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Abstract

This study investigated the concept of using a statistical parametric running model driven by knee and hip flexion from
single-view pose estimation to recreate running patterns comparable to a marker-based motion capture reference. 51
treadmill running trials from 18 male subjects were recorded with a smartphone and marker-based motion capture
simultaneously. Joint angles extracted from pose estimation were transformed to Fourier coefficients, where coefficient
a1 and b1 were used as constrained parameters in the parametric running model along with subject height, weight,
gender, age, angular stride frequency and running speed. The comparison showed excellent Pearson’s correlation
coefficients (r> 0.90) for hip, knee and plantar flexion and vertical center of mass position and strong correlations (0.67
< r ≤ 0.90) for hip abduction and elbow flexion. Root mean square difference (RMSD) for knee and plantar flexion and
hip abduction were between 4.0o and 8.5o, hip and elbow flexion RMSDs were between 10.0o and 14.9o, while vertical
center of mass RMSD was 0.021m. In conclusion, the investigated concept was capable of estimating realistic running
kinematics comparable to the marker-based reference. However, it would require an increased number of accurately
measured input parameters to reduce the magnitude errors of the estimated kinematic model outputs.
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1. Introduction

Movement analysis in sports and health science has developed considerably in recent years, regarding both perfor-
mance optimization and injury prevention. This development is largely due to improved technology and computational
power [4]. When investigating the kinematics of human movement, marker-based optical motion capture remains the
highest measurement standard [11]. Despite the high accuracy of this method, its complex setup and dependency
on laboratory settings limits the availability of movement analysis in a natural environment. Furthermore, marker
placement can be prone to positioning variability from the operator [5]. Reflective markers on the body may move
unintentionally due to soft tissue artifacts, they may fall off due to fast accelerations or sweat, while they also may
hinder the natural movement. The need for in-field kinematic analysis, has sparked the development of other motion
capture solutions based on IMUs. However, these solutions can be prone to signal drift, while also hindering natural
movement, due to IMUs being placed on several body segments [1]. Recently, deep learning-based markerless optical
motion capture systems have also been suggested as an alternative to the traditional laboratory reference, showing
similar joint angle patterns, when compared to the marker-based solutions in walking trials [9]. However, these sys-
tems often require a setup of several specific cameras, and are yet to be evaluated in more dynamic and sports-related
movements.

Another improving non-laboratory optical markerless motion capture method is pose estimation based on monoc-
ular image input. This is a computer vision technique that detects and tracks the articulated human joint locations
from simple image or video input [18]. Pose estimation with monocular image input has shown promising results in
estimating body landmarks, e.g. head, shoulder, elbow, hip, knee and ankle [19]. Furthermore, studies have shown
promising results in joint angle estimation based on the predicted landmarks [3, 12]. However, this method alone
remains insufficient for full-body kinematic analysis, since not all degrees of freedom can be covered with high ac-
curacy [6]. Thus, when wanting to develop a simple in field movement analysis method, it is relevant to investigate
solutions capable of generating high quality full-body kinematics based on minimal and possibly noisy input data.
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Rasmussen et al. have developed a parametric running model, that based on a large database of running trials
can predict the most probable running pattern from minimal subject and trial-specific input [13]. Based on kine-
matic and anthropometric data from 285 running trials, the model is subject to Principal Component Analysis, which
enables variation of the parameters to recreate plausible running patterns. The model can be considered as a con-
ditional likelihood algorithm, where each kinematic running parameter is represented with five Fourier coefficient
pairs. Representing running kinematics as Fourier series has shown to be valid and is more compact than a temporal
representation [15]. This allows the model to handle large amounts of data with a low computational cost. Thus, the
aim of the current study was to investigate the concept of using a statistical parametric running model driven by knee
and hip flexion from single-view pose estimation to recreate a running pattern comparable to a marker-based motion
capture reference.

2. Methods

The methodological structure of the current study followed the steps shown in Fig 1, with the purpose of covering
the performance of a parametric running model driven by hip and knee joint angles estimated through pose estimation
(Model-PE) by comparing it to the results of a parametric running model driven by hip and knee joint angles derived
from marker-based motion capture (Model-MB) and the results from a golden standard reference of full-body marker-
based motion capture measurement (Reference).

Figure 1: A flow diagram showing the step-by-step workflow of the data collection and processing used in the three models; Model-PE, Model-MB
and Reference.

2.1. Data collection

A total of 18 male subjects ran three trials each on a treadmill. Each subject was equipped with 40 reflective
markers (see Appendix A.5) and for each trial, marker trajectories were recorded by a 3D motion capture setup
with 8 cameras (Qualisys Oqus M3, Qualisys AB, Gothenburg, Sweden) at 240 frames per second. Each trial was
simultaneously recorded by a regular smartphone camera (iPhone SE, Apple, California, USA) at 240 frames per
second. The smartphone camera was placed 2.30 meters from the treadmill fixed by a tripod at a height of 1.44 meters,
with the camera view in the sagittal plane of the subject, with the hip of the subject as the viewing center. A clapping
board with reflective markers was used in the viewing field of both camera systems to allow for synchronization. The
subjects chose three different running speeds (7 - 15.5 km/h), they felt comfortable running in. In each trial, subjects
ran on the treadmill until steady state was attained, and then a period of 10 s was recorded. Three trials were excluded
due to poor video quality, hence 51 running trials were included for analysis.
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2.2. Segmentation
The recorded trials were trimmed to begin at the first right foot heel strike and end at the second right foot heel

strike. In this way, data corresponded to the same stride cycles as in the parametric running model [13]. Heel strikes
were identified using the peak acceleration of the heel marker. Hereafter, the corresponding frames were extracted
from the video files.

2.3. Marker-based kinematics
The marker trajectories were imported as c3d files to the AnyBody Modeling System (version 7.3), filtered

with a low pass second order Butterworth filter of 10 Hz and used to drive a full body musculoskeletal model
(AMMR.v.2.3.0). The musculoskeletal model comprised 67 anatomical segments, 52 anatomical joints and 104 joint
degrees-of-freedom. Utilizing the parameter identification algorithm described by Andersen et al. [2], the time-series
representation of the full-body kinematics were estimated.

2.4. Pose estimation and joint angle calculation
Data processing of the video files was done in Python v 3.8.8. First, the trimmed video files were imported using

OpenCV v. 4.5.5.62. The video files were stored as matrices containing RGB information of the pixels in each frame.
Then the pose estimation was performed on each frame of the video files, using the MediaPipe Pose Python package.
As the input was a video stream, the static image mode was set to false, meaning that person detection was only run
on the first frame. Hereafter, the algorithm tracked each landmark through the rest of the frames and only ran another
detection if landmarks were lost. Minimum detection and tracking confidence were both set to 0.9. Model complexity
was set to 2, since it has the highest accuracy and computation time was not a concern since no live processing was
done.
The hip and knee joint flexion angles θ j were calculated in 2D by subtracting the two segment angles θ1 and θ2
combining in the specific joint:

θ j = θ1 − θ2

Here each segment angle is calculated in respect to the horizontal axis using the arcus tangent function:

θ = arctan(
y2 − y1

x2 − x1
)

where y1 and x1 are the 2D properties of the central joint of interest, in example the knee joint. While y2 and x2 are
the 2D properties of either the hip or ankle joint, depending on whether the shank or thigh segment angle is being
calculated.
When the time-series of the hip and knee flexion angles were recovered, they were subject to Fourier analysis. Here
each joint angle curve was approximated by a sum of sine and cosine terms:

y(t) = a0 +

5∑
i=1

aicos(iωt) +
5∑

i=1

bisin(iωt)

where ω is the angular stride frequency, 5 is the number of coefficient pairs. The Fourier coefficients a0, ai and bi

were found using a Riemann integral over the period of the function following the method of Skejø et al. [15].

2.5. Parametric biomechanical running model
The parametric biomechanical running model of Rasmussen et. al. contains 104 joint degrees of freedom, each

represented by five Fourier coefficient pairs [15]. Furthermore, it consists of subject-specific anthropometric data
and trial-specific metadata, i.e., gender and running speed. In total, this gives 1224 primal parameters describing the
running pattern [13].

The Fourier coefficients of the hip and knee flexion angles were used as constrained primal parameters in the
parametric running model along with the angular stride frequency, anthropometric data of the total body height and
body mass and metadata of running speed, gender and age. The constrained primal parameters were defined in the
Python program and the remaining degrees of freedom to recreate the most probable running pattern were estimated
by solving the optimization problem described in [13].
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2.6. Selection of kinematic input

Before evaluating the performance of the pose estimation driven running model, the number of constrained Fourier
coefficient pairs were determined by evaluating the Pearson’s correlation coefficient (r) and Root Mean Squared Differ-
ence (RMSD) between the predicted knee and hip flexion curves and the marker-based reference. Fourier coefficients
were evaluated in pairs with the same coefficient number (a1 and b1 = pair 1 etc.). In relation to the coefficient pair
selection, the number of constrained coefficient pairs were only increased, if the higher order of pairs resulted in a
higher correlation coefficient and lower RMSD without increasing the range.

2.7. Comparison

When constraining the parametric running model with input derived from pose estimation, the hip and knee flexion
curves would not be identical to the ground truth. Thus, a model driven by a0 and 5 constrained coefficient pairs
derived from the marker-based reference was created to make a model driven by ground truth hip and knee flexion
Fourier coefficients. This gives 2 models; Model-PE constrained with coefficients derived from pose estimation and
Model-MB constrained with a0 and five coefficient pairs, derived from the marker-based reference. Both models used
the same anthropometric and meta data input and were compared to the full-body musculoskeletal reference model
driven by marker-based motion capture, see Fig 1.

Plantar flexion, elbow flexion, hip abduction angles and vertical center of mass position (vCoM) were selected to
compare the running pattern predicted by Model-PE and Model-MB with the marker-based reference. The Fourier
coefficients of the selected parameters were transformed back to the time series domain, where Pearson’s correlation
coefficient, RMSD and Mean Average Error (MAE) were used to compare the shape and magnitude difference between
the two models and the marker-based reference. The Pearson correlation coefficients were categorized according to
Taylor as “weak” (r ≤ 0.35) , “moderate” (0.35 < r ≤ 0.67), “strong” (0.67 < r ≤ 0.90) and “excellent” (r > 0.90) [17].

3. Results

3.1. Kinematic model input

Table 1: The median (min - max) of the Pearson’s correlation coefficients and root mean squared differences between the pose estimation driven
joint angle predictions of the right and left knee and hip flexion and the measured reference. 1 - 5 Fourier coefficient pairs were constrained. 1 pair
= a1 and b1, 2 pairs = a1, a2, b1 and b2 etc.

Constraining a0 resulted in lower correlation coefficients and higher magnitude errors in all combinations and was
therefore not considered for Model-PE. Table 1 shows that the highest correlation and lowest RMSD was found when
only constraining a1 and b1 for both knee flexion angles. For the hip flexion angles, the highest correlations were
found when constraining one coefficient pair for the left hip and two coefficient pairs for the right hip. The lowest
RMSDs were found when constraining all five coefficient pairs. Thus, Model-PE was driven by constrained a1 and b1
coefficients. Hereby, the unconstrained coefficient pairs 2 to 5 became part of the running model estimation, resulting
in the time series joint angle curves shown in Fig 2.
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3.2. Model performance

Figure 2: Left and right knee and hip flexion means from Model-PE and the marker-based reference with Pearson’s correlation coefficient, RMSD
and MAE median. The horizontal axis is normalized to 100% gait cycle and the vertical axis is joint angle degrees.

Excellent correlations were found for both knee and hip flexion on both sides. However, the hip flexion angle was
generally estimated smaller for Model-PE than the measured reference, with a high RMSD compared to the range-
of-motion. As shown in Fig 3 both Model-PE and Model-MB plantar flexion angles showed excellent correlations
for both sides with slightly higher correlations for Model-MB. Both models showed similar RMSD values, with a
marginally smaller magnitude error for the left ankle. For the elbow flexion both models showed strong correlations
for both sides, with model-PE having the highest correlation coefficient on the left side and Model-MB on the right
side. On the left side Model-PE showed the lowest magnitude error, while Model-MB had a slightly lower RMSD
on the right side. For the hip abduction both models showed strong correlations, with Model-MB having the highest
correlation coefficients for both sides. However, Model-PE showed the lowest magnitude error for both sides.
Both Model-PE and Model-MB showed excellent correlations for the vCoM, with the highest correlation coefficient
for Model-MB. The models showed similar magnitude errors, see Fig 4.
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Figure 3: Left and right plantar flexion, elbow flexion and hip abduction means and standard deviations from Model-PE, Model-MB and marker-
based reference with Pearson’s correlation coefficient, RMSD and MAE median. The horizontal axis is normalized to 100% gait cycle, and the
vertical axis is degrees.
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Figure 4: Vertical Center of mass means and standard deviations from Model-PE, Model-MB and marker-based reference with Pearson’s correlation
coefficient, RMSD and MAE median. The horizontal axis is normalized to 100% gait cycle, and the vertical axis is in meters.

4. Discussion

The aim of this study was to investigate the concept of using a statistical parametric running model driven by knee
and hip flexion angles from pose estimation to recreate a running pattern comparable to a reference from marker-
based motion capture. The results of Model-PE and Model-MB showed strong to excellent correlations compared
to the marker-based reference on all evaluation parameters. Knee and hip flexion changes significantly based on the
running velocity and stride frequency [14, 8]. Thus, these DOFs hold much information and are of high importance,
when estimating the running pattern based on minimal model input data. Regarding the selection of the number of
constrained coefficient pairs in Model-PE, using two coefficient pairs showed the highest median correlation for right
hip flexion, while five coefficient pairs showed the lowest median RMSD for hip flexion for both sides. However, the
range of the right hip flexion with two coefficient pairs showed lowest minimum correlation (r = 0.909) of all amounts
of pairs, while the maximum RMSDs for the right and left hip flexion was higher with five constrained coefficient
pairs (right hip flexion: RMSD = 26.7o, left hip flexion: RMSD = 27.5o) compared to using one pair (right hip
flexion: RMSD = 20.8o, left hip flexion: RMSD = 21.3o). It was a priority not to increase the number of constrained
coefficient pairs, if this increase would not influence both the Pearson’s correlation, RMSD and range positively, to
ensure that an eventual increase would equally improve the model performance. Hence, constraining one coefficient
pair for the hip and knee flexion was chosen for Model-PE. Constraining only one coefficient pair results in a more
general running pattern estimation, thus decreasing the trial specificity of the model output. This influence is shown
by the standard deviations of each joint angle output of Model-PE which were smaller compared to Model-MB, see
Fig 2 and 3. Hence, when increasing the amount of constrained Fourier coefficients in the model, the specificity of
the output will also increase. Yet, doing this would equally require a high accuracy of the pose estimated joint angles,
to ensure that constraining more coefficients would not result in inaccurate running pattern estimations.

vCoM can be considered as a product of multiple kinematic parameters in the lower body, e.g. plantar, knee and
hip flexion angles. vCoM is well predicted by the two models with excellent correlations (Model-PE: p = 0.961,
Model-MB: p = 0.981) and very low magnitude errors (Model-PE: RMSD = 0.021m, Model-MB: RMSD = 0.020m).
This extends the possibility to investigate the vertical ground reaction forces that are highly related to the vertical
accelerations of the CoM and lower body kinematics [7]. Thus, allowing future investigations of muscle- and joint
reaction forces to help explain causes of pain and overuse injuries by extensive load at specific joints or tissue.

Stenum et al. have proposed a single-view pose estimation setup to investigate kinematic gait parameters in slow
walking. They showed knee and hip correlations similar to the current study, while the plantar flexion in the current
study showed higher correlations [16]. This indicates that the concept of using Model-PE to estimate lower body
kinematics performs better than direct joint angle estimation using a single camera view. The knee and hip flexion
MAE in [16] showed lower values compared to the current study. However, this can be explained by the higher limb
movement velocity and larger range-of-motion in the running gait compared to slow walking. Kanko et al investigated
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walking gait kinematics using the multi-view markerless Theia3D setup, showing plantar and hip flexion RMSDs
similar to the current study, while showing lower RMSDs for knee flexion and hip abduction [10]. A multi-view setup
enables direct assessment of joint angles in the frontal plane that possibly enables a better hip abduction estimation
compared to Model-PE, which is only kinematically constrained with parameters from the sagittal plane. Model-PE
showed lower correlations and higher MAE values for plantar, knee and elbow flexion compared to Pagnon et al.
who evaluated their multi-view pose estimation model Pose2Sim in running [11]. However, Pose2Sim was based on
8 cameras using a textured mesh of each participant created from 68 cameras. Thus, being restricted to a complex
setup compared to the single view pose estimation setup used in the current study. For the hip flexion and abduction
Model-PE showed higher correlations and lower MAE compared to Pose2Sim. Despite using a more simplistic setup,
the Model-PE performed better on specific parameters compared to a complex multi-view pose estimation setup.

Model-MB showed lower correlations for hip abduction (left: r = 0.789, right: r = 0.833) and elbow flexion (left:
r = 0.842, right: r = 0.835) compared to plantar flexion (left: r = 0.958, right: r = 0.962) and vCoM (r = 0.981).
Thus, a more accurate estimation of these DOFs would require an increase in the amount of constrained parameters
in the parametric running model. The relationship between the combination of constrained parameters and the output
of the parametric running model is unknown, since the model estimation holds a lot of complexity, where different
parameters are statistically correlated, thus influencing each other in the internal algorithms of the statistical model.
However, it seems feasible to constrain DOFs of the upper-body, when wanting to increase the accuracy and trial
specificity of upper-body parameters.

In conclusion, this study has shown that a statistical parametric running model driven by knee and hip flexion
angles derived from single-view pose estimation is capable of recreating running kinematics comparable to a marker-
based reference. The influence of adding accurate upper-body DOFs from pose estimation to the constrained model
input should be investigated to improve overall model performance.
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Appendix A. Sample Appendix Section

Figure A.5: Marker placement protocol for the marker-based motion capture reference.
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Worksheet

1. Introduction

The article of this study was prepared following the submission guidelines of the Journal of Biomechanics. This
master’s thesis was made in collaboration with the company TrackMan. TrackMan specializes in developing analysis
solutions across different sports like golf, baseball, tennis, soccer and American football. However, golf is their
primary business segment. Through their Doppler radar, they are capable of monitoring the launch of a golf ball. With
each swing, the Doppler radar system measures different aspects from club movement to ball trajectory and speed.
TrackMan are still yet to develop an easy usable solution for analyzing the athlete movement that produces the golf
swing. There are solutions based on artificial intelligence available that are capable of analyzing human movement
based on simple video recordings. These solutions are however still too inaccurate for valid full-body analysis of a
golf swing.

Rasmussen et al. have recently developed a parametric running model based on a large set of marker-based motion
capture data, capable of constructing a full body kinematic analysis based on minimal trial-specific input [1]. It is in
the interest of TrackMan to evaluate whether or not it is possible to drive this model with minimal noisy data input
from simple video recordings. If successful, it would be purposeful to replace the running model with a parametric
golf model that could be integrated in the Trackman analysis system. Thus, the aim of this study was to investigate
the concept of using a statistical parametric running model driven by joint angles from single-view pose estimation to
recreate a running pattern comparable to a reference from marker- based motion capture.

The following worksheet will provide an elaborate description of the theory, rationale and process behind the
investigation. Furthermore, it will include the choices and thoughts regarding the study background, methodological
theory, data processing and considerations in regard to both the scientific work and the practical perspectives of
TrackMan.

2. Pose estimation

Human pose estimation is a computer vision technique that predicts and tracks the articulated joint locations of
a human body from an image or a sequence of images [2]. Essentially it is a way to capture a set of coordinates for
the human joints and thereby recover the underlying kinematic structure of a person. The results of human 3D pose
estimation can be 2D or 3D poses or 3D human models corresponding to an image or video [3]. In research of sports
and health related biomechanics, marker-based motion capture systems are most often used to describe and analyze
the kinematics of a subject. Despite the high accuracy of this method, its dependency on laboratory equipment and
settings restricts the possibility of assessing subjects outside a laboratory. Furthermore, the need for placing small
markers on the surface of a subject, would have an impact on the motion of the subject. And especially for analyzing
kinematics in sports, these would influence the performance of the athlete. Thus, the method of reconstructing human
kinematics from 3D pose estimation, could increase the ecological validity of movement analysis, and hopefully
advance the possibility for analyzing performance in the field.

The main challenges concerning pose estimation include the variation of body poses, complicated backgrounds,
diverse clothing appearance and occlusions. However, the reconstruction of human skeletal representation and joint
coordinate estimates in 2D has made a lot of progress in recent years, due to the development of convolutional neural
networks and accessible large-scale datasets [4, 5]. Because of this development, recent work has focused on further
development of 3D pose estimation. Constructing a 3D human pose from 2D image sequences is appealing, due to
the possible usability and the requirement of few resources. However, it suffers from the complexity that different 3D
poses may correspond to the same 2D image because of the added depth [2]. The extraction of 3D poses from videos
facilitates analysis of the performance of athletes and provides immediate feedback for their movement [6]. Thus,
generating precise 3D pose estimations is advantageous, not only for single frame estimations, but even more for

1



sequences of images. However, extracting poses from a sequence of images adds further challenges to the estimation
problem. For example, background variation, occlusion, camera movements, fast motion, loose clothing, and change
in light condition may cause pose shape and appearance of people to change over time [2].

Multi-view camera setups have been investigated as a solution for the depth ambiguity of 3D pose estimation.
When using multi view, different camera angles are used to construct a human pose. Here, 3D joint coordinates can
be derived using fusion between the cameras or triangulation of the 2D image coordinates in each view [7]. Different
multi-view approaches have shown to slightly increase the accuracy of 3D pose estimation with an average joint
position error of 20-30 mm, while a monocular view, where only one camera angle is used for input, has reached
about 40 mm [8]. Meaning, that despite access to epipolar geometry and 3D information, even the best multi-view
setups present results comparable to those of the best monocular methods. Thus, the most discussed issue concerning
human 3D pose estimation remains, that the accuracy seems insufficient for applications like motion analysis, which
are essential for biomechanics and sports performance analysis [8]. The uncertainty that is still related to 3D pose
estimation verifies looking for other measurement approaches that are valid and comparable to marker-based motion
capture systems.

2.1. 3D Pose estimation using MediaPipe

In the current study, the parametric running model received kinematic input derived from the open source 3D
Pose detection python package MediaPipe Pose. MediaPipe Pose is a machine learning solution for single person
3D pose estimation developed by Google, customizable to use in RGB images, video sequences and live recordings.
The package utilizes a two-step detector-tracker machine learning pipeline, where it firstly detects the pose region-of-
interest within the frame. The pose detection model initially predicts two keypoints, one describing the human body
center and one placed above the subject’s head, describing the radius of a circle circumscribing the subject. This circle
defines the region-of-interest, where pose landmarks can be identified, see Fig 1.

Figure 1: The two-step detector-tracker pose estimation pipeline.

After subject detection, a tracking model predicts 33 3D pose and face landmarks within the region-of-interest,
these are shown in Fig 2. In the subsequent frames, the tracker predicts the pose and face landmarks based on both
the image input and the previous frames, meaning that the detection model only is activated if needed. This would be,
when the tracker is not capable of identifying body pose presence in the previous frame.
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Figure 2: Example of the positioning and names of body landmarks in MediaPipe Pose. Landmark positions 0-10 marked by (*) are deliberately
hidden in the image to ensure subject privacy.

2.2. Adjustable MediaPipe code arguments

To initialize the pose detection model in a python environment we call the setup function mp.solutions.pose.Pose(),
where a few different input arguments can be adjusted to fit the specific requirements and purpose of the pose esti-
mation. In the current study all input arguments were adjusted with the purpose of getting the most accurate pose
estimation, without concerning processing time [9]:

• static image mode: A boolean value. When set to false, the detector is only invoked if needed. If set to True,
the detector is activated in every input frame. Hence this value should be set to True in a case of working with
a file containing unrelated images in each frame. In the current project it was set to the default value of False,
since working with video sequences.

• min detection confidence: A detection model confidence interval ranging from 0.0 - 1.0 with the default value
of 0.5. In the current study this was set to 0.9, meaning that the detector needed a prediction confidence of
greater or equal to 90% to be considered a positive prediction.

• min tracking confidence: A tracking model confidence interval ranging from 0.0 - 1.0 with the default value
of 0.5. In the current study, this was set to 0.9 meaning that if the confidence of the tracked landmark is greater
or equal to 90% then the tracked landmark position is valid. If the confidence is below 90%, then the detector
is invoked in the next frame. Increasing this value increases the robustness of the pose estimation, but also the
latency.

• model complexity: MediaPipe is capable of using three different pose landmark models, with different com-
plexity (0, 1 and 2) with value 1 as default. The higher the value, the more complex a model will be used, and
the more accurate results will be. However this will equally increase the latency. In the current study, the value
of 2 was chosen to increase the accuracy of the model’s pose estimation.

• smooth landmarks: A boolean value, with default value True when static image mode set to False. In the
current study set to True, meaning that pose landmarks across different frames are filtered to reduce noise.
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3. Describing running kinematics with Fourier series

In most biomechanical research, running kinematics are represented as joint angle curves in the time-series do-
main. This allows for visual interpretation using graphs, often with the time normalized to 100% of the gait cycle.
However, it is difficult to reduce the time-series data to a few simple numbers to analyze the whole cycle. Therefore,
kinematic data is often compared in qualitative terms or quantitatively at specific points in the gait cycle. Furthermore,
it is troublesome to archive large amounts of kinematic data represented in the time-domain. The Fourier transform
instead allows kinematic data of cyclic motions to be represented as a sum of sine and cosine waves:

y(t) = a0 +

n∑
i=1

aicos(iωt) +
n∑

i=1

bisin(iωt)

Where ω is the angular stride frequency, n is the number of coefficient pairs and a and b are the Fourier coefficients.
The value of the Fourier coefficients are given by:

a0 =
1
T

∫
f (t)dt ai =

2
T

∫ T

0
f (t)cos(ωit)dt bi =

2
T

∫ T

0
f (t)sin(ωit)dt

Where T is the stride time, f(t) is the joint angle at time t and i is the coefficient pair number [10]. As the order of
the coefficient pairs increases, the sine and cosine curves are multiplied with the coefficient order, i.e. a2 is multiplied
with a cosine wave of two times the angular stride frequency, ω, and b3 is multiplied with a sine wave of three times
ω. Hence, the lower orders (e.g. n=1 or n=2) describe the general shape of the curve, whereas the higher orders of
the coefficients describe more detailed fluctuations of the joint angle data [11]. Skejø et al. showed that joint angles
from running trials can be represented with the use of 5 Fourier coefficient pairs. This allows for a very compact
representation of running kinematics, which makes it possible to archive a large amount of data in a small size file.

4. Data-Based Parametric Biomechanical Models driven by 3D pose estimation

The 3D pose estimation methods available today are still too inaccurate for applicable motion analysis comparable
to the standard of marker-based motion capture systems. Rasmussen et al. have developed a data-based parametric
biomechanical running model, which utilizes that running kinematics can be described by Fourier series [1, 10].

When analyzing skilled and repetitive movements like running, swimming, or cycling, there seems to be a high
degree of intersubjective kinematic similarity that can be described from connections between movement patterns and
anthropometry. For instance, a positive correlation between leg length and step length seems plausible. Knowing
these connections, it is potentially possible to reduce the need for subject-specific model input. Based on this con-
text, Rasmussen et al. developed a unified statistical model for anthropometry and movements for cyclic motions.
The statistical model was made based on 285 treadmill running trials (180 from male and 105 from female subjects)
collected from 80 subjects using an optical motion capture system. Each trial was converted into a full-body mus-
culoskeletal model that comprises 67 anatomical segments, 52 anatomical joints and 104 joint degrees-of-freedom.
Over a typical running cycle, the variation of each joint degree of freedom was recovered from the model, and the
time series functions were parameterized with Fourier series restricted by 11 Fourier coefficients. Meaning that each
running trial is represented by 11 coefficients per degree-of-freedom, subject-specific segment lengths and meta data
such as gender, age, weight, height etc. which in total comprises 1224 parameters. All 1224 parameters are collected
in a large matrix, X, where each row represents a trial and each column is a parameter, x. The running parameters are
statistically correlated, thus it is not possible to use the matrix X directly as a parametric running model. Specifying
single running parameters, x, would simply lead to unrealistic running patterns. Therefore, the matrix, X, is subjected
to principal component analysis (PCA):

y = A(x − µ)

Here, the PCA transformation matrix A is used to transform a set of running parameters, x, and a vector of mean
values from X, µ, into principal components, y. The transformed parameters, y, are uncorrelated and can therefore be
changed within a statistical reasonable range. The PCA transformation matrix, A, has orthonormal properties, which
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allows an opposite transformation from transformed parameters, y, back to primal space, x, where the parameters have
a physical interpretation i.e. running speed or Fourier coefficients of knee flexion angle.

x = AT y + µ

The PCA of the matrix, X, leads to a parametric running model, where the transformed parameters, y, can be varied
and then transformed back to running parameters, x, to create new running patterns. To utilize this, Rasmussen et
al. formulated an optimization problem, where they found that the most probable running pattern is found when y is
minimized with constraints of some of the running patterns, x:

Minimize yT C−1y

Subject to x j = f j f or j ∈ J

Here x j can be expressed in terms of y, which gives a quadratic optimization problem with the transformed vari-
ables, y, as linear constraints:

Minimize yT C−1y

Subject to Σiai jyi + µ j = f j f or j ∈ J

In the context of this project, this makes it possible to constrain the parametric running model with running
parameters, x, that are Fourier coefficients of joint angles extracted from pose estimation, measured segment lengths
and meta info i.e. gender or running speed, and then predict the remaining running parameters to make the most
probable running pattern.

5. Protocol considerations

In order to standardize the experimental protocol, different setups were investigated and compared with the purpose
of creating MediaPipe joint angle estimates as similar as possible to the reference. Thus, the many pose estimation
challenges were considered and minimized through the setup.

5.1. Camera position and setup

When adjusting the experimental protocol and setup, a relevant consideration was the camera view of the sub-
ject. Different camera view positions were considered and tested through the pilot trials; frontal, back, sagittal,
obliquely from the front and back. Results clearly showed most accurate relevant joint positions and angles from a
view obliquely from the front and directly from a sagittal view. The oblique view had the advantage of getting a high
pose landmark detection confidence on all 33 landmarks. While the sagittal view was less confident in regard to de-
tecting the landmarks on the body on the opposite side of the camera. For example, when recording from the left side
of the subject, the right elbow or shoulder would often be hidden behind the trunk. Thus, landmarks on the right side
of the body would often be predicted on behalf of the left side. However, an advantage of the sagittal view was that
it was less complicated to make the global coordinate system of the pose estimation agree with the local movement
plane of the subject. Furthermore, with an oblique view, the accuracy of the pose estimation was very dependent
on a valid prediction of all 3 dimensions, including the depth. However, a sagittal view showed great results for the
knee and hip flexion, since these could be estimated based on the 2D view in this plane, excluding the importance
of the depth estimation. The running pattern is most dependent on the joint angle motion in the sagittal plane, like
hip flexion, compared to the joint angles moving in the horizontal or frontal plane. Furthermore, the sagittal plane is
exposed to the highest range of motion, thereby being less exposed to noise and artifacts compared to the other planes.
Thus it was chosen to use a sagittal camera view, to increase the possibility of accurate joint angle estimates in this
plane.
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5.2. Light conditions
In the movement laboratory, the light frequency of the ceiling lamps caused a frequent change in light condition

in the video recordings. Thus, instead of using the ceiling lamps, each recording was made with an external spotlight
placed approx. three meter from the subject with an angle of approx. 45o to the sagittal plane of the runner, this
placement was standardized through all trials to prevent any change in light condition and to minimize background
variation in regard to the shadow of the runner.

5.3. Parallax error
The issue of parallax error is known to influence the estimation of object position [12]. Parallax error occurs when

the measurement of an object’s length is more or less than the true length because the viewing position is at an angle
to the object of interest. Video-image systems often require calibration of field of view based on field measurements
of certain geometric elements before the data collection process can be initiated. Most video-image systems provide
internal algorithms for such a calibration [13]. However, when wanting to use simple smartphone recordings, the pose
estimation may be influenced by parallax error. In the current study, the viewing angle between the camera and the
subject was standardized as much as possible, without influencing the natural running pattern of the subject.

In the experimental setup, the camera was placed with a distance of 2,30 m to the treadmill at a height of 1,44 m in
a line approx. perpendicular to the hip of the subject. Before reaching steady state, the runner was instructed through
verbal feedback to run with his hip approx. perpendicular to the middle of the treadmill, which was marked by a line
of tape on the treadmill side. Ideally this would ensure that the runner in each recording was positioned with the body
center in the camera viewing center, thereby minimizing and standardizing the influence of parallax error on the pose
landmark positions.

6. Pose Estimation joint angle comparison

The statistical parametric running model includes 104 different DOFs that can be constrained by Fourier coefficient
input generated from MediaPipe Pose. However, several of these could not easily be processed from the single sagittal
view. Furthermore, the running model has the advantage that it is capable of predicting the most plausible running
pattern from a minimal trial and subject-specific input. When the model is determining many parameters based on a
few, the accuracy of these few input parameters should be as high as possible, since it can be argued that an estimation
based on inaccurate input would equally result in inaccurate output. Thus, subsequent to the final data collection,
a comparison of joint angles generated through MediaPipe pose estimation and joint angles generated from marker
based motion capture was made.

The joint angles investigated were selected based on two perspectives. Firstly, they should have a relevant influence
on the running pattern, and secondly they should be equal to one of the 104 DOFs included in the running model,
with a time series signal comparable to the corresponding DOF throughout the gait cycle. Thus, the elevation of the
shoulder joints, and the flexion of the knee, hip and elbow joints were compared with the equivalent angles derived
from marker based motion capture. The pose estimation angles were before the comparison transformed to 11 Fourier
coefficients and subsequently transformed back to time series. The comparisons were based on Pearson’s correlations
and root mean square differences from the 51 included trials.

Table 1: The median (min - max) of the Pearson’s correlation coefficients and root mean squared differences between the pose estimation joint
angles and the marker-based reference.

Variable Right knee Left knee Right hip Left hip Right shoulder Left shoulder Right elbow Left elbow

r
0.970

(0.901 - 0.991)
0.979

(0.934 - 0.991)
0.982

(0.917 - 0.994)
0.972

(0.897 - 0.990)
0.452

(0.023 - 0.906)
0.384

(0.006 - 0.803)
0.347

(0.006 - 0.913)
0.600

(0.028 - 0.991)

RMSD
17.5

(9.9 - 22.9)
9.5

(6.2 - 14.1)
8.5

(3.8 - 17.3)
9.5

(2.7 - 15.0)
33.2

(22.9 - 59.5)
39.4

(20.8 - 64.8)
17.8

(11.9 - 38.1)
16.4

(8.1 - 31.1)

Based on the results shown in Table 1, the input parameters in the current study were selected. When wanting
to predict running patterns, it may seem confusing that the plantar flexion was not investigated. Early in the study
process, it was established from visual inspection of the landmark position and joint angle plots from the pose esti-
mation that the ankle and toe landmark positioning was too inconsistent, to generate a valid plantar flexion parameter.
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Looking at Pearson’s correlations, it clearly shows that the hip and and knee joint angle estimation curve courses are
closely comparable to the reference, while the shoulder and elbow joint angle estimates are inaccurate compared to
the reference. Hence these four DOFs were excluded from the input parameters.

Figure 3: Left and right knee and hip flexion means and standard deviations from Pose Estimation and marker-based reference. The horizontal axis
is normalized to 100% gait cycle, and the vertical axis is degrees.

The magnitude errors of the hip and knee do however differentiate from the marker-based reference. As shown
in Fig 3, the Pose estimated joint angles tend to be below the reference. Thus, it was decided not to include a0
coefficients in Model-PE in the article. Furthermore, based on the variation shown in Fig 3, it was established that
coefficient selection analysis was necessary, to ensure the right amount of constrained knee and hip angle coefficients
in Model-PE. This was done to ensure that all model input was improving the running pattern estimation and not
regressing it.

7. Segment length combination analysis

The total of 1224 predicted and constrained running parameters from the parametric running model were used
to drive a simulation of a musculoskeletal model in the AnyBody Technology software similar to the one driven
by the marker-based reference. A TrialData.any file containing information about the running speed, age, gender,
anthropometry and 11 Fourier coefficients for all degrees of freedom were created for each trial. This file contains
a kinematic Fourier driver for each degree of freedom, where a0 and the five a and b coefficients are used to drive
the model for one gait cycle. This enabled visual sanity checks of the estimated running pattern and anthropometrics
through the model view function, see Fig 4. Through this visual inspection it was clear that constraining the pelvis
width led to unrealistic model scaling, hence this parameter was not constrained.
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Figure 4: AnyBody Technology model view of two different running gait frames driven by parametric running model estimations.

When investigating the different segment combinations in the visual model representation, several different combi-
nations could be constrained, without having notable influence on the representation. Including or excluding a specific
segment length to the constrained model input has influence on the output estimation, where it may improve some
parameter estimations while worsening others. For instance, trials showed that including lower and upper arm lengths
to the constrained parameters improved the elbow flexion estimation, while worsening the plantar flexion estimation.
Thus, a segment combination analysis was done, to ensure the overall best performing segment combination was
being used in the study. Trials showed that the relative differences of the model performance when using different seg-
ment combinations were not notably affected by the number of coefficient pairs being constrained. Thus, all possible
combinations of segment lengths were compared using one coefficient pair. Segments represented on both sides of the
body were only constrained for the left side, because the parametric running model automatically assumes symmetry
between the right and left body half. Hence, constraining the left upper arm to a specific length will equally constrain
the right upper arm to the same length.

Table 2: The median (min - max) of the Pearson’s correlation coefficients and root mean squared differences between the pose estimation driven
vertical center of mass estimated by constraining different segment length combinations and the marker-based reference.

Variable None All Legs and arms Legs Arms Legs and feet Legs and trunk height

r
0.961

(0.779 - 0.996)
0.850

(0.297 - 0.977)
0.957

(0.828 - 0.992)
0.969

(0.828 - 0.997)
0.946

(0.756 - 0.988)
0.969

(0.828 - 0.996)
0.880

(0.338 - 0.990)

RMSD
0.021

(0.008 - 0.049)
0.028

(0.012 - 0.043)
0.032

(0.005 - 0.061)
0.030

(0.005 - 0.055)
0.019

(0.007 - 0.058)
0.030

(0.005 - 0.055)
0.027

(0.011 - 0.044)

Unlike the majority of the different outputs from the parametric running model, vCoM is not restricted by a
specific joint or segment location. Therefore, it became the decisive output parameter for the segment combination
analysis. Table 2. shows a selection of the results from the segment combination analysis. The analysis is based on
different combinations of constraining the segment length of the foot, shank, thigh, upper arm, lower arm, and trunk
height. Furthermore, it was also investigated not constraining any of the segment lengths. The comparison showed
highest vCoM median correlation when constraining the legs (shank and thigh lengths) or the leg and foot lengths,
while it showed the lowest median RMSE when only constraining the arms (upper and lower arm lengths). However,
constraining the leg lengths or leg and foot lengths resulted in a poor RMSD median value compared to other combina-
tions. Oppositely, constraining the arms showed poor median correlation compared to other combinations. Whereas,
without constraining any segment lengths, the model showed vCoM median correlation similar to constraining the
legs and RMSD median similar to constraining the arms. Thus, it was chosen not to constrain any segment lengths.
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This decision furthermore had the advantage that model-PE in a practical context became less complicated for use in
field measurements.

8. The perspectives of TrackMan

This Study concludes that it is possible to generate results comparable to marker based motion capture, when
utilizing a statistical parametric running model driven by joint angles from pose estimation. Our results show that
this concept is capable of generating similar results to other studies investigating single or multi view gait analysis
in running [14, 15, 16]. However, it is argued that the present pose estimation technology alone is not meeting the
requirements of motion analysis in sports [17]. In the context of TrackMan using this concept to develop a parametric
golf model, the results of the parametric running model driven by knee and hip kinematics should not vary significantly
from the marker-based reference. Thus, we have investigated the performance of Model-PE further through a paired,
one-dimensional, two-tailed Statistical parametric mapping (SPM) t-test with an alpha value of 5%, comparing it
to the marker-based reference. The SPM as a statistical method, illustrates an intuitive understanding of where the
significant differences occur over time of the gait cycle. It has the advantage that it analyzes time series data as
continuous data, whereas traditional statistics often rely on discretized characteristics of the data [18].

Figure 5: Result of SPM paired t-test for right plantar flexion (left) and vertical center of mass (right).

In Fig. 5 it is shown that the right plantar flexion angle and vCOM are significantly larger in Model-PE compared
to the marker-based reference multiple times throughout the gait cycle. This is furthermore the scenario for all Model-
PE output parameters. Differences were expected, since the validity of synthetically created movement kinematics
will always be inferior to laboratory recorded data [1]. Thus, the estimations from Model-PE are subject to some
degree of uncertainty, which is part of the tradeoff when simplifying the measurement approach. However, the results
of Model-PE are generated based on simple 2D joint angle calculations for only the knee and hip joints derived from a
simple smartphone recording. Hence, identifying other parameters essential for estimating the running pattern, could
potentially be a way of further developing on the concept of the current study. Considering the simple method used
in this study, one can expect a potential for developing a more complex or movement-specific joint angle calculation
approach.

In the perspective of using pose estimation and a biomechanical model to estimate the movement of a golf swing,
parameters that contain much information about the swing characteristics need to be identified, in order to obtain trial
specificity of the estimations. Furthermore, to ensure realistic estimations when constraining these parameters, they
need to be measured precisely. Therefore, the validity of a parametric golf model would rely on both an identification
of important movement parameters and the potential of developing accurate pose estimation joint angle calculations
of these parameters. In this context, the potential of developing a golf-specific pose estimation algorithm could be
investigated, with the purpose of tracking specific important parameters precisely, since the parametric model would
rely on minimal but valid input. Furthermore, when analyzing a golf swing, it must be considered that a camera view
from the side might not be optimal, since a lot of the range of motion is better captured from the frontal plane. Another
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dimension for a statistical parametric golf model could be to use information from the Doppler radar system as model
parameters. This could potentially improve the model estimation, since the estimation would not only be based on the
swing kinematics but also the output of the swing.
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