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Abstract:

With the development of robotics, mo-
bile robots have been gradually applied
to various fields. In a disaster environ-
ment, mobile robots can complete tasks
such as search and rescue more safely and
efficiently. However, since the ambient
brightness of the disaster scene is not al-
ways ideal, the robot not only needs to
have the ability to distinguish different
objects in the normal light scene, but also
should be able to distinguish different ob-
jects in the dark environment. In this re-
port, we achieve semantic segmentation
of low-light scenes by combining a low-
light image enhancement network and a
semantic segmentation network. For low-
light image enhancement, we restore low-
light disaster scene images to normal-
light images by training a DSLR[1] net-
work. For semantic segmentation net-
work, we propose modified PSPNet on
the basis of PSPNet[2]. Experiments show
that our modified PSPNet outperforms
original PSPNet on the database we use.
In addition, we also use modified PSPNet
to verify that the method of low-light en-
hancement and then semantic segmenta-
tion can effectively improve the accuracy
of low-light scene semantic segmentation.
Furthermore, due to the lack of paired
low-light disaster scene databases in this
field, we also synthesize a low-light dis-
aster scene database-LLDSD based on the
PST900[3] dataset.

http://www.robotics.aau.dk
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Glossary

LLDSD Low Light Disaster Scene Dataset.

LLIE Low Light Image Enhancement

mIoU Mean Intersection over Union, calculates the intersection ratio of ground truth and
predicted segmentation.

PSNR PSNR is the ratio of the maximum power of the signal to the noise power, which
measures the quality of the reconstructed image. The higher the PSNR index, the
better the image quality.

SSIM SSIM is an indicator to measure the similarity of two images, and its value range is
[0, 1]. The larger the value of SSIM, the smaller the degree of image distortion and
the better the image quality.
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1 - Introduction

With the development of robotics, when performing tasks such as search and rescue at
disaster sites, mobile robots can be used to complete tasks more simply and safely[4].

Although robots can collect a lot of data (images, videos, point clouds, etc.), how to
extract effective information from these data is still a challenging task. Especially in a dis-
aster environment, the data collection mission for the robot is often challenging (collapsed
walls, damaged items, etc.). The robot needs to understand these scenes and distinguish
obstacles and targets in the scene, which requires the robot to have the ability of semantic
segmentation.

Since the fully convolutional network (FCN)[5] and SegNet[6] were proposed, many se-
mantic segmentation methods based on convolutional neural network (CNN) have been
developed and applied in many fields, such as medicine[7], agriculture[8] and autonom-
ous vehicles[5], etc.

These semantic segmentation methods exhibit high performance on different databases.
However, most semantic segmentation studies mainly deal with normally exposed or
brighter images[9], and the performance of these networks drops significantly when deal-
ing with low-light images[10].

To solve this problem, there have been many image restoration works based on convo-
lutional neural networks. CNNs trained using large-scale datasets can restore images af-
fected by fog or haze into higher-quality images. For example, in work [11][12], it is shown
that multi-scale CNN and deep convolutional generative adversarial networks have good
results in recovering images affected by haze.

However, although many harsh environments (fog, haze) have become research hotspots,
there are few studies on the work under extreme conditions such as disaster environments.
One reason for the lack of relevant work in disaster conditions is the lack of suitable data-
sets. Due to safety and other factors, it is difficult to collect well-annotated images of the
ground-truth in disaster areas after a disaster. Nonetheless, existing works [13][3][14] pro-
pose some very good disaster environment databases and efficient semantic segmentation
methods.

But existing databases of disaster environments consist almost entirely of bright pictures.
However, after a disaster, such as an earthquake, mine disaster, etc., the brightness of the
environment may not be ideal. In low light conditions, the exposure time of the camera
will be longer, which makes it more prone to movements of lens and blur during the shot.
Also, since the camera’s ISO is higher in low light, more noise is produced[10]. In this
environment, existing methods suffer significant performance degradation because they
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2 Chapter 1. Introduction

are not trained on low-brightness databases.

Considering these problems faced by the semantic segmentation of disaster scenes in low-
light environments, we first propose a method to simulate low-light environment images,
and based on the PST900[3] database, we synthesize a database LLDSD that can be used
for low-light disaster scene semantic segmentation tasks. Then, we achieve semantic seg-
mentation in low-light disaster scenarios by combining a low-light image enhancement
network and a semantic segmentation network. We use DSLR[1] to enhance the database
in LLDSD to convert low-light images to normal-light images. Then, we modify the ori-
ginal PSPNet[2] to enhance the semantic segmentation network performance. Different
from the original PSPNet, we modify the loss function according to the characteristics of
the labels in the used PST900 to improve the quality of semantic segmentation.

The arrangement of this paper is as follows. Chapter 2 presents previous methods for
low-light database synthesis, low-light image enhancement, and semantic segmentation.
Chapter 3 describes the question we define for this report. Chapter 4 describes the method
we used in detail, and Chapter 5 describes and analyzes the experimental procedure and
experimental results. Chapter 6 discusses our work.



2 - Related Research

2.1 Low Light Disaster Scene Dataset

2.1.1 Low Light Dataset

Low-light scenes are a very common phenomenon when taking pictures of low-light
scenes. Low-light scenes can drastically reduce the quality of the image, causing more
detail loss and low contrast, not only affecting subjective perception, but also the per-
formance of many computer vision systems[15].

Several existing low-light datasets generally consist of pairs of low-light and normal-light
images. The two main ways to construct low-light images are: taking multiple photos
with different camera configurations or synthesizing low-light images from normal-light
images. These datasets are presented in Table 2.1. R/S in the table represents whether the
picture is Real or Synthetic.

Name Number Scene R/S

LOL 500 I R
SCIE 4413 I+O R

VE-LOL-L 2500 I R+S
AdobeFiveK 5000 I+O R

SID 5094 I+O R
DRV 202 I+O R

SMOID 179 O R

Table 2.1: Overview of public low-light datasets. The second column shows how many images are in the
database. The column ’Scene’ shows the scenes they were captured, ’I’ means the images are taken indoor, and
’O’ means outdoor.The last column shows whether the picture is Real or Synthetic. Among these databases,
DRV[16] and SMOID[17] are vedio databases.

LOL

LOL[18] contains 500 pairs of RGB images captured in real scenes. Each low-light image
has a paired normal light image. The images are captured by using different ISO and
exposure time.

3



4 Chapter 2. Related Research

SCIE

SCIE[19] is a low light dataset containing 4413 multi-exposure images. It includes images
of both indoor and outdoor scenes. Each normal-light image(589 in total) in the database
has corresponding 3 to 18 low-contrast images with different exposures, so a total of 4413
multiple-exposure images are included, the images are stored as RGB format.

Adobe FiveK

MIT-Adobe FiveK[20] is also a common dataset for low-light enhancement. The database
contains 5,000 images, all of them were manually retouched. The images in the database
are all in RAW format, and [20] also provides a method that can process images into RGB
format.

SID

SID[21] contains over 5000 low-light images in raw format,the corresponding high-light
reference images are captured by long-exposure. Each low-light image in the database
corresponds to a long-exposure image with different exposure times.

VE-LOL

VE-LOL[22] consists of two databases: VE-LOL-L and VE-LOL-H. The former one is a
pairwise database used to train image enhancement networks, containing 2,500 pairs of
images. Of these, 40% are synthetic. VE-LOL-H is a face detection dataset consists of over
10,000 unpaired images.

2.1.2 Disaster Scene Dataset

Table 2.2 presents some published datasets in the search and rescue(SAR) domain, all of
these were captured in normal light conditions. Till now there are no Low Light datasets
in SAR domain. The table also indicates the scene of the images (indoor (I), outdoor (O),
and underground (U)), the total amount of data in the dataset, and whether the database
is a real scene (R) or a synthetic scene (S).

DISC

DISC is a synthetic dataset of disaster scenes proposed by Jeon et al[14]. The database
mainly simulates disaster scenarios in fifteen different locations. The dataset consists of
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Name Number Scene R/S

DISC 300K I&O S
UMA-SAR 77min Outdoor R

PST900 894 Underground R
Petrıcek Dataset 10k Indoor R

Table 2.2: Overview of SAR Datasets. The second column shows how many images are in the database. The
column ’Scene’ shows the scenes they were captured.The last column shows whether the picture is Real or
Synthetic

over 300K stereo image pairs, all of them have corresponding ground truth images.

UMA-SAR

The UMA-SAR dataset proposed by Morales et al[13] is a collection of multi modal raw
video captured from manned all-terrain vehicles in a closed-loop path. The database
contains data not only from RGB camera but also from 3D lidar ,IMU and GPS system.

PST900

The PST900 dataset was proposed by Shreyas et al[3]. The dataset contains 894 pairs of
RGB-T images and 3395 pairs of RGB images. The dataset is annotated with the following
four categories: fire extinguisher, backpack, hand drill, survivor. Ambient lighting or
visibility is ensured through the use of high-intensity LED.

2.1.3 Summary

Among all the database mentioned in this section, the following phenomena were found.
For all datasets in the Low Light Enhancement domain, they generally consist of indoor,
outdoor or road images, which do not include disaster scenes. Meanwhile, for all SAR
domain databases, the collected images or videos of disaster scenes are mostly composed
of normal light pictures. Although the PST900 database contains some images with poor
lighting conditions, most of the images are still normal light images.

It can be seen from this that, whether in the field of Low Light Dataset or Disaster Scene
Dataset, there is no database that can satisfy the two conditions of low light and disaster
scene at the same time. Therefore, the proposal of a SAR database composed of low-
light images is very important for the task of semantic segmentation of low-light disaster
scenes.
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2.2 Low Light Image Synthesis

Although some effective low-light databases already exist, collecting paired normal-light
and low-light images in real environments is still a challenging topic, especially in dis-
aster scene. Indeed, in order to ensure that the paired images are exactly the same, we
assume that everything in the images shouldn’t greatly move or change. In this case, the
desired images are obtained by different exposure strategies (eg: long exposure in dark
conditions for normal light images or under exposure in normal light conditions for low
light images). However, the environment may change (aftershocks/collapses) at any time
during the acquisition of images in a disaster environment, making it difficult to collect
paired low light datasets. Besides, if there are any survivors in the scene, they could also
move. In this case, low-light images can be created more simply and efficiently through
low-light image synthesis.

Several papers propose efficient low-light image synthesis methods. In paper[23],Lv et al.
created low brightness images through random gamma adjustment. After that, simulated
random noise to different image by adding Poison noise.

Feifan et al. used linear and gamma transformation to create low-light images[24]. Also
used the Gaussian-Poisson mixed noise model to add noise to the image. In addition, they
created ground truth images through contrast amplification (combine different photos to
get rid of over-exposed).

Kin et al. also proposed a method in paper[25]. They created low-light noisy images by
combining gamma adjustment and Gaussian noise.

Wang et al first used two different SLR cameras(Canon and Sony) to capture images[26].
Then they further collect about 15% of images from the internet by searching for the
keywords "underexposure", "low light" and "backlight". Afterwards, they recruited ex-
perts to prepare modified reference images for each collected image.

In paper[27], Zhou et al. proposed a series of ways to create low-light datasets to train
an architecture which they called LEDNet. They proposed a Synthesis Pipeline to create
darken image with noise and defocus blur. Figure 2.1 shows their pipeline for creating
low-light images.

Figure 2.1: Image Synthesis Pipeline in LEDNet[27]
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2.3 Image Enhancement

As mentioned in introduction, the performance of semantic segmentation networks on
normal light images are better than on low light images[10]. Therefore, restore low light
images to normal light images can be an feasible way to get better segmentation results.
This section mainly introduces some classic low light enhancement methods.

2.3.1 Traditional Image Enhancement Method

Traditional methods can be mainly divided into two categories: method based on histo-
gram equalization (HE) and method based on Retinex model.

Histogram Equalization

The core idea of histogram equalization method is to transform the histogram of the ori-
ginal image into a form of uniform distribution, thereby increasing the dynamic range of
the image and achieving the effect of image enhancement. The results generated by con-
ventional histogram equalization methods[28] often suffer from problems such as overex-
posure, loss of details, and color distortion. Therefore, a series of improved versions based
on histogram equalization are designed to improve the above shortcomings.

For example, Kim et al.[29] developed a dual histogram equalization method, and Wang
et al.[30] designed a binary sub-image histogram equalization method to achieve natural-
ization of exposure.

However, the existing methods based on distribution mapping still have phenomena such
as color distortion that affect the look and feel of the enhanced results, one of the reas-
ons is the lack of recognition and utilization of semantic information in the process of
distribution mapping.

Retinex Method

Retinex theory[31] provides an intuitive physical description of the process of enhancing
low-light images. The illuminance image is obtained by Gaussian filtering on the ori-
ginal image, and the illuminance image is obtained as accurately as possible, and finally
the illuminance image is separated from the original image to obtain a reflection image
(enhanced image).

Wang et al.[32] proposed a low-light image enhancement algorithm based on retinex the-
ory. However, the images enhanced by this method often suffers from lack of details and
insufficient brightness. Cai et al.[33]designed a joint intrinsic and extrinsic prior model for
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optimizing illumination and reflections, but this approach tends to produce under-bright
results.

With the deepening of the research, Guo et al.[34] constructed the first work that only
considers modeling and solving for lighting, and the proposed method, named LIME,
optimizes the resulting Initial lighting. But in most cases there will be overexposure.

In general this approach has some limitations: 1) The assumptions of the Retinex theory
are too idealistic, this method will bring about loss of detail and distortion of color, 2)
noise is usually ignored in the Retinex model, so the noise is preserved or amplified in
the enhancement results, and 3) due to its complexity The optimization process has a
relatively long running time.[35]

2.3.2 Image Enhancement Method Based on Neural Network

In recent years, with the continuous development of deep learning, low light enhancement
methods based on deep learning has achieved remarkable success. Compared with tradi-
tional methods, deep learning-based image enhancement methods have better accuracy,
robustness and faster speed[36].

Lore et al.[25] designed a low-light network (LLNet) deep auto encoder to improve the
contrast of low-light images while taking into account denoising.

In addition, a series of works design the network structure based on the key theory of
Retinex in the traditional model to give the algorithm the generalization ability on illu-
minance and reflection derived from the model.

Chen et al.[37] developed a Retinex-based low-light image enhancement network (Ret-
inexNet). The network consists of two parts, namely the illumination estimation and the
reflection layer estimation module. However, although this method can effectively im-
prove the brightness of the image, some unknown artifacts and excessively refined details
will cause image distortion.

The MBLLEN[23] algorithm proposed by Lv et al. is a multi-branch low-light image
enhancement network. The core idea of this algorithm is that rich features in different
levels can be extracted from the pictures, so image enhancement can be done through
multiple sub-networks, and finally the output image can be generated through multi-
branch fusion.

Further, Zhang et al.[38] proposed a simple and effective low-light image enhancement
network (KinD). The network framework is similar to the RetinexNet architecture, but
they changed the loss function and added an illumination adjustment layer, so that the
light after enhancement is adjusted properly.
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2.4 Semantic Segmentation

Semantic segmentation is a method that associates a label or category with each pixel of
an image. It divides the image into regional blocks based on the semantic meaning and
identifies the semantic category of each regional block. Finally, segmented images with
pixel-wise semantic annotations are obtained.

Image semantic segmentation methods include traditional methods and CNN-based meth-
ods. With the development of deep learning, semantic segmentation technology is also
gradually improving. The biggest difference between CNN-based semantic segmentation
methods and traditional semantic segmentation methods is that the network can auto-
matically learn the features of images and perform end-to-end classification learning[36].
Neural network-based semantic segmentation methods greatly improve the accuracy. In
the following subsection, this report will give an overview of the most well established
semantic segmentation architectures.

2.4.1 Fully Convolutional Networks(FCN)

FCN first feeds the image into CNN, obtains a series of feature maps through multiple
convolutions and pooling, and then uses a deconvolution layer to upsample the feature
map obtained by the last convolutional layer. Therefore, the size of the upsampled feature
map is the same as the original image size[5]. Finally, the upsampled feature map is
classified pixel by pixel, and the loss is calculated after passing through the softmax layer.

However, the limitation of the traditional FCN model is that it cannot perform fast, cannot
effectively consider global context information,because the individual pixels are classified
without adequate consideration of the pixel-to-pixel relationship[36].

Figure 2.2: Structure for FCN[5]
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2.4.2 SegNet

Badrinarayanan et al. proposed semantic segmentation network called SegNet[6]. SegNet
uses an encoder-decoder structure in semantic segmentation. The encoder is mainly used
to extract the features of the input image. The decoder upsamples the features until their
dimensions match the input image. The output of the decoder is fed to a trainable soft-
max classifier to classify each individual pixel.

Figure 2.3: Structure for SegNet[6]

2.4.3 U-Net

Ronneberg et al. proposed a U-Net model for segmentation of biological microscope
images[7]. U-net uses image tiles for training, so the amount of training data is much
larger than the number of training images, which allows the network to gain robustness
even with a small number of samples.

Figure 2.4: Structure for U-Net[7]
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2.4.4 PSPNet

Zhao et al. proposed a Pyramid Scene Parsing Network (PSPNet)[39]. PSPNet first uses
ResNet[40] to extract the features of the image. Then, the feature maps are parallel pooled
using the pyramid pooling module to obtain four outputs of different sizes, which are
then respectively upsampled and restored to the original feature map size.

Finally, it is connected with the previous feature map, and then the final predicted seg-
mentation image is obtained through the convolution layer.

Figure 2.5: Structure for PSPNet[39]

2.4.5 Attention-Based Models

Chen et al. proposed an attention mechanism based semantic segmentation method[41].
They jointly train multi-scale images and attention models. The attention mechanism per-
forms better than mean and max pooling, enabling the model to evaluate the importance
of features at different scales.

2.4.6 Generative Models

Luc et al. proposed an adversarial training method for semantic segmentation[42].

As shown in Figure 2.7, the segmentation network on the left takes an RGB image as input
and produces class predictions for each pixel. The adversarial network on the right takes
the label map as input and generates class labels (1 for real labels, 0 for synthetic labels).
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Figure 2.6: Structure for Attention-Based Model[41]

2.5 Low Light Scene Semantic Segmentation

According to the previous section, we can find that most of the existing deep learning
based segmentation research proposes methods to segment various objects in daytime
environment. However, in low-light environments, there is always lens shake due to the
long exposure time and optical blur due to the movement of objects in the image, and
low-light environments also produce more noise[10]. This makes the performance of the
segmentation networks drops significantly[10].

To overcome these problems, many segmentation methods have been developed[43][44][45]
[46][47][48][49][50]. These semantic segmentation methods are mainly divided into two
types, non-enhancement based segmentation method and enhancement based segmenta-
tion method. In studies [47][48][49], many different deep learning methods are used to
improve the performance of low light segmentation. However, the visibility of nighttime
images without enhancement applied is very low, making it difficult to train the segment-
ation network.

By performing image enhancement first and training the semantic segmentation network
with the enhanced data set, the shortcomings of the above two methods are effectively
avoided. Work [50] shows the performance of this approach and other transfer learning-
based low-light image semantic segmentation algorithms. Therefore, this report adopts
the same mode as [50], that is, the low-light image is enhanced first, and then the semantic
segmentation network is trained through the enhanced image, so as to achieve the purpose
of completing the low-light image semantic segmentation task.
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Figure 2.7: Structure for Segmentation based on GAN[42]



3 - Final Problem Formulation

From the introduction and the related research it can be seen that there is a lack of low
light database in SAR domain. Besides, due to the low-light conditions, the features of
objects may be blurred by various reasons, which greatly weakens the performance of
many semantic segmentation networks in low-light environments.

Therefore, inside the different aspects of Semantic Segmentation in Low Light Scene the
following problem statement is made:

• How to use a set of algorithms to make rescue robots have the ability of semantic
segmentation in dark disaster environment?

– How can the low light disaster scene database be created?

– How to do semantic segmentation in a dark environment?

– Is it possible to improve the accuracy of semantic segmentation by doing some
processing on dark pictures compared to directly train a semantic segmentation
network on the normal light dataset or on the low light dataset?

The following chapters will be focusing on answering this question and showcasing a
possible solution with test results.

14



4 - Methods

In this report, to achieve semantic segmentation in low-light disaster environments, we
formulate the following questions mention in Chapter 3. The outline of this report is as
follows:
For How can the low light disaster scene database be created?, we will generate a synthetic
low light disaster scene images dataset to make up for the lack of a database in the SAR
domain.

For How to do semantic segmentation in a dark environment?, we propose a modified PSPNet
to perform semantic segmentation on the images in our proposed database to verify the
feasibility of semantic segmentation in low-light scenes.

For Is it possible to improve the accuracy of semantic segmentation by doing some processing
on dark pictures compared to directly train a semantic segmentation network on the normal light
dataset or on the low light dataset?, we enhance the images in our proposed database through
a low-light image enhancement network. Afterwards, perform semantic segmentation on
the enhanced image to test whether low light enhancement can improve the accuracy of
semantic segmentation of low-light scenes.

4.1 Darkening and Noise Modelling

There are two main differences between low-light images and normal images: low bright-
ness/contrast and the presence of noise[51].
The following subsections show some common methods when modelling dark and noise
images.

4.1.1 Gamma Adjustment

Gamma transform is a nonlinear operation on the input image, so that the brightness of
the output image has an exponential relationship with the brightness of the input image.
The formula can be shown as:

Iout = A ∗ Iγ
in (4.1)

Gamma transform can be used for image enhancement, which improves shadow detail.
To put it simply, through nonlinear transformation, the image is changed from a linear
response of exposure intensity to a response that is closer to that of the human eye, that

15
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is, an image that is too dark (underexposed) is corrected. Correspondingly, we can also
darken a bright image in this way.

Figure 4.1: Figure of gamma correction. The blue and red curve shows how would the illuminance change by
using gamma correction with different γ value.

The relationship between the input and output images after Gamma transformation is
shown in the Figure 4.1. That can be summarized as follows:

• gamma>1, the brighter area is stretched, the darker area is compressed to be darker,
and the overall image becomes darker;

• gamma<1, the brighter area is compressed, the darker area is stretched to be brighter,
and the overall image becomes brighter;

4.1.2 Noise Model

The noise of low-light images may come from the initial image acquisition, quantiza-
tion or subsequent image coding and compression transmission process[52]. The noise is
mainly divided into three categories: ’Gaussian’, ’Poisson’, ’Salt&Pepper’. Among them,
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salt & pepper noise is generally caused by interference in the environment (such as elec-
tromagnetic interference), internal timing errors of the sensor (ADC), etc[53]. Therefore,
salt&pepper noise is generally not considered when simulating low-light pictures. There-
fore, this report only considers Gaussian noise and Poisson noise when adding noise to
images in the database.

Gaussian Noise

If the probability density function of the noise follows a Gaussian distribution, the noise is
called Gaussian noise. Figure 4.2 shows the result of adding Gaussian noise to a gray-scale
image.

Figure 4.2: The picture on the left[54] is a gray-scale image of the original image, and the picture on the right is
a composite image with Gaussian noise added with X ∼ N(0, 1). Gray-scale images are used because it is easier
to see the effect of noise on image quality.

Poisson Noise

Since CMOS has no way to collect all the photons emitted by the light source (the particle
nature of light), the color of the photo will be skewed[55], which creates shot noise. At the
same time, shot noise obeys Poisson distribution, so it is also called Poisson noise. Figure
4.3 shows how this noise will affect the original image.
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Figure 4.3: The picture on the left[54] is a gray-scale image of the original image, and the picture on the right
is a composite image with Poisson noise by Matlab function ’imnoise’. ‘Imnoise’ generates a Poisson noise for
each pixel with mean equal to its pixel value. Gray-scale images are used because it is easier to see the effect of
noise on image quality.

4.2 Semantic Segmentation

PSPNet is a classic semantic segmentation network, which has good multi-class segment-
ation accuracy[2]. Therefore, the semantic segmentation network used in this report is
based on PSPNet. On the basis of original PSPNet, the network in this report is updated
accordingly to adapt to the new database and application scenarios. The modified PSPNet
structure is shown in Figure 4.4.

The overall structure of PSPNet can be summarized as: first extract features from input,
then pyramid pooling, at last get prediction result.

4.2.1 Network Architecture

MobileNetV2[56]

Original PSPNet uses the Resnet series as the backbone feature extraction network in the
report, but Resnet requires high computing power.

MobileNetV2[56] is a lightweight neural network structure produced by Google, which
has two feature points: Inverted residuals and Linear bottlenecks. MobileNetV2 requires
less memory and computation while maintaining accuracy.

Since the computing power of the laptop used in this report is limited, this report replaces
the architecture of the feature extraction network with MobilenetV2[56].
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Figure 4.4: Whole Structure for PSPNet, the left part is the structure of the backbone ’MobileNetV2’, the right
part is the structure of Pyramid Pooling Module.

Figure 4.5 shows the network structure of MobileNetV2 used in this report.

Pyramid Pooling Module structure

The structure used to enhance feature extraction used by PSPNet is the Pyramid Pooling
Module.
The approach of the PSP structure is to divide the acquired feature layer into regions of
different sizes, and average pooling is performed within each region. Realize the aggreg-
ation of context information in different regions, thereby improving the ability to obtain
global information.
In PSPNet, the PSP structure typically divides the input feature layer into 6x6, 3x3, 2x2,
and 1x1 regions, and then performs average pooling within each region.
When the input feature layer of the PSP structure is 30x30x320, the specific composition
of the PSP structure is as shown in Figure 4.4.

Use features to get predictions

Using the first two steps, we can obtain the features of the input image. At this time, we
need to use the features to obtain the prediction results.
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Figure 4.5: Structure for MobileNetV2[57]

The process of using features to obtain prediction results can be divided into three steps:

• Use a 3x3 convolution to integrate the features.

• Use a 1x1 convolution to adjust the channel and adjust it to Num_Classes.

• Up-sampling the concatenation result so that the final output layer has the same
width and height as the input image.

4.2.2 Pre-training and Freeze Training

Pre-trained weights are used in this report to prevent the weights of the backbone from
being too random. The weights are trained based on the cityscapes dataset in[2].
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Due to the limitation of computing power used in this report, we chose to freeze training
for the first 50 epochs. In the freezing phase, the backbone of PSPNet is frozen, and the
feature extraction network does not change. It speeds up the training and only fine-tunes
the network.

During the unfreezing phase, the backbone of the model is not frozen, and the feature
extraction network changes, all the parameters of the network will be changed. In this
report, both freeze training and unfreeze training are performed for 50 epochs.

4.2.3 Data Augmentation

Due to the small dataset used in this report, in order to prevent overfitting and improve
the robustness and generalization ability of the network, data augmentation is performed
on the images before inputting the training images into the network.

We first randomly scale the length and width of the input image and labels, and then flip
the image (only when the random number < 0.5). At this time, if the length and width
of the image is smaller than the length and width of the input image(473×473), we add
black bars around the image to ensure the size of the image input to the network. If the
length and width are larger than the original image, the enlarged image will be cropped
to the input size by combining the crop operation.

In addition, we add operations such as Gaussian blur, rotation, and gamut transformation
for further data augmentation. Parameters for data augmentation can be found in the
code provided in this report.

4.2.4 Loss Function

In [2], PSPNet uses the cross-entropy function as the loss function. The paper innovatively
calculates the loss after the residual block, and adds the result and the final loss of the
network as the loss function. The loss function used in the report produces very desirable
results.

This report makes some improvements to the loss function of original PSPNet. Due to the
obvious difference in the size of objects in the PST900 data set (survivors are way bigger
than hand-drills), there exists a problem of small objects, and there is also problem of
imbalance between positive and negative samples, this report introduces a combination of
two other loss functions to make PSPNet achieve better performance on PST900 dataset.

Cross Entropy Loss

Cross-entropy[58] checks each pixel one by one, comparing the predictions (probability
distribution vectors) for each pixel class with our one-hot encoded label vector.It is widely
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used for classification tasks and works well since semantic segmentation is pixel-level
classification.

In multi-classification tasks, the soft-max activation function + cross entropy loss function
is often used, because the output of the neural network is a vector, not in the form of a
probability distribution. Therefore, the soft-max activation function is required to "nor-
malize" a vector into the form of a probability distribution, and then use the cross-entropy
loss function to calculate the loss.The formula for calculating the cross entropy loss is as
follows:

L = −
C−1

∑
i=0

yilog(pi) = −log(pc) (4.2)

Where p = [p0, ..., pC−1] is a probability distribution, each element pi represents the prob-
ability that the sample belongs to the i-th class; y = [y0, ..., yC−1] is the one-hot repres-
entation of the sample label, when the sample belongs to the i-th class yi = 1, otherwise
yi = 0; c is the sample label.

Dice Loss

The formula for Dice Loss is as follows[59]: in the formula K means the number of labels,
N means the number of pixels of the label in the figure. The factor 2 in the numerator
is because the denominator is double counting common elements between predict and
ground truth.

L = 1 − 1
K

K

∑
j=1

2 ∑i∈N yj
i × pj

i

∑i∈N yj
i + ∑i∈N pj

i

(4.3)

In the image segmentation task, the cross entropy loss is to predict the class of each pixel,
and then average all the pixels. In essence, it still performs equal learning on each pixel
of the image, which leads to the fact that if there are imbalances in multiple categories on
the image, the training of the model will be dominated by the most mainstream category.
The network is more inclined to the learning of mainstream categories, and reduces the
feature extraction ability of non-mainstream categories.

However, dice loss is calculated by dividing the intersection of prediction and GT by their
total pixels, considering all pixels of a class as a whole. Moreover, the proportion of the
intersection in the population is calculated, so it will not be affected by a large number of
mainstream pixels and can have better performance.

Dice Loss has good performance for scenes with classes unbalanced problems[60]. But the
training loss is easy to be unstable when dealing with small objects. This is because when
using dice loss, generally when the positive sample is a small target, there will be serious
oscillations, once the small target has some pixel prediction errors, it will lead to a large
change in the loss value, resulting in a sharp change in the gradient.

To solve this problem, dice loss is always combined with cross entropy loss or focal
loss[61]. In this report, we use Focal Loss to stabilize the training loss.
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Focal Loss

He Kaiming’s team introduced Focal Loss in the RetinaNet paper to solve the imbalance
in the number of difficult and easy samples[62]. During the training process, the easy-
to-learn labels can be easily predicted correctly. As long as the model classifies a large
number of easy-to-learn labels correctly, the loss can be reduced a lot, resulting in the
model not paying much attention to the hard-to-learn samples.

So the main idea of Focal loss is to find a way to make the model pay more attention to the
samples that are difficult to learn. The expression of Focal Loss is as follows:p represents
the probability that the predicted sample belongs to label c. When current sample is a
positive sample, y = 1, otherwise y = 0. γ is used to let the network focus more on
samples hard to classify. α is a parameter used to adjust the proportion of positive and
negative samples.

L =

{
−α(1 − pc)γlog(pc) if y = 1
−(1 − α)pγ

c log(1 − pc) if y = 0
(4.4)

When γ is greater than 0, for positive samples, if it is a difficult-to-classify sample(when p
is small), (1− p)γ will be very large, and the network will be more trained for difficult-to-
train samples. The value of α ranges from 0 to 1. When α > 0.5, the proportion of y = 1
can be relatively increased. This achieves a balance of positive and negative samples.

The experimental results of the paper shows when γ = 2, α = 0.75, focal loss has better
performance. Therefore, the parameters used in this report are the same as those recom-
mended in the paper.

Since most of the labels in the database used in this report account for a small proportion
of the entire image, ideally, the combination of Dice Loss and Focal Loss can make the
network balance the learning between easy and hard samples and achieve the purpose of
improving network performance. This report replaces the cross entropy loss of original
PSPNet with the sum of Focal Loss and Dice Loss, that is:

Loss = FocalLoss + DiceLoss (4.5)

In the following experiments, this report will respectively train the PSPNet using the cross-
entropy loss function and the modified PSPNet using the loss function shown in Equation
4.5 on the PST900 dataset to test the effectiveness of the loss function used in this report.

4.3 Image Enhancement Method

In the previous chapter, this report introduced state-of-the-art low-light image enhance-
ment methods. In a recent survey [36], we can compare the enhancement effect of several
methods trained on the LOL dataset by this report, as shown in Figure 4.6. The input in
the figure is a low-light image in the LOL dataset(the low light image is shown in Fig-
ure 4.7), and we can see that Zero-DCE, MBLLEN, and DSLR perform better than other
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Figure 4.6: Enhancement Result of Different Low Light Enhancement. The ground truth image is provided by
LOL dataset[18], the other images are the result of different image enhancement methods which is trained on
LOL dataset[36].

methods in terms of brightness and color recovery, DSLR has the highest degree of color
recovery. Among them, Zero-DCE doesn’t need paired images for training, but to train a
curve to adjust every pixel of the input image. In our report, we generated a dataset with
paired low light and normal light images. Therefore, a supervised learning based method
is more suitable for our report.

Since this report uses Pytorch to build a semantic segmentation network, in order to en-
sure the consistency of the compilation environment, the DSLR that provides the Pytorch
version1 is selected as the image enhancement network.

4.3.1 Network Structure

The main idea of DSLR[1] is to adjust global illumination and recover local details by
exploiting Laplacian pyramids in image and feature space. The network framework can

1https://github.com/SeokjaeLIM/DSLR-release



25 Chapter 4. Methods

Figure 4.7: Corresponding low light image in LOL[18]

be divided into three small encoder-decoder networks, each of which is used to learn the
features of inputting different levels of the decomposition of the Laplacian pyramid.

The paper proposes a multiscale Laplacian-residual block (MSLB). Within each network,
this module can decompose features into Laplacian pyramids, which will help restore
contrast and brightness at image details. Each encoding-decoding module can be divided
into three main parts, namely convolution block, deconvolution block and MSLBs.

At the end of the network, the enhanced results of the three sub-networks are combined
into one image, which is the enhanced image.The structure of the network is shown in
Figure 4.8.

4.3.2 Loss Function

The loss function used by the DSLR network mainly consists of three parts[1]: data loss
Ld, Laplacian lossLl and color lossLc. The expression of the loss function is as follows:

LT = ω1Ld + ω2Ll + ω3Lc (4.6)

In this report, ω1,ω2and ω3 are set to 2, 2 and 1 as recommended by the paper.



26 Chapter 4. Methods

Figure 4.8: Overall Structure of DSLR[1]. In the figure, L1 refers to the input image, L2 and L3 refer to different
levels of the decomposition of the Laplacian pyramid. At the end of the network, the red lines means the output
of 3 sub-net will be combined as output.

Data Loss

Mean squared error is used as data loss in this report. The mean square error can judge
the difference between the enhanced result and Ground Truth, and its expression is as
follows:

Lk
d = ∥ Ipred

k − Ireal
k ∥2 (4.7)

LTotal
d =

1
Tk

3

∑
k=1

Lk
d (4.8)

Lk
dis the mean squared error between the predicted value of each decision of the Laplacian

pyramid and the current level of Ground Truth. Finally, the mean square errors of the
three-layer network are added and normalized ( 1

Tk
is the normalization coefficient), and

the result obtained is used as the data loss of the network.

Laplacian Loss

Due to the squared term in the formula for data loss, it often produces blurry restoration
results[63]. In order to maintain the sharpness of the enhancement results, the mean
absolute value error is used as the Laplacian loss, and the expression of the loss is as
follows:

LTotal
l =

2

∑
k=1

1
Tk

| Lk − L∗
k | (4.9)
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Lk and L∗
k represent the predicted and true values of Laplacian residual image restoration

at different levels, respectively. Tk represents the number of all pixels in the image.

Color Loss

Cosine similarity uses the cosine value of the angle between two vectors to measure the
difference between two individuals. Compared with distance measures, cosine similarity
pays more attention to the difference in direction of two vectors, rather than distance or
length. Therefore, the cosine similarity loss function is used as the color loss to ensure
that the enhanced color vector of each channel has the same direction as the corresponding
ground-truth value. The color loss function is shown below:

Lc = ∑
k=r,g,b

1 − 1
Tk

∑
i∈Tk

x⃗(i) · y⃗(i)
∥ x(i) ∥2 · ∥ y(i) ∥2 (4.10)

Tk represents the number of the pixels of the image, x⃗(i) represents the predicted position
of each pixel color in each channel, and y⃗(i) represents the true position of each pixel color
in each channel. When the predicted color is closer to the real color, the color loss will be
closer to 0.



5 - Implementation and Result

The pipeline of this report is shown in Figure 5.1, as mentioned in last chapter, we will
first generate a low light disaster scene dataset(yellow block in the figure). We will then
enhance this dataset by DSLR[1], and will compare the result with several other enhance-
ment methods(green block in the figure). We will also propose a modified PSPNet[2]
which will be compared with original PSPNet. Then we will train the modified PSPNet
with different database to check the performance of our method in low light disaster scene
semantic segmentation task.

Figure 5.1: Pipeline of whole system in this report. The yellow block represents the process of generating Low
Light Disaster Scene Dataset(LLDSD). The green block represents low light enhancement by using DSLR. Blue
blocks shows the process of semantic segmentation on different dataset.

5.1 Low Light Disaster Scene Dataset (LLDSD)

According to the discussion in previous section, there is no specialized dataset for low
light disaster scene, therefore, a low-light simulation method is proposed to synthesize
low-light images from normal-light images. The aim is to provide the lighting conditions
needed for our method and other further studies. Note that in the context of this thesis,

28
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synthetic images refer to real images which have been synthetically degraded.
Many previous works use synthetic data as an effective alternative[64] to real data in
different vision tasks. Therefore, this report generates a synthetic low-light image dataset
by using the already annotated open source dataset - PST900[3]. The dataset construction
pipeline is shown in Figure 5.2.

Figure 5.2: Pipeline of Image Synthesis. The first two step is to generate low light image. The following two part
is to synthesize noise which is normal in real images captured in low light scene.

5.1.1 Target Image Synthesis

The low-light image generation process in this report is mainly divided into two parts:
first, the brightness and contrast of the normal image are reduced by a transformation.
The resulting image can be viewed as a low-light image without noise. After that, noise
is added to the resulting low-light image. This produces an adequate number of paired
low/normal light images which are needed for training of learning-based methods.

Low Light Image Synthesis

For noise-free low-light image generation, we apply a random gamma and linear trans-
form to each channel of the normal image to generate low-light images, similar to [65].The
low-light image simulation pipeline (without additional noise) can be formulated as:

Iout = B ∗ (A ∗ Iγ
in) (5.1)

The part in parentheses represents the gamma correction of the image. A and B stands for
linear transformation. In this report, when constructing each image, the three parameters
is randomly sampled from uniform distribution: A ∼ U(0.9, 1), B ∼ U(0.5, 1) and γ ∼
U(3, 5). A ∼ U(0.9, 1) and B ∼ U(0.5, 1) are commonly used in the papers doing the same
work [22][19]. For γ, some paper use (1, 5), but in order to generate darker images, in this
report we chose (3, 5).

Figure 5.3 shows the image after Low Light Synthesis. We can see that the picture has
darkened significantly and the contrast has dropped accordingly.
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Figure 5.3: Several Pairs of Original Image(Left) and Darken Image(Right). When γ = 5, we can get the darkest
image. The influence of how these 3 parameters will influence the darken result can also be seen in this image,
the parameters are below each pair of images.

Noise Image Synthesis

Another important difference between low-light images and normal light is that low-light
images have more noise. Therefore, this report mainly considers Gaussian noise and
Poisson noise when creating the low-light database. In particular, this report refers to the
Gaussian-Poisson mixed noise model used by[66], adding randomly generated Gaussian
noise and Poisson noise to each image in the database. The noise model can be formulated
as:

Iout = P( f (L + n(Iin))) (5.2)

L = f−1(Iin) (5.3)

where P(X) represents Poisson noise with added variance σ2
p and n(X) is modeled as

Gaussian noise with noise variance σ2
g . f (x) represents the camera response function. L

is to generate irradiance image from input image. In this report, we followed the recom-
mendation in [66], both σ2

p and σ2
g obey the uniform distribution of U(0.003, 0.01). In

addition, unlike in [66], the influence of CRF on the results is also ignored(the value of
CRF is set to 0). This is because in report[67], the RGB images were taken by a stereo
camera but they didn’t show the exact CRF of this camera.

In Figure 5.4, we can see that there is a lot of noise in the image compared to before the
noise was added.

In addition, it is shown in [23] that enhancement networks trained with multiple scenes
with different brightness will perform better. Therefore, this report also generates two
additional databases of the same size according to the same method as above, the only
difference between them is the choice of gamma value. The gamma values of these three
databases are γ ∼ U(0, 2),γ ∼ U(2, 3)andγ ∼ U(3, 5). The ranges are chosen to cover
different light condition. So the dataset size used to train the DSLR network is 3359*3.
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Figure 5.4: Several Pairs of Darken Image(Left) and Darken Image with Noise(Right), images are zoomed by
142%. Some other images with noise is provided in GitHub

5.1.2 Summary

In this subsection, this report presents two steps for creating a low-light database: Darken
and adding noise. This report integrates these two steps through Matlab code. After that,
3359 images in the PST900 database were batch processed. The LLDSD of paired low-light
noisy images is obtained.

This database will be used to train the following neural network:

• Normal Light Semantic Segmentation Network;

• Low Light Semantic Segmentation Network;

• Low Light Image Enhancement Network;

• Enhanced Image Semantic Segmentation Network.

5.2 Low Light Images Enhancement

5.2.1 Model parameters and results

The dataset used in this report to train the DLSR network is the previously proposed
LLDSD, which contains 3359 × 3 underexposed images, and 3359 corresponding images
of the PST900 dataset are used as Ground Truth.

The training mode of this report is as follows. 2015 images (60%) are randomly selected
from PST900 as the ground truth of the training set. The low-light images (2015 × 3)
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corresponding to these selected ground truth images are used as input images for training.
In order to avoid the overfitting problem, the training samples are augmented using the
method mentioned in the previous chapter.

The method used in this article is implemented on the PyTorch framework and uses the
Adam optimizer[68]. Due to the limitation of the GPU computing power used, the total
training epochs is 100, and the batch-size is set to 1. The model starts training with
a learning rate of 0.0003, using CosineAnnealingLR for learning rate decay. The GPU
model used is GTX 1060Ti, the memory is 4G, and the total training time is 168 hours.

Figure 5.5: Some examples of the enhanced dataset compared to original images in PST900[3]. In each group of
pictures, the original image is on the left, and the picture on the right is enhanced by the trained DSLR network
on low light images. The last row is the same low light images in LLDSD

Finally, through the trained DLSR network, we perform low-light enhancement on the
LLDSD dataset proposed in this report, and obtain a new dataset: Enhanced-LLDSD.
Some examples of the enhanced dataset is shown in Figure 5.5. In the next section, this
dataset and the PST900, LLDSD dataset will be used to train the semantic segmentation
network and the results will be compared.

5.2.2 The performance of DSLR on LLDSD

To demonstrate the effectiveness of the trained image enhancement network, we com-
pare the trained network with five traditional and deep learning based methods, namely
LIME[69], MBLLEN[23], Zero-DCE[70], Retinex-Net[37] and LDR[71](among them MBLLEN,
Zero-DCE, Retinex-Net and DSLR are learning based methods, the other two methods are
traditional mehods). The above methods are all open source on Github, but due to time
constraints, except for the DLSR network, the weights used by other deep learning-based
methods are the original weights provided by the paper. All experiments testing each
method are performed on a laptop with an Intel i7-6700K 4.0GHz CPU and NVIDIA Ge-
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Force 1060Ti GPU.

Method LLDSD LIME LDR Retinex-net ZERO-DCE MBLLEN DSLR

PSNR 7.892 14.127 11.014 12.488 15.175 18.032 22.678
SSIM 0.358 0.383 0.18 0.236 0.559 0.683 0.853

Table 5.1: Comparison on low-light images enhancement.In the process of judging the performance of DSLR,
we mainly refer to two parameters, PSNR and SSIM.

In Table 5.1, we use two more commonly used image evaluation parameters (PSNR, SSIM)
to judge the effect of different image enhancement methods on LLDSD[36]. PSNR is the
ratio of the maximum power of the signal to the noise power, which measures the quality
of the reconstructed image. The higher the PSNR index, the better the image quality. SSIM
is an indicator to measure the similarity of two images, and its value range is [0, 1]. The
larger the value of SSIM, the smaller the degree of image distortion and the better the
image quality.

We calculate PSNR and SSIM by comparing the enhanced results of each image in the test
set and the original images in the PST900 dataset, and finally average all the results to
obtain the final result. From the results, we can see that, among the centralized methods
compared in this report, both parameters of the method we use show that DSLR is a better
image enhancement method on the LLDSD dataset.

An example of enhancement results on the LLDSD dataset is shown in Figure 5.6. From
the pictures we can see that the two traditional methods, LDR and LIME, although they
improve the visibility of low-light images to some extent, do not restore the relevant colors.

By looking at the results of the four deep learning-based methods, they can generally
restore the brightness and color of a wide range of images. However, the colors in the
enhanced results of Retinex-Net and Zero-DCE are noticeably faded after recovery and
appear to be slightly overexposed. In addition, the noise of the picture seems to have
increased.

The performance of MBLLEN is relatively good, but the image is still underexposed, but
the noise of the image is not as much as the previous two methods. Compared with other
methods, DSLR recovers the input image more successfully without generating excessive
noise.

However, since other networks have not been trained on the LLDSD dataset proposed in
this report, the better performance of DLSR may have certain limitations. But all in all,
the trained DLSR can better complete the task of low light recovery.
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Figure 5.6: Comparison of Enhancement Result. The first two columns show the images in LLDSD and PST900,
respectively. The other columns shows the enhanced result of these images.

5.3 Semantic Segmentation Network

In order to complete the task of semantic segmentation of low-light images, this report
designs and completes a deep learning network based on PSPNet. In order to verify the
effect of low-light image enhancement and semantic segmentation network, this chapter
designs the following two experiments.

• Semantic Segmentation with LLDSD

• Semantic Segmentation with enhanced-LLDSD
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The first experiment is to verify that PSPNet can perform the task of semantic segmenta-
tion of low-light images.
The second experiment is to verify whether the enhanced low-light images have better
performance in the semantic segmentation network.

The experiments in this section are completed under the computer platform of Win-
dows operating system, Intel Core i7-6700K 4.00GHz CPU processor, 16GB memory, and
NVIDIA GTX1060 graphics card with 4GB memory. Use the PyTorch deep learning frame-
work under Python3 to train and test the network.

The datasets used in this chapter, including training set and validation set, are generated
based on the LLDSD dataset proposed in this report using the method introduced in
Chapter 5. The data set was divided using the following method: The images in LLDSD
were randomly divided into three groups, of which 80% were training set, 10% were
validation set and 10% were test set. In order to ensure the fairness of training, in the
process of training PSPNet with three different datasets, the contents of training set, test
set and validation set are all the same. That is to say, except for brightness and noise,
there is no difference in the content of each training dataset. Each group of pictures
contains 3 pictures, namely low-light disaster scene picture, enhanced low-light disaster
scene picture and semantic segmentation labels. The labels for semantic segmentation are
provided by the PST dataset.

5.3.1 Model parameters

The three experimental software and hardware environments designed in this chapter are
exactly the same. The three experiments use the same training and validation parameters
to ensure fair results. The parameter settings are shown in Table 5.2.

Parameters Setting

Backbone Mobilenet
Initial learning rate 0.01

Weight decay cos
Optimizer SGD

Momentum 0.9
Downsample Factor 16

Freeze Epoch 50
Freeze batch size 4
UnFreeze Epoch 50

Unfreeze batch size 2
Training set 3023

Validation set 335
Test set 335

Table 5.2: Parameter Setting of PSPNet in this report.

The model starts training with a learning rate of 0.001, using CosineAnnealingLR for
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learning rate decay. The optimizer uses the SGD optimizer, total epochs are set to 100
times, and the Batch size is 2. The epochs of the model freezing training are set to 50, and
the Batch size is 4. After the training is completed, all parameters are saved as .pth files.

In the experiments of this report, the parameters of the network and the division of the
dataset are the same to eliminate the influence of the parameters and datasets on the ex-
perimental results. During training and testing, the mean intersection over union (MIoU),
which determines the effect of segmentation by calculating the intersection of ground
truth and predicted segmentation, is used to evaluate the semantic segmentation results.

5.3.2 Semantic Segmentation with PST900

In order to judge whether the low-light enhancement and semantic segmentation methods
used in this report can meet the requirements in the semantic segmentation task of low-
light images of disaster scenes, this report firstly trains the semantic segmentation network
on the PST900 dataset. The training results can be used to judge the difference between
the performance of the same semantic segmentation network in normal light conditions
(PST900) and low light conditions (LLDSD).

In addition, as mentioned in the previous section, this report has made some changes in
the loss function of the original PSPNet, so this report also trains the original PSPNet with
the PST900 dataset to observe whether the changes in this report are effective.

Figure 5.7: mIoU when training with PST900 on original PSPNet and changed PSPNet. Within the training, all
the parameters are set to be the same to both networks.

As shown in Figure 5.7, the PSPNet in this report is trained on the PST900 dataset with
an mIoU of 73.07% and mIoU on original PSPNet is 67.38%. At the same time, according
to the figure, it is not difficult to find that the modified PSPNet performs better than the
original PSPNet on all labels. Therefore, the performance of the changes to PSPNet in this
report on the PST900 dataset can be called modified PSPNet.
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Among the four labels predicted in this report, survivor and backpack have better per-
formance. This may be due to the large area of survivors and backpacks in the pictures
of the PST database. It may also be because the survivors in the database pictures are all
wearing reflective clothes of the same color, and the backpacks are also of the same color
(red). These reasons may lead to these two categories having easier-to-learn features and
thus higher accuracy.

This conclusion can also be verified by the prediction result of the remaining two labels.
Especially hand-drill, compared with the other three labels, hand-drill has the smallest
volume, and has multiple colors (yellow and black) at the same time, and is more affected
by lens shake, as shown in the Figure 5.8. Therefore, the final IoU is only 53%. Similar to
this is the category of fire extinguishers, but due to its relatively large size, the accuracy is
significantly improved compared to hand-drill, but the gap with the other two labels still
exists. The reason for the improvement probably because the loss function we use in this
report pays more attention to the samples that are difficult to learn.

Figure 5.8: The blurred hand-drill(in the red box) in the PST900 dataset due to lens shake. Compared to the fire
extinguishers in the middle the blurred hand-drill is hard to find under this condition.

In Figure 5.9 we show the semantic segmentation results of modified PSPNet and original
PSPNet. From the figure, we can see that both PSPNets can effectively classify the pixels
in the scene, but the segmentation results lose some details, such as the top of the fire
extinguisher and the middle part of the hand drill are not restored. Comparing the results
of the two PSPNets, we can find that the modified PSPNet is better than the original
PSPNet in terms of classification accuracy. For example, in the segmentation of the middle
image, the original PSPNet incorrectly divides the fire extinguisher into backpacks.The
reason why the original PSPNet divides the fire extinguisher into the backpack incorrectly
may be because the fire extinguisher and the backpack have the same color. During the
training process, the network preferentially learns larger samples.
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Figure 5.9: The first row of the image shows the segmentation result of the original image and Ground Truth,
and the second row shows the Ground Truth with the background removed. The third and fourth rows are the
semantic segmentation results of modified PSPNet and original PSPNet, respectively.

At the same time, because larger samples and smaller samples have some of the same
characteristics, resulting in wrong classification. However, since the modified PSPNet re-
places the loss function, the network pays more attention to the learning of small samples,
so the phenomenon of misclassification will be effectively reduced.

In addition, in the classification results of survivors, original PSPNet mistook part of
the background as survivors, and in terms of refinement, the effect of original PSPNet
segmentation was not as good as modified PSPNet.
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5.3.3 Semantic Segmentation with LLDSD

Figure 5.10 shows the semantic segmentation results, where red and orange represent the
performance on the training and validation sets, respectively. It can be seen that at the
50th epoch, there is a large fluctuation in Loss. This is because the network is converted
from frozen training to Unfreeze training, and the feature extraction network has changed.
Overall, there was no over-fitting in the 100 epochs of training. At the same time, the Loss
of the training set and the validation set are also reduced at the same time, which proves
that the effect of the model gradually improves as the training progresses.

Figure 5.10: Loss when training net with LLDSD(Left) and PST900(Right). The train loss is higher than validation
loss may because we did data augmentation when training.

Figure 5.11 shows the mIoU and mPA of semantic segmentation. From the figure, we
can see that for the five categories marked in the PST database, the average IoU reached
55.56%, and the IoU of each category was also higher than 40%.

Compared with the results after training on the normal light image database, the perform-
ance of PSPNet on the LLDSD dataset has an overall decline, and only the mIoU of the
survivor label has reached 50%. This may be because the low-light scenes and noise in the
image of LLDSD affect the learning of the features by the neural network.

In addition, the mIoU of the two labels, survivor and backpack, has dropped very ser-
iously. In comparison, the remaining two labels have dropped, but the drop is within
10%. For the label survivor, it may be that some features in the image (trouser color, facial
details) are severely weakened in low light conditions, and in many cases only reflective
clothes are clearly visible, as shown in the Figure 5.12.

For the label of backpack, as shown in Figure 5.13, the most obvious feature (color) is also
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Figure 5.11: mIoU of modified PSPNet trained on PST900(Left), LLDSD(Middle) and Enhancend LLDSD(Right).
The training set, validation set and test set when training are the same.

Figure 5.12: Comparison of label "Survivor" between PST900 and LLDSD. The left side is the original image in
PST900, the other one is image in LLDSD. In the images, we can see due to dark and noise some features of
survivor are fused with the background.

significantly reduced due to the decrease in brightness, resulting in a significant decrease
in mIoU. This also verifies the conjecture proposed in the previous subsection: the reason
why the two labels of survivor and backpack are recognized under normal light conditions
is higher because they have more obvious features.

According to Figure 5.14 we can see the result of training PSPNet directly on LLDSD.
More misclassifications appeared in the segmentation results, such as identifying the sur-
vivor’s legs as a backpack. And more unrecognized labels, such as the backpack is not
recognized in the left picture, and the hand drill is recognized as two parts. This also
happens in the middle picture, identifying the survivor’s legs as the background.

The reason for these situations may be because, in the low-light database, more details are
hidden. Especially when there are shadows in the normal light picture, in the correspond-
ing low light picture, the visibility of the shadow part is lower. In addition, dark objects
are difficult to distinguish from the background due to the low contrast of low-light im-
ages, for example, the black pants of volunteers were misidentified in the segmentation
results.
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Figure 5.13: Comparison of label "Backpack" between PST900 and LLDSD.The left side is the original image in
PST900, the other one is image in LLDSD. Different from the former image, the color of backpack in LLDSD can
still be distinguished with the background but the edge is hard to distinguish.

5.3.4 Semantic Segmentation with enhanced-LLDSD

Finally, we trained PSPNet on the augmented LLDSD dataset, and the training results
are shown in Figure 5.11. In the figure, we can see that the accuracy of all four labels
has improved compared to training on LLDSD before enhancement. Among them, the
two labels of backpack and fire extinguisher have more than 10% accuracy improvement.
Survivor has a 6% increase, but the hand-drill increase is only 1%.

Although there is a good improvement compared to the results on the low-light dataset,
there is still a certain gap compared to the results on the PST900 dataset. In particular,
there is still a 19% gap in the accuracy of the label survivor. The accuracy gap of the other
three labels is about 10%-15%.

From the Figure 5.15 we can see the result of training PSPNet on Enhanced-LLDSD. Com-
pared to PSPNet trained on LLDSD, the occurrence of misclassification is significantly
reduced. And since the enhanced image restores more details, objects in shadow can
also be effectively segmented. Only in some pictures, dark objects are confused with the
background, but the degree and number are significantly reduced.

It can be seen that the method of enhancing low-light images first and then performing
semantic segmentation can indeed improve the accuracy of semantic segmentation of low-
light scenes. This confirms the result in paper[10], they also verified combine enhancement
and segmentation can improve the performance of low light segmentation.

The failure cases are shown in Chapter 9, there are mainly 3 kinds of failure cases.

The first kind of failure is both modified PSPNet trained on PST900 and Enhanced LLDSD
can not give correct perception. As shown in Figure 9.2, we can see that there is no labeled
object in the image but the two networks both made some misclassification, the PSPNet
trained on PST900 to predict the red object in the middle to hand-drill, and PSPNet trained
on LLDSD predicts the highlighted area(right bottom part) as a survivor. This is probably
because the brightness of the original image is low so both networks can’t get the correct
result.
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The second kind of failure is the PSPNet trained on PST900 can correctly predict but
PSPNet trained on LLDSD get the wrong result. As shown in Figure 9.3, PSPNet trained
on PST900 can predict the fire extinguisher in the middle of the image although still some
pixels are not correctly predicted. However, as we can see in the sub-image the PSPNet
trained on LLDSD didn’t recognize the fire extinguisher at all. This is probably because
the result of enhancement is not ideal, the enhancement result is totally distorted.

The third case is that PSPNet trained on PST900 can predict the right objects but at the
same time there are some misclassifications. PSPNet trained on LLDSD can not predict
the right object and also has some misclassifications. Like in Figure ??, PSPNet trained
on PST900 can correctly predict the backpack but mistakenly predict the light in the right
bottom corner as hand-drill. PSPNet trained on LLDSD didn’t recognise the backpack and
predicted the object in the middle as a survivor. This may be because the enhancement
network restores the middle of the image to a bright green color, which is the same color
as the survivor’s clothes, so it is predicted to be a survivor. In general, most of the errors
in PSPNet trained on PST900 are due to the low brightness of the pictures in the PST900
dataset, and the network cannot judge the objects in the picture based on the learned
features.

In addition to the above problems, most of the errors in PSPNet trained on PST900 are
due to the unsatisfactory results of the enhancement network. The enhanced image still
has color distortion, or excessively restores the brighter part of the picture, and the darker
parts are not recovered enough, resulting in more shadows in the dark areas.. Even for
some of the dark images in the PST900 dataset, the restored results are completely distor-
ted, indicating the insufficient robustness of the augmentation network.

5.4 The performance of the combination of DSLR and PSPNet

In order to compare the effect of the combination of DLSR and PSPNet on low-light scene
semantic segmentation, this section mainly compares the results of two experiments:
PSPNet trained on the LLDSD dataset and PSPNet trained on the LLDSD dataset en-
hanced by the DLSR network. The quantified results are shown in the Table 5.3.
The reason why the two labels of Backpack and Fire Extinguisher can be significantly

Dataset:PST900/LLDSD

Network Fire-Extinguisher Backpack Hand-Drill Survivor mIoU

PSPNet(PST900) 0.6 0.75 0.53 0.77 0.7307
PSPNet(LLDSD) 0.4 0.44 0.43 0.52 0.5556
DLSR+PSPNet 0.52 0.6 0.44 0.58 0.6249

Table 5.3: The table shows the mIoU on each label and mean mIoU of each methods tested. PSPNet trained
on PST900[3] dataset has the best performance within 3 methods. The third row is the mIoU of PSPNet trained
on DSLR-enhanced low-light images, which shows a significant improvement compared to PSPNet trained on
LLDSD (low-light unenhanced images).

improved may be because, with the enhancement of the images, more features of the
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two labels are recovered, so that the feature extraction network can extract more features,
which makes the network more accurate. The two labels and background are better dif-
ferentiated. As shown in Figure 5.16, the backpack is difficult to see compared to the
LLDSD dataset, and the enhanced image can clearly distinguish the backpack from the
background.

The accuracy improvement of the Survivor label also benefits from this. However, as
shown in Figure 5.16, although the upper body of the survivor in the enhanced picture
has a higher degree of distinction from the background, the lower body is still not easily
distinguishable from the background even after the enhancement. Therefore, although
the enhancement can improve the accuracy to a certain extent, the improvement of the
accuracy is not as much as that of the two labels of backpack and fire extinguisher.
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Figure 5.14: The first row of the image shows the segmentation results of the original image and Ground Truth,
and the second row shows the same image in LLDSD. The third and fourth rows are the semantic segmentation
results of Ground Truth and PSPNet in LLDSD, respectively.The last rowe is the result on PST900[3] by modified
PSPNet
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Figure 5.15: The first and second rows of the images show the same images from the LLDSD and Enhanced-
LLDSD datasets, respectively. The third to fifth rows are the semantic segmentation results of Ground Truth,
Enhanced-LLDSD and LLDSD, respectively.
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Figure 5.16: Comparison of label "Backpack"and "Survivor" between PST900, LLDSD and enhanced-LLDSD.
The first column refers to the images containing label ’survivor’ and ’backpack’ in PST900[3] dataset, the second
column shows the same image after low light synthetic in LLDSD. The last column shows the enhanced result
of DSLR which is trained on LLDSD dataset.



6 - Discussion

We have shown that by combining PSPNet and DSLR, the accuracy of RGB image semantic
segmentation results in low-light environments can be effectively improved. First, by
gamma transforming and adding noise, we propose a low-light database-LLDSD, which
can be used for semantic segmentation of disaster scenes, based on the PST900 database.
We recover more details from low-light images by training a DSLR image enhancement
network. The modified PSPNet is then trained on the augmented images to achieve se-
mantic segmentation, and the accuracy is significantly improved compared to the direct
semantic segmentation of low-light images.

This chapter will discuss different aspects of the system and will be divided into the fol-
lowing parts.

• The performance of DSLR on LLDSD;

• The performance of the modified PSPNet on PST900;

• The performance of the combination of DSLR and PSPNet on the task of low-light
image semantic segmentation.

6.1 The performance of DSLR on LLDSD

When the trained DSLR network is used to enhance the LLDSD database, we can find
from the quantitative and qualitative results that the effect of the DSLR network is slightly
better than other comparative methods. But as mentioned in the previous chapter, this is
likely because other network structures have not been trained on LLDSD.

When comparing the restored image with the original image, we can find that although
some details have been restored better (color, light source, etc.), there is still a large gap
between the brightness and the restoration of some small objects. Especially when there
are shadow parts (caves, etc.) in the image, the enhanced image has a larger shadow part
than the original image, and many details in the shadow part are hardly recovered. In
addition, because the clothes of the volunteers in LLDSD can reflect light, and the lower
body is dark pants, in the case of LED light source, the upper body brightness of the
volunteers is higher than that of the lower body, so it can often be found that the enhanced
volunteers have a higher brightness. The lower body is still missing some details, and it is
even indistinguishable from the environment.

47
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6.2 The performance of the modified PSPNet on PST900

Compared with original PSPNet, we make our modified PSPNet structure outperform
original PSPNet on PST900 dataset by changing the loss function of the network. The
mIoU of the modified PSPNet is 5% higher than the original PSPNet performance, and
the most accurate improvement is the prediction of the label Suvivor, which is improved
by 10%.

According to the comparison of modified PSPNet and original PSPNet in the previous
chapter, we can see that modified PSPNet performs better than original PSPNet on the
PST900 dataset after replacing the loss function. This is because regardless of the size
of the image, the dice loss calculated in the region of the fixed-size positive sample is
the same, and the supervision contribution to the network does not change with the size
of the image, and because focal loss can focus more on harder-to-learn samples, so that
in terms of miou and classification accuracy on small-size and infrequent labels which
occupy fewer pixels, the modified PSPNet has a better improvement than the original
PSPNet.

6.3 The performance of the combination of DSLR and PSPNet
on the task of low-light image semantic segmentation

We find that the semantic segmentation task of low-light scenes can be partly solved by
combining two methods, DSLR and PSPNet. The reason may be that for many low-light
images, a large part of the details cannot be learned by the network due to problems such
as brightness. When DSLR is used to enhance it, the image recovers more details, which
help the neural network to perform feature learning and achieve the effect of improving
accuracy.

Therefore, by combining DSLR and PSPNet, this report provides a solution capable of
semantic segmentation in low light scene, while improving the accuracy of semantic
segmentation in low light scene. This solves the first and third problems mentioned in
Chapter3.

In addition, we also found an interesting phenomenon that the enhanced network has a
higher accuracy improvement in recognizing medium-sized (backpack) categories. This
may be because, in low-light conditions, smaller objects (hand-drill) are difficult to be-
come more distinguishable by low-light enhancement, but medium-sized objects are more
distinct from their surroundings due to enhancement, being able to recover more details
also has the advantage of being easier to learn relative to small objects.
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As mentioned, several aspects of the prototype could be improved. The first is the con-
struction of the LLDSD database. Since there are few databases in disaster scenarios,
and the labels recorded in these databases are not the same. For example, the PST900
dataset records four labels (fire extinguisher, hand-drill, survivor and backpack), and the
UMA-SAR[13] dataset mainly records persons, vehicles, debris, and SAR activity on un-
structured terrain. Simply fusing multiple SAR databases is not conducive to the training
of semantic segmentation networks.

Therefore, only one of them (PST900) is used in this report when constructing the LLDSD
database. This results in a smaller amount of data in the LLDSD database. Especially
compared to more mature semantic segmentation databases such as ADE20[72] (training
set: 20,210 images, validation set: 2,000 images, 150 labels), our database has considerable
limitations in size and types of labels.

Furthermore, when building the database, we obtain low-light images by performing low-
light synthesis on real images. But even with different methods (such as adding different
forms of noise) to increase the realism of the synthesized image, there is still some gap
between the synthesized image and the real low-light image. These gaps will lead to
sub-optimal performance of the image enhancement methods and semantic segmentation
networks trained in this report on real low-light scene semantic segmentation.

Therefore, the follow-up work on the LLDSD dataset may be to add more high-quality
pixel-level annotations images or weakly annotated images. In addition, the reliability of
LLDSD can be improved by collecting more images of low-light disaster scenes of real
scenes. Considering the difficulty of collecting real low-light disaster scene images, more
advanced methods such as CycleISP[73] can also be used to simulate low-light images.

The main problem with DSLR networks is that the performance and robustness are not
good enough. It is found that its robustness is not enough, the lighting enhancement
results are still different from the original image, and the ability to restore details in
dark places is poor. Besides, the images with low brightness in PST900 have even lower
brightness after synthesis. The enhancement results of these images often cause distortion
of the whole image, so that the semantic segmentation network cannot recognize the target
at all. The reason for this problem may be that the dataset used for training is synthesized
and the dataset is not big enough. Therefore, future work may be to collect more paired
images in disaster scene for training enhancement network.

For the semantic segmentation network, there are mainly the following ways to improve
the performance. Due to the lack of computer performance we used during training, a
smaller batch size and a lightweight backbone were used. Using a larger batch size may
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make it easier for the network to converge and improve training performance. Replacing
other backbones may also improve network performance. In addition, since this report
replaces the model of the loss function to improve the accuracy, it may also be possible to
improve the performance of the network by using one or several other loss functions, such
as combining the loss function used in this report and the cross-entropy loss function.



8 - Conclusion

In this project we set out to create a low light disaster scene semantic segmentation method
and answer the following questions from the problem formulation:

• How to use a set of algorithms to make rescue robots have the ability of semantic
segmentation in dark disaster environment?

– How can the low light disaster scene database be created?

– How to do semantic segmentation in a dark environment?

– Is it possible to improve the accuracy of semantic segmentation by doing some
processing on dark pictures compared to directly train a semantic segmentation
network on the normal light dataset or on the low light dataset?

In order to solve the problem that there is currently no database for low-light disaster
scenes, based on the PST900[3] database, we performed low light synthesis on the data-
base and built a new low-light disaster scene database-LLDSD.

Furthermore, we enhance the images in LLDSD through the DSLR network, and compare
the results with some existing methods to verify the performance of the DSLR network on
LLDSD, and generate a new dataset-Enhanced-LLDSD.

Furthermore, we modified the original PSPNet by using a combination of dice loss and
focal loss rather than standard cross entropy loss, first comparing the performance of the
network on PST900, the architecture achieves better performance among the compared
methods on this dataset.

We then train a semantic segmentation network on LLDSD and Enhanced-LLDSD, re-
spectively, and demonstrate that images enhanced by DLSR can significantly improve the
performance of low-light image semantic segmentation tasks.
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9 - Appendix

9.1 Failure case of modified PSPNet on Enhanced-LLDSD

For each figure, sub-figure a shows images in PST900 with ground truth. Sub-figure b
shows images in Enhanced-LLDSD. Sub-figure c and d represent the segmentation result
of modified PSPNet trained on PST900 and Enhanced-LLDSD, respectively.

Figure 9.1: Example of failure case 1. We can see that although the modified PSPNet trained on PST900 still
misclassifies the object in the lower right corner, it can more accurately identify the backpack from the picture.
However, the modified PSPNet trained on enhanced LLDSD not only fails to recognize the backpack, but also
misclassifies the two brighter parts of the image.
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Figure 9.2: Example of failure case 2.According to the picture, we can see that there is no labeled item in the
original picture of PST900, but the modified PSPNet still recognizes the red object as hand-drill. The modified
PSPNet trained on enhanced LLDSD identifies the highlighted part in the lower right corner as survivor. The
modified PSPNet trained on enhanced LLDSD may not misclassifies the objects in the middle due to the low
brightness of the enhanced results.
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Figure 9.3: According to the picture, we can see that both PSPNets effectively identify the backpack. However,
due to the shadows in the enhanced images, there is still a certain gap between the results of PSPNet recognition
and ground truth.
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Figure 9.4: Example of failure case 3.From the pictures we can see that the original image in the PST900 is
extremely low in brightness, making it difficult to distinguish the fire extinguisher from it. The modified PSPNet
trained on PST900 is still able to correctly classify the fire extinguisher in the picture, but there are still some
pixels that are not correctly identified. In this case, we can see that the enhanced image is severely distorted, and
we can’t even distinguish any details of the image. Therefore, the modified PSPNet trained on enhanced LLDSD
cannot correctly identify this image.
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