
Person re-identification of people
and their luggage

VGIS 10

Simon Gørtz Flou Nielsen

Vision, Graphics and Interactive Systems
Aalborg University

Vision, Graphics and Interactive Systems
Aalborg University

Department of Electronic Systems
Fredrik Bajers Vej 7B

DK-9220 Aalborg
https://vgis.create.aau.dk/

Title:
Person re-identification of people and
their luggage

Theme:
Computer Vision

Project Period:
Spring 2022

Project Group:
VGIS 1047

Participant(s):
Simon G. F. Nielsen

Supervisor(s):
Kamal Nasrollahi

Copies: 0

Page Count: 53

Date of Completion:
June 1, 2022

Abstract:

As travel becomes more and more
common, the use of Re-identification
systems become more common. For
surveillance or queue estimation, Re-
identification is a versatile and useful
tool. By using Re-identification meth-
ods e.g. airports can keep track of
passengers and their queue times for
boarding and unboarding planes. For
a network to distinguish a passengers
from each other, a system specifically
trained and developed for that pur-
pose needs to be implemented. That is
the purpose of this paper, to research
person Re-identification within this
context. This paper explores a dataset
structure containing two bounding
boxes, one for the person and another
for the luggage they are carrying. This
dataset was used throughout the pa-
per, for testing multiple ways of utilis-
ing it for Re-identification. One such
method tested was a Dual-TransReID
network, which reported an accuracy
of 95%. This is an improvement to
the baseline test of a single TransReID
network, which scored an accuracy of
90% with a single bounding box con-
taining both person and luggage.
Code base can be found at:
https://github.com/MrFlou/Multi-
Net-ReID

https://vgis.create.aau.dk/

Preface

This report was written for the fourth semester of the AAU masters program Vi-
sion, Graphics and Interactive systems, in the months of February to the 2nd of
June of 2022. The focus of this report is to research into Re-identification using
machine learning and different structures of datasets. This is programmed using
Python 3.7.6 with a selection of libraries, e.g. TensorFlow, PyTorch, Numpy, Pan-
das, etc.

A big thanks to Aske Lejbølle and Kamal Nasrollahi for their feedback and
supervision during the writing of this report.

Group VGIS 1047, Aalborg University, June 1, 2022

Simon Gørtz Flou Nielsen
<sgfn17@student.aau.dk>

iii

Acronyms and abbreviations

Acronym Definition
AP Average Precision
BBOX Bounding Box
CNN Convolutional Neural Network
CPU Central Processing Unit
DNN Deep Neural Network
GD Gradient Descent
GMM Gaussian mixture mode
GPU Graphics Processing Unit
IoU Intersection-over-Union
mAP Mean Average Precision
MLP Multi-Layer Perceptron
R1 Rank-1
Re-ID Re-identification
RGB Red Green Blue
RNN Recurrent Neural Network
ROI Region of Interest
SGD Stochastic Gradient Descent
SotA State of the Art
STD Standard deviation
YOLO You Only Look Once

iv

Contents

I Problem analysis 1

1 Introduction 2
1.1 Initial Problem Description . 3

2 Previous Solutions 4
2.1 Person Identification and re-identification 4
2.2 Baselines . 7
2.3 Verification and Metric Method . 13
2.4 Dataset . 14
2.5 Evaluation . 15
2.6 Development . 16

3 Delimitations 17
3.1 Final problem formulation . 18

II Problem Solution 19

4 Design 20
4.1 Methods . 20
4.2 Dataset . 22

5 Optimisation and Loss functions 24
5.1 Optimisation Algorithm . 24
5.2 Loss functions . 25
5.3 Neural Network fusion . 27
5.4 Optimization of Dataset . 28

6 Implementation 29
6.1 Programming language Python . 29
6.2 Neural Network Frameworks . 29
6.3 Datasets . 36

v

7 Experiments 37
7.1 Preliminary test . 37
7.2 First Iteration . 37
7.3 Second Iteration . 43

8 Discussion 45
8.1 Future work . 46

9 Conclusion 47

Bibliography 49

Part I

Problem analysis

1

1 - Introduction
Person Re-ID easily gets very difficult in large traveling hubs, e.g. an airport,
where thousands of people pass through on a daily basis. Even though, some
people may be distinguishable by their clothing, other may wear similar clothing,
e.g. a football team in their national colours. In person Identification and Re-
ID is gaining more and more attention, as Deep Neural Networks (DNN) prove
more and more capable of such tasks. With the increased demand for automated
systems that can detect and identify people, many researchers have taken their
swing at this topic. In those scenarios Re-ID can prove difficult, with many of the
current solutions for Re-ID. After years of research in the field of Re-ID, many im-
provements have been made, but the problems have not been solved completely
[1][2][3][4][5]. Therefore, additional information or a different approach is re-
quired to successfully provide a correct Re-ID in those cases. There are multiple
avenues to take to provide this additional information. As a majority of people
in airports, typically, carries one or two additional carry-ons, using features from
those may be useful to create a more descriptive representation of a person. The
big question is, how exactly this information should be combined with features
from the person. This paper aims to introduce a method that combines a person’s
identificatory features with additional information gathered from the luggage they
carry.

2

3 Chapter 1. Introduction

Figure 1.1: This shows the pipeline for the average feature extraction with bounding boxes defining
the ROI. To capture the whole person and luggage a lot of area surrounding is also captured within
the bounding box.

Figure 1.2: This figure shows the bounding boxes for both person and luggage, individually ex-
tracted patches. condensing the data given to the networks, to the most important data

1.1 Initial Problem Description

How can a Computer Vision system be used to Re-identify individual people with the use
of the luggage they carried?

2 - Previous Solutions
Within this chapter, previous solutions will be analysed with a focus on the meth-
ods papers such as TransReID and SimCLR used for improving on problems sim-
ilar to the ones found for this project. Additionally, the similar problems faced in
the previous solutions, will provide an understanding to similar problems faced
in this project.

2.1 Person Identification and re-identification

Identifying and understanding the State of the Art solutions (SotA) can help to
provide an understanding of similar methods useful for using a person’s luggage
as an identifying descriptor.
The task of re-identification is to identify a person across two or more cameras,
where that person can appear at different times and locations. With this in mind,
an ideal system needs to be developed that should in theory be able to handle a
wide variety of identification scenarios. Scenarios include but are not limited to:
Time of day, illumination conditions, camera angles, resolution and more. To aid
in this Re-IDing problem, Region of Interests (ROIs) or bounding boxes are often
made for an image containing multiple objects of interest. These ROIs are made by
another system, purposely built for finding and drawing bounding boxes around
objects of interest. These bounding boxes help by narrowing the available data to
only what is perceived relevant for the task at hand.

2.1.1 Methods

There are quite a few methods of identifying people in an image and comparing
them to another detection of a person. These methods vary from use case to case.
Many of these methods include forms of dimensionality reduction. This section
of the paper will explain some of the methods used for Re-ID.

Feature Vector Extraction

The method focused on in this paper is feature vector descriptors, which describes
an image within a 1-dimensional array of values. There are multiple methods for
extracting these feature vectors from images or other forms of data. This is also

4

5 Chapter 2. Previous Solutions

seen as dimensionality reduction, where as the complexity of the data is reduced
to hopefully identify similarities between data points. The most common way
of extracting feature vectors is through DNNs, such as a Convolutional Neural
Network (CNN) for images. These features are usually represented as a n length
array, comprised of values which provides a dimensionally reduced representation
of the full data.

Figure 2.1: A overview to feature extraction from an image though a network developed to extract
and classify images to IDs [6].

When extracting feature vectors it is common to use systems/networks tailored to
the weight and extract tailored feature vectors for specific proposes. These tailored
networks and systems can be trained with methods like supervised triplet-loss
training (further explained in section 5.2.1).

MLP: Multilayer Perceptron

Multilayer Perceptron (MLP) is a section of fully connected neurons called a feed-
forward neural network. An MLP often simply consists of input, hidden and
output layers. MLPs are often the very simple neural networks, that contain the
most basic functions almost all more advanced neural networks contain[6]. These
elements are Neurons, Weights, Biases and activation functions. A neuron in a
network has one bias and a weight pr neuron from the layer it is receiving in-
put from. These weights and biases are trainable variables, that a neural network
adjust through training with the optimization formula and loss function. An ac-
tivation function is often also called a activation layer, this function could be a
Rectified Linear Unit Activation function. This function takes an input and if the
value is below 0 it gives the output of 0. In this activation function, anything above
0 will have the same output as the input.

6 Chapter 2. Previous Solutions

Figure 2.2: An image showing the basics of a Multilayer Perceptron[6]. Illustrated with one hidden
layer, though in many cases, there are multiple hidden layers.

The number of hidden layers in MLP networks varies depending on the task the
network is given. MLP networks are used for a wide variety of simpler machine
learning tasks.

CNN: Convolutional Neural Network

CNN is a method that maintains the spatial information in an image, using convo-
lutional layers, pooling layers and fully-connected layers in the simplest of cases.
With the Convolutional layers, it is able to keep spatial information, which is of-
ten lost with just fully connected layers. With the help of pooling layers, it is
able to learn about larger features as it shrinks the image down in size. There
are many architectures out there for CNNs such as: AlexNet[7], VGG-nets[8],
GoogLeNet/InceptionNet[9], ResNet[10] and many others[11]. Most of these net-
works have been used for a wide range of computer vision tasks including Object
detection and Re-ID. For most of these networks, there are available pre-trained
weights, commonly trained on datasets such as ImageNet[12] or other publicly
available datasets. This allows for the practice called Transfer Learning which can
improve performance and training time. Transfer learning is when a neural net-
work was trained for one task and uses what it learned to perform another task,
with or without additional training[13]. This is typically used if a given dataset is
of limited size, as it can improve the effectiveness of the neural network[11].
These extractions of feature vectors can come from full image extractions or ROI
extraction. ROI extractions is the method of placing a bounding box around the

7 Chapter 2. Previous Solutions

object of interest in a larger image, cutting out data to focus on what is of impor-
tance to the task at hand.

Figure 2.3: Full Frame Extraction in blue and ROI extraction in red

These methods are the backbone of this paper’s tests, as they are used to test
the systems in the following chapters. Using these methods of extraction for
Re-Identification, the following section will look into more SotA methods of Re-
identification.

2.2 Baselines

The methods described in the previous section, are very general ways of extracting
features. Nowadays, in Re-ID many different proposals exist for this task. Like
the "Visibility-Aware" Approach for person Re-Identification by Yang Et al.[14],
where the system proposed learns to extract information from partly occluded
people. Another paper with relevancy for this paper, is the "Partial Person Re-
identification" written by Tianyu Et al.[15]. This paper propose a system that dis-
tinguish people by cropped small parts. With many more proposals out there.
With this in mind and the scope of this project, papers with suitable access to
code base and relevancy to the topic would be good baselines. Finally two papers
where selected; SimCLR[2] and TransReID[4] published in the year 2020 and 2021
respectively. These two papers have an available code base and proper relevancy,
further explained in the sections below. These baseline papers would be used for
guidance and evaluation of the proposed systems for this paper.

8 Chapter 2. Previous Solutions

2.2.1 TransReID: Transformer-Based Object Re-Identification

The first baseline paper is one tackling the extraction of features with the use of a
transformer-based network "TransReID: Transformer-based Object Re-Identification"[4].
Compared to many previous attempts using CNN networks, this new approach
utilises transformer architecture, a newer approach proposed way back in the “At-
tention Is All You Need” paper[16]. The novel idea at the time was to make a
network architecture fully built on attention mechanisms. With this use of at-
tention mechanisms, it was theorised that a network would have a better time
generalizing to the data it would be trained on.

Figure 2.4: Grad-CAM[17] visualization of attention maps, image from TransReID paper[4]: "(a)
Original images, (b) CNN-based methods, (c) CNN+attention methods, (d) Transformer-based
methods which captures global context information and more discriminative parts."

Framework

The proposed framework consists of a linear projection of flattened patches, this
allows the system to handle any given input resolution. This linear projection also
includes a learnable position embedding. Included in this side information em-
bedding which includes non-visual information from the camera.

9 Chapter 2. Previous Solutions

Figure 2.5: Image from TransReID paper[4]: "Framework of proposed TransReID. Side Information
Embedding (light blue) encodes non-visual information such as camera or viewpoint into embed-
ding representations. It is input into transformer encoder together with patch embedding and
position embedding. Last layer includes two independent transformer layers. One is standard to
encode global feature. The other contains the Jigsaw Patch Module (JPM) which shuffles all patches
and regroups them into several groups. All these groups are input into a shared transformer layer
to learn local features. Both global feature and local features contribute to ReID loss. "

Following these position embeddings comes two transformation layers, where
the second one contains a jigsaw patch module. This module tries to adapt and
overcome a challenge with transformer networks. Transformer layers is a newer
method, which adopts a self-attention mechanism[18]. This self-attention mecha-
nism deferentially weighs parts of its input to guide its attention. The attention
mechanism provides context to what order the input data should be interpreted
as, which is different from an RNN network that processes data in order[19].

Performance

The TransReID was able to score a mAP of 89.0% on the market-1501 with a Rank-1
of 95.1%. TransReID showing great promise for descriptive feature vector extrac-
tion to aid in Re-ID. It is shown in the paper for TransReID that the self-attention
transform layers, does effectively guide the network to extracting a useful feature
vector[4] (see figure 2.5). The TransReID outperformed all other SotA methods,
mentioned in the accompanying paper. It outperformed multiple popular person
ReID datasets.

10 Chapter 2. Previous Solutions

Datasets MSMT17 Market Duke OCC_Duke VeRi
Model mAP | R1 mAP | R1 mAP | R1 mAP | R1 mAP | R1
Baseline(ViT) 61.8 | 81.8 87.1 | 94.6 79.6 | 89.0 53.8 | 61.1 79.0 | 96.6
TransReID*(ViT) 67.8 | 85.3 89.0 | 95.1 82.2 | 90.7 59.5 | 67.4 82.1 | 97.4
TransReID*(DeiT) 66.3 | 84.0 88.5 | 95.1 81.9 | 90.7 57.7 | 65.2 82.4 | 97.1

Table 2.1: mAP and R1 will be elaborated more on in section 2.5

2.2.2 SimCLR: A Simple Framework for Contrastive Learning of Visual
Representations

The second baseline is a take on unlabeled training method, previously demon-
strated by Exemplar-CNN[20], Instance Discrimination[21], CPC[22], AMDIM[23],
CMC[24], MoCo[25] and many others. Out from this came the paper "A Simple
Framework for Contrastive Learning of Visual Representations"[2], which we will
be looking at as a baseline for the system in this paper. SimCLR is a classifi-
cation approach which provided advances in self- and semi-supervised training
compared to previous approaches. This approach to image classification, Sim-
CLR was able to achieves an 85.8% top-5 accuracy for the ImageNet dataset with
1% of labeled images[2]. SimCLR was written by Ting Chen, Simon Kornblith,
Mohammad Norouzi and Geoffrey Hinton, as a research example into Self- and
Semi-Supervised learning and Re-ID.

Framework

The framework for SimCLR is much simpler, than many common techniques for
self-supervised learning. Which in past techniques often required significant mod-
ification to the network architecture and training procedure.[2] Here SimCLR takes
a more simplified approach to the problem of image classification. It starts off by
learning generic representation of the images, using an unlabeled dataset. Then
it will fine-tune its weights by training on a small amount of labeled images to
achieve its accuracy.

11 Chapter 2. Previous Solutions

Figure 2.6: A overview of how SimCLR framework is built and how it trains on datasets given [2]

In the beginning SimCLR draws random images from the original dataset, then
augments them with simple transforms twice (Cropping, Color Distortion, Gaus-
sian blur). They discovered in their research, that giving different views of the
same image is important. This works to prevent trivial forms of agreements, such
as agreements of the color histograms. To this end, they tested a range of differ-
ent transforms to be applied to a single image. These transforms includes: Crop
and Resize, Crop, Resize and Flip, Color Distort(drop), Color Distort(jitter), Ro-
tate(90,180,270), Cutout, Gaussian Noise, Gaussian Blur and Sobel Filtering.

12 Chapter 2. Previous Solutions

Figure 2.7: Examples of the transformation in action when applied to an image.[2]

Following their testing, it was discovered that the combination of two transforma-
tions worked the best to improve the performance of the model. The two most
important transformations to the model were the combination of random crop-
ping and random color distortion. By independently distorting the colors of each
crop, the model can learn to focus on more generalizable features than by match-
ing color histograms. As without this type of transformation of colors and crops,
the model could begin to focus solely on color and ignore other more generaliz-
able features. By doing so with the two transformations, the model is only able to
maximize agreement between more useful and generalized representations.

Performance

After training SimCLR is able to achieve an accuracy of 76.5% Rank-1. This is
compared to the previous best at that time, the CPC v2[26], which scored a Rank-
1 accuracy of 71.5%. This performance matches supervised learning in a smaller
ResNet-50[2].

13 Chapter 2. Previous Solutions

2.3 Verification and Metric Method

Another method of verification two images of being the same ID, is using a binary-
class model such as a Siamese network[6]. The Siamese network has been pur-
posely built and trained for comparing two images and is a Multi-Stream network.
A Siamese network consist of two identical but independent networks, working
side by side to compare two images. This network receives input from two im-
ages, and outputs a two similarity scores. The higher the positive similarity score
is, the likelier it is that the two images are of the same ID. The opposite is also true;
the lower the positive similarity score and higher the negative similarity score is
the less likely they belong to same ID. Though a weakness of such a verification
method is that often it can be shallow and not produce the best results[6].
Another method is the metric method, which aims to maximise the distance be-
tween IDs and minimise the distance between the same IDs. This can be done with
a single network using the triplet based method. This method produces feature
vectors that can be compared up against other feature vectors extracted from dif-
ferent images. The metric Triplet method consists of using 3 anchors; Test anchor,
Positive anchor and Negative anchor. It aims to pull the Test anchor and Positive
anchor together and the Negative anchor and Test anchor away from each other.
This is to minimize the inter distance within IDs feature vectors and maximize the
distance between different IDs feature Vectors[6]. This can be seen in figure 2.8
below.

14 Chapter 2. Previous Solutions

Figure 2.8: The first and second images are the test anchor and the positive anchor. The last image
is the negative anchor. The test and positive anchor is being pulled together and the negative is
being pushed apart from the rest.[6]

2.4 Dataset

To train and test the methods in question and evaluate their effectiveness. A
dataset is required to train and evaluate Neural Networks e.g. some form of data
representative of the task set for the network to solve.
The dataset used is a modified version of the one used in the One-To-One pa-
per[27], with additional annotations for luggage carried by the people in the data.
In the dataset used for this modification, there were 7529 bounding boxes contain-
ing 116 identities. These bounding boxes contained both person and their luggage
in one bounding box. For this project, the person and the luggage needed to be
separated into two bounding boxes.

After separating the dataset ended up containing 8163 bounding boxes for lug-
gage, while still containing 7529 bounding boxes for the people. The reason there
are more luggage bounding boxes is because there are multiple people carrying
multiple pieces of luggage with them. With this, there are 6080 person bounding
boxes with luggage attached to them. In the portion of bounding boxes with lug-
gage, there are 96 IDs left from the original 116 IDs in the full dataset. Meaning
that there were 20 people in the One-To-One dataset, that did not carry luggage

15 Chapter 2. Previous Solutions

while they where being recorded during collection.

Figure 2.9: Collage of the ROI cutouts for the luggage and person bounding boxes.

2.5 Evaluation

When researching new Neural networks it is important to be able to evaluate the
system through relevant metrics. For these, it is important to make sure the met-
rics for each of the tests are measured on also exist or can be generated for the
baselines, in order to compare their performance against each other. These met-
rics can also help determine the quality of the system, such as an interference
time metric that can show the efficiency of the Neural network. Knowing the in-
terference time of the networks helps to determine if the network can be used in
a real-time product. For this possible use case, a less accurate network could be
desirable if it meant a faster interference time. Fast interference time is desirable
for a network, to run real-time or near real-time[4]. For this paper, interference
time has not been measured, as it was not the main concern at the time. The main
concern of the paper is the accuracy of the system with the addition of luggage
information.

As in the baseline papers, there are multiple metrics that can provide an overview
of the performance of the networks[4, 2]. When evaluating the effectiveness of
the network, it is important to have ground truths to compare against. With these
ground truths, a test of the networks can be performed and their output can be

16 Chapter 2. Previous Solutions

compared with the ground truths to measure accuracy. These ground truths come
from the dataset explained in the section above 4.2. One such metric that can be
calculated from ground truths and network output, is Mean Average Precision
(mAP). The mAP is calculated as presented in the Market-1501 dataset[28]. mAP
is the mean of all Average Precision (AP), the AP is calculated as an area under the
Precision-Recall curve. Another metric that can be extrapolated from comparing
with ground truths is a Rank-K score. Rank-K is where K is the top number of
best predictions given from the network. The ground truth must be within the
number of K top guesses from the network to have a successful guess. Rank-1 will
be the primary measurement mentioned throughout this paper, this will often be
referred to as accuracy.

Additional valuable information is the characteristics of the feature vectors ex-
tracted from the image patches. These characteristics are metric values such as;
the inter and intra ID distances. With these, it can be seen how much two IDs
overlap each other and how varied feature vectors are within IDs. For these met-
rics, having a low intra distance and large inter distance, aids in classification and
distinction between classes[29].

2.6 Development

For developing a system handling Re-ID’ing, it is important to have a specific
approach in mind. How should the system be trained and what parts should it
consist of. For this project the focus will be on simply handling the dataset, with
a combination of feature vectors from two different sources (see section 4.2). With
this approach it was determined to focus research on Dual Neural Networks and
Multi-Stream Neural Networks. These research areas require multiple evaluations,
for both areas should be compared to the baseline Neural Networks in section 2.2.
The methods of verification described in section 4.1, helps to determine use cases
and possible weaknesses of a network. With the verification methods it also pro-
vides information on how to handle a scenario where training data might have
limitations. A verification system that can compare two feature vectors from two
images to determine their likeness and thereby determine if they are the same, is
especially preferred.

After decisions on how the Networks and dataset should be used and validated,
delimitation can now be established for giving focused guidelines for the rest of
the project.

3 - Delimitations
With the limited time and resource some delimitations needs to be established to
narrow in the scope of the project. To determine the scope of the project, it was
important to consider what resources were available. One main concern was the
dataset needed to train and test a system of this idea and structure. Due to the
relative niche case of the dataset needed, described in section 4.2, it was decided
to create one dataset from another. The changes and additions to the previous
dataset are described in 4.2.

Due to these delimitations, a focus was put on the feature extraction for Re-ID,
with available data already being processed by a previous step in the pipeline.
The previous step in the pipeline is assumed to give a dataset containing bound-
ing boxes for luggage and people. With a list that addresses each person to one or
more luggage that they might be carrying.

Another delimitation to be made is the architecture of the neural network, as the
computing resources can vary greatly between architectures. The computational
resources allocated to the project were: 1 GPU: NVIDIA RTX 3080 10GB, System
RAM: 16GB DDR4 and 1 CPU: i7-8400x 6 core 4GHz. The GPU is the one han-
dling most of the training, in this case is a CUDA-enabled device. Meaning that
the GPU can effectively utilize the highly parallel capability of a GPU for training
a network[30]. With the memory allotted for training, networks can only reach a
certain size before training speed and errors will befall training. Therefore, a mod-
erate size network with good performance is preferable considering the scope of
this project.

The number of methods for Re-ID, are more than can be explored in this paper
alone. Because of this, a delimitation of what methods to explore and how to ap-
proach them had to be made. In the end, the idea of a Dual-stream network and
a Dual-Net network were chosen. With these two networks it was also decided to
use the Triplet Loss for the loss function.

17

18 Chapter 3. Delimitations

3.1 Final problem formulation

"How can a network use a bounding box set of person and luggage to Re-ID them across
multiple instances and what architecture works well for generating descriptive feature
vectors."

Part II

Problem Solution

19

4 - Design
When designing a Machine Learning system for Re-Identification it is important
to understand previous solutions and have well-determined inputs and outputs
for the expected system. With the newly compiled dataset made for this paper, a
two image input and 1 feature vector output will be the initial testing base.

4.1 Methods

In the following section, an elaboration of topics and methods that are used
thoughout the paper. These parts consist of; the architecture, which is the way
the Neural Network operates with the information given, the comparison of fea-
ture vectors and how they are compared and validated.

4.1.1 Neural Network Architecture

For the Neural Networks made specifically for this paper, a ResNet-50 was used
as the base architecture. ResNet is a residual network architecture, built with mul-
tiple layer depths up to 152 layers[31]. The ResNet-50 is a medium/compromise
between the size of the resources for this project and the accuracy of the architec-
ture. In TensorFlow there are three depths of layers, the architecture can be built
as: 50, 101 and 152. In a ResNet architecture, there are blocks with a "shortcut" that
bypasses some convolution layers making the architecture a residual network[31].
With this, the last prediction layer is replaced with a 128 dense layer to output a
feature vector for Re-Identification.

20

21 Chapter 4. Design

Figure 4.1: Here are the two main block types in the ResNet. These show the "shortcut" that is
common in residual network architecture. These layers can change in neurons and filters pr layer
but generally a ResNet keeps the sequence of layers.

This network functions well with the limited resources of the computer system
used for this paper.

22 Chapter 4. Design

Types of layers

In Neural Network there are many types of layers, that give the Network its func-
tionality. For CNN’s the layer it gets its name from is the Convolution layer,
another common layer for CNNs is a pooling layer. The Convolution layer is a
type of layer designed to consider spatial information in data like images. The
layer does this by utilizing a kernel, which it uses to understand relations between
pixels and their neighbors. Another layer that often accompanies Convolution lay-
ers, is the Pooling layer. This layer down samples the input, to aid the following
layers generalise larger features in the dataset. A common form of pooling layer
is a MAX pooling layer. This form of pooling layer, picks the highest value within
its kernel as the representative for that cluster of pixels.

4.1.2 Feature Comparison

Features vectors can describe what they were extracted from, this can be validated
through comparison with other feature vectors. To compare feature vectors there
are multiple methods, one such method is distance measurement between two
feature vectors. This distance measurement can show how similar two feature
vectors are to each other. With a distance measurement, one can also distinguish
between two highly different feature vectors. When finding the distance between
two, one can also use this to help identify feature vectors to clusters of other IDs
feature vectors. There are many formulas for calculating distance between feature
vectors, the Euclidean distance method is among one of the most used for tasks
like this[32]. This distance measurement is also used in the loss function Triplet
Loss Function, to give a loss value to train the Neural Network. For the output of
a Network like this, a distance measurement is also used again to test and validate
the performance of the Network.

4.2 Dataset

In this project, a custom-made dataset was used, as one with the specific require-
ments was not available. The dataset currently used consists of two sets of bound-
ing boxes and one set of images. The two sets of bounding boxes are one for
people and the other one for the luggage they are carrying at that time. This
dataset also have each person and luggage, given an unique identification num-
ber.
Thoughout the paper there are multiple datasets mentioned; Person Solo, Luggage
Solo, Person/Luggage 2 BBOX and Person/Luggage 1 BBOX dataset. Person solo
dataset contains only the persons bbox and images with their respective IDs. The
same goes for the Luggage Solo dataset, which contains only luggage bboxes and
their IDs. The person/luggage 2 BBOX contains both the images and BBOX for

23 Chapter 4. Design

Persons and luggage separately with an additional file. This additional file links
a person to the luggage they are carrying in the same frame. Person/luggage 1
BBOX is as close to the original dataset as it can be. This dataset contains the
full frames and the bounding box containing both the person and luggage in that
particular frame.

Figure 4.2: The Blue box is the Person/Luggage 1 BBOX dataset, the Person/Luggage 2 BBOX is
the Red and Yellow boxes. Where the solo datasets contain only the Red or Yellow boxes.

5 - Optimisation and Loss func-
tions

When training a network there are a range of different optimisation and loss func-
tions to consider. The idea is to find the optimal solution for a non-convex func-
tion, for which a theoretical global optimal solution is not guaranteed. Therefore
an optimisation algorithm is designed to explore the given function and find an
optimal solution[33]. The two parts for optimising consists of a function to calcu-
late the error or loss of the network from the desired output and another algorithm
to traverse the solution space to find an optimal solution for the problem. The two
parts that will be explained are selected from the baseline system TransREID2.2.1,
as these are some of the most commonly used methods for machine learning prob-
lems like these.

5.1 Optimisation Algorithm

The purpose of the optimisation function is to effectively search for the best solu-
tion to the given problem. It does this during training through back propagation,
by changing the weights, biases and it sets other variables in the neural network
throughout training. The optimisation algorithm used in this project is stochastic
gradient descent or SGD for short. SGD is one of the more popular optimisation
algorithms used for neural networks training[34]. It is an alternative to the stan-
dard gradient descent (GD), as it does its changes in a single update and SGD
uses a subset of samples to update the parameters in the neural network. With
this approach SGD uses the variance between samples and potentially let the sys-
tem avoid local minimas[34]. In testing and training, SGD is used as a comparison
with the baseline papers[4, 2]. The formula for SGD is written as such:

w := w − n▽Qi (w)

In the formula above, Qi (w) is the value of the loss function at i in the dataset it
is being trained on. n in this case is the step size or learning rate.

There are two types of minimas when exploring a function space, local minimum
and global minimum. What a optimiser is trying to do is to find the global min-
ima, but often it will fall into a local minima. There can be multiple local minimas

24

25 Chapter 5. Optimisation and Loss functions

in a given problem space, but these local minimas often catch an optimiser algo-
rithm if the learning rate is too small. The TensorFlow SGD implementation has
two hyper parameters that can be set according to the networks specifications. For
this algorithm in TensorFlow, the SGD has Learning rate and momentum as hyper
parameters. The first hyper parameter is the learning rate, this can be set for how
far steps the optimiser will take pr step. The other hyper parameter is momen-
tum, this can accelerate the gradient decent in relevance to direction. This hyper
parameter was not used for testing as previous baselines did not make use of it.
For optimisation there can often be specified a learning rate, this is how much the
optimiser algorithm changes the variables each time it updates them. Having a
high learning rate means it changes the variables to a greater degree than it would
do with a lower learning rate.

5.2 Loss functions

While training a neural network, a loss function informs the optimisation algo-
rithm how the system preforms during training. The purpose of this function is to
find the current state of the neural network, it does this by calculating loss for the
network. The objective of the loss function is to minimise its score on the given
training set with criteria set for the task at hand.

Loss functions can be classified into two categories; Regression problems and clas-
sification problems. Facial recognition and Re-identification often falls into the
regression problem category, as they often deal with embeddings end/or feature
vectors describing what is being seen. Where a lot of research today focuses on
classification problems, the use of cross-entropy and mean square error loss func-
tions won’t be as effective[35]. For problems such as these loss functions such as
Triplet loss, would perform with greater accuracy for the task at hand[36, 37]. This
loss function will be explained further in the following section.

One such loss function is the Softmax cross entropy loss function. This func-
tion is suited to well for classification networks, with the task to differentiate be-
tween subjects in a dataset. But a function such as that one is not well suited
for tasks such as facial recognition[38]. For things like facial recognition and re-
identification, loss functions like Triplet loss performs well[38].

5.2.1 Triplet loss

The triplet loss function is an approach for training network with outputs like
feature vectors and the like. This function calculates its loss by measuring the
distance between three examples. The three examples in this case will be called

26 Chapter 5. Optimisation and Loss functions

anchors, as it uses a test anchor, positive anchor and a negative anchor. The pos-
itive anchor is an example with the same identity as the test anchor, to evaluate
how close the test anchor is to other examples with the same identity. The negative
anchor can be any other example as long as it has a different identity. This is to
evaluate how close it is to the test anchor, this helps to differentiate and generalize
important features for the examples. With this method, it is possible to create a
large set of combinations for the three different anchors. This can guide the net-
work to achieve better performance in creating more representing feature vectors,
moving the different identities further apart from each other.[36]
The triplet loss function is calculated with[39]:

Ltri = ∑
a,p,n

ya=yp ̸=yn

max(da,p − da,n + m, 0) (5.1)

This formula aims to guide the networks to find a low intra-identity distance
while also giving a high inter-identity distance between all identities in the train-
ing dataset. In the function above, m is the margin for the negative anchor. This
margin serves to push the negative anchor further away, to guide clusters of an-
chors away from each other.

Figure 5.1: The illustration shows three different negative anchors, N1, N2, N3, the test anchor is
shown as A and the positive anchor as P [40]

In the formula 5.1 the a is the test anchor, p is the positive anchor and n is the
negative anchor for the triplet. The formula finds the euclidean distance between
the anchors with the denotation da,p and da,n, this is the distance between the test
and positive anchor and the test and negative anchor. The last item in the formula
for the loss function is m, which is the margin that is forced between positive and
negative anchors[39].

27 Chapter 5. Optimisation and Loss functions

Triplet Hard Loss and Triplet Semi-Hard Loss

There are two alterations to triplet loss, which can improve its performance. These
two alterations is not the focus of this paper, to keep the baseline and experiments
test in line with each other. A short description of both alterations, as future tests
could be performed with them in mind.

Triplet Hard Loss:
This alteration to the Triplet Loss function is relatively simple as it mostly follows
the normal Triplet Loss to a large degree. The method of Triplet Hard Loss can be
considered an optimization of the Triplet Loss function. With Triplet Hard Loss
the idea is choosing the hardest negative sample, this can in some cases give it
advantages over other Metric Loss Functions[41]

Triplet Semi-Hard Loss:
This optimisation works much like Triplet Hard loss, except it creates an average
from the negative samples as a negative anchor. It does this while still creating
a negative anchor that is further away from the test anchor than the positive an-
chor[42].

5.3 Neural Network fusion

When handling multiple networks and combining their outputs, it is important
to understand the many methods of doing so. For this paper the two networks
handle two images; one image of a person and an image of the luggage they
are carrying. These are either fed into each of their own networks or separate
streams in a multi stream network. In both of these cases, there are a connection
point/fusion between two networks or streams[43]. To facilitate an output that is
effective, in this case a feature vector, handling of this fusion is important. In many
simple cases, a concatenation of feature vectors can provide, some benefits to the
accuracy and effectiveness[44]. One of the optimisations that can be tested from
here, is a follow-up network. This follow-up network should take the concatenated
feature vectors as input and produce a new more robust and descriptive feature
vector.

28 Chapter 5. Optimisation and Loss functions

Figure 5.2: In this figure are a simple fusion of two networks shown. In the red box is a simple
Concatenation fusion, the last layer outside is another network
layer made to improve the fusion.

5.4 Optimization of Dataset

For training and testing a Neural Network, a large and sufficiently varied dataset
is needed. If the dataset is not large enough or there is a lack of variation be-
tween data points, there are data augmentation methods that can improve such
cases. Data augmentation means to alter the existing data in meaningful ways, to
improve the amount of data the Neural Network has to train on. Such augmenta-
tions for an image dataset can include but is not limited to: Cropping, Rotation,
Hue shift, Saturation shift, Contrast Shift, Black and White and skewing the im-
age.
Another optimisation of the dataset, is the splitting for Training and testing. When
training a neural network there should always be a smaller section of the dataset
never seen during training. This smaller section is then used to validate the net-
work for over-fitting.

6 - Implementation
Throughout this chapter, we will explain and document the implementation of the
system. An explanation of the different frameworks for Neural networks used and
statistics for the dataset created for this paper. The systems tested and the system
proposed in this paper is written in the programming language Python. Most
systems developed for research in Machine learning use python for extermination
and rapid development. For python different frameworks have been made for
Machine learning, the two used for this paper are TensorFlow and PyTorch.

6.1 Programming language Python

The chosen programming language for this paper is Python. It is chosen for its ver-
satility and ease of experimentation. Python solved these two aspects with a large
collection of libraries and ease of readability. Python is a general-purpose pro-
gramming language developed by "Python Software Foundation"[45] as of writing
the current version is 3.10.4.

6.1.1 Additional Libraries

For python, additional libraries were used to speed up the system. Many of the
libraries used are data management and manipulation tools. These libraries in-
clude: Pandas, Numpy and pathlib. Pandas allow for ease of importing data from
csv files, that store data about the classes and the number of bounding boxes for a
given ID. NumPy allows fast manipulation of arrays as the library is written in C,
which allows for faster data manipulation though its built in functions. PathLib
allows for quick navigation of folder structures, used to get paths for checkpoints
during training.

6.2 Neural Network Frameworks

For in python itself, it would be very difficult and highly inefficient to write a
machine learning system in pure python. Therefore, there are libraries written
in other programming languages such as C and utilizing CUDA that increases
performance and extend the capabilities of python. The two Machine Learning
libraries used for this paper is TensorFlow and PyTorch, both developed to train

29

30 Chapter 6. Implementation

and run neural networks in python. Both library frameworks have support for
CUDA wich enables them to utilize CUDA ready GPUs to speed up training and
interference time of machine learning.

6.2.1 TensorFlow

TensorFlow is developed by the Google Brain Team[46], as a toolkit to help re-
search into machine learning. The toolkit consists of Neural Networks templates,
data augmentation tools, dataset manipulation tools and a host of other pre-built
pipelines. TensorFlow allows the usage of CUDA enabled GPUs to speed up the
training and interference time of neural networks. CUDA takes use of the compu-
tational parallel ability of GPUs, allowing it to run the networks much faster than
on CPUs.[30]

With this library follows a large selection of additional tools, such as: TensorFlow-
Datasets, TensorBoard and TensorFlow I/O. Each of these have a more specified
use case, compared to the general library of TensorFlow. The most important
of these libraries is TensorBoard, this extension to TensorFlow allows us to see
multiple datapoints during and after training a network to better understand it’s
effectiveness. TensorBoard can show the weights and biases during training and is
able to visualise its progress and visualise the loss value for each step in training
allowing us to catch errors faster in days long training sessions.

A benefit that was utilized from TensorFlow library is the call-back features. These
features allows the program to execute commands during training, there by ex-
tending and solving edge cases that can occur during training. One such edge
case would be a collapse of the loss function giving or an error in the loss results
mid training giving NaN as a result. Cases such as these can be reacted upon with
call functions.

1 log_dir = os.path.dirname(__file__) + '\\logs\\' + startTime

2 file_writer = tf.summary.create_file_writer(log_dir)

3 tensorBoard_callback = tf.keras.callbacks.TensorBoard(

4 log_dir=log_dir,

5 histogram_freq=1,

6 profile_batch = '10,15'

7)

8

9 checkpoint_filepath = log_dir

+'\\saves\\'+'Epoch{epoch:02d}-Loss{loss:.5f}.hdf5'↪→

10 model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(

11 filepath=checkpoint_filepath,

31 Chapter 6. Implementation

12 save_weights_only=False,

13 verbose=1,

14 save_freq=95,

15 monitor='loss',

16 save_best_only=True)

17

18 _ = model.fit(

19 data_generator(batch_size),

20 steps_per_epoch=steps_per_epoch,

21 epochs=epochs,

22 verbose=True,

23 callbacks=[tensorboard_callback,model_checkpoint_callback]

24)

In the previous section of code are two callback functions and the fit training
function for TensorFlow. The first callback function is the function that logs infor-
mation for TensorBoard, this tracks the stats of training. The second callback func-
tion is a checkpoint save function, this saves snapshots of the networks weights at
multiple points during training.

Neural Network Architecture

For the implementation, the TensorFlow model zoo is used. The model zoo has
multiple reassembled neural network architectures, ready to be imported and
compiled for multiple tasks. For this project the Resnet-50 (see design section
4.1.1), is a framework architecture for the dual-net and multi-stream test.

The Resnet architecture comes reconfigured with a prediction output layer of 1000,
this is to match the imagenet training set requirements. This last layer is a softmax
prediction layer, that tries to classify the input to 1000 predefined classes. To keep
the pre-trained weights for the whole of Resnet-50, this layer has to be initialized
with the network. The softmax output layer will subsequently be removed for a
new output layer to function as a feature extractor. The implementation of the
Neural Network Architecture:

1 # Loading the Resnet-50 from the TensorFlow Model Zoo, with imagenet pre

trained weights.↪→

2 resnet50 = tf.keras.applications.resnet50.ResNet50(

3 include_top=True,

4 weights='imagenet',

5 input_tensor=None,

6 input_shape=None,

32 Chapter 6. Implementation

7 pooling=None,

8 classes=1000,

9)

10

11 # Creating a new temporary model, to remove the last prediction layer of

the Resnet-50 and replacing it with a 128 neuron output.↪→

12 model = models.Sequential()

13 resnet50Out = resnet50.layers[-2].output

14 layer128 = tf.keras.layers.Dense(128)(resnet50Out)

15 resnet50 = models.Model(inputs = resnet50.input, outputs = layer128)

16

17 # recompiling the new Neural Network with the Triplet loss function and

SGD Optimizer.↪→

18 resnet50.compile(

19 optimizer=tf.keras.optimizers.SGD(

20 learning_rate=0.01, momentum=0.0, nesterov=False, name="SGD"),

21 loss=tfa.losses.TripletHardLoss()

22)

With these lines of code, a Resnet-50 with pre-trained weights and a 128 vector
output is created and compiled.
Once compiled and ready to be trained, it can to display the number of parameters
in the architecture. The Dual-Net network are two identical networks trained in-
dividually, therefore it has half the total parameters as the Multi-Stream network.
When the Dual-Net networks are combined they have the same total parameters
as the Multi-Stream.

1 Model: "Dual-Net (1 of 2)"

2 ===

3 Total params: 23,849,984

4 Trainable params: 23,796,864

5 Non-trainable params: 53,120

6 ___

7 Model: "Multi-Stream"

8 ===

9 Total params: 47,699,968

10 Trainable params: 47,593,728

11 Non-trainable params: 106,240

12 ___

33 Chapter 6. Implementation

For creating the Multi-Stream network, it is implemented as such:

1 # Loading and creation of the left side Resnet-50 with 128 neuron output.

2 resnet50_Left = tf.keras.applications.resnet50.ResNet50(

3 include_top=True,

4 weights='imagenet',

5 input_tensor=None,

6 input_shape=None,

7 pooling=None,

8 classes=1000,

9)

10 #Giving the layers a new name to keep the distinction between the two

sides of the network.↪→

11 for layer in resnet50_Left.layers :

12 layer._name = layer.name + str('_Left')

13 resnet50Out_Left = resnet50_Left.layers[-2].output

14 layer128_Left = tf.keras.layers.Dense(128)(resnet50Out_Left)

15 layer128_Norm_Left = tf.keras.layers.Lambda(lambda x:

tf.math.l2_normalize(x, axis=1))(layer128_Left)↪→

16 # Loading and creation of the right side Resnet-50 with 128 neuron

output.↪→

17 resnet50_Right = tf.keras.applications.resnet50.ResNet50(

18 include_top=True,

19 weights='imagenet',

20 input_tensor=None,

21 input_shape=None,

22 pooling=None,

23 classes=1000,

24)

25 #Giving the layers a new name to keep the distinction between the two

sides of the network.↪→

26 for layer in resnet50_Right.layers :

27 layer._name = layer.name + str('_Right')

28 resnet50Out_Right = resnet50_Right.layers[-2].output

29 layer128_Right = tf.keras.layers.Dense(128)(resnet50Out_Right)

30 layer128_Norm_Right = tf.keras.layers.Lambda(lambda x:

tf.math.l2_normalize(x, axis=1))(layer128_Right)↪→

31 # Concatination of the two networks and defining inputs and outputs of

the new network architecture↪→

32 output_concat =

tf.keras.layers.concatenate([layer128,layer128_Norm_Right],

name="Output")

↪→

↪→

33 resnet50_Multi = models.Model(inputs =

[resnet50_Left.input,resnet50_Right.input], outputs = output_concat)↪→

34 Chapter 6. Implementation

34 # Compiling the Neural Network with the Triplet loss function and SGD

Optimizer.↪→

35 resnet50_Multi.compile(

36 optimizer=tf.keras.optimizers.SGD(

37 learning_rate=0.01, momentum=0.0, nesterov=False, name="SGD"),

38 loss=tfa.losses.TripletHardLoss()

39)

Next are the MLP networks that will be used in the second iteration of tests.
These networks are created from the ground up, without using the model Zoo of
TensorFlow.

1 # Creating the layer structure with the input size being relative to the

network above (256 or 7680)↪→

2 inputLayer = Input(shape=(feature_length), name='input')

3 layer256 = tf.keras.layers.Dense(256)(inputLayer)

4 layer256_norm = tf.keras.layers.BatchNormalization()(layer256)

5 layer256_relu = tf.keras.layers.Activation('relu')(layer256_norm)

6 layer128 = tf.keras.layers.Dense(128)(layer256_relu)

7 layer128_norm = tf.keras.layers.BatchNormalization()(layer128)

8 layer128_relu = tf.keras.layers.Activation('relu')(layer128_norm)

9 outLayer = tf.keras.layers.Dense(128)(layer128_relu)

10 outLayer_Norm = tf.keras.layers.Lambda(lambda x:

tf.math.l2_normalize(x, axis=1))(outLayer)↪→

11 MLP_FollowUp = models.Model(inputs = inputLayer, outputs = outLayer_Norm)

12

13 # Compiling the Neural Network with the Triplet loss function and SGD

Optimizer.↪→

14 MLP_FollowUp.compile(loss=tfa.losses.TripletHardLoss(),

optimizer=tf.keras.optimizers.SGD(↪→

15 learning_rate=0.01, momentum=0.0, nesterov=False, name="SGD"))

The MLP Follow-Up network has in and of itself 116,736 to 2,017,280 parameters,
the reason for this disparity is the output of the networks above. The output
feature vector varies from 256 length for both Dual-Net and Multi-Stream, and
7680 for the Dual-TransReID.

1 Model: "MLP_FollowUp_TransReID"

2 ===

3 Total params: 2,017,280

4 Trainable params: 2,016,512

5 Non-trainable params: 768

35 Chapter 6. Implementation

6 ___

7

8 Model: "MLP_FollowUp_Dual-Net_Multi-Stream"

9 ===

10 Total params: 116,736

11 Trainable params: 115,968

12 Non-trainable params: 768

13 ___

With this all networks are ready to train and be evaluated on.

6.2.2 PyTorch

PyTorch is developed by Facebook’s AI Research lab (FAIR)[47]. This library is
very similar in its purpose to TensorFlow, to help research and development in
neural networks. PyTorch is mainly used for the TransReID, where it is used for
training and construction of the model architecture.

36 Chapter 6. Implementation

6.3 Datasets

When implementing the datasets for the training of the system speed and ease of
loading were a priority to help with rapid testing. For this the dataset is split into
two parts; entrance and exit images, that is split into further two parts; person and
luggage. When it is loaded the first time, it finds all the person images in both the
entrance and exit. Then looks up in a CSV file which luggage belongs to which
person. In the total dataset there are 6080 person bounding boxes with luggage
attached.

Dataset Folder
PersonToLuggage.csv
Entrance

Person
Luggage

Exit
Person
Luggage

To aid in giving IDs to all the people a system called Deep-SORT Helped to keep
track and quick ID new people and luggage.
Deep-SORT is a method of tracking bounding boxes across multiple frames and
keeping them labeled with an ID[48]. It does so by comparing a feature vector
extraction between each frame and the position for the bounding box. If it can
find no match, it will assign the bounding box a new ID.

Entrance 10631 images 3598 label files
Exit 10918 images 3931 label files
Total label files 7479

7 - Experiments
After gathering and annotating the dataset with people and luggage, it was now
possible to start training networks and begin exterminating.

From the chapters 4 and 3 a plan of action was developed. A preliminary test
should be done, as to evaluate the baseline TransReID on the dataset made for this
paper.

7.1 Preliminary test

To evaluate the systems a baseline would have to be set by the networks described
in section 2.2. These baseline tests will be done on the same dataset made for
this project, described in section 4.2. It is the same dataset that will be used for
the following iterations of tests. TransReID was tested with Person and luggage
individually and both in a single bounding box. It scored an accuracy of 78% on
persons solo, an accuracy of 84% on luggage solo and then 90% on the test set
containing both person and luggage.

7.2 First Iteration

The first iteration of tests includes multiple networks and ways of training them.
The first test is a Dual Network test, this is two individually trained networks
and the concatenated to one another. The second test is a Multi-Stream network,
where the whole network is trained at once. The third and last test is training two
Trans-ReID networks and simply concatenate them to one another. In this test, we
wanted to see the accuracy, of a system given two image inputs and trained on
both of them.

7.2.1 Iteration 1 of Dual-Network Identification

For the first test, there would be made a Dual network system. This is comprised
of two neural networks trained individually on either the person data or the lug-
gage data. They are then combined at the end with each of their feature vectors
concatenated to one another.

37

38 Chapter 7. Experiments

Figure 7.1: Graph showing the loss during training of the Dual-Net Person network. Start Loss:
0.96169, End Loss: 0.12524
Logged with TensorBoard

Figure 7.2: Graph showing the loss during training of the Dual-Net Luggage network. Start Loss:
0.95405, End Loss: 0.09841
Logged with TensorBoard

Letting the networks individually train on either the Luggage or Person data, lets
them create descriptive feature vectors for each part. Then after training the two
networks, they were put through a test subset of the original dataset, described in
section 4.2, to evaluate the accuracy of the network as a whole. Three evaluations
were done on this iteration of the system, one for each of the solo networks and as
a whole. The solo evaluation of the network trained on persons scored an accuracy
of 72.3%. The solo network trained on luggage scored 78.1% and when both were
combined they scored an accuracy of 86.7%. For this test, there is also an increase
to the STD of the inter and intra distances, as the two networks are combined.

39 Chapter 7. Experiments

Network Tested on Accuracy (R1) % Inter ID min / max Inter STD Intra ID min / max Intra STD
Solo-Net Luggage 78.14 3.8658303e-08 / 1.61 0.15 1.4551915e-11 / 1.48 0.29
Solo-Net Person 72.31 0.01 / 1.63 0.17 1.4551915e-11 / 1.54 0.36
Dual-Net Both 86.67 0.19 / 2.10 0.20 1.4551915e-11 / 2.01 0.52

Table 7.1: Stats for Dual-Net and the individual nets individually

The solo nets in table 7.1 above, are the separate networks of the dual-net tested
individually. The dataset they are tested on would either be the Person Solo or
Luggage Solo dataset, depending on what the network was trained on.

7.2.2 Iteration 1 of Multi-Stream Identification

For the second test in the first iteration, a test of a multi-stream network was done.
This network is trained with both Person and Luggage data at the same time. This
should help the output of the network to be working together to create a more fully
descriptive feature vector. The output for this network is a feature vector with
a length of 256 dimensions. As the two internal networks are trained together,
compared to the previous tests where they were trained separately. The idea is
when the network is trained as a whole, the output is more coherent together.

Figure 7.3: Graph showing the loss during training of the Multi-Stream network. Start Loss: 0.88874,
End Loss: 0.01071
Logged with TensorBoard

After training the network, it was put though the same test as the Dual-Net. This
scored an accuracy of 75.2% on the test set. The test showed that the clustering of
the feature vectors, showed an inter ID distance of 0.7 min and 2.03 max. It also
showed an intra ID distances of 2.9 min and 1.7 max for the output feature vectors
of the network.

Network Tested on Accuracy (R1) % Inter ID min / max Inter STD Intra ID min / max Intra STD
Multi-Stream Both 75.27 0.69 / 2.04 0.28 2.910383e-10 / 1.68 0.28

Table 7.2: Stats for the Multi-Stream

40 Chapter 7. Experiments

7.2.3 Iteration 1 of Dual-TransReID Identification

TransReID had proved itself effective in the preliminary test, with an accuracy of
90.2% (see section 7.1.) This test is similar to the first test with a dual network,
this time both networks would be the TransReID. This is to see if splitting up
the data between Luggage and person would improve the system, compared to
having luggage and person in one bounding box. TransReID compared to the
other networks tested, has a much larger output vector. The TransReID network
architecture has an output vector of 3840, this is for each network in this dual
network setup. Meaning that the real output of this system is a feature vector of
7680. After training the system on the dataset made for this project, the system
scored an accuracy of 94.8%. This test also showed that the network also had an
inter ID max and min distance of, 23.5 and 51.6 respectively. With an intra ID min
and max of, 5.1 and 46.7 respectively. These high distances can be attributed to
the high feature vector dimensionality, which leads to extreme distances between
feature vectors. Therefore, a normalisation and reduction of the dimensionality of
the feature vector had to be done, so a fair comparison between the other tests.
This gives a new inter ID min and max of, 22.1 and 50.8 respectively, and intra ID
distances of 3.0 min and 44.7 max.

Network Tested on Accuracy (R1) % Inter ID min / max Inter STD Intra ID min / max Intra STD
Dual-TransReID Both 94.78 23.54 / 51.60 3.34 5.15 / 46.70 7.23

Table 7.3: Stats for the Dual-TransReID

7.2.4 First Iteration evaluation

From the first iteration of tests, it can be seen that the addition of another network
with information from the luggage images improves the accuracy. There is an
increase in accuracy, when compared with the solo networks.

41 Chapter 7. Experiments

Figure 7.4: Current accuracy of the first iteration of tests and baseline score from TransReID

Network Accuracy (R1) % Inter ID min / max Inter STD Intra ID min / max Intra STD
Dual-TransReID 94.8% 23.54 / 51.60 3.34 5.15 / 46.69644 7.23
Dual-Net 86.7% 0.19 / 2.10 0.20 1.4551915e-11 / 2.01 0.52
Multi-Stream 75.3% 0.69 / 2.04 0.28 2.910383e-10 / 1.68 0.28

Table 7.4: Stats for the three primary tests done for the first iteration.

In figure 7.4 and the table 7.4, it can be seen that the addition of luggage infor-
mation increases the accuracy. This is whether or not it is given in a separate
bounding box or contained in the same bounding box as the person it belongs
to. Specifically seen in the tests with TransReID, it scored an accuracy of 90%
with a bounding box containing both person and the luggage they were carrying.
Though when splitting the persona and luggage into two separate bounding boxes
and running them though a dual-TransReID network. The Dual-TransReID scored
an accuracy of 93%, this increase in accuracy is also proven with the Dual-Net
test. The Dual-Net test accuracy increased by 15%, when comparing ReID’ing a
bounding box with only the person to ReID’ing a bounding boxes with a person
and luggage. Though there was a big drop in accuracy, when training the system
in a multi-stream setup. A suspected reason is the lost function needed to describe
two different inputs at the same time, possibly requiring a much longer training
time. As for the Inter and Intra distances, they are much harder to compare. The
output of Dual-TransReID is a feature vector with a dimensionality of 7680, where
the Dual-Net and Multi-Stream both have a dimensionality of 256.

42 Chapter 7. Experiments

Figure 7.5: Grad-CAM[17] heat maps, the first two images are the input to the networks. The two
middle are is the Multi-Stream visualisation of the last convolution layer. The last two images are
the Dual-Net visualisation.

Grad-CAM heat map shows the attention or activation of a convolution layer on
a given input[17]. In this case, the last convolution layer was used to generate
the heat maps seen in 7.5. Here it can be seen that the Multi-Stream attention heat
maps are a bit smaller than the Dual-Net heat maps. This shows a wider area of at-
tention taken into account for the dual-net compared to the Multi-Stream network.

43 Chapter 7. Experiments

7.3 Second Iteration

Addition of MLP neural network after the original networks to help narrow in
the feature vectors. This MLP consists of 3 layers with nodes corresponding to the
output of the network before. This addition of a follow-up MLP, should help guide
the output to be more descriptive after the concatenation of the two networks[43].
This MLP network consists of 2 hidden layers and then an output layer. The pur-
pose of the MLP is to do a dimensionality reduction on the feature vector and
possibly improve the fusion of two networks[44]. The First hidden layer has 256
neurons, followed by the second hidden layer with 128 neurons. The last output
layer is also at 128 neurons and contains the feature vector for the MLP. Meaning
there are 50944 parameters for the MLP, with 96 of them being none-trainable pa-
rameters.

Figure 7.6: Graph showing the loss during training of the three networks. Green: TransReID, dark
blue: Multi-Stream, light blue: Dual-Net.

Network Start Loss Epoch of half Loss End Loss
Dual-TransReID 0.2455 3rd Epoch 0.0005
Dual-Net 0.1031 24th Epoch 0.03203
Multi-Stream 0.0958 2nd Epoch 0.01833

Table 7.5: Showing the loss drop for the trained networks

During the training, it was noted that the TransReID loss was much greater and fell
much lower during training. This can be attributed to the higher dimensionality
feature vector output of the TransReID architecture. With the larger feature vector,
there is more data to work with and therefore the loss function starts off higher,
but is able to generalise more based on it..

44 Chapter 7. Experiments

7.3.1 Second Iteration evaluation

The results of the addition of a follow-up MLP, trained on the output of each test
in the previous iteration of tests. With the addition of an MLP all networks had an
increase in accuracy and an improvement in other metrics. While also having an
effect on the intra and inter distances. The TransReID showed an accuracy increase
of 0.9% and the intra also got grouped closer togeather. The intra STD of the Tran-
sReID went from 7.2 to 0.1, as the min and max also decreased. But in this case the
inter distances also decreassed, with these inter distances, it is more useful to have
higher distances. This seems to be a trend with the Dual-Net and Multi-Stream
networks too, as their accuracy did increase and both inter and intra distance de-
creased. Dual-Net accuracy increased by 2.2% from 86.7% to 88.9%, dual net was
the only network where the min intra distance increased. Multi-Stream accuracy
increased by 1.4% from 75.3% to 76.7%, it also had the least change in Intra STD.

There can be multiple reasons for all of these changes, coming from the inclusion
of an MLP network. For the Multi-Stream the small change in Intra STD, can
be attributed to the fact the two sides of the networks were trained as one. This
method of training already produced a feature vector that worked together after
the concantenation. The Dual-Net had the smallest change in inter STD, likely
attributed to the training method the Dual-Net went though. Its training focused
on differentiation

Network with MLP Accuracy (R1) % Inter ID min / max Inter STD Intra ID min / max Intra STD
Dual-TransReID-MLP 95.7% 0.91 / 1.66 0.18 0.05 / 0.94 0.10
Dual-Net-MLP 88.9% 0.35 / 1.68 0.19 2.3267341e-06 / 1.46 0.28
Multi-Stream-MLP 76.7% 0.06 / 1.68 0.19 1.9633164e-05 / 1.52 0.21
Network without MLP Accuracy (R1) % Inter ID min / max Inter STD Intra ID min / max Intra STD
Dual-TransReID 94.8% 23.54 / 51.60 3.34 5.15 / 46.69644 7.2346725
Dual-Net 86.7% 0.20 / 2.10 0.20 1.4551915e-11 / 2.01 0.52
Multi-Stream 75.3% 0.69 / 2.04 0.28 2.910383e-10 / 1.68 0.28

Table 7.6: Stats for the second iteration

In the table above it can be seen the improvements an MLP Network provides.

8 - Discussion
In this chapter, an exploration of things in the report will be discussed. The idea
of this discussion is to explore what could have been done differently and what
changes could have been made to get different results. simCLR was not tested with
the newly created dataset and the structure needed for that system was outside
the scope of resources for this report.

8.0.1 Results

The results for ResNet architecture show a form of improvement, though the re-
sults also show greater accuracy when the TransReID is employed in a Dual-Net
system. Multiple aspects could improve the results e.g. Optimization Algorithm,
Loss Function and datasets.

8.0.2 Dataset

There are a few limitations with the dataset, as currently there are very few IDs
only coming from two cameras. With the current dataset, the variation is very lim-
ited. Making a larger more varied dataset could help the networks better gener-
alise for the task of Re-Identification. This dataset is also only a top view of people
and luggage, this could also affect the accuracy of the networks. For the dataset
a test for the augmentations should have been done, these augmentations expand
the range of representations and aids the network to generalise during training.
What types of augmentations should be researched, to extend the dataset.

8.0.3 Evaluations and methods

The methods used to evaluate the tests and baselines are the rank-1 and inter/in-
tra distances for the outputs of the tested systems. The general measurements
between all tests are the Rank-1, this represents the accuracy of the network giv-
ing descriptive feature vectors for a given input. This metric represented the best
first case guess for each system when classifying one output to a collection of
feature vector ID centers. More methods of evaluating the short comings of the
networks should have been used and researched to get a better understanding of
what was going on.

45

46 Chapter 8. Discussion

8.1 Future work

This section will shortly go through things that could be looked into, if more work
is dedicated to this paper in the future. One of the main challenges for the pro-
posed systems is the lack of datasets carrying both labeled person and luggage.
The step before doing object detection is something to be looked into. Currently
there are not many datasets out there, so making a system for that specified object
detection would be interesting.

Another aspect of the dataset that needs to be looked into is the method of linking
luggage to a person. Some of these cases can be done with a distance measure-
ment, between person and luggage. This method would in theory work well on
backpacks and luggage carried closely to the person it belongs to. Though luggage
such as rolling suite cases carried behind the person it belongs to, would prove
more difficult to link with that person. People walking right behind that luggage
could be wrongly linked with the use of a simple distance measurement.

Then comes the network architectures, more networks should be tried in a dual-net
setup. More research into methods of fusing and training Multi-Stream networks.
This extends into late or early fusion, as well as researching multi-stage fusion.

9 - Conclusion
The focus of this report was to research Computer Vision regarding person Re-
identification in sectors such as airports. Usage for this topic was the general
purpose of further Re-identification, with differently structured datasets. The re-
search here aims to help this challenge by investigating sets of bounding boxes
meant for Re-Identification people with luggage.

For this report an initial problem formulation was made:
How can a Computer Vision system be used to Re-identify individual people with the use
of the luggage they carried?

With this initial problem formulation, research was made into past approaches
of this topic. In chapter 2 past methods were analysed and used for setting the
approach for the tests and methods in this report. With these previous solutions
evaluated, a continuation of delimitations was created in chapter 3. These delimi-
tations determine the approach of the following sections and serves as guidelines
for the rest of the testing and implementation of tests done in this paper.

Out from this a final problem formula was made:
"How can a network use a bounding box set of person and luggage to Re-ID them across
multiple instances, what architecture works well for generating descriptive feature vec-
tors."

Following this final problem formula, the next step was designing the tests and
Networks to be evaluated against the baseline. These design decisions and con-
siderations in chapter 4, outlines the network architecture used throughout the
paper. This section also looked into the needed aspects for both the dataset and
modifications networks like TransReID needed.

The following chapter 5 goes through multiple optimization factors for training
and improving the effectiveness of the networks tested. In this chapter, multiple
loss functions and optimisation algorithms used in training were analysed and de-
scribed. The implementation of the different approaches are described in chapter
6.

Chapter 7 goes through the different tests and methods for improving the net-

47

48 Chapter 9. Conclusion

works and their results from the tests. Here the TransReID network went through
a preliminary test in section 7.1, that showed a Rank-1 accuracy of 90%. The
first iteration of tests, showed an improvement when using the multi bounding
box explained in section 4.2. Here the Dual-TransReID network achieved an ac-
curacy 94.8%, on the dataset with two bounding boxes. This improvement was
also proved with the ResNet-50 architecture. When a Resnet-50 network trained
on person solo dataset, it scored an accuracy of 72.3% and 78.1% on luggage solo
dataset. When it is tested as a Dual-Net configuration, it achieved an accuracy of
86.7%.

The second iteration of tests focused on improving the fusion of the features from
the past iteration of tests. This was done with an addition of an MLP network,
this had a lesser yet positive effect on the accuracy of all networks. The increase
in accuracy across all networks was 0.9% to 2.2% with the addition of an MLP.
With this additional follow-up network, the STD of the output feature vectors de-
creased. The most drastic decrease were the Dual-TransReID, that network had an
STD drop from 7.2 to 0.1. This change can be attributed to the feature dimension-
ality being reduced from 7680 to 128.
A better fusion method, could possibly further improve the networks. More re-
search should be done. However there is sertainly merit to dividing a bounding
box containing both person and luggage up into two bounding boxes that contain
a person and luggage separately.

Bibliography
[1] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. “Beyond

Triplet Loss: A Deep Quadruplet Network for Person Re-identification”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, July 2017. doi: 10.1109/cvpr.2017.145. url: https://doi.
org/10.1109/cvpr.2017.145.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
“A Simple Framework for Contrastive Learning of Visual Representations”.
In: arXiv preprint arXiv:2002.05709 (2020).

[3] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Ge-
offrey Hinton. “Big Self-Supervised Models are Strong Semi-Supervised Learn-
ers”. In: arXiv preprint arXiv:2006.10029 (2020).

[4] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li, and Wei Jiang.
“TransReID: Transformer-Based Object Re-Identification”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). 2021, pp. 15013–
15022.

[5] Chi Su, Jianing Li, Shiliang Zhang, Junliang Xing, Wen Gao, and Qi Tian.
“Pose-Driven Deep Convolutional Model for Person Re-identification”. In:
(Oct. 2017). doi: 10.1109/iccv.2017.427. url: https://doi.org/
10.1109/iccv.2017.427.

[6] Di Wu, Si-Jia Zheng, Xiao-Ping Zhang, Chang-An Yuan, Fei Cheng, Yang
Zhao, Yong-Jun Lin, Zhong-Qiu Zhao, Yong-Li Jiang, and De-Shuang Huang.
“Deep learning-based methods for person re-identification: A comprehen-
sive review”. In: Neurocomputing 337 (Apr. 2019), pp. 354–371. doi: 10 .
1016/j.neucom.2019.01.079. url: https://doi.org/10.1016/j.
neucom.2019.01.079.

[7] Alex Krizhevsky. “One weird trick for parallelizing convolutional neural
networks”. In: (Apr. 2014). arXiv: 1404.5997 [cs.NE].

[8] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: (Sept. 2014). arXiv: 1409.1556
[cs.CV].

[9] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
“Going deeper with convolutions”. In: (Sept. 2014). arXiv: 1409.4842 [cs.CV].

49

https://doi.org/10.1109/cvpr.2017.145
https://doi.org/10.1109/cvpr.2017.145
https://doi.org/10.1109/cvpr.2017.145
https://doi.org/10.1109/iccv.2017.427
https://doi.org/10.1109/iccv.2017.427
https://doi.org/10.1109/iccv.2017.427
https://doi.org/10.1016/j.neucom.2019.01.079
https://doi.org/10.1016/j.neucom.2019.01.079
https://doi.org/10.1016/j.neucom.2019.01.079
https://doi.org/10.1016/j.neucom.2019.01.079
https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842

50 Bibliography

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep resid-
ual learning for image recognition”. In: (Dec. 2015). arXiv: 1512.03385
[cs.CV].

[11] Stefan Schneider, Graham W. Taylor, Stefan Linquist, and Stefan C. Kremer.
“Past, present and future approaches using computer vision for animal re-
identification from camera trap data”. In: Methods in Ecology and Evolution
10.4 (2019), pp. 461–470. doi: https://doi.org/10.1111/2041-210X.
13133. eprint: https://besjournals.onlinelibrary.wiley.com/
doi/pdf/10.1111/2041-210X.13133. url: https://besjournals.
onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13133.

[12] url: https://www.image-net.org/.

[13] Thommen George Karimpanal and Roland Bouffanais. “Self-organizing maps
for storage and transfer of knowledge in reinforcement learning”. In: (Nov.
2018). arXiv: 1811.08318 [cs.AI].

[14] Jinrui Yang, Jiawei Zhang, Fufu Yu, Xinyang Jiang, Mengdan Zhang, Xing
Sun, Ying-Cong Chen, and Wei-Shi Zheng. “Learning To Know Where To
See: A Visibility-Aware Approach for Occluded Person Re-Identification”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). 2021, pp. 11885–11894.

[15] Tianyu He, Xu Shen, Jianqiang Huang, Zhibo Chen, and Xian-Sheng Hua.
“Partial Person Re-Identification With Part-Part Correspondence Learning”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2021, pp. 9105–9115.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: (June 2017). arXiv: 1706.03762 [cs.CL].

[17] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. “Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization”. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). 2017, pp. 618–626. doi: 10.
1109/ICCV.2017.74.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you
need”. In: (June 2017). arXiv: 1706.03762 [cs.CL].

[19] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob
Uszkoreit, and Lucas Beyer. “How to train your ViT? Data, Augmentation,
and Regularization in Vision Transformers”. In: (June 2021). arXiv: 2106.
10270 [cs.CV].

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/https://doi.org/10.1111/2041-210X.13133
https://doi.org/https://doi.org/10.1111/2041-210X.13133
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13133
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13133
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13133
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13133
https://www.image-net.org/
https://arxiv.org/abs/1811.08318
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2106.10270
https://arxiv.org/abs/2106.10270

51 Bibliography

[20] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. “Discriminative unsupervised feature learning
with exemplar convolutional neural networks”. In: (June 2014). arXiv: 1406.
6909 [cs.LG].

[21] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. “Unsupervised fea-
ture learning via non-parametric instance-level discrimination”. In: (May
2018). arXiv: 1805.01978 [cs.CV].

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning
with Contrastive Predictive Coding”. In: (July 2018). arXiv: 1807.03748
[cs.LG].

[23] Philip Bachman, R Devon Hjelm, and William Buchwalter. “Learning repre-
sentations by maximizing mutual information across views”. In: (June 2019).
arXiv: 1906.00910 [cs.LG].

[24] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive Multiview
Coding”. In: (June 2019). arXiv: 1906.05849 [cs.CV].

[25] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Mo-
mentum Contrast for unsupervised visual representation learning”. In: (Nov.
2019). arXiv: 1911.05722 [cs.CV].

[26] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doer-
sch, S M Ali Eslami, and Aaron van den Oord. “Data-efficient image recog-
nition with Contrastive Predictive Coding”. In: (May 2019). arXiv: 1905.
09272 [cs.CV].

[27] Aske R. Lejbølle, Benjamin Krogh, Kamal Nasrollahi, and Thomas B. Moes-
lund. “One-To-One Person Re-Identification For Queue Time Estimation”.
In: 2020 IEEE International Conference on Image Processing (ICIP). 2020, pp. 1706–
1710. doi: 10.1109/ICIP40778.2020.9191293.

[28] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi
Tian. “Scalable person re-identification: A benchmark”. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 1116–1124.

[29] Haobo Lyu, Hui Lu, Lichao Mou, Jonathon Wright, Li Xuecao, Xinlu Li, Xiao
Zhu, Jie Wang, Le Yu, and Peng Gong. “Long-Term Annual Mapping of Four
Cities on Different Continents by Applying a Deep Information Learning
Method to Landsat Data”. In: Remote Sensing 10 (Mar. 2018), p. 471. doi:
10.3390/rs10030471.

[30] CUDA Zone. 2021. url: https://developer.nvidia.com/cuda-zone.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep resid-
ual learning for image recognition”. In: (Dec. 2015). arXiv: 1512.03385
[cs.CV].

https://arxiv.org/abs/1406.6909
https://arxiv.org/abs/1406.6909
https://arxiv.org/abs/1805.01978
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1906.00910
https://arxiv.org/abs/1906.05849
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1905.09272
https://arxiv.org/abs/1905.09272
https://doi.org/10.1109/ICIP40778.2020.9191293
https://doi.org/10.3390/rs10030471
https://developer.nvidia.com/cuda-zone
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

52 Bibliography

[32] Shruti Jadon. “An Overview of Deep Learning Architectures in Few-Shot
Learning Domain”. en. In: (2020). doi: 10.13140/RG.2.2.31573.24803/
1. url: http://rgdoi.net/10.13140/RG.2.2.31573.24803/1.

[33] Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively character-
izing neural network optimization problems. 2015. arXiv: 1412.6544 [cs.NE].

[34] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017.
arXiv: 1609.04747 [cs.LG].

[35] Chunlin Wang, Jianyong Sun, Wanjin Xu, and Xiaolin Chen. “Depth Learn-
ing Standard Deviation Loss Function”. In: Journal of Physics: Conference Se-
ries 1176 (Mar. 2019), p. 032050. doi: 10.1088/1742-6596/1176/3/
032050.

[36] Pengfei Fang, Pan Ji, Lars Petersson, and Mehrtash Harandi. “Set Aug-
mented Triplet Loss for Video Person Re-Identification”. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
2021, pp. 464–473.

[37] Z. Ming, J. Chazalon, M. M. Luqman, M. Visani, and J. Burie. “Simple Triplet
Loss Based on Intra/Inter-Class Metric Learning for Face Verification”. In:
2017 IEEE International Conference on Computer Vision Workshops (ICCVW).
2017, pp. 1656–1664. doi: 10.1109/ICCVW.2017.194.

[38] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. “A Comprehensive Survey of
Loss Functions in Machine Learning”. In: Annals of Data Science (Apr. 2020).
doi: 10.1007/s40745-020-00253-5. url: https://doi.org/10.
1007/s40745-020-00253-5.

[39] C. Zhao, X. Lv, Z. Zhang, W. Zuo, J. Wu, and D. Miao. “Deep Fusion Feature
Representation Learning With Hard Mining Center-Triplet Loss for Person
Re-Identification”. In: IEEE Transactions on Multimedia 22.12 (2020), pp. 3180–
3195. doi: 10.1109/TMM.2020.2972125.

[40] Mariusz Kurowski, Andrzej Sroczyński, Georgis Bogdanis, and Andrzej Czyżewski.
“An Automated Method for Biometric Handwritten Signature Authentica-
tion Employing Neural Networks”. In: Electronics 10.4 (Feb. 2021), p. 456.
doi: 10.3390/electronics10040456. url: https://doi.org/10.
3390/electronics10040456.

[41] Alexander Hermans*, Lucas Beyer*, and Bastian Leibe. “In Defense of the
Triplet Loss for Person Re-Identification”. In: arXiv preprint arXiv:1703.07737
(2017).

[42] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A uni-
fied embedding for face recognition and clustering”. In: (Mar. 2015). arXiv:
1503.03832 [cs.CV].

https://doi.org/10.13140/RG.2.2.31573.24803/1
https://doi.org/10.13140/RG.2.2.31573.24803/1
http://rgdoi.net/10.13140/RG.2.2.31573.24803/1
https://arxiv.org/abs/1412.6544
https://arxiv.org/abs/1609.04747
https://doi.org/10.1088/1742-6596/1176/3/032050
https://doi.org/10.1088/1742-6596/1176/3/032050
https://doi.org/10.1109/ICCVW.2017.194
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1109/TMM.2020.2972125
https://doi.org/10.3390/electronics10040456
https://doi.org/10.3390/electronics10040456
https://doi.org/10.3390/electronics10040456
https://arxiv.org/abs/1503.03832

53 Bibliography

[43] Xianzhi Du, Mostafa El-Khamy, Jungwon Lee, and Larry Davis. “Fused
DNN: A deep neural network fusion approach to fast and robust pedes-
trian detection”. In: 2017 IEEE winter conference on applications of computer
vision (WACV). IEEE. 2017, pp. 953–961.

[44] Peixiang Huang, Runhui Huang, Jianjie Huang, Rushi Yangchen, Zongyao
He, Xiying Li, and Junzhou Chen. “Deep Feature Fusion with Multiple
Granularity for Vehicle Re-identification.” In: CVPR Workshops. 2019, pp. 80–
88.

[45] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[46] TensorFlow Core: Machine Learning for Beginners and Experts. url: https:
//www.tensorflow.org/overview.

[47] PyTorch an open source machine learning framework. url: https://pytorch.
org/.

[48] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple online and Real-
time Tracking with a deep association metric”. In: (Mar. 2017). arXiv: 1703.
07402 [cs.CV].

https://www.tensorflow.org/overview
https://www.tensorflow.org/overview
https://pytorch.org/
https://pytorch.org/
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1703.07402

	Front page
	English title page
	Table of Contents
	I Problem analysis
	1 Introduction
	1.1 Initial Problem Description

	2 Previous Solutions
	2.1 Person Identification and re-identification
	2.2 Baselines
	2.3 Verification and Metric Method
	2.4 Dataset
	2.5 Evaluation
	2.6 Development

	3 Delimitations
	3.1 Final problem formulation

	II Problem Solution
	4 Design
	4.1 Methods
	4.2 Dataset

	5 Optimisation and Loss functions
	5.1 Optimisation Algorithm
	5.2 Loss functions
	5.3 Neural Network fusion
	5.4 Optimization of Dataset

	6 Implementation
	6.1 Programming language Python
	6.2 Neural Network Frameworks
	6.3 Datasets

	7 Experiments
	7.1 Preliminary test
	7.2 First Iteration
	7.3 Second Iteration

	8 Discussion
	8.1 Future work

	9 Conclusion
	Bibliography

