Y ´ ErY p1qs ´ W

⇡1
ErY p1q |Xs ` ErY p1q |Xs

´ 1 ´ W

⇡0
Y ` ErY p0qs ` 1 ´ W

⇡0
ErY p0q |Xs ´ ErY p0q |Xs (5.31)

“ W

⇡1
Y ´ W

⇡1
ErY p1qs ` W ´ ⇡1

⇡1
ErY p1qs ´ W ´ ⇡1

⇡1
ErY p1q |Xs

´ 1 ´ W

⇡0
Y ` 1 ´ W

⇡0
ErY p0qs ` W ´ ⇡1

⇡0
ErY p0qs ´ W ´ ⇡1

⇡0
ErY p0q |Xs

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

´
⇡1

`
ErY p0q |Xs ´ ErY p0qs

˘
` ⇡0

`
ErY p1q |Xs ´ ErY p1qs

˘¯
,

where we use in the second equality that E
“
ErY pW q |Xs

‰
“ ErY pW qs due to the law of total

expectation, and the third equality follows from

ErY p0qs “ 1 ´ p1 ´ ⇡0q
⇡0

ErY p0qs “ 1 ´ ⇡1
⇡0

ErY p0qs “ 1 ´ W

⇡0
ErY p0qs ` W ´ ⇡1

⇡0
ErY p0qs,

and

1 ´ W

⇡0
ErY p0q |Xs ´ ErY p0q |Xs “ p1 ´ W q ´ ⇡0

⇡0
ErY p0q |Xs “ ´W ´ ⇡1

⇡0
ErY p0q |Xs,

thus completing the proof. ⌅

Directly from lemma 5.2.3, we can show that the influence function of any ATE estimator has
mean 0, which will be useful later when proving theorem 5.3.11.

Corollary 5.2.5.
Under any assumed distribution F ˚, the influence function of the corresponding ATE estimator
has mean 0. û
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Proof. The influence function of the ATE estimator ATEpF ˚q is given by corollary 5.2.4, assum-
ing pX,W, Y q „ F ˚. Thus, we get that

EF˚r'ATEs “ EF˚

„
W

⇡1

`
Y ´ EF˚r�1pX,F ˚qs

˘
´ 1 ´ W

⇡0

`
Y ´ EF˚r�0pX,F ˚qs

˘⇢

“ 1

⇡1

`
EF˚rWY s ´ EF˚rW sEF˚r�1pX,F ˚qs

˘

´ 1

⇡0

`
EF˚rp1 ´ W qY s ´ EF˚r1 ´ W sEF˚r�0pX,F ˚qs

˘

“ EF˚rW s
⇡1

`
EF˚rY p1qs ´ EF˚r�1pX,F ˚qs

˘

´ EF˚r1 ´ W s
⇡0

`
EF˚rY p0qs ´ EF˚r�0pX,F ˚qs

˘
“ 0,

(5.32)

where we use in the first equality that EF˚r�wpX,F ˚qs “  wpF ˚q “ EF˚r wpF ˚qs. In the
third equality, we use the representation Y “ WY p1q ` p1 ´ W qY p0q and that W is indepen-
dent of potential outcomes. In the last equality, we use the law of total expectation to see that
EF˚r�wpX,F ˚qs “ EF˚

”
EF˚

“
Y pwq

ˇ̌
X

‰ı
“ EF˚rY pwqs. ⌅

5.3 Theoretical Properties of the Digital Twins Approach
In the following, we will consider three different AN(C)OVA models to estimate the ATE. Firstly,
we will consider the difference-in-means model given by

Y “ �0 ` W�W ` "W (5.33)

where W is independent of both "1 „ Nn1

`
0, �2

1In1

˘
and "0 „ Nn0

`
0, �2

0In0

˘
, which are also

independent from each other. This model differs from the ANOVA model by allowing different
variances in the treatment and control group, where �2

0 “ Var
`
Y p0q

˘
and �2

1 “ Var
`
Y p1q

˘

from the model specification. Under this model, we have the difference-in-means ATE estimator
given by

zATE� “ p�W “ Y 1 ´ Y 0, (5.34)

which coincides with the usual ANOVA estimator. Secondly, we will refer to the ANCOVA
model introduced in (2.20) with design matrix

D “ r1W Xs (5.35)
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as the ANCOVA I model. As described earlier, an estimate of the ATE can be obtained as p�W
from this model. Thirdly, we consider an ANCOVA model where the covariates X are de-
meaned, denoted as rX “ X ´ E rXs. In this model, we will include interaction effects between
the covariates and the treatment allocation, obtaining the design matrix

D “
”
1 W rX diag

n
pWq rX

ı
. (5.36)

We will refer to this model as the ANCOVA II model. The model assumptions is then that the
data is on the form

Yi “ �0 ` Wi�W ` rXi� rX ` Wi
rXi�Wˆ rX ` "i, (5.37)

where "i „ N n

`
0, �2

˘
and the "i’s are independent. The ATE can be estimated from this model

as p�W , since

ATE “ E
“
Y p1q ´ Y p0q

‰

“ E
”
�W ` rX�

Wˆ rX

ı
“ �W ,

(5.38)

which is obtained by Er rXs “ 0, since the covariates are demeaned. Intuitively, the ATE is �W
when we demean X , since �W is the treatment effect of the patient with rX “ 0, which is the
patient with X being equal to the population mean, that is, the "average patient". The purpose
of including interactions is solely to decrease the residual variance �2 compared to an ANCOVA
model without interaction effects. We note that this decrease in �2 will only be present if there
is in fact heterogeneity of the treatment effect across the levels of the covariates, since in the
opposite case, the interaction effects �

Wˆ rX “ 0. In this situation, when including interaction
effects we would decrease the model degrees of freedom by p, hence yielding an increase in p�2.
However, in the following, we will consider the asymptotic variance. As we will argue, using the
ANCOVA I ATE estimator with digital twins provides the most asymptotically efficient estimate
under constant treatment effect among all RAL estimators, while the ANCOVA II estimator
should be used when a heterogeneous effect is present.

In the case of estimating the ATE using the ANCOVA I model, we implicitly assume that the data
generating process has the cumulative distribution function FI which describes the distribution
given by the model specification in equation (2.21). Furthermore, since we are in the case of an
RCT, we have that Y pwq |X and Y |X,W “ w have the same distribution. Therefore, according
to lemma 5.2.3, we obtain

�wpx, FIq “ �0 ` w�W ` x�X
 wpFIq “ �0 ` w�W ` ErXs�X .

(5.39)

Similarly, denoting by FII the distribution under the ANCOVA II model, we get that

�wpx, FIIq “ �0 ` w�W ` rx� rX ` wrx�
Wˆ rX

 wpFIIq “ �0 ` w�W ` E
”

rX
ı
� rX ` wE

”
rX

ı
�
Wˆ rX .

(5.40)
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We note that for this latter model specification, p rX, rXW q plays the role of the X mentioned in
the lemma.

We can use these equations to obtain the influence function of the ATE under the ANCOVA I
and II models. We emphasize the difference between the efficient influence function using the
true distribution F and an influence function using an assumed distribution in place of F , e.g.
specified by the above AN(C)OVA model specifications.

The derivations in the following subsections are based on Schuler et al. [35], in which most
equations are not explicitly derived. Where this is the case, we carry out the calculations, the
most comprehensive of which are placed in appendices C.2 – C.7.

5.3.1 Asymptotic Distributions of AN(C)OVA Estimators

In this section, we will derive asymptotic distributions of the difference-in-means, ANCOVA I
and ANCOVA II ATE estimators, as well as relating these to each other. First, we prove a lemma,
which will enable us to show consistency of the ANCOVA estimators.

Lemma 5.3.1.
Assume that for an estimator p✓n of ✓, Varpp✓nq ›Ñ 0 and Erp✓ns ›Ñ ✓ as n Ñ 8. Then the
estimator is consistent, that is, p✓n

P›Ñ ✓. û
Proof. Fix " ° 0. From the convergence of the expected value, we have for a large enough n
that ���Erp✓ns ´ ✓

��� † "{2 (5.41)

Thus, using Chebyshev’s inequality, we have for large enough n that

P
�̂��p✓n ´ ✓

��� ° "

˙
§ P

�̂��p✓n ´ Erp✓ns
��� `

���Erp✓ns ´ ✓
��� ° "

˙
§ P

�̂��p✓n ´ Erp✓ns
��� ° "{2

˙

§ Varpp✓nq
"2{4 ,

(5.42)

which converges to 0 as n Ñ 8, showing that p✓n
P›Ñ ✓. ⌅

Lemma 5.3.2.
The difference-in-means ATE estimator is consistent with

?
n

´
zATE� ´ ATE

¯
P›Ñ 0 and has

asymptotic variance

nVar
´

zATE�
¯

›Ñ �2
0

⇡0
` �2

1

⇡1
, (5.43)

where �2
w

“ Var
`
Y pwq

˘
. û

73



Digital Twins Aalborg University

Proof. We see from corollary 5.2.4 that

'�pW,Y q “ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
(5.44)

is the influence function for zATE�, since the last term in equation (5.30) is 0 because we do not
adjust by any X under the difference-in-means model. Thus using the result in (5.9), zATE� has
the limiting distribution

?
n

´
zATE� ´ ATE

¯
d›Ñ N

´
0,E

“
'2
�

‰¯
. (5.45)

The limiting variance can thus be expressed as

E
“
'2
�

‰
“ E

«ˆ
W

⇡1

´
Y p1q ´ E

“
Y p1q

‰¯
´ 1 ´ W

⇡0

´
Y p0q ´ E

“
Y p0q

‰¯˙2
�

“ E
„
W

⇡2
1

´
Y p1q ´ E

“
Y p1q

‰¯2

` 1 ´ W

⇡2
0

´
Y p0q ´ E

“
Y p0q

‰¯2
⇢

“ �2
0

⇡0
` �2

1

⇡1
.

(5.46)

Now since the ATE estimator converges in distribution, the moments converge towards the mo-
ment parameters in the distribution [59, p. 18]. Thus we obtain the limiting variance and by
lemma 5.3.1 we now have consistency of the estimator. ⌅

We notice that the difference-in-means ATE estimator and the ANOVA model ATE estimator
have the same (asymptotic) variance when �0 “ �1.

In the following, we use the convention that for two general row vectors U and V , being 1 ˆ p
and 1 ˆ q dimensional, respectively, we have

Cov pU, V q “ E
”`
U ´ ErU s

˘J `
V ´ ErV s

˘ı
(5.47)

being p ˆ q dimensional. When U and V are instead column vectors, being p ˆ 1 and q ˆ 1

dimensional, respectively, we define

Cov pU, V q “ E
”`
U ´ ErU s

˘ `
V ´ ErV s

˘Jı
, (5.48)

which is also p ˆ q dimensional. In the following theorem, we will frequently encounter the
covariance between the stochastic row vector X and the stochastic variable Y , where we will
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write CovpY,Xq to obtain a row vector of covariances between the response and each covariate,
and CovpXJ, Y q to obtain an equivalent column vector. Note furthermore that throughout the
rest of this chapter, all variances and covariances involving the covariates can be written using
the non-demeaned covariates or demeaned covariates, since e.g.

CovpY,Xq “ ErY Xs ´ ErXsErY s “ E
”
Y

`
X ´ ErXs

˘ı
“ E

”
Y rX

ı
“ Cov

´
Y, rX

¯
.

With this in mind, we can now determine the asymptotic distribution of the ANCOVA I ATE
estimator.

Theorem 5.3.3.
The ANCOVA I ATE estimator zATEI is consistent with

?
n

´
zATEI ´ ATE

¯
P›Ñ 0 and has

asymptotic variance given by

nVar
´

zATEI

¯
›Ñ �2

0

⇡0
` �2

1

⇡1
` 1

⇡0⇡1
⇠V ⇠J ´ 2

1

⇡0⇡1
⇠˚V ⇠

J (5.49)

for n Ñ 8, where

�2
w

“ Var
`
Y pwq

˘

V “ VarpXq´1

⇠ “ Cov pY,Xq
⇠˚ “ ⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘
.

(5.50)

û
Proof. We begin by noting that under the assumed distribution FI in equation (2.20) we have

Y “ D� ` ". (5.51)

Here, we denote by D “ p1,W,Xq a single stochastic row of the design matrix from equation
(5.35), so that X corresponds to a stochastic row vector of covariates. In the remainder of this
proof, all expectations are taken with respect to this distribution FI . Multiplying (5.51) with DJ

and taking the expected value, we get that the true parameter vector � can be expressed as

� “ ErDJDs´1 ErDJY s, (5.52)

where we use the assumed independence between D and ". We can now determine each of the
factors in the product, starting with ErDJY s. We note that

WY “ W
`
WY p1q ` p1 ´ W qY p0q

˘
“ WY p1q, (5.53)
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so

E
”
DJY

ı
“ E

»

——–

¨

˚̋Y
WY
XJY

˛

‹‚

fi

��fl “

¨

˚̋ErY s
ErWY p1qs
ErXJY s

˛

‹‚“

¨

˚̋ErY s
ErW sErY p1qs
CovpXJ, Y q ` ErXJsErY s

˛

‹‚, (5.54)

where we use that in an RCT, we have the independence in (2.4). In appendix C.2.1 we show
that the first factor ErDJDs´1 is equal to

E
”
DJD

ı´1

“

»

—–

1
1´ErW s ` ErXsVarpXq´1 ErXsJ ´ 1

1´ErW s ´ErXsVarrXs´1

´ 1
1´ErW s

1
Er1´W sErW s 0

´
`
ErXsVarpXq´1

˘J
0 VarpXq´1

fi

�fl. (5.55)

By multiplying these expressions, which we do in appendix C.2.2, we get that

� “

¨

˚̋ErY p0qs ´ ErXsVarpXq´1 CovpXJ, Y q
ErY p1qs ´ ErY p0qs
VarpXq´1 CovpXJ, Y q

˛

‹‚. (5.56)

We see that all but the first entry do not depend on whether we demean X or not. In general for
linear models, we can subtract the empirical mean of the covariates without affecting the MLE
of the non-intercept parameters and their variances [60]. In the following we will derive the
influence function of the estimator using demeaned covariates to simplify calculations, thus also
deriving the asymptotic variance of the estimator not using demeaned covariates. If we demean
the covariate values X , using instead rX , the first entry reduces to just ErY p0qs, and we obtain

�wp rX,FIq “ ErY | rX,W “ ws
“ p1, w, rXq�
“ ErY p0qs ` w

`
ErY p1qs ´ ErY p0qs

˘
` rX VarpXq´1 CovpXJ, Y q

“ ErY p0qs ` w ¨ ATE ` rX VarpXq´1 CovpXJ, Y q.

(5.57)

Taking expectation with respect to rX in this equation, we obtain  wpFIq. Now using lemma
5.2.3 together with the obtained � vector, we obtain

'1p rX,W, Y q “ W

⇡1

ˆ
Y ´

´
ErY p0qs ` ATE ` rX VarpXq´1 CovpXJ, Y q

¯˙

` ErY p0qs ` ATE ` rX VarpXq´1 CovpXJ, Y q
´

´
ErY p0qs ` ATE ` Er rXsVarpXq´1 CovpXJ, Y q

¯
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“ W

⇡1

ˆ
Y ´

´
ErY p0qs ` ATE ` rX VarpXq´1 CovpXJ, Y q

¯˙

` rX VarpXq´1 CovpXJ, Y q (5.58)

“ W

⇡1

ˆ
Y ´

´
ErY p1qs ` rX VarpXq´1 CovpXJ, Y q

¯˙

` rX VarpXq´1 CovpXJ, Y q

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ W ´ ⇡1

⇡1
rX VarpXq´1 CovpXJ, Y q,

using in the second equality that Er rXs “ 0. In a similar way, we get

'0p rX,W, Y q “ 1 ´ W

⇡0

ˆ
Y ´

´
ErY p0qs ` rX VarpXq´1 CovpXJ, Y q

¯˙

` ErY p0qs ` rX VarpXq´1 CovpXJ, Y q
´

´
ErY p0qs ` Er rXsVarpXq´1 CovpXJ, Y q

¯

“ 1 ´ W

⇡0

ˆ
Y ´

´
ErY p0qs ` rX VarpXq´1 CovpXJ, Y q

¯˙

` rX VarpXq´1 CovpXJ, Y q

“ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
´ p1 ´ W q ´ ⇡0

⇡0
rX VarpXq´1 CovpXJ, Y q.

(5.59)

Taking the difference, we get

'ATE,Ip rX,W, Y q “ '1p rX,W, Y q ´ '0p rX,W, Y q

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´
ˆ
W ´ ⇡1
⇡1

´ p1 ´ W q ´ ⇡0
⇡0

˙
rX VarpXq´1 CovpXJ, Y q

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

rX VarpXq´1 CovpXJ, Y q
:“ '�pW,Y q ´ !pX,W, Y q,

(5.60)

where we use the influence function of the difference-in-means estimator in equation (5.44) and
we define

!p rX,W, Y q “ W ´ ⇡1
⇡0⇡1

rX VarpXq´1 CovpXJ, Y q, (5.61)
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and the third equality holds since

W ´ ⇡1
⇡1

´ p1 ´ W q ´ ⇡0
⇡0

“ W⇡0 ´ ⇡1⇡0
⇡1⇡0

´ ⇡1 ´ W⇡1 ´ ⇡0⇡1
⇡0⇡1

“ W⇡0 ´ ⇡1 ` W⇡1
⇡1⇡0

“ W p⇡0 ` ⇡1q ´ ⇡1
⇡1⇡0

“ W ´ ⇡1
⇡1⇡0

.

(5.62)

Using the result in (5.9), zATEI has the limiting distribution

?
n

´
zATEI ´ ATE

¯
d›Ñ N

ˆ
0,E

”
'2
ATE,I

ı˙
. (5.63)

where we drop the argument p rX,W, Y q for the rest of this proof for ease of notation. We now
wish to derive an explicit expression of this asymptotic variance. We will use that

E
”
'2
ATE,I

ı
“ E

”
p'� ´ !q2

ı
“ E

“
'2
�

‰
` E

“
!2

‰
´ 2E r'�!s . (5.64)

Using equation (5.46) we have the first term. For the second term in (5.64), we get

E
“
!2

‰
“ E

«ˆ
W ´ ⇡1
⇡0⇡1

rX VarpXq´1 CovpXJ, Y q
˙2

�

“ E
«

pW ´ ⇡1q2
⇡2
0⇡

2
1

´
rX VarpXq´1 CovpXJ, Y q

¯J rX VarpXq´1 CovpXJ, Y q
�

“ E
«

pW ´ ⇡1q2
⇡2
0⇡

2
1

CovpY,XqVarpXq´1 rXJ rX VarpXq´1 CovpXJ, Y q
�

“ E
“
pW ´ ⇡1q2

‰

⇡2
0⇡

2
1

CovpY,XqVarpXq´1 E
”

rXJ rX
ı
VarpXq´1 CovpXJ, Y q

“ 1

⇡0⇡1
CovpY,XqVarpXq´1 CovpXJ, Y q,

(5.65)

where we use in the last equality that since rX is demeaned, E
”

rXJ rX
ı

“ VarpXq, and that

E
“
pW ´ ⇡1q2

‰
“ ErW 2 ` ⇡2

1 ´ 2⇡1W s “ ⇡1 ` ⇡2
1 ´ 2⇡2

1 “ ⇡1 ´ ⇡2
1 “ ⇡1p1 ´ ⇡1q “ ⇡1⇡0,

using W 2 “ W . For the last term in equation (5.64), we have

E r'�!s “ E
„
W

⇡1

`
Y ´ ErY p1qs

˘
!

⇢
´ E

„
1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
!

⇢
. (5.66)
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Beginning with first term in equation (5.66), we get

E
„
W

⇡1

`
Y ´ ErY p1qs

˘
!

⇢
“ E

„
W

⇡1

`
Y ´ ErY p1qs

˘ W ´ ⇡1
⇡0⇡1

rX VarpXq´1 CovpXJ, Y q
⇢

“ 1

⇡1
E

„
W

`
Y ´ ErY p1qs

˘ W ´ ⇡1
⇡0⇡1

rX
⇢
VarpXq´1 CovpXJ, Y q

“ 1

⇡1
Cov

`
Y p1q, X

˘
VarpXq´1 CovpXJ, Y q, (5.67)

with the last equality following from

E
„
W

`
Y ´ ErY p1qs

˘ W ´ ⇡1
⇡0⇡1

rX
⇢

“ E
„
W

`
WY p1q ´ p1 ´ W qY p0q ´ ErY p1qs

˘ W ´ ⇡1
⇡0⇡1

rX
⇢

“ E
„`

Y p1q ´ ErY p1qs
˘ W pW ´ ⇡1q

⇡0⇡1
rX
⇢

“ E
„
W pW ´ 1 ` ⇡0q

⇡0⇡1

⇢
E

”`
Y p1q ´ ErY p1qs

˘ rX
ı

“ E
„
W⇡0
⇡0⇡1

⇢
E

”`
Y p1q ´ ErY p1qs

˘ rX
ı

“ Cov
`
Y p1q, X

˘
. (5.68)

The second term in equation (5.66) can be derived using equivalent calculations, yielding

E
„
1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
!

⇢
“ ´ 1

⇡0
Cov

`
Y p0q, X

˘
VarpXq´1 CovpXJ, Y q. (5.69)

We thus get

E r'�!s “ 1

⇡1
Cov

`
Y p1q, X

˘
VarpXq´1 CovpXJ, Y q

` 1

⇡0
Cov

`
Y p0q, X

˘
VarpXq´1 CovpXJ, Y q (5.70)

“ 1

⇡0⇡1

´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
VarpXq´1 CovpXJ, Y q.

Now, assembling these derivations according to (5.64), we obtain the limiting variance as

E
”
'2
ATE,I

ı
“ �2

0

⇡0
` �2

1

⇡1
` 1

⇡0⇡1
CovpY,XqVarpXq´1 CovpXJ, Y q

´ 2
1

⇡0⇡1

´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
VarpXq´1 CovpXJ, Y q

“ �2
0

⇡0
` �2

1

⇡1
` 1

⇡0⇡1
⇠V ⇠J ´ 2

1

⇡0⇡1
⇠˚V ⇠

J. (5.71)
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Now since the ATE estimator converges in distribution, the moments converge towards the mo-
ment parameters in the distribution [59, p. 18]. Thus we obtain the limiting variance and by
lemma 5.3.1 we now have consistency of the estimator. ⌅

Now we observe that

⇠ “ Cov pY,Xq “ Cov
´
WY p1q, rX

¯
` Cov

´
p1 ´ W qY p0q, rX

¯

“ ErWY p1q rXs ` Erp1 ´ W qY p0q rXs “ ⇡1 ErY p1q rXs ` ⇡0 ErY p0q rXs
“ ⇡1 Cov

`
Y p1q, X

˘
` ⇡0 Cov

`
Y p0q, X

˘
.

(5.72)

Thus, when Cov
`
Y p0q, X

˘
“ Cov

`
Y p1q, X

˘
, or when in the case of ⇡0 “ ⇡1 (which can be

obtained by complete randomisation), then ⇠ “ ⇠˚, so that

nVar
´

zATEI

¯
P›Ñ �2

0

⇡0
` �2

1

⇡1
´ 1

⇡0⇡1
⇠˚V ⇠

J
˚ , (5.73)

which, as the next theorem states, is the asymptotic variance of the ANCOVA II ATE estimator.
Intuitively, one can make sense of this fact by realising that Cov

`
Y p0q, X

˘
“ Cov

`
Y p1q, X

˘

implies that the relation between the covariates and the outcome is the same across the treatment-
and control groups. This means that no interaction effects between X and W exist, so that
nothing is gained by using the ANCOVA II estimator instead of the ANCOVA I estimator. This
fact is more formally derived in equation (5.80).

Theorem 5.3.4.
The ANCOVA II ATE estimator zATEII is consistent with

?
n

´
zATEII ´ ATE

¯
P›Ñ 0 and has

asymptotic variance given by

nVar
´

zATEII

¯
›Ñ �2

0

⇡0
´ �2

1

⇡1
´ 1

⇡0⇡1
⇠˚V ⇠

J
˚ , (5.74)

for n Ñ 8, where

�2
w

“ Var
`
Y pwq

˘

V “ VarpXq´1

⇠˚ “ ⇡0 Cov
`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘
.

(5.75)

û
Proof. The proof follows the structure of the proof of theorem 5.3.3, now with observations
D “ p1,W, rX,W rXq. Following the same procedure, we show in appendix C.3 that the influence
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function of the ANCOVA II ATE estimator, again dropping arguments of the functions, is given
as 'ATE,II “ '1 ´ '0, where

'1 “ W

⇡1

`
Y ´ ErY p1qs

˘
´ W ´ ⇡1

⇡1
rX VarpXq´1 Cov

´
rXJ, Y p1q

¯
, (5.76)

and

'0 “ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
´ p1 ´ W q ´ ⇡0

⇡0
rX VarpXq´1 Cov

´
rXJ, Y p0q

¯
, (5.77)

so that, as we also derive in appendix C.3,

'ATE,II “ '� ´ W ´ ⇡1
⇡0⇡1

rX VarpXq´1⇠J
˚ , (5.78)

which is the same as 'ATE,I in equation (5.60) but with ⇠˚ in place of ⇠ “ CovpX, Y q, using the
same definition of '�, defined in equation (5.61). The result now follows from the same steps as
carried out in the proof of theorem 5.3.3. ⌅

Remark. In the above proof, Schuler et al. [35] derive that ⇠˚ is a common factor between '1

and '0, whereas we reach an expression with ⇠˚ only when we take the difference to obtain the
influence function 'ATE,II . Using ⇠˚ as a common factor, Schuler et al. appear to mistakenly use
an assumption of constant treatment effect, that is

ATE “ ErY p1qs ´ ErY p0qs “ ErY p1q |Xs ´ ErY p0q |Xs. (5.79)

In this case of constant treatment effect, we get that

Cov
`
Y p1q, X

˘
“ E

”`
Y p1q ´ ErY p1qs

˘ `
X ´ ErXs

˘ı

“ E
„
E

”`
Y p1q ´ ErY p1qs

˘ `
X ´ ErXs

˘ ˇ̌
ˇ X

ı⇢

“ E
„
E

”`
Y p1q ´ ErY p1qs

˘ ˇ̌
ˇ X

ı `
X ´ ErXs

˘⇢

“ E
„´

E
“
Y p1q

ˇ̌
X

‰
´ ErY p1qs

¯ `
X ´ ErXs

˘⇢

“ E
„´

E
“
Y p0q

ˇ̌
X

‰
´ ErY p0qs

¯ `
X ´ ErXs

˘⇢

“ Cov
`
Y p0q, X

˘
,

(5.80)
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where the assumption of constant treatment effect is used in the second to last equality, and the
last equality follows from applying the previous equalities in reverse order. This results in a
common factor in equations (5.76) and (5.77). This common factor is equal to ⇠˚, since

⇠˚ “ ⇡0 Cov
`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘
“ Cov

`
Y p0q, X

˘
“ Cov

`
Y p1q, X

˘
(5.81)

in the case of constant treatment effect. û
We can now use the previous theorem to obtain the following corollary.

Corollary 5.3.5.
Adding covariates which are not a linear combination of the covariates in X to the ANCOVA II
estimator cannot increase its asymptotic variance. û
Proof. Start by considering covariates X and an additional covariate M P R which is not a
linear combination of the covariates in X . We then want to consider the difference in asymptotic
variance of the ATE estimator when using the ANCOVA II model with X contra pX,Mq. We
will use the notation

VarpXq “ ⌃X

VarpMq “ �2
M

CovpM,Xq “ ⇣

⇠X˚ “ ⇡0 Cov
`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘

⇠M˚ “ ⇡0 Cov
`
Y p1q,M

˘
` ⇡1 Cov

`
Y p0q,M

˘
.

(5.82)

Using theorem 5.3.4 for the ANCOVA II model with covariates X , we obtain an asymptotic
variance of nVar

´
zATEII

¯
as

�2
0

⇡0
` �2

1

⇡1
´ 1

⇡0⇡1
⇠X˚⌃

´1
X
⇠J
X˚. (5.83)

When we further adjust by the covariate M we obtain by the same result that nVar
´

zATEII

¯

has asymptotic variance

�2
0

⇡0
` �2

1

⇡1
´ 1

⇡0⇡1

”
⇡0 Cov

`
Y p1q, pX,Mq

˘
` ⇡1 Cov

`
Y p0q, pX,Mq

˘ı

«
⌃X ⇣J

⇣ �2
M

�´1 ”
⇡0 Cov

`
Y p1q, pX,Mq

˘
` ⇡1 Cov

`
Y p0q, pX,Mq

˘ıJ

“ �2
0

⇡0
` �2

1

⇡1
´ 1

⇡0⇡1

”
⇠X˚ ⇠M˚

ı «
⌃X ⇣J

⇣ �2
M

�´1 «
⇠J
X˚
⇠M˚

�
.

(5.84)
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In appendix C.4, we show that the difference between the asymptotic variance of the estimator
using X and the asymptotic variance of the estimator using pX,Mq can be expressed as

1

⇡0⇡1

`
⇠M˚ ´ ⇠X˚⌃

´1
X
⇣J˘2

�2
M

´ ⇣⌃´1
X
⇣J . (5.85)

We now want to argue that this difference is non-negative, proving the result that the difference
in asymptotic variance is non-negative. This is the case if the denominator �2

M
´ ⇣⌃´1

X
⇣J is

positive.

The determinant of Var
`
pX,Mq

˘
is positive since the matrix is positive definite. Explicitly

writing out the determinant with a useful formula for the determinant of a block matrix [61], we
get

det

´
Var

`
pX,Mq

˘¯
“ det

¨

˝
«
⌃X ⇣J

⇣ �2
M

�˛

‚“ det
`
⌃

´1
X

˘ ´
�2
M

´ ⇣⌃´1
X
⇣J

¯
° 0. (5.86)

Since ⌃´1
X

is positive definite, we have that det
`
⌃

´1
X

˘
° 0, so �2

M
´ ⇣⌃´1

X
⇣J ° 0, which

completes the proof. ⌅

Later, we will adjust for the estimated prognostic score in our ANCOVA II model. This result
is relevant in this regard, since it shows that we can additionally include baseline covariates
without increasing the asymptotic variance, when using the ANCOVA II estimator. Later, we
will discuss the benefits of doing so in further detail. In the next theorem we will relate the
asymptotic variances for the difference-in-means, ANCOVA I and ANCOVA II ATE estimators.

Theorem 5.3.6.
The ANCOVA II ATE estimator is more asymptotically efficient than the ANCOVA I estimator
and difference-in-means estimator. There exists cases where the ANCOVA I ATE estimator is
not more asymptotically efficient than the difference-in-means estimator for some ⇡1 ‰ ⇡0 and
Cov

`
Y p0q, X

˘
‰ Cov

`
Y p1q, X

˘
. In case ⇡1 “ ⇡0 or Cov

`
Y p0q, X

˘
“ Cov

`
Y p1q, X

˘
the

ANCOVA I estimator is as asymptotically efficient as the ANCOVA II estimator.

Specifically, abusing the notation Var, here denoting the asymptotic variance multiplied by n,
we have

Var
´

zATEII

¯
§ Var

´
zATEI

¯

Var
´

zATEII

¯
§ Var

´
zATE�

¯
(5.87)

Var
´

zATEI

¯
° Var

´
zATE�

¯
for some ⇡0 ‰ ⇡1 and Cov

`
Y p0q, X

˘
‰ Cov

`
Y p1q, X

˘

Var
´

zATEI

¯
“ Var

´
zATEII

¯
when ⇡1 “ ⇡0 or Cov

`
Y p0q, X

˘
“ Cov

`
Y p1q, X

˘
.

û
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Proof. We first prove Var
´

zATEII

¯
§ Var

´
zATEI

¯
by subtracting the asymptotic variance in

theorem 5.3.4 from the asymptotic variance in theorem 5.3.3, obtaining

�2
0

⇡0
` �2

1

⇡1
` 1

⇡0⇡1
⇠V ⇠J ´ 2

1

⇡0⇡1
⇠˚V ⇠

J ´
˜
�2
0

⇡0
` �2

1

⇡1
´ 1

⇡0⇡1
⇠˚V ⇠

J
˚

¸

“ 1

⇡0⇡1

´
⇠V ⇠J ´ 2⇠˚V ⇠

J ` ⇠˚V ⇠
J
˚

¯

“ 1

⇡0⇡1

´
⇠V 1{2V 1{2⇠J ´ 2⇠˚V

1{2V 1{2⇠J ` ⇠˚V
1{2V 1{2⇠J

˚
¯

“ 1

⇡0⇡1

´
⇠V 1{2 ´ ⇠˚V

1{2
¯ ´

V 1{2⇠J ´ V 1{2⇠J
˚

¯

“ 1

⇡0⇡1

´
p⇠ ´ ⇠˚qV 1{2

¯ ´
V 1{2p⇠J ´ ⇠J

˚ q
¯

“ 1

⇡0⇡1

´
V 1{2p⇠ ´ ⇠˚qJ

¯J ´
V 1{2p⇠ ´ ⇠˚qJ

¯
• 0,

(5.88)

using that V is positive definite and hence has a well-defined square root V 1{2 as well as the fact
that ⇠˚V 1{2V 1{2⇠J “ ⇠V 1{2V 1{2⇠J

˚ since it is a scalar.

To determine that Var
´

zATEII

¯
§ Var

´
zATE�

¯
we subtract the asymptotic variance in theo-

rem 5.3.4 from the asymptotic variance in lemma 5.3.2 and thereby obtain

�2
0

⇡0
` �2

1

⇡1
´

˜
�2
0

⇡0
` �2

1

⇡1
´ 1

⇡0⇡1
⇠˚V ⇠

J
˚

¸
“ 1

⇡0⇡1
⇠˚V ⇠

J
˚ , (5.89)

which is greater than 0, since V is a positive definite matrix.

We only need to find one case where Var
´

zATEI

¯
° Var

´
zATE�

¯
to prove that there exits

cases where the ANCOVA I estimator is not more asymptotically efficient than the difference-in-
means estimator. Using e.g. ⇡1 “ 5{6, ⇡0 “ 1{6, Cov

`
Y p1q, X

˘
“ 4 and Cov

`
Y p0q, X

˘
“ 1

with X being one dimensional, we subtract the asymptotic variance in theorem 5.3.3 from the
asymptotic variance in lemma 5.3.2 and thereby obtain

´ 1

⇡0⇡1

´
⇠V ⇠J ´ 2⇠˚V ⇠

J
¯

“ ´ 36

5

«ˆ
5

6
¨ 4 ` 1

6

˙2

�´2
X

´ 2

ˆ
1

6
¨ 4 ` 5

6

˙ ˆ
5

6
¨ 4 ` 1

6

˙
�´2
X

�

“ ´ 36

5
�´2
X

˜ˆ
21

6

˙2

´ 2 ¨ 9
6

¨ 21
6

¸
§ 0. (5.90)

This implies that the asymptotic variance of the ANCOVA I estimator in this case is greater than
the asymptotic variance of the difference-in-means estimator.
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The case of Var
´

zATEI

¯
“ Var

´
zATEII

¯
when ⇡1 “ ⇡0 or Cov

`
Y p0q, X

˘
“ Cov

`
Y p1q, X

˘

was discussed as a remark after the proof of theorem 5.3.3. Thus, the situation of Var
´

zATEI

¯
°

Var
´

zATE�
¯

can only occur when both ⇡1 ‰ ⇡0 and Cov
`
Y p0q, X

˘
‰ Cov

`
Y p1q, X

˘
, since

if one of these assumptions is fulfilled, the second and fourth (in)equalities in (5.87) (which we
just proved) ensure that zATEI is asymptotically more efficient than zATE�. ⌅

In the example providing proof of the third inequality in (5.87), the treatment and control groups
are not equally sized, and the covariates and the outcome are not related in the same way across
treatment- and control groups, which according to the argument at equation (5.80) implies a
heterogeneous treatment effect. We see that in this case, it is more harmful in terms of asymptotic
efficiency to adjust for covariates without adjusting for these interaction effects than to use the
simple unadjusted difference-in-means estimator.

5.3.2 Oracle Estimators

Before considering the potential reduction in variance of ATE estimators when adjusting for
estimated prognostic scores, we will consider adjustment for the true prognostic score. For
this purpose, we will refer to an oracle estimator as an estimator with influence function being
the efficient influence function. We recall from the remarks after equation (5.9) that such an
estimator obtains the lowest asymptotic variance among all RAL estimators of the estimand. As
we will show, in different scenarios, the oracle estimator corresponds to different (infeasible)
ANCOVA ATE estimators using the true conditional mean fpXq “

`
ErY p0q |Xs, ErY p1q |Xs

˘

or fpXq “ ErY p0q |Xs in place of X . We begin by stating and proving a result which holds in
the general case of a heterogeneous treatment effect.

Lemma 5.3.7.
Let fpXq be an arbitrary (possibly multivariate) transformation of the covariates X . Then the
ANCOVA II ATE estimator that uses fpXq “

`
ErY p0q |Xs, ErY p1q |Xs

˘
in place of X has the

lowest asymptotic variance among all RAL estimators with access to X . û
Proof. We wish to show that the influence function of the ANCOVA II ATE estimator using fpXq
in place of X coincides with the efficient influence function of the ATE. We begin by replacing
X with fpXqJ P Rk in equation (5.78), obtaining

'ATE,II,fpXq “ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

`
fpXq ´ ErfpXqs

˘
Var

`
fpXq

˘´1
⇠J
f˚,

(5.91)

where ⇠f˚ “ ⇡0 Cov
`
Y p1q, fpXq

˘
` ⇡1 Cov

`
Y p0q, fpXq

˘
. In appendix C.5 we show that
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Var
`
fpXq

˘´1
⇠J
f˚ “ p⇡1, ⇡0qJ. Thus, we obtain

'ATE,II,fpXq “ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

˜
ErY p0q |Xs ´ ErY p0qs
ErY p1q |Xs ´ ErY p1qs

¸J ˜
⇡1
⇡0

¸
(5.92)

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

´
⇡1

`
ErY p0q |Xs ´ ErY p0qs

˘
` ⇡0

`
ErY p1q |Xs ´ ErY p1qs

˘¯
,

which is the efficient influence function of the ATE as seen in corollary 5.2.4. This implies that
using fpXq in place of X in the ANCOVA II model yields the most efficient ATE estimator
among all RAL estimators. ⌅

In the following two corollaries, we turn to the less general situation in which the treatment
effect is homogeneous. As we see from equations (2.1) and (2.2), this corresponds to ATE “
CATEpXq.

Corollary 5.3.8.
Assume that ErY p1q |Xs “ ErY p0q |Xs ` ATE, that is, the treatment effect is constant across
all values of the covariates X . Then the ANCOVA II ATE estimator with fpXq “ ErY p0q |Xs
in place of X has the lowest possible asymptotic variance among all RAL estimators with access
to X . û
Proof. Similar to the proof of lemma 5.3.7, we wish to consider the influence function for
the ANCOVA II ATE estimator, and we want to show that using fpXq “ ErY p0q |Xs in
place of X gives the efficient influence function of the ATE. In appendix C.6, we show that
Var

`
fpXq

˘´1
⇠f˚ “ 1. Using the influence function of the ANCOVA II ATE estimator in equa-

tion (5.78), this yields

'ATE,II,fpXq “ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

`
ErY p0q |Xs ´ ErY p0qs

˘
,

(5.93)

which is the efficient influence function under a constant treatment effect, since in this case the
equation in corollary 5.2.4 reduces to equation (5.93), using
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⇡1
`
ErY p0q |Xs ´ ErY p0qs

˘
` ⇡0

`
ErY p1q |Xs ´ ErY p1qs

˘

“ ⇡1
`
ErY p0q |Xs ´ ErY p0qs

˘
` ⇡0

`
ErY p0q |Xs ` ATE ´ ErY p1qs

˘

“ ⇡1
`
ErY p0q |Xs ´ ErY p0qs

˘
` ⇡0

`
ErY p0q |Xs ´ ErY p0qs

˘

“ ErY p0q |Xs ´ ErY p0qs.

(5.94)

⌅

Corollary 5.3.9.
Assume a constant treatment effect. Then corollary 5.3.8 also holds for the ANCOVA I ATE
estimator. û
Proof. Theorem 5.3.6 implies that the ANCOVA I and ANCOVA II ATE estimators have the
same variance when Cov

`
Y p1q, fpXq

˘
“ Cov

`
Y p0q, fpXq

˘
. By equation (5.80), this equality

holds in the case of a constant treatment effect. The result now follows from corollary 5.3.8. ⌅

These results show that linear adjustment for the true prognostic score provides the best possible
estimator of the ATE, in the sense that we obtain the lowest possible asymptotic variance. We
will later use a prognostic model trained on data pX1,Y1q to approximate ErY 1 |X 1s, and hence
the "best case" is when the historical data has the same distribution as the trial control arm, since
we in this case have ErY 1 |X 1s “ ErY p0q |Xs.
Considering corollaries 5.3.8 and 5.3.9, we can conclude that when there is a constant treatment
effect, the ANCOVA I and ANCOVA II ATE estimators adjusting for the true prognostic score
(that is, prognostic scores using "perfectly estimated" outcomes of digital twins) both provide
the most efficient estimate of the ATE among all RAL estimators. However, when the treatment
effect is not constant, lemma 5.3.7 states that, using the ANCOVA II ATE estimator, it is neces-
sary to additionally adjust for ErY p1q |Xs to obtain a similar result. In most situations, this is
not feasible since it requires training a model to predict the outcome of patients in the treatment
arm, which are often exposed to a novel treatment for which no training data exist.

Regarding whether to adjust for covariates or not, and how to adjust for them in that case, theo-
rem 5.3.6 guarantees that using the ANCOVA II ATE estimator at least ensures the same or lower
asymptotic variance than both the difference-in-means and ANCOVA I ATE estimators. Further-
more, theorem 5.3.6 states that using the ANCOVA I ATE estimator can potentially lead to a
larger asymptotic variance than the difference-in-means ATE estimator, which is an argument
in favor of always choosing the ANCOVA II ATE estimator with adjustment for the prognostic
score. However, this might not be feasible in practice, according to the regulatory guidelines for
covariate adjustment described in section 2.3.2, due to the reasoning done at the end of section
2.3.1.

In the next subsection, we will relate the results of oracle estimators to the more realistic setting
where we seek to estimate the prognostic score instead of adjusting for the true prognostic score.
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5.3.3 Adjustment using a Prognostic Model

Before being able to prove the properties of the ANCOVA ATE estimators using a prognostic
model to adjust for the predicted outcome of digital twins, we first need to define some measure
theoretical properties. Firstly, we define a sequence of random functions tfnunPN as uniformly
bounded if there exists K ° 0 such that Pp|fnpXq| • Kq “ 0 for all n P N. Secondly, we say,
for k ° 0, that tfnpXqunPN converges in Lk towards the stochastic variable fpXq if

lim
nÑ8

EX,fn

”
|fnpXq ´ fpXq|k

ı
“ 0, (5.95)

denoted as fnpXq L
k›Ñ fpXq. For convenience, we will sometimes refer to the sequence tfnunPN

as just fn.

Lemma 5.3.10.
Let f : X Ñ R be a bounded function on a compact set X , fn : X Ñ R be a sequence of
uniformly bounded random functions such that |fpXq ´ fnpXq| L

2›Ñ 0, where X P X is a
random variable independent of fn. Assume furthermore that VarX

`
fnpXq

˘
° " for all n P N

and some fixed " ° 0. Then

|fpXq ´ fnpXqBn| L
2›Ñ 0 (5.96)

for

Bn “ CovX
`
fpXq, fnpXq

˘

VarX
`
fnpXq

˘ . (5.97)

û
Proof. See appendix C.7. ⌅

Theorem 5.3.11.
Assume that the covariates X have compact support, that the average treatment effect is constant,
ErY p1q |Xs “ ErY p0q |Xs`ATE, and that the function f defined as fpxq “ ErY p0q |X “ xs is
bounded. Furthermore, let m be a uniformly bounded random function learned from the external
data pX1,Y1qn1 , which is independent of the current data, and

ˇ̌
mpXq ´ ErY p0q |Xs

ˇ̌
L
2›Ñ 0 as

n1 Ñ 8.

Then, if the number of participants n in the current trial increases such that n “ Opn1q, the AN-
COVA II ATE estimator that uses mpXq in place of X is consistent and has the lowest possible
asymptotic variance among all RAL estimators with access to X . û
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Before proving the theorem, we note that m itself is a model which is trained on the historical
data pX1,Y1q, so that it can be regarded as random with respect to the distribution and number n1

of historical data points. Thus, in the proof, we will regard m as a sequence of random functions
tmn1u

n1PN, without explicitly denoting m as mn1 .

Proof. Throughout this proof, we will use the ANCOVA II estimator with mpXq in place of the
covariates X , which we denote as zATE. The only case where the convergence in L2 of m to
ErY p0q |Xs is true while m is constant, is when it is constantly equal to the true prognostic
score ErY p0q |Xs. We know from corollary 5.3.8 that this estimator obtains the lowest possible
asymptotic variance among all RAL estimators with access to X . Thus, for the rest of the proof,
we assume that mpXq is not numerically constant, that is, VarX

`
mpXq

˘
° " for some " ° 0.

We will denote by zATE
˚

the oracle estimator described in corollary 5.3.8, meaning that zATE
˚

has the lowest possible asymptotic variance among all RAL estimators with access to X . De-
noting this optimal asymptotic variance by ⌫2˚, we have from the result in equation (5.9), that?
n

´
zATE

˚ ´ ATE

¯
d›Ñ N

`
0, ⌫2˚

˘
as the number of current trial data points n Ñ 8. If we can

show that
?
n

´
zATE ´ zATE

˚¯
P›Ñ 0, (5.98)

for n Ñ 8, we can use Slutsky’s theorem to obtain

?
n

´
zATE ´ ATE

¯
“ ?

n
´

zATE ´ zATE
˚¯

` ?
n

´
zATE

˚ ´ ATE

¯
d›Ñ N

`
0, ⌫2˚

˘
, (5.99)

for n Ñ 8. Since the ATE estimator then converges in distribution, the moments converge
towards the moment parameters in the distribution [59, p. 18]. Thus, we obtain the limiting
variance and by lemma 5.3.1 we now have consistency of the estimator. We thus need to show
equation (5.98) in order to prove the theorem. Later in the proof, we will see that in order for this
to hold, we need in addition that the number of historical data points n1 Ñ 8, as zATE depends
on m, which converges to the true prognostic score as n1 Ñ 8. Hence, to obtain the above
convergence, we need both n and n1 to go to 8, which is obtained for n “ Opn1q when n Ñ 8.
However, for the first part of this proof, we will only vary n, thus considering m as fixed, and
hence, all moments are taken with respect to the distribution of current data.

For the remainder of the proof, we drop the subscript of the influence function for ease of nota-
tion. The influence function in equation (5.78) for the ANCOVA II ATE estimator can, under a
constant treatment effect and with ÉmpXq “ mpXq ´ EXrmpXqs in place of X , be expressed as

' “ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

`
mpXq ´ EXrmpXqs

˘
Var

`
mpXq

˘´1 Cov
`
mpXq, Y p0q

˘
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“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
(5.100)

´ W ´ ⇡1
⇡0⇡1

`
mpXq ´ EXrmpXqs

˘
Var

`
mpXq

˘´1 Cov
´
mpXq,E

“
Y p0q

ˇ̌
X

‰¯
,

where we have replaced ⇠˚ with Cov
`
mpXq, Y p0q

˘
due to (5.81), and we have used in the second

equality that

Cov
`
mpXq, Y p0q

˘
“ E

”
ÉmpXqY p0q

ı
“ E

”
ÉmpXqErY p0q |Xs

ı

“ Cov
`
mpXq,ErY p0q |Xs

˘
.

(5.101)

We now define an ATE estimator as the sample mean

~ATE :“ ' ` ATE (5.102)

and define the oracle counterpart as

~ATE
˚
:“ '˚ ` ATE, (5.103)

where '˚ is the efficient influence function in equation (5.93), which corresponds to substituting
mpXq by ErY p0q |Xs in the influence function derived in equation (5.100). From corollary 5.2.5
we see, using the law of large numbers, that these sample means are consistent estimators of the
ATE. We note that these estimators require that we know the true ATE, making them useless in
practice, but we define them solely for the purpose of proving the theorem.

We will now show that zATE and ~ATE share the same influence function. The estimator ~ATE
is obtained using the empirical distribution function pFn to obtain a sample mean  p pFnq “
' ` ATE as an estimator for the population mean estimand EF r' ` ATEs, as seen in equa-
tion (5.5). Now using the efficient influence function for the population mean estimand from
lemma 5.2.1, the influence function of the estimator ~ATE can be expressed as

q'pX,W, Y q “ 'pX,W, Y q ` ATE ´ E pFn
r'pX,W, Y q ` ATEs “ 'pX,W, Y q, (5.104)

where we use in the last equality that by corollary 5.2.5, the influence function has mean 0. Thus,
the influence function for ~ATE is the same as for the zATE estimator. Equivalent arguments can
be used to obtain q'˚ “ '˚.

By theorem 5.3.4, we have that
?
n

´
zATE ´ ATE

¯
P›Ñ 0. Furthermore, since zATE and ~ATE

share the same influence function, we have from similar arguments as the ones in the proof of
theorem 5.3.4 that

?
n

´
~ATE ´ ATE

¯
P›Ñ 0. From linearity of the probability limit, we then

have
?
n

´
zATE ´ ATE

¯
´ ?

n
´

~ATE ´ ATE

¯
“ ?

n
´

zATE ´ ~ATE
¯

P›Ñ 0. (5.105)
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Similarly, we have
?
n

´
zATE

˚ ´ ~ATE
˚¯

P›Ñ 0. Therefore, again using the linearity of the

probability limit, if
?
n

´
~ATE ´ ~ATE

˚¯
P›Ñ 0, then we will have

?
n

´
zATE ´ zATE

˚¯

“ ?
n

´
zATE ´ ~ATE

¯
` ?

n
´

~ATE ´ ~ATE
˚¯

` ?
n

´
~ATE

˚ ´ zATE
˚¯

P›Ñ 0

(5.106)

as desired.

In order to show the remaining convergence
?
n

´
~ATE ´ ~ATE

˚¯
P›Ñ 0, we will first con-

sider ~ATE ´ ~ATE
˚ “ '1 ´ '0 ´ '˚

1 ` '˚
0 . To obtain the desired convergence, we will show

'w ´ '
ẘ

P›Ñ 0 for w “ 0, 1. First, note that we can obtain an expression of '1 in this case by
using ÉmpXq “ mpXq ´ EXrmpXqs in place of rX in equation (5.76), and similarly obtain an
expression of '˚

1 by using demeaned ErY p0q |Xs in place of rX . Specifically, we obtain

'1 ´ '˚
1 “ 1

n

nÿ

i“1

Wi ´ ⇡1
⇡1

˜́
ErY p0q |Xis ´ E

“
ErY p0q |Xs

‰¯ Cov
`
ErY p0q |Xs, Y p1q

˘

Var
`
ErY p0q |Xs

˘

´
`
mpXiq ´ EXrmpXqs

˘ Cov
`
mpXq, Y p1q

˘

VarX
`
mpXq

˘
¸

“ 1

n

nÿ

i“1

Wi ´ ⇡1
⇡1

˜́
ErY p0q |Xis ´ E

“
ErY p0q |Xs

‰¯ Cov
`
ErY p0q |Xs,ErY p0q |Xs

˘

Var
`
ErY p0q |Xs

˘

´
`
mpXiq ´ EXrmpXqs

˘ Cov
`
mpXq,ErY p0q |Xs

˘

VarX
`
mpXq

˘
¸

(5.107)

“ 1

n

nÿ

i“1

Wi ´ ⇡1
⇡1

`
ErY p0q |Xis ´ mpXiqB

˘

´ 1

n

nÿ

i“1

Wi ´ ⇡1
⇡1

`
ErY p0qs ´ EXrmpXqsB

˘
,

having denoted B “ CovpmpXq,ErY p0q |Xsq
VarXpmpXqq . The second equality follows from the fact that for any

transformation gpXq and under constant treatment effect, CovpgpXq, Y p0qq “ CovpgpXq, Y p1qq,
as derived in (5.80), so that

Cov
`
gpXq, Y p1q

˘
“ Cov

`
gpXq, Y p0q

˘

“ E
“
gpXqY p0q

‰
´ E

“
gpXq

‰
E

“
Y p0q

‰

“ E
”
E

“
gpXqY p0q

ˇ̌
X

‰ı
´ E

“
gpXq

‰
E

“
Y p0q

‰
(5.108)
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“ E
”
gpXqE

“
Y p0q

ˇ̌
X

‰ı
´ E

“
gpXq

‰
E

”
E

“
Y p0q

ˇ̌
X

‰ı

“ Cov
´
gpXq,E

“
Y p0q

ˇ̌
X

‰¯
.

Similarly, using equation (5.77), we get that

'0 ´ '˚
0 “ 1

n

nÿ

i“1

p1 ´ Wiq ´ ⇡0
⇡0

`
ErY p0q |Xis ´ mpXiqB

˘

´ 1

n

nÿ

i“1

p1 ´ Wiq ´ ⇡0
⇡0

`
ErY p0qs ´ EXrmpXqsB

˘
.

(5.109)

We now show that both of these terms converge to 0 in L2 with convergence rate
?
n so that they

both converge in probability to 0 with the same rate. We will consider the first term in each of
equations (5.107) and (5.109), starting with the term 1

n

∞
n

i“1
Wi´⇡1

⇡1

`
ErY p0q |Xis ´ mpXiqB

˘
in

equation (5.107). For this term, we must show that

E

»

–
˜

?
n
1

n

nÿ

i“1

ÄWi

⇡1

`
ErY p0q |Xis ´ mpXiqB

˘
¸2

fi

fl ›Ñ 0 for n, n1 Ñ 8, (5.110)

with the expected value being with respect to the joint distribution of current and historical data,
where the historical data only has an influence on the model m and consequently B, while ÄWi,
Xi and Yip0q have distributions specified by the current data distribution. Thus, now we are in
the setting of considering m and consequently B as stochastic through the historical data. Using
the law of total expectation, conditioning on the historical data pX1,Y1q, we can rewrite this
expression as

E

»

—–nE

»

–
˜
1

n

nÿ

i“1

ÄWi

⇡1

`
ErY p0q |Xis ´ mpXiqB

˘
¸2

ˇ̌
ˇ̌
ˇ̌ X

1,Y1

fi

fl

fi

�fl

“ E

»

–nVar
˜
1

n

nÿ

i“1

ÄWi

⇡1

`
ErY p0q |Xis ´ mpXiqB

˘
ˇ̌
ˇ̌
ˇ X

1,Y1
¸fi

fl

“ E

»

–Var
˜
ÄW
⇡1

`
ErY p0q |Xs ´ mpXqB

˘
ˇ̌
ˇ̌
ˇ X

1,Y1
¸fi

fl (5.111)

“ E

»

—–E

»

–
˜
ÄW
⇡1

¸2
fi

flE
”`
ErY p0q |Xs ´ mpXqB

˘2 ˇ̌
ˇ X1,Y1

ı
fi

�fl
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“ E

»

–
˜
ÄW
⇡1

¸2
fi

flE
”`
ErY p0q |Xs ´ mpXqB

˘2ı

“ 1 ´ ⇡1
⇡1

E
”`
ErY p0q |Xs ´ mpXqB

˘2ı

In the first equality, we use that ÄWi is independent of Xi by randomisation and thus independent
of ErY p0q |Xis. Furthermore, ÄWi is independent of mpXiq and B by randomisation and the
independence between the current and historical data. Thus, using that ErÄWis “ 0 for all i “
1, 2, . . . , n, the expected value of the sum of terms is 0, and we can use that VarpXq “ ErX2s ´
ErXs2 for any stochastic variable X .

In the second equality, we use that the model m is random in the sense that it depends on the
historical data pX1,Y1q but not on the current trial data pX,W,Yq, since the distributions of
these data sets are assumed to be independent and m is only trained on the historical data. B is
composed of (co)variances that are deterministic with respect to the current trial data. However,
it is stochastic through m. Thus, conditioning on pX1,Y1q in the inner expectation, we can regard
B and m as being fixed, such that mpXq is only stochastic through X in the current trial data.
Since the current trial data is IID, the terms in the sum are then IID as well, which is why we can
drop the subscript to denote the variance of a generic patient. We can thus write the variance of
the sum as n times the variance of one of the terms and taking out 1{n2 from the sum, the n’s
cancel out.

In the third equality, we have re-written the variance as an expectation of the squared expression,
and used that ÄW is independent of both ErY p0q |Xs and B and by randomisation it is indepen-
dent of mpXq. Furthermore, we have used that ÄW does not depend on the historical data. In the
fourth equality we use the law of total expectation. In the last equality we use

E

»

–
˜
ÄW
⇡1

¸2
fi

fl “ E
«

pW ´ ⇡1q2
⇡2
1

�
“ E

«
W 2 ` ⇡2

1 ´ 2W⇡1
⇡2
1

�
“ ⇡1 ` ⇡2

1 ´ 2⇡2
1

⇡2
1

“ 1 ´ ⇡1
⇡1

.

Now considering the second term 1
n

∞
n

i“1
Wi´⇡1

⇡1

`
ErY p0qs ´ EXrmpXqsB

˘
in equation (5.107)

we can use similar arguments as before to obtain

E

»

–
˜

?
n
1

n

nÿ

i“1

Wi ´ ⇡1
⇡1

`
ErY p0qs ´ EXrmpXqsB

˘
¸2

fi

fl

“ E

»

–Var
˜
ÄW
⇡1

`
ErY p0qs ´ EXrmpXqsB

˘
ˇ̌
ˇ̌
ˇ X

1,Y1
¸fi

fl

“ 1 ´ ⇡1
⇡1

E
”`
ErY p0qs ´ EXrmpXqsB

˘2ı
.

(5.112)
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Considering the first term 1
n

∞
n

i“1
p1´Wiq´⇡0

⇡0

`
ErY p0q |Xis ´ mpXiqB

˘
in equation (5.109), we

use equivalent arguments to obtain the expression

E

»

–
˜

?
n
1

n

nÿ

i“1

1 ´ ÄWi

⇡i

`
ErY p0q |Xis ´ mpXiqB

˘
¸2

fi

fl

“ 1 ´ ⇡0
⇡0

E
”`
ErY p0q |Xs ´ mpXqB

˘2ı
, (5.113)

and for the second term we get

E

»

–
˜

?
n
1

n

nÿ

i“1

1 ´ ÄWi

⇡1

`
ErY p0qs ´ EXrmpXqsB

˘
¸2

fi

fl

“ 1 ´ ⇡0
⇡0

E
”`
ErY p0qs ´ EXrmpXqsB

˘2ı
. (5.114)

Now using the assumptions of (uniform) boundedness of m and the true prognostic score together
with the assumption

ˇ̌
mpXq ´ ErY p0q | Xs

ˇ̌
L
2›Ñ 0 for n1 Ñ 8, we can use lemma 5.3.10.

Specifically, we can let fnpXq “ mn1pXq (denoted just as mpXq) and fpXq “ ErY p0q | Xs, in
order to obtain

ˇ̌
mpXqB ´ ErY p0q |Xs

ˇ̌
L
2›Ñ 0 for n1 Ñ 8. (5.115)

This implies that expressions in equations (5.111) and (5.113) converge to 0. Note here that
the assumption of lemma 5.3.10 that m is independent of the current data X is ensured by m
being trained only on independent historical data. Using equation (C.52) where we note that the
convergence implies convergence in L2, we have that

ˇ̌
ˇEX

“
mpXq

‰
´ E

“
ErY p0q | Xs

‰ˇ̌
ˇ “

ˇ̌
EXrmpXqs ´ ErY p0qs

ˇ̌
L
2›Ñ 0 for n1 Ñ 8. (5.116)

We can use this with lemma 5.3.10 to get
ˇ̌
EXrmpXqsB ´ ErY p0qs

ˇ̌
L
2›Ñ 0 for n1 Ñ 8, (5.117)

which implies that the expressions in equations 5.112 and (5.114) converge to 0 in L2. We now
have that both terms in equations (5.107) and (5.109) converge to 0 in L2 as n, n1 Ñ 8. Thus,
we have

?
n

´
~ATE ´ ~ATE

˚¯
P›Ñ 0, giving that

?
n

´
zATE ´ zATE

˚¯
P›Ñ 0, hence obtaining

the convergence in equation (5.99), proving the result. ⌅

Corollary 5.3.12.
Theorem 5.3.11 also holds for the ANCOVA I estimator. û
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Proof. In the case of constant treatment effect, the ANCOVA I and II ATE estimators have the
same asymptotic variance by corollary 5.3.9. ⌅

Theorem 5.3.11 and corollary 5.3.12 both hold in the case of a constant treatment effect. In this
case, there is no need to use the ANCOVA II ATE estimator instead of its ANCOVA I coun-
terpart. However, when a heterogeneous treatment effect is present, the ANCOVA II estimator
is more efficient than the ANCOVA I estimator, as stated in theorem 5.3.6. In this case, the
ANCOVA I estimator might even be less efficient than the difference-in-means estimator, which
is an argument in favor of always using the ANCOVA II estimator instead of the ANCOVA I
estimator, despite the result in corollary 5.3.12.

Theorem 5.3.11 ensures that under the assumptions of the theorem, when adjusting for an esti-
mated prognostic score instead of e.g. baseline covariates, we will asymptotically get the most
efficient estimator of the ATE. However, in light of corollary 5.3.5, we can additionally adjust
for prognostic covariates; asymptotically, we cannot increase the variance of the ATE estimator
by doing so. This is important in regard to regulatory limitations, which requires adjustment
for e.g. the baseline value of the outcome variable, as described in section 2.3.2. However, as
also described in this section, regulatory guidelines might prohibit the use of the ANCOVA II
estimator, which implies a risk of less efficiency in the case of heterogeneous treatment effects,
as described in the last paragraph.

Additionally, when having a finite sample, we could potentially decrease the variance of the ATE
estimator by adjusting for strongly prognostic covariates directly in the ANCOVA II model in
addition to the estimated prognostic score. Such a variance reduction may also be possible since
if the treatment effect is heterogeneous, the ANCOVA II estimator with mpXq “ pErY p0q |Xs in
place of X is in general not the asymptotically most efficient estimator among all RAL estima-
tors. That is, benefits in terms of variance reduction are in fact achievable, even asymptotically,
when adjusting for baseline covariates in addition to the estimated prognostic score. However, it
should be noted that when we include prognostic covariates directly in the ANCOVA model as
well as in the prognostic model, we can not interpret the estimated parameter for this covariate.
Furthermore, as noted earlier, adding covariates that are not correlated to the outcome causes a
loss in degrees of freedom, potentially increasing the variance to some amount, or, if there seems
to be correlation due to chance, we run the risk of overfitting and underestimating the variance,
leading to loss of control over the type I error. However, due to the regulatory guidelines, adjust-
ment by such variables should rarely happen.

The efficiency gain in corollary 5.3.5 depends on the correlation between the added covariates
and the outcome, as seen by the difference in asymptotic variances in equation (5.85). Thus,
prognostic models that are highly correlated with the outcome will give a high efficiency gain,
but any presence of correlation could still decrease the variance. This also justifies the use of
prognostic covariate adjustment for surrogate outcomes, that is when Y 1 and Y represent different
but correlated outcomes. Furthermore, the prognostic model should be a nonlinear function of
the covariates X , since in the linear case there would be no benefit beyond just including these in
the ANCOVA model as raw covariate adjustments. This is the case since for any linear prognostic
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model M “ mpXq “ Xa for any vector a P Rp, the factor in the numerator in (5.85) reduces to

⇠M˚ ´ ⇠X˚⌃
´1
X
⇣J “ ⇡0 Cov

`
Y p1q, Xa

˘
` ⇡1 Cov

`
Y p0q, Xa

˘

´
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
⌃

´1
X

Cov pXa,XqJ

“
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
a

´
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
⌃

´1
X

Cov pX,Xq a
“ 0.

(5.118)

Thus using a linear prognostic model results in no efficiency gain. However, we have showed
that the efficiency gain in (5.85) is always non-negative, so any gain must depend on the degree
to which the prognostic model m is able to model correlation that is not contained in the direct
linear correlation between the raw covariates X and the outcome Y . We note that in the case of
choosing mpXq “ Xa, the columns with X and mpXq in the design matrix of the ANCOVA
model become linearly dependent, defining an overspecified model in which there are no unique
solutions for the parameters.

On the other hand, if we define M “ mpXq “ Xa ` gpXq for g being some non-linear function
of X , we instead obtain that the factor in the numerator in (5.85) is

⇠M˚ ´ ⇠X˚⌃
´1
X
⇣J

“ ⇡0 Cov
`
Y p1q, Xa ` gpXq

˘
` ⇡1 Cov

`
Y p0q, Xa ` gpXq

˘

´
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
⌃

´1
X

Cov
`
Xa ` gpXq, X

˘J

“
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
a ` ⇡0 Cov

`
Y p1q, gpXq

˘
` ⇡1 Cov

`
Y p0q, gpXq

˘

´
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
⌃

´1
X

´
⌃Xa ` Cov

`
gpXq, X

˘J¯
(5.119)

“ ⇡0 Cov
`
Y p1q, gpXq

˘
` ⇡1 Cov

`
Y p0q, gpXq

˘

´
´
⇡0 Cov

`
Y p1q, X

˘
` ⇡1 Cov

`
Y p0q, X

˘¯
⌃

´1
X

Cov
`
gpXq, X

˘J

:“ ⇠g˚ ´ ⇠X˚⌃
´1
X
⇣J
g
,

and the denominator is

�2
M

´ ⇣⌃´1
X
⇣J

“ Var
`
Xa ` gpXq

˘
´ Cov

`
Xa ` gpXq, X

˘
⌃

´1
X

Cov
`
Xa ` gpXq, X

˘J
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“ VarpXaq ` Var
`
gpXq

˘
` 2Cov

`
Xa, gpXq

˘

´
´
aJ
⌃X ` Cov

`
gpXq, X

˘¯
⌃

´1
X

´
⌃Xa ` Cov

`
gpXq, X

˘J¯
(5.120)

“ aJ
⌃Xa ` Var

`
gpXq

˘
` 2Cov

`
gpXq, X

˘
a

´
´
aJ
⌃Xa ` 2Cov

`
gpXq, X

˘
a ` Cov

`
gpXq, X

˘
⌃

´1
X

Cov
`
gpXq, X

˘J¯

“ Var
`
gpXq

˘
´ Cov

`
gpXq, X

˘
⌃

´1
X

Cov
`
gpXq, X

˘J

:“ �2
g

´ ⇣g⌃
´1
X
⇣J
g
,

so it is seen that the efficiency gain depends only on the non-linear part of the prognostic model.

5.4 Sample Size Calculations using Digital Twins
In this section we will describe how to determine a required sample size when utilising digital
twins in RCT analyses. The efficiency gain when using a prognostic model can be exploited in
order to decrease the sample size required in a trial, still maintaining the same power. Specifi-
cally, we wish to conduct sample size calculations for the ANCOVA II model, in the situation
where we adjust for the prognostic score and possibly other raw covariates as well as interactions
between these and the treatment allocation covariate. This is the situation described in section
3.4.3, where we need an approximation of the non-centrality parameter, as described in equation
(3.60). However, this estimator potentially requires estimation of a lot of parameters, which in-
duces a lot of uncertainty in the estimation, requiring very comprehensive sensitivity analyses,
as described in a more simple setup in the end of section 3.2.

Instead, in the following corollary we determine the asymptotic variance of the ANCOVA II ATE
estimator where we use the prognostic model without including any raw covariates in order to
obtain an upper bound in the sense described in the corollary. This means that fewer parameters
need to be estimated.

Corollary 5.4.1.
The asymptotic variance of nVar

´
zATEII

¯
for the ANCOVA II ATE estimator, where X is

replaced by a transformation m of the covariates along with possible additional adjustment for
some raw baseline covariates, is bounded by

�2
0

⇡0
` �2

1

⇡1
´ ⇡1⇡0

ˆ
⇢1�1
⇡1

` ⇢0�0
⇡0

˙2

, (5.121)

where �2
w

“ Var
`
Y pwq

˘
and ⇢w “ CovpY pwq,mpXqq

�w�m
with �2

m
“ VarX

`
mpXq

˘
. û
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Proof. From theorem 5.3.4, the asymptotic variance of the ANCOVA II estimator using mpXq
in place of X is

�2
0

⇡0
` �2

1

⇡1
´ 1

⇡1⇡0

´
⇡0 Cov

`
Y p1q,mpXq

˘
` ⇡1 Cov

`
Y p0q,mpXq

˘¯2

�´2
m

“ �2
0

⇡0
` �2

1

⇡1
´ 1

⇡1⇡0

˜
⇡0

Cov
`
Y p1q,mpXq

˘

�m
` ⇡1

Cov
`
Y p0q,mpXq

˘

�m

¸2

“ �2
0

⇡0
` �2

1

⇡1
´ 1

⇡1⇡0
p⇡0⇢1�1 ` ⇡1⇢0�0q2

“ �2
0

⇡0
` �2

1

⇡1
´ ⇡1⇡0

ˆ
⇢1�1
⇡1

` ⇢0�0
⇡0

˙2

.

(5.122)

From corollary 5.3.5, we now conclude that this gives an upper bound when we further include
the raw covariates in the ANCOVA II estimator. ⌅

Note that this result also provides a bound of the asymptotic variance for the ANCOVA I estima-
tor in case of a constant treatment effect.

From this corollary we see that in order to determine the asymptotic variance we only need to
determine the marginal outcome variances, and the correlation between the model and outcome
in each treatment arm. When additionally including the raw covariates, we are unlikely to ob-
tain a substantial decrease in variance, since the raw covariates are unlikely to provide further
efficiency gain since their effect on the outcome should to a large extent be included in the prog-
nostic model, so that we do not obtain an overly conservative estimate of the required sample
size using this asymptotic variance. This is also seen since the upper bound provided for the
asymptotic variance is always lower than the asymptotic variance of the unadjusted difference-
in-means model, as seen by lemma 5.3.2. Thus, we get a mildly conservative estimation of the
required sample size by using the upper bound given in corollary 5.4.1, but we do not expect the
true required sample size to be much smaller than what we estimate using the upper bound.

More precisely, we can perform sample size calculations by utilising the methods described in
section 3.4.1, but where we instead estimate the variance of the ATE estimator by the upper
bound in corollary 5.4.1. Determining the sample size to obtain a certain power requires us to
determine the smallest n such that equation (3.52) is satisfied. The degrees of freedom for the
t-distribution can be chosen as the sample size minus the number of parameters in the full model
including both the estimated prognostic score and baseline covariates, ensuring a conservative
estimation; the variance estimation is carried out as if only the estimated prognostic score is in
the model, but we still adjust the degrees of freedom according to the adjustment done for the
full model. The expression depends on the non-centrality parameter for the t-distribution, which
is the expected value of the entity in in equation (3.46), but with the true variance VarpzATEq
in place of yVarpp�1 ´ p�0q. Taking expected, the numerator becomes the difference between the
assumed effect size and the chosen margin, and thus we obtain that the non-centrality parameter
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can be expressed as

�1 ´ �0 ´�sd
1
n

ˆ
�
2
0

⇡0
` �

2
1

⇡1
´ ⇡1⇡0

´
⇢1�1

⇡1
` ⇢0�0

⇡0

¯2
˙ ,

(5.123)

using the upper bound from corollary 5.4.1 in place of the variance in the denominator, where
we have divided the expression in equation (5.121) by the sample size n.

A method for obtaining the estimates of the marginal outcome variances and the correlation
between the model and outcome in each treatment arm is to use prior data of a control arm with
a population similar to the current trial population. For instance if we have access to an outcome
vectorY2 “

`
Y 2
1 , Y

2
2 , . . . , Y

2
n2

˘
of n2 subjects independent from the historical data patients, with

corresponding estimated prognostic scores M2 “
`
m2

1,m
2
2, . . . ,m

2
n2

˘
, we could estimate the

control arm marginal outcome variance as

p�2
0 “ 1

n2 ´ 1

n
2ÿ

i“1

´
Y 2
i

´ Y
2¯2

. (5.124)

Similarly, the correlation between the estimated prognostic scores and the outcome in the control
arm can be estimated as

p⇢0 “
∞

n
2

i“1

´
Y 2
i

´ Y
2¯

pm2
i

´ m2q
c
∞

n2
i“1

´
Y 2
i

´ Y
2¯2∞

n2
i“1

`
m2

i
´ m2˘2

. (5.125)

To make a sensitivity analysis we can increase p�2
0 or decrease p⇢0 using inflation and deflation

factors.

The corresponding values for the treatment arm is often infeasible to estimate from prior data,
since this data is often unavailable. Therefore it is often assumed that �0 “ �1 and ⇢0 “ ⇢1.
The latter holds when the effect of the treatment is constant across the population. To be slightly
more conservative one could assume a slightly higher value of �1 and smaller value of ⇢1 relative
to the control arm counterparts, again using deflation and inflation factors. When assuming that
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�0 “ �1 “ �Y and ⇢0 “ ⇢1 “ ⇢, the non-centrality parameter in (5.123) reduces to

�1 ´ �0 ´�sd
1
n

ˆ
�
2
Y
⇡0

` �
2
Y
⇡1

´ ⇡1⇡0
´

⇢�Y

⇡1
` ⇢�Y

⇡0

¯2
˙

“ �1 ´ �0 ´�sd
1
n

ˆ
�
2
Y p⇡0`⇡1q
⇡0⇡1

´ ⇡1⇡0
´

⇢�Y p⇡0`⇡1q
⇡0⇡1

¯2
˙ “ �1 ´ �0 ´�sc

1
n

´
�
2
Y

⇡0⇡1
´ ⇢2�2

Y
⇡0⇡1

¯

“ �1 ´ �0 ´�sb
�
2
Y p1´⇢2q
n⇡0⇡1

“ �1 ´ �0 ´�sa
�2
Y

p1 ´ ⇢2q
?
n⇡0⇡1 « �1 ´ �0 ´�s

�Y
a

p1 ´ ⇢2q

c
n1n0

n

“ �1 ´ �0 ´�s

�Y
a

p1 ´ ⇢2q

c
r

p1 ` rq2n,

(5.126)

where we have the approximate equality is due to ⇡w « nw{n, which is true asymptotically from
the law of large numbers, and the last equality follows from equation (3.20). We recognise this
expression as the non-centrality parameter presented in equation (3.49).

When having multiple secondary confirmatory outcomes, each with a desired power level and
target effect size, then the sample size should be calculated as above for each of these outcomes,
having adjusted the power and choosing the largest sample size as shown in example 3.6.3.
Therefore, this requires multiple prognostic models, one for each outcome of interest or possibly
a prognostic model that can predict all at once.
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6 | Simulation Study – Comparison of Approaches

In chapters 4 and 5, we described two different approaches for leveraging historical data in order
to increase power in a current RCT with both a control and a treatment arm present, namely the
approach of synthetic control arms and the approach of digital twins. In this chapter, we will
use simulations in order to compare these approaches in terms of how well they perform, also
comparing the use of different estimators within the digital twin setup. We will especially focus
on how they perform in terms of increasing the power in a current RCT and if the methods provide
control of the type I error rate. In addition, we will perform prospective power calculations using
only historical data in order to see how well the power is estimated before conducting an RCT.

For the SCA approach based on one-to-one propensity score matching, we wish to test whether
the procedure described in section 4.1.2 succeeds in lowering the variance of the ATE estimate
while maintaining a fixed type I error under different scenarios. For the DT approach, section
5.3 provides us with nice asymptotic properties of efficiency among models not using synthetic
control group patients, using well-established methods that strictly control the type I error. How-
ever, these results are asymptotic, so we find it relevant to test how the approach performs when
used in finite samples, and when some of the assumptions of the asymptotic results are violated.
We wish to test to which extent different prognostic models are able to increase power more
than what would be achieved by adjusting for the covariates linearly when estimating the ATE.
In addition, we wish to put to the test whether the DT approach is able to increase the power as
much as the SCA approach while benefitting from the analytic guarantee of a fixed type I error.

The specific methods used in the simulation study are presented in section 6.1, and the results
are presented in sections 6.2–6.4.2. All analyses were carried out using R version 4.1.1, and all
code can be found here.

6.1 Methods

In the following, we will describe the methods used to generate the results of the simulation
study. We begin by specifying the distribution of the simulated RCT data on which we will
use our proposed methods. In addition, we specify which AN(C)OVA models we use with our
proposed approaches, as well as the specific models used to estimate the prognostic score for the
DT approach and the propensity score for the SCA approach. We then specify how we estimate
entities for assessing the performance of the approaches and specific methods. Lastly, we specify
the methods we use to prospectively estimate the power of a current RCT.
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6.1.1 Distribution of Simulated Data

In order to compare different AN(C)OVA based approaches to estimate the ATE and to carry out
prospective power estimation, we tested the methods on simulated historical and current RCT
data in different scenarios. For this purpose, we implemented a function in R for simulating
historical and current RCT data and a function for estimating the ATE, standard error, power,
type I error, coverage and root mean squared error. In each scenario, we simulated 1, 000 pairs
of current and historical RCT data sets with the same distribution, with the number of simu-
lated patients in each data set and number of covariates specified later for each scenario. When
generating data from an RCT, we used the distribution

Y pW q |X „ N
´
aX pˆpX

J ` bX pˆ1 ` cX pˆ1W ` �W ¨ W, �2
y

¯
, (6.1)

with denoting a matrix or a vector (depending on the subscript) with 1 in each entry, and
where the covariates, arranged in row-vector form as X “ pX1, X2, . . . , Xpq, are generated
from a multivariate normal distribution with mean 0 and a covariance structure given as a matrix
with variances of 1 in the diagonal and correlation coefficients of 0.3 in each of the off-diagonals.
Choosing to generate data from ErXs “ 0 is arbitrary, but it allows us to generate data from some
specified true ATE “ �W in a simple way, following the same argument as by equation (5.38).
The treatment assignment W is simulated in accordance with a deterministic allocation scheme,
assigning the first n0 patients the value W “ 0 and the remaining n1 patients W “ 1. This
ensures complete independence between the observations, since the W ’s, being deterministic, are
independent. Thus, we have the balancing property derived in example 2.2.2 since all covariates
are simulated from the same distribution, and we can expect the results from chapter 5 to hold
while being able to choose a fixed allocation ratio.

We generate historical data using the same distribution as in (6.1), but where the last two terms
are 0, since there are no treated subjects. We also allow the simulated historical data having a
distributional shift d for the covariates, meaning that we simulate the covariates from a normal
distribution with mean d instead of mean 0. Such a shift could occur if the current RCT has
different inclusion and/or exclusion criteria than for the trials in the historical data. We note that
in this case, the ATE in the historical data is different from the ATE in the current data when
c ‰ 0, but this does not have an influence on Y p0q |X , which is the outcome we seek to predict
with the prognostic model in the DT approach. For the PSM approach, this makes the outcome
of current control group patients and historical control groups comparable when adjusting for all
confounders in the modelled propensity score.

The value of a controls the non-linearity and interaction effects between the covariates, while the
values of b, c and d control the linear main effects, interaction effects between the covariates and
treatment assignment, and distributional shift, respectively. With inspiration from Schuler et al.
[35] we will consider four different scenarios under which data is generated, determined by the
values of these parameters. In table 6.1, these scenarios and corresponding values of parameters
are listed.
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In all analyses, we specified the noise term as �2
y

“ 1 and the true ATE as ATE “ 3 with
the intent to demonstrate superiority with a margin of �s “ 1, specifying the null hypothesis
as ATE § �s. All tests were performed using a significance level of 2.5% for the one-sided
superiority tests.

Scenario a b c d

Linear covariate effects 0 1 0 0

Homogeneous treatment effect 0.5 1 0 0

Heterogeneous treatment effect 0.5 1 1 0

Covariates shifted 0.5 1 1 2

Table 6.1: Choices of coefficients for the data generating process in both RCT and historical data in each simulated
scenario.

6.1.2 AN(C)OVA Models for ATE Estimation

In each of the four scenarios, we compared the DT and SCA approaches for leveraging historical
data. In addition, we compared these to an ANOVA model with design matrix

D “ r1Ws, (6.2)

an ANCOVA I model with design matrix

D “ r1 W Xs , (6.3)

and its ANCOVA II model counterpart having design matrix

D “
”
1 W rX diag

n
pWq rX

ı
, (6.4)

neither of which leverage historical data.

For the SCA approach with PSM, we use these same AN(C)OVA estimators. For the DT
approach, we construct the prognostic model m with methods that will be described in section
6.1.3. For all DT approaches, we use equivalent estimators, but where mpXq is included in the
design matrix. Specifically, we use the most simple ANCOVA I estimator with design matrix

D “
“
1 W mpXq

‰
, (6.5)

as well as the ANCOVA I estimator additionally including raw covariate adjustment, having
design matrix

D “
“
1 W mpXq X

‰
. (6.6)
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Furthermore, we use their ANCOVA II counterparts, having design matrices

D “
“
1 W rmpXq diag

n
pWq rmpXq

‰
, (6.7)

and

D “
”
1 W rX rmpXq diag

n
pWq rX diag

n
pWq rmpXq

ı
, (6.8)

respectively.

In all AN(C)OVA analyses, we used the standard model dependent variance estimators of the
ATE estimates given in (3.29) for ANOVA and (3.43) for ANCOVA. Using the performance
measures in section 6.1.4, we are able to empirically investigate the claim by Wang et al. [36]
that the model dependent variance estimators are in themselves robust to misspecification of the
ANCOVA model, so that robust estimation as described in section 3.5 is not necessary.

6.1.3 Models for Prognostic Score and Propensity Score

In order to estimate the prognostic score for the DT approach, we used a range of different
prognostic models, including the linear penalised LASSO model [62, pp. 241–248] and the
non-linear random forest model [63, pp. 305–313, 587–597] [62, pp. 327–345], which, rather
than imposing strict assumptions on the relation of the covariates and the outcome, is more data-
driven.

In practice we are only able to adjust for a few covariates in the ANCOVA model, so even though
nothing is gained from using an estimated prognostic score from a linear prognostic model over
raw adjustment by the covariates, such a prognostic model enables us to exploit information
from other covariates than the few adjusted for directly in the ANCOVA model. Thus, we wish
to investigate if the LASSO model performs better than a standard linear model.

Our goal of using a random forest machine learning model for estimating the prognostic score in
the DT approach is to illustrate the benefits of gaining larger precision of the prognostic model
by modelling the more realistic situation of non-linearity and interaction effects.

In order to construct the prognostic model from these models, a number of tuning parameters
need to be specified. For the LASSO model, we need to specify the penalty parameter � which
penalises the size of the ML estimates of the parameters making these go towards 0 as � increases.
This value is chosen by 10-fold cross validation among a grid of 100 values of � equally spaced
on a log-linear scale in the range r�min,�maxs, where �min “ 0.0001 is chosen close to 0 and
�max is the smallest value of � such that all coefficients are estimated as 0.

Using the random forest method requires us to specify the minimal node size n1
min, the number

of covariates m that can be used in each split, and the number of trees in the forest B. It would
be computationally cumbersome to determine these by k-fold cross-validation, since we would
have to perform bootstrap for k training data sets for a prespecified number of combinations of
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n1
min,m and B. As an alternative to this approach, we chose m “

X
p{3

\
and n1

min “ 5, which is
in accordance with the default choices for regression purposes suggested by [62, pp. 343–345]
and [63, pp. 589, 592]. In regard to choosing the value of B, we can choose it sufficiently large
to ensure that the prediction error rate has settled down. This can be done since B is not related
to the problem of overfitting, so the cost of choosing a large B is only computational time. We
chose B “ 500 trees for the random forest model.

Furthermore, we will use a simple linear model as the prognostic model in order to investigate
whether non-linear models enable larger efficiency when data is generated non-linearly. In addi-
tion, we will use a prediction model which predicts the prognostic score as a uniformly random
generated scalar in the range of outcomes in the current RCT control group patients. This is car-
ried out in order to investigate how the DT approach performs in a situation where the prediction
model has extremely bad performance.

In addition, we will benchmark the PSM and DT approaches against the most optimal estimator
in the DT approach, namely the oracle ATE estimator presented in lemma 5.3.7, which is infea-
sible in practice since it requires knowledge of the true underlying data distribution. In order to
benchmark the DT approach against a "perfect" digital twin, we will compare the models using
estimated prognostic scores not only to the oracle estimator in lemma 5.3.7 but also the oracle
estimator adjusting only for the true prognostic score ErY p0q |Xs without additionally adjusting
for ErY p1q |Xs as for the oracle estimator. We will refer to this ATE estimator as the oracle0
estimator. The true prognostic scores used by the oracle and oracle0 ATE estimators are obtained
from the true distribution of the simulated data. We note that by corollary 5.3.8, the oracle and
oracle0 estimators are asymptotically equivalent in the case of a homogeneous treatment effect.

We note that by lemma 5.3.7 and corollary 5.3.5, the traditional oracle estimator, which has the
design matrix (6.7), has the same asymptotic variance as the oracle estimator using the design
matrix (6.8). However, due to the assumption of homogeneous treatment effect in corollary
5.3.8, in presence of a heterogeneous treatment effect, the traditional oracle0 estimator with
design matrix (6.7) has a potentially larger asymptotic variance than the one obtained from using
the design matrix (6.8). We therefore expect that in general, the DT approach estimators that
uses the design matrix in (6.8) are the most efficient.

We could as well have explored whether the models used for estimating the prognostic score
could as well be used for constructing the propensity score in order to enhance performance
of the PSM method. However, we will restrict ourselves to estimating propensity scores using
a simple logistic regression model, and we will match directly on the propensity score using
greedy matching without replacement. Greedy matching, as noted at the start of section 4.1.1,
performs as well as optimal matching, but is much less computationally cumbersome. We es-
timate the variance with equation (4.18) using B “ 100, and pub as the standard normal linear
model estimate of the variance without using robust methods. That is, we limit our focus to
compare the DT approach with a somewhat standard PSM procedure adapted to the context of
two-arm RCTs.

Our purpose lies not in fine-tuning parameters and specific model choices as well as training
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procedures for gaining the most optimal models. Therefore, better results regarding increased
power could possibly be obtained by trying out different models than the ones we propose, and
by fine-tuning these models.

6.1.4 Performance Measures

For each of the methods, we estimated the ATE and calculated the t-test statistic based on the
variance estimate from the individual AN(C)OVA models. In order to measure performance, we
estimated the power, coverage, probability of type I error and the root mean squared error of the
ATE estimate. Furthermore, in order to measure the performance of the prognostic model in the
DT approach, we estimated the L2 norm of the difference between the true prognostic score and
the one estimated by the prognostic model.

Specifically, we estimated the coverage as the proportion of times the true ATE was inside the
confidence intervals

«
zATEi ´ t0.975,n´k

c
Var

´
zATEi

¯
, zATEi ` t0.975,n´k

c
Var

´
zATEi

¯�
(6.9)

for i “ 1, 2, . . . , 1000, where zATEi and Var
´

zATEi

¯
are the ATE and variance estimates from

the ith data set, and t0.975,n´k is the 97.5%-quantile of the t-distribution with degrees of freedom
equal to the sample size n minus the number of columns in the design matrix k. Using the
97.5%-quantile, we specify a significance level of 2.5% for the one-sided superiority test that we
want to perform, which corresponds to specification of a 5% significance level for a two-sided
test, and we would therefore expect an estimated coverage of 95%.

In order to empirically estimate the probability of correctly rejecting this null hypothesis (the
power) as well as the probability of mistakenly rejecting the null hypothesis (the type I error
probability), we simulated the 1, 000 pairs of data sets setting ATE “ 3 (false null hypothesis).
We then estimated the power as the proportion among the 1, 000 data sets in which we were able
to (correctly) reject the null hypothesis from the t-test statistic used with degrees of freedom de-
pendent on the number of parameters included in the model. In order to estimate the probability
of a type I error, we altered the simulated data by subtracting ATE ´�s “ 2 from the outcome
variable for patients in the treatment group, such that the true ATE “ 1 was equal to the superi-
ority margin (the case of correct null hypothesis which has largest probability of rejection). We
then estimated the type I error probability by calculating the number of times we (incorrectly)
rejected the null hypothesis from the t-test statistic.

We define the root mean squared error across the 1, 000 data sets as

RMSE “

gffe
1000ÿ

i“1

1

1000

´
zATEi ´ ATE

¯2

, (6.10)
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which is effectively a sample estimate of the standard deviation of zATEi when the estimator is
unbiased.

Lastly, we estimated the L2 norm of the difference between the true and estimated prognostic
score by the empirical mean

pE
„ˇ̌

ˇmpXq ´ E
“
Y p0q

ˇ̌
X

‰ˇ̌
ˇ
2
⇢

“ 1

1000

1000ÿ

i“1

1

n

nÿ

j“1

ˇ̌
ˇmipxijq ´ E

“
Y p0q

ˇ̌
X “ xij

‰ˇ̌
ˇ
2

, (6.11)

where mi is the prognostic model trained on the ith historical data set and xij is the vector
of covariates belonging to the jth patient in the ith current trial data set. By evaluating the
performance of the models on the current RCT data, we avoid the problem of using the same
historical data for training and evaluating the models.

6.1.5 Prospective Power Estimation

For the ANOVA model not leveraging historical data, we prospectively estimated the power
of the t-test before estimating the ATE by estimating the non-centrality parameter in equation
(3.33) as pcpnq using the true ATE “ 3 from which data was simulated, the superiority margin
�s “ 1 and �Y estimated as the square root of the sample variance of the response variable
in the historical data. Under the true alternative hypothesis, we then have approximately that
TANOVA „ t

`
n ´ 2, pcpnq

˘
, which we can use to estimate the power as

z1 ´ � “ pP
`
TANOVA ° t0.975,n´2

˘
“ 1 ´ Ft,n´2, pcpnqpt0.975,n´2q, (6.12)

for t0.975,n´2 denoting the critical value of the t-test statistic using the significance level ↵ “
0.025 for a one-sided test, and Ft,n´2, pcpnq being the cumulative distribution function of the non-
central t-distribution with n ´ 2 degrees of freedom and non-centrality parameter pcpnq. Addi-
tionally, we used the Guenther and Schouthen approximation, which states that choosing n as in
equation (3.37) should give a power of at least 1 ´ �. A bit of algebra then shows that by (3.37),
one can obtain

z1 ´ � “ �

¨

˚̋
gffe r

p1 ` rq2
pATE ´�sq2

p�2

˜
n ´ z20.975

2

¸
´ z0.975

˛

‹‚, (6.13)

for � denoting the cumulative distribution function of the standard normal distribution, and z0.975
is the 97.5%-quantile of the standard normal distribution.

For the DT approach, we followed the method outlined in section 5.4. Specifically, we approx-
imated the non-centrality parameter in (5.123) as pcpnq, optimistically assuming that �0 “ �1 “
�Y and ⇢0 “ ⇢1 “ ⇢. In addition to estimating �Y similar as for the ANOVA model, we estimate
⇢ as the sample correlation between predictions made by m and actual outcomes, using equa-
tion (3.45). As discussed in section 5.4, we need independent data to properly carry this out. A

107



Simulation Study – Comparison of Approaches Aalborg University

cross validation approach could solve this problem, but we found it to be too computationally
cumbersome. Instead, we simulated additional historical data having the same distribution as the
existing historical data, with n2 “ 500. On this independent data, we estimated ⇢ by the sample
correlation formula in (5.125). By following the same steps as for the ANOVA model, we then
estimated the power as

z1 ´ � “ pP
`
TANCOVA ° t0.975,n´k

˘
“ 1 ´ Ft,n´k, pcpnqpt0.975,n´kq, (6.14)

using that approximately TANCOVA „ t
`
n ´ k, pcpnq

˘
under the true alternative hypothesis. Ad-

ditionally, we used the Frison-Pocock approximation in (3.54) to obtain

z1 ´ � “ �

¨

˝
d

r

p1 ` rq2
pATE ´�sq2

p�2p1 ´ p⇢2q n ´ z0.975

˛

‚ (6.15)

and the Guenther-Schouten approximation in (3.55) to obtain

z1 ´ � “ �

¨

˚̋
gffe r

p1 ` rq2
pATE ´�sq2

p�2p1 ´ p⇢2q

˜
n ´ z20.975

2

¸
´ z0.975

˛

‹‚. (6.16)

For the ANCOVA model not leveraging historical data and the PSM approach, we used the
multivariate equivalents to the Frison-Pocock and Guenther-Schouten approximation formulas
in (3.62) and (3.63), substituting p⇢2 in (6.15) and (6.16) with pR2 from equation (3.58), which
was estimated using standard sample (co)variance formulas on historical data.

6.2 Performance in Different Scenarios
In this section we wish to compare the performance of the different approaches for leveraging
historical data to estimate the ATE presented earlier, in the scenarios listed in table 6.1. We will
compare the PSM and DT approaches, where the prognostic model for the latter approach is
constructed using the methods presented in the previous section.

In each scenario presented in table 6.1, we simulated 1, 000 data sets, each with p “ 10 covari-
ates, n “ 500 current RCT participants (n0 “ 200 in the control group and n1 “ 300 in the
treatment group) and n1 “ 5, 000 historical data patients. All adjustment of raw baseline covari-
ates included all 10 covariates, and the prognostic and propensity score models were trained on
all 10 covariates.

Before considering all scenarios, we begin by examining the empirical distributions of ATE es-
timates obtained from all of our different proposed ATE estimators under the heterogeneous
treatment effect scenario. Doing so, we restrict ourselves to only use some of the proposed esti-
mators in one of the scenarios. All four scenarios are considered in figure 6.2, having additional
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results presented in table D.1 in appendix D.1. Figure 6.1 compares the AN(C)OVA estimators
using design matrices (6.2) and (6.4) with the ATE estimator obtained from PSM with the de-
sign matrix in (6.4), as well as estimators using the DT approach with design matrix (6.8) in the
heterogeneous treatment effect scenario.

Random forest (RMSE = 0.37) Oracle0 (RMSE = 0.23) Oracle (RMSE = 0.23)

Random (RMSE = 1.08) Linear (RMSE = 1.08) LASSO (RMSE = 1.08)
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Figure 6.1: Empirical distributions of AN(C)OVA model ATE estimates obtained from 1, 000 simulated data sets
under the heterogeneous treatment effect scenario. Additional results are found in table D.1 for some
of the models.

From this figure, we see that the ANCOVA model achieves a better performance than the ANOVA
model since it controls linearly for the covariates in the data generating process. Perhaps surpris-
ingly, the PSM model has a worse performance than the ANCOVA model (but at least a better
performance than the ANOVA model), even though the same raw covariates as in the ANCOVA
model are adjusted for, and an additional 100 patients have been added to the control group
based on their propensity scores. Even though we know of no analytical guarantee that the PSM
method should provide a reduction in variance of the ATE estimate, we did not expect this re-
sult, and we suspect that the poor performance could be due to not specifying the propensity
score model in accordance with the non-linear data generating process. Specifically, we have
simulated the data and specified the prognostic model using the correct covariates such that the
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condition in (4.3), and therefore also (4.4), hold. However, we suspect that the propensity score
could more adequately ensure comparability between matched patients in regard to the outcome
if the propensity score model was specified according to the non-linear relationships which data
were generated from. This could be obtained from choosing the propensity score model as e.g.
a random forest model.

Moving on to the ATE estimates obtained from the DT approach, we see firstly that additional
adjustment for a badly estimated prognostic score (using the random prediction model) does not
increase the standard error of the ATE estimate compared to the ANCOVA model ATE estimate
by any amount that cannot be ascribed to random variation. Secondly, as expected from (5.118),
no efficiency gain is obtained from using the linear prognostic model. This holds even though
a LASSO penalty is introduced, presumably enhancing the predictive performance of the prog-
nostic model. Again, this result is expected since the LASSO penalised model is a linear model.
Lastly, we conclude that the random forest prognostic model provides a substantial decrease in
the empirically estimated standard error of the ATE, which we expected to hold in some degree
due to the random forest model being capable of modeling the non-linear and interaction effects
included in the true underlying distribution of the simulated data.

The oracle0 estimator based on the true prognostic score should theoretically provide an asymp-
totic bound on the performance of the ATE estimator using any feasible model for the prognostic
score. Indeed, we see that the oracle0 estimator has a better performance than the ATE estimator
adjusting for the estimated prognostic score obtained from a random forest model. Even though
data was simulated from a heterogeneous treatment effect, we detected no difference between the
performances of the oracle0 and the asymptotically superior oracle estimator. From the results
presented later in section 6.4, we suspect that this is due to the estimators converging relatively
fast on our simulated data and that the ANCOVA models are specified with adjustments for a lot
of covariates, diminishing the difference between the estimators due to possible overfitting.

In figure 6.2 we have summarised the empirical means of standard model dependent estimates
of the standard error of the ATE estimates (filled points) and the empirically estimated RMSE
(crosses) across the 1, 000 simulated data sets. This is done for all four scenarios presented
in table 6.1 from each of the AN(C)OVA models with design matrices (6.2)–(6.8). Results of
AN(C)OVA models not leveraging historical data as well as the propensity score method and the
DT method using three of our proposed prognostic models, namely the random, random forest
and the true prognostic score, are displayed. We choose to not include the linear, LASSO and
oracle prognostic models, as we have just seen that (practically) nothing is to be gained com-
pared to the ANCOVA and oracle0 model, respectively. In this way, we are able to benchmark
the performance of a poor performing prognostic model, a prognostic model capable of model-
ing non-linear and interaction effects, and a "perfect" (infeasible) prognostic model in different
scenarios. We note that for the PSM approach and the models which do not leverage historical
data, the models with no raw covariate adjustment are the same between the "No interaction ef-
fects" and "Interaction effects" panels, both having design matrix (6.2). Table D.1 in appendix
D.1 contains all exact results displayed on the figure. Specifically, along with empirical means
of all estimates and estimated standard errors from each model, we report the RMSE and the
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empirically estimated power, coverage and type I error rate.

Linear Homogeneous Heterogeneous Covariates shifted

N
o interaction effects

Interaction effects

No Yes No Yes No Yes No Yes

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Raw covariate adjustment

St
an

da
rd

 e
rro

r e
st

im
at

e 
of

 A
TE

 e
st

im
at

or

No prognostic score adjustment Prognostic score adjustment

No use of historical data Propensity score matching Random Random forest Oracle0

students/ehfd/current
19MAY2022:15:51:39 − Figure1_conf/Figure1_a.pdf

Figure 6.2: Standard error estimates (vertical axis) for AN(C)OVA model ATE estimates on 1, 000 simulated data
sets under the four different scenarios (vertical panel classification). Filled points display empirical
means of standard model dependent estimates across the 1, 000 simulated data sets. Crosses display
the RMSE across the 1, 000 simulated data sets. Horizontal axis indicates whether raw covariate ad-
justments were included in the AN(C)OVA model for all 10 simulated covariates. Horizontal panel
classification indicates whether interaction terms between treatment allocation and all raw covariates
(as well as the estimated prognostic score for models "Random", "RF" and "Oracle0") was included in
the AN(C)OVA model. Additional results are found in table D.1.

We note from figure 6.2 and table D.1 that the AN(C)OVA models adjusting for the prognostic
score predicted by the random prognostic model have the same performance as the corresponding
AN(C)OVA estimators not adjusting for this "prognostic score". Specifically, the method pro-
vides an ATE estimator with the same estimated standard error, control of type I error and proper
coverage across all scenarios, indicating that the DT approach is robust to poor performing prog-
nostic models. In general, the oracle0 estimator outperformed all other methods, followed by the
random forest model, in terms of RMSE, average estimated standard error and thus power. The
PSM approach provided only modest reductions in the estimated standard error for the linear co-
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variate effects scenario, while even inflating the RMSE in most cases in the remaining scenarios.
For a large proportion of the PSM estimators among all scenarios, the RMSE was larger than the
standard model dependent standard error estimates, indicating that the method underestimates
the standard error, leading to potential loss of control over the type I error. We again suspect that
this could be due to the specification of the propensity score model, since the problem arises in
the non-linear scenarios.

In the simplest scenario of linear covariate effects, the DT approach did not provide any efficiency
gain compared to raw covariate adjustment. This was expected since the linear relationship is
already modelled properly by the ANCOVA model, so that no additional non-linearities and
interaction effects are left to be modeled by the prognostic model. In the case of no raw covariate
adjustment, the PSM method provided a gain in terms of efficiency, but its performance was
surpassed by its DT ANCOVA model counterparts using a random forest prognostic model.
Moreover, comparing the RMSE with the average of the standard error estimates obtained from
(4.18), the PSM approach seemed to overestimate the standard error when no raw covariate
adjustments were conducted. This has the consequence that the method has the risk of being
overly conservative in this specific scenario, meaning that the gain in terms of lower RMSE is
not exploited completely in terms of power.

In the scenario of a homogeneous treatment effect, the DT approach using the random forest
prognostic model provided a substantial decrease in the RMSE and estimated standard error, even
compared to the ANCOVA model with adjustments for all covariates. That is, substantial benefits
in terms of the standard error seems to be achievable by using a random forest prognostic model
in the situation of non-linear relationships between the covariates and the potential outcome
in the treatment group. Furthermore, all estimators based on the DT approach appear to give
reasonable standard error estimates, which translates to an increase in power while delivering
type I error control and proper coverage. On the other hand, when adjusting for raw covariates,
the PSM approach seems to mildly underestimate the standard error, inflating the type I error rate
to a minor degree. No models benefitted from including an interaction term since the underlying
treatment effect is homogeneous.

In the heterogeneous treatment effect scenario, the tendencies are overall the same as for the
homogeneous scenario. However, since a heterogeneous treatment effect is present, no analyt-
ical results from chapter 5 ensure asymptotic efficiency, but we see that a reasonable benefit in
terms of efficiency can be achieved nonetheless. Perhaps surprisingly, the performance was not
improved by including an interaction term, even though the underlying treatment effect is het-
erogeneous. This could be due to the only modest heterogeneity of the treatment effect obtained
by a data generating process where the heterogeneity is specified by 10 terms, while the overall
outcome is determined by 120 terms. Importantly, the type I error rate was highly inflated for the
oracle0 estimator and to some degree for the estimator obtained from adjusting for the prognostic
score estimated from a random forest model when both including all raw covariates and interac-
tion effects, as seen in table D.1. From comparing the RMSE and the average estimated standard
errors, we can see that this comes from a highly optimistic estimation of the standard error.
However, the empirically estimated standard error suggests that the methods do provide the best
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increase in power had we been able to properly estimate the standard error for the t-test statistic
in each of the data sets. As described in section 3.4, analytic results regarding the ANCOVA
model should ensure unbiasedness of the residual variance estimator when the model is correctly
specified. However, in this case the model is near perfectly specified by including only the true
prognostic score as a covariate, and the additional many raw covariate adjustments along with in-
teraction terms thus specifies an excessively overspecified model. This leads to overfitting by the
raw covariates randomly explaining variance in the noise and thus an overly optimistic estimate
of the residual variance, making the estimated variance of the ATE estimate overly optimistic as
well. The problem of inflated type I error rates was not solved by using heteroskedasticity-robust
covariance matrix estimation for estimating the standard error of the ATE estimate. From this
pitfall, we suggest using the digital twin approach with additional covariate adjustment for only
one or a few raw baseline covariates, in accordance with the regulatory guidelines described in
section 2.3.2.

For the DT approaches, the same tendencies hold for the scenario in which the covariate means
of the historical data distribution are shifted by 2 compared to the distribution of the current RCT
data. This indicates that overall, the DT approach is robust to the situation in which deviations
between the training data of the prognostic model to some extent deviates from the current data
distribution, when all relevant covariates are included. This could be due to the fact that even
though the covariate distribution is shifted in the training data for the prognostic model, the
relationships between the covariates and the outcome is still the same. Hence we can expect
that if the prognostic model trained on the non-shifted historical data satisfies the condition of
convergence in theorem 5.3.11, it should also hold for the shifted historical data, albeit with a
slower convergence rate. We note however that the theorem relates to the case of a homogeneous
treatment effect. Furthermore, if the prognostic model had been underspecified, the convergence
would possibly not hold, due to omitted variable bias of the prognostic model.

For the PSM method in the case of the covariates being shifted, the large increase in RMSE
points toward a severe problem, namely that the resulting ATE estimates seem to be biased, as
can be seen in table D.1. Specifically, in the case of no raw covariate adjustment, we see from the
table that the bias is negative, and consequently, the type I error rate is lower than the significance
level. In the case of controlling for raw covariates, the bias is positive, and we get conversely
that the type I error rate is above the significance level. For some reason, for our simulated
data, the bias is negative when no raw covariate adjustments are conducted and positive when
adjustments are carried out. The results are disappointing, considering that the situation of a
covariate shift should be properly handled by the method described in section 4.1.2, even when
not all confounding covariates are included. However, we again suspect that misspecification of
the propensity score model could have an influence on the results.

6.3 Overspecification and Underspecification
So far, we have considered the situation where models are correctly specified in the sense that
adjustment has only been done for the covariates in the data generating process. In this section we
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wish to examine how the standard error of the ATE estimate is affected by the realistic scenario
of overspecifying and underspecifying the prognostic model and the propensity score model,
respectively. As we saw in examples 2.3.1 and 2.3.2, underspecifying linear models can lead to
omitted variable bias, whereas overspecification only leads to inefficiency. Here we investigate
not only linear models for the prognostic score, but we suspect that the same tendency is present
for our proposed non-linear models. In section 6.2, we saw that as expected, under the most
general conditions, the best performance among the DT approach estimators were achieved by
using the non-linear random forest prognostic model. In this section, we will therefore limit our
analyses of DT models using this prognostic model.

For the DT approach, underspecifying the prognostic model means, according to theorem 5.3.11,
that we are not guaranteed to obtain an efficient ATE estimator, since the L2 convergence does
not hold in the case of a biased model. In addition, (5.85) shows that the efficiency gain of
adjusting for the estimated prognostic score depends on the covariance between the estimate and
the outcome, which is smaller for an inefficient model obtained from overspecification. However,
a model like the random forest model should itself conduct proper variable selection so as not to
use unnecessary (overspecified) covariates.

For the SCA approach using PSM, we have argued that overspecifying the propensity score
model should be of less concern than underspecification, since we only get the desirable prop-
erties from PSM when we control for all confounders. An underspecified model will in general
lead to bias since we would then match with patients who are not representative to the treatment
population with respect to confounding covariates. The procedure presented in section 4.1.2 sug-
gests a method for correcting for such bias. However, we have not analytically derived any valid
argument that this should be the case, and we therefore wish to investigate what happens when
underspecifying the model in regard to confounding variables.

We considered the same simulated data sets as described in section 6.2, but having simulated
10 additional covariates with coefficients a “ b “ c “ 0 in the data generating process. This
means that specifying a model including any of these newly simulated variables results in an
overspecified model. The p “ 20 covariates were generated using the same distribution as
described at the start of section 6.1.1, thus obtaining a common covariance structure between the
covariates present in the data generating process and those that are not. Hence, including some
of these variables could prove to be beneficial if the model is underspecified in regard to the 10
variables with corresponding nonzero values of a, b or c, since all covariates are to some extent
correlated with the covariates in the data generating process.

In order to investigate what happens when overspecifying the models for the propensity and
prognostic scores, we constructed these models based on all 20 covariates. To investigate the
case of underspecification, the models were constructed based on 5 covariates included in the
data generating process. In a similar way, we investigated the situation in which the models are
both underspecified and overspecified in the sense of both including covariates that are part of
and not part of the data generating process, which arguably mimics reality to the largest extent.
This was carried out by training the prognostic and propensity score models based on 5 covariates
in the data generating process as well as 5 covariates which were not.
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In contrast to the results in section 6.2, raw covariate adjustment was done for only 2 covariates,
which were included in the data generating process. We find that this situation mimics reality to
a larger extent by only adjusting for a few number of covariates which are known to be highly
prognostic, as described in section 2.3.2. In addition, we only considered the ANCOVA I esti-
mators with design matrices (6.5) and (6.6), with the modification that m was trained on more
covariates than the two that were directly adjusted for in the model.

On figure 6.3, we compare the performance using underspecified and overspecified prognostic
and propensity score models, respectively, in the scenarios of a heterogeneous treatment effect
with and without a covariate means shift in the historical data.
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Figure 6.3: Empirical distributions of ANCOVA model ATE estimates obtained from 1, 000 simulated data sets
under the heterogeneous treatment effect scenario and the scenario where the means of the distribution
of the historical data covariates are shifted. Overspecified and underspecified models for the prognostic
score and propensity score, using 5 additional covariates and failing to include 5 covariates in the data
generating process, respectively.

For the approach based on digital twins, we see as expected that in both scenarios, underspecifi-
cation has more severe consequences for the obtained efficiency than overspecification has. This
result suggests that in practice, one should worry more about including too few than too many
variables when training the prognostic model. However, no consequences in terms of bias occur
from underspecification, since the approach is robust to biased prognostic models.

For the PSM approach, there is no clear indication regarding whether overspecification or un-
derspecification is worst in terms of lost efficiency. This could be due to misspecification of the
propensity score model in the first place, as previously discussed. The biased results for the sce-
nario of the covariates being shifted in the historical data suggest that the method is unstable to
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correcting differences between current and historical data when the model is either overspecified
or underspecified. Overspecification should in principle only affect the variance of the estimated
ATE and not the bias, as discussed in section 4.2. However, we also saw this tendency in the
previous section when the model covariates were correctly specified, so the results could again
be due to a misspecification of the propensity score model.

On figure 6.4, we investigate the realistic situation of simultaneously overspecifying and under-
specifying the prognostic and propensity score models in the same scenarios as in figure 6.3.
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Figure 6.4: Empirical distributions of ANCOVA model ATE estimates obtained from 1, 000 simulated data sets
under the heterogeneous treatment effect scenario and the scenario where the means of the distribution
of the historical data covariates are shifted. Overspecified and underspecified models for the prognostic
score and propensity score, using 5 additional covariates and failing to include 5 covariates in the data
generating process.

For the DT approach, the results look much like the case of only underspecifying the model, as
displayed in figure 6.3. This suggests that the random forest model is to some extent robust to
overspecification, supporting the use of flexible, data-driven models when estimating the prog-
nostic score in practice.

For the PSM method, the results are somewhat similar to the cases of only under or overspec-
ifying the propensity score model. However, the bias induced from using only over or under-
specified models seem to even out in this case, but in practice we cannot expect this to occur,
making the method used here unreliable for use in practice. We conclude that the SCA approach
using PSM remains prone to bias in estimating the ATE when misspecifying the propensity score
model, whereas the DT approach provides an unbiased estimate of the ATE while reducing the
variance, even when the prognostic model is misspecified in terms of model choice and/or co-
variate selection.
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We investigated the RMSE of ATE estimates in all four scenarios in the realistic case of simulta-
neously overspecifying and underspecifying the propensity score and prognostic models. Results
are displayed in figure 6.5. Interestingly for the purpose of using the methods in practice, the
results were similar to those displayed in figure 6.2, apart from the problems of overfitting not
being present since only a moderate number of covariates are adjusted for. Additional results are
listed in table D.2, appendix D.2.
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Figure 6.5: Standard error estimates (vertical axis) for AN(C)OVA model ATE estimates on 1, 000 simulated data
sets under the four different scenarios (vertical panel classification). Filled points display empirical
means of standard model dependent estimates across the 1, 000 simulated data sets. Crosses display the
RMSE across the 1, 000 simulated data sets. Horizontal axis indicates whether raw covariate adjust-
ments were included in the AN(C)OVA model for 2 of the 10 simulated covariates in the data generating
process. No interaction terms between treatment allocation and raw covariates (as well as the estimated
prognostic score for models "Random", "RF" and "Oracle0") were included in the AN(C)OVA model.
Additional results are found in table D.2.

6.4 Varying Sample Sizes
We have seen from e.g. theorem 5.3.11 that if we provide a good prognostic model, the ANCOVA
II estimator provides the asymptotically most efficient ATE estimator among all RAL estimators,
at least when the treatment effect is homogeneous. In this section, we will investigate the finite
sample properties of this estimator using different prognostic models together with PSM and
standard AN(C)OVA estimators that do not leverage historical data. Specifically, we will inves-
tigate how fast we can increase power as n, n1 Ñ 8 and whether the individual methods provide
control over the type I error. In practice, power needs to be estimated during the design phase of
an RCT. Therefore, we will also evaluate methods for such prospective estimation.

We considered the heterogeneous treatment effect scenario according to table 6.1, where we used
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the propensity score model and prognostic model which is both overspecified and underspecified,
and where we utilise raw covariate adjustment for only 2 prognostic covariates, as described in
section 6.3. We simulated 1, 000 data sets with n “ 2, 000, n1 “ 10, 000, n0 “ 800 and
n1 “ 1200. We then subsetted this large data set sequentially into 26 subsets, such that data sets
with

n “ 30, 40, 50, 60, 80, 100, 125, . . . , 200, 250, . . . , 500, 600, . . . , 1000, 1200, . . . , 2000 (6.17)

and n1 “ 5n were extracted, maintaining an allocation ratio of r “ n1{n2 “ 1.5 and such
that participants in smaller data sets were contained in the larger data sets. This corresponds to
increasing n and n1 in a way that n “ Opn1q as specified in theorem 5.3.11.

In addition to the situation described above, where we increase n and n1 simultaneously, we
also consider situations where they are increased separately. Specifically, we extracted subsets
in the way described above, with the exception that we keep a fixed number n1 “ 5, 000 of
historical data patients, in order to investigate the situation in which only the number of current
trial participants increases with same rate described above. In the same way, we also extracted
subsets such that n0 “ 300 and n1 “ 200 were fixed, while increasing the number of historical
data patients n1 with the same rate described above. These scenarios are both violations of the
assumption in theorem 5.3.11 that both n and n1 should increase such that n “ Opn1q. Our
purpose is to investigate the potential benefits from using digital twins, along with comparing
this method with the SCA approach, when only increasing the number of historical data patients
or current data patients. We relate the results of varying n and n1 simultaneously to the results
from varying them separately in the next section.

6.4.1 Performance Assessment

To evaluate the performance of the estimators as a function of increasing n and n1 (simultane-
ously as well as separately), we will consider figures of the average ATE estimates and corre-
sponding quantiles, the RMSE of the ATE estimate, the estimated power and type I error, and
lastly the estimated L2 norm of the prognostic models. We display the results of varying n and
n1 simultaneously in this section. Results relating to varying only n and only n1, respectively, are
displayed in appendix D.3.

In figure 6.6 the mean of the ATE estimates and their 25% and 75% quantiles are plotted as a
function of n, where n1 “ 5n for each method. Overall, the means of the ATE estimates seem to
converge towards the true ATE “ 3 for all the methods, but they vary in the rate of convergence.
The two oracle estimators converge with the fastest rate. However, as already noted, the two
oracle estimators are infeasible to determine in practice where the true data generating process
is unknown. It is also seen that utilising digital twins with a random forest prognostic model
converges faster than the ANOVA and ANCOVA methods.

For the random prediction model of the prognostic score, the mean ATE estimates align with the
estimates derived from the ANCOVA method. This illustrates again that even when adding a

118



Simulation Study – Comparison of Approaches Aalborg University

2.8

2.9

3.0

0 500 1000 1500 2000
n

M
ea

n 
of

 A
TE

 e
st

im
at

es

A

2.0

2.5

3.0

3.5

4.0

0 500 1000 1500 2000
n

Q
ua

nt
ile

s 
of

 A
TE

 e
st

im
at

es

B

ANOVA

ANCOVA

PSM Random

Linear

LASSO

Random forest

Oracle0

Oracle

students/ehfd/current
14APR2022:21:41:17 − plots_both/vary_n_plots/n_both/est_rib_both.pdfFigure 6.6: ATE estimates for all investigated models. Mean of ATE estimates (A) and their 25% and 75% quantiles

(B).

prognostic score that does not correlate with the potential outcomes, and hence does not provide
any efficiency gain, the efficiency of the ATE estimate is not worsened. This is supported by the
quantile plot, where there is overlap between the quantiles of the ATE estimate for the ANCOVA
method and the method using a random prognostic model. Looking at the quantile plot of the
remaining DT estimators, we see a slight improvement over the ANCOVA model when using
a linear or LASSO prognostic model, and we obtain a great improvement for the method using
a random forest as a prognostic model. The improvements provided by the linear models are
due to inclusion of covariates in the prognostic model which are not linearly adjusted for in the
ANCOVA model. From this we again see that we have the largest gain when using a complex
model that is able to capture the non-linearities in data, with the best models once again being
the infeasible oracle estimators.

In figure 6.7 the RMSE of the ATE estimates are displayed as a function of n, where n1 “ 5n.
We note that the y-axis is on a base 10 logarithmic scale. Similar to the results obtained in
figure 6.6, the oracle estimators have the best performance, while the PSM only provides a slight
decrease in RMSE compared to ANOVA, and still performs worse than the ANCOVA method.
Again, there is not much to be gained from the random, linear or LASSO prognostic models,
while the non-linear random forest model produces an efficiency gain. Since the difference
between the RMSE curves are approximately constant on a logarithmic scale, the curves have an
approximately constant scaling of each other by 10 to the power of the approximately constant
difference.
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In figure 6.8 the empirically estimated power is plotted in figure (A) and the empirically estimated
type I error is plotted in figure (B) as a function of n, where n1 “ 5n. In regard to the empirically
estimated power we can conclude similar results as for the previous plots, seeing that the two
oracle estimators have the fastest convergence. The empirically estimated type I error is generally
controlled using the DT methods, apart from the infeasible oracle estimator. For this estimator,
the type I error is in general a little too large, again possibly being a result of overfitting. PSM
gives an increase in power compared to the ANOVA method and the ANCOVA method for
n ° 700. However, the type I error is not controlled at the significance level of 2.5% for large
n. The curves for the ANCOVA method and the method using a random prognostic score align,
as expected from analytical results as well as from the previous analyses. The methods using
a linear or LASSO prognostic model gives a slight increase in power compared to the ANOVA
or ANCOVA method. Again, we have the largest feasible increase in power when we use the
random forest model.

In figure 6.9 the empirically estimated L2-norm of the difference between true and estimated
prognostic scores is plotted as a function of n1. The linear and LASSO prognostic models do
not seem to converge in L2 towards the oracle estimator. This could explain why there is not a
substantial increase in power or decrease in RMSE when we only vary n1. For the random forest
prognostic model, there is a decrease in the L2-norm, which again could explain why we see a
large increase in power and large decrease in RMSE when we only vary n1. This illustrates the
importance of a model that is complex enough to insure the convergence in L2-norm.
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1.

Considering the results of varying n and n1 separately, displayed in figure D.1 in appendix D.3,
we see that the results of varying only n in figures A1-A4 look almost identical to the results in
figures 6.6-6.8, indicating that n primarily controls the rate at which performance is increased as
a function of increasing sample sizes, when fixing n1 “ 5, 000. Only varying n1 in figures B1-B4,
we note that the results of methods not leveraging historical data are constant. Similarly, for the
method using a random prognostic model, we have approximate constant results, since adding
the random prediction to the ANCOVA model does not contribute with further efficiency gain.
For the linear and LASSO models utilising historical data, we barely see a change in performance
relative to the ANCOVA method.

The method utilising a random forest prognostic model seems to provide a substantial enhance-
ment in performance as more historical data becomes available in regard to all of the perfor-
mance measures. Specifically, on figure D.1(B3, B4) we only obtain a substantial increase in
power when using the random forest prognostic model, while controlling the type I error rate.
Therefore it seems that there is something to gain by using a digital twin model with sufficient
complexity. Additionally, it seems that the gain to be exploited stagnates at around n1 “ 5, 000,
which is supported by figure 6.9, indicating that this size of the historical data should be suffi-
cient. However, this might be different if more complex prognostic models are used or the data
generating process is more complex than the one we investigate. As seen by figure D.1(B1) in
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Figure 6.9: Empirically estimated L
2 norm of the difference between the estimated and true prognostic scores, for

the digital twin models using a linear, LASSO and random forest prognostic model in the heterogeneous
scenario, varying both n

1 for fixed n “ 500.

appendix D.3, for the PSM method, the mean of the ATE estimate does not seem to converge
towards the true ATE. This could indicate that our propensity score model does not utilise the
added information that we should obtain for an increased n1, supposedly due to misspecification
of the propensity score model.

6.4.2 Prospective Estimation of Power from Sample Size

In the previous sections, we have evaluated the performance of different methods in terms of
the empirically estimated gain in power. However, in practice a sample size calculation needs
to be conducted prior to collecting data for the RCT. In chapter 3 and in section 5.4, we have
provided methods for such prospective estimation of the required sample size for obtaining a
desired power. In this section, we wish to evaluate whether these methods provide reasonable
estimates for the required sample size when comparing the prospective estimates with the actual
empirically estimated power.

We will start by considering the scenario of a heterogeneous treatment effect, using the values
of current RCT sample size n investigated in the previous sections, meaning that we are in the
same setup as described before and after equation (6.17). The derivations and (approximation)
formulas in chapter 3 are based on the outcome variable having a certain distribution specified by
the covariates. Hence, we are testing whether the methods for sample size calculation are robust
to the realistic scenario of a partly misspecified model.
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As pointed out in chapter 3, when conducting sample size calculations in practice, we would
typically conduct sensitivity analyses in order to address the uncertainty inherent to estimating
the necessary parameters. Since we will not delve into any methods for doing so here, we note
that the results relate solely to evaluating the formulas for estimating the obtained power for some
n and not how to address this uncertainty. However, in order to get a sense of the this uncertainty,
we extracted data-driven 95% confidence intervals as the 2.5% and 97.5% empirical quantiles of
the 1, 000 power estimates for each n. We note that this uncertainty relates only to estimation of
the necessary parameters when we assume that the model is correctly specified.

We carried out sample size calculations for the ANOVA, ANCOVA, PSM and DT ANCOVA
model utilising a random forest prognostic model based on the methods described in section
6.1.5. Based on these calculations, we found that the approximations based on the non-centrality
parameter as well as the approximation formulas provided very similar results. In figure 6.10
we have displayed the empirically estimated power together with 2.5% and 97.5% quantiles of
the prospective power estimates obtained from the Guenther-Schouten approximation, which is
available for all the investigated models.
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Figure 6.10: Empirically estimated power together with the mean and the 2.5% and 97.5% quantiles of the prospec-
tive Guenter-Schouten power approximation in the case of a heterogeneous treatment effect.

For all the methods the power is overestimated using the formulas derived in chapter 3. How-
ever, for the method using the random forest for estimating the prognostic score, the empirically
estimated power lies just above the 2.5% quantile. The optimistic results of the prospectively
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estimated power can be explained by the derivations in chapter 3 relying on the assumption that
we have correctly specified the AN(C)OVA models. Specifically, the assumed model does not
include interaction effects with the treatment assignment. However, our data is simulated using
a heterogeneous treatment effect by having interaction effects in the data generating process. In
practice, this means that the estimated correlation between the estimated prognostic score and
the outcome is possibly overestimated for patients in the treatment group, resulting in optimistic
estimation of power. Indeed, when we tested the Guenther-Schouten approximation in the homo-
geneous scenario, the power estimation seemed more reasonable for all four methods apart from
the PSM method, as seen on figure D.2 in appendix D.4. Thus, a violation of the assumption of
homogeneity seems to give too optimistic sample size approximations, hence accentuating the
need to conduct sensitivity analyses when using these in practice.
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7 | Case Study – Digital Twins in Clinical Trials
for Type 2 Diabetes

In this chapter we will examine the use of digital twins in clinical trials involving patients di-
agnosed with type 2 diabetes. Specifically, we wish to investigate the benefits of using digital
twins on real world data in regard to decreasing the required sample size while maintaining a
prespecified desired level of power.

The analyses are carried out from data sets provided by Novo Nordisk A/S originating from
three previously conducted RCTs. The participants of the clinical trials were all diagnosed with
type 2 diabetes, which is a chronic disease that affects around 8.5% of adults world wide. The
pathogenesis of type 2 diabetes consists of insulin resistance and beta-cell impairment resulting
in a decreased insulin secretion. Type 2 diabetes patients do not produce sufficient amounts of
insulin, hence these patients need insulin injections to keep control of their blood sugar levels
[64, 65].

There exist two types of insulin for injection; basal and bolus. Basal insulin is used to keep
blood sugar levels stable between meals, whereas bolus insulin is administered in connection
with a meal or high blood sugar levels. For this reason basal insulin is a long acting drug, that
is administered subcutaneously (normally once or twice a day) and afterwards absorbed slowly
into the bloodstream. This yields a steady plasma concentration of glucose between meals or at
night. Bolus insulin is a fast acting insulin that is rapidly absorbed into the bloodstream [66].
Additionally, there exist different types of oral antidiabetic (OAD) medication with different
ways of action. Commonly a drug called Metformin is used for type 2 diabetics. This works by
increasing the efficacy of insulin and decreasing the excretion of sugar from the liver [67].

We begin the chapter by presenting the provided data sets and how we have curated them in order
to be fit for our desired analyses. We then describe the methods used for these analyses. Lastly,
we present the results of our analyses, which gives an indication of the possible gain from using
digital twins in terms of lowering the required sample size for maintaining the desired level of
power in the specific RCT. All analyses were carried out using R version 4.1.1, and all code can
be found here.

7.1 Data Sets Provided by Novo Nordisk A/S
In this section we will describe relevant aspects of the three trials from which the data sets orig-
inate. All three trials involved patients diagnosed with type 2 diabetes at least 26 weeks prior
to the screening visit, and no included patients were insulin naive; all patients have previously
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received insulin exogenously. All trials were phase III, multicenter, 1:1 randomised, active con-
trolled RCTs.

In order to ensure an allocation ratio of r “ 1, the subjects in all trials were randomised in
accordance with a forced balance randomisation scheme. As seen in example 2.2.1, this has the
risk of inducing dependency of the treatment allocation variable W between observations, which
means that the observations pX,W, Y q are not completely independent. With the assumption in
chapter 5 of independency between observations, we thus cannot expect the analytical results of
digital twins to hold completely. However, with somewhat large n, we expect that the dependency
induced by a forced balance randomisation scheme is negligible.

In all trials, the Hemoglobin A1c (HbA1c) blood level percentage of the participants was mea-
sured. The HbA1c level measures the long-term average blood sugar level, and thus diabetes
patients have a higher HbA1c level. The efficacy of insulin medication can therefore be assessed
by the degree to which treated patients have a lowered level of HbA1c towards the normal range
compared to the control group.

7.1.1 Trial NN1218-3853

Trial NN1218-3853 was a 26 weeks multinational, double-blinded, parallel group trial with the
aim to compare the efficacy and safety of bolus insulin FIAsp (faster insulin aspart) versus bolus
insulin aspart, both in combination with once daily basal insulin glargine (IGlar) and OAD in
form of metformin. The trial design is summarised in figure 7.1.

Figure 7.1: The trial design of trial NN1218-3853. Source: Clinical trial protocol (classified).

The total duration of the trial was approximately 40 weeks, including a 2 weeks screening pe-
riod, 8 weeks run-in period, 26 weeks double-blinded treatment period and a follow-up period.
At the screening visit subjects were assessed for their eligibility according to the inclusion and
exclusion criteria listed in table E.1 found in appendix E.1. In the 8 week run-in period, eligible
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subjects underwent basal insulin titration with insulin glargine and discontinued all OAD treat-
ments except from metformin. All included subjects received metformin for at least 3 months
prior to screening, and throughout the trial period the frequency and dosing with this drug should
not be changed. At randomisation, subjects were randomised to receive either FIAsp (the treat-
ment arm) or insulin aspart (the active control arm), both in addition to insulin glargine and met-
formin. At randomisation subjects fulfilled the randomisation criterion of having their HbA1c
level between 7.0 ´ 9.5%, both inclusive.

According to planned treatment, the number of subjects in the control arm was 344, and the
number of subjects in the treatment arm was 345. The primary objective of the trial was to
confirm efficacy of FIAsp in terms of the glycaemic control assessed by change in HbA1c after
26 weeks from baseline. The trial was conducted as a non-inferiority trial with a non-inferiority
margin of 0.4% and a significance level of 2.5%.

7.1.2 Trial NN1218-4049

Trial NN1218-4049 was a 18 weeks multinational, open-label, parallel group trial with the aim to
compare the efficacy and safety of bolus insulin FIAsp in combination with basal insulin detemir,
insulin glargine or human isophane insulin (NPH) versus only insulin detemir, insulin glargine
or NPH, both in combination with metformin. The trial design is summarised in figure 7.2.

Figure 7.2: The trial design of trial NN1218-4049. Source: Clinical trial protocol (classified).

The total duration of the trial was approximately 32 weeks including a 2 weeks screening period,
8 weeks run-in period, 18 weeks treatment period and a follow-up period. At the screening visit
subjects was assessed for their eligibility according to the inclusion and exclusion criteria listed
in table E.2 found in appendix E.2. In the 8 week run-in period, eligible subjects underwent
basal insulin titration with the insulin that the subject entered the trial with, and discontinued all
OAD treatments, except from metformin. All subjects included received metformin for at least 3
months prior to screening, and throughout the trial period the frequency and dosing with this drug
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should not be changed. At randomisation subjects were randomised to receive either bolus FIAsp
(the treatment arm) or no bolus insulin (the control arm) in addition to insulin detemir, glargine
or NPH in combination with metformin. At randomisation subjects fulfilled the randomisation
criterion of having their HbA1c level between 7.0 ´ 9.0%, both inclusive.

The number of subjects with planned treatment being the control arm was 120 where the number
of subjects with planned treatment being the treatment arm was 116. The primary objective of
the trial was to confirm efficacy of FIAsp in terms of the glycaemic control assessed by change
in HbA1c after 18 weeks. The trial was conducted as a superiority trial with a superiority margin
of 0% and a significance level of 2.5%.

7.1.3 Trial NN1250-3998

Trial NN1250-3998 was a 64 weeks double blinded cross-over trial among patients from the
United States of America, with the aim to compare safety of basal insulin degludec (IDeg) with
basal insulin glargine (IGlar) both with or without OADs. The trial design is summarised in
figure 7.3.

Figure 7.3: The trial design of trial NN1250-3998. Source: Clinical trial protocol (classified).

The total duration of the trial was approximately 64 weeks, starting with a 2 weeks screening
period, which was followed by a randomisation visit, where each patient was randomised to a
treatment sequence consisting of two treatment periods with either IDeg (the treatment arm) or
IGlar (the control arm). Lastly, there was a 1 week follow-up period. In each treatment period,
the patients started by going through a 16 weeks wash-out period. This period was added to
avoid carry-over effects. In the wash-out period, the patients still received the treatment that they
were allocated to, due to the fact that the objective of the trial was safety. At the screening visit,
subjects were assessed for their eligibility according to the inclusion and exclusion criteria listed
in table E.3 found in appendix E.3.

For both period A and B, the number of subjects with planned treatment being the control arm
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was 361 where the number of subjects with planned treatment being the treatment arm was 363.
The primary objective of the trial was to assess safety of insulin degludec in terms of showing
a lower rate of severe or blood-glucose confirmed symptomatic hypoglycaemia compared to
insulin glargine after 16 weeks of treatment. Even though efficacy was not the primary endpoint
of this trial, the HbA1c was measured throughout the trial and therefore we can use the data set
as historical data.

7.2 Curation of Data Sets
The data provided by Novo Nordisk A/S was delivered in a "raw" format in a standard called
ADaM supported by the Clinical Data Interchange Standards Consortium (CDISC). Therefore
we needed to determine which data sets contained the needed information, and then to curate
these in order to use them for constructing digital twins. The overall process is described in
section 7.2.1. In order to use the data sets for investigating the benefits of using the digital twin
method, we also needed to split data between historical and current RCT data. This is described
in section 7.2.2.

7.2.1 Standardising Trial-specific Data Sets

Even though data was provided in a specific standard, the same parameters were not all recorded
across the three trials. Several data sets were associated with each trial. We chose to include data
sets that contained the patients’ concomitant medication, medical history, lab analyses, physical
examinations, vital signs and a subject level data set that provides several baseline covariates in
wide format. Most of the data sets were recorded in long format, so we converted the relevant
covariates to wide format in order to extract one merged data set for each trial, which is stan-
dardised across the trials. For some of the data sets there was a large number of parameters, and
including all of these could lead to overparameterisation causing a curse of dimensionality. For
these data sets we constructed new parameters that summarise the information that the data set
contained, as described in the following.

In the data set describing the physical examinations, different body regions categorised in nine
different categories (the cardiovascular system, central and peripheral nervous system, gastroin-
testinal system incl. mouth, left eye ophthalmoscopy, right eye ophthalmoscopy, musculoskeletal
system, respiratory system, skin, as well a category including head, ears, eyes, nose, throat and
neck) were examined, and any clinically relevant abnormalities were recorded. Instead of in-
cluding all nine parameters, we created a new parameter that counts the number of abnormalities
in the physical examination. There were no missing values, so we did not induce any bias using
this count variable.

For the two trials NN1218-3853 and N1218-4049, all patients were assessed for four prespecified
comorbidities; diabetic nephropathy, diabetic neorpathy, diabetic retinopathy and macro angiopa-
thy. These comorbidities were not severe enough to exclude the patients from the trials, but they
are considered by medical professionals as clinically relevant. For this reason, we created a new
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parameter that counts the number of these comorbidities in all patients. Specific comorbidities
were also recorded in trial NN1250-3998, but the four clinically relevant comorbidities were not
specified before the trial was conducted. For this reason we suspect that a possible surveillance
bias could be present. Indeed, the total number of patients with at least one comorbidity was 32
(4.4%) in this trial, whereas the corresponding number was 385 (55.9%) in trial NN1218-3853,
and in trial NN1218-4049 it was 87 (36.9%). However, this could also be due to other reasons,
e.g. the trial in- and exclusion criteria differing between the trials.

We also considered including concomitant medication at baseline, but we chose not to include
this, since the most important aspect is that patients are "in-control" when starting the study,
which should be satisfied since all patients are not insulin naive. Furthermore, we control for
baseline HbA1c which we expect to include any possible effect of which type of insulin the
patients are on at treatment start.

Trial NN1250-3998 is the only trial that allowed for use of other OADs than metformin. In this
trial, there was a total of 22 other OADs than metformin. We do not want to include too many
parameters by using a factor indicating if the patient was on a specific OAD for all of the 22 other
OADs. For this reason, we constructed one variable indicating if the patient was on metformin,
and one variable indicating if the patient was on any other OAD.

For all of the trials, our outcome of interest will be the change from baseline until week 18 in
HbA1c levels. For all trials, all randomised patients had a measurement of HbA1c at baseline.
However, for some of the trials, the HbA1c level is not measured at week 18. For this reason,
we examined when the HbA1c stabilises, so that previous or later measurements could be used
for imputation. In figure 7.4, we have plotted the HbA1c measurements in each trial and each
arm together with the mean HbA1c level within each arm. Based on the figure, we conclude
that for all three trials, the HbA1c begins to stabilise around week 12 within both the control and
treatment groups.

For trial NN1218-3853, we created the end of treatment HbA1c variable as the mean of the
measurements at week 16 and 20. If one of these was missing, we used the latest measurement.
If both were missing, we used the latest of the week 12 and 26 measurements. We chose the latest
measurement as the first priority, since in accordance with figure 7.4, the HbA1c only starts to
stabilise around week 12. All patients had a measurement at one or more of these weeks.

For trial NN1218-4049, we only had HbA1c measurements at week 12 and 18, so we used the
latest measurement of these two weeks as the end of treatment measurement. Again, we chose
the latest measurement, in accordance with figure 7.4. All patients had a measurement at one or
more of these weeks.

For trial NN1250-3998 period A, we created the end of treatment HbA1c as the mean of the
measurements at week 16 and 20. If one of these was missing, we used the latest measurement.
If both were missing, we used the oldest of the week 24 and 28 or 32 measurements. All patients
had a measurement at one or more of these weeks. We chose not to include data from period
B, since we expect this data to be substantially different from the other trials, since the patients
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Figure 7.4: HbA1c measurements of all patients in the three trials, with the mean curve for the control arm (blue)
and treatment arm (green).

in this period has already been part of a clinical trial for 32 weeks, which we expect to alter the
results in a way that we cannot meaningfully account for.

Due to the fact that a lower level of the response corresponds to a positive effect, we will consider
the change from baseline as Y “ Y pre ´ Y post to stay consistent with our assumption in the
definition of the hypothesis tests in equations (3.9)-(3.11) that a positive effect implies a better
outcome.

We then constructed a function that reads in the trial data and selects the baseline covariates we
want to include. Then it filters the observations such that we use the baseline value or impute
with the previously recorded values. This function also pivots the data from long to wide format,
such that we have a column for each of the parameters we want to include. Within each trial, we
used this function on each of the selected data sets and joined these to construct a standardised
data set in wide format for each trial. For the cross-over trial, we did the same but only for period
A. We only included patients that fulfilled the the inclusion, exclusion and randomisation criteria
(recorded by a "full analysis set population flag" dummy variable in the provided data) and used
the patient’s planned treatment, thereby employing the intention-to-treat principle.
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7.2.2 Current and Historical Data Sets

In order to examine the use of digital twins in a real data setting, we needed to split the data
into historical data and current RCT data. We did so by defining our current RCT as a subset
of the participants in trial NN1218-4049, while pooling the remaining patients from this trial
with patients from trials NN1218-3853 and NN1250-3998 to form a pool of historical patients.
Specifically, we used the subset of trial NN1218-4049 consisting only of patients receiving basal
insulin glargine as our current RCT. Thus the current control arm is the part of trial NN1218-
4049 receiving basal insuline glargine with metformin and without any bolus insulin, while the
current treatment arm consists of the patients from NN1218-4049 that received bolus insulin
FIAsp together with basal insuline glargine with metformin. We chose to do this in order to
ensure that some historical data was to some degree representative of the current control arm,
namely the subset of the glargine arms in trial NN1250-3998 that received metformin.

In appendix E.4 table E.4 an overview of all the covariates and the number of missing values are
listed. We disregarded covariates that had a high proportion of missing values. After doing so, no
missing values were present in the remaining covariates in the current trial. Missing values in the
historical data were imputed by the rfImpute function, which for each observation iteratively
imputes a proximity weighted average of the corresponding covariate values of the remaining
observations, where the proximity is estimated based on a random forest procedure [68, 69]. The
first imputation is done with mean imputation. Then, modeling each covariate as a function of the
rest in a random forest, proximities are obtained for each pair of observations as the proportion
of times that the observations are present in the same terminal node of the trees in the forest. The
algorithm then iteratively imputes the covariate values of an observation as the weighted average
of the corresponding covariate values of all other observations, using the proximities as weights.
In general, uncertainty of imputation must be accounted for when estimating the variance of the
ATE estimate. However, in our case, only the historical data contained missing values, affecting
only the quality of the prognostic model, which we have already seen does not worsen the results
compared to an ANCOVA model adjusting only for the raw covariates.

Thorlund et al. [70] discuss some important considerations in regard to the quality of the histor-
ical data in the context of the SCA approach to leveraging historical data. These considerations
are important within this approach since the results obtained from external controls could be bi-
ased. As we have mentioned, this is not the case for the digital twins approach. However, we
find some of the considerations relevant also in regard to constructing a prognostic model with
good predictive performance.

Firstly, Thorlund et al. point out that the data collection process should be similar between the
historical and current RCTs and that the investigated populations should be similar. Our three
standardised data sets originate from RCTs, which means that the data collection in general ad-
heres to a high level of stringency. This implies that the data collection process are highly similar,
but we would expect higher similarity between the trials within the same project NN1218. We
also examine similar populations since all three trials examines people with type 2 diabetes, and
the clinical outcome and covariates are reasonably similar. The data quality is in general high for
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RCTs compared to using observational studies or data from registries since the collection process
in this case would be highly heterogeneous which could possibly lead to unknown confounding
effects and missing data patterns that could bias the predictions made by the prognostic model.
However, since our current RCT population originates from an open-label trial, the patients are
not blinded to which treatment they receive, as opposed to the majority of the historical data,
which consists of primarily double-blinded data. This could potentially induce a positive bias (in
terms of the HbA1c level) for the prognostic model, when predicting outcomes of patients in the
current RCT due to a possible placebo effect in the current data.

Secondly, Thorlund et al. state that the covariate distribution should be similar between the
historical and current RCT data sets. There could be (and probably are) unobserved confounding
covariates which are not reported in the two data sets. For this reason the eligibility criteria
should be similar, which they are across the three trials, with only minor differences, as seen
in tables E.1–E.3 in appendix E. However, this does not necessarily ensure that all important
characteristics are similar across the patients. Furthermore, the outcome definitions should be
similar between the historical and current RCT data sets, which they are for the two NN1218
trials. For trial NN1250-3998, the primary outcome was defined in order to assess safety and
was thus not defined as the change from baseline HbA1c, but this was recorded for multiple
weeks nonetheless, allowing us to regard this as our primary outcome of interest. Therefore we
do not expect that this would alter the results.

In appendix E.4 we have displayed the empirical distributions of the continuous covariates (fig-
ure E.1) and the categorical covariates (figure E.2) in the current and historical data. For the
continuous covariates, there are slight differences between the distributions of age, diabetes du-
ration, baseline HbA1c, creatinine level, creatine clearence, sodium level and haematocrit level.
However, these differences are very small, and we therefore expect that the continuous covariates
in the historical data are representative for predicting the outcome on the control arm.

For the categorical covariates we see some larger differences. In the historical data, the nation-
ality of subjects is primarily the United States of America, whereas the current RCT contains a
large group of subjects from Argentina, India, Mexico and Romania, and these groups are not
well represented in the historical data. This may also be the reason why there are some discrep-
ancies in regard to race and if patients are Hispanic or Latino, where we see a large proportion of
Asians and Hispanics or Latinos in the current RCT but only a small proportion in the historical
data. Regarding the number of comorbidities, it seems that there are more patients with multiple
comorbidities in the current RCT compared to the historical data. As noted earlier, this may be
due to a surveillance bias for this covariate. Together, these discrepancies could indicate that
the historical data is not completely representative of the control arm. Specifically, if there are
inconsistencies in some strong predictors, this could skew the results of the prognostic model and
also indicate that n1 may not represent the number of historical data points that is representative
of the current control group.

In table 7.1 we have summarised the number of patients in the current RCT and the historical
data. Defining the historical control arm as the subset of historical data patients that received
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the same treatment as the current control arm (basal insulin glargine and metformin), there were
237 patients that were directly representative of the current control arm. That is, only a minority
of the historical data of size 1,492 was actually completely representative of the current control
arm.

Trial Number of patients
Current RCT 153

Current control arm 77
Current treatment arm 76

Historical data 1,492
Historical control arm 237

Table 7.1: Number of patients in the data split. The historical control arm consists of the patients in the historical
data that received both insulin glargine and metformin and no bolus insulin.

It could be discussed whether or not we should use all of the historical data or just the subset that
resembles the current control arm when training our prognostic model. One argument in favor
of pooling the data is that we can expect the prognostic model to benefit from being trained on
patients that are not completely representative of the current trial population, as long as we take
the differences into account by including the corresponding covariates when training the model.
Thus, we get more data to for our prognostic model to learn from, which is crucial in order to
learn some of the complex non-linearities and interaction effects which are supposedly present
in the underlying data generating process.

An argument against pooling is that when pooling, patients in the historical control arm do not
resemble patients in the current control arm very well. As described earlier, this is a problem
in SCA approaches like PSM, since the historical data would not necessarily resemble the cur-
rent control and confounding covariates could thus skew the results. For the DT approach, the
problem lies more in the fact that the model should learn from relevant data in order to possess
a good predictive performance. The question is then whether pooling the data makes predictions
based on the relevant subset that constitutes the current trial population better or worse, when the
model is trained using a larger population.

Considering both the quality of historical data and the relative scarcity of data points if we were
to only use highly similar patients from the historical data, we chose to use all historical data for
training our model. An approach could have been to assess the predictive performance of the
model trained among all historical data and the historical control arm, respectively, and the best
performing model could be chosen. However, we found it convincing that using all historical
data would provide a decent model, so we proceeded with this choice.
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7.3 Methods
In order to estimate the ATE in the current RCT data, we performed analyses using both an
ANOVA and ANCOVA model, that is, using the design matrices in equations (6.2) and (6.3),
respectively, with X containing only the baseline HbA1c in accordance with regulatory guide-
lines. We then investigated how these models perform in comparison to a model utilising digital
twins through a design matrix of the form given in equation (6.6) with the modification that only
the baseline HbA1c was used as raw adjustment, and the prognostic model m was trained on all
covariates (except trial variables) not marked with grey in table E.4 in the historical data.

7.3.1 Variance Estimation

ATE estimate variances were estimated using a heteroskedasticity-robust sandwich estimator,
as described in section 3.5. In order to correct for the finite sample size, we used the HC3

correction as suggested by Long and Ervin [34]. We did so even though there was no need for
such robust variance estimation in our simulation study in the previous chapter, even in simulated
scenarios of heteroskedasticity. This is due to working with real trial data in this case study, and
thus, being unable to check the validity of different variance estimators, we wish to conduct our
analyses in accordance with the opinions of regulatory authorities, which suggest to use such
robust estimation [18].

7.3.2 The Prognostic Model

The prognostic model was specified as a random forest model trained using the default values
n1
min “ 5 and m “ tp{3u of the tuning parameters and B “ 500, as described in section 6.1.3.

Since random forests implicitly perform covariate selection through the splitting procedure, we
trained the model using all covariates listed in table E.4 which are not marked with grey, except
trial variables.

We suspected that since the baseline HbA1c value is a very strong predictor of the outcome, this
covariate would too often be prohibited from being selected by the random forest procedure. We
therefore investigated whether fine-tuning m could alleviate this problem. Specifically, we used
10-fold cross validation on the historical data to get an out-of-sample estimate of the prediction
error of the prognostic models, measured by the MSE. However, fine-tuning m through the cross
validation prediction error estimation, we did not obtain significant improvement in predictive
performance. This could be explained by the fact that increasing m would lead to the trees in the
forest becoming more similar, undermining the intention of the random forest to allow different
trees to model unique data patterns without overfitting.

In order to accommodate the need to extensively use the baseline HbA1c while at the same time
extracting useful information from the remaining covariates, we tried reducing the dimension of
data through a procedure inspired by partial least squares (PLS). According to the partial least
squares procedure [62, pp. 251–260] [63, pp. 79–81], a prespecified number of orthogonal
dimensions of data are extracted as linear combinations of the covariates that contain a large
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variance while at the same time being correlated to the outcome. In the classical procedure, the
outcome is then regressed linearly on these new features. In our procedure, we instead trained
the random forest model on the extracted features. In this way, we hoped to extract dimensions
of data which generally contained a large proportion of the baseline HbA1c (since it is highly
correlated to the outcome), so that the random forest procedure is forced to use this covariate
extensively, while being able to use information from other prognostic covariates and still model
the relationship non-linearly. We determined the number of new features extracted in this way
through 10-fold cross validation and found that 10 dimensions were optimal in regard to reducing
the MSE.

For both these random forest prognostic models, we calculated the MSE on the historical (train-
ing) data using out-of-bag (OOB) estimation as well as on the current control patients of the
current RCT data.

7.3.3 Post hoc Power Estimation

We performed a post hoc sample size re-estimation and re-analysis of the current trial to illustrate
the benefits of adjusting for the estimated prognostic score in terms of maintaining the same
power with a reduced sample size. In order to do so, we estimated the power using the four
different models in the current RCT by the appropriate Guenther-Schouten formulas, as presented
in section 6.1.5. In this regard, we will refer to the Guether-Schouten approximation used in the
DT approach suggested in section 5.4 (where the additional linear adjustment for baseline HbA1c

Parameter Value

Significance level (↵) 2.5%

Superiority margin (�s) 0

Allocation ratio (r) 1

Assumed effect size (ATE) 0.6

Estimated standard deviation (p�Y ) 0.922

Inflation of standard deviation 1

Estimated correlation with raw baseline HbA1c level (p⇢) 0.455

Estimated correlation with prognostic score (p⇢) 0.466

Estimated squared multiple correlation coefficient with
raw baseline HbA1c level and prognostic score ( pR2) 0.308

Deflation of correlation coefficients 0.9

Table 7.2: Parameters used for re-estimation of power in the current RCT.
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level is disregarded) as a conservative power estimation, whereas we will refer to the power
estimation derived from (3.63) (where the additional linear adjustment for the baseline HbA1c
level is included) as a non-conservative power estimation.

Re-estimation of the power was carried out with the parameters specified in table 7.2. The first
four parameters are chosen in accordance with the parameters specified in the NN1218-4049 trial
protocol since our RCT data consists of a subset of this trial’s data. Estimation of the standard
error as well as the correlation between the outcome and the prognostic score was carried out
using all 153 patients in the current RCT data. The inflation and deflation parameters were used
in order to conservatively estimate the power, by multiplying them with the estimated �2 and
⇢2 (R2 for the non-conservative estimate), respectively. These specific choices of inflation and
deflation parameters are based on a similar recalculation of power in another phase III trial [71]
carried out by Unlearn.AI [72, pp. 16–19] [35].

7.4 Results
In this section we will assess the method of using prognostic models using a pre-specified analy-
sis of the change in HbA1c after 18 weeks by comparing the models described in section 7.3. In
table 7.3 we compare the resulting ATE and standard error of the models, as well as the MSE of
the prognostic models.

m Historical d MSE Current da
Model ATE estimate ATE SD Historical data Current data

ANOVA 1.026 0.150
ANCOVA 0.973 0.137
Random forest 0.967 0.136 0.640 0.917
Random forest
using PLS 0.906 0.129 0.626 0.650

Table 7.3: SD: Estimated standard deviation of the ATE estimate; PLS: Partial least squares; MSE: Mean squared
error. Models Random forest (using PLS features) specify the ANCOVA model adjusting for baseline
HbA1c and the estimated prognostic score. The MSE was estimated for the prognostic model using
out-of-bag (OOB) estimation for the historical (training) data, and estimated from the predictions of only
control patients in the current RCT data.

From the table we see that the largest decrease in standard deviation is obtained by using a
random forest model combined with the use of partial least squares. Using this method we also
obtain the lowest MSE of the prognostic model predictions in the current control data, implying
that this model predicts the current control data most accurately. The small decrease in standard
deviation for the standard random forest model could be explained by the larger MSE measured
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on the current control data. This could indicate the use of PLS is appropriate in this case since
HbA1c is a highly prognostic factor in itself.

In figure 7.5, the Guenther-Schouten approximated power is plotted as a function of the current
sample size n, assuming a fixed allocation ratio of r “ 1 and with relevant parameters estimated
from all 153 current trial patients. The prognostic score of the DT model is constructed from the
random forest using PLS features.
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Figure 7.5: Post hoc Guenther-Schouten approximations of power obtained from the three different models for
ATE estimation, based on the current RCT data. Horizontal dashed line is placed at 90% power, and the
vertical lines indicate the sample size that gives an estimated power of 90%.

From the figure, we see that using the digital twin approach, it does seem possible to reduce
the sample size while maintaining a desired level of power, especially when using the non-
conservative estimate of the power. However, the gain from using the digital twin approach
is in this case negligible if we use the conservative estimation of power.

We note that since this is a post hoc analysis, it serves only to illustrate the gain in power and
is not directly applicable to how one could account for the prognostic scores in the design state
of a trial. In practice, where the power has to be estimated prospectively, we can only use the
historical data to estimate the entities needed in the prospective power estimation. The subset of
historical control group patients eligible in regard to the current trial could be used for estimation
of these parameters. However, since we had only a limited amount of historical control group
data available, we found that the calculations would be too uncertain for such calculation to be
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reliable. We note that in the case of prospective power estimation, the conservative Guenther-
Schouten estimate may be more practically feasible than the non-conservative estimation, since
more parameters need to be estimated in the latter approach, requiring more extensive consider-
ations regarding sensitivity analysis. However, for the purpose of a post hoc analysis, one might
argue that the non-conservative estimate of the power, albeit being more uncertain, is more ap-
propriate, since the ANCOVA model adjusts for both the raw baseline value and the prognostic
score, which should be taken into account.

According to the trial protocol, the desired power of the study was 90%, which is why figure
7.5 contains the estimated required number of patients for that power level, using the different
models. According to the conservative estimate of the power using digital twins, the number
of required patients in order to obtain the desired power can be reduced by 1 compared to raw
adjustment for HbA1c, while the reduction is 18 compared to the ANOVA model where no ad-
justment is carried out. Using the non-conservative estimate of the power gain from (additional)
adjustment for the prognostic score, the corresponding numbers of the reduction in required
sample size are 11 and 28.

In order to test the validity of the approximated number of participants needed for a power of
90% under the three models, we randomly selected 72, 83 and 100 patients, maintaining an
allocation ratio of r “ 1, and re-estimated the ATE and the power among these patients using
the ANOVA, ANCOVA and digital twin models, respectively. The non-conservative Guenther-
Schouten approximation was used for estimating the power for the DT approach model. In order
to minimise differences due to random variation, we selected patients such that patients contained
in the smaller samples were included in larger samples. The results are summarised in table 7.4

Model Estimated power Sample size ATE estimate ATE SD
ANOVA 0.897 100 0.730 0.185
ANCOVA 0.909 83 0.611 0.172
Digital twin model 0.921 72 0.630 0.169

Table 7.4: Post hoc Guenther-Schouten approximation of power of the different models obtained from the estimated
reduced sample size necessary for obtaining an estimated power of 90%, according to figure 7.5, along
with the estimated ATE and estimated standard deviation (SD) of the ATE estimate.

From the table, we see that it does indeed seem possible to use the digital twin approach to reduce
the sample size while maintaining a desired level of power. This is seen since even though the
sample size is reduced from 83 in the ANCOVA model to 72 in the digital twin approach model,
the power stays approximately at a level of 90%.
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8 | Future Perspectives on the Digital Twins
Approach

In this chapter we will discuss several regulatory considerations in regard to using digital twins
and reflect on possible further developments of the method as well as briefly discussing some
alternative Bayesian approaches for using historical data, some of which have already been used
for approval of drugs under specific circumstances. We will begin by discussing a recent draft
qualification opinion on the use of digital twins in phase II and III RCTs published in March
2022 by EMA [72]. Here we will go through some of the specific concerns that were raised and
relate some of these to relevant aspects of our simulation study conducted in chapter 6 and our
case study conducted in chapter 7. We will then discuss some further developments on the digital
twin method in the form of reflections on possible further improvements and expansions of the
digital twin approach.

8.1 Regulatory Considerations
The 2022 EMA draft qualification opinion relates to the use of prognostic covariate adjustment
(PROCOVATM) as a response to Unlearn.AIs application for qualification of the method from
the Committee for Medicinal Products for Human Use (CMPH). In their application, Unlearn.AI
focused on how the method provides a substantial decrease in standard deviation while control-
ling the type I error rate regardless of the specific prognostic model since the method is a special
case of ANCOVA. They stated that the method is optimal when the prognostic model is highly
correlated with the outcome, as we concluded from equation (5.85). Furthermore, they noted that
there is a substantial dimensionality reduction by using a prognostic score in the ANCOVA model
instead of raw adjustments, and that this makes prospective sample size calculation feasible since
one only need to estimate the correlation between the prognostic model and the outcome and not
a large number of population parameters, as seen in corollary 5.4.1. This is also consistent with
the current EMA and FDA guidelines on covariate adjustment, as described in section 2.3.2. In
this way it does not pose any additional statistical risk over any other pre-specified adjusted anal-
yses. The dimensionality reduction also eliminates the possible problem of overfitting, which we
observed in our simulation study in section 6.2, resulted in an increased type I error.

Regulatory standards provided by FDA and EMA often require drugs to have substantial evidence
in regard to effectiveness from well-controlled trials [73, 74]. Therefore, it seems promising for
the use of the digital twin approach that overall, the CMPH’s response to the application was
positive only with minor concerns, many of which were resolved by Unlearn.AI in a statistical
handbook [75]. The CMPH agreed that the approach of adjusting by a prognostic score would
provide an efficiency gain over other methods of adjustment. They generally agreed that under
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the assumptions stated in theorem 5.3.11 the procedure can achieve a lower variance of the aver-
age treatment effect estimate, if the prognostic score is correlated with the outcome. Based partly
on a simulation study in many ways similar to the one conducted in chapter 6, they acknowledged
that the prognostic covariate adjustment produced lower MSE even when the assumptions were
not strictly fulfilled, and that the results were supported by an empirical application to existing
data, as we saw in chapter 7.

That the method is a special case of ANCOVA was agreed upon by the CMPH but with minor
comments. Specifically, in the design stage of the trial, a prognostic model should be devel-
oped and validated on external data, as well as specifying prognostic covariates in the protocol
to directly adjust for in the analysis. There is also substantial differences in the sample size cal-
culations between the standard approach and the method using prognostic scores. As discussed
in chapter 3, the sample size estimation using a standard approach is based on correlation be-
tween the prognostic covariates included in the model and the outcome. However, most trials
are planned conservatively without taking the gain in adjustment of prognostic covariates into
consideration. The method using prognostic scores uses the estimated correlation between the
prognostic model and the outcome. This means that when conducting a sensitivity analysis, the
methods differ in the sense that uncertainty in the estimated correlation coefficient between the
prognostic model predictions and the outcome should be accounted for through a deflation pa-
rameter. The CMPH agreed that this correlation coefficient should be estimated on a separate
data set to avoid overestimation. However, this would also be necessary if raw covariate ad-
justments are accounted for when using a traditional ANCOVA model. In the analysis stage,
the digital twin approach would further differ in regard to adjustment of the prognostic score.
However, the CMPH agreed that the properties regarding bias and control of type I error rate are
the same as for the ANCOVA method. In addition, they emphasized the large importance of the
prognostic models being trained on data independent of the current trial data for these results to
hold, which is a prerequisite for the method to work, as we saw in theorem 5.3.11.

The CMPH had some concerns in regard to the method. One concern was that, when conduct-
ing a stratified randomisation with the intent to perform a subgroup analysis, the method would
introduce multicollinearity between the prognostic score and any raw covariate included in the
model, including interaction terms if such terms are specified by the model. This multicollinear-
ity could alter the coefficients of these terms. However, Unlearn.AI provided an answer to this
concern stating that the average treatment effect estimate would still be unbiased in this case,
but that estimates related to the subgroup effect(s) would indeed be biased. That is, the method
using prognostic scores is not intended for such kinds of subgroup analyses; hence, another lin-
ear model without adjustment for the prognostic score should be used for estimating subgroup
(interaction) effects. Furthermore, in the context of stratified randomisation it is the standard to
stratify by strong prognostic factors in the randomisation. However, since the prognostic scores
are based on a large set of variables, it is not practical to implement this in the randomisation. Un-
learn.AI clarified that the prognostic score should not be used for stratification and that the trial
statisticians should only consider the strongest prognostic covariates for stratified randomisation,
while keeping in mind that the estimated parameter related to this covariate is biased.
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Another concern raised by the CMPH was that the prognostic score is trained under the condi-
tions in the control arm, which could possibly imply that the correlation between the prognostic
score and the outcome is larger for patients in the control arm than the treatment arm. Thereby
we could encounter unequal residual variance between the two groups possibly leading to an
inflation of the type I error rate. Unlearn.AI suggested to alleviate this problem by using het-
eroskedasticity robust estimation of the ATE estimate variance, such as the sandwich estimator
that we employed in the case study presented in chapter 7. The CMPH agreed to this. However,
we also carried out the simulations in chapter 6 using robust estimation, but we found that this did
not change the results by much. We suspect that robust estimation might have led to more reliable
estimation of the standard deviation if the treatment effect had been more heterogeneous and the
allocation ratio remained different from 1. Furthermore, in regard to the prognostic model, the
CMPH noted that outliers in the data used to fit the prognostic model may be influential points.
Therefore it was recommended by Unlearn.AI that the prognostic model should be supported by
model diagnostics to assess the robustness of the model in regard to large deviations of single
observations.

It could be expected that the current RCT data could be incomplete in regard to some of the
covariates included in the prognostic model. To handle such a problem, a missing data scheme
which only depends on baseline covariates should be prespecified. Also the correlation between
the outcome and the prognostic model may be expected to decrease when some important co-
variates are frequently missing, and this should be taken into considerations when conducting a
sensitivity analysis.

Additionally, the CMPH raised the concern that the method should provide a substantial advan-
tage over ANCOVA with a few covariate adjustments. As discussed in chapter 5 the gain is due
to the non-linear effects captured by the prognostic model. That is, if the true data generating
process does not contain many large non-linearities and interaction effects, the method would not
provide large advantages. Unlearn.AI suggested that in the designing state of a trial one should
determine the correlation between the outcome and a few highly prognostic factors in order to
determine if the efficiency gain from using a prognostic model is considerable compared to using
a standard ANCOVA or ANOVA. Furthermore, a guide on how to conduct a sensitivity analysis
was also published by Unlearn.AI in the previously mentioned handbook [75].

Lastly, the CMPH noted that the sample size should be sufficiently large in order to have enough
data on safety parameters or important subgroups, limiting the possible advantage of using a
digital twin approach. This is especially a concern for large phase III studies where there are often
requirements on the minimum number of subjects needed to be exposed to the drug. However, it
is sometimes not feasible or ethical to use internal controls, for example in the case of paediatric
or rare diseases. In these cases it can be necessary to include historical data. At the moment,
no trial has been approved using the digital twin approach, possibly due to the novelty of the
method. There are, however, examples of drugs that have been approved using historical data.
One such example is described in the next section.
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8.2 Further Developments
Research within the field of leveraging historical data is subject to rapid development. The use
of digital twins in clinical trials is a relatively novel statistical method, and current research is
conducted with the aim of improving the method. The most straightforward way to try and
improve the method is by enhancing the performance of the prognostic model. This could be
carried out by using more complex models in situations where sufficient data is available, which
is the content of the following section. Secondly, in this thesis, we have restricted our attention to
a frequentist approach for using digital twins. Other methods for leveraging historical data rely
on Bayesian borrowing from previously conducted trials. The digital twins method can also be
extended using a Bayesian approach, possibly gaining more power than the frequentist approach.
Lastly, we shortly describe some loose considerations on possible future research on the digital
twins approach.

8.2.1 Prognostic Models
The digital twin approach requires specification of a prognostic model. No matter the choice
and predictive performance of this model, the approach ensures control of the type I error rate
as long as the model is not excessively overspecified, as discussed in section 6.2. However,
as equation (5.85) and our simulation study suggest, the performance of the method relies on
the degree to which the prognostic model is able to exploit non-linear relationships in data to get
strong predictive performance, with the oracle0 estimator providing an upper limit of the possible
gain of the method. In our analyses on simulated and real world data, we restricted ourselves
to consider the random forest model (in combination with the dimensionality reduction method
of PLS), which has a non-comprehensive training procedure, having only a limited number of
tuning parameters. However, much future work in improving the digital twin approach on real
world data could revolve around constructing strong predictive models, which are sometimes
often more complex in terms of fine-tuning parameters.

An example of another class of non-linear prediction model suitable for use as prognostic models
include e.g. feedforward neural networks. Models within this class have the capability of model-
ing complicated correlations between the covariates and the outcome of interest in a data-driven
way. This makes it a suitable prognostic model which should exploit the correlation between the
covariates and the outcome that is beyond a purely linear relationship. The model can be fitted
through the procedure known as backpropagation [76]. In general being an overspecified model
which need estimation of a lot of parameters, risks of overfitting can be alleviated by regularizing
the weight parameters directly or through drop-out learning, thus enabling modelling of complex
relationships without overfitting [63, pp. 389–415] [62, pp. 403–458].

Another type of neural network well-suited for specification of the prognostic model is the class
of models known as (conditional) restricted Boltzmann machines [77, 78]. This is a type of neural
network, which is generative in the sense that it seeks to learn the joint probability distribution of
all covariates. This learned distribution can then be used for sampling, thus generating a complete
clinical record of the digital twin, including the outcome which we seek to predict. This model
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would thus be suitable in case of wanting to perform multiple hypothesis tests, since we need a
complex model that is able to predict several outcomes; particularly the covariates that we wish
to perform tests for.

The (conditional) restricted Boltzmann machine has the possibility of being trained on historical
data from repeated measurements at several time points for each patient, possibly exploiting a
larger portion of information from each patient. Predictions can then be made from baseline val-
ues using a Markov chain structure where repeated measurements are drawn from learned condi-
tional distributions [79]. This approach has been used to forecast the progression of Alzheimer’s
disease by Unlearn.AI [80]. The model can be trained by employing a maximum likelihood
approach using the contrastive divergence procedure [81, 77]. Training can be improved by ad-
ditionally including an adverserial model in the likelihood, so that the model is trained until
this adversarial is unable to distinguish patients sampled from the model from patients sampled
from the learned distribution [82]. Extending the (conditional) restricted Boltzmann machine
with several hidden layers provide a more complex model possibly capable of modelling more
complex relationships [83].

Increasing the sample size of historical data can enable the use of such complex prognostic mod-
els. A way of accelerating the performance of the prognostic models and thus the potential
efficiency gain could be for pharmaceutical companies to share historical data for training prog-
nostic models, which could lead to a large increase in sample size. However, in the context of
borrowing data, considerations have to be made regarding data quality and homogeneity. Pooling
data from multiple sources sets high requirements for professionals gathering and documenting
data as well as professionals curating the data in accordance with the potential difference between
data sources.

8.2.2 Bayesian Approaches to using Historical Data
In 2019, FDA approved a paediatric label expansion for intravenous Benlysta based on a study
where historical data was used [10]. Benlysta was already an approved treatment for adults with
active, autoantibody-positive systemic lupus erythematosus. Since paediatric lupus is very rare
it was not feasible to conduct a fully powered trial and there are also several ethical problems in
regard to exposing children to placebo. Furthermore, the disease shares the same pathophysiol-
ogy and disease manifestations as in adults. For these reasons, the strategy was not to conduct
any hypothesis testing but instead to show directional consistency with the results from the adult
trial by using descriptive statistics.

The method relies on employing Bayesian borrowing of results obtained from adult patients
from previously conducted phase III trials. Specifically, these trials are used as historical data to
construct an "informative prior". Additionally, a (flat) "sceptical" prior, which does not attribute
any belief to the historical data, is constructed. These two priors are then weighted in order to
construct a mixture prior distribution, assigning some percentage of belief in the relevance of
the treatment effect distribution obtained from adult patients. A likelihood constructed from the
paediatric data is then assessed together with the mixture prior in order to construct a posterior
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distribution of the treatment effect from which inference is carried out [10, 84].

FDA wanted the clinical team to examine how large the weight to the prior data should be before
a "tipping point" where the results began to look convincing. In this case the tipping point was
55% weight on the prior data from the adult trials [10]. The FDA stated: "Based on discussion
and feedback obtained from the clinical team, it appears reasonable to assume at least 55%
weight on the relevance of the adult information to the pediatric population and we can therefore
conclude that there is at least 97.5% posterior probability that Benlysta has a positive treatment
effect in pediatric subjects" [85, p. 106].

This example shows how in some cases, it can be necessary to use novel statistical methods to
get approval of a drug. Furthermore, it highlights some of the conditions that made approval
possible, for example that the drug had already been shown to be effective in adults and that
the disease had a similar pathophysiology in children as in adults. In the example, only a small
control group was used due to ethical reasons and since the disease was very rare. For such
rare diseases or for preliminary proof of concept studies, it is relevant to examine the use of
methods for leveraging historical data for single arm trials. We have already peripherally touched
upon the methods of propensity score matching as well as Bayesian borrowing as methods for
doing so. With the digital twin approach, estimated prognostic scores could be used as actual
outcomes of control group patients in single-arm studies to estimate the ATE directly from the
average of individual patient differences between outcomes and prognostic scores, as described
in equation 5.2. However, the problem with strictly controlling the type I error persists in any
of these methods, originating from possible bias due to confounding effects not accounted for,
since patients are not randomised.

In the context of the digital twin method, a less strict approach can be employed by taking a
Bayesian point of view. Currently, Unlearn.AI are developing a Bayesian extension to the digital
twin approach, namely the PROCOVA+TM method. The method is an extension of the frequentist
use of prognostic scores outlined in this thesis in the sense that the estimated prognostic scores are
additionally treated as containing prior information on the true prognostic scores. This can be for-
malised as a prior containing information on parameters of the ANCOVA model used to estimate
the average treatment effect. On one extreme, a strict belief can be taken in the estimated prog-
nostic scores being true, thereby obtaining an ATE estimate based on the single-arm principle
described in the previous paragraph, by adding the digital twins as synthetic control patients. On
the other extreme, we can choose to employ no prior belief in the prognostic model, thereby ob-
taining the frequentist approach, retrieving strict type I error rate control. The Bayesian approach
relies in interpolating between these two extremes in a way that power is gained and the type I
error rate is limited to an acceptable degree. Walsh et al. [53] have shown that the Bayesian
digital twin approach has allowed for further increase in power, but with a less strict control of
the type I error rate. Furthermore, only a single "belief" parameter, which interpolates between
the two extremes, needs to be specified for the method to work, and they suggest a method for
choosing the prior based on the predictive performance on historical data. In addition, they have
shown that under some reasonable conditions, for example that the belief parameter is chosen
appropriately, the method limits the type I error rate [86, 72, 53].
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8.2.3 Future Research

We have explored the digital twin approach restricted to RCTs with a continuous outcome, being
relevant for efficacy trials. However, outcomes measured on other scales are typically also of
interest. It seems plausible that similar advantages of the digital twin approach might be present
for problems involving other types of response variables such as binary, time-to-event data or
repeated measurements. This would entail that the method should be adjusted for the use in
e.g. generalised linear models, survival models and mixed models for repeated measurements.
Furthermore, the method could possibly be used for other estimands than ATE, possibly in other
settings as well.

Another direction for future research could revolve around the case of a heterogeneous treatment
effect; we have explored some results in this scenario, and we saw in the simulation study that
the method seemed robust to heterogeneous effects, but further analytical results regarding this
case remain to be investigated further.
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9 | Conclusion

In this thesis, we have examined approaches for leveraging historical data in current randomised
clinical trials (RCTs) with the aim to increase power while maintaining control over the type I
error probability. We have compared a synthetic control arm (SCA) approach using the preva-
lent method of propensity score matching, commonly used in observational studies, with the
novel statistical method of utilising digital twins to estimate the average treatment effect (ATE)
in RCTs. Specifically, we considered using digital twins with different analysis of covariance
(ANCOVA) model specifications to assess efficiency in the average treatment effect estimator
measuring the efficacy of a medical intervention by a continuous outcome variable. Having laid
out relevant theoretical aspects of randomised clinical trials, AN(C)OVA, sample/power calcu-
lations and the SCA approach using a propensity score matching (PSM) method adapted to the
context of RCTs, we focused on the novel approach of digital twins within two-arm RCTs.

Using theory of influence functions, we were able to derive asymptotic distributions of different
AN(C)OVA model ATE estimators within the digital twins approach. Specifically, we found that
within RCTs, the practically infeasible oracle estimator provides the asymptotically most effi-
cient ATE estimator among the large class of regular and asymptotically linear estimators. For
each patient in the RCT, the oracle ATE estimator adjusts for the true conditional expected out-
comes in the (hypothetical) scenario of both receiving and not receiving treatment, conditioning
on the baseline covariates. When a homogeneous treatment effect is present, it suffices to em-
ploy the oracle0 estimator in order to get an asymptotically efficient estimator. The oracle0 ATE
estimator adjusts only for the prognostic score, being the true conditional expected outcome had
the patients been in the control group (which is the expected outcome of a digital twin).

In practice, estimates of the prognostic scores can be used in place of the true prognostic scores
used by the infeasible oracle0 ATE estimator. Such estimates should be obtained from a prog-
nostic model learned from independent historical data. We showed that under a homogeneous
treatment effect, using a practically feasible ANCOVA ATE estimator, adjusting for an estimated
prognostic score obtained from a reasonable prognostic model, provides an asymptotically effi-
cient ATE estimate. That is, even though the true data generating process is not specified by a
parametric ANCOVA model specification, this practically feasible model provides an asymptoti-
cally efficient ATE estimator within RCTs. Moreover, the gain obtained compared to raw covari-
ate adjustment depends on the degree to which the prognostic model is able to exploit complex
non-linear and interaction effects in the underlying data-generating process, calling for the use of
machine learning models. In accordance with regulatory guidelines, linear relationships between
strongly prognostic covariates are exploited to obtain larger power by raw covariate adjustment
in the ANCOVA model.

We compared the use of the PSM method with different estimators utilising digital twins in a
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simulation study. In estimating the ATE, we generally found that the method of PSM failed
to increase power over the simple ANCOVA method, and in some cases the method, not being
robust to misspecification of the propensity score model, lost control over the type I error rate.
When the historical data had a different covariate distribution than the current RCT data, the
PSM method introduced bias in the estimation of the ATE. Conversely, the digital twin method
was able to maintain control over the type I error even when the prognostic model was biased
and misspecified, and the distribution of the historical data was different than the current RCT
data. Moreover, the method provided a gain in power compared to the ANCOVA method not
leveraging historical data, even in cases when assumptions of analytical results were violated.

In the simulation study, we verified an important robustness property of the digital twins approach
in regard to a worst case scenario of the performance of the prognostic model. Using a prognostic
model estimating the prognostic score at random, we obtained practically the same results as a
similar ANCOVA model not leveraging historical data. Using a machine learning random for-
est prognostic model provided a substantial gain in power over the ANCOVA model in multiple
scenarios. In only one case of an excessively overspecified ANCOVA model, adjustment of esti-
mated prognostic scores led to a slight increase in type I error rate, indicating a potential problem
with using the digital twins method with overfitted models. However, regulatory guidelines pro-
hibit overfitting of the ANCOVA model from occuring in practice, by allowing adjustments for
only one or a few raw baseline covariates, and the problem of controlling the type I error rate
is thus implausible to happen in practice. This was confirmed by all results from the simulation
study mimicking a realistic scenario of both over- and underspecifying the prognostic model, and
adjusting for only a few raw baseline covariates. Even in the case of a heterogeneous treatment
effect combined with a covariate shift in the historical data distribution, the digital twin method
performed better than ANCOVA models not leveraging historical data, thus gaining power while
controlling the type I error rate.

By using real world data from three previously conducted RCTs provided by Novo Nordisk A/S,
we found that the digital twins approach could successfully be employed to decrease the number
of required participants in an RCT investigating the efficacy of bolus insulin FIAsp measured
by change from baseline HbA1c. Specifically, we evaluated the performances of AN(C)OVA
models with raw adjustment for baseline HbA1c as well as models additionally adjusting for the
estimated prognostic scores using a random forest prognostic model, using features extracted
with the partial least squares method. Based on a post hoc estimation of power, we found that
keeping the power at the desired level of 90%, the digital twin approach with this random forest
prognostic model managed to lower the required number of RCT participants to 72, compared to
the 100 and 83 patients required in the ANOVA and ANCOVA models not leveraging historical
data.

In practice, sample size calculations need to be carried out prospectively during the design phase
of a trial, in order to obtain a desired level of power. In our simulation study, we verified the
necessity of performing sensitivity analyses in order to account for potential violations of as-
sumptions employed in our size calculation formulas. For the purpose of prospective power
estimation using digital twins, Unlearn.AI have issued a handbook describing important aspects
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associated with the procedure of using digital twins in RCTs. The handbook contained a com-
prehensive procedure for conducting conservative prospective sample size calculations within
the framework of digital twins in the design phase of the current RCT, in order to be certain that
the method does provide a power gain prior to conducting the RCT. The European Medicines
Agency (EMA) recently issued a draft opinion on the method of digital twins in which usage
of the method is encouraged when conducted in accordance with this handbook. The overall
feedback from EMA was positive, focusing on the method potentially increasing power while
controlling the I error probability.

Future improvements of the method of digital twins could be obtained from employing and fine-
tuning various machine learning prognostic models capable of modelling non-linear and interac-
tion effects, requiring a rich amount of relevant, curated historical data. Other current and future
research areas include the use of Bayesian approaches with digital twins, as well as other esti-
mands of clinical interest, requiring adaptation of the digital twin method to other models than
the ANCOVA model.
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A | AN(C)OVA Model Derivations

This appendix contains derivations related to the ANOVA and ANCOVA models described in
section 2.3.

A.1 ANOVA Model Maximum Likelihood Estimate
We wish to derive explicit expressions for the ML estimator of the ANOVA model in section 2.3.
We will work with the ANOVA model parameterised as

Ywj “ p1 ´ wq�0 ` w�1 ` "wj, j “ 1, 2, . . . , nw, w “ 0, 1, (A.1)

where " “ r"11, "12, . . . , "0n0sJ „ N
`
0, diag

n1`n0
p�2

Y
, �2

Y
, . . . , �2

Y
q
˘

and the Ywj’s are mutually
independent. This reparametrisation from (2.17) corresponds to �W “ �1 ´ �0. Derivations
could be carried out similarly for the model from the original parametrisation, but calculations
are simplified by the reparametrisation. The the design matrix of the reparametrised model is
given by

D “

»

————————–

0 1

...
...

0 1

1 0

...
...

1 0

fi

��������fl

, (A.2)

with the first column being indicator of being in the control group, and the second column
being indicator of belonging to the treatment group. For a vector of the response variables
Y “ rY11, . . . , Y1n1 , Y01, . . . , Y0n0sJ, we now obtain the ML estimator as

«
p�0
p�1

�
“ pDJDq´1DJY

“
«
n0 0

0 n1

�´1 «
0 ¨ ¨ ¨ 0 1 ¨ ¨ ¨ 1

1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0

�
rY11, . . . , Y1n1 , Y01, . . . , Y0n0sJ

“
«
n´1
0 0

0 n´1
1

�«∞
n0

w“1 Y0i∞
n1

w“1 Y1i

�
“

«
Y 0

Y 1

�
.

(A.3)
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A.2 ANOVA Model Variance Estimate
Equation (A.3) implies that the usual unbiased variance of the MLE is given by

p�2
Y

“ ||Y ´Dp�||2
n1 ` n0 ´ 2

“
∞1

w“0

∞
nwpnq
j“1

´
Ywj ´ Y w

¯2

n1 ` n0 ´ 2
“ S2

Y
, (A.4)

where the last equality follows directly from the expression of (3.25).

A.3 ANCOVA Model Maximum Likelihood Estimate
All derivations are based on [28]. We wish to derive explicit expressions of the MLE and the
variance of the treatment estimate for the ANCOVA model presented in equation (3.38). First,
we determine the design matrix as

D “

»

————————–

0 1 X11
...

...
...

0 1 X1n1

1 0 X01
...

...
...

1 0 X0n0

fi

��������fl

, (A.5)

with the two first columns being indicators of belonging to the control- and treatment groups
w “ 0 and w “ 1, respectively. This implies that

DJD “

»

—–
n0 0 n0X0

0 n1 n1X1

n0X0 n1X1

∞1
w“0

∞
nw

j“1 X
2
wj

fi

�fl , (A.6)

with Xw being the empirical mean of X for patients in group w. Since we have defined a
normal linear model with response vector Y and design matrix D, the MLE is given by p� “
pDJDq´1DJY.

We now show that pDJDq´1 “ AS´1
xx

AJ ` diag3

`
n´1
0 , n´1

1 , 0
˘

with A “
”
X0 X1 ´ 1

ıJ
and

Sxx “ ∞1
w“0

∞
nw

j“1pXwj ´ Xwq2. Since we have

AS´1
xx

AJ “ 1
∞1

w“0

∞
nw

j“1pXwj ´ Xwq2

»

—–
X

2
0 X1X0 ´X0

X1X0 X
2
1 ´X1

´X0 ´X1 1

fi

�fl , (A.7)
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we conclude that for Q :“ ´n0X
2
0 ´ n1X

2
1 ` ∞

w,j
X2

wj
,

DJD
´
AS´1

xx
AJ ` diag3

`
n´1
0 , n´1

1 , 0
˘¯

“ 1
∞1

w“0

∞
nw

j“1pXwj ´ Xwq2

»

—–
0 0 0

0 0 0

´X0Q ´X1Q Q

fi

�fl `

»

—–
1 0 0

0 1 0

X0 X1 0

fi

�fl “ I,
(A.8)

where the last equality follows since

Sxx “
1ÿ

w“0

nwÿ

j“1

pXwj ´ Xwq2 “
1ÿ

w“0

nwÿ

j“1

´
X2

wj
` X

2
w

´ 2XwjXw

¯

“
1ÿ

w“0

nwÿ

j“1

X2
wj

`
n1ÿ

j“1

´
X

2
1 ´ 2X1jX1

¯
`

n0ÿ

j“1

´
X

2
0 ´ 2X0jX0

¯

“
1ÿ

w“0

nwÿ

j“1

X2
wj

` n1X
2
1 ´ 2n1X

2
1 ` n0X

2
0 ´ 2n0X

2
0 “ Q.

(A.9)

For a vector of the response variables Y “ rY11, . . . , Y1n1 , Y01, . . . , Y0n0sJ, we now obtain the
MLE as

»

—–
p�0
p�1
p�X

fi

�fl “ pDJDq´1DJY “
´
AS´1

xx
AJ ` diag3

`
n´1
0 , n´1

1 , 0
˘¯
DJY

“
˜
S´1
xx

»

—–
X

2
0 X1X0 ´X0

X1X0 X
2
1 ´X1

´X0 ´X1 1

fi

�fl

»

—–
0 . . . 0 1 . . . 1

1 . . . 1 0 . . . 0

X11 . . . X1n1 X01 . . . X0n0

fi

�fl

` diag3

`
n´1
0 , n´1

1 , 0
˘

»

—–
0 . . . 0 1 . . . 1

1 . . . 1 0 . . . 0

X11 . . . X1n1 X01 . . . X0n0

fi

�fl

¸
Y (A.10)

“
˜
S´1
xx

»

—–
X1X0 ´ X0X11 . . . X1X0 ´ X0X1n1 X

2
0 ´ X0X01 . . . X

2
0 ´ X0X0n0

X
2
1 ´ X1X11 . . . X

2
1 ´ X1X1n1 X1X0 ´ X1X01 . . . X1X0 ´ X1X0n0

X11 ´ X1 . . . X1n1 ´ X1 X01 ´ X0 . . . X0n0 ´ X0

fi

�fl

`

»

——–

»

—–
0 . . . 0

n´1
1 . . . n´1

1

0 . . . 0

fi

�fl

3ˆn1

»

—–
n´1
0 . . . n´1

0

0 . . . 0

0 . . . 0

fi

�fl

3ˆn0

fi

��fl

¸
Y
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“ S´1
xx

1ÿ

w“0

nwÿ

j“1

»

————–

´
XwX0 ´ X0Xwj

¯
Ywj´

X1Xw ´ X1Xwj

¯
Ywj´

Xwj ´ Xw

¯
Ywj

fi

����fl
`

»

—–
n´1
0

∞
n0

j“1 Y0j

n´1
1

∞
n1

j“1 Y1j

0

fi

�fl .

Thereby, defining Sxy :“ ∞1
w“0

∞
nw

j“1

´
Xwj ´ Xw

¯
Ywj , we have p�X “ S´1

xx
Sxy. Furthermore,

we see that for k “ 0, 1

p�k “ S´1
xx

Xk

1ÿ

w“0

nwÿ

j“1

´
Xw ´ Xwj

¯
Ywj ` n´1

k

nkÿ

j“1

Ykj “ ´S´1
xx

XkSxy ` Y k

“ ´p�XXk ` Y k.

(A.11)

Later, we will use that p�X can also be expressed as

p�X “ S´1
xx

1ÿ

w“0

nwÿ

j“1

´
Xwj ´ Xw

¯ ´
Ywj ´ Y w

¯

“
∞1

w“0

∞
nw

j“1

´
Xwj ´ Xw

¯ ´
Ywj ´ Y w

¯

∞1
w“0

∞
nw

j“1pXwj ´ Xwq2
,

(A.12)

which is true since

1ÿ

w“0

nwÿ

j“1

´
Xwj ´ Xw

¯
Y w “

1ÿ

w“0

Y w

nwÿ

j“1

´
Xwj ´ Xw

¯

“
1ÿ

w“0

Y w

”
nwXw ´ nwXw

ı
“ 0.

(A.13)

Using equation (A.11), the estimated treatment effect is given by

p�1 ´ p�0 “ Y 1 ´ Y 0 ´
´
X1 ´ X0

¯
p�X . (A.14)

Tang [28] has shown that when X is p-dimensional, that is, X “
`
X1, X2, . . . , Xp

˘
, we get

equivalently that

p�1 ´ p�0 “ Y 1 ´ Y 0 ´
pÿ

l“1

´
X

l

1 ´ X
l

0

¯
p�Xl . (A.15)
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A.4 (Estimated) Variance of the ANCOVA ATE Estimator
All derivations are based on [28] and [25]. We now wish to estimate the variance of this treatment
effect estimator. First, we note that for the normal linear model,

p� “
´

p�0, p�1, p�X
¯J

„ N3

´
�, �2pDJDq´1

¯
, (A.16)

giving that the estimated treatment effect is unbiased, and that

Var
´

p�
¯

“ �2
´
AS´1

xx
AJ ` diag3

`
n´1
0 , n´1

1 , 0
˘¯

“ �2

¨

˚̊
˝S´1

xx

»

—–
X

2
0 X1X0 ´X0

X1X0 X
2
1 ´X1

´X0 ´X1 1

fi

�fl `

»

—–
n´1
0 0 0

0 n´1
1 0

0 0 0

fi

�fl

˛

‹‹‚.
(A.17)

From this covariance matrix, we can directly see expressions of variances and covariances be-
tween the control and treatment estimators given as

Var
´

p�w
¯

“ �2pS´1
xx

X
2
w

` n´1
w

q, w “ 0, 1

Cov
´

p�0, p�1
¯

“ �2pS´1
xx

X1X0q.
(A.18)

Therefore we have

Var
´

p�1 ´ p�0
¯

“ �2
´
S´1
xx

pX2
1 ` X

2
0q ` n´1

1 ` n´1
0 ´ 2S´1

xx
X1X0

¯

“ �2
´
S´1
xx

pX1 ´ X0q2 ` n´1
1 ` n´1

0

¯
.

(A.19)

We can now express the factor in the parenthesis with respect to a pooled variance estimate of
the covariate included in the ANCOVA model, since a pooled variance estimate (as in equation
(3.42)) can be expressed as

SX “

d∞1
w“0

∞
nw

j“1pXwj ´ Xwq2
n ´ 2

, (A.20)

giving that S2
X

pn ´ 2q “ Sxx. Thus,

Var
´

p�1 ´ p�0
¯

“ �2

˜
pX1 ´ X0q2
S2
X

pn ´ 2q ` n´1
1 ` n´1

0

¸
. (A.21)
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Using the usual unbiased estimator

p�2 “ pY ´Dp�qJpY ´Dp�q
n ´ 3

„ �2

n ´ 3
�2pn ´ 3q. (A.22)

of �, we obtain an unbiased estimator of the treatment effect variance as

yVar
´

p�1 ´ p�0
¯

“ p�2

˜
pX1 ´ X0q2
S2
X

pn ´ 2q ` n´1
1 ` n´1

0

¸
(A.23)

By inserting the expression for p�X from equation (A.12) in equation (A.22) we can express p�2

as

pn ´ 3qp�2

“
1ÿ

w“0

nwÿ

j“1

´
Ywj ´ pp�w ` Xwj

p�Xq
¯2

“
1ÿ

w“0

nwÿ

j“1

´
Ywj ´ p´p�XXw ` Y w ` Xwj

p�Xq
¯2

“
1ÿ

w“0

nwÿ

j“1

´
pYwj ´ Y wq ´ p�XpXwj ´ Xwq

¯2

“
1ÿ

w“0

nwÿ

j“1

”
pYwj ´ Y wq2 ` p�2

X
pXwj ´ Xwq2 ´ 2p�XpYwj ´ Y wqpXwj ´ Xwq

ı

“
1ÿ

w“0

nwÿ

j“1

pYwj ´ Y wq2 ` p�2
X

1ÿ

w“0

nwÿ

j“1

pXwj ´ Xwq2 ´ 2p�X
1ÿ

w“0

nwÿ

j“1

pYwj ´ Y wqpXwj ´ Xwq

“
1ÿ

w“0

nwÿ

j“1

pYwj ´ Y wq2 (A.24)

`

„∞1
w“0

∞
nw

j“1

´
Xwj ´ Xw

¯ ´
Ywj ´ Y w

¯⇢2

∞1
w“0

∞
nw

j“1pXwj ´ Xwq2
´ 2

„∞1
w“0

∞
nw

j“1

´
Xwj ´ Xw

¯ ´
Ywj ´ Y w

¯⇢2

∞1
w“0

∞
nw

j“1pXwj ´ Xwq2

“
1ÿ

w“0

nwÿ

j“1

pYwj ´ Y wq2 ` p⇢2
1ÿ

w“0

nwÿ

j“1

´
Ywj ´ Y w

¯2

´ 2p⇢2
1ÿ

w“0

nwÿ

j“1

´
Ywj ´ Y w

¯2

“ p1 ´ p⇢2q
1ÿ

w“0

nwÿ

j“1

pYwj ´ Y wq2,
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where we have defined

p⇢ “
∞1

w“0

∞
nw

j“1pXwj ´ XwqpYwj ´ Y wq
b∞1

w“0

∞
nw

j“1pXwj ´ Xwq2∞1
w“0

∞
nw

j“1pYwj ´ Y wq2
(A.25)

as a pooled estimate of the correlation between X and Y .

Now, it follows from equations (A.19) and (A.24) that

yVar
´

p�1 ´ p�0
¯

“ p1 ´ p⇢2q
∞1

w“0

∞
nw

j“1pYwj ´ Y wq2
n ´ 3

´
S´1
xx

pX1 ´ X0q2 ` n´1
1 ` n´1

0

¯

“ p1 ´ p⇢2q
∞1

w“0

∞
nw

j“1pYwj ´ Y wq2
n ´ 3

¨

˚̊
˝

´
X1 ´ X0

¯2

S2
X

pn ´ 2q ` n´1
1 ` n´1

0

˛

‹‹‚.

(A.26)

A.5 Positive Semidefiniteness of Covariance Matrix Difference
In example 2.3.1, where we investigate the effect of overspecification in the ANCOVA model on
the estimator variances, we need the following lemma.

Lemma A.5.1.
For covariance matrices A and B, B ´ A is positive semidefinite if and only if A´1 ´ B´1 is
positive semidefinite. û
Proof. We will show one implication, specifically that if B ´ A is positive semidefinite, then
A´1 ´ B´1 is positive semidefinite, and the other implication then follows immediately.

Being covariance matrices, A and B are strictly positive definite and hence invertible with a
well-defined square root. For a general positive definite matrix G, its inverse and square root are
symmetric, so

G “ G1{2IG1{2

I “ G´1{2GG´1{2,
(A.27)

where the latter expression is obtained by multiplying the left- and right hand sides with G´1{2

from both sides.

For a general positive semidefinite matrix N , CJNC is also positive semidefinite for C being
any conformable matrix. From this fact, assuming that B ´ A is positive semidefinite, using the
second relation in (A.27) with A in place of G, and defining M :“ A´1{2BA´1{2, we get that

A´1{2pB ´ AqA´1{2 “ A´1{2BA´1{2 ´ A´1{2AA´1{2 “ A´1{2BA´1{2 ´ I “ M ´ I (A.28)
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is also positive semidefinite. Using that M has an inverse and square root, due to being positive
definite, we get that

M´1{2pM ´ IqM´1{2 “ I ´ M´1 “ I ´ A1{2B´1A1{2 (A.29)

is also positive semidefinite. Multiplying with A´1{2 from both sides and using that the relations
in equation (A.27) also hold for A´1, we get that

A´1{2
´
I ´ A1{2B´1A1{2

¯
A´1{2 “ A´1{2IA´1{2 ´ A´1{2A1{2B´1A1{2A´1{2

“ A´1 ´ B´1
(A.30)

is also positive semidefinite. ⌅
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B | FWER Bounds for Multiple Testing Procedures

In this appendix, we show for all presented multiple testing procedures in section 3.6, that the
FWER is bounded.

B.1 Fixed Testing Sequence
Proposition B.1.1.
The FWER for the fixed testing sequence with each hypothesis tested at significance level ↵ is
bounded by ↵. û
Proof. We denote by si the number of non-rejected hypotheses for the first i hypotheses in the
sequence. Then, we can regard ↵ as a function of si, such that

↵psiq “
#
↵, if si “ 0

0, if si ° 0
. (B.1)

To prove that the FWER is bounded by ↵ for this procedure, we begin by assuming that we
have m hypotheses that we want to test and that m0 of these are true. The true hypotheses
are denoted by H1

0,H2
0, . . . ,Hm0

0 with p-values p1, p2, . . . , pm0 . We denote the m ´ m0 false
hypotheses as Hm0`1

0 ,Hm0`2
0 , . . . ,Hm

0 . According to the fixed testing sequence, we should order
the hypotheses before testing. In the following, we will consider a specific ordering and a general
ordering.

Let us first assume that we order the testing such that the m ´ m0 false hypotheses are tested
first. Furthermore we assume that the p-values pm0`1 “ pm0`2 “ ¨ ¨ ¨ “ pm “ 0 for the
false hypotheses Hm0`1

0 ,Hm0`2
0 , . . . ,Hm

0 . This means that the false hypotheses are all correctly
rejected, so that we do not make any type II errors. This configuration is now denoted L. In that
case we have

FWERL “ Ppp1 † ↵q “ ↵, (B.2)

because if p1 • ↵ the procedure would stop, and no type I errors could occur; that is, the event
tp1 † ↵u contains all events in which at least one type I error occurs. We now wish to compare
the FWER under this configuration with the FWER under a general configuration.

Let us now consider the events EK and EL that no false rejections (that is, no type I errors) are
made under a general configuration K and the configuration L, respectively. Denote by tK

i
the
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number of non-rejected hypotheses after testing i true hypotheses under configuration K, and
equivalently for L. Then we have

EK “
m0£

i“1

"
pi • ↵

´
tK
i´1

¯*

EL “
m0£

i“1

"
pi • ↵

´
tL
i´1

¯*
“ tp1 • ↵u .

(B.3)

When EL occurs, we must have tL
i

“ i for i “ 1, 2, . . . ,m0; configuration L tests all the false
hypotheses first, and we know that they are all rejected, so we know tL0 “ 0, and when testing
the following m0 true hypotheses, they must be non-rejected under EL. When EK occurs, we
must have tK

i
• i for i “ 1, 2, . . . ,m0; for configuration K, the false hypotheses potentially

contribute to the number of non-rejected hypotheses, and all true hypotheses must still be non-
rejected under EK . Since ↵ptq is a decreasing function of t, we must then have ↵

`
tK
i

˘
§ ↵

`
tL
i

˘
,

so that EL Ñ EK . Thus, we get the inequality in

FWERK “ 1 ´ PpEKq § 1 ´ PpELq “ FWERL “ ↵. (B.4)

Thus, for any configuration K of testing the m hypotheses in a fixed testing sequence, the prob-
ability of making a type I error is bounded by ↵ [87]. ⌅

B.2 Bonferroni Corrections
Proposition B.2.1.
The FWER for the simple Bonferroni method is bounded by ↵. û
Proof. The Bonferroni correction method is based on Bonferroni’s inequality, which states that
for a countable set of events A1, A2, A3, . . .,

P
˜ 8§

i“1

Ai

¸
§

8ÿ

i“1

PpAiq. (B.5)

If we again let H1
0,H2

0, . . . ,Hm0
0 be the true hypotheses, we obtain for the simple Bonferroni

method that

FWER “ P
˜

m0§

i“1

tpi † ↵iu
¸

§
m0ÿ

i“1

P ppi † ↵iq “
m0ÿ

i“1

↵i § ↵. (B.6)

⌅
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Proposition B.2.2.
The FWER for the Holm’s sequentially rejective Bonferroni method is bounded by ↵. û
Proof. The Bonferroni-Holm procedure also ensures that the FWER is bounded by ↵, as seen
by the following argument. Let Hpkq

0 be the first wrongly rejected true hypothesis (that is, the
first type I error). Then Hp1q

0 ,Hp2q
0 , . . . ,Hpk´1q

0 are correctly rejected false hypotheses. Using the
same notation as in example 3.6.1, since k ´ 1 § m ´ m0, we have 1

m´k`1 § 1
m0

. Furthermore,
since Hpkq

0 is rejected, we have

ppkq † ↵

m ´ k ` 1
§ ↵

m0
. (B.7)

If miniPt1,2,...,m0u pi • ↵

m0
, we do not reject any of the true hypotheses. Thus,

FWER § P
ˆ

min
iPt1,2,...,m0u

pi † ↵

m0

˙
“ P

˜
m0§

i“1

"
pi † ↵

m0

*¸

§
m0ÿ

i“1

P
ˆ
pi † ↵

m0

˙
“ ↵,

(B.8)

where the first inequality follows since the event of rejecting at least one true hypothesis is a
subset of the event that miniPt1,2,...,m0u pi § ↵

m0
. ⌅
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C | Theoretical Properties of Digital Twins

C.1 Efficient Influence Functions

C.1.1 Lemma 5.2.3

In the proof of lemma 5.2.3 we want to derive the Gâteaux derivative of the ATE. In this appendix
we will derive equation (5.26) in further details. We will first inspect the part of the integrand in
equation (5.25) that depends on t. Under regularity conditions, we are allowed to exchange the
order of integration and the Gâteaux derivative. Moreover, we can use the product- and chain
rule when taking the Gâteaux derivative. Hence, using shorthand notation and denoting by f 1|t“0

the Gâteaux derivative of f with respect to t, we get that
ˆ
ftpx, 1, yqftpxq

ftpx, 1q

˙1 ����
t“0

“
˜`

ftpx, 1, yqftpxq
˘1
ftpx, 1q ´ f 1

t
px, 1qftpx, 1, yqftpxq

ftpx, 1q2

¸ ����
t“0

“
ˆ
f 1
t
px, 1, yqftpxqftpx, 1q

ftpx, 1q2 ` ftpx, 1, yqf 1
t
pxqftpx, 1q

ftpx, 1q2 ´ f 1
t
px, 1qftpx, 1, yqftpxq

ftpx, 1q2
˙ ����

t“0

“
ˆ
f 1
t
px, 1, yqftpxq
ftpx, 1q ` ftpx, 1, yqf 1

t
pxq

ftpx, 1q ´ f 1
t
px, 1qftpx, 1, yqftpxq

ftpx, 1q2
˙ ����

t“0

“
˜“

x˚,w˚,y˚px, 1, yq ´ ftpx, 1, yq
‰
ftpxq

ftpx, 1q ` ftpx, 1, yq
“

x˚pxq ´ ftpxq
‰

ftpx, 1q

´
“

x˚,w˚px, 1q ´ ftpx, 1q
‰
ftpx, 1, yqftpxq

ftpx, 1q2

¸�����
t“0

(C.1)

“
“

x˚,w˚,y˚px, 1, yq ´ fpx, 1, yq
‰
fpxq

fpx, 1q ` fpx, 1, yq
“

x˚pxq ´ fpxq
‰

fpx, 1q

´
“

x˚,w˚px, 1q ´ fpx, 1q
‰
fpx, 1, yqfpxq

fpx, 1q2

“ x˚,w˚,y˚px, 1, yqfpxq
fpx, 1q ´ fpx, 1, yqfpxq

fpx, 1q ` x˚pxqfpx, 1, yq
fpx, 1q ´ fpxqfpx, 1, yq

fpx, 1q

´ x˚,w˚px, 1qfpx, 1, yqfpxq
fpx, 1q2 ` fpx, 1qfpx, 1, yqfpxq

fpx, 1q2

“ x˚,w˚,y˚px, 1, yqfpxq
fpx, 1q ´ x˚,w˚px, 1qfpx, 1, yqfpxq

fpx, 1q2 ` x˚pxqfpx, 1, yq
fpx, 1q ´ fpx, 1, yqfpxq

fpx, 1q ,
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where the first equality follows from the chain- and product rules. The fourth equality follows
from applying lemma 5.2.2 to all Gâteaux derivatives of ft. Thus, when taking the Gâteaux
derivative of (5.25), we get

d 1pFtq
dt

����
t“0

“
ª ª

y x˚,w˚,y˚px, 1, yq fpxq
fpx, 1q dy dx ´

ª ª
y x˚,w˚px, 1qfpx, 1, yqfpxq

fpx, 1q2 dy dx

`
ª ª

x˚pxqyfpx, 1, yq
fpx, 1q dy dx ´

ª ª
y
fpx, 1, yqfpxq

fpx, 1q dy dx. (C.2)

We will now consider these four integrals one by one. From equation (5.25), we immediately
recognise the last integral as  1pF q. The first integral can be expressed as

ª ª
y x˚,w˚,y˚px, 1, yq fpxq

fpx, 1q dy dx “ w˚p1q
ª ª

x˚,y˚px, yqy fpxq
fpx, 1q dy dx

“ w˚p1q
ª ª

x˚,y˚px, yqy 1

fp1 |xq dy dx

“ w˚p1q
ª

y˚pyqy dy

ª
x˚pxq 1

f p1 | xq dx

“ w˚p1q
ª
y dHy˚pyq

ª
1

f p1 | xq dHx˚pxq

“ w˚p1q
f p1 | x˚qy

˚.

(C.3)

The second integral in (C.2) can be expressed as

ª ª
y x˚,w˚px, 1qfpx, 1, yqfpxq

fpx, 1q2 dy dx “ w˚p1q
ª ª

x˚pxqyfpx, 1, yqfpxq
fpx, 1q2 dy dx

“ w˚p1q
ª ª

y
fpx, 1, yq
fpx, 1q

fpxq
fpx, 1q dy dHx˚pxq

“ w˚p1q
ª ª

y
fpx, 1, yq
fpx, 1q

1

fp1 |xq dy dHx˚pxq

“ w˚p1q
ª

1

fp1 |xq

ª
yfpy |x, 1q dy dHx˚pxq

“ w˚p1q
f p1 | x˚q

ª
yfpy |x˚, 1q dy

“ w˚p1q
f p1 | x˚q EF rY | X “ x˚,W “ 1s

“ w˚p1q
f p1 | x˚q�1px

˚, F q.

(C.4)
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For the third integral in (C.2), we get that
ª ª

x˚pxqyfpx, 1, yq
fpx, 1q dy dx “

ª ª
x˚pxqyf py | x, 1q dy dx

“ EF rY | X “ x˚,W “ 1s “ �1px˚, F q.
(C.5)

Using both the definition of the influence function in equation (5.14) as well as equations (C.2)
to (C.5), we thus get

d 1pFtq
dt

����
t“0

“ w˚p1q
f p1 | x˚qy

˚ ´ w˚p1q
f p1 | x˚q�1px

˚, F q ` �1px˚, F q ´ 1pF q

“ w˚p1q
f p1 | x˚q

`
y˚ ´ �1px˚, F q

˘
` �1px˚, F q ´ 1pF q “ '1px˚, w˚, y˚q.

(C.6)

C.2 Theorem 5.3.3

C.2.1 Inverse Matrix of ErDJDs
We wish to determine the first factor ErDJDs´1 in equation (5.52). We begin by writing

DJD “

»

—–
1 W X
W W WX
XJ XJW XJX,

fi

�fl , (C.7)

so

ErDJDs “

»

—–
1 ErW s ErXs
ErW s ErW s ErW sErXs
ErXJs ErXJsErW s ErXJXs

fi

�fl , (C.8)

using that CovpW,Xq “ 0 for an RCT. We propose a form of the inverse and check the validity
of the inverse by multiplying by equation (C.8) and see that we get the identity. We propose that

E
”
DJD

ı´1

“

»

—–

1
1´ErW s ` ErXsVarpXq´1 ErXJs ´ 1

1´ErW s ´ErXsVarrXs´1

´ 1
1´ErW s

1
Er1´W sErW s 0

´
`
ErXsVarpXq´1

˘J
0 VarpXq´1

fi

�fl .

(C.9)

To see that this is truly the inverse of ErDJDs´1, we carry out calculations for each (block-)entry
of ErDJDsErDJDs´1.
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Entry p1, 1q:

1

1 ´ ErW s ` ErXsVarpXq´1 ErXJs ´ ErW s
1 ´ ErW s ´ ErXsVarpXq´1 ErXJs “ 1. (C.10)

Entry p1, 2q:

´ 1

1 ´ ErW s ` ErW s
Er1 ´ W sErW s “ 0. (C.11)

Block-entry p1, 3q:

´ErXsVarpXq´1 ` ErXsVarpXq´1 “ 0. (C.12)

Entry p2, 1q:

ErW s
1 ´ ErW s ` ErW sErXsVarpXq´1 ErXJs ´ ErW s

1 ´ ErW s ´ ErW sErXsVarpXq´1 ErXJs “ 0.

Entry p2, 2q:

´ ErW s
1 ´ ErW s ` ErW s

Er1 ´ W sErW s “ 1

Er1 ´ W s ´ ErW s
Er1 ´ W s “ 1 ´ ErW s

Er1 ´ W s “ 1. (C.13)

Block-entry p2, 3q:

´ErW sErXsVarpXq´1 ` ErW sErXsVarpXq´1 “ 0. (C.14)

Block-entry p3, 1q:

ErXJs
1 ´ ErW s ` ErXJsErXsVarpXq´1 ErXJs ´ ErXJsErW s

1 ´ ErW s ´ ErXJXsVarpXq´1 ErXJs

“ ErXJs
1 ´ ErW s ` ErXJsErXsVarpXq´1 ErXJs ´ ErXJsErW s

1 ´ ErW s
´

´
VarpXq ` ErXJsErXs

¯
VarpXq´1 ErXJs (C.15)

“ ErXJs
1 ´ ErW s ´ ErXJsErW s

1 ´ ErW s ´ ErXJs

“ ErXJsp1 ´ ErW sq
1 ´ ErW s ´ ErXJs “ 0.
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Block-entry p3, 2q:

´ ErXJs
1 ´ ErW s ` ErXJsErW s

Er1 ´ W sErW s “ 0. (C.16)

Block-entry p3, 3q:

´ ErXJsErXsVarpXq´1 ` ErXJXsVarpXq´1

“ ´ ErXJsErXsVarpXq´1 `
´
VarpXq ` ErXJsErXs

¯
VarpXq´1

“ Ip.

(C.17)

C.2.2 True parameters

We multiply the expressions (5.55) and (5.54) to get the true � “ E
“
DJD

‰´1 ErDJY s.
For the first entry of � “ p�0, �W , �XqJ, we get

�0 “ ErY s
1 ´ ErW s ` ErXsVarpXq´1 ErXJsErY s ´ ErW sErY p1qs

1 ´ ErW s
´ ErXsVarpXq´1

´
CovpXJ, Y q ` ErXJsErY s

¯

“ ErY s ´ ErW sErY p1qs
1 ´ ErW s ´ ErXsVarpXq´1 CovpXJ, Y q

“ ErY ´ WY p1qs
1 ´ ErW s ´ ErXsVarpXq´1 CovpXJ, Y q

“ Erp1 ´ W qY p0qs
1 ´ ErW s ´ ErXsVarpXq´1 CovpXJ, Y q

“ ErY p0qs ´ ErXsVarpXq´1 CovpXJ, Y q,

(C.18)

using in the fourth equality that Y “ WY p1q ` p1 ´ W qY p0q.

For the second entry, we get

�W “ ´ ErY s
1 ´ ErW s ` ErW sErY p1qs

Er1 ´ W sErW s

“ ErY p1q ´ Y s
1 ´ ErW s

“ ErY p1q ´ WY p1q ´ p1 ´ W qY p0qs
1 ´ ErW s

“ Erp1 ´ W qY p1q ´ p1 ´ W qY p0qs
1 ´ ErW s

“ ErY p1qs ´ ErY p0qs.

(C.19)
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For the third "entry" (with dimension p being the same as that of X), we get

�X “ ´
`
ErXsVarpXq´1

˘J ErY s ` VarpXq´1
´
CovpXJ, Y q ` ErXJsErY s

¯

“ ´ VarpXq´1 ErXJsErY s ` VarpXq´1 CovpXJ, Y q ` VarpXq´1 ErXJsErY s
“ VarpXq´1 CovpXJ, Y q

(C.20)

C.3 Theorem 5.3.4

Having observations D “ p1,W, rX,W rXq, we can use the expression of � “ p�0, �W , �X , �WˆXqJ

in equation (5.56), with p rX,W rXq playing the role of X . Specifically, we get

� “

¨

˚̊
˝

ErY p0qs
ErY p1qs ´ ErY p0qs
Var

´
p rX,W rXq

¯´1

Cov
´

p rX,W rXqJ, Y
¯

˛

‹‹‚, (C.21)

using also that X is demeaned.

We now rewrite the last 2p-dimensional entry of �. To start, we will derive the inverse matrix

Var
´

p rX,W rXq
¯´1

. One can verify that
«
⌥VarpW rXq ´⌥Covp rX,W rXq
´⌥Covp rX,W rXqJ

⌥VarpXq

�
, (C.22)

where ⌥, defined as

⌥ “
´
VarpXqVarpW rXq ´ Covp rX,W rXqCovp rX,W rXqJ

¯´1
(C.23)

is the inverse of

Var
´

p rX,W rXq
¯

“
«
VarpXq Covp rX,W rXq
Covp rX,W rXqJ VarpW rXq

�
. (C.24)

In the following, we will use the relations

VarpW rXq “ CovpW rX,W rXq “ ErW rXJ rXs “ ⇡1 VarpXq
Covp rX,W rXq “ Er rXJW rXs “ ⇡1 VarpXq
CovpW rXJ, Y q “ ErW rXJY s “ E

”
W rXJ `

WY p1q ` p1 ´ W qY p0q
˘ı

“ ErW rXJY p1qs “ ⇡1 Er rXY p1qs “ ⇡1 Cov
´

rX, Y p1q
¯
,

(C.25)
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which are obtained by using that X and W are independent, W 2 “ W and W p1 ´ W q “ 0.
Furthermore, we will use that ⌥ can be expressed as

⌥ “
´
VarpXqVarpW rXq ´ Covp rX,W rXqCovp rX,W rXqJ

¯´1

“
`
⇡1 VarpXq2 ´ ⇡2

1 VarpXq2
˘´1 “

`
⇡1p1 ´ ⇡1qVarpXq2

˘´1

“
`
⇡1⇡0 VarpXq2

˘´1 “ 1

⇡1⇡0
VarpXq´2.

(C.26)

Using these relations and the expression of the inverse in equation (C.22), we find that the last
2p-dimensional entry of � can be expressed as

Var
´

p rX,W rXq
¯´1

Cov
´

p rX,W rXqJ, Y
¯

“
«
⌥VarpW rXq ´⌥Covp rX,W rXq
´⌥Covp rX,W rXqJ

⌥VarpXq,

�«
Covp rXJ, Y q
CovpW rXJ, Y q

�

“

»

—–
⌥

´
VarpW rXqCovp rXJ, Y q ´ Covp rX,W rXqCovpW rXJ, Y q

¯

´⌥
´
Covp rX,W rXqJ Covp rXJ, Y q ´ VarpXqCovpW rXJ, Y q

¯

fi

�fl (C.27)

“

»

—–
1

⇡0⇡1
VarpXq´2

´
VarpW rXqCovp rXJ, Y q ´ Covp rX,W rXqCovpW rXJ, Y q

¯

1
⇡0⇡1

VarpXq´2
´

´Covp rX,W rXqJ Covp rXJ, Y q ` VarpXqCovpW rXJ, Y q
¯

fi

�fl

“

»

———–

1
⇡0⇡1

VarpXq´2

ˆ
⇡1 VarpXqCovp rXJ, Y q ´ ⇡2

1 VarpXqCov
´

rXJ, Y p1q
¯˙

1
⇡0⇡1

VarpXq´2

ˆ
´⇡1 VarpXqCovp rXJ, Y q ` ⇡1 VarpXqCov

´
rXJ, Y p1q

¯˙

fi

���fl

“

»

———–

1
⇡0

VarpXq´1

ˆ
Covp rXJ, Y q ´ ⇡1 Cov

´
rXJ, Y p1q

¯˙

1
⇡0

VarpXq´1

ˆ
´Covp rXJ, Y q ` Cov

´
rXJ, Y p1q

¯˙

fi

���fl .

That is, � “ p�0, �W , �X , �WˆXqJ can be expressed as

� “

¨

˚̊
˚̊
˚̊
˚̋

ErY p0qs
ATE

1
⇡0

VarpXq´1

ˆ
Covp rXJ, Y q ´ ⇡1 Cov

´
rXJ, Y p1q

¯˙

1
⇡0

VarpXq´1

ˆ
´Covp rXJ, Y q ` Cov

´
rXJ, Y p1q

¯˙

˛

‹‹‹‹‹‹‹‚

(C.28)
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From this expression, we get

�wp rX,FIIq “
´
1, w, rX,w rX

¯
�

“ ErY p0qs ` w ¨ ATE

` rX 1

⇡0
VarpXq´1

ˆ
Covp rXJ, Y q ´ ⇡1 Cov

´
rXJ, Y p1q

¯˙

` w ¨ rX 1

⇡0
VarpXq´1

ˆ
´Covp rXJ, Y q ` Cov

´
rXJ, Y p1q

¯˙
,

(C.29)

so that

�1p rX,FIIq “ ErY p0qs ` ATE

` rX 1

⇡0
VarpXq´1

ˆ
´⇡1 Cov

´
rXJ, Y p1q

¯
` Cov

´
rXJ, Y p1q

¯˙

“ ErY p1qs ` rX 1

⇡0
p1 ´ ⇡1qVarpXq´1 Cov

´
rXJ, Y p1q

¯

“ ErY p1qs ` rX VarpXq´1 Cov
´

rXJ, Y p1q
¯
,

(C.30)

and

�0p rX,FIIq “ ErY p0qs ` rX 1

⇡0
VarpXq´1

ˆ
Covp rXJ, Y q ´ ⇡1 Cov

´
rXJ, Y p1q

¯˙

“ ErY p0qs ` rX 1

⇡0
VarpXq´1

ˆ
⇡0 Cov

´
rXJ, Y p0q

¯˙

“ ErY p0qs ` rX VarpXq´1 Cov
´

rXJ, Y p0q
¯
,

(C.31)

where we use the relation in equation (5.72) in the second equality. By taking the expectation
with respect to rX in the above expressions, we obtain  wpFIIq “ ErY pwqs. Using this with
lemma 5.2.3, we get

'1 “ W

⇡1

«
Y ´

ˆ
ErY p1qs ` rX VarpXq´1 Cov

´
rXJ, Y p1q

¯˙�

`
ˆ
ErY p1qs ` rX VarpXq´1 Cov

´
rXJ, Y p1q

¯˙
´ ErY p1qs

“ W

⇡1

«
Y ´

ˆ
ErY p1qs ` rX VarpXq´1 Cov

´
rXJ, Y p1q

¯˙�

` rX VarpXq´1 Cov
´

rXJ, Y p1q
¯

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ W ´ ⇡1

⇡1
rX VarpXq´1 Cov

´
rXJ, Y p1q

¯
,

(C.32)

180



Theoretical Properties of Digital Twins Aalborg University

and

'0 “ 1 ´ W

⇡0

«
Y ´

ˆ
ErY p0qs ` rX VarpXq´1 Cov

´
rXJ, Y p0q

¯˙�

` ErY p0qs ` rX VarpXq´1 Cov
´

rXJ, Y p0q
¯

´ ErY p0qs

“ 1 ´ W

⇡0

„
Y ´ ErY p0qs ´ rX VarpXq´1 Cov

´
rXJ, Y p0q

¯⇢

` rX VarpXq´1 Cov
´

rXJ, Y p0q
¯

“ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘
´ p1 ´ W q ´ ⇡0

⇡0
rX VarpXq´1 Cov

´
rXJ, Y p0q

¯
,

(C.33)

so that

'ATE,II “ '1 ´ '0

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡1

rX VarpXq´1 Cov
´

rXJ, Y p1q
¯

` p1 ´ W q ´ ⇡0
⇡0

rX VarpXq´1 Cov
´

rXJ, Y p0q
¯

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´
ˆ
W ´ ⇡1
⇡1

rX VarpXq´1 Cov
´

rXJ, Y p1q
¯

` W ´ ⇡1
⇡0

rX VarpXq´1 Cov
´

rXJ, Y p0q
¯ ˙

“ W

⇡1

`
Y ´ ErY p1qs

˘
´ 1 ´ W

⇡0

`
Y ´ ErY p0qs

˘

´ W ´ ⇡1
⇡0⇡1

rX VarpXq´1

ˆ
⇡0 Cov

´
rXJ, Y p1q

¯
` ⇡1 Cov

´
rXJ, Y p0q

¯˙

“ '� ´ W ´ ⇡1
⇡0⇡1

rX VarpXq´1⇠J
˚ .

(C.34)
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C.4 Corollary 5.3.5
In this appendix, we wish to derive an expression of the difference between the asymptotic vari-
ances in equations (5.83) and (5.84). We first obtain
«
⌃X ⇣J

⇣ �2
M

�´1

“
«`
⌃X ´ ⇣J�´2

M
⇣

˘´1 ´
`
⌃X ´ ⇣J�´2

M
⇣

˘´1
⇣J�´2

M

´
`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

⇣⌃´1
X

`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

�
(C.35)

“
«
⌃

´1
X

` ⌃´1
X
⇣J `

�2
M

´ ⇣⌃´1
X
⇣J˘´1

⇣⌃´1
X

´
`
⌃X ´ ⇣J�´2

M
⇣

˘´1
⇣J�´2

M

´
`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

⇣⌃´1
X

�´2
M

` �´2
M
⇣

`
⌃X ´ ⇣J�´2

M
⇣

˘´1
⇣J�´2

M

�
.

In each of the diagonal (block-)entries in the second expression we use the Woodbury matrix
identity to obtain the third expression. In the following derivations, we will use the second
expression, but one can more easily verify that this is in fact the inverse using the third expression,
as we will do entry-wise in the following.

Block-entry p1, 1q:

⌃X

ˆ
⌃

´1
X

` ⌃´1
X
⇣J

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X

˙
` ⇣J

ˆ
´

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X

˙
“ Ip

Block-entry p2, 1q:

⇣

ˆ
⌃

´1
X

` ⌃´1
X
⇣J

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X

˙
` �2

M

ˆ
´

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X

˙

“
ˆ
1 ` ⇣⌃´1

X
⇣J

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

´ �2
M

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1
˙
⇣⌃´1

X

“
ˆ
1 ´

´
�2
M

´ ⇣⌃´1
X
⇣J

¯ ´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1
˙
⇣⌃´1

X
“ 0

Block-entry p1, 2q:

⌃X

ˆ
´

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇣J�´2
M

˙
` ⇣J

ˆ
�´2
M

` �´2
M
⇣

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇣J�´2
M

˙

“
ˆ
Ip ` ⇣J�´2

M
⇣

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

´ ⌃X

´
⌃X ´ ⇣J�´2

M
⇣

¯´1
˙
⇣J�´2

M

“
ˆ
Ip ´

´
⌃X ´ ⇣J�´2

M
⇣

¯ ´
⌃X ´ ⇣J�´2

M
⇣

¯´1
˙
⇣J�´2

M
“ 0

Entry p2, 2q:

⇣

ˆ
´

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇣J�´2
M

˙
` �2

M

ˆ
�´2
M

` �´2
M
⇣

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇣J�´2
M

˙
“ 1
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Using the second expression in (C.35) of the inverse covariance matrix in (5.84), we can now
subtract the asymptotic variance expression in (5.84) from the one in (5.83), in order to obtain

1

⇡0⇡1

˜
´ ⇠X˚⌃

´1
X
⇠J
X˚

`
”
⇠X˚ ⇠M˚

ı «`
⌃X ´ ⇣J�´2

M
⇣

˘´1 ´
`
⌃X ´ ⇣J�´2

M
⇣

˘´1
⇣J�´2

M

´
`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

⇣⌃´1
X

`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

�«
⇠J
X˚
⇠M˚

�¸

“ 1

⇡0⇡1

¨

˝
”
⇠X˚ ⇠M˚

ı «`
⌃X ´ ⇣J�´2

M
⇣

˘´1
⇠J
X˚ ´

`
⌃X ´ ⇣J�´2

M
⇣

˘´1
⇣J�´2

M
⇠M˚

´
`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

⇣⌃´1
X
⇠J
X˚ `

`
�2
M

´ ⇣⌃´1
X
⇣J˘´1

⇠M˚

�
´ ⇠X˚⌃

´1
X
⇠J
X˚

˛

‚

“ 1

⇡0⇡1

ˆ
⇠X˚

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇠J
X˚ ´ ⇠M˚⇠X˚

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇣J�´2
M

(C.36)

´ ⇠M˚
´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X
⇠J
X˚ ` ⇠2

M˚
´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

´ ⇠X˚⌃
´1
X
⇠J
X˚

˙

“ 1

⇡0⇡1

ˆ
⇠X˚

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇠J
X˚ ´ ⇠M˚⇠X˚

´
⌃X ´ ⇣J�´2

M
⇣

¯´1

⇣J�´2
M

` ⇠M˚
`
⇠M˚ ´ ⇣⌃´1

X
⇠J
X˚

˘

�2
M

´ ⇣⌃´1
X
⇣J ´ ⇠X˚⌃

´1
X
⇠J
X˚

˙
.

Again using the Woodbury identity as we did in (C.35), we get that
´
⌃X ´ ⇣J�´2

M
⇣

¯´1

“ ⌃
´1
X

` ⌃´1
X
⇣J

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X
. (C.37)

Inserting this in (C.36), we get the difference between the asymptotic variance of the estimator
using X and the asymptotic variance of the estimator using pX,Mq by first defining the scalars

a “ ⇠X˚⌃
´1
X
⇣J “ ⇣⌃´1⇠J

X˚
b “ ⇣⌃´1

X
⇣J.

(C.38)

Then

1

⇡0⇡1

«
⇠X˚⌃

´1
X
⇠J
X˚ ` ⇠X˚⌃

´1
X
⇣J

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X
⇠J
X˚

´
ˆ
⇠M˚⇠X˚⌃

´1
X
⇣J�´2

M
` ⇠M˚⇠X˚⌃

´1
X
⇣J

´
�2
M

´ ⇣⌃´1
X
⇣J

¯´1

⇣⌃´1
X
⇣J�´2

M

˙

´ ⇠M˚
`
⇠M˚ ´ ⇣⌃´1⇠J

X˚
˘

�2
M

´ ⇣⌃´1
X
⇣J ´ ⇠X˚⌃

´1
X
⇠J
X˚

�

“ 1

⇡0⇡1

«
ap�2

M
´ bq´1a ´

`
⇠M˚a�

´2
M

` ⇠M˚ap�2
M

´ bq´1b�´2
M

˘
` ⇠2

M˚ ´ ⇠M˚a
�2
M

´ b

�
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“ 1

⇡0⇡1

«
a2 ` ⇠2

M˚ ´ ⇠M˚a
�2
M

´ b
´ ⇠M˚a

`
�´2
M

` p�2
M

´ bq´1b�´2
M

˘
�

(C.39)

“ 1

⇡0⇡1

»

–a2 ` ⇠2
M˚ ´ ⇠M˚a
�2
M

´ b
´ ⇠M˚a

˜
�´2
M

p�2
M

´ bq ` b�´2
M

�2
M

´ b

¸fi

fl

“ 1

⇡0⇡1

«
a2 ` ⇠2

M˚ ´ ⇠M˚a
�2
M

´ b
´ ⇠M˚a

1

�2
M

´ b

�

“ 1

⇡0⇡1

a2 ` ⇠2
M˚ ´ 2⇠M˚a
�2
M

´ b

“ 1

⇡0⇡1

p⇠M˚ ´ aq2
�2
M

´ b

“ 1

⇡0⇡1

`
⇠M˚ ´ ⇠X˚⌃

´1
X
⇣J˘2

�2
M

´ ⇣⌃´1
X
⇣J

C.5 Lemma 5.3.7

Consider using fpXq “
`
ErY p0q |Xs, ErY p1q |Xs

˘
in equation (5.91). Define RwpXq “

Y pwq ´ ErY pwq |Xs for w “ 0, 1 which has mean 0 by the law of total expectation. For any
function g : X Ñ Rk (with row vector output), we have

Cov
`
RwpXq, gpXq

˘
“ E

„`
RwpXq ´ ErRwpXqs

˘ ´
gpXq ´ E

“
gpXq

‰¯⇢

“ E
„`

Y pwq ´ ErY pwq |Xs
˘ ´

gpXq ´ E
“
gpXq

‰¯⇢

“ E
«
E

„`
Y pwq ´ ErY pwq |Xs

˘ ´
gpXq ´ E

“
gpXq

‰¯ ˇ̌
ˇ̌ X

⇢�

“ E
„`

ErY pwq |Xs ´ ErY pwq |Xs
˘ ´

gpXq ´ E
“
gpXq

‰¯⇢

“ 0,

(C.40)

where we use the law of total expectation in the third equality, and in the fourth equality we use
that given X , gpXq is deterministic, so that we can use linearity of the expected value. Then we
have

Cov
`
Y pwq, ErY pwq |Xs

˘
“ Cov

`
RwpXq ` ErY pwq |Xs, ErY pwq |Xs

˘

“ Cov
`
RwpXq, ErY pwq |Xs

˘
` Var

`
ErY pwq |Xs

˘

“ Var
`
ErY pwq |Xs

˘
(C.41)
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and

Cov
`
Y p1q, ErY p0q |Xs

˘
“ Cov

`
R1pXq ` ErY p1q |Xs,ErY p0q |Xs

˘

“ Cov
`
R1pXq, ErY p0q |Xs

˘
` Cov

`
ErY p1q |Xs, ErY p0q |Xs

˘

“ Cov
`
ErY p1q |Xs, ErY p0q |Xs

˘
, (C.42)

as well as

Cov
`
Y p0q, ErY p1q |Xs

˘
“ Cov

`
R0pXq ` ErY p0q |Xs,ErY p1q |Xs

˘

“ Cov
`
R0pXq, ErY p1q |Xs

˘
` Cov

`
ErY p0q |Xs, ErY p1q |Xs

˘

“ Cov
`
ErY p0q |Xs, ErY p1q |Xs

˘
. (C.43)

The last two equations imply that Cov
`
Y p1q, ErY p0q |Xs

˘
“ Cov

`
Y p0q, ErY p1q |Xs

˘
. In-

serting these expressions into Var
`
fpXq

˘´1 and ⇠J
f˚, we obtain

Var
`
fpXq

˘´1

“
«
Var

`
ErY p0q |Xs

˘
Cov

`
ErY p0q |Xs, ErY p1q |Xs

˘

Cov
`
ErY p0q |Xs, ErY p1q |Xs

˘
Var

`
ErY p1q |Xs

˘
�´1

“ 1

Var
`
ErY p0q |Xs

˘
Var

`
ErY p1q |Xs

˘
´ Cov

`
ErY p0q |Xs, ErY p1q |Xs

˘2

¨
«
Var

`
ErY p1q |Xs

˘
´Cov

`
ErY p0q |Xs, ErY p1q |Xs

˘

´Cov
`
ErY p0q |Xs, ErY p1q |Xs

˘
Var

`
ErY p0q |Xs

˘
�

“ 1

Cov
`
Y p0q, ErY p0q |Xs

˘
Cov

`
Y p1q, ErY p1q |Xs

˘
´ Cov

`
Y p1q, ErY p0q |Xs

˘2

¨
«
Cov

`
Y p1q, ErY p1q |Xs

˘
´Cov

`
Y p1q, ErY p0q |Xs

˘

´Cov
`
Y p1q, ErY p0q |Xs

˘
Cov

`
Y p0q, ErY p0q |Xs

˘
�
,

(C.44)

and

⇠J
f˚ “ ⇡0 Cov

´
Y p1q,

`
ErY p0q |Xs, ErY p1q |Xs

˘¯J

` ⇡1 Cov
´
Y p0q,

`
ErY p0q |Xs, ErY p1q |Xs

˘¯J

“ ⇡0

˜
Cov

`
Y p1q, ErY p0q |Xs

˘

Cov
`
Y p1q, ErY p1q |Xs

˘
¸

` ⇡1

˜
Cov

`
Y p0q, ErY p0q |Xs

˘

Cov
`
Y p0q, ErY p1q |Xs

˘
¸

“ ⇡0

˜
Cov

`
Y p1q, ErY p0q |Xs

˘

Cov
`
Y p1q, ErY p1q |Xs

˘
¸

` ⇡1

˜
Cov

`
Y p0q, ErY p0q |Xs

˘

Cov
`
Y p1q, ErY p0q |Xs

˘
¸
.

(C.45)
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Combining these, we obtain

Var
`
fpXq

˘´1
⇠J
f˚

“ 1

Cov
`
Y p0q, ErY p0q |Xs

˘
Cov

`
Y p1q, ErY p1q |Xs

˘
´ Cov

`
Y p1q, ErY p0q |Xs

˘2

¨
˜
⇡0

«
0

Cov
`
Y p0q, ErY p0q |Xs

˘
Cov

`
Y p1q, ErY p1q |Xs

˘
´ Cov

`
Y p1q, ErY p0q |Xs

˘2

�

` ⇡1

«
Cov

`
Y p0q, ErY p0q |Xs

˘
Cov

`
Y p1q, ErY p1q |Xs

˘
´ Cov

`
Y p1q, ErY p0q |Xs

˘2

0

�¸

“
˜
⇡1
⇡0

¸
. (C.46)

C.6 Corollary 5.3.8
We note that since ErY p1q |Xs “ ErY p0q |Xs ` ATE, we have that

Cov
`
ErY p1q |Xs, ErY p0q |Xs

˘
“ Var

`
ErY p0q |Xs

˘
“ Var

`
ErY p1q |Xs

˘
. (C.47)

Inserting the expression of fpXq “ ErY p0q |Xs in (5.78) in place of X in the expression of
VarpXq´1, we obtain

Var
`
fpXq

˘´1 “ Var
`
ErY p0q |Xs

˘´1
, (C.48)

and similarly by inserting fpXq “ ErY p0q |Xs in place of X in the expression of ⇠f˚, we obtain

⇠f˚ “ ⇡0 Cov
`
Y p1q, ErY p0q |Xs

˘
` ⇡1 Cov

`
Y p0q, ErY p0q |Xs

˘

“ p⇡0 ` ⇡1qCov
`
Y p1q, ErY p0q |Xs

˘

“ Cov
`
ErY p1q |Xs, ErY p0q |Xs

˘

“ Var
`
ErY p0q |Xs

˘
,

(C.49)

where we use equation (5.80) in the second equality with fpXq “ ErY p0q |Xs in place of X
to obtain a common factor, in the third equality we use (C.42) and in the last equality we use
equation (C.47). Combining these expressions, we obtain

Var
`
fpXq

˘´1
⇠f˚ “ 1. (C.50)
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C.7 Lemma 5.3.10
In order to prove lemma 5.3.10, we will first need to prove the following two lemmas.

Lemma C.7.1.
Let f : X Ñ R be a bounded function on a compact set X , fn : X Ñ R be a sequence of
uniformly bounded random functions such that |fpXq ´ fnpXq| L

2›Ñ 0, where X P X is a
random variable independent of fn. Then

EXrfnpXqs P›Ñ ErfpXqs
CovX

`
fpXq, fnpXq

˘ P›Ñ Var
`
fpXq

˘

Var
`
fnpXq

˘ P›Ñ Var
`
fpXq

˘
.

(C.51)

û
Proof. Denoting by Pfn the probability measure of fn and PX the probability measure of X , the
probability measure of pfn, Xq factorises from independence to P “ Pfn PX . We then get

Efn

”`
EXrfnpXqs ´ ErfpXqs

˘2ı “
ª `

EXrfnpXqs ´ ErfpXqs
˘2

dPfn

“
ª ˆª

fnpXq ´ fpXq dPX

˙2

dPfn

§
ª ª `

fnpXq ´ fpXq
˘2

dPX dPfn

“
ª `

fnpXq ´ fpXq
˘2

d
`
PX bPfn

˘

“
ª `

fnpXq ´ fpXq
˘2

dP

›Ñ 0,

(C.52)

where the inequality follows from Jensen’s inequality. The second to last equality holds by
Fubini’s theorem, using that a probability measure space is �-finite and that the integrand is
measurable with respect to the product measure PX bPfn by the convergence assumption that
|fpXq ´ fnpXq| L

2›Ñ 0, so that the integrand with respect to PX bPfn must be defined. In the
last equality, we use that the product measure of two independent random variables is the product
of the measures. The convergence holds using the assumption that |fpXq ´ fnpXq| L

2›Ñ 0. This
implies that EXrfnpXqs L

2›Ñ ErfpXqs and hence this convergence also holds in probability.

Now we will show that EXrfpXqfnpXqs P›Ñ ErfpXq2s. Using similar arguments as above, we
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obtain

Efn

”`
EXrfpXqfnpXqs ´ ErfpXq2s

˘2ı §
ª ´

fpXq
`
fnpXq ´ fpXq

˘¯2

dP

§ K2

ª `
fnpXq ´ fpXq

˘2
dP

›Ñ 0,

(C.53)

where we have assumed that f is bounded by K. Again using similar arguments leads to
EXrfnpXq2s P›Ñ ErfpXq2s if we assume that the bound K is also a uniform bound for fn.
Specifically,

Efn

”`
EXrfnpXq2s ´ ErfpXq2s

˘2ı
§
ª `

fnpXq2 ´ fpXq2
˘2

dP

“
ª ´`

fnpXq ` fpXq
˘ `

fnpXq ´ fpXq
˘¯2

dP

§ 4K2

ª `
fnpXq ´ fpXq

˘2
dP

›Ñ 0.

(C.54)

We can now use the above results to obtain
CovX

`
fpXq, fnpXq

˘
“ EXrfpXqfnpXqs ´ ErfpXqsEXrfnpXqs
P›Ñ ErfpXq2s ´ ErfpXqs2 “ Var

`
fpXq

˘
.

(C.55)

Furthermore, we have

VarX
`
fnpXq

˘
“ EXrfnpXq2s ´ ErfnpXqs2
P›Ñ EXrfpXq2s ´ ErfpXqs2 “ Var

`
fpXq

˘
,

(C.56)

using Slutsky’s theorem (the probability limit of a product of two sequences of random variables
with constant probability limits is the product of these limits) for the convergence of the second
term. ⌅

Lemma C.7.2.
Let f : X Ñ R be a bounded function on a compact set X , fn : X Ñ R be a sequence of
uniformly bounded random functions such that |fpXq ´ fnpXq| L

2›Ñ 0, where X P X is a
random variable independent of fn. Assume furthermore that VarX

`
fnpXq

˘
° " for all n P N

and some fixed " ° 0. Then, p1 ´ Bnq L
2›Ñ 0 for

Bn “ CovX
`
fpXq, fnpXq

˘

VarX
`
fnpXq

˘ . (C.57)

û
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Proof. We wish to show that p1 ´ Bnq L
2›Ñ 0. This corresponds to showing that

@! DN P N : n • N ñ E
“
p1 ´ Bnq2

‰
† !. (C.58)

First, we note that since fn and f are (uniformly) bounded by some K ° 0, we have for all n
that

���Cov
`
fnpXq, fpXq

˘��� “
ˇ̌
ErfnpXqfpXqs ´ ErfnpXqsErfpXqs

ˇ̌

§
����
ª
fnpXqfpXq dP

���� `
����
ª
fnpXq dP

ª
fpXq dP

����

§ 2K2.

(C.59)

Hence, Bn is uniformly bounded by 2K2

"
. From lemma C.7.1 and Slutsky’s theorem, we have the

convergence Bn

P›Ñ 1, which means that

@�, � ° 0 DN P N : n • N ñ P
`
|1 ´ Bn| • �

˘
† �. (C.60)

We are now ready to show (C.58). For arbitrarily small !, we know from (C.60) that specifically
for �p!q :“ a

!

2 and �p!q :“ !

2
´
1` 2K2

"

¯2 , we can find an N 1 such that P
`
|1 ´ Bn| • �p!q

˘
†

�p!q. We now obtain for an arbitrarily small ! that

E
“
p1 ´ Bnq2

‰
“
ª

p1 ´ Bnq2 dP

“
ª

|1´Bn|†�p!q
p1 ´ Bnq2 dP`

ª

|1´Bn|•�p!q
p1 ´ Bnq2 dP

§ �p!q2 `
˜
1 ` 2K2

"

¸2

P
`
|1 ´ Bn| • �p!q

˘

† !

2
` !

2
“ !,

(C.61)

for all n • N 1. We conclude that p1 ´ Bnq L
2›Ñ 0. ⌅

Now, we are able to restate and prove lemma 5.3.10 on the next page.
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Lemma 5.3.10.
Let f : X Ñ R be a bounded function on a compact set X , fn : X Ñ R be a sequence of
uniformly bounded random functions such that |fpXq ´ fnpXq| L

2›Ñ 0, where X P X is a
random variable independent of fn. Assume furthermore that VarX

`
fnpXq

˘
° " for all n P N

and some fixed " ° 0. Then

|fpXq ´ fnpXqBn| L
2›Ñ 0 (C.62)

for

Bn “ CovX
`
fpXq, fnpXq

˘

VarX
`
fnpXq

˘ . (C.63)

û
Proof. By the triangle inequality, and fn being uniformly bounded by K, we have almost surely
that

|fpxq ´ fnpxqBn| § |fpxq ´ fnpxq| ` |fnpxq ´ fnpxqBn|
§ |fpxq ´ fnpxq| ` K |1 ´ Bn| ,

(C.64)

so that, almost surely,
`
fpxq ´ fnpxqBn

˘2 §
`
fpxq ´ fnpxq

˘2 ` K2 p1 ´ Bnq2 ` 2K |fpxq ´ fnpxq| ¨ |1 ´ Bn| .

Using this, the result now follows from

E
”`
fpXq ´ fnpXqBn

˘2ı § E
”`
fpXq ´ fnpXq

˘2ı ` K2 E
“
p1 ´ Bnq2

‰

` 2K E
“
|fpxq ´ fnpxq| ¨ |1 ´ Bn|

‰

§ E
”`
fpXq ´ fnpXq

˘2ı ` K2 E
“
p1 ´ Bnq2

‰

` 4K2 E
“
|1 ´ Bn|

‰

›Ñ 0,

(C.65)

where the second inequality follows from K being a uniform bound on fn and f , so that, almost
surely, |fpxq ´ fnpxq| is bounded by 2K. The convergence of each of the terms follows from
p1 ´ Bnq L

2›Ñ 0 (and hence also p1 ´ Bnq L
1›Ñ 0), shown in lemma C.7.2, and the assumption

that |fpXq ´ fnpXq| L
2›Ñ 0. ⌅
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D | Comparison of Approaches

D.1 Performance in Different Scenarios
(Additional) results from the simulation study in section 6.2, displayed in figure 6.2, are listed in
table D.1.

D.2 Overspecification and Underspecification
(Additional) results from the simulation study in section 6.3, displayed in figure 6.5, are listed in
table D.2.
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Scenario Covariates Interaction Model Estimate SD RMSE Power Coverage Type I error
linear No No None 3.01 0.56 0.56 0.96 0.95 0.03
linear No No PSM 3.00 0.50 0.33 1.00 1.00 0.00
linear No No Random 3.01 0.56 0.56 0.96 0.95 0.03
linear No No RF 3.00 0.12 0.12 1.00 0.95 0.03
linear No No Oracle0 3.00 0.09 0.09 1.00 0.96 0.02
linear No Yes None 3.01 0.56 0.56 0.96 0.95 0.03
linear No Yes PSM 3.00 0.50 0.33 1.00 1.00 0.00
linear No Yes Random 3.01 0.56 0.56 0.96 0.95 0.03
linear No Yes RF 3.00 0.12 0.12 1.00 0.94 0.03
linear No Yes Oracle0 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes No None 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes No PSM 3.00 0.08 0.10 1.00 0.90 0.05
linear Yes No Random 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes No RF 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes No Oracle0 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes Yes None 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes Yes PSM 3.00 0.08 0.10 1.00 0.91 0.04
linear Yes Yes Random 3.00 0.09 0.09 1.00 0.96 0.03
linear Yes Yes RF 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes Yes Oracle0 3.00 0.09 0.09 1.00 0.96 0.02
homogeneous No No None 3.05 1.43 1.48 0.31 0.94 0.03
homogeneous No No PSM 2.98 1.47 1.52 0.30 0.94 0.03
homogeneous No No Random 3.05 1.43 1.49 0.31 0.94 0.04
homogeneous No No RF 3.00 0.36 0.37 1.00 0.94 0.02
homogeneous No No Oracle0 3.01 0.09 0.09 1.00 0.95 0.03
homogeneous No Yes None 3.05 1.43 1.48 0.31 0.94 0.03
homogeneous No Yes PSM 2.98 1.47 1.52 0.29 0.94 0.03
homogeneous No Yes Random 3.05 1.43 1.48 0.31 0.94 0.04
homogeneous No Yes RF 3.01 0.36 0.37 1.00 0.94 0.03
homogeneous No Yes Oracle0 3.01 0.09 0.09 1.00 0.95 0.02
homogeneous Yes No None 3.06 1.33 1.36 0.36 0.94 0.03
homogeneous Yes No PSM 3.01 1.39 1.49 0.34 0.93 0.04
homogeneous Yes No Random 3.06 1.33 1.36 0.35 0.95 0.03
homogeneous Yes No RF 2.99 0.35 0.35 1.00 0.94 0.03
homogeneous Yes No Oracle0 3.01 0.09 0.09 1.00 0.96 0.03
homogeneous Yes Yes None 3.10 1.33 1.37 0.37 0.94 0.03
homogeneous Yes Yes PSM 3.02 1.38 1.51 0.34 0.93 0.04
homogeneous Yes Yes Random 3.10 1.33 1.36 0.37 0.94 0.03
homogeneous Yes Yes RF 2.99 0.35 0.36 1.00 0.93 0.03
homogeneous Yes Yes Oracle0 3.01 0.09 0.09 1.00 0.96 0.03
(continued on next page)

192



Comparison of Approaches Aalborg University

Scenario Covariates Interaction Model Estimate SD RMSE Power Coverage Type I error
(continued from previous page)
heterogeneous No No None 3.03 1.61 1.52 0.23 0.97 0.01
heterogeneous No No PSM 2.96 1.59 1.51 0.23 0.96 0.01
heterogeneous No No Random 3.04 1.61 1.52 0.23 0.96 0.02
heterogeneous No No RF 2.99 0.50 0.48 0.99 0.96 0.02
heterogeneous No No Oracle0 2.99 0.42 0.36 1.00 0.98 0.01
heterogeneous No Yes None 3.03 1.61 1.52 0.23 0.97 0.01
heterogeneous No Yes PSM 2.96 1.59 1.51 0.23 0.96 0.01
heterogeneous No Yes Random 3.04 1.61 1.51 0.23 0.96 0.01
heterogeneous No Yes RF 3.00 0.48 0.47 0.99 0.96 0.02
heterogeneous No Yes Oracle0 3.00 0.41 0.36 1.00 0.97 0.01
heterogeneous Yes No None 3.05 1.35 1.36 0.34 0.95 0.02
heterogeneous Yes No PSM 3.01 1.40 1.49 0.32 0.93 0.03
heterogeneous Yes No Random 3.05 1.35 1.37 0.34 0.95 0.02
heterogeneous Yes No RF 3.00 0.45 0.46 0.99 0.95 0.03
heterogeneous Yes No Oracle0 3.00 0.29 0.31 1.00 0.93 0.03
heterogeneous Yes Yes None 3.09 1.32 1.36 0.38 0.94 0.02
heterogeneous Yes Yes PSM 3.01 1.38 1.47 0.33 0.93 0.03
heterogeneous Yes Yes Random 3.09 1.32 1.36 0.37 0.94 0.03
heterogeneous Yes Yes RF 2.99 0.35 0.45 1.00 0.87 0.06
heterogeneous Yes Yes Oracle0 3.00 0.09 0.28 1.00 0.47 0.26
covariate shift No No None 2.99 1.61 1.49 0.22 0.97 0.02
covariate shift No No PSM 1.13 1.65 2.27 0.01 0.85 0.00
covariate shift No No Random 2.98 1.61 1.49 0.22 0.97 0.02
covariate shift No No RF 3.01 0.88 0.90 0.62 0.95 0.03
covariate shift No No Oracle0 2.99 0.42 0.35 1.00 0.98 0.01
covariate shift No Yes None 2.99 1.61 1.49 0.22 0.97 0.02
covariate shift No Yes PSM 1.14 1.65 2.27 0.01 0.85 0.00
covariate shift No Yes Random 2.99 1.61 1.49 0.22 0.97 0.02
covariate shift No Yes RF 3.04 0.85 0.90 0.66 0.94 0.04
covariate shift No Yes Oracle0 3.00 0.41 0.35 1.00 0.98 0.02
covariate shift Yes No None 3.00 1.35 1.32 0.31 0.97 0.02
covariate shift Yes No PSM 4.26 1.41 1.75 0.66 0.88 0.12
covariate shift Yes No Random 2.99 1.35 1.32 0.31 0.97 0.02
covariate shift Yes No RF 3.02 0.76 0.76 0.76 0.96 0.03
covariate shift Yes No Oracle0 3.01 0.29 0.31 1.00 0.94 0.04
covariate shift Yes Yes None 3.03 1.32 1.32 0.34 0.96 0.02
covariate shift Yes Yes PSM 3.54 1.36 1.35 0.47 0.96 0.04
covariate shift Yes Yes Random 3.03 1.32 1.32 0.34 0.96 0.02
covariate shift Yes Yes RF 3.02 0.70 0.76 0.80 0.94 0.03
covariate shift Yes Yes Oracle0 3.01 0.09 0.28 1.00 0.46 0.27

Table D.1: Empirical means of AN(C)OVA model ATE estimates and estimated standard errors, RMSE and empiri-
cally estimated power, coverage and type I error rate using 1, 000 simulated data sets under all scenarios
presented in table 6.1. "covariates" column indicates whether raw covariate adjustments were included
in the AN(C)OVA model for all 10 simulated covariates. "interaction" column indicates whether inter-
action terms between treatment allocation and all raw covariates (as well as the estimated prognostic
score for models "Random", "RF" and "Oracle0") were included in the AN(C)OVA model. RMSE and
std.err are displayed in figure 6.2. 193
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Scenario Covariates Model Estimate mmSD mRMSE mPower Coverage Type I error
linear No None 3.01 0.56 0.56 0.96 0.95 0.03
linear No PSM 2.99 0.50 0.39 0.99 0.99 0.01
linear No Random 3.01 0.56 0.56 0.95 0.95 0.03
linear No RF 3.00 0.23 0.24 1.00 0.94 0.03
linear No Oracle0 3.00 0.09 0.09 1.00 0.96 0.02
linear Yes None 3.00 0.38 0.38 1.00 0.94 0.03
linear Yes PSM 3.00 0.34 0.31 1.00 0.96 0.02
linear Yes Random 3.00 0.38 0.38 1.00 0.94 0.03
linear Yes RF 3.00 0.23 0.24 1.00 0.95 0.02
linear Yes Oracle0 3.00 0.09 0.09 1.00 0.96 0.02
homogeneous No None 3.05 1.43 1.48 0.31 0.94 0.03
homogeneous No PSM 3.00 1.48 1.51 0.29 0.95 0.03
homogeneous No Random 3.05 1.43 1.48 0.32 0.93 0.04
homogeneous No RF 3.02 0.75 0.77 0.75 0.94 0.03
homogeneous No Oracle0 3.01 0.09 0.09 1.00 0.95 0.03
homogeneous Yes None 3.04 1.37 1.41 0.32 0.94 0.04
homogeneous Yes PSM 2.99 1.43 1.48 0.32 0.95 0.03
homogeneous Yes Random 3.03 1.37 1.41 0.32 0.93 0.04
homogeneous Yes RF 3.03 0.75 0.76 0.76 0.94 0.03
homogeneous Yes Oracle0 3.01 0.09 0.09 1.00 0.95 0.03
heterogeneous No None 3.03 1.61 1.52 0.23 0.97 0.01
heterogeneous No PSM 2.97 1.60 1.50 0.24 0.96 0.01
heterogeneous No Random 3.04 1.61 1.52 0.23 0.97 0.01
heterogeneous No RF 3.00 0.87 0.82 0.63 0.96 0.02
heterogeneous No Oracle0 2.99 0.42 0.36 1.00 0.98 0.01
heterogeneous Yes None 3.04 1.46 1.44 0.30 0.96 0.02
heterogeneous Yes PSM 2.99 1.49 1.49 0.29 0.95 0.02
heterogeneous Yes Random 3.04 1.47 1.44 0.30 0.96 0.02
heterogeneous Yes RF 3.01 0.86 0.82 0.65 0.96 0.02
heterogeneous Yes Oracle0 2.99 0.36 0.34 1.00 0.96 0.02
covariate shift No None 2.99 1.61 1.49 0.22 0.97 0.02
covariate shift No PSM 1.33 2.08 2.20 0.01 0.95 0.00
covariate shift No Random 2.98 1.61 1.49 0.22 0.97 0.02
covariate shift No RF 3.01 1.06 1.07 0.47 0.95 0.03
covariate shift No Oracle0 2.99 0.42 0.35 1.00 0.98 0.01
covariate shift Yes None 2.98 1.46 1.40 0.27 0.96 0.02
covariate shift Yes PSM 3.19 1.92 1.40 0.14 0.99 0.01
covariate shift Yes Random 2.98 1.46 1.40 0.27 0.96 0.02
covariate shift Yes RF 3.02 1.04 1.05 0.49 0.94 0.03
covariate shift Yes Oracle0 3.00 0.36 0.33 1.00 0.97 0.02

Table D.2: Empirical means of AN(C)OVA model ATE estimates and estimated standard errors, RMSE and empiri-
cally estimated power, coverage and type I error rate using 1, 000 simulated data sets under all scenarios
presented in table 6.1. "covariates" column indicates whether raw covariate adjustments were included
in the AN(C)OVA model for all 10 simulated covariates. No interaction terms were included in the
AN(C)OVA models. RMSE and std.err are displayed in figure 6.5.
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D.3 Varying Sample Sizes
Results of simulations varying only n and only n1, respectively, are displayed in figure D.1.
Figures A1-A4 display results of simulations where only the size of the current RCT arm n is
varied, while figures B1-B4 display results of simulations where only the number of historical
data points n1 is varied.

ANOVA

ANCOVA

PSM Random

Linear

LASSO

Random forest

Oracle0

Oracle

students/ehfd/current
14APR2022:15:20:00 − plots_add/vary_n_plots/n_add/legend.pdf

2.8

2.9

3.0

0 500 1000 1500 2000
n

M
ea

n 
of

 A
TE

 e
st

im
at

es

A1

2.0

2.5

3.0

3.5

4.0

0 500 1000 1500 2000
n

Q
ua

nt
ile

s 
of

 A
TE

 e
st

im
at

es

2.92

2.96

3.00

3.04

3.08

0 2500 5000 7500 10000
n'

M
ea

n 
of

 A
TE

 e
st

im
at

es

B1

2.0

2.5

3.0

3.5

4.0

0 2500 5000 7500 10000
n'

Q
ua

nt
ile

s 
of

 A
TE

 e
st

im
at

es

students/ehfd/current
14APR2022:21:48:46 − plots_add/vary_n_plots/n_add/est_rib_add.pdf(continued on next page)

195



Comparison of Approaches Aalborg University

(continued from previous page)
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1 (B1–B4). Descriptions of all plots are available in figures 6.6–6.8.
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D.4 Prospective Power Estimation in Homogeneous Case
Figure D.2 displays prospective power estimations in the scenario of a homogeneous treatment
effect, as opposed to the heterogeneous scenario presented in chapter 6.4.2.
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Figure D.2: Empirically estimated power together with the mean and the 2.5% and 97.5% quantiles of the prospec-
tive Guenter-Schouten power approximation in the case of a homogeneous treatment effect.
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E | Novo Nordisk A/S Clinical Trial Data

This appendix consists of information regarding the trial data presented in section 7.1 and 7.2.2.

E.1 Trial NN1218-3853
Table E.1 contains the inclusion and exclusion criteria for trial NN1218-3853.

E.2 Trial NN1218-4049
Table E.2 contains the inclusion and exclusion criteria for trial NN1218-4049.

E.3 Trial NN1250-3998
Table E.3 contains the inclusion and exclusion criteria for trial NN1250-3998.

E.4 Variables and their Distributions
Table E.4 contains a description of every covariate contained in the provided data sets along with
the number of missing values in current and historical data.

Figures E.1 and E.2 show the empirical data distributions of all selected variables.
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Inclusion criteria Exclusion criteria

Informed consent obtained before any trial-related activi-
ties

Any use of bolus insulin, except short term use due to
intermittent illness

Age • 18 Use of GLP-1 agonists and/or TZDs within the last 3
months prior to screening

Type 2 diabetes diagnosed clinically • 6 months at time
of screening

Anticipated change in concomitant medication known to
interfere significantly with glucose metabolism after ran-
domisation

Treated with basal insulin for at least 6 months prior to
screening

Cardiovascular disease within the last 6 months prior to
screening

Current once daily treatment with insulin NPH, insulin de-
temir or glargine for at least 3 months prior to the screen-
ing visit

Systolic blood pressure • 180mmHg and/or diastolic
blood pressure • 100mmHg after 5 minutes rest in a sit-
ting position using a mean of 3 measurements

Current treatment with metformin with or without combi-
nation with other OADs at least 3 months prior to screen-
ing

Impaired liver function, defined as ALAT • 2.5 times up-
per limit of normal range

HbA1c between 7.0 ´ 9.5% in the group receiving only
metformin and between 7.0´9.0% in the group receiving
metformin in combination with other OADs

Imparied renal function defined as serum creatine °
135µmol{L for males and ° 110µmol{L for females, or
estimated creatinine clearence below 60mL{min

BMI § 40kg{m2 Recurrent severe hypoglycaemia or hypoglycaemic un-
awareness judged by the Investigator or hospitalisation for
diabetic ketoacidoses during the previous 6 months prior
to screening

Ability and willingness to adhere to the protocol Proliferative retinopathy or maculopathy requiring treat-
ment judged by investigator

Ability and willingness to eat at least 3 meals (breakfast,
lunch, dinner) every day during the trial

Female of childbearing potential who are pregnant, breast-
feeding or intend to become pregnant or are not using ad-
equate contraceptive methods

Not currently using real time CGM system and/or consent
to not use real time CGM system during trial other than
the blinded one handed out in the trial if selected to the
CGM subgroup

Any clinically significant disease or disorder, except for
conditions associated with type 2 diabetes, which in the
Investigator’s opinion might jeopardise subject’s safety or
compliance with the protocol

Any condition that the Investigator judges would interfere
with evaluation of the results

Mental incapacity, psychiatric disorder, unwillingness or
language barriers

Previous participation in this trial

Known or suspected hypersensitivity to any of the trial
products

Donation of blood within 1 month prior to screening

Known or suspected abuse of alcohol, narcotics or illicit
drugs

Table E.1: Inclusion and exclusion criteria of trial NN1218-3853
200



Novo Nordisk A/S Clinical Trial Data Aalborg University

Inclusion criteria Exclusion criteria

Informed consent obtained before any trial-related activi-
ties

Any use of bolus insulin, except short term use due to
intermittent illness

Age • 18 Use of GLP-1 agonists and/or TZDs within the last 3
months prior to screening

Type 2 diabetes diagnosed clinically • 6 months at time
of screening

Anticipated change in concomitant medication known to
interfere significantly with glucose metabolism after ran-
domisation

Treated with once daily insulin detemir, insulin glargine
or NPH for at least 3 months prior to screening

Cardiovascular disease within the last 6 months prior to
screening

Current treatment with metformin (at least 1000 mg) with
or without combination with other OADs at least 3 months
prior to screening

Systolic blood pressure • 180mmHg and/or diastolic
blood pressure • 100mmHg after 5 minutes rest in a sit-
ting position using a mean of 3 measurements

HbA1c between 7.0 ´ 9.5% in the group receiving only
metformin and between 7.0´9.0% in the group receiving
metformin in combination with other OADs

Impaired liver function, defined as ALAT/SGPT • 2.5
times upper limit of normal range

BMI § 40kg{m2 Imparied renal function defined as serum creatine °
135µmol{L for males and ° 110µmol{L for females, or
estimated creatinine clearence below 60mL{min

Ability and willingness to adhere to the protocol including
performance of SMPG

Recurrent severe hypoglycaemia or hypoglycaemic un-
awareness judged by the Investigator or hospitalisation for
diabetic ketoacidoses during the previous 6 months prior
to screening

Ability and willingness to eat at least 3 meals (breakfast,
lunch, dinner) every day during the trial

Proliferative retinopathy or maculopathy requiring treat-
ment judged by investigator

Female of childbearing potential who are pregnant, breast-
feeding or intend to become pregnant or are not using ad-
equate contraceptive methods

Any clinically significant disease or disorder, except for
conditions associated with type 2 diabetes, which in the
Investigator’s opinion might jeopardise subject’s safety or
compliance with the protocol

Any condition that the Investigator judges would interfere
with evaluation of the results

Mental incapacity, psychiatric disorder, unwillingness or
language barriers

Previous participation in this trial

Known or suspected hypersensitivity to any of the trial
products

Donation of blood within 1 month prior to screening

Known or suspected abuse of alcohol, narcotics or illicit
drugs

Table E.2: Inclusion and exclusion criteria of trial NN1218-4049
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Inclusion criteria Exclusion criteria

Informed consent obtained before any trial-related activi-
ties

Known or suspected hypersensitivity to any of the trial
products or related products

Age • 18 Previous participation in this trial

Type 2 diabetes diagnosed clinically • 26 weeks at time
of screening

Female of childbearing potential who are pregnant, breast-
feeding or intend to become pregnant or are not using ad-
equate contraceptive methods

Treated with any basal insulin with or without OADs
(metformin, DPP-4 inhibitor, alpha-glucodiase inhibitor,
thiazolidinediones and SGLT2-inhibitor) for at least 26
weeks prior to screening

Treatment with a bolus insulin within the last 26 weeks
prior to screening

HbA1c § 9.5% Use of any other anti-diabetic agents than those stated
in the inclusion criteria within the last 26 weeks prior to
screening

BMI § 45kg{m2 Receipt of any investigational medicinal product within 4
weeks prior to screening

Ability and willingness to adhere to the protocol including
performance of SMPG

Any chronic disorder or severe disease, except for con-
ditions associated with type 2 diabetes, which in the In-
vestigator’s opinion might jeopardise subject’s safety or
compliance with the protocol

Subjects fulfilling at least one of the below criteria:

• Experienced at least one severe hypoglycaemic
episode within the last year

• Moderate chronic renal failure, defined as
glomerular filtration rate 30´59mL{min{1.73m2

per CKD-Epi

• Hypoglycaemic symptom unawareness

• Exposed to insulin for more than 5 years

• Hypoglycaemic episode within the 12 weeks prior
to screening

Uncontrolled or untreated severe hypertension defined as
systolic blood pressure • 180mmHg and/or diastolic
blood pressure • 100mmHg

Impaired liver function, defined as ALAT or ASAT • 2.5
times upper limit of normal range

Imparied liver function defined as glomerular filtration
rate † 30mL{min{1.73m2 per CKD-Epi

Proliferative retinopathy or maculopathy requiring acute
treatment judged by investigator

Stroke; decompensated heart failure New York Heart As-
sociation class III or IV; myocardial infarction; unstable
angina pectoris; or coronary arterial bypass graft or an-
gioplasty; all within the last 26 weeks prior to screening

Table E.3: Inclusion and exclusion criteria of trial NN1250-3998
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mmm Number of NAs mmm
Variable name Variable description Current data Historical data

Trial variables
USUBJID Subject id 0 0
STUDYID Clinical trial id 0 0
SITEID Medical site id 0 0
FASFL Full analysis set population flag 0 0

Treatment allocation variables
BOLUSP Type of bolus insulin 0 0
BASALP Type of basal insulin 0 0
METFORMIN Did patient receive metformin? 0 0
OTHER OAD

mmmmmm
Did patient receive some OAD other than
metformin? 0 0

Demographics
COUNTRY Country 0 0
AGE Age in years 0 0
SEX Sex 0 0
RACE Race 0 0
ETHNIC Ethnicity (hispanic/latino or not) 0 0

General health measurements
BMIBL Body mass index (kg/m2) 0 0
DIABTYP Diabetes type (1 or 2) 0 0
DIABDUR

mmmmmmmmmm
Number of years since diagnosis of
diabetes 0 1

SMOKER Frequency of smoking 0 1
SYSTOLIC Systolic blood pressure (mmHg) 0 0
DIASTOLIC Diastolic blood pressure (mmHg) 0 0
PULSE Pulse (beats/min) 0 0
PEC

mmmmmmmmmm
Number of physical examination
abnormalities 0 2

CMC Number of comorbidities 0 0
(continued on next page)
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Variable name Variable description Current data Historical data
(continued from previous page)
Blood measurements

AG 1.5 Anhydroglucitol (µg/mL) 2 721
ALANINE Alanine Aminotransferase Serum (U/L) 0 1
ALBUMIN Albumin Serum (g/dL) 0 2
ALKALINE Alkaline Phosphatase Serum (U/L) 0 1
ASPARTATE Aspartate Aminotransferase Serum (U/L) 0 1
CREATININE Creatinine Serum (µ-mol/L) 0 1
CrCl

mmmmmmmmmm
Calculated Creatinine Clearance serum
(mL/min) 0 1

FPG Fasting plasma glucose (mmol/L) 0 15
HAEMATOCRIT Haematocrit Blood (%) 0 6
HAEMOGLOBIN Haemoglobin Blood (mmol/L) 0 3
HDL HDL Cholesterol Serum (mmol/L) 0 721
CRP High sensitive C-reactive protein (mg/L) 153 812
LDL LDL Cholesterol serum (mmol/L) 0 721
ERYTHROCYTES Erythrocytes (1012/L) 0 3
LEUKOCYTES Leukocytes (109/L) 0 3
LYMPHOCYTES Lymphocytes (%) 0 721
MONOCYTES Monocytes (%) 0 721
THROMBOCYTES Thrombocytes (109/L) 0 15
NEUTROPHILS Neutrophils (%) 0 721
BASOPHILS Basophils (%) 0 721
EOSINOPHILS Eosinophils (%) 0 721
NATRIURETIC

mmmmmmmmmm
N-Terminal ProB-type Natriuretic Peptide
(pmol/L) 153 805

POTASSIUM Potassium Serum (mmol/L) 0 1
SMPG

mmmmmmmmmm
Self Measured Plasma Glucose level
(mmol/L) 0 720

SODIUM Sodium Serum (mmol/L) 0 1
BILIRUBIN Total Bilirubin Serum (µmol/L) 0 2
CHOLESTEROL Total Cholesterol Serum (mmol/L) 0 721
PROTEIN Total Protein serum (g/dL) 0 720
TRIGLYCERIDES Triglycerides Serum (mmol/L) 0 721
HbA1cBL HbA1c (%) at baseline 0 0
HbA1cET HbA1c (%) at end of treatment 0 0
HbA1cCH

mmmmmmmmmm
Change in HbA1c from baseline to end of
treatment 0 0

Table E.4: Variables considered for the historical and current data sets. All variables except HbA1cET and
HbA1cCH are measured at or before baseline. The number of current trial patients is n “ 153, and
the number of historical data patients is n1 “ 1492. Rows marked with grey are covariates removed due
to many missing values.
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Thrombocytes (10^9/L) Haematocrit (%)

Sodium (mmol/L) Potassium (mmol/L) Erythrocytes (10^12/L) Leukocytes (10^9/L)

Bilirubin (umol/L) Haemoglobin (mmol/L) Creatinine (umol/L) CrCl (mL/min)

Alanine (U/L) Albumin (g/dL) Alkaline (U/L) Aspartate (U/L)

Systolic BP (mmHg) Diastolic BP (mmHg) HbA1c (%) FPG (mmol/L)

Age (years) BMI (kg/m^2) Diabetes duration (years) Pulse (beats/min)

0 200 400 600 30 40 50 60

130 140 150 3 4 5 6 7 3 4 5 6 5 10 15

0 10 20 30 40 6 8 10 50 100 150 200 0 100 200 300 400

0 25 50 75 100 125 1 2 3 4 5 0 100 200 300 0 50 100

100 120 140 160 180 50 60 70 80 90 100 6 8 10 0 5 10 15 20

20 40 60 80 20 30 40 0 20 40 40 60 80 100 120

Historical data RCT data Mean

students/ehfd/current
28APR2022:14:25:09 − var_hist2/cont_var_hists.pdf

Figure E.1: Empirical distributions of continuous covariates in current and historical data. All measured at or before
baseline. All measurements from and including HbA1c are obtained from blood samples. BP: Blood
pressure. FPG: Fasting plasma glucose. CrCl: Creatinine clearance.
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Sex

Female Male

Smoker
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Planned basal insulin
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No bolus FIAsp Aspart

Metformin
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No Yes

Historical data Current RCT
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Figure E.2: Empirical distributions of discrete covariates in current and historical data. All measured at or before
baseline. B/AA: Black or African American; AI/AN: American Indian or Alaska native; NW/OPI:
Native Hawaiian or other Pacific Islander. ARG: Argentina; CAN: Canada; GBR: Great Britain; HRV:
Croatia; IND: India; ISR: Israel; MEX: Mexico; ROU: Romania; RUS: Russia; SRB: Serbia; SVK:
Slovakia; SVN: Slovenia; USA: United States of America.
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