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Resumé

Frekvensområdet for mikrobølger og synligt lys har længe været veludviklet, mest affødt af de rel-
ativt let tilgængelige metoder til at både danne, detektere, og manipulere stråling i disse områder.
Imellem disse to områder finder man en tidligere noget uudforsket del af det elektromagnetiske
spektrum, nemlig området for terahertz stråling. Dette område var op til 80’erne forbeholdt
hvad bedst kan beskrives som nicheforskning eftersom ingen af komponenterne påkrævet for at
udforske dette område var lettilgængelige.
I 80’erne skete der et gennembrud, da forskellige forskergrupper viste, at man ved hjælp af fem-
tosekund lasere kan danne og detektere terahertz stråling. To af disse grupper, som er specielt
nævneværdige, er Grischkowskys gruppe der var tilknyttet IBM og Austons gruppe der var
tilknyttet Bell Labs. Disse grupper udgiver i årene 1988 til 1990 nogle af de artikler der lagde
grundstenene for terahertz tidsdomæne spektroskopi.
Brugen af femtosekund lasere til både at excitere og detektere terahertz stråling blev et vende-
punkt for forskningen indenfor terahertz området da det betragteligt sænkede adgangsbarrieren
til feltet, og dermed gjorde det mere tilgængeligt.
Selvom området har oplevet en stor udvikling over de seneste 30 år, er det stadigvæk et område
af interesse. Dette skyldes at mange af komponenterne i dette område ikke er lige så veludviklede
som de tilsvarende komponenter i de omgivende frekvensområder, som for eksempel mikrobølger
og synligt lys.

Formålet med dette kandidatspeciale var at designe og lave forskellige passive komponenter til
manipulation af terahertz stråling, hvorfor sådanne både er blevet modelleret, fremstillet, og
karakteriseret. Mere specifikt er der fokus på to slags komponenter, en der udviser Fano res-
onanser samt en anden der udviser fotoniske båndgab. Disse er henholdsvis baseret på en- og
to-dimensionelle fotoniske krystaller i høj resistivitet silicium. Komponenterne der udviser Fano
resonancer er fremstillet ved at ætse et en-dimensionelt gitter ned i overfladen af 100µm tynde
wafere, og disse kan for eksempel benyttes som spektral specifikke reflektorer. Komponenterne
der udviser fotoniske båndgab er fremstillet ved enten at ætse i 100 og 200µm tynde wafere
således at et firkantet eller hexagonalt gitter af stave står tilbage, eller ved at brænde huller i et
hexagonal mønster ved at benytte en høj energi pulset laser. Disse komponenter kan bruges til
at reflektere områder af frekvenser, men kan også bruges til at lave bølgeledere og kaviteter.
Efter fremstillingen blev de forskellige komponenter også karakteriseret ved hjælp af flere forskel-
lige metoder såsom skannende elektron mikroskopi, lys mikroskopi, og profilometri. Derudover
er de også blevet optisk karakteriseret ved transmissionsmålinger, og efterfølgende er de blevet
sammenholdt med tilhørende teoretiske modeller.

Målingerne på de fremstillede komponenter der udviser Fano resonanser er i fremragende ov-
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erensstemmelse med de spektrummer beregnet med den teoretiske Fourier modal metode, både
under normalt og vinklet lysindfald. Samtidigt blev der også fundet en tilfredsstillende ov-
erensstemmelse mellem målingerne på de fremstillede komponenter der udviser båndgab, og
de båndstrukturer der blev beregnet med en iterativ tre-dimensionel Fast Fourier Transform
metode. Selvom det ikke var muligt at detektere bølgeledertilstande i en luftbølgeleder, så blev
der med succes fundet bølgeledertilstande i en siliciumbølgeleder i en prøve med et hexagonalt
gitter af lufthuller i silicium, samt kavitetstilstande for en kavitet i en prøve med et hexagonalt
gitter af silicium stænger i luft.

De resultater og overvejelser som er præsenteret i dette kandidatspeciale kan bruges som inspi-
ration til videre undersøgelse af: Samling af signal ved hjælp af bøjede bølgeledere, nedskalering
af de producerede komponenter, og fremstilling af fungerende luftbølgeledere.
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Background, Theory and Method
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1 | Introduction

The terahertz region is of increasing interest and spans the frequency interval from 0.1 to 10
terahertz, corresponding to wavelengths between 3.0 mm and 30 µm [1–6]. This region lies
between microwaves and infrared, and was before the late 1980s referred to as the "terahertz
gap" due to the lack of efficient emitters and detectors in this frequency region compared to
the adjacent regions [3, 7, 8]. The terahertz frequency range has been actively researched in
the last 30 years following the introduction of using femtosecond lasers to both excite and
detect freely propagating terahertz radiation in the late 1980s [3, 8, 9]. Although the selection
of both emitters and detectors has improved since then [10, 11] it is still an area actively being
researched [12, 13], wherein particular the realisation of quantum cascade lasers operational at
room temperature is of great interest but has yet to be achieved [14, 15]. The reason for this
interest is grounded on the expectation that it will reduce the complexity, cost, and improve the
portability of terahertz laser systems which would help the commercialisation of the field [14],
which has only experienced an increasing interest over the years, due to the multiple areas in
which it has usages. [2, 3, 8, 15]

In the defence and public security sector terahertz imaging can be used to detect hidden metallic
objects, given that many materials such as clothing and many common types of packaging are
transparent in this spectral region. In addition, terahertz spectroscopy may be used to detect
many illicit drugs and explosives since they have material-specific spectra. [16, 17]
Since terahertz radiation is strongly absorbed by water it may also be used for medical diag-
nostics of phenomena where the water content of the tissue, and in the future potentially cells,
under investigation changes [18, 19]. Terahertz imaging has also been proved able to identify
cartilage deterioration in a rabbit knee [20]. An overarching benefit of using terahertz in med-
ical diagnostics is the inherently lower energy of terahertz radiation compared to visible light
and X-rays, and consequently, the ionisation potential of terahertz is nearly non-existent, and
it therefore poses a significantly lower risk for unwanted side effects [20]. Another area where
terahertz radiation can be exploited is in non-destructive quality control of, e.g., plastics and
different foods. For plastics, it can be used to determine water content, the presence of contam-
inants, and the quality of plastic welds [21,22]. For foods, it can be used to determine moisture
content and the presence of pesticides, antibiotics, as well as foreign bodies [23]. Furthermore,
an almost certain future exploitation of terahertz radiation is found in telecommunications, since
following the current trend of the technology the bands of the next generation, 6G, will extend
into the terahertz region [24–26].

Besides the need for better emitters and detectors, all these applications also require components
that enable the possibility to manipulate the radiation, components that are not as readily
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available in the terahertz region [27–29]. Examples of the components are filters, waveguides,
and reflectors. Furthermore, phased arrays could be a possible way to collect and steer the
output from multiple sources in an attempt to circumvent the rather low output power from
terahertz sources [3, 13,30].

A mechanism that can be exploited to create components such as spectral-specific reflectors
is Fano resonances [31–34]. These are well established in the literature [5, 31, 35–40], and as
the name suggests, they are resonances of some system. They materialise when a continuous
and a discrete set of states coexist, with the interference between these states resulting in the
asymmetric spectral line shape that characterises Fano resonances. The formulation of the Fano
resonance theory was developed by Ugo Fano in 1935 [32], when some of the Rydberg spectral
lines were observed to be anomalous, and could not be understood using the theory at the time.
Fano showed that these lines can be understood as interference between superimposed wave
functions corresponding to a discrete transition as well as a continuous transition. Fano gained
this insight by considering the photo-ionisation of an atom, which may occur several ways, the
most straightforward being the case in which the photon simply has enough energy to ionise
the electron, resulting in the process A + ~ω → A+ + e−. Another process that may occur
is that the photon excites two electrons into some quasi discrete level, from which one of the
electrons may fall back down into its initial energy state providing the energy needed for the
other electron to be ejected into the vacuum continuum. This last process is also known as an
Auger process and can be expressed as ~ω + A → A∗ → A+ + e−. These autoionising levels
are discrete, and due to the nature of quantum mechanics, the real process can be described as
the superposition of these two cases. With this description, Fano used perturbation theory to
arrive at the following expression for the scattering cross-section, σ, which could then explain
the asymmetric absorption peaks

σ = (ε+ q)2

ε2 + 1 , ε = 2(E − EF )
Γ , (1.1)

with EF being the resonance frequency, Γ the width of the resonance, E a continuous frequency
variable, and q being a phenomenological shape parameter. This shape parameter can be further
understood if eq. (1.1) is rewritten to be the superposition of a Lorentzian peak, expected for
absorption of a discrete set of modes, as well as a continuous level, i.e.,

σ = q2 − 1
ε2 + 1 + 1 + 2qε

ε2 + 1 . (1.2)

Here the last term can be understood as a mixing term, which strongly depends on the value
of q. Thus the parameter q governs to which degree the two ionisation methods are probable in
relation to one another, which is what Fano proposed in his original paper. This means that in
the limit q →∞ the absorption process by the continuum of states is very weak, and the Fano
resonance simply looks like the standard Lorentzian peak, whereas if q is on the order of unity,
both transitions are equally probable resulting in an asymmetric dip. In the case where q = 0 a
symmetric dip appears, sometimes called an antiresonance, and is unique to the Fano resonance.
These profiles are illustrated in fig. 1.1. This interference between discrete and continuous states
is then the physical interpretation of the Fano resonance, and also explains why this phenomenon
is present in the field of photonics. If a structure supports coupling into and out of discrete and
continuous modes, Fano resonances may appear, a mechanism that can then be used for, e.g.,
spectral-specific reflectors.
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Figure 1.1: Plots the peaks of different absorption processes discussed in this section. In the limit where
q −→∞ the absorption process is dominated by discrete transitions, whereas when q = 0 the absorption
is facilitated by a continuum of states. When q ≈ 1 both absorption processes are equally likely, and it
is by this mechanism Fano resonances occur.

A class of materials that can be used to create optical devices for the terahertz spectrum are
photonic crystals. These have been studied since the late 19th century, when Lord Rayleigh
showed that multilayered dielectric stacks, i.e., the Bragg Mirror, had a spectral region of high
reflectivity dubbed the stop band [41]. Such a structure, where the dielectric function is varied
periodically along one or more axes, is today commonly thought of as a photonic crystal, though
it is contended by one of the progenitors of the name, Eli Yablonovitch, that the name photonic
crystal should be reserved for materials that are both periodical in either two or three dimensions,
to distinguish them from the materials studied by Rayleigh, and have large modulations of
the refractive indexes, separating the field from X-ray crystallography [42]. Nevertheless, a
commonly accepted definition of the word photonic crystal is simply that of a material in which
the dielectric function varies periodically in one or more dimensions [43–45].

The name photonic crystal was first brought into existence in 1987 when Sajeev John and Eli
Yablonovitch published two pioneering papers [46, 47]. S. John showed that light could be
confined by introducing defects into a photonic crystal, in a similar way that an electron can
be confined by introducing a potential trap in the form of impurity atoms in a semiconductor.
The defects could be any disruption to the otherwise periodic dielectric function such as point
defects, line defects, or grain boundaries [46]. The paper written by E. Yablonovitch investigated
the possibility of inhibiting the spontaneous emissions of systems at specific frequencies by using
two- and three-dimensional photonic crystals with band gaps at these frequencies, concluding
that the effect could play a significant role in solid-state physics, specifically in the study of
semiconductor lasers [46]. That the spontaneous emission rates of systems could be altered had
been known since the 1940s, when Edward Purcell published a paper regarding the enhancement
of nuclear magnetic moment transitions by coupling with a resonant electrical circuit [48], where
he showed that the spontaneous emission of a system at a given frequency can be changed by
a factor proportional to the ratio between the systems density of states and the free space
density of states. Thus, creating a material with a true band gap would inhibit the system from
spontaneously emitting light with frequencies inside the gap. [48]
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Since the pioneering work of S. John and E. Yablonovitch, the number of publications regarding
photonic crystals have exploded [45], with the first three-dimensional photonic crystal being
fabricated in 1991 by Eli Yablonovitch. The crystal used a pseudo-FCC lattice that was dubbed
Yablonovite. The fabricated structure had a photonic band gab in the microwave regime and
was fabricated by drilling holes at three different angles into a suitable transparent material.
Yablonovitch further commented that his structure could readily be scaled down by using state-
of-the-art reactive ion etching, resulting in a band gap near-visible frequencies [49]. The first
photonic crystal exhibiting a band gap in the near visible spectrum was, however, based on a
two-dimensional crystal, due to the difficulties of scaling down three-dimensional structures to
the nanoscale. The crystal was based on a hexagonal array of air holes etched into SiO2 using
electron-beam lithography and reactive ion etching [50]. Although three-dimensional photonic
crystals have since been fabricated in a variety of lattices [51], it is the two-dimensional versions
or varieties thereof that see the most success [43, 45]. In fact, the first three-dimensional pho-
tonic crystal fabricated on the micrometer scale was the woodpile crystal, which is essentially
fabricated one two-dimensional layer at a time, by iteratively depositing and etching silicon,
lending from the decades worth of expertise with top down methods acquired in the research
and fabrication of electronic chips [43,45,52,53].

Today, photonic crystals are still the subject of major research, yet they have also become
the major component in a variety of industries, perhaps the most prominent example being
the photonic crystal fibre (PCF), the first of which was fabricated by Phillip Russel and his
team in the 1990s [45,54]. These structures, capable of acting as waveguides, can be created by
melting thin glass capillaries together, leaving air gaps in between resulting in a two-dimensional
photonic crystal in the plane perpendicular to the length of the fibre. By introducing a defect
in the center, either air or just a massive rod of glass, the periodicity of the photonic crystal
plane is interrupted, allowing light of specific frequencies to be trapped [54]. The fabrication
procedure also allows for one or more of the constituent capillaries to be doped, making it
possible to have gain or even creating laser fibers [44, 54]. Two types of PCF, referred to as
solid-core and hollow-core fibers, see a wide variety of purposes, with the most mature product
being the solid-core [44]. An example are telecommunications, where solid-core PCF has two
distinct advantages over the traditional waveguide using a high-index core surrounded by a low
index cladding where the light is trapped using total internal reflection [44]. First, the freedom
to engineer the zero point for chromatic dispersion is better, making it possible to tailor the
PCF for the specific need, and secondly because the structure is single mode for a larger span
of frequencies, removing modal dispersion. [54]

The hollow-core PCF has the advantage that large intensities of light can be confined in the
fibre without damaging the guiding core, allowing products such as high effect fibre lasers. Fur-
thermore, if the interface between the hollow-core and surrounding glass can be made smooth
enough, the hollow-core PCF promises outstandingly low attenuation lengths, again an inter-
esting parameter for telecommunications as it would allow for an increased distance between
repeaters. [44, 54,55]
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Group 5.340 Chapter 1. Introduction

1.1 The Aim of the Project

The focus of this project is to develop passive optical components based on photonic crystals
that can be used to manipulate terahertz radiation. Specifically, one- and two-dimensional
photonic crystals will be modelled, fabricated and characterised. The one-dimensional photonic
crystals will be all-silicon, sub-wavelength gratings that exploit Fano resonances to create low-
loss spectral-specific reflectors. Using the models established in the later sections, the dimensions
of the structures will be optimised for resonances in the frequency range 0.1-3.0 terahertz.

The two-dimensional photonic crystals will be based on both hexagonal and quadratic arrays
of circular shapes. Specifically, structures consisting of silicon rods standing on a thin silicon
substrate as well as air holes in a silicon wafer will be fabricated. The structures will be tailored,
within the limitations set by the available equipment, such that their primary band gap lies
in the lower end of the terahertz spectrum. Line defects will be introduced to the various
two-dimensional photonic crystals, investigating the possibility of using the design to guide
frequencies inside the band gap. Furthermore, point defects will be introduced to samples based
on silicon rods, such that the associated cavity modes can be explored.
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2 | Theory

This chapter will cover some of the fundamental equations in electromagnetism, laying the
foundation for the models that will be derived in the following sections. Using assumptions
suitable for the topics covered in this project, the general Maxwell equations will be simplified
and rewritten to their frequency-dependent form. From these, the wave equations will be derived
and the nature and general features explored. Building upon these equations, the expected
solutions in a periodic dielectric medium will be investigated, laying the foundation for the
following sections where models for periodic materials in one and two dimensions are established.
Specifically, the plane wave expansions (PWE) method is introduced and used to calculate the
band structures of infinitely extending one- and two-dimensional photonic crystals. Thereafter,
the Fourier Modal Method (FMM) is presented, which will be used to model the transmittance
spectra of two-dimensional, but layer-wise one-dimensional periodic structures. Finally, the
method of Fast Fourier Transform (FFT) is introduced, and used to calculate the band structure
of photonic crystals with defects.

2.1 Maxwell’s Equations

The macroscopic Maxwell equations account for all free charges and currents. On differential
form they are given as

∇ ·B(r, t) = 0, (2.1)
∇ ·D(r, t) = ρF (r, t), (2.2)

∇×H(r, t) = JF (r, t) + ∂

∂t
D(r, t), (2.3)

∇×E(r, t) = − ∂

∂t
B(r, t). (2.4)

These equations relate the four fields, the displacement field D(r, t), electric field E(r, t), mag-
netic field H(r, t), and the magnetic induction field B(r, t), to the sources, being the free charge
and current density, ρF (r, t) and JF (r, t), and the changes in the fields. [43, 56] The magnetic
field is defined from the magnetic induction field and the response from the medium in the form
of the magnetisation,

H(r, t) = B(r, t)
µ0

−M(r, t). (2.5)

For the problems considered in this project, it is reasonable to ignore this medium response as
they are non-magnetic, such that eq. (2.5) simplifies to B(r, t) = µ0H(r, t) [43]. The displace-
ment field D(r, t) is defined by the electric field and the material response in the form of the

7
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polarisation as
D(r, t) = ε0E(r, t) + P(r, t). (2.6)

Generally speaking, the displacement field and the electric field do not need to be parallel, which
can be seen from the definition of P(r, t) [57]

Pi(r, t)
ε0

=
∑
j

χ
(1)
i,j (r, t)Ej(r, t) +

∑
j,n

χ
(2)
i,j,n(r, t)Ej(r, t)En(r, t) + ..., (2.7)

where Pi is a given component of P and χ(n) is the n’th order electric susceptibility. Assuming
isotropic, linear media, all but the first term on the right-hand side of eq. (2.7) disappear and
χ(1) becomes a diagonal matrix with one unique entry and the equation therefore simplifies to

P(r, t) = ε0χ
(1)(r)E(r, t), (2.8)

where the time dependence of χ(1) has been dropped, corresponding to the material polarising
instantaneously. Inserting eq. (2.8) in eq. (2.6) results in the following relation

D(r, t) = ε0
[
1 + χ(1)(r)

]
E(r, t) = ε0ε(r)E(r, t), (2.9)

where ε is the relative permittivity of the material, which is used to form the material permittiv-
ity ε(r) = ε(r)ε0 [56]. Finally, the fact that Maxwell’s equations are separable allows the spatial
and temporal parts for each plane wave of the field to be separated, as shown in [43],

H(r, t) = Re{H(r)e−iωt}, (2.10)

E(r, t) = Re{E(r)e−iωt}, (2.11)

known as a harmonic mode. This is allowed because Fourier analysis shows that any time
dependence can be formed by a suitable sum over harmonic modes with varying frequency
dependence [43]. With these assumptions and modifications, the Maxwell equations in frequency
domain take the form

∇×E(r, ω) = iωµ0H(r, ω), (2.12)

∇×H(r, ω) = JF (r, ω)− iωε0ε(r, ω)E(r, ω), (2.13)

∇ · [ε0ε(r, ω)E(r, ω)] = ρF (r, ω), (2.14)

∇ · µ0H(r, ω) = 0. (2.15)

2.1.1 Wave Equations

From the Maxwell equations in frequency domain, it is straightforward to formulate wave equa-
tions for both the electric and magnetic fields. Taking the curl of eq. (2.12) and inserting
eq. (2.13)

∇×∇×E(r, ω) = iωµ0 [JF (r, ω)− iωε0ε(r, ω)E(r, ω)] . (2.16)

Utilizing that ∇×∇× = −∇2 +∇∇·, and setting the free current density to zero results in(
−∇2 +∇∇·

)
E(r, ω) = ω2µ0ε0ε(r, ω)E(r, ω). (2.17)

8
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Equation (2.17) will be used to tackle problems where E(r) = ẑE(x, y), which is a divergence
less field, and therefore the equation reduces to(

∇2 + k2
0ε(r, ω)

)
E(r, ω) = 0, (2.18)

with k2
0 = ω2µ0ε0. To get a wave equation for the magnetic field, eq. (2.13) is divided by ε(r, ω),

JF is set to zero and the curl is taken, after which eq. (2.12) is inserted on the right-hand side
resulting in

∇× 1
ε(r, ω)∇×H(r, ω) = k2

0H(r, ω). (2.19)

Moving forward, the frequency dependence of ε(r) and H(r) is implicit. In fact, for all of the
structures modelled in this project, ε will be treated independently of ω. If the dielectric function
is independent of position eq. (2.19) becomes(

∇2 + k2
0ε
)

H(r, ω) = 0. (2.20)

Equation (2.19) is an eigenvalue problem, with the linear operator Θ̂ = ∇ × 1
ε(r)∇×, which

means that linear combinations of eigenvectors, with the same frequency, are also solutions to
eq. (2.19), e.g., given the eigenvectors H1(r) and H2(r) the linear combination

Θ̂ (αH1(r) + βH2(r)) = k2
0 (αH1(r) + βH2(r)) , (2.21)

where α and β are some arbitrary coefficients, is also a solution. This has the direct consequence
that a given eigenvector can be scaled by any constant, and still have the same eigenvalue which
gives the freedom to normalise obtained solutions, i.e., requiring that the inner product equals
unity,

〈H(r)|H(r)〉 =
∫

H(r)∗H(r)d3r = 1. (2.22)

This is convenient in some cases, however, if the physical energy of the field is of interest and not
just its spatial profile, the overall multiplier is important. [43] The fact that the operator, Θ̂, in
eq. (2.19) is a Hermitian operator also means that the eigenvalues are real and the eigenvectors
of non-degenerate frequencies are orthogonal. A Hermitian operator, Ξ̂, satisfies

〈F|Ξ̂|G〉 = 〈Ξ̂F|G〉. (2.23)

Note that for any operator it applies that 〈F|Ô|G〉 = 〈ÔG|F〉∗. To show that Θ̂ is a Hermitian
operator, the following vector identity is applied, B · (∇×A) = ∇ · (A×B) + A · (∇×B),∫

F∗ · ∇×
( 1
ε(r)∇×G

)
d3r

=
∫ {
∇ ·

[( 1
ε(r)∇×G

)
× F∗

]
+ (∇× F∗) ·

( 1
ε(r)∇×G

)}
d3r.

(2.24)

Applying the divergence theorem,
∫
V (∇ · F) dV =

∮
S (F · n̂) dS, to the first term on the right-

hand side it disappears in the cases where the field goes to zero at infinity, or when the fields are
periodic in the region of integration, which are the only scenarios of interest [43,56]. Because the
dot product commutes, the order of the last term on the right hand side can be interchanged,
and by reapplying the vector identity and the divergence theorem the result is∫

(∇×G) ·
( 1
ε(r)∇× F∗

)
d3r =

∫
G · ∇ × 1

ε(r)∇× F∗d3r = 〈Θ̂F|G〉, (2.25)

9
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and as such Θ̂ is a Hermitian operator. To show that the hermicity of Θ̂ entails real eigenvalues
is straightforward, simply take the inner product of H(r) with eq. (2.19)

〈H(r)|Θ̂|H(r)〉 = k2
0〈H(r)|H(r)〉, (2.26)

after which both sides of the equation are conjugated

〈H(r)|Θ̂|H(r)〉∗ = 〈Θ̂H(r)||H(r)〉 ⇒ (k0
2)∗ = k2

0, (2.27)

where it is used that the inner product is always real and positive. However, what is usually
of interest is k0, and not k2

0. The condition above only requires k0 to be completely real or
completely imaginary. Provided that ε(r) > 0, it is easy to show that k0 is in fact real, and thus
that k2

0 is positive. To do this, the same procedure used to show that Θ̂ is Hermitian, eq. (2.24),
is repeated with F,G = H(r), resulting in

〈H(r)|Θ̂|H(r)〉 = k2
0〈H(r)|H(r)〉 =

∫ 1
ε(r) |∇ ×H(r)|2d3r. (2.28)

If k0 is imaginary while ε(r) is positive, then eq. (2.28) is a contradiction, thus k0 is real and
positive. That the hermicity of Θ̂ causes the harmonic modes of differing frequency, H(r, ω1)
and H(r, ω2), to be orthogonal follows straight from the property that 〈H1(r, ω1)|Θ̂|H2(r, ω2)〉 =
〈Θ̂H1(r, ω)|H2(r, ω2)〉 which implies that(

k2
0,1 − k2

0,2

)
〈H1(r, ω1)|H2(r, ω2)〉 = 0, (2.29)

which is only true if the two eigenmodes are orthogonal. These properties of the operator will
be used repeatedly in the coming section.

10
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2.2 Solutions in Photonic Crystals

The following section draws inspiration from Photonic Crystals Molding the Flow of Light by
John D. [43].

Before proceeding with the derivation of the various methods used to model photonic crystals, it
is advantageous to discuss the attributes of such structures. As mentioned in the introduction,
photonic crystals are structures where the dielectric function is periodic in one, two, or three
dimensions. This periodicity results in band structures and band gaps for electromagnetic radi-
ation in the same way that the periodic potential of a regular crystal results in electronic band
structures. Inside of these band gaps, there is no combination of frequency and wave vector that
can support a propagating mode, and incident radiation with these combinations is therefore
reflected. The immediate difference between the two crystal types is the distance between their
unit cells. The periodicity of regular crystals comes from the ordered crystal lattice where the
magnitude of their translational vectors, vectors that move the observer to an indistinguishable
position in the lattice, are on the order of a couple of angstroms, which is on the same order of
magnitude as the wavelength of electrons in crystals [58, 59]. On the other hand, the length of
the translational vectors for photonic crystals is comparable to the wavelength of the light for
which there should be a band gap. [43,58]
A one-dimensional photonic crystal is a multilayered stack, where two or more dielectric mate-
rials are repeated. Two- and three-dimensional photonic crystals can be made by introducing
structures such as rods or holes repeated periodically, with the periodicity spanning the nanome-
ter to millimeter scale, with the larger scale exhibiting control of the microwave spectrum, and
the smaller scale controlling the visible spectrum [44]. By breaking the periodicity of the pho-
tonic crystal, which is done by introducing defects in the crystal, localised states are supported.
These defects come in two forms, point defects, and line defects. For point defects the ordered
crystal is changed at a single point, resulting in a cavity, in which localised modes with frequen-
cies inside the band gap are supported, with their field decaying exponentially away from the
defect. For line defects, the crystal order is perturbed along a line through the crystal. Similar
results occur, where light with frequencies inside the gap is supported inside the defect, with
their field strength decaying exponentially away from the defect. It is therefore possible to create
waveguides by introducing line defects into a photonic crystal and spectral-specific transmitters
based on point defects. [43]

Figure 2.1: Sketches one-, two-, and three-dimensional photonic crystals.

To determine what sort of solutions are expected for eq. (2.19) in a region where the dielectric
function is periodic a one- or two-dimensional photonic crystal can be considered. Here, at least
one direction is completely translational invariant, e.g., the z-direction, such that any shift of
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the structure in this direction leaves the system unchanged, as is the case for fig. 2.1(a) and
fig. 2.1(b). This can be described by introducing a translational operator, T̂z,d, such that

T̂z,dε(r) = ε(r + ẑd) = ε(r), d ∈ R. (2.30)
Because the two positions in the system are identical, it should not matter if the system is
shifted by T̂z,d first, and then Θ̂ is applied or the other way around. This means that the two
operators must commute, [

T̂z,d, Θ̂
]
H(r) =

(
T̂z,dΘ̂− Θ̂T̂z,d

)
H(r) = 0. (2.31)

There is more than one way for this to be true. When Θ̂ acts on H(r) it returns the eigenvalue(
ω
c

)2. If the field H(r) does not depend on z, the operator T̂z,d does nothing, and the operators
therefore obviously commute. A more interesting possibility is that H(r) does depend on z, and
is a simultaneous eigenfunction of Θ̂ and T̂z,d.
Let the field be polarised along x̂ and propagating in the zy-plane of the one-dimensional photonic
crystal depicted in fig. 2.1 (a). A z-dependence that is an eigenfuntion of all T̂z,d is eikzz, with the
limitation that because the system extends infinitely in all directions, kz must be a real number
such that the field is finite. Hence H(r) will be an eigenfunction to T̂z,d with the eigenvalue
eikzd which would make eq. (2.31) straightforward. In the y-direction the photonic crystal has
discrete translational symmetry, such that

T̂Ryε(r) = ε(r + Ry) = ε(r), (2.32)
with Ry = ŷΛyh, where Λy is a primitive lattice vector and h is an integer. Following the same
line of thought as previously, it is required that T̂Ry commutes with Θ̂, which can again be
solved by the eigenfunctions being on the form eikyy, such that

T̂Rye
ikyy = eikyΛyheikyy. (2.33)

Unlike the directions with continuous translational symmetry, not all values of ky lead to different
eigenvalues. It is easily determined that ky + 2π

Λy
m, m ∈ Z, form a degenerate set. This value

that can be added freely to ky is called the reciprocal lattice vector, |by| = 2π
Λy

. In the same
way that the lattice vectors move the observer to an equivalent point in the lattice, so does
the reciprocal lattice vector by move the wave vector ky to an equivalent point in reciprocal
space. Thus, when determining the supported eigenvalues in the structure, there is no reason
to investigate wave vectors outside the span − π

Λy
< ky ≤ π

Λy
.

Using that the operator Θ̂ is linear and commutes with T̂z,d and T̂Ry , H(r) can be constructed
as a linear combination over the wave vectors

Hkz ,ky (r) = x̂eikzz
∑
m

cky ,me
i(ky+bym)y = x̂eikzzeikyy

∑
m

cky ,me
ibymy = x̂eikzzeikyyuky (y), (2.34)

where uky is a periodic function with the same periodicity as the photonic crystal, and the wave
vectors have been used to index the given eigenvector. Thus, the dependence in the periodic
direction has the form of a plane wave multiplied by a periodic function. This result extends
to two- and three-dimensional crystals and is known as Bloch’s theorem, which states that the
solution to the wave equation in a periodic medium will be on the form of a plane wave multiplied
by a periodic function [58,60]

Hk(r) = eik·ruk(r). (2.35)
This theorem will be used to find the band structures of one and two-dimensional photonic
crystals.

12
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2.3 Plane Wave Expansion

In this section, the band structure for various photonic crystals is calculated based on the
PWE method in one and two dimensions. In one dimension, on- and off-axis propagation is
considered, while only in-plane propagation is used in the two-dimensional case. The goal is to
determine photonic crystals which exhibit band gaps that can be used for practical applications
in the terahertz regime, such as spectral-specific reflectors or waveguides, and can be fabricated
by this project group. The following subsection derives the PWE method for one-dimensional
photonic crystals.

2.3.1 One-Dimensional Photonic Crystals

Given a one-dimensional photonic crystal that is periodic in the y-direction, fig. 2.1, the field
can in accordance with Bloch’s theorem be given as

Hk(r) = Hkx,ky (x, y) = ẑei(kxx+kyy)∑
n

Cne
iGny, Gn = 2π

Λy
n, (2.36)

with Λy being the period along y. Inserting this field into eq. (2.19) results in

Θ̂Hkx,ky (x, y) = ∇× 1
ε(y)∇×Hkx,ky (x, y) = k2

0Hkx,ky (x, y). (2.37)

The dielectric function is periodic with the lattice, which can be described by a Fourier series.
However, because it is the reciprocal of the dielectric function that enters in eq. (2.37) it is
convenient to instead define

1
ε(y) = η(y) =

∑
m

ηme
iGmy, Gm = 2π

Λy
m. (2.38)

The coefficients ηm′ are determined by

ηm′ = 1
Λy

∫ Λy

0
η(y)e−iGm′ydy = 1

Λy

∫ Λy

0

1
ε(y)e

−iGm′ydy. (2.39)

Inserting eq. (2.38) and eq. (2.36) in eq. (2.37) gives

∇×
[∑
m

ηme
iGmy∇×

(
ẑei(kxx+kyy)∑

n

Cne
iGny

)]
= ẑk2

0e
i(kxx+kyy)∑

n′

Cn′e
iGn′y (2.40)

Taking the first curl

∇×
[∑
m

ηme
iGmye(ikxx+kyy)∑

n

Cne
iGnyi (x̂(ky +Gn)− ŷkx)

]
= ẑk2

0e
i(kxx+kyy)∑

n′

Cn′e
iGn′y.

(2.41)
Proceeding and taking the second curl results in

ẑei(kxx+kyy)∑
m

∑
n

ηmCne
i(Gn+Gm)y

(
k2
x + (ky +Gn)(ky +Gn +Gm)

)
= ẑk2

0e
i(kxx+kyy)∑

n′

Cn′e
iGn′y. (2.42)
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It can be seen that ẑei(kxx+kyy) can be divided out of the equation. Additionally, introducing
n′ = m+ n, eq. (2.42) becomes

∑
n′

eiGn′y

[∑
n

ηn′−nCn
(
k2
x + (ky +Gn)(ky +Gn′)

)
− k2

0Cn′

]
= 0. (2.43)

This equation must be satisfied for all values of y, which means that everything inside the square
brackets must equal 0,∑

n

ηn′−nCn
(
k2
x + (ky +Gn)(ky +Gn′)

)
− k2

0Cn′ = 0. (2.44)

Equation (2.44) contains an infinite sum, and is itself one of an infinite amount of equations,
corresponding to all the possible n′. To handle these equations numerically it is necessary to
truncate these summations, such that −N ≤ n ≤ N . By doing this, eq. (2.44) can be written
as a matrix equation

η0 η−1 . . . η−2N
η1 η0 . . . η−2N+1
...

... . . . ...
η2N η2N−1 . . . η0

�
k2

x
¯̄J2N+1 +


(ky −NG)

(ky − (N − 1)G)
...

(ky +NG)

⊗


(ky −NG)
(ky − (N − 1)G)

...
(ky +NG)





C−N
C−N+1

...
CN

 = k2
0


C−N
C−N+1

...
CN

 , (2.45)

where � refers to a Hadamard product and ⊗ refers to a tensor product, and J2N+1 refers to
a matrix of all ones with size [2N + 1 × 2N + 1]. This matrix equation can be solved by an
eigensolver such as eigs in MATLAB, which returns the eigenvalues k2

0 and the coefficients of
the eigenmodes, Ci.

In fig. 2.2 the square root of the eigenvalues, k0, is plotted against ky for three different structures,
determined by ε(y), and with kx = 0, meaning that the mode is only propagating in the y-
direction. The plots are in dimensionless units of k0Λ/(2π), because the solutions are scalable
[43, 44]. The solutions being scalable means that for a given set of materials, determining the
values of ε(r), it is possible to design general photonic crystals in terms of the periodicity Λ,
and then choose Λ so that the band gaps lie in the frequency range of interest. For the same
reason, the size of the band gap is not given by an absolute value, but rather as the gap-midgap
(GMG) ratio in percent defined as

GMG = ∆ω
ωm

, (2.46)

where ωm is the frequency in the middle of the gap, and ∆ω is the width of the gap.
In fig. 2.2a, ε(x) = 4, meaning that there is no periodic structure. The result is therefore simply
a light line given by the dispersion relation of light in a homogeneous medium, ω(ky) = cky√

ε
,

which is linear [43]. The zig-zac behaviour of the dispersion relation is a result of the periodicity
enforced on the modes. When reaching the edge of the Brillouin zone, the line gets shifted by
±Gy.
Figure 2.2b is the band structure of a dielectric slab, where each layer has the same physical
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thickness, with ε1 = 1 and ε2 = 1.3. Again, it can be seen that when the lines reach the
edges of the Brillouin zone, they are shifted by ±Gy. However, now there are gaps apparent,
as indicated by the red bars. Within these frequency ranges, there is no combination of ky and
k0 which gives rise to a propagating mode. There can exist solutions in these regions, but their
wave vector is complex, so they decrease exponentially inside the structure and are known as
evanescent waves. [43]. The GMG ratio of the two band gaps is 8.3% and 0.85%. Increasing
the difference between the dielectric constants by choosing ε2 = 4, the GMG ratio changes to
37.7% and 18.4% for first and second band gap, respectively, shown in fig. 2.2c. Furthermore,
the location of the band gap moves to lower frequencies. As is apparent in fig. 2.2, a given set
of ky and kx can have more than one eigenvalue, and therefore eigenmode. Therefore, the band
number, n, is used along with the wave vector to index a given solution.
Illuminating the same structure as fig. 2.2c with a plane wave propagating in the y-direction,
total reflectance is expected for frequencies inside the band gap. This is confirmed by fig. 2.2d,
where the transmittance as a function of frequency calculated using the one-dimensional Finite
Element Method (FEM) for a 40-layer dielectric slab with the same parameters as fig. 2.2c is
plotted. The red regions are given by the values determined in fig. 2.2c, and it can be seen that
they correspond with the region where T = 0.
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(a) (b)

(c) (d)

Figure 2.2: (a) - (c) Band structures, and (d) transmittance graph, of one-dimensional photonic
crystals with layer thickness of d1 = d2 = Λy

2 . (a) ε1 = ε2 = 4. (b) ε1 = 1, ε2 = 1.3. (c) ε1 = 1, ε2 = 4.
(d) ε1 = 1, ε2 = 4 and 40 layers, 20 of each dielectric material.

The graphs in fig. 2.2 had kx = 0, corresponding to on-axis propagation. By changing kx the
allowed modes in the structure change as well. This can be seen in fig. 2.3a, where the band
structure of the dielectric slab from fig. 2.2c has been plotted with varying kx and ky = {0, π/2}.
Between two corresponding black and red lines there is a region in which an allowed mode
(combination of kx, k0) exists, with a given ky in the range 0 ≤ ky ≤ π/2. These bands of
allowed modes have been labeled with n’s. The opposite is also true; in the region between
these allowed bands, there are no propagating modes in the crystal. By stepping between the
values ky = 0, π/2, and calculating the band structure for each ky, the allowed bands can easily
be visualised. This is done in fig. 2.3b, where the allowed bands are blue, and bounded by red
and black curves. It can be seen that the band diagram contains no actual band gaps; there
are always combinations of ky and kx that lead to an allowed mode, for a given frequency k0.
In fig. 2.3b the dashed black line is the dispersion relation of a plane wave in a medium with a
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refractive index of 1, such as air. Only modes at or above the light line can characterise plane
waves propagating in air. Therefore, all the white regions above the light line correspond to
incoming plane waves which would be completely reflected from the structure.

(a) (b)

Figure 2.3: Band structure of a photonic crystal, da = db = Λ/2 and ε1 = 1, ε1 = 4. (a) Plots the
square root of the eigenvalues as a function of the off-axis wavenumber kx for both ky = {0, π/2}. (b)
Plots the square root of the eigenvalues as a function of the off-axis wavenumber kx with ky = (0, π/2).

2.3.2 Two-Dimensional Photonic Crystals

Given a two-dimensional photonic crystal where the dielectric function is periodic in two linearly
independent directions in the xy plane but constant in the z-direction, the field can be categorised
into two different polarisations, S and P, if it is only propagating in the periodic plane, that is
kz = 0. The P (S) polarisation has the magnetic field (electric field) perpendicular to the plane
of propagation. Thus, for the P-polarisation the field can in accordance with Bloch’s theorem
be given as

H(r) = ẑei(k⊥·r⊥)u(r⊥) = ẑei(k⊥·r⊥)∑
n

Cne
i(G⊥,n·r⊥), (2.47)

where the ⊥ symbol refers to (x,y)-coordinates and G⊥,n = b1n1 + b2n2. The summation over
n is taken to mean all the sets of {n1, n2}, e.g., if the summation is truncated at −N ≤ ni ≤ N
the amount of G⊥,n vectors is (2N +1)2. The reciprocal lattice vectors, b1, b2, are defined from
the lattice vectors as,

b1 = 2π
a1 · ¯̄Q(π/2)a2

¯̄Q(π/2)a2, (2.48)

b2 = 2π
a2 · ¯̄Q(π/2)a1

¯̄Q(π/2)a1, (2.49)

which follows directly from the condition bi · aj = 2πδi,j [58]. The matrix ¯̄Q(θ) is the rotation
matrix defined as

¯̄Q(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ).

]
(2.50)
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The reciprocal dielectric function is expanded as a Fourier series

η(r⊥) =
∑
m

ηme
i(G⊥,m·r⊥), (2.51)

with
ηm = 1

ΛxΛy

∫ Λx

0

∫ Λy

0

1
ε(r⊥)e

i(G⊥,m·r⊥)dydx. (2.52)

To ease the notation, the dot product is defined as G⊥,n · r⊥ = Gx,nx + Gy,ny, as opposed to
the formally correct form of G⊥,n · r⊥ = x(b1,xn1 + b2,xn2) + y(b1,yn1 + b2,yn2). In section 2.4
the effect of using the reciprocal dielectric function, η(r⊥), instead of 1

ε(r⊥) will be discussed,
based on the works of Lifeng Li [61]. For this chapter, it will suffice to test the convergence
when using the two functions. Inserting eq. (2.47) and eq. (2.51) in eq. (2.19) and performing
the first rotation results in

∇×
[∑
m

∑
n

ηme
i(G⊥,m·r⊥)i (x̂(ky +Gy,n)− ŷ(kx +Gx,n))Cnei(G⊥,n·r⊥)ei(k⊥·r⊥)

]
= ẑk2

0e
i(k⊥·r⊥)∑

n′

Cn′e
i(G⊥,n′ ·r⊥). (2.53)

Introducing m+ n = n′, this expression simplifies to∑
n′

∑
n

ηn′−nCn∇×
[
e(iG⊥,n′ ·r⊥)i (x̂(ky +Gy,n)− ŷ(kx +Gx,n)) ei(k⊥·r⊥)

]
= ẑk2

0e
i(k⊥·r⊥)∑

n′

Cn′e
i(G⊥,n′ ·r⊥),

(2.54)

which becomes∑
n′

ei(G⊥,n′ ·r⊥)ei(k⊥·r⊥)

[∑
n

ηn′−nCn
{
(kx +Gx,n)(kx +Gx,n′) + (ky +Gy,n)(ky +Gy,n′)

}
− Cn′k2

0

]
= 0.

(2.55)

This equation must hold for all values of r⊥, meaning that the terms in the square brackets
must give 0,∑

n

ηn′−nCn
{
(kx +Gx,n)(kx +Gx,n′) + (ky +Gy,n)(ky +Gy,n′)

}
= Cn′k

2
0. (2.56)
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On matrix form eq. (2.56) becomes



η0,0 η−1,0 . . . η−2N,−1 . . . η−2N,−2N
η1,0 η0,0 . . . η−2N+1,−1 . . . η−2N+1,−2N
...

... . . . ... . . .
...

η2N,1 η2N−1,1 . . . η0,0 . . . η0,−2N+1
...

... . . .
... . . . ...

η2N,2N η2N−1,2N . . . η0,2N−1 . . . η0,0



�





kx +Gx,{−N,−N} ky +Gy,{−N,−N}
kx +Gx,{−N+1,−N} ky +Gy,{−N+1,−N}

...
...

kx +Gx,{N,−N} ky +Gy,{N,−N}
kx +Gx,{−N,−N+1} ky +Gy,{−N,−N+1}

...
...

kx +Gx,{N,N} ky +Gx,{N,N}





kx +Gx,{−N,−N} ky +Gy,{−N,−N}
kx +Gx,{−N+1,−N} ky +Gy,{−N+1,−N}

...
...

kx +Gx,{N,−N} ky +Gy,{N,−N}
kx +Gx,{−N,−N+1} ky +Gy,{−N,−N+1}

...
...

kx +Gx,{N,N} ky +Gx,{N,N}



T


C{−N,−N}
C{−N+1,−N}

...
C{N,−N+1}

...
C{N,N}


= k2

0



C{−N,−N}
C{−N+1,−N}

...
C{N,−N+1}

...
C{N,N}


, (2.57)

where the specific set of n for a given η, G, and C has been explicitly stated. Similar calculations
can be made for the S-polarisation using the wave equation from eq. (2.18), which results in

Cn
[
(kx +Gx,n)2 + (ky +Gx,n)2

]
= Cn′k

2
0
∑
n

εn′−n. (2.58)

2.3.3 Convergence

In this subsection, the convergence of the band structure based on the number of Fourier co-
efficients and choice of using η or ε will be tested. For all the following calculations in this
subsection, the photonic crystal is a square lattice of air holes, with nmedium = 3.42, nair = 1
and r = 0.4Λ. The solutions will be referred to as Sε and Sη and likewise for the P-polarisation,
with the understanding that in the case of Sη the used matrix is ¯̄η−1, and in the case of Pε the
used matrix is ¯̄ε−1. The convergence of S-polarised modes is seen in fig. 2.4, using N = 3, 6 and
9, corresponding to 49, 169, and 361 plane waves. It is seen that Sε converges much faster than
Sη. The same convergence test is performed for the P-polarisation, shown in fig. 2.5, and the
result is the same. When using the η matrix, the convergence is significantly slower, while 361
plane waves are sufficient when using the ε matrix.

However, as Sε (Pε) and Sη (Pη) in principle should be identical, the number of plane waves used
to calculate Sη (Pη) is increased, to test if it converges towards Sε (Pε). This is shown in fig. 2.6,
where Sη and Pη are calculated with up to 2401 plane waves. While an increasing number
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(a) (b)

Figure 2.4: Band diagram for S-polarised modes in a rectangular grid of air holes with r = 0.4Λ,
nmedium = 3.42, nair = 1. (a) Uses the ¯̄ε matrix. (b) Uses the ¯̄η−1 matrix.

(a) (b)

Figure 2.5: Band diagram for P-polarised modes in a rectangular grid of air holes with r = 0.4Λ,
nmedium = 3.42, nair = 1. (a) Uses the ¯̄ε−1 matrix. (b) Uses the ¯̄η matrix.
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of plane waves do make Sη (Pη) approach the result of Sε (Pε), it does so incredibly slowly.
The cause of the slow convergence has been tackled by Lifeng Li [61], and will be discussed in
greater depth in subsection 2.4.1. For now, the η matrix will be discarded, and all following
band diagrams will only use the ¯̄ε matrix.

(a) (b)

Figure 2.6: Band diagram for modes in a rectangular grid of air holes with r = 0.4Λ, nmedium = 3.42,
nair = 1, calculated using either the ¯̄ε or ¯̄η matrices. (a) S-polarised modes. (b) P-polarised modes.

2.3.4 Band Structures

In this subsection, different photonic crystals are explored in an attempt to find a suitable
candidate that exhibits a band gap, and can be fabricated in the laboratory using tools available
to this project group. As was demonstrated in the one-dimensional case, a high index contrast
leads to wider band gaps. The search is therefore based on silicon-air structures, in part due to
the high refractive index of silicon which is ∼ 3.4 in the THz regime, and because many decades
of it being the workhorse of microelectronics has led to a tremendous amount of experience with
micro structuring the material [45]. Additionally, high resistivity silicon exhibits low attenuation
for radiation in the giga- and terahertz region [62]. The search takes inspiration from the work
done in Photonic Crystals: Molding the flow of light by John D. [43]. The structures that will
be investigated can be seen in fig. 2.7, with their unit cells outlined by the dashed black lines.
All patterns have lattice vectors of equal size, |ai| = Λ. With material and pattern chosen, the
ratio between radius and period can now be varied in order to determine a suitable photonic
crystal. Specifically, the ratio is varied in 60 steps within 0.05 ≤ r/Λ ≤ 0.5. For each radius,
the band structure for the first eight bands is calculated, and the maximum and minimum value
of adjacent bands for each polarisation is subtracted from each other, to see if there is a gap
between the bands. If there is a band gap, the midgap frequency, GMG ratio, upper and lower
band gap frequency are stored and plotted. This way, the optimal radii and pattern can be
found. The calculations are performed using N = 9, based on the findings in subsection 2.3.3.
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(a) Air Holes in Si, Quadratic (b) Si Rods in Air, Quadratic

(c) Air Holes in Si, Hexagonal (d) Si Rods in Air, Hexagonal

Figure 2.7: Plots the dielectric profile of the photonic crystals that are investigated in the coming
sections. Unit cells are outlined by the dashed black lines.
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2.3.4.1 Quadratic Array of Air Holes in Silicon

In fig. 2.8 the band structure of a square array of air holes in silicon is plotted against a path
going between high symmetry points in the first Brillouin zone for the first four bands of both
S- and P-polarised modes. The high symmetry points all lie at the edge of the Brillouin zone,
except Γ, and are of special interest because the bands are continuous, resulting in most maxima
and minima of the bands, which determines the band gaps, being found at these points. In two
dimensions, the area bounded by the high symmetry points for a given reciprocal lattice is
known as the irreducible Brillouin zone and can be seen as the shaded blue area in the insert
of fig. 2.8(a). All k-vectors in the entire first Brillouin zone can be obtained by rotating and
reflecting the irreducible Brillouin zone. In this case, the ratio between the first Brillouin zone
and the irreducible Brillouin zone is eight.
All band structures in this project are based on the Fourier expansions of dielectric functions,
such as the one seen in Figure 2.8b, where the dielectric function and the Fourier expanded
dielectric function, usingN = 9 corresponding to 361 plane waves, is plotted. The band structure
in fig. 2.8 has band gaps for both polarisations, indicated by the blue and red horizontal bars
with gap mid-gap ratios of GMG1,S = 1.9%, GMG1,P = 8.7% and GMG2,P = 11.8%. However,
because the band gaps do not lie on top of each other there are no frequencies where both
polarisations are reflected from the structure. The photonic crystal is said to not feature a
simultaneous band gap.
The effect of changing the radii of the air holes can be seen in fig. 2.9. When the radii of the

(a) (b)

Figure 2.8: Depicts the band structure and dielectric function using εholes = 1, εmedium = 3.42,
Λx = Λy, N = 9 and r = 0.4Λ. (a) Band structure of a photonic crystal consisting of a square lattice of
circular air holes for both P- and S-polarised light. The path through the first Brillouin zone is shown
along with the irreducible Brillouin zone as the shaded blue area in the mini-figure. (b) Dielectric function
and the Fourier expanded dielectric function used to calculate the band structure.
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holes are reduced to r = 0.38Λ the band gap for S-polarised modes vanishes, and the GMG ratios
of the band gap for P-polarised modes are reduced to GMG1,P = 7.4%, and GMG2,P = 9.3%.
Increasing the radii of the holes to r = 0.44Λ the GMG ratios are changed to GMG1,P = 8.6%,
GMG2,P = 14% and GMG1,S = 10.2%. Another effect is the change of the position of ωm. When
the r/Λ ratio is increased, all band gaps, and therefore ωm, is moved to higher frequencies. This
may be useful if for example only holes of a fixed radius can be produced, in which case the only
way to manipulate the position of the band gap is to change the ratio r/Λ.

In fig. 2.10 the midgap frequency, frequency of the top and bottom of the band gap, and the
gap mid-gap ratio is plotted for varying ratios between the radius and period. Gathering the
plots of the frequency of the top and bottom of the band gap, fig. 2.10e, it is revealed that this
photonic crystal supports a simultaneous band gap when r > 0.46Λ with eigenvalues around
0.46Λ/2π, because, for the same radius, the upper-frequency boundary of the second S-band
gap is between the frequency boundaries of the second P-band gap. This happens because a
band gap between the third and fourth S-band opens up around r = 0.45Λ, which can be seen
in fig. 2.10d. Although this means that a square array of air holes is a possible candidate,
this structure corresponds to the dielectric profile plotted in fig. 2.7a which may prove fragile.
Additionally, it sets high requirements for the precision of the fabrication. If the radius becomes
smaller than 0.46Λ the band gap closes, and if it becomes larger the structure falls apart.

(a) (b)

Figure 2.9: Depicts the band structure using εholes = 1, εmedium = 3.42, Λx = Λy, N = 9 and (a)
r = 0.38Λ, (b) r = 0.44Λ, of a square array of air holes in Si.
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(a) (b)

(c) (d)

(e)

Figure 2.10: (a) - (d) Plots the midgap frequency, frequency of the top and bottom of the band gap,
and the gap mid-gap ratio of two band gaps for varying radii-period ratios in a photonic crystal consisting
of a square array of air holes in Si. (e) Collects the upper and lower frequencies of the band gaps in a
single plot.
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2.3.4.2 Square Array of Si Rods in Air

In fig. 2.11 the same graphs are plotted for the case of a square array of Si rods in air. At
r = 0.19Λ the first band gap of the S-polarisation is widest, with a 38% GMG ratio while the
largest GMG ratio for the P-polarisation is 1%. The band structure for r = 0.19Λ is plotted
in fig. 2.11f. In fig. 2.11e it can be seen that the band gaps for the S- and P-polarisation never
overlap and that there are thus no simultaneous band gaps. However, this photonic crystal
may still be of interest. If the P-polarisation can be removed, the structure can still exhibit
band gaps, as well as the various modes associated with defects in photonic crystals. This can
be achieved by sandwiching the structure between metal plates. Assuming that the metal is a
perfect conductor, the tangential part of the electric field must be zero inside the metal, and hence
also at the interface between the photonic crystal and metal, removing the P-polarisation [63].
Therefore, structures that have a large band gap for S-polarised light are still of interest.

2.3.4.3 Hexagonal Array of Si Rods in Air

In fig. 2.12 the same graphs are plotted for the case of a hexagonal array of Si rods in air.
As was the case for the quadratic array, Si rods favour large band gaps for the S-polarisation
with the highest occurring between bands 1 and 2 with a peak GMG ratio of 46% at the ratio
r/Λ = 0.175. The GMG ratios for the P-polarisation are much larger than the quadratic case,
with the highest being above 9%. As was the case for the quadratic array, no simultaneous
band gaps exist, see fig. 2.12(f). To create photonic crystals with measurable band gaps based
on dielectric rods, it is therefore necessary, regardless of pattern, to remove the P-polarisation.

2.3.4.4 Hexagonal Array of Air Holes in Si

The last photonic crystal investigated is the hexagonal array of air holes in Si. The relevant
graphs are plotted in fig. 2.13. This photonic crystal exhibits the largest band gaps observed for
the P-polarisation, up to GMG ratios of 49%, and respectable band gaps for the S-polarisation,
GMG ratios of 19%. Crucially, some of these band gaps have the same r/Λ ratio and frequencies.
No less than three simultaneous band gaps can be found, with overlap between the first band gap
occurring for S- and P-polarised modes being seen in fig. 2.13f. This gap opens at r/Λ > 0.42
whereafter it remains open for increasing ratios.

2.3.5 Summary

The most important findings of the previous subsections are gathered in table 2.1. In terms
of GMG ratios, it is clear that the hexagonal patterns are superior both in the case of rods
and air holes. The value of the midgap frequency differs for the two patterns, but the midgap
frequency, ωm, of any band gap can always be tuned to some desired frequency by scaling the
value of Λ. Therefore, the only reason that the square patterns may be relevant is if there
are limitations to the dimensions of the structures that can be fabricated. In that case, the
square array may be of interest over the hexagonal, simply by virtue of midgap frequency being
placed at different values. For the air holes in silicon, the hexagonal patterns holds additional
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: (a) - (d) Plots the midgap frequency, frequency of the top and bottom of the band gap,
and the gap mid-gap ratio of two band gaps for varying radii-period ratios in a photonic crystal consisting
of a square array of Si rods in air. (e) Collects the upper and lower frequencies of the band gaps in a
single plot. (f) Band structure with r = 0.19Λ.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.12: (a) - (d) Plots the midgap frequency, frequency of the top and bottom of the band gap,
and the gap mid-gap ratio for varying radii in a photonic crystal consisting of a hexagonal array of Si
rods in air. (e) Collects the upper and lower frequencies of the band gaps in a single plot. (f) Band
structure with r/Λ = 0.175.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: (a) - (d) Plots the midgap frequency, frequency of the top and bottom of the band gap,
and the gap mid-gap ratio for varying radii in a photonic crystal consisting of a hexagonal array of air
holes in Si. (e) Collects the upper and lower frequencies of the band gaps in a single plot. (f) Band
structure with r/Λ = 0.48.
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advantages. While both patterns support simultaneous band gaps, the GMG ratio is larger in
the hexagonal case, with the largest gap opening up around r ∼ 0.42Λ, while the gap in the
quadratic case opens up around r ∼ 0.46Λ. It is therefore likely that the hexagonal array is
structurally more stable, which may or may not be a concern during production. Attempts at
fabricating both hexagonal and square arrays of silicon rods using RIE, while laser ablation will
be used to fabricate hexagonal arrays of air holes in silicon. A sample holder made of aluminium
will be fabricated, which hopefully will suppress the P-polarisation.

Table 2.1: Collects the most important findings from the previous subsections.

Photonic crystal ωm [ Λ
2π ] S/P GMG [%] S/P r[Λ] S/P Sim. BG

Quad Si rods 0.36 / 0.52 38.3 / 1.0 0.19 / 0.39 No
Hex Si rods 0.40 / 0.93 47.9 / 9.4 0.17 / 0.17 No
Quad air holes 0.30 / 0.44 19.2 / 14.1 0.49 / 0.44 Yes
Hex air holes 0.54/0.36 19.2 / 49.6 0.49 / 0.42 Yes
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2.4 Fourier Modal Method

This section covers the Fourier Modal Method (FMM), which will be used to model the trans-
mittance spectra of the photonic crystals investigated in this project. The coming sections
are written with the focus on the one-dimensional photonic crystal, also referred to as the
sub-wavelength grating, used to excite Fano resonances. However, it will be shown in subsec-
tion 2.4.5.3 how the model can be implemented for two-dimensional photonic crystals.
The aim is to identify the dimensions of the structure seen in fig. 2.14 that exhibits Fano reso-
nances in the frequency interval of interest. The FMM is suitable to handle structures that are
layer-wise homogeneous or periodic as the method employs Fourier expansions of the fields and
the relative permittivity profiles. To apply the method, the structure of interest is divided into
layers, as the one presented in fig. 2.15, each of which is homogeneous in the z-direction, and
periodic in the x-direction. It is in each of these layers that the Fourier expansions of the fields
and the relative permittivity are carried out. Using these Fourier expansions when solving the
eigenvalue problem the result is eigenvectors that hold the coefficients of each allowed mode.
The FMM then employs a recursive matrix formalism, in order to obtain matrices describing
the transmission and reflection for the whole structure.

Figure 2.14: Sketch of the structure of interest with regards to Fano resonances in this project.

2.4.1 Eigenvalue Problem

The first step in formulating the problem with FMM is to find the eigenvectors and -values
in the different layers separately. This is done by Fourier expanding the periodic parts of the
functions which enter in the wave equation, e.g., that presented in eq. (2.63), and then expressing
the resulting system of equations on a matrix form. For a structure with a period Λ in the x-
direction, the relative permittivity profile can be given as

ε(x, z) = ε(x+ Λ, z). (2.59)

As discussed previously, see subsection 2.3.1, the field related to a plane wave in two-dimensional
structures that are periodic in one direction and homogeneous in the other will be on the following
form,

A(x, z) = ŷA(x)e±iβz, (2.60)
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Figure 2.15: A sketch resembling the structure investigated with the FMM, having four layers along
the z-direction, where the layer i+ 2 is seen to have a homogeneous permittivity profile along the z-axis,
but having a periodic inhomogeneous permittivity profile along the x-axis.

where A represents either the electric or magnetic field. A(x) is a Bloch wave that has the form

A(x) = u(x)eikxx, (2.61)

and u(x) has the same periodicity as the structure, meaning that

A(x+ Λ) = u(x+ Λ)eikx(x+Λ) = A(x)eikxΛ. (2.62)

The wavenumber in the homogeneous direction is dubbed β = kz. Considering P-polarised
modes, using the wave equation seen in eq. (2.19), which is written here for the benefit of the
reader

∇×
( 1
ε(r)∇×H(r)

)
= k2

0H(r), (2.63)

the left-hand side (LHS) of eq. (2.63) can be rewritten using the identities

∇× (BA) = B∇×A + (∇B)×A, (2.64)
∇×∇×A = ∇ (∇ ·A)−∇2A, (2.65)

where B = B(r) is some scalar dependent on r and A = A(r) is some vector dependent on r.
Using the identity eq. (2.64), with A = ∇×H(r) and B = 1

ε(r) , the LHS of eq. (2.63) becomes

∇×
( 1
ε(r)∇×H(r)

)
= 1
ε(r)∇×∇×H(r) +

(
∇ 1
ε(r)

)
× (∇×H(r)) . (2.66)
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Applying the identity eq. (2.65), with A = H(r), and recalling that ∇ ·H(r) = 0, it becomes
possible to recast eq. (2.63) as(

∇ 1
ε(r)

)
× (∇×H(r))− 1

ε(r)∇
2H(r) = k2

0H(r). (2.67)

The expression presented in eq. (2.67) is the general form of the problem, and using the expres-
sions for the relative permittivity and magnetic field as presented in eq. (2.59) and eq. (2.60),
the result, after a little rearranging, becomes

−∂2
zH(x, z) = ε(x, z)k2

0H(x, z) + ∂2
xH(x, z)

+ ε(x, z)
([
∂xη(x, z)

][
∂xH(x, z)

]
+
[
∂zη(x, z)

][
∂zH(x, z)

])
,

(2.68)

with ∂u = ∂
∂u being a shorthand notation for the derivative, ∂2

u = ∂2

∂u2 being a shorthand
notation for the double derivative, and η(x, z) = [ε(x, z)]−1. It is possible to further simplify
this expression. As a first step, it is advantageous to look at the different derivatives with respect
to x, and realise the sum of these can be given as

∂2
xH(x, z) + ε(x, z)

[
∂xη(x, z)

][
∂xH(x, z)

]
= ε(x, z)∂x

[
η(x, z)∂xH(x, z)

]
. (2.69)

The reasoning behind the second step of the simplification is found in the considered problem.
As the eigenvalues are found in each layer, and each layer is homogeneous in the z-direction,
the derivative of η(x, z) with respect to z is zero. Due to the homogeneous nature along this
direction, the z-dependence will be omitted for the relative permittivity profiles and the inverse
relative permittivity profile from now on. Lastly, the double derivative of the magnetic field
with respect to z simply corresponds to a factor of −β2. All these considerations therefore lead
to the simplified, problem-specific version of eq. (2.63), which is eq. (2.70)

ε(x)∂x
[
η(x)∂xH(x, z)

]
+ ε(x)k2

0H(x, z) = β2H(x, z). (2.70)

For a more general field than that presented in eq. (2.60), it is possible to solve eq. (2.70) for
each eigenmode, thus finding all those allowed in the layer. The eigenmodes are given similar
to eq. (2.60),

Hm(x, z) = ŷHm(x)e±iβmz, (2.71)

with the only difference being the subscript, m, which refers to the given eigenmode. The part
of the eigenmode related to the periodic direction of the layer, the Bloch wave in the x-direction,
can be Fourier expanded as

Hm(x) =
∞∑

n=−∞
Hm,{n}e

i(kx+nG)x, (2.72)

where Hm,{n} are Fourier coefficients of the eigenmode and G = 2π
Λ . The relative permittivity

profile and its inverse, η, along x can be expressed by similar expansions

ε(x) =
∞∑

n=−∞
ε{n}e

inGx, (2.73)
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η(x) =
∞∑

n=−∞
η{n}e

inGx, (2.74)

with the Fourier coefficients given as

ε{n} = 1
Λ

∫ Λ

0
ε(x)e−inGxdx, (2.75)

η{n} = 1
Λ

∫ Λ

0
η(x)e−inGxdx. (2.76)

Substituting the expressions from eqs. (2.72) to (2.74) into eq. (2.70) leads to the following
expression

∞∑
n=−∞

ε{n}e
inGx∂x


∞∑

l=−∞
η{l}e

ilGx∂x

 ∞∑
q=−∞

Hm,{q}e
i(kx+qG)xe±iβmz


+k2

0

∞∑
n=−∞

ε{n}e
inGx

∞∑
j=−∞

Hm,{j}e
i(kx+jG)xe±iβmz

= β2
m

∞∑
p=−∞

Hm,{p}e
i(kx+pG)xe±iβmz.

(2.77)

where the vector notation has been omitted as it is redundant at this point. Taking the missing
derivatives and afterwards removing the common factor of eikxxe±iβmz the expression becomes

∞∑
n=−∞

ε{n}e
inGx


∞∑

l=−∞
eilGx

∞∑
q=−∞

(i [kx + (l + q)G]) η{l} (i [kx + qG])Hm,{q}e
iqGx


+k2

0

∞∑
n=−∞

ε{n}e
inGx

∞∑
j=−∞

Hm,{j}e
ijGx = β2

m

∞∑
p=−∞

Hm,{p}e
ipGx .

(2.78)

The first term on the LHS can then be further manipulated. The first step is to define j = l+ q
meaning that l = j − q, leading to

∞∑
n=−∞

ε{n}e
inGx


∞∑

l=−∞
eilGx

∞∑
q=−∞

(i [kx + (l + q)G]) η{l} (i [kx + qG])Hm,{q}e
iqGx


= −

∞∑
n=−∞

ε{n}e
inGx


∞∑

j=−∞
eijGx

∞∑
q=−∞

[kx + jG] η{j−q} [kx + qG]Hm,{q}

 ,
(2.79)

where the reason for keeping the same summation limits can be found in Appendix A. The
substitution can be carried out yet another time, by defining p = n+ j,

−
∞∑

n=−∞
ε{n}e

inGx


∞∑

j=−∞
eijGx

∞∑
q=−∞

[kx + jG] η{j−q} [kx + qG]Hm,{q}


= −

∞∑
p=−∞

eipGx
∞∑

j=−∞
ε{p−j}

∞∑
q=−∞

[kx + jG] η{j−q} [kx + qG]Hm,{q}.

(2.80)
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For the second term on the LHS using the same substitution, namely p = n + j, the term can
be given as

k2
0

∞∑
n=−∞

ε{n}e
inGx

∞∑
j=−∞

Hm,{j}e
ijGx = k2

0

∞∑
p=−∞

eipGx
∞∑

j=−∞
ε{p−j}Hm,{j}, (2.81)

and then collecting all the terms leads to eq. (2.78) being recast as

∞∑
p=−∞

eipGx
{
−

∞∑
j=−∞

ε{p−j}

∞∑
q=−∞

[kx + jG] η{j−q} [kx + qG]Hm,{q}

− β2
mHm,{p} + k2

0

∞∑
j=−∞

ε{p−j}Hm,{j}

}
= 0, (2.82)

from which it is possible to eliminate the front factor, as it has to hold for all x. Hence for each
p, the following equation should be obeyed

−
∞∑

j=−∞
ε{p−j}

∞∑
q=−∞

[kx + jG] η{j−q} [kx + qG]Hm,{q}

+ k2
0

∞∑
j=−∞

ε{p−j}Hm,{j} = β2
mHm,{p}.

(2.83)

This could then be converted to a matrix equation from which the eigenvalues and eigenvectors
could be found, by truncating the sums and introducing the Toeplitz matrices ¯̄ε and ¯̄η. However,
based on the article by Lifeng Li in [61], the convergence for P-polarised modes using the Laurent
rule, eq. (2.86) [64], is slow. As a matter of fact, it is not precise everywhere, as oscillations will
occur for concurrent complementary jump continuities, e.g., those found between the inverse
of the relative permittivity profile along x and ∂xH(x, z) [61]. But there is a solution to this
problem which is to apply the so-called inverse rule [61]. The application of this rule can be
presented by first looking at the product between two periodic functions

s(x) = f(x)g(x), (2.84)

where the normal Fourier expansion of this product is given in a simple manner as
∞∑

n=−∞
s{n}e

inGx =
∞∑

p=−∞
f{p}e

ipGx
∞∑

m=−∞
g{m}e

imGx =
∞∑

n=−∞

∞∑
m=−∞

f{n−m}g{m}e
inGx, (2.85)

s{n} =
∞∑

m=−∞
f{n−m}g{m}. (2.86)

In the case s(x) is continuous but f(x) and g(x) have concurrent complementary jump dis-
continuities, Laurent’s rule, presented in eq. (2.86), should be exchanged with the inverse rule.
The effect of this is the introduction of a subtle and seemingly redundant substitution, namely
interchanging the Fourier coefficients related to f(x) with some related to

u(x) = 1
f(x) = g(x)

s(x) , (2.87)
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where it should be clear from the above that s(x) can be found as

s(x) = [u(x)]−1 g(x). (2.88)

The inverse rule is essentially based on what seems to be empirical results [61, 65] obtained by
Philippe Lalanne and G. Micheal Morris [66], and G. Granet and B. Guizal [67] independent of
each other in 1996. The basis for the reformulation of the eigenvalue problem is according to Li
a result of the wrong assumption [61]

¯̄f
−1

= ¯̄u, (2.89)

with this assumption explicitly being stated by both P. Lalanne et al. and G. Granet et al.
[66,67]. However, their proposed rewriting proved very efficient, and is the essential part of the
inverse rule, as implementing the inverse rule in eq. (2.85) is simply making the rewriting

∞∑
n=−∞

s{n}e
inGx =

∞∑
n=−∞

( ∞∑
m=−∞

[
u{n−m}

]−1
g{m}

)
einGx, (2.90)

where the parenthesis is equal to s{n} on the LHS [61]. So the inverse rule should be implemented
when the product of two functions is continuous, but the two functions have concurrent com-
plementary jump discontinuities. As mentioned earlier, such concurrent complementary jump
discontinuities are found for the product between the inverse of the relative permittivity profile
along x and ∂xH(x, z), which is related to the z-component of the electric field.
Both components of the electric field can be found from eq. (2.13), assuming no free current
density, and are given by

Em,x(x, z) = −x̂(±βm)
ωε0

η(x)Hm(x, z), (2.91)

Em,z(x, z) = ẑ −1
iωε0

η(x)∂xHm(x, z). (2.92)

Due to Em,z(x, z) being perpendicular to the x-axis and thus tangential to the periodic direction
of the relative permittivity profile, the boundary conditions require that this component of the
field is conserved when traversing an interface in the x-direction, meaning that the product
η(x)∂xH(x, z) needs to be continuous and thus the inverse rule should be applied on η(x).
Furthermore, the boundary conditions also require the tangential part of the magnetic field to
be conserved when traversing an interface in the x-direction, leading to the magnetic field being
continuous, which means that the product of ε(x) and the factor on the LHS of

ε(x)
(
∂x
[
η(x)∂x

]
+ k2

0

)
Hm(x, z) = β2

mHm(x, z), (2.93)

should be continuous since βm is merely a constant for the given mode, meaning that the right-
hand side (RHS) is continuous, leading to the inverse rule also should be applied on ε(x). Thus
the final result is obtained by truncating the sums and recasting eq. (2.83) as

−
N∑

j=−N

[
η{p−j}

]−1 N∑
q=−N

[kx + jG]
[
ε{j−q}

]−1
[kx + qG]Hm,{q}

+k2
0

N∑
j=−N

[
η{p−j}

]−1
Hm,{j} = β2

mHm,{p}.

(2.94)

36



2.4. Fourier Modal Method Aalborg University

Thus, to ensure convergence, the expression in eq. (2.94) has been used instead of eq. (2.83) [61]
when constructing the matrix equation which is on the form[

¯̄η
]−1

(
k2

0
¯̄I− ¯̄K

[
¯̄ε
]−1 ¯̄K

)
H̄m = β2

mH̄m, (2.95)

where ¯̄I is an appropriate identity matrix, ¯̄η and ¯̄ε are Toeplitz matrices, and H̄m is a column
vector with the Fourier coefficients of the m’th mode. Furthermore, ¯̄K is a diagonal matrix with
entries diag (kx + [−N,−N + 1, . . . , N − 1, N ]G) where no distinction has been made between
the two matrices arising from the factors (kx + jG) and (kx + qG), as they are identical. From
the matrix equation in eq. (2.95) it is then possible to find a maximum of 2N+1 different modes
and associated eigenvalues. As the operator in question, eq. (2.19), is Hermitian, the eigenmodes
will form a complete set, and hence the total field may be expressed as a superposition of these
modes. Furthermore, it is required that βm is purely positive, meant as

Re {βm} ∧ Im {βm} ≥ 0. (2.96)

The requirement on the real part facilitates the possibility to introducing weighting coefficients
am and bm which handle waves propagating to the right and left, respectively, and the require-
ment on the imaginary part ensures that the coefficients are related to an exponential decrease
in the same directions. Thus the field can be expressed as [68]

H(x, z) =
N∑

m=−N
Hm(x)

(
ame

iβmz + bme
−iβmz

)
. (2.97)

Inserting a truncated version of the Fourier expansion of Hm(x) in eq. (2.72) and rewriting a
bit, the expression becomes

H(x, z) =
∑
n

ei(kx+nG)x∑
m

Hm,{n}
(
ame

iβmz + bme
−iβmz

)
, (2.98)

where the limits on the summation have been omitted and will likewise be in the following
sections, as it should implicitly be understood that the summation is from −N to N unless
explicitly stated otherwise. As such, the layer-wise eigenvalue problem for the magnetic field
has been determined, where the inverse rule has been applied in order to ensure convergence [61].
Furthermore, the total magnetic field for a structure periodic in the x-direction and homogeneous
in z has been found as a superposition of eigenmodes in the given layer.

2.4.2 Considerations for an Interface between Layers

In the former section, an expression for the field together with the eigenvalue problem for a
single layer was found. This section will deal with the transmission and reflection from the
interfaces when two layers are put into contact. As the expression for the field, expressed with
respect to the position of the interface between the two layers, forms the basis of the derivation
of the reflection and transmission it is advantageous to start with that. The field on the RHS
of the interface between layer i − 1 and i, see fig. 2.16 for clarification of the notation, can be
expressed as

H(i)(x, z) =
∑
n

ei(kx+nG)x∑
m

H
(i)
m,{n}

[
a(i)
m e

iβ
(i)
m (z−z(i−1,i)) + b(i)m e

−iβ(i)
m (z−z(i−1,i))

]
, (2.99)
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where the introduction of the difference z − z(i−1,i) ensures that a(i)
m and b(i)m refer to the coef-

ficients related to the interface on the LHS of a layer i, with z(i−1,i) being the z-coordinate for
the interface between layer i− 1 and i. In the case of a current free material, the magnetic field
is conserved across an interface. Based on this it is then in the interface, z = z(1,2), required
that ∑

n

ei(kx+nG)x∑
m

H
(1)
m,{n}

[
a
′(1)
m eiβ

(1)
m (z−z(1,2)) + b

′(1)
m e−iβ

(1)
m (z−z(1,2))

]
=
∑
n

ei(kx+nG)x∑
m

H
(2)
m,{n}

[
a(2)
m eiβ

(2)
m (z−z(1,2)) + b(2)

m e−iβ
(2)
m (z−z(1,2))

]
,

(2.100)

where the primed coefficients, a′ and b′, refer to coefficients related to the interface on the RHS
of a layer, whereas the unprimed case refers to the coefficients related to the interface on the
LHS of a layer as mentioned earlier. The annotation has been illustrated in fig. 2.16. The

Figure 2.16: Illustration showing which interface the primed and unprimed coefficients refer to.

superscripts on Hm,{n}, a, b, and βm denote what layer they are associated with. Thus at the
interface when z = z(1,2), eq. (2.100) reads∑

n

ei(kx+nG)x∑
m

H
(1)
m,{n}

[
a
′(1)
m + b

′(1)
m

]
=
∑
n

ei(kx+nG)x∑
m

H
(2)
m,{n}

[
a(2)
m + b(2)

m

]
. (2.101)

Using an argument from earlier, namely that this equality should hold for all x, the front
exponential dependent on x can be omitted, and the equality can be reformulated on a matrix
form as

¯̄M
(1)
H

(
ā′(1) + b̄′(1)

)
= ¯̄M

(2)
H

(
ā(2) + b̄(2)

)
, (2.102)

where ¯̄M
(i)
H is a matrix consisting of column vectors with the Fourier coefficients of the different

modes in layer i. The different ā and b̄ column vectors contain the weighting coefficients for
the different modes in regard to their respective layer and interface. In source-free material it
is also required that the tangential part of the electric field is conserved across an interface.
This means that Ex = −1

iωε0
η(x)∂zH(x, z) should be conserved. Thus using eq. (2.91), with +βm

following from eq. (2.96), the result of eq. (2.100) at the interface becomes∑
n

∑
p

ei(kx+[n+p]G)x∑
m

η
(1)
{p}H

(1)
m,{n}β

(1)
m

[
a
′(1)
m − b′(1)

m

]
=
∑
n

∑
p

ei(kx+[n+p]G)x∑
m

η
(2)
{p}H

(2)
m,{n}β

(2)
m

[
a(2)
m − b(2)

m

]
,

(2.103)
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where making the substitution j = n+ p facilitates that the equation can be rewritten as∑
n

∑
j

ei(kx+jG)x∑
m

η
(1)
{j−n}H

(1)
m,{n}β

(1)
m

[
a
′(1)
m − b′(1)

m

]
=
∑
n

∑
j

ei(kx+jG)x∑
m

η
(2)
{j−n}H

(2)
m,{n}β

(2)
m

[
a(2)
m − b(2)

m

]
.

(2.104)

Conservation of the magnetic field should not be dependent on x, and neither should conservation
of the electric field, facilitating the reformulation of the equation into a matrix form as

¯̄M
(1)
E

(
ā′(1) − b̄′(1)

)
= ¯̄M

(2)
E

(
ā(2) − b̄(2)

)
, (2.105)

where the matrix ¯̄M
(i)
E is given on the form

¯̄M
(i)
E = ¯̄η(i) ¯̄M

(i)
H

¯̄β
(i)
, (2.106)

and ¯̄β
(i)

is a diagonal matrix containing the different β(i)
m as diag

([
β

(i)
−N , β

(i)
−N+1, . . . , β

(i)
N

])
.

From eqs. (2.102) and (2.105) it is possible to obtain reflection and transmission matrices for
the interface using the relations

ā(2) = ¯̄T1,2ā
′(1), (2.107)

b̄′(1) = ¯̄R1,2ā
′(1), (2.108)

b̄′(1) = ¯̄T2,1b̄(2), (2.109)

ā(2) = ¯̄R2,1b̄(2), (2.110)

where eqs. (2.107) and (2.108) is found based on the assumption b̄(2) = 0̄, and eqs. (2.109)
and (2.110) is found based on the assumption ā′(1) = 0̄. Thus as an example assuming b̄(2) = 0̄,
¯̄R1,2 and ¯̄T1,2 can be found as

¯̄R1,2 =
([

¯̄M
(2)
E

]−1 ¯̄M
(1)
E +

[
¯̄M

(2)
H

]−1 ¯̄M
(1)
H

)−1

([
¯̄M

(2)
E

]−1 ¯̄M
(1)
E −

[
¯̄M

(2)
H

]−1 ¯̄M
(1)
H

)
,

(2.111)

¯̄T1,2 =
[

¯̄M
(2)
E

]−1 ¯̄M
(1)
E

(¯̄I− ¯̄R1,2
)
. (2.112)

In this subsection, the expressions for the transmission and reflection matrices for a single
interface have been derived.

2.4.3 A Three Layer Structure

Adding another layer to the structure considered in the former section results in a structure
with three layers. The second layer is confined by the first and third layers, meaning the second

39



Group 5.340 Chapter 2. Theory

layer has a finite thickness of L2 = z(2,3) − z(1,2). In this case the modes that are transmitted,
or partially transmitted, at the first interface, will travel across the second layer and reach the
second interface. At this interface the modes in the layer will either be transmitted, reflected,
or a combination of both. The reflected part then travels across the layer again reaching the
first interface, where the same occurs, which in theory repeats infinitely, except for the case
¯̄T1,2 = ¯̄T2,3 = ¯̄I. However, this case equates to having three identical layers and is essentially
a single layer, which has unnecessarily been divided into three. The same considerations done
here for modes incident on the three-layer structure from the first layer can be made for modes
incident on the structure from the third layer.
To determine the reflection and transmission of this structure, a way to propagate the modes
across the second layer is needed. This is done by introducing a propagation matrix

¯̄P2,± =


e±iβ

(2)
−NL2 0 · · · 0
0 e±iβ

(2)
−N+1L2 · · · 0

...
... . . . ...

0 0 · · · e±iβ
(2)
N L2

 , (2.113)

which handles the phase introduced for the different modes when traversing the second layer
once, with ¯̄P2,+

( ¯̄P2,−
)
being once from left (right) to right (left) [68]. The transmission and

reflection matrices for the structure for light incident from the left can then be found as [68]

¯̄T1,3 = ¯̄T2,3

∞∑
n=0

( ¯̄P2,+
¯̄R2,1

¯̄P2,−
¯̄R2,3

)n ¯̄P2,+
¯̄T1,2, (2.114)

¯̄R1,3 = ¯̄R1,2 + ¯̄T2,1

∞∑
n=0

( ¯̄P2,−
¯̄R2,3

¯̄P2,+
¯̄R2,1

)n ¯̄P2,−
¯̄R2,3

¯̄P2,+
¯̄T1,2. (2.115)

The infinite series of the summands in both expressions are geometric series since both summands
obey the requirement that the absolute eigenvalue of the summand is below unity [68], or at least
all cases where this treatment makes sense as the only case where it is possible to disobey the
requirement is

∣∣∣ ¯̄R1,2
∣∣∣ = ¯̄I. However, in that case eqs. (2.114) and (2.115) both become obsolete

since no part of any of the modes gets over the first interface, and thus the modes effectively
only see a single interface. Thus for all other cases than the special one mentioned here the
expressions for the transmission and reflection can be expressed using geometric series as [68]

¯̄T1,3 = ¯̄T2,3
(¯̄I− ¯̄P2,+

¯̄R2,1
¯̄P2,−

¯̄R2,3
)−1 ¯̄P2,+

¯̄T1,2, (2.116)

¯̄R1,3 = ¯̄R1,2 + ¯̄T2,1
(¯̄I− ¯̄P2,−

¯̄R2,3
¯̄P2,+

¯̄R2,1
)−1 ¯̄P2,−

¯̄R2,3
¯̄P2,+

¯̄T1,2. (2.117)

The geometric series thus involves the need to invert a matrix. Since this is a rather compu-
tationally expensive operation it is preferred to reduce the number of times this is necessary,
which is achieved by rewriting either eq. (2.114) or eq. (2.115) a bit, so the factor that is inverted
is identical in the two expressions. The interested reader is referred to chapter 6 in Numerical
Methods in Photonics [68]. However, the equations presented in these sections will be on a form
that, according to the authors of this project, emerge more naturally when trying to derive the
expressions compared to those found in [68]. Expressions similar to eqs. (2.114) and (2.115) can
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be found for the case of light incident from the right, after which the geometric series again can
be implemented leading to

¯̄T3,1 = ¯̄T2,1
(¯̄I− ¯̄P2,−

¯̄R2,3
¯̄P2,+

¯̄R2,1
)−1 ¯̄P2,−

¯̄T3,2, (2.118)

¯̄R3,1 = ¯̄R3,2 + ¯̄T2,3
(¯̄I− ¯̄P2,+

¯̄R2,1
¯̄P2,−

¯̄R2,3
)−1 ¯̄P2,+

¯̄R2,1
¯̄P2,−

¯̄T3,2, (2.119)

and thus the reflection and transmission matrices, for modes incident from both the left and
right, for a three-layer structure have been determined. The reflection and transmission matrices
for a three-layer structure, as will be shown in the next section, are the basis for the reflection
and transmission matrices for structures with many layers.

2.4.4 Structure with More than Three Layers

This section will handle the construction of the reflection and transmission matrices for struc-
tures consisting of four or more layers, together with how the mode weighting coefficients in
a layer inside the structure are found. The idea behind the construction of the reflection and
transmission matrices for a many-layered structure is simple. Take the three-layer structure
from the former section and recursively condense the two interfaces in this structure down to
one effective interface, and then add another layer to the left of this structure and calculate the
reflection and transmission matrices for this structure. When this is done, the next iteration can
be started and this process can be repeated until the desired structure is constructed. Using this
recursive formalism, the reflection and transmission matrices for a structure with γ + 1 layers
can be found as

¯̄T1,γ+1 = ¯̄Tγ,γ+1
(¯̄I− ¯̄Pγ,+

¯̄Rγ,1
¯̄Pγ,−

¯̄Rγ,γ+1
)−1 ¯̄Pγ,+

¯̄T1,γ , (2.120)

¯̄R1,γ+1 = ¯̄R1,γ + ¯̄Tγ,1
(¯̄I− ¯̄Pγ,−

¯̄Rγ,γ+1
¯̄Pγ,+

¯̄Rγ,1
)−1 ¯̄Pγ,−

¯̄Rγ,γ+1
¯̄Pγ,+

¯̄T1,γ , (2.121)

¯̄Tγ+1,1 = ¯̄Tγ,1
(¯̄I− ¯̄Pγ,−

¯̄Rγ,γ+1
¯̄Pγ,+

¯̄Rγ,1
)−1 ¯̄Pγ,−

¯̄Tγ+1,γ , (2.122)

¯̄Rγ+1,1 = ¯̄Rγ+1,γ + ¯̄Tγ,γ+1
(¯̄I− ¯̄Pγ,+

¯̄Rγ,1
¯̄Pγ,−

¯̄Rγ,γ+1
)−1 ¯̄Pγ,+

¯̄Rγ,1
¯̄Pγ,−

¯̄Tγ+1,γ . (2.123)

To find the field inside a given layer, ζ, the mode weighting coefficients, a and b, for the layer
has to be computed. Considering a complete structure with Γ > ζ layers, calculating a and
b is a computationally expensive task, as the recursive construction of the structure has to be
carried out from each side of the complete structure. When constructing the complete structure
from the opposite direction, here meant as recursively adding layers, the added layers should be
added to the right of the last layer of the complete structure. This means that in addition to
eqs. (2.120) to (2.123) the following equations are needed for the recursive construction of the
structure from the opposite side [68]

¯̄TΓ,γ−1 = ¯̄Tγ,γ−1
(¯̄I− ¯̄Pγ,−

¯̄Rγ,Γ
¯̄Pγ,+

¯̄Rγ,γ−1
)−1 ¯̄Pγ,−

¯̄TΓ,γ , (2.124)

¯̄RΓ,γ−1 = ¯̄RΓ,γ + ¯̄Tγ,Γ
(¯̄I− ¯̄Pγ,+

¯̄Rγ,γ−1
¯̄Pγ,−

¯̄Rγ,Γ
)−1 ¯̄Pγ,+

¯̄Rγ,γ−1
¯̄Pγ,−

¯̄TΓ,γ , (2.125)
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(a) (b)

Figure 2.17: Shows the contributions to the different weighting coefficients (a) a and (b) b, in layer ζ.
As can be seen, there is a possible contribution from the fields incident on each side for both coefficients.
The dashed arrows indicate that additionally to the direct contribution from the outside fields, there is
also a contribution from the outside field which has traversed the layer more than once.

¯̄Tγ−1,Γ = ¯̄Tγ,Γ
(¯̄I− ¯̄Pγ,+

¯̄Rγ,γ−1
¯̄Pγ,−

¯̄Rγ,Γ
)−1 ¯̄Pγ,+

¯̄Tγ−1,γ , (2.126)

¯̄Rγ−1,Γ = ¯̄Rγ−1,γ + ¯̄Tγ,γ−1
(¯̄I− ¯̄Pγ,−

¯̄Rγ,Γ
¯̄Pγ,+

¯̄Rγ,γ−1
)−1 ¯̄Pγ,−

¯̄Rγ,Γ
¯̄Pγ,+

¯̄Tγ−1,γ . (2.127)

Having determined the different reflection and transmission matrices associated with layer ζ it
is possible to express the weighting coefficient vectors for the layer. This is done by adding the
different contributions to the weighting coefficients. The coefficients can be thought to have
direct contributions from the outside fields, but also an additional contribution from the direct
contributions traversing the layer multiple times. The weighting coefficients can thus be given
as

ā(ζ) =
∞∑
n=0

( ¯̄Rζ,1
¯̄Pζ,−

¯̄Rζ,Γ
¯̄Pζ,+

)n ( ¯̄T1,ζ ā
′(1) + ¯̄Rζ,1

¯̄Pζ,−
¯̄TΓ,ζ b̄(Γ)

)
, (2.128)

b̄(ζ) =
∞∑
n=0

( ¯̄Pζ,−
¯̄Rζ,Γ

¯̄Pζ,+
¯̄Rζ,1

)n ( ¯̄Pζ,−
¯̄Rζ,Γ

¯̄Pζ,+
¯̄T1,ζ ā

′(1) + ¯̄Pζ,−
¯̄TΓ,ζb̄(Γ)

)
, (2.129)

where the summations in both expressions can be replaced by geometric series, and as such they
can instead be given as

ā(ζ) =
(¯̄I− ¯̄Rζ,1

¯̄Pζ,−
¯̄Rζ,Γ

¯̄Pζ,+
)−1 ( ¯̄T1,ζ ā

′(1) + ¯̄Rζ,1
¯̄Pζ,−

¯̄TΓ,ζ b̄(Γ)
)
, (2.130)

b̄(ζ) =
(¯̄I− ¯̄Pζ,−

¯̄Rζ,Γ
¯̄Pζ,+

¯̄Rζ,1
)−1 ( ¯̄Pζ,−

¯̄Rζ,Γ
¯̄Pζ,+

¯̄T1,ζ ā
′(1) + ¯̄Pζ,−

¯̄TΓ,ζb̄(Γ)
)
, (2.131)

and from these, it should be possible to find the field inside layer ζ using eq. (2.99). Thus the
considerations needed to find the transmission and reflection through a given structure, together
with how the field inside a layer can be found, have been accounted for.

2.4.5 Supplementary Considerations and Derivations

This subsection is divided into three parts, deriving the eigenvalue problem for S-polarised light,
numerical considerations when calculating the transmittance, and how FMM may be used to
calculate the transmittance of photonic crystals. These may be read in any order or skipped
without loss of continuity.
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2.4.5.1 Electric Field and Noteworthy Differences

The eigenvalue problem for the electric field is rather simple compared to the one for the magnetic
field. This can mainly be attributed to the assumption that the permeability is constant, namely
µ = 1. With this assumption, and current free media, the double rotation of the electric field
results in

∇×∇×E(r) = k2
0ε(x, z)E(r). (2.132)

Furthermore, assuming source-free media and a field on the form of eq. (2.60) the result simplifies
to

∂2
xE(x, z) + k2

0ε(x, z)E(x, z) = β2E(x, z). (2.133)

It is less involved to construct the eigenvalue problem for this equation, compared to the magnetic
field. Thus the following derivation will be rather limited, and the interested reader is instead
referred to chapter 6 in Numerical Methods in Photonics for a more elaborate derivation [68].
Moving forward, the z-dependence of the relative permittivity profile will be omitted as the
layer is taken to be homogeneous along z. Inserting the expressions for ε(x) and the eigenmodes,
Em(x, z), using the truncated Fourier expansions for the x-dependent parts eq. (2.133) becomes

−
∑
n

einGx (kx + nG)2Em,{n} + k2
0
∑
n

einGx
∑
p

ε{n−p}Em,{p} =
∑
n

einGxβ2
mEm,{n}, (2.134)

where the factor e±iβmz has been removed, and likewise was eikxx after the differentiation. The
above equality should hold for all values of x and hence

− (kx + nG)2Em,{n} + k2
0
∑
p

ε{n−p}Em,{p} = β2
mEm,{n}. (2.135)

Given that none of these terms contain factors that are able to make concurrent jumps, the
implementation of the inverse rule becomes obsolete and the matrix equation of eq. (2.135) is
thus straightforwardly given as (

− ¯̄K
2

+ k2
0¯̄ε
)

Ēm = β2
mĒm. (2.136)

Besides the difference in the eigenvalue problem, another difference is found in the expressions
for the reflection and transmission matrices for a single interface. The basis for deriving the
transmission and reflection matrices for a single interface will again be based on eqs. (2.107)
to (2.110) and the continuity of the tangential parts of the fields. The continuity of the tangen-
tial part of the magnetic field in relation to the interface thus requires that −1

iωµµ0
∂zE(x, z) is

continuous. Hence the following two equalities emerge at the interface∑
n

ei(kx+nG)x∑
m

E
(1)
m,{n}

(
a
′(1)
m + b

′(1)
m

)
=
∑
n

ei(kx+nG)x∑
m

E
(2)
m,{n}

(
a(2)
m + b(2)

m

)
, (2.137)

∑
n

ei(kx+nG)x∑
m

β(1)
m E

(1)
m,{n}

(
a
′(1)
m − b′(1)

m

)
=
∑
n

ei(kx+nG)x∑
m

β(2)
m E

(2)
m,{n}

(
a(2)
m − b(2)

m

)
.

(2.138)
Equations (2.137) and (2.138) can be reformulated as a matrix equations,

¯̄M
(1)
E

(
ā′(1) + b̄′(1)

)
= ¯̄M

(2)
E

(
ā(2) + b̄(2)

)
, (2.139)
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¯̄M
(1)
H

(
ā′(1) − b̄′(1)

)
= ¯̄M

(2)
H

(
ā(2) − b̄(2)

)
, (2.140)

where ¯̄M
(i)
H is on the form

¯̄M
(i)
H = ¯̄M

(i)
E

¯̄β
(i)
. (2.141)

From these equations it is possible to determine the reflection and transmission matrices using
the formerly mentioned equations, eqs. (2.107) to (2.110), which, for the case of b̄(2) = 0̄, results
in

¯̄R1,2 =
([

¯̄M
(2)
H

]−1 ¯̄M
(1)
H +

[
¯̄M

(2)
E

]−1 ¯̄M
(1)
E

)−1

([
¯̄M

(2)
H

]−1 ¯̄M
(1)
H −

[
¯̄M

(2)
E

]−1 ¯̄M
(1)
E

)
,

(2.142)

¯̄T1,2 =
[

¯̄M
(2)
H

]−1 ¯̄M
(1)
H

(¯̄I− ¯̄R1,2
)
, (2.143)

where those for the case ā(1) = 0̄ can be found by interchanging the layers 1 and 2 in all sub-
and superscripts.

2.4.5.2 Considerations for the Numerical Implementation of FMM

This section will consider how the transmittance for the structure is calculated when a plane
wave polarised along y and propagating in the xz-plane is incident on the structure from one
side, and how the right mode weighting coefficient is chosen in the first layer when the method
is implemented numerically. Before handling the numerical implementation, it is advantageous
recall that the transmittance is given as the fraction between the incident and transmitted power,
and as will be shown at the end of this section, the expression for the transmittance can be used
to determine a requirement that facilitates a way to choose the right weighting coefficient in the
first layer for a plane wave.
The Poynting vector describes the instantaneous directional energy per unit area per unit time
and is given as [69]

S(r, t) = E(r, t)×H(r, t). (2.144)
For the case of a plane wave or at least in this limit, the expression has a rather neat solution.
The solution follows from the relation between the fields and their respective Fourier transforms,
together with the fact that the fields are real. In the case of a plane wave, the actual fields can
be given on the form [69]

Aactual(r, t) = Re
{
A(r;ω)e−iωt

}
= 1

2
(
A(r;ω)e−iωt + A∗(r;ω)eiωt

)
, (2.145)

Using fields on this form in eq. (2.144) then leads to

S(r, t) = 1
2 Re {E(r;ω)×H∗(r;ω)}+ 1

2 Re
{
E(r;ω)×H(r;ω)e−2iωt

}
. (2.146)

However, a quantity of more interest is the time-averaged Poynting vector, which is given as

〈S(r;ω)〉 = 1
T

∫ T

0
S(r, t)dt, (2.147)
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where T = 2π
ω is the period of an oscillation. Inserting eq. (2.146) in eq. (2.147), it is clear

that the second term cancels following the integration, and the first term is independent on t,
thus [69]

〈S(r;ω)〉 = 1
2 Re {E(r;ω)×H∗(r;ω)} , (2.148)

from which the time-averaged power passing through an area is found by integrating the time-
averaged Poynting vector over the normal to the area as [69]

〈P 〉 =
∫
A
〈S(r;ω)〉 · n̂dA, (2.149)

which in the case of a periodic one-dimensional structure with the interface perpendicular to
the z-direction becomes

〈P 〉 =
∫ Λ/2

−Λ/2
〈S(r;ω)〉 · ẑdx. (2.150)

The transmittance of a plane wave through a structure like that shown in fig. 2.15, can for either
a magnetic or electric field polarised along y and propagating in the xz-plane in the positive
z-direction, be expressed as

τ = 〈Pτ 〉
〈Pi〉

(2.151)

where 〈Pτ 〉 is the transmitted power, and 〈Pi〉 is the incident power, expressed on the form in
eq. (2.150). Here the expression for the transmittance will be found on the basis of a magnetic
field polarised along y. Considering the incident field, it is clear that for a plane wave propagating
towards the structure under a given angle with respect to the z-axis, θ, the field can be given as

Hi(x, z;ω) = ŷHie
ikxxeikzz, (2.152)

where kx = k0ni sin(θ), kz = k0ni cos(θ), and ni is the refractive index of the medium before the
structure which is assumed real. This implies that

Ei(x, z;ω) = −1
ik0εi

√
µ0
ε0
∇×Hi(x, z;ω) = 1

k0εi

√
µ0
ε0

(x̂kz − ẑkx)Hi(x, z;ω), (2.153)

where all the dependencies on the frequency will be omitted when moving forward, as it should
be implicitly understood what fields and quantities are frequency-dependent in this section. The
time-averaged Poynting vector of the incident field becomes

〈S0(x, z)〉 = 1
2k0εi

√
µ0
ε0
|Hi(x, z)|2 (x̂kx + ẑkz) = 1

2k0εi

√
µ0
ε0
|Hi|2 (x̂kx + ẑkz) , (2.154)

where the real part has been omitted since kx and kz are assumed real. The incident power is
for this case given as

〈Pi〉 = Λ〈S0,z(x, z)〉 = Λ
2k0εi

√
µ0
ε0
|Hi|2 kz. (2.155)

The transmitted field consists of a superposition of the modes that can propagate through the
structure,

Hτ (x, z) = ŷ
∑
n

Hτ,ne
i(kx+nG)xeiβnz. (2.156)
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where βn is the wavenumber in the z-direction for a given mode n. The reason for this is that
k2 = β2

n + (kx + nG)2, which implies that β2
n = k2 − (kx + nG)2, being the reason for the n

subscript on β. The associated electric field is given as

Eτ (x, z) = 1
k0ετ

√
µ0
ε0

∑
n

(x̂βn − ẑ(kx + nG))Hτ,ne
i(kx+nG)xeiβnz. (2.157)

From which the cross product in eq. (2.148) becomes

Eτ (x, z)×H∗τ (x, z) = 1
k0ετ

√
µ0
ε0

∑
n,n′

(x̂(kx + nG) + ẑβn)Hτ,nH
∗
τ,n′e

i(n−n′)Gxei(βn−βn′ )z. (2.158)

Integrating the real part is equal to integrating and then taking the real part. Thus, the averaged
transmitted power becomes

〈Pτ 〉 = 1
2

1
k0ετ

√
µ0
ε0

∑
n,n′

Re
{
βnHτ,nH

∗
τ,n′e

i(βn−βn′ )z
∫ Λ/2

−Λ/2
ei(n−n

′)Gxdx

}
, (2.159)

where the choice of integration limits ensures that the result is purely real, namely∫ Λ/2

−Λ/2
ei(n−n

′)Gxdx = Λsin (π (n− n′))
π (n− n′) , (2.160)

which equals Λδn,n′ , where δn,n′ is the Kronecker delta. This simplifies the expression for the
transmitted power significantly to

〈Pτ 〉 = 1
2

Λ
k0ετ

√
µ0
ε0

∑
n

|Hτ,n|2 Re {βn} . (2.161)

The transmittance through the structure from eq. (2.151) can then, by inserting eqs. (2.155)
and (2.161), be given as

τ = εi
ετ

∑
n

|Hτ,n|2

|Hi|2
Re {βn}
kz

= εi
ετ

∑
n

|Hτ,n|2

|Hi|2
Re {βn}

k0ni cos(θ) . (2.162)

For the case where the last and first layer consists of air the expression simplifies further into

τ =
∑
n

|Hτ,n|2

|Hi|2
Re {βn}
k0 cos(θ) . (2.163)

The reasoning for this section given in the beginning was, besides showing how the transmittance
through the structure was calculated, also related to how the correct mode weighting coefficient
is chosen when implementing FMM numerically. The reason why it is worth dwelling on this is
related to the fact that, when the command eig in MATLAB solves the eigenvalue problem, it
orders the eigenvalues in ascending order. A way to find the right mode weighting coefficient in
the first layer can be done by using the last factor in eq. (2.162), and then checking for the case
where

Re
{
β

(1)
m

}
k0ni cos(θ) = 1, (2.164)

the mode, m′, for which this equality is satisfied, the associated coefficient am′ = 1, so that
ā = δm′ . Even though the unmodified version of the factor emerges in the expression for the
transmittance originally, the modified fraction nonetheless still describes the relation between
the numerically solved β’s in the first layer and propagating wave-number of the chosen plane
wave, and thus makes it possible to choose the right mode weighting coefficient for the incident
field.

46



2.4. Fourier Modal Method Aalborg University

2.4.5.3 Calculating the Transmittance through a Photonic Crystal

This section will briefly outline how the FMM is used to model a photonic crystal with a finite
extension in the z-direction and then compare how the transmittance spectra pair up with the
band structures calculated for infinite photonic crystals. The structure modelled here should
somewhat resemble a two-dimensional photonic crystal slab placed in a parallel plate metal
waveguide. Furthermore, it is assumed that there is only in-plane propagation, which leads to
the case that only the S-polarisation can exist within the waveguide, as mentioned earlier.

The photonic crystal in this case consists of free-standing high index circular rods in a hexagonal
grid with a total of ten lines of rods in the z-direction. The radii of the rods are rrods = 168.6 µm
and the period between the rods along one of the crystal axes is Λ = 687.6 µm. Furthermore,
εrods = 3.42 and εsurroundings = 12. In order to model this photonic crystal with FMM, it is
necessary to split it into layers homogeneous along z, and periodic along x. A division into
layers along the z-direction has been sketched in fig. 2.18c. However, the homogeneity along z
naturally results in what should be circles, instead appearing rugged, especially if too few layers
are used to construct them, which in turn could lead to erroneous results. This can be seen
when comparing the different spectra in fig. 2.19 as neither the placement nor the size of even
the first band gap are the same between the two graphs. Furthermore, the graph in fig. 2.19a
does not express the second and third band gap which is clearly found in the graph seen in
fig. 2.19b. The graphs in figs. B.1 and 2.19 are all for in-plane propagation corresponding to
the K-direction in the first Brillouin zone and the inserts show the relative permittivity profile.
In the later sections, where the FMM is used as a way to evaluate measured spectra, a division
equivalent to the one presented in fig. 2.19b is used, as a more crude division is not sufficient
for a converged result, as noticeable differences are found when comparing with i.e. fig. B.1a,
whereas a more refined division does not result in any significant changes, when compared with,
i.e., fig. B.1b, especially not compared to the additional computational time.

The result of the FMM for the above settings is in fig. 2.20 compared with the band structure
of S-polarised modes of a comparable infinite photonic crystal calculated with PWE, where
similar figures can be found for the M-direction in fig. B.2. In fig. 2.20 the symmetry of the
bands is denoted since only the even modes can be excited, as the odd modes do not match the
symmetry of the input field [70,71]. Furthermore, the part of the bands that can not be reached
given that the propagation is taken to be in the K-direction is also shown explicitly, where
the high symmetry points in reciprocal space covered in the K-direction has been sketched
in fig. 2.18a, and in fig. 2.18b for the M-direction. If the graphs are examined closely some
minor discrepancies are found, e.g., that the precise placement and size of the gaps does not
match exactly. However, it should be noted that both graphs are calculated numerically, and
thus both are prone to numerical errors. Furthermore, the PWE assumes an infinite photonic
crystal, whereas the FMM assumes that the photonic crystal only contains ten lines of rods.
Numerical errors, the slightly different modelled structures, or a combination of both could
potentially be enough to explain the minor discrepancies observed between the graphs. Hence
all things considered a satisfactory agreement between the PWE band structure and the FMM
transmittance spectrum is found given the overall fine overlap between the band gaps in the band
structure and the reflectance bands of the transmittance spectrum, the FMM can therefore be
directly compared to the later obtained transmittance spectra.
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(a) (b)

(c)

Figure 2.18: High symmetry points that are covered when going in the (a) K-direction, and (b) M-
direction in reciprocal space. (c) A skecth showing how the photonic crystal is divided into homogeneous
layers along z.
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(a)

(b)

Figure 2.19: (a)-(b) Shows the transmittance of S-polarised radiation through a photonic crystal that
is composed of 10 lines of rods along z, which is parallel with the K-direction in the first Brillouin zone.
The insert in each figure shows the relative permittivity profile, where εrods = 3.42 and εsurroundings = 12.
The intermediate values arise from a geometric averaging of the relative permittivity for the points around
the interface between the rods and the surrounding medium. The radii of the rods are rrods = 168.6 µm
and the period between the rods along one of the crystal axes is Λ = 687.6 µm. The spectra for other
number of layers along z, can be found in fig. B.1.
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Figure 2.20: A comparison between the band diagram calculated with PWE for an infinite photonic
crystal seen on the left and the transmittance calculated with FMM seen on the right, both only for
S-polarisation. In the figure to the left, only the even modes can be excited, since the odd modes do not
match the symmetry of the input field [70, 71] and the disallowed modes are not covered for the given
propagation direction. The number of layers along z used for the FMM is identical to that of fig. 2.19b.
Again the photonic crystal for the FMM is composed of 10 lines of rods along z, which is parallel with the
K-direction in the first Brillouin zone, and εrods = 3.42, εsurroundings = 12, rrods = 168.6 µm, Λ = 687.6
µm. Similar figures for the M-direction can be found in fig. B.2.
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2.5 Iterative Method for Solving Large
Photonic Crystal Problems

For calculations of cavity or waveguide states, the method outlined in section 2.2 could be
used, however, the cell under consideration would have to be extended to a supercell. This cell
would consist of multiple unit cells in which a discontinuity could be introduced to represent the
cavity or waveguide. However, getting a satisfying resolution of the supercell using the standard
method of PWE for very large cells is difficult since the computation time scales poorly with the
eigenvalue solver scaling as N3. [72] Furthermore, the memory requirement also scales poorly,
and hence extending this method into very large supercells or supercells in three dimensions
becomes practically impossible. For these reasons, it is necessary to find another method to
calculate the band structure of supercells.

To this end, an iterative method using the Fast Fourier Transform (FFT) can be employed. This
method was first developed for tackling similar problems in quantum mechanics, however, as
the operator in question, eq. (2.19), is also Hermitian the method can be extended into optics.
The method uses the variational principle, which states that any trial function to the operator
in question will always result in a higher expectation value than if the trial function had been
an eigenvector [60]. An iterative approach may therefore be employed to continually improve
the guess of the trial vector, apply the operator and evaluate if the expectation value of the trial
vector is sufficiently converged. This is an advantage as the most computationally expensive
step of taking the operator on some trial vector will amount to taking a Fourier transform which
computationally goes as N log(N) and is hence much more feasible for large problems.

2.5.1 In-Plane Propagation in a Photonic Crystal

As was previously proposed, all two-dimensional photonic crystals will be measured using a
parallel metal plate sample holder, and therefore, only the S-polarisation will be considered. In
this case, the field can be expressed as a Fourier series on the form,

Ek,n(r) = ẑ
∑
G
qG,k,ne

i(G+k)·r. (2.165)

Here the sum over G amounts to summing over each component in the vector, i.e., G = mxGxx̂+
myGyŷ. The corresponding H field can then be given as

Hk,n(r) =
∑
G
hG,k,nẑ×

G + k
|G + k|

ei(G+k)·r, (2.166)

this field is constructed such that it naturally satisfies ∇ ·H = 0. For the convenience of the
reader, the Hermitian operator is rewritten here using bra-ket notation,

Ô|H〉 = k2
0|H〉, Ô = ∇× 1

ε(r)∇× . (2.167)

Due to the variational principle, it can then be said

1− 〈H|Ô|H〉√
〈H|Ô|H〉

√
〈ÔH|H〉

≤ δ, (2.168)
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with δ being an arbitrarily small constant. The idea is then to construct an algorithm that
iteratively changes some trial vector until it conforms to eq. (2.168) within some chosen error δ.
To begin, the effect of the operator Ô on a Fourier series is examined

∇× |H〉 = ẑ
∑
G
|h〉i|G + k|ei(G+k)·r = ẑ

∑
G
|f〉ei(G+k)·r, (2.169)

with |f〉 being the vector containing the states |f〉 = i|G + k||h〉, introduced to reduce clutter.
This can then be Fourier transformed into real space where the reciprocal dielectric profile can
be multiplied onto the resulting transform. The result may then be transformed back into
reciprocal space as

1
ε(r) ∇× |H〉 = ẑ

∑
G
|a〉ei(G+k)·r, (2.170)

after which the last curl can be applied as

∇× 1
ε(r) ∇×|H〉 =

∑
G
|a〉i|G + k| G + k

|G + k| × ẑ ei(G+k)·r =
∑
G

ẑ× G + k
|G + k| |p〉e

i(G+k)·r, (2.171)

with |p〉 = −i|G + k||a〉. As can be seen eq. (2.171) is the same as eq. (2.166) except for the
Fourier coefficients hence only the Fourier coefficients are needed to carry out the operator, and
hence to test if the trial vector is indeed an eigenvector.

The method used in this project is a slightly modified version of the preconditioned conjugate-
gradient method presented by M. P. Teter et al. in [73]. In this method, the gradient of a
given function is computed, after which this gradient is used to create a so-called change vector.
This change vector is then added to the existing parameters in such a way that it minimises the
function. This is iteratively done while forcing each new change vector to be a conjugate of the
previous with respect to the operator in question. The problem with this method is that for
a problem with a broad interval of eigenvalues the method converges very slowly. This can be
shown by considering a nearly converged state |Cm〉, to the operator in question

|Cm〉 = |Hm〉+
∑
i 6=m

εi|Hi〉. (2.172)

Here εi is some small parameter with ε2i ∼ 0. The sum then represents the error of the state
|Cm〉 with respect to the converged state |Hm〉, dubbed the error vector. Hence it is this error
one wants to recover when proceeding with the algorithm. However, as the ε parameters are
small when squared, it is not possible to recover this vector easily. Instead, the residual vector
is calculated as

|R〉 = λm|Cm〉 − Ô|Cm〉, (2.173)

here λm = 〈Cm|Ô|Cm〉 which in the case of normalised states, |Cm〉 and |Hm〉, is also the
eigenvalue to the state |Hm〉. The goal is then to get the residual vector on a form resembling
the error vector, which can then be used to get the actual eigenstate from the trial state. To
proceed eq. (2.172) is inserted into eq. (2.173), which results in the following expression for the
residual vector

|R〉 =
∑
i 6=m

εi(λm − λi)|Hi〉. (2.174)

As can be seen from eq. (2.174) if the difference between eigenvalues m and i are large. This may
result in some of the eigenvectors in question being overrepresented, and hence no projection
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of the residual vector will be a good approximation to the error vector which in turn would
result in slow convergence. The problem is better behaved if the residual vector is multiplied
by the inverse of the operator as this better reproduces the error vector [73]. This is then what
constitutes the preconditioning in the name of the method, but inverting the operator matrix
is quite expensive computationally and hence another approach is desirable. This is done by
approximating the inverse of the operator and it turns out that the approximation does not need
to be very good, though it is important that the operator is always positive and definite such
that the residual vector is never zero. With the procedure used for the operator in this case
the operator becomes almost diagonal as the high wavenumber plane waves end up dominating
such that each of these would almost constitute an eigenvector themselves. Hence the procedure
proposed in [73] is to precondition the residual vector by means of a diagonal matrix meant to
equalise the contribution of each plane wave such that they converge at the same rate. However,
before constructing this precondition matrix the residual vector has to be calculated.

The procedure is started by guessing a state |C(n)〉. Here the dependence on band and k is
suppressed, and the superscript n denotes the iteration in question. This state is then made
orthonormal to any previously found states for the k-point in question, dubbed |Hj〉,

|C′(n)〉 = |C(n)〉 −
∑
j

〈Hj |C(n)〉|Hj〉. (2.175)

The resulting vector is then normalised as

|C′′(n)〉 = |C′(n)〉√
〈C′(n)|C′(n)〉

. (2.176)

after which the residual vector can be calculated as

|R(n)〉 = 〈C′′(n)|Ô|C′′(n)〉|C′′(n)〉 − Ô|C′′(n)〉, (2.177)

this amounts to taking the difference between the projection of the vector resulting from the
operator onto the |C′′〉 state, and the resulting vector itself. Using this as a gradient would
result in the problems outlined earlier and hence this is where the precondition comes in. The
proposed procedure is to construct a diagonal matrix with entries [73],

K
(n)
G =

27 + 18x(n)
G + 12

(
x

(n)
G

)2
+ 8

(
x

(n)
G

)3

27 + 18x(n)
G + 12

(
x

(n)
G

)2
+ 8

(
x

(n)
G

)3
+ 16

(
x

(n)
G

)4 . (2.178)

with xG being the ratio of the kinetic energy of a plane wave with the given wavenumber to the
total kinetic energy of the trial vector. This has little meaning in the context of optics, however,
if the method outlined in [73] is followed the operator from quantum mechanics,−1

2∇
2, should

still be used to calculate the kinetic energy. Using this approach, the kinetic energy of a plane
wave becomes,

Ekin(G) = 〈Aei(G+k)·r| − 1
2∇

2|Aei(G+k)·r〉 = 1
2 |G + k|2, (2.179)

while the total energy of the residual vector becomes

E
(n)
kin,tot = 〈R(n)| − 1

2∇
2|R(n)〉 = 1

2
∑
G
|r(n)

G |
2 |G + k|2. (2.180)
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By these definitions the variable xG is given as,

x
(n)
G = Ekin(G)

E
(n)
kin,tot

= |G + k|2∑
G′ |r

(n)
G′ |2 |G′ + k|2

. (2.181)

The precondition matrix, eq. (2.178), can be understood in the context of the convergence for
each frequency. As mentioned, the goal is for each of the frequency components to converge at
about the same rate as otherwise most of the iterations will be making small changes to the
high frequency components. The precondition matrix was found by Teter et. al. [73] and it
can be seen from eq. (2.178) that when x(n)

G = 0 ⇒ K
(n)
G = 1, hence leaving the low-frequency

components unchanged while when x(n)
G →∞⇒ K

(n)
G → 1

2 (x(n)
G −1)

, which was found to result in
about the same convergence for each component. Thus, to calculate the error vector the residual
vector is multiplied by the preconditioning matrix

|R′(n)〉 = ¯̄K(n) |R(n)〉. (2.182)

If the preconditioned residual vector is then orthogonal to all bands and the current trial vector
it would be the gradient, and this could then be used to calculate the state of the next iteration.
However, this is not implicitly true, and hence the other eigenstates, along with the trial vector,
have to be projected out of |R′〉 as

|Y(n)〉 = |R′(n)〉 −
∑
j

〈Hj |R′(n)〉|Hj〉 − 〈C′′(n)|R′(n)〉|C′′(n)〉. (2.183)

From this, an error vector, |F(n)〉, can be constructed. However, conjugacy between the residual
vector at the current iteration and all the previous error vectors |F(n−1)〉, |F(n−2)〉, |F(n−3)〉, ...,
should be ensured, for which the following procedure can be used

|F(n)〉 = |Y(n)〉+ γ(n)|F(n−1)〉, γ(n) = 〈Y(n)|Y(n)〉
〈Y(n−1)|Y(n−1)〉

, γ(1) = 0. (2.184)

The final task is then to change the current trial vector by use of this gradient. However,
the following calculations will be significantly simplified if the error vector in question |F(n)〉 is
orthonormal to the trial vector in question and can be made so by

|D′(n)〉 = |F(n)〉 − 〈C′′(n)|F(n)〉|C′′(n)〉, (2.185)

|D(n)〉 = |D′(n)〉√
〈D′(n)|D′(n)〉

. (2.186)

To construct the next trial vector |C(n+1)〉 the subspace spanned by |C′′(n)〉 and |D(n)〉 is searched
for the combination which minimises the energy, under the constraint that the resulting vector
should also be normalised. This can be done as,

|C(n+1)〉 = |C′′(n)〉 cos(φ) + |D(n)〉 sin(φ), (2.187)

due to the orthonormality of |C′′(n)〉 and |D(n)〉, the new trial vector will also be of unit length
independent of the angle φ. Then to determine the best combination, the "energy"-functional is
minimised in the parameter φ, with the functional being given as

E(n)[φ] = 〈C
(n+1)|Ô|C(n+1)〉
〈C(n+1)|C(n+1)〉

, (2.188)
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which can be expanded as

E(n)[φ] = 〈C′′(n)|Ô|C′′(n)〉 cos2(φ) + 〈D(n)|Ô|D(n)〉 sin2(φ)

+ Re
{
〈D(n)|Ô|C′′(n)〉

}
sin(2φ) = A(n) cos2(φ) +B(n) sin2(φ) + C(n) sin(2φ). (2.189)

This functional may then be minimised in φ by taking the derivative with respect to φ and
setting it equal to zero. This would then yield two possible minima at

φ
(n)
min = 1

2 tan−1
(

2C(n)

A(n) −B(n)

)
+ p

π

2 , p = {0, 1}. (2.190)

These two angles may then be tested to determine which of the two yields the lowest energy,
and that one may then be used to construct the next state |C(n+1)〉. Thus by insertion of this
state in eq. (2.168) the error can be determined and if it is below a predetermined threshold the
vector is said to have converged and is kept as an eigenvector |Hj〉 = |C(n+1)〉. This process
may then be started over until the desired amount of bands have converged. It is worth noting
that both the band and k-dependence of the states were suppressed, hence each band has to be
converged for each k-point of interest. Thus this method is not well suited for small problems,
but it scales much better than the standard plane wave expansion otherwise used in this project
and is capable of calculating the eigenstates of super cells containing defects, which allows for
the calculation of guiding bands in, e.g., waveguides, or the bound modes in cavities.

2.5.2 Out-Of-Plane Propagation in a Photonic Crystal

The FFT method presented in the previous section can also be modified to account for out-of-
plane propagation. The modification in relation to the iterative calculation is rather insignificant
and mostly applies in regards to obtaining the expressions for the fields and establishing the
boundary conditions. As a first step, the requirements for having out-of-plane propagation
together with the complications that emerge will be considered. Afterwards the additional steps
needed for handling photonic crystal slabs sandwiched by parallel metal plates are presented.

Figure 2.21: Sketch of a photonic crystal. Assume the rods extend infinitely in the z-direction, with
out-of-plane propagation.

To have out-of-plane propagation, it is a requirement that kz 6= 0, sketched in fig. 2.21. Hence the
dielectricity profile in the plane of a mode with an out-of-plane component will not have mirror
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symmetry, leading to no clear distinction between the two polarisations [43]. For out-of-plane
propagation, the fields now naturally need to have components both in and out of the plane
in order to satisfy the requirement that the magnetic field should be divergence-free. Given
the ambiguity of the polarisation of out-of-plane modes, the choice of field does not simplify
the problem. However, the rigid divergence requirement together with the associated hermitian
operator, eq. (2.167), makes it easier to work with the magnetic field, and the field can thus be
expressed similar to that in eq. (2.166) as

Hk,n(r) =
∑
G,ζ

γ̂G,k,n,ζ hG,k,n,ζ e
i(G+k)·r, (2.191)

where ζ = [1, 2], is related to the polarisation of the field, with γ̂G,k,n,1 ⊥ γ̂G,k,n,2 ⊥ (k + G)
meaning that the set

{
γ̂G,k,n,ζ

}
spans all the possible polarisations the field of the given Fourier

component could have. The field is thus composed of a superposition of two Fourier series,
which in the end also gives the polarisation of the field. The unit vectors can quite easily be
determined and ensured to be perpendicular to the direction of propagation by using

γ̂G,k,n,1 = ẑ× (G + k)
|ẑ× (G + k)| , (2.192)

γ̂G,k,n,2 = G + k
|G + k| × γ̂G,k,n,1. (2.193)

Here the first unit vector only has components in the plane and is perpendicular to the prop-
agation direction, which follows naturally given it is found from the cross-product of the out-
of-plane direction and the propagation direction. The second unit vector is then determined
from the cross product between the propagation direction and the found unit vector, ensur-
ing that both unit vectors are perpendicular to the direction of propagation. The special case
kx = ky = mx = my = 0 requires individual handling since both eqs. (2.192) and (2.193) would
equate to 0. This is circumvented by choosing γ̂G,k,n,1 = x̂ and γ̂G,k,n,2 = sign {kz} ŷ.
Using the same procedure corresponding to those presented in eqs. (2.169) to (2.171) has the
form

∇×Hk,n(r) =
∑
G,ζ

[
i (G + k)× γ̂G,k,n,ζ

]
hG,k,n,ζ e

i(G+k)·r

= i
∑
G,ζ

(−1)ζ−1 γ̂G,k,n,(3−ζ) hG,k,n,ζ |G + k| ei(G+k)·r,
(2.194)

with the reason for the change of ζ in the subscript of γ̂ and the introduction of the factor
(−1)ζ−1 |G + k| being found from eqs. (2.192) and (2.193) together with the relation A ×
(B×C) = B (A ·C) −C (A ·B). The next step is to find the equation similar to eq. (2.170)
which is

1
ε(r)∇×Hk,n(r) = i

∑
G,ζ

(−1)ζ−1 γ̂G,k,n,(3−ζ) aG,k,n,ζ |G + k| ei(G+k)·r, (2.195)

where ak,G,n,ζ are the Fourier coefficients for the Fourier series associated to transforming the
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left-hand side from real space to reciprocal space. The last rotation then results in

∇×
[ 1
ε(r)∇×Hk,n(r)

]
= i

∑
G,ζ

(−1)ζ−1
[
i (G + k)× γ̂G,k,n,(3−ζ)

]
aG,k,n,ζ |G + k| ei(G+k)·r

=
∑
G,ζ

γ̂G,k,n,ζ aG,k,n,ζ |G + k|2 ei(G+k)·r

=
∑
G,ζ

γ̂G,k,n,ζ fG,k,n,ζ e
i(G+k)·r,

(2.196)

with fG,k,n,ζ = aG,k,n,ζ |G + k|2. As was shown in the former section it is evident that the
first and last expressions are identical except for a difference in the Fourier coefficients, thus the
iterative algorithm from the former section can also be applied for out-of-plane propagation.

2.5.3 Photonic Crystal Slabs

Having considered out-of-plane propagation in a two-dimensional photonic crystal, the next
thing worth considering is out-of-plane propagation in a two-dimensional photonic crystal slab,
which is a two-dimensional photonic crystal with the slight variation that it has a finite thickness.
In a non-absorbing slab, the modes can either be radiating, meaning they have a limited lifetime
within the slab, or guided, which are confined to the slab indefinitely [74].

Figure 2.22: Sketch of stacked photonic crystal slabs with period Λz in the z-direction.

By only considering the guided modes the derivation presented in subsection 2.5.2 still holds
with minor changes and can be justified by the fact that the radiating modes lie above the light
line [74]. The change, when compared to what was outlined in subsection 2.5.2, is that the
structure is assumed periodic in the z-direction too, i.e., it consists of stacked photonic crystal
slabs which are separated by layers of the surrounding medium as sketched in fig. 2.22. Thus
the reciprocal lattice vector is modified as

G = mxGxx̂ +myGyŷ =⇒ G = mxGxx̂ +myGyŷ +mzGzẑ,

but otherwise the above considerations still hold.
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2.5.3.1 Photonic Crystal Slabs in Metallic Parallel Plate Waveguide

In order to model the circumstances under which the transmission measurements in this project
are carried out, the model should be able to imitate a photonic crystal slab sandwiched by
parallel metal plates, as is sketched in fig. 2.23a. Given that the boundary condition requires
the tangential part of the electric field at an interface is preserved, it has to be zero at both metal
interfaces, since the electric field inside a perfect electric conductor is zero. Using eq. (2.194)
the tangential parts of the electric field is found as

Ek,n,x(r) = −1
iωε0ε(r)

∑
G
i

[
− (mxGx + kx)(mzGz + kz)

|ẑ× (G + k)| hG,k,n,1

−−(myGy + ky)
|ẑ× (G + k)| hG,k,n,2 |G + k|

]
ei(G+k)·r,

(2.197)

Ek,n,y(r) = −1
iωε0ε(r)

∑
G
i

[
− (myGy + ky)(mzGz + kz)

|ẑ× (G + k)| hG,k,n,1

− (mxGx + kx)
|ẑ× (G + k)|hG,k,n,2 |G + k|

]
ei(G+k)·r.

(2.198)

Both these components have to equal zero at z = [0, h] which is enforced by restructuring the
modelled structure by mirroring the photonic crystal through either of the metal interfaces, as
seen in fig. 2.23b. Only in-plane propagation will be considered, meaning kz = 0. This also
means that the above equations have a rather useful symmetry with respect to mz, which can
be exploited to enforce the boundary conditions. An attempt to clarify this symmetry has been
made here

Ek,n,x(r) = Γ0(r)
∑
G
i
[
−Γ1mzGzhG,k,n,1 + Γ2 |G + k| hG,k,n,2

]
ei(G⊥+k)·r⊥eimzGzz, (2.199)

Ek,n,y(r) = Γ0(r)
∑
G
i
[
−Γ2mzGzhG,k,n,1 − Γ1 |G + k| hG,k,n,2

]
ei(G⊥+k)·r⊥eimzGzz, (2.200)

where the different Γs have been introduced to suppress factors which effects are indifferent for
the following arguments. In order for the field components in eqs. (2.199) and (2.200) to obey
the boundary condition both terms in the parenthesis have to be odd as this would allow for
eqs. (2.199) and (2.200) to be rewritten as

∞∑
mz=1

Γmz (r)
[
eimzGzz − e−imzGzz

]
=

∞∑
mz=1

2iΓmz (r) sin(mzGzz), (2.201)

where the Γmz (r) is used to suppress all non-relevant factors. Here it has been utilised that if the
parentheses in eqs. (2.199) and (2.200) are odd the terms arising from −mz and mz will be equal
except for a sign. Hence it is only necessary to calculate half the sum as shown in eq. (2.201),
and as Gz = 2π

2h , this then satisfies the boundary condition z = [0, h]. For the parentheses to be
odd hG,k,n,1 has to be symmetric around mz = 0 as mzGz is asymmetric, whereas hG,k,n,2 has
to be asymmetric around mz = 0 since |G + k| is symmetric.
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(a)

(b)

Figure 2.23: (a) Sketch of a photonic crystal structure in a parallel metal plate waveguide, where
PEC stands for perfect electric conductor. (b) A periodic structure in which the situation in (a) can be
imitated, where the red outline shows the unit cell from the side illustrating the symmetry around z = h.

2.5.4 Considerations for the Dielectric Constant

By introducing the third dimension the fields can not be decoupled completely and hence further
considerations have to be made on how the dielectric constant is applied, e.g., eq. (2.195). As
the field is only calculated in a discrete set of points, care has to be taken around the dielectric
boundaries. This is because each point represents the field in the area around said point, and
the boundary therefore has to be handled with care, the procedure of which is covered in this
section.
Inspecting eq. (2.19) the dielectric constant has to be applied to the curl of the magnetic field
which through Ampere’s law is related to the displacement field as

∇×H(r) = −iωD(r). (2.202)

Hence the fields of interest at the boundary are the electric and displacement field, which both
have preserved components

Dn
1 = Dn

2 , (2.203)

Et
1 = Et

2, (2.204)

where the superscript n denotes the normal component and superscript t denotes the tangential
component. These are related through the polarisation, eqs. (2.6) and (2.9), which in turn can
be given as

P(r) = (ε(r)− 1) ε0E(r) =
(

1− 1
ε(r)

)
D(r). (2.205)

As can be seen, the polarisation field has a different proportionality to the dielectric function,
depending on if it is expressed using the electric or displacement field. Hence if it is the polari-
sation that is averaged over the cell it can be seen that the projection onto the tangential and
normal components of the surface should be treated differently. This can be seen by letting the
polarisation be expressed as the sum of a normal and tangential component

P(r) = Pn(r) + Pt(r) =
(

1− 1
ε(r)

)
Dn(r) + (ε(r)− 1) ε0Et(r), (2.206)
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where this formulation ensures that the field in question for a given component is continuous
over an interface. The average polarisation field in a gridpoint is then found as the sum of the
average of each component. The average of the normal component can be found by

Pn
avg = 1

Vg.c.

∫
g.c.

(
1− 1

ε(r)

)
Dn(r)d3r, (2.207)

where g.c. stands for gridpoint cell. Assuming that the gridpoint cell is very small makes it
possible to enforce eq. (2.203) and approximate the above as

Pn
avg ≈

Dn
g.c.

Vg.c.

∫
g.c.

(
1− 1

ε(r)

)
d3r. (2.208)

As the averaging is done by utilising a subgrid in each cell, the integration is converted to a sum
over the Nsub subgrid points in a gridpoint cell as

Pn
avg ≈

Dn
g.c.

Vg.c.

Nsub∑
j=1

(
1− 1

ε(rj)

)
Vs.g.c.

=
Dn
g.c.

Nsub

Nsub∑
j=1

(
1− 1

ε(rj)

)
= Dn

g.c. −Dn
g.c.

1
Nsub

Nsub∑
j=1

1
ε(rj)

,

(2.209)

where it has been used that Vs.g.c.

Vg.c.
= N−1

sub, where s.g.c stands for subgridpoint cell. By using
eq. (2.204) instead of eq. (2.203) the same procedure can be used for the tangential part which
leads to

Pt
avg ≈

ε0Et
g.c.

Nsub

Nsub∑
j=1

(ε(rj)− 1) = −ε0Et
g.c. + ε0Et

g.c.

1
Nsub

Nsub∑
j=1

ε(rj). (2.210)

The averaged dielectric constant that is associated to the tangential part of the field is from
eq. (2.210) found as

εt = 1
Nsub

Nsub∑
j=1

ε(rj), (2.211)

which is a simple geometric average. However, the one associated to the normal part of the field
is a bit more peculiar. Given that the averaging in eq. (2.209) is of the inverse dielectric profile,
the inverse of this averaging is taken to obtain the averaged dielectric constant for the normal
component of the field as

εn =

 1
Nsub

Nsub∑
j=1

1
ε(rj)

−1

. (2.212)

These then have to be applied to the rotation of the magnetic field, eq. (2.195), projected onto
the normal vector and the tangential vector, this can be expressed in tensor form as

←→ε = εn|n̂〉〈n̂|+ εt |̂t〉〈̂t| = εn|n̂〉〈n̂|+ εt
(←→I − |n̂〉〈n̂|) (2.213)

and in order to correctly introduce an inverse dielectric component, it should be the inverted
tensor component since for the general case[←→ε −1

]
q
6= 1[←→ε ]q , (2.214)
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where q represents an arbitrary component. So to summarise, the product 1
ε(r)D should be

substituted by
[←→ε (r)

]−1 D. The tensor used to model the problems in this project can, in
Cartesian coordinates, be given as

←→ε = (εn − εt)


εt

εn−εt
+ n2

x nxny 0
nynx

εt
εn−εt

+ n2
y 0

0 0 εt
εn−εt

 . (2.215)

The reason for all the contributions that should contain a factor of nz is zero, is a consequence
of the way the gridpoint cells are constructed, as each gridpoint cell is taken to be homogeneous
in the z-direction. This means that within a gridpoint cell the normal vector of the interface
will be contained in xy-plane, resulting in nz = 0.
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The samples fabricated in this project are one- and two-dimensional photonic crystals. The one-
dimensional photonic crystals are all-dielectric gratings based on wafers of thickness 100 µm,
with etch depths of up to 28 µm. The two-dimensional photonic crystals will be fabricated in
two configurations, air holes in silicon and silicon rods standing on a silicon substrate. These will
be fabricated on 100 µm and 200 µm wafers respectively. The holes will go through the wafer,
while rods of heights up to 150 µm are sought. To this end, the following chapter will introduce
the methods used to fabricate and characterise the various samples. For the sake of brevity,
the numerous optimisation rounds that came before the final procedure of each method will not
be covered in detail, though the insight gained will be touched upon when discussing the final
modus operandi. The chapter begins by introducing the various forms of dry etching procedures,
with a focus on reactive ion etching (RIE). Following a brief overview of photolithography, the
method of laser ablation on two different time scales is introduced, followed by a brief overview
of the laser system used in this project. Finally, an introduction to the mechanisms of Terahertz
Time-Domain Spectroscopy (THz-TDS) is provided.

3.1 Reactive Ion Etching

This section will cover the principles of one of the main fabrication methods utilised in this
project, RIE, which is a subcategory of plasma-assisted dry etching [75]. The method is used to
fabricate the Fano structures and the photonic crystal based on "free-standing silicon rods". The
rods will not be truly freestanding, instead, a thin silicon base is retained. Dry etching is capable
of anisotropic etch, which is its main advantage over wet etching where any exposed surface is
etched, though the rate can vary along different crystal planes. This results in smaller undercuts,
which allows for smaller features. Dry etching can be divided into three main categories, ion
etching, high-pressure chemical plasma etching, and reactive ion etching. All methods use a
mask to protect parts of the surface. The characteristic etch profiles are seen in fig. 3.1b.
Ion etching: Also known as sputtering and ion milling, is a method where noble gases or large
clusters of atoms are ionised by plasma and afterwards accelerated towards the surface of the
sample by an applied voltage. The accelerated ions transfer part of their kinetic energy to the
atoms of the sample, knocking them out of the surface. The method is often used for sample
preparation, where unwanted adsorbed atoms are removed from the sample surface [76]. This
process does not involve any reactions and has low selectivity, close to 1:1 for many combinations
of materials. Selectivity refers to the removal rate of different atoms on the surface, which in ion
etching is primarily controlled by the binding energy of said atoms. Selectivity is calculated as
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the etch rate of the sample divided by the etch rate of the mask. Metals are weakly bound, while
salts are strongly bound. The method can provide highly anisotropic etch, however, the non-
specificity of the method means that the mask is etched at a similar rate as the sample surface.
Combining this with etch rates of a couple nm/min, the method is unsuitable for the needs of
this project because the thickness of the mask is limited to a couple hundreds of nanometers,
while the desired etch depth is above ten micrometers in the case of the Fano structures, and
above 100 micrometers for the photonic crystal. [75, 77,78]
High-pressure chemical plasma etching: In this method, reactive species, typically halogen
radicals in the case of Si, are created. These radicals form gaseous byproducts when they interact
with the surface of the sample. These byproducts are pumped away, exposing fresh sample atoms
to be etched. Thus, the surface of the sample is removed via chemical reactions. A mask that
has a low reaction rate with the radicals is used to protect the underlying substrate. This process
therefore requires a suitable combination of etching gas (etchant), substrate, and mask. The
problem with only using chemical plasma etching is that the method is isotropic, resulting in
undercutting, where the substrate below the mask is etched away at the same rate, hence it is
unsuitable for the needs of this project. [75, 77,78]
Reactive ion etching: Is a combination of the two former categories, and is the method used in
this project. A combination of ionised atoms and radicals is used to etch the sample, resulting
in etch rates that are greater than the sum of the two methods [79]. When the ions collide
with the sample surface, bonds are broken which make the surface atoms more likely to react
with the radicals, enhancing etching rates and allowing otherwise inert surfaces to be chemically
etched. Because the ions are only accelerated vertically, they do not enhance the lateral etch
rate, increasing the anisotropy of the etch compared to high-pressure chemical plasma etching.
To achieve high aspect ratios (>5:1), known as deep reactive ion etching (DRIE), the sample
either needs to be cooled down to ∼ −110◦ (cryogenic DRIE) or a passivisation layer has to
be adsorbed to the sidewalls of the etch, known as the Bosch process. The mechanism of both
methods is to make etching impossible without the ion bombardment, which only happens in
the vertical direction. The available equipment to this project group only allows for regular RIE,
and the undercutting therefore has to be accounted for in the designs. [75, 77,78]
Both the plasma and the DC bias accelerating the positively charged ions towards the sample
surface is commonly created by a capacitively-coupled plasma (CCP) source. Here, a radio
frequency (RF) source is used to drive a voltage (100 to 1000V) between two electrodes. [78]
The sample is placed on the plate connected to the RF source, while the opposing electrode is
grounded, see fig. 3.1a. The frequency is commonly 13.56 MHz, slow enough that the electrons
can move to and be absorbed by the conducting plates, yet fast enough that the positively
charged atoms can not. The electrons accumulating at the plate connected to the RF source
generate a DC bias between it and the positively charged plasma. In a standard CCP, this
bias voltage between the sample and the plasma is controlled by the power of the RF source,
which has to be relatively high to facilitate adequate plasma density. Therefore, there will be
significant ion bombardment with this setup, such that the masking material erodes relatively
fast, despite it being inert to the chemical etching. How fast the mask is removed depends on
the material and the power of the RF source. Using photoresist as the mask, the sample to mask
erosion is below 5:1 [78]. A good mask for reactive ion etching is therefore both inert to the
etchant gas, and exhibits minimal erosion from the ion bombardment. This often necessitates
the use of hardmasks, such as SiO2, Al, Cr, and Au. In the case of Si as the sample material
and SF6 as the etchant, both Cr and Al have high selectivity, however, Cr can withstand more
energetic ion bombardment than Al and is therefore the used hardmask in the project [80].
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(a) (b)

Figure 3.1: (a) Sketches the reactive ion etching machine. (b) Sketches the expected etching profiles
when using the different plasma-assisted dry etching techniques.

The RIE machine used in this project is a Surface Technology Systems 320 PC RIE. The variable
parameters that can be directly controlled with this machine are

• Choice of gas: CHF3, O2, CF4, He, C3F8, and SF6. The optimal choice of gas depends
on the sample material and further affects which masks can be used. In this project,
SF6 is used to etch Si. Because fluorine radicals can etch silicon without the help of ion
bombardment, the anisotropy of the etch is limited when no surface passivisation steps
are used [78].

• RF power: Increasing the power increases both the energy and concentration of available
electrons creating the ions used for bombardment. It also increases the DC bias between
the sample and plasma, increasing the sputtering of both sample and mask. It is therefore
expected that increasing the wattage will increase the anisotropy of the etch, but also
reduce the maximum etch depth for a given mask layer, which was observed in this project.

• Chamber pressure: Changes the concentration of etchant gas in the chamber. For all
relevant combination of pressure and RF power, the ratio between ionised and neutral
particles will be much less 0.01. If the sample material can be etched without the assistance
of the ion bombardment, an increase in the chamber pressure decreases the anisotropy of
the etch because directional etch of the ions becomes less pronounced, but the overall
etching rate is also increased [75].

• Gas flow rate: Influences how long the gas remains in the chamber. Increasing the flow
rate will increase the etch rate.

The majority of the work thus consists of optimising these various input parameters, with the
exception of the choice of gas, until a recipe is found that produces satisfactory samples, which
in this project was

• RF power: 100 W

• Chamber pressure: 20 mTorr.
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• Gas flow rate: 70 sccm of SF6.

• Hardmask: Up to 200 nm of Cr.

• Etch time: Up to 210 minutes.

3.1.1 RIE Undercutting

As sketched in fig. 3.1b there is significant undercutting when using the RIE process. This
happens because the highly reactive species in the etchant gas can etch the wafer material
without the help of the ion bombardment, although this happens at a slower rate, allowing the
substrate around the edges of the hardmask to be etched.

Undercutting causes two artifacts that must be accounted for. For one, the structures become
smaller than the mask designs, and secondly, the sidewall of the etch has a slope of less than
90◦. Both of these effects are visible in fig. 3.2(c) and fig. 3.2(d), where it can be seen that the
Si rod beneath the Cr layer has had its radius reduced below the initial Cr radius determined
by the photolithography mask. In the case of the Fano structures, this is not a significant issue
because the etch depths, and therefore the etch times, are relatively short, meaning that the
undercutting taking place is not enough to completely remove the structures. However, because
it is expected that the free-standing rods need to have heights above 100 micrometers, the etch
times are much longer, and undercutting becomes a significant issue. To account for this, tests
were performed, measuring the loss of radii as a function of time from spherical patterns with
varying starting radii, presented in fig. 3.2(a). The slopes of the fits are between −0.41µm/min
and −0.49µm/min. This information, along with the slope of the etch profile, can be used to
decide the mask dimensions resulting in a photonic band gap at the frequency of interest. The
slope of the samples are determined by analysing SEM images in ImageJ [81]. Based on the
measurements, the average slope of the rods are ∼ 60◦. To account for this slope in the PWE
model used to design the structures, a geometric averaging is performed, i.e., it is required that
the volume of the produced and modelled rods are the same,

r2πh = 1
3hπ

(
R2

1 +R2
2 +R1R2

)
, (3.1)

with sketches of the two rods seen in fig. 3.2(b). Solving eq. (3.1) for R1 yields,

R1(r) =
−h

tan(θ) +
√

h2

tan2(θ) − 4
(
−r2 + h2

3 tan2(θ)

)
2 , (3.2)

which relates the radius at the top of the produced rods to the radius of the modelled rods.
However, the reduction in radius from the etching process should also be accounted for. As
stated, the free-standing rods will be made from wafers of thickness ∼ 200µm, and the aim is to
have heights up to 150 µm. The reason that the height must be known is because it determines
the etch time, which in turn determines how much of the radius is lost to undercutting. After
being etched for 210 minutes, the average height of the rods was 157 micrometers, meaning the
etch rate is ∼ 0.75µm/min. It then follows that the radii of the rods on the mask must be
increased by Rcomp ∼ 102µm,

Rmask(r) = R1(r) +Rcomp. (3.3)
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It is worth noting that these tests were carried out on regular wafers, and not the expensive thin
wafers used to fabricate the photonic crystals. The results were later calibrated for thin wafers,
where it was found that Rcomp ∼ 120µm was optimal for the produced samples.

Figure 3.2: (a) Change in radius as a function of time. (b) Sketches the produced and modelled rods.
(c) and (d) SEM images of sample K2 after 210 and 180 minutes of RIE, respectively.

3.1.2 Photolithography

To transfer the patterns from the photomask to the wafer, photolithography is used, utilising a
positive resist. The entire fabrication process is outlined in fig. 3.3.

The wafers are cleaned by being submerged in acetone and placed in an ultrasonic bath for 10
minutes, after which they are rinsed with DI water and isopropanol, and dried using a nitrogen
gun. A positive photoresist, MICROPOSITTM S1813TM G2, is used, and the mask is printed
by a RICOH IM C5500 printer in the case of the free-standing rods, whereas a professional
mask made by Delta Mask b.v. is used for the Fano structures. The photoresist is spun at
500 rpm for 15 seconds, followed by 4000 rpm for 30 seconds, after which it is placed on a 110
◦C hotplate for 60 seconds. The patterns are developed using mr-Dev 600 from micro resist
technology. After development, the samples are rinsed with DI water, dried, and loaded in a
Cryofox Explorer 600, where a sufficient chromium layer is deposited which, depending on the
sample, is 30− 200 nm. Acetone is used for lift-off, removing the remaining photoresist and the
chromium above it. Etch times depend on the sample, with the Fano structures being in the
range 5 - 20 minutes, and the free-standing structures being in the range 150 - 210 minutes.
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Figure 3.3: Sketches the steps used to fabricate the final structure. (a) Clean wafer. (b) Apply
photoresist. (c) Expose photoresist. (d) Develop photoresist. (e) Deposit chromium. (f) Lift-off. (g)
Reactive ion etching. (h) Remove excess chromium.

After the etching procedure, excess chromium is removed using ALDRICH chromium etchant,
product number 651826.

The Fano structures are characterised using a scanning electron microscope (SEM), a profilome-
ter, and the TeraSmart time-domain terahertz spectrometer from Menlo Systems. Measurements
on M1 can be seen in fig. 3.4. The height of the strips, t, is measured using a profilometer, while
the period and width, Λ and wt, are obtained by analysing scanning electron microscope (SEM)
images in the software ImageJ [81]. The height of the wafers, h, is determined by matching
the measured transmittance oscillations with the FMM model for a three-layered structure, air-
Si-Air, e.g., in fig. 3.4c the transmittance graph of a wafer is measured, along with the FMM
calculated spectra for three different heights. It is clear that a height of 94µm matches the
measured data for the entire spectra, and that this method is sufficiently precise, as changes to
the height by ±5µm make the model deviate significantly from the measurements. Figure 3.4c
also illustrates the absorption from water vapour, when the measurement chamber has not been
sufficiently purged. From here on, all TDS measurements on Fano structures will be performed
after the chamber has been purged for 5 minutes, which according to the creator of the sys-
tem [82] is enough to reduce the relative humidity in the chamber from 50% to 5%. All averaged
dimensions and their standard deviation can be found in table 4.1.

Having determined all relevant dimensions of the structures, the transmittance spectrum can be
calculated and compared with the Fourier transform of the time-domain spectra. The spectra are
obtained by averaging 500 measurements, each with a scan range of 420 ps. All measurements are
made at normal incidence unless otherwise specified. A schematic of the setup, sample holder,
and the cross-section of a sample can be seen in fig. 3.5. As seen in the figure, the sample holder
is placed such that the incident light is collimated. The sample holder is made of aluminium
and has a 45◦ tapered circular hole, gradually decreasing the diameter until reaching a minimum
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(a) (b)

(c)

Figure 3.4: (a), (b) profilometer and SEM measurement of sample M1. (b) TDS measurement and
FMM model for Si wafer with h = 94µm ±5µm
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radius of 6.5 mm in the holder. The sample is placed behind this hole. The sample holder is used
for angles of incidence between 0◦ and 10◦. The Fourier transform was performed in accordance
with the method outlined in Phase Retrieval in Terahertz Time-Domain Measurements: a "how
to" Tutorial by [83].

Figure 3.5: (a) Schematic of the experimental setup. (b) Image of the front side of the sample holder,
in which the taper can be seen. (c) Sketch of the sample cross-section.
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3.2 Laser Ablation

Though the fabrication of photonic crystals can be achieved through many classic clean room
techniques [84–86], another technique of interest is laser ablation due to its versatility in handling
a large number of materials as well as its high precision [87]. The downsides of laser ablation are
that it may result in fabrication artifacts namely redeposition, and heat-affected zones resulting
in structural damage [88]. Especially the structural damage is of great concern in the fabrication
of photonic crystals based on air holes as it was shown in section 2.3 that the radius of the hole
has to be r

Λ > 0.42 resulting in a very porous structure for which even a small amount of
structural damage may result in the collapse of parts of the structure. Hence minimising the
structural damage is crucial for the fabrication of photonic crystals based on air holes, exhibiting
a high GMG ratio. To understand how this can be achieved it is worth outlining the current
theory of laser ablation.

3.2.1 Laser-Matter Interaction

The fundamental principle of laser ablation is the removal of material by supplying energy in
the form of photons. For a given material to be removed a sufficient amount of fluence has
to be supplied for the material to ablate. This energy threshold is known as the ablation
threshold. To surpass the ablation threshold, pulsed lasers are often used as the peak power of
such systems is extremely high. Pulsed laser systems are categorised by the pulse length ranging
from femto- to microseconds. Each pulse duration exhibits a different interaction mechanism
with the material in question, hence it is worth considering the advantages and disadvantages
of each pulse type. [88,89] However, the only systems available to the project are a femto- and a
nanosecond laser system, and the following considerations will thus be limited to these systems.

The femtosecond laser pulses, often referred to as ultra-fast pulses, are much faster than the
characteristic relaxation times of the electron-to-ion energy transfer time or the electron heat
conduction time, which are both on the order of several picoseconds, and the laser pulse is
consequently done before the ablation process takes place. On the contrary, in the nanosecond
laser system the process of ionisation, sample heating and, vaporization all take place while the
pulse is still interacting with the sample [88, 89]. Due to the pulse duration of the femtosecond
system being shorter than these characteristic parameters, it can be shown that the ablation
process can be considered as a solid-vapor or solid-plasma transition, with heating occurring
afterwards. Furthermore, thermal conduction into the sample may be neglected in a first-order
approximation, whereas for the nanosecond pulses there is enough time for a thermal wave to
propagate into the sample. [89] Because of this, ultra-fast laser ablation generally reduces the
thermal damage of the sample and reduces the heat-affected zone [88]. The main mechanism of
energy absorption in the two laser systems is different, as for the ultra-short pulses the system is
generally best approximated as a system not in equilibrium, as all the energy is transferred to the
electrons which can then be viewed as a reservoir with one temperature and the bulk sample is
then another reservoir with another temperature [89]. On the other hand, the nanosecond laser
system can be viewed as a system in equilibrium hence the absorption process is linear [88].
A concern with the ultra-fast pulses is the high peak intensity resulting in nonlinear effects
becoming significant in this regime, with impact ionisation and photoionisation being major
processes for free-electron generation during the ultra-short laser ablation [88]. Generally, in
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femtosecond laser ablation the removal of material is governed by two distinct steps, the Coulomb
explosion, and the thermal vaporisation. The thermal vaporisation results in more damage done
to the sample, i.e., a larger heat-affected zone and is hence undesirable. The Coulomb explosion
happens as energy exceeding the Fermi level is transferred to the electrons. An electric field is
then created between the now free electrons and the ionized atoms at the surface. If the energy of
the free electrons is larger than the binding energy of the ions in the lattice they can be removed
from the surface resulting in the removal of the first few monolayers of the surface. The ablation
resulting from the Coulomb explosion is also called gentle ablation [88]. If the laser power is
sufficiently above the ablation threshold the Coulomb explosion is then followed by thermal
vaporisation which exhibits an ablation rate that is an order of magnitude faster [88]. Due to
the speed of the femtosecond pulse there is not enough time for the electrons to transfer their
heat to the lattice and the result is a phase transition from solid to vapour which is then ejected
from the material. Due to the heat not being transferred to the lattice the heat affected zone
will be lessened when using femtosecond pulses as compared to using nanosecond pulses. [90]
If the laser power greatly exceeds the ablation threshold, the kinetic energy of the electrons may
result in ionisation avalanches where the free electrons transfer some of their energy to other
electrons and hence creates more free electrons. [90] However, thermal evaporation occurs on a
much slower time scale and thus only happens after the Coulomb explosion. Using nanosecond
laser pulses the time scale of the pulse results in the electrons being able to continually transfer
their energy in the form of phonons, resulting in no Coulomb explosion taking place, and hence
thermal vaporisation dominates in this regime, resulting in more heat damage done to the
sample. [88,90] Furthermore, it has been shown [91] that the Coulomb explosion process results
in smoother edges and less redeposition, hence this is generally the process that is preferable for
micromachining which is why the femtosecond laser system is used instead of the nanosecond
laser system. An overview of the ablation process for different time scales is provided in fig. 3.6.
A property worth noting is that the complete process takes on the order of 1 ms. This is
in accordance with the findings that subsequent pulses may interact with one another if the
processes overlap corresponding to a repetition rate above 1000 Hz. For this reason, a repetition
rate of 1000 Hz was chosen for this project [92].

3.2.2 Femtosecond Laser System

In fig. 3.7 an overview of the laser setup used can be seen. The principle used is chirped pulse
laser amplification (CPA), which is conducted by the Spectra-Physics Spitfire module [93]. The
source pulse is supplied by the Spectra-Physics Tsunami [94], which is a Ti:sapphire mode-locked
laser, with a folded cavity. The mode-locking is achieved by standard acoustic optical modulation
and the system is pumped by a Spectra-Physics Millennia Pro which is a diode-pumped Nd:YAG
laser [94, 95]. CPA is the main workhorse in high energy density physics (HEDP) which is the
study of physics under extreme conditions. This is due to the high peak intensity of the ultra-
short pulses, which when focused can obtain fluence in the range of 1018 W · cm−2, which is
necessary for laser ablation. [88].

Before CPA was invented, it was limited how high a peak intensity that could be obtained. This
was due to nonlinear effects in the laser cavity, such as self-focusing, which destroyed the laser
cavity as plasma was created in the cavity. CPA works by stretching a source pulse, from the
femtosecond to nanosecond range, then amplifying it with a pump laser before compressing it
back down. Thus at no point in the pumping step will the peak intensity result in unwanted
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Figure 3.6: Shows the ablation process for both the nano-, and femtosecond laser systems in ambient
gas, as can be seen the pulse in the femtosecond system delivers its energy before the plasma is created,
while the nanosecond laser ablation system continually delivers energy even while the plasma is created.
The figure is inspired by figures in [88,90]

Figure 3.7: Schematic overview of the modules used to generate the femtosecond pulses used for laser
ablation.

72



3.2. Laser Ablation Aalborg University

nonlinear effects and hence a large peak intensity can be obtained. The stretching and compres-
sion are both done with optical gratings, which results in differing optical path lengths for each
wavelength component, hence the pulse is spatially stretched. It may then be amplified and
compressed in the same way, i.e., changing the optical path again, such that the total optical
path for each component is the same. [88,93] In the system used for this project the CPA works
by Q-switching the optical cavity and the repetition rate of this can be tuned by the user, from
1000 Hz down to 1 Hz allowing for a broad span of output fluence [93].
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3.3 Terahertz Time-Domain Spectroscopy

As the goal of this project is to fabricate structures that have some desired response in the
THz region it is a necessity to be able to characterise the response in this frequency region.
This may be done in a multitude of ways, but in the case of this project, the primary optical
characterisation is performed by the TeraSmart time-domain terahertz spectrometer from Men-
loSystems. [96]. This is a THz-TDS system and for the convenience of the reader a brief overview
of the working principles of such a system will be presented here. The THz-TDS system has a
multitude of advantages, namely a high bandwidth (> 6THz), quickness of operation, and that
it is the direct electric field that is measured which in turn means that the phase change through
the sample is retained which opens a multitude of measuring options, e.g., direct measurement
of the refractive index [97].

Figure 3.8: (a) A sketch of the optical setup of the the THz-TD emitter and receiver. The THz pulse
is scanned by a delay stage and is detected utilising lock-in detection. (b) The fields and currents at
the emitter and detector and a sketch of the band structure of the semiconductor for which electrons are
moved to the conduction band such that a photocurrent may be induced.

The Menlo system uses photoconductive antennas (PCA), both as the THz emitter and re-
ceiver [96]. The PCA consists of a dipole antenna placed on a photoconductive substrate. The
antenna is driven by focusing a femtosecond laser onto the gap between the conductors hence
creating charge carriers as the electrons of the valance band are excited over the band gap. A
bias is applied across the electrodes, accelerating the free charge carriers. This in turn results
in a photocurrent and in turn the antenna creates a THz pulse [97, 98]. It is therefore a given
that the creation of the pulse is intrinsically tied to the material properties of the semiconduc-
tor in question, such as the carrier lifetime, the mean free path, and the doping level of the
semiconductor. The carrier lifetime is directly related to the temporal width of the outgoing
THz pulse, generally, a long carrier lifetime is desired as this results in a small temporal width
which in turn results in a higher bandwidth [98, 99]. The Menlo system used for this project
has a bandwidth of ∼ 0.1 - 6 THz. The receiver is also a PCA, however, without the externally
applied bias. Instead, the incoming THz-field will bias the antenna, if charge carriers are then
created in the gap, a photocurrent will run which will be proportional to the electric field of the
THz radiation. The charge carriers in the receiver are generated as in the emitter, that is to say
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with a femtosecond laser [97–99]. Hence, the measured signal will be the convolution between
the THz signal hitting the detector and the femtosecond pulse, i.e.,

S(t′) ∝ ETHz(t′) ∗ IFemto(t). (3.4)

As the femtosecond pulse is much shorter in time than the THz pulse, about three orders of
magnitude, it may be viewed as a delta function hence eq. (3.4) can be rewritten as

S(t) ≈ ETHz(t′) ∗ δ(t) = ETHz(t). (3.5)

By varying the time of arrival for the optical pulse the temporal change in electric field change
can be scanned [98]. The working principle of both the emitter and receiver can be seen in
fig. 3.8(b) where the emitter has an external voltage applied (V±) resulting in the photocurrent
Iph, while for the receiver the voltage results from the incoming THz radiation, and the signal
S(t) may then be measured. To temporally scan the incoming THz pulse the optical path length
is varied, as the speed of light in air is about 300 µm

ps a path length change of one micrometer will
result in a delay of 6.6 fs hence the temporal THz pulses can readily be scanned by changing the
optical path length with micrometer precision [97]. The optical setup can be seen in fig. 3.8(a)
the femtosecond laser hits a beam-splitter from which the signal is then sent to both the PCA
emitter and receiver. The part of the beam going to the receiver is passed through a delay stage
which allows for the temporal scan of the THz pulse. The measured signal is amplified using a
lock-in amplifier and can be recorded by a PC.
The resulting THz beam can then be guided and focused using suitable optical devices, and
hence may be used in either reflection or transmission experiments. For this project, the sys-
tem was used in transmission, both for the characterisation of Fano resonances as well as the
determination of optical properties of photonic crystals.
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Fano Resonances
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In this chapter, the fabricated one-dimensional photonic crystals and their Fourier transformed
THz-TDS spectra are presented along with FMM modelled transmission spectra, for angles of
incidence between 0◦ and 10◦. Through the work presented in this chapter the authors have
published an article "All-dielectric one-dimensional gratings exhibiting Fano resonances in the
terahertz region" [1]. Thus the data from the M1 sample, as well as the Propagation constant
Matching Model (PMM), have been presented in the article first.

4.1 Results: M-series

In this section, the samples designed to exhibit Fano resonances dubbed the M-series, and their
spectra at normal incidence are presented. The optical setup and sample holder can be seen in
fig. 3.5. The M-series is based on the same wafer of thickness 100±20µm. Wafers of this thickness
are not a requirement for the existence of Fano resonances, however, the thicker the sample the
smaller the period of the transmittance oscillations demonstrated in fig. 3.4c becomes, which
could obscure transmittance dips caused by Fano resonances. Furthermore, the amount of Fano
resonances is increased while the width of each peak is reduced, setting higher requirements
for both the fabrication and the following measurements. Both of these effects can be seen in
fig. 4.1a, where the transmittance spectrum of a structure with the same dimensions as the M1
wafer, except wafer thickness, is plotted. It was therefore decided to use the thinnest wafers
available.

In fig. 4.1b the modelled spectra for M1 are plotted using between 1 and 7 Fourier coefficients.
It can be seen that using 5 and 7 coefficients gives the same result, and all subsequent graphs
are therefore calculated using N = 7. Zoomed-out images of the M-series, meant to give a
qualitative idea of sample quality, are provided in fig. 4.2. Based on presence, fig. 4.2, and
uniformity, table 4.1, of the strips, the best sample is M1, while the worst is M2. M1 is not
missing any strips, and has the lowest standard deviation of period and strip width of all the
samples, while M2 has many of its strips damaged and the second-highest standard deviation.
M3 and M5 are lacking in different areas, M5 having the largest standard deviations, while M3
lack some of its strips. The standard deviations are presented in table 4.1.

When presenting the spectra for the M-series, the frequencies will be limited to c
Λnsub

< ν < c
Λ .

For frequencies above this upper limit, diffraction orders can exist in air which could look like
the Fano resonances of interest in the transmittance spectra. This frequency limit was therefore
introduced to remove any ambiguity in the presented spectra. For frequencies below the lower
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(a) (b)

Figure 4.1: (a) Modelled transmittance spectra of a sample with the same dimensions as M1, but with
a wafer thickness 800 µm (b) Convergence of the FMM model using between 1 and 7 Fourier coefficients
for a structure with the same dimensions as M1.

(a) (b)

(c) (d)

Figure 4.2: SEM images of the four Fano samples. (a) M1, (b) M2, (c) M3, and (d) M5.
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Figure 4.3: Sketches the cross-sections of the produced and modelled strips. The dashed cross-sectional
area on the averaged strip is the cross-sectional area that is lacking if wt is used in the model.

limit no diffraction orders exist in the substrate, which is hypothesised to be a necessity for the
existence of Fano resonances. Indeed, no Fano resonances have been observed in the model or
the measured spectra on any of the samples for frequencies below this limit. A more thorough
explanation and a discussion of the chosen frequency limit will be provided in section 4.2.

Recall that the used etch procedure results in sidewalls with a slope between 50◦ and 60◦ as
discussed in subsection 3.1.1. As a result, the width that was measured and presented in table 4.1
as wt is the strip width at the top, which then underestimates the effective width of the strips.
There are two ways of accounting for this mismatch, either by averaging the strip-widths, i.e.,
using a strip width that results in strips with the same cross-sectional area as the produced
strips or by introducing more layers to the FMM model, gradually broadening the strip down
to its base. Assuming a sidewall slope of 55◦, the average strip width can be calculated as

wt,averaged = wt + h

tan(θ) . (4.1)

The two strip types are sketched in fig. 4.3, and the result of using the various strip types can
be seen in fig. 4.4 using the structure parameters of M1. There is a clear difference between the
model when using the measured strips, and the model when either an averaging or discretisation
has been performed. However, by zooming in it becomes clear that the location of the Fano
resonances in the modelled spectra using averaged and discretised strips are also different, and
as the location of the resonances are the main criteria on which the model is judged, their
location is of crucial importance. The largest frequency differences between Fano resonances
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modelled with the averaged strips and strips using five discretisation steps are 2.2 GHz and 2.4
GHz for the S- and P-polarisation, respectively. Although it is a measurable difference, it was
not enough to warrant using the discretised strips in the FMM model, as it has a significantly
longer computational time.

(a) (b)

Figure 4.4: Modelled spectra using the measured, averaged, and discretised strips, while the rest of the
dimensions are those measured for M1, presented in table 4.1. (a) P-polarisation. (b) S-polarisation.

The spectra for the M-series are presented in fig. 4.5 and fig. 4.6 along with the FMMmodel. The
model uses both the measured and averaged strip-widths along with the dimensions presented
in table 4.1. Using wt,averaged slightly redshifts the model, which more often than not results in
a better correspondence between modelled and measured Fano resonances as compared to using
the measured strip-widths. There are also examples where it leads to a worse correspondence,
e.g., the Fano resonances found for the P-polarisation at ∼ 1.92 THz in fig. 4.5a and ∼ 0.9 THz
in fig. 4.5b. Nevertheless, comparisons from here on out are made between measured spectra
and the modelled spectra using wt,avg.

The spectra are judged based on two criteria, the correspondence between the positioning of
the peaks, i.e., are the modelled transmittance dips located at the same frequencies as the
measurements, and the transmittance at the frequencies where the Fano resonances are located.
M1 shall be covered first, and with more detail than the remaining three samples as it is by far
the most pristine sample.

In general, the correspondence between model and measurement is close. This is especially true
for M1, where the difference in measured and modelled frequency is less than 9 GHz for the
first three Fano resonances found for both polarisations. Furthermore, all the transmittance dips
predicted by the model can be found in the measurement at, or close to, the predicted frequencies,
with the exception of the resonance at ∼ 1.96 THz in fig. 4.5a for the S-polarisation, which
was predicted by the model but nowhere to be found in the measurement. Another example
is the shallow resonance seen at ∼ 1.83 THz for the P-polarisation. Although the resonance is
present, the transmittance at the center frequency is around 60%, much higher than the predicted
transmittance of 0%. The common factor for these two examples is that the resonances predicted
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by the model are very narrow. In the case of M1, the transmittance at most of the measured
Fano resonances are below 10% with some reaching ∼ 0% for the S-polarisation, a feature only
seen for M1. The exceptions are the shallow dips found at ∼ 0.94 THz for the S-polarisation
and ∼ 0.99 THz for the P-polarisation. The lacking Fano resonances at some frequencies and
high transmittance at other frequencies could be caused by the dimensions of the strips varying
slightly, giving a broadening effect. To test this, the uncertainties presented in table 4.1 were
included in the FMM model, weighted at 5%. This was done by calculating all 27 combinations
of {wt,avg, wt,avg±σw, t, t±σt,Λ,Λ±σΛ}, where the structure with dimensions {wt,avg,Λ, t} was
weighted by one, and the rest were weighted by 1/20, the result of which can be seen in fig. 4.7a
for M1. While including the measured deviations does not produce an exact match, it does
alleviate some of the discrepancies between the FMM model and the measurements commented
on previously, e.g., by reducing the modelled transmittance at the very narrow resonances, and
it is therefore a plausible explanation for the mismatch between model and measurement.

The correspondence between measurement and model for samples M3 and M5 are similar, with
the worst discrepancy between modelled and measured resonances being 15 GHz. The M5
sample reaches lower transmittance than M3, close to 0% in some cases. A possible reason for
the high transmittance observed for M3 is the areas where M3 has damaged, or entirely lacks,
strips, meaning that the THz beam can be transmitted unaffected.
Finally, there is the M2 sample, which only gets below 20% transmittance once. Again, the high
transmittance was likely caused by the poor quality of the sample, which is supported by fig. 4.7b
where the standard deviation has been included in the model at a weight of 5%, the same as
was done for M1 in fig. 4.7a. Including the standard deviations also remove, or tone down, some
of the sharper resonances predicted by the model but not observed in the measurements, e.g.,
at ∼ 0.95 and 1.17 THz for the S-polarisation and at 1.4 THz for the P-polarisation.

It has thus been shown that the model based on the FMM method predicts the presence of
most Fano resonances, and their location within ∼ 15 GHz of the measured spectra for the four
samples fabricated in this project when illuminated at normal incidence. Discrepancies between
the model and the measurements with respect to the frequency location and transmittance at
the Fano resonances were partially accounted for by including the measured uncertainties in the
model at a weight of 5%.

Table 4.1: Dimensions and standard deviation of the fabricated samples.

Sample h [µm] t [µm] σt [µm] wt [µm] σw [µm] wt,avg Λ [µm] σΛ [µm]
M1 105 12.89 0.10 32.45 0.46 41.50 99.74 0.55
M2 100 14.59 0.14 77.99 1.17 88.25 199.76 3.82
M3 105 17.32 0.23 27.16 0.77 39.93 196.24 1.34
M5 105 28.03 0.18 65.77 2.14 85.47 292.28 4.22
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(a)

(b)

Figure 4.5: Fourier transformed TD transmittance spectra and the FMM spectra based on the measured
and averaged strip width. The data shown in (a) was first presented in [1]. (a) M1. (b) M5.
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(a)

(b)

Figure 4.6: Fourier transformed TD transmittance spectra and the FMM spectra based on the measured
and averaged strip width. (a) M3. (b) M2.

83



Group 5.340 Chapter 4. Results and Discussion

(a)

(b)

Figure 4.7: Fourier transformed TD transmittance spectra and the FMM modelled spectra based on
the data presented in table 4.1 with the deviations weighted by 5%. The measured data shown in (a)
was first presented in [1]. (a) M1. (b) M2.
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4.1.1 Varying Angle of Incidence

In the literature, it has been demonstrated that the location of Fano resonances for S-polarised
light can be tuned by changing the angle of incidence [100, 101] which will be tested here for
both polarisations, by varying the angle of incidence between zero and ten degrees. The angle is
sketched in figure fig. 3.5(c), corresponding to a rotation around the y-axis. A rotation about the
x-axis does not significantly change the spectra, which was also reported by [101]. The model
and measurement are shown for M1 in fig. 4.8 with θ = 0◦ and 10◦. As was the case for normal
incidence, the model is in excellent agreement with the measurements for θ = 10◦, although it
is not an exact match.

Figure 4.8: Measured and modelled spectra of M1 with angle of incidence equal to 0◦ and 10◦. The
angle with respect to the strips can be seen in fig. 3.5(c). The measured data at normal incidence was
first presented in [1].

To present the data in a compact form, surface plots presenting transmittance spectra for all
angles and frequencies are made, seen for M1 in fig. 4.9, where both the modelled and measured
spectra are presented for both polarisations. The remainder of this section will exclusively cover
sample M1. The surface plots of M2, M3 and M5 can be found in Appendix C. As can be seen
in fig. 4.9 there is a high level of agreement between the measured and modelled spectra for a
majority of resonances, both with respect to the width and frequency placement of individual
resonances. There are, however, a few resonances that are barely visible in the model that can
be difficult to identify in the measurement. As an example, the resonance at ∼ 1.95THz for the
S-polarisation is only just visible at 0◦ and 2◦ but then disappears for higher angles of incidence.
Note that this resonance could not be found at normal incidence either.
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In fig. 4.9 it is observed that all resonances at θ = 0◦ become two resonances, which move
towards lower and higher frequencies as the angle of incidence grows. Using five of the most
explicit resonances for each polarisation observed for sample M1, the averaged frequency change
of Fano resonances observed when going from θ = 0◦ to 10◦ is presented in table 4.2. All data
points, and their differences, are presented in table 4.3 for the S-polarisation and in table 4.4
for the P-polarisation. From table 4.2 it can be seen that, on average, the location of the Fano
resonances can be tuned by ∼ 50 GHz simply by changing the angle incidence. The general trend
is that Fano resonances at higher frequencies move farther apart when the angle of incidence is
increased, which can be seen in table 4.3 and table 4.4. The data presented in table 4.2 also
shows that, on average, the measured change in the centre frequency of a resonance is within 8
GHz of the change predicted by the model, the same deviation that was observed between the
presented spectra at normal incidence for sample M1.

The discrepancies between the measurements and the FMMmodel can be ascribed to two factors,
which are valid for all the angles of incidence presented here. The first is that the model can
calculate the presented spectra with arbitrary spectral resolution, which has the consequence
that it is more likely that the center frequency of the resonance is presented in the modelled
spectra, as opposed to the measured spectra whose resolution is limited. The second reason is
that the angle of incidence of the measured spectra has some uncertainty on the first decimal
point, whereas the model has arbitrary precision.

M1 Increase [GHz] Decrease [GHz]
∆Smeasured 63.3 47.3
∆Smodelled 65.2 55.2
∆Pmeasured 55.5 47.5
∆Pmodelled 60.9 51.4

Table 4.2: Average increase and decrease of the center frequency of five Fano resonances found using
the FMM model and the Fourier transformed THz-TDS spectra when the angle of incidence is changed
from θ = 0◦ to θ = 10◦.

It has thus been shown that there is a high level of agreement between the rigorous FMM model
and the measurements on sample M1 using angles of incidence up to 10◦. Both the modelled
and measured spectra show that the frequency location of the resonances depends on the angle
of incidence, with the averaged difference of the change of frequency location between model and
measurement being less than 8 GHz. The FMM model therefore clearly provides a rigorous tool
that can be used to calculate the transmittance spectrum of the structures fabricated in this
part of the project. However, it does not provide much intuition as to the mechanism causing
the Fano resonances, nor is it an efficient tool for designing structures with resonances at some
desired frequencies.
Therefore, an independent model will be established in the following discussion with the intent of
giving an intuition behind the Fano resonances, but also to create a less computational intensive
model which can be used to search the parameter space for structures exhibiting Fano resonances
at some particular frequencies. This model was first shown in [1].
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Figure 4.9: Surface plot of the modelled and measured transmittance spectra of the M1 sample for
various frequencies and angles of incidence. The data presented in this figure have earlier been published
in [1].

M1 θ = 0 [THz] θ = 10, L [THz] ∆L [GHz] θ = 10, U [THz] ∆U [GHz]
#1S,measured 0.941 0.903 38.8 0.986 46.3
#1S,modelled 0.949 0.905 43.442 0.998 49.561
#2S,measured 1.126 1.085 41.25 1.180 53.76
#2S,modelled 1.132 1.087 45.72 1.187 54.68
#3S,measured 1.401 1.358 43.76 1.460 58.75
#3S,modelled 1.407 1.358 48.68 1.468 61.57
#4S,measured 1.734 1.686 47.5 1.798 63.76
#4S,modelled 1.736 1.676 60.0 1.798 61.36
#5S,measured 2.139 2.074 65.01 2.233 93.76
#5S,modelled 2.153 2.075 78.08 2.252 98.72

Table 4.3: List of the center frequencies and the differences of five Fano resonances using S-polarised
light for θ = 0◦ and θ = 10◦ using both the FMM model and the Fourier transformed TD measurements.
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M1 θ = 0 [THz] θ = 10, L [THz] ∆L [GHz] θ = 10, U [THz] ∆U [GHz]
#1P,measured 0.984 0.948 36.253 1.026 42.508
#1P,modelled 0.990 0.949 40.800 1.039 49.726
#2P,measured 1.249 1.298 32.500 1.216 48.760
#2P,modelled 1.248 1.213 35.280 1.307 58.440
#3P,measured 1.586 1.553 33.750 1.644 57.510
#3P,modelled 1.581 1.548 33.000 1.655 74.320
#4P,measured 2.333 2.275 57.500 2.415 82.510
#4P,modelled 2.307 2.238 69.330 2.418 110.520
#5P,measured 2.228 2.150 77.510 2.274 46.250
#5P,modelled 2.226 2.147 78.760 2.237 11.600

Table 4.4: Lists the center frequency and the differences of five Fano resonances using P-polarised light
for θ = 0◦ and θ = 10◦ using both the FMM model and the Fourier transformed TD measurements.

4.2 Propagation Constant Matching Model

In the previous section, the FMM was used to model the transmittance spectra of the fabricated
samples, which it did with high accuracy. However, because the FMM model is two-dimensional
it is computationally expensive and is therefore not a great candidate for designing structures ex-
hibiting Fano resonances at some desired frequency. Another shortcoming of the model based on
the FMM is that it does not explain the mechanism behind the resonances. Both of these short-
comings will be remedied in this section, where a one-dimensional model will be derived, which
both predicts the frequency location of Fano resonances and gives an intuitive understanding
of the mechanism that causes them. This model is dubbed the Propagation constant Matching
Model (PMM) as it predicts the Fano resonances by matching the propagation constant of a
slab waveguide to the diffraction orders of the periodic layer.

To derive an intuitive and computationally inexpensive model for the prediction of Fano reso-
nances the structure is viewed as a four-layer structure consisting of air, one-dimensional pho-
tonic crystal, substrate, and air, shown in fig. 4.10. Consider now an incoming field on the
form

A = A0e
−ikzzeikxxŷ, (4.2)

where A denotes either a magnetic or electric field based on which polarisation is investigated.
In fig. 4.10 the orientation of the fields with respect to the structure is seen. In accordance with
the Helmholtz equation, eq. (2.18), the wave vectors in a homogeneous dielectric media have the
following relation

k2
0εi = k2

z + k2
x, (4.3a)

kz =
√
k2

0εi − k2
x . (4.3b)

As such, for any propagating mode in the z-direction to exist it is required that k2
0εi > k2

x, as
all other modes will be evanescent. As discussed thoroughly in section 2.3, because one layer is
periodic along the x-axis the wave vector in this direction and layer is given as

kx,m = kx +m
2π
Λ , m = 0,±1,±2,±3, ..., (4.4)
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Figure 4.10: Shows the structure in question, the incident field, and the first diffraction orders, both
above and below the structure.

with Λ being the period of the structure. It is thus possible for the photonic crystal layer to
scatter the light into higher diffraction orders which could then either be bound to the high
index structure, be reflected, or transmitted under some angle. For this project, the frequencies
of interest are when diffraction orders are accessible inside the structure, but evanescent in air.
The considerations will be limited to normal incidence, kx = 0, though the proposed model
should work for any angle of incidence. Hence for a mode to propagate inside the structure, the
following has to be true

k0 ni > m
2π
Λ , m = 0, 1, 2, 3, ..., (4.5)

with ni being the refractive index of the material. Expanding k0 as k0 = 2π
c ν the requirement

that no diffraction orders are propagating in the air layer can be written as

ni
Λ ν
c

< 1, (4.6)

i.e., eq. (4.6) is the requirement to only having 0’th order modes propagating along ẑ in the air
layer. This is generally not surprising as this corresponds to the classical limit, λ > Λ, expected
for gratings. The question then becomes if Fano resonances can be expected for any frequency
smaller than c

nsubΛ , to which the answer is no. This is due to the fact that Fano resonances
are the result of coupling between a continuum and a discrete set of modes. The discrete set of
modes in this case is the bound modes of the entire high index slab, both the photonic crystal
layer and the substrate layer. Thus, it is necessary to be able to excite these bound modes
in order to have Fano resonances. As all bound modes will be traveling along the slab in the
x-direction it is necessary for some of the diffraction orders to be propagating otherwise the
discrete set can not be excited and hence no coupling is possible. As the substrate is a high
index material it is possible to have higher-order diffraction modes in this region while still only
having the 0’th order mode be propagating outside the structure in accordance with eq. (4.5).
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Hence it is straightforward to show that the largest interval both supporting Fano resonances,
while disallowing regular grating effects is in the spectral range

c

Λnsub
< ν <

c

Λ , (4.7)

as if the frequency is outside this range either diffraction effects are present or a discrete set of
bound modes are inaccessible.

It then follows that the location of Fano resonances can be predicted if a model for the bound
modes in the structure can be established, as the Fano resonances will only occur when the kx,m of
a diffraction order matches the propagation constant of a bound mode. The task then becomes to
calculate the relation between the free space wavelength and the propagation constant, and then
match the latter to the diffraction orders in the structure. For the substrate layer, this is trivial
as this corresponds to a slab waveguide for which a multitude of methods exist for calculating
this relation [102]. However, it is more nuanced for the periodic layer of the structure, which
has to be included in the model because its refractive index on average is larger than air, and it
is therefore able to support bound modes.

Two methods for calculating the effective refractive index of the periodic layer, and thereby
including the periodic layer in the guiding structure, were tested. An empty lattice approach,
and a more rigorous approach based on the work in [103]. Both methods proved sufficient,
and the simpler method of the empty lattice approach was therefore utilised when judging the
ensuing model for predicting Fano resonances.

Based on the work in [104], an empty lattice approach is used. In this approach, the refractive
index will be approximated by a geometric average, which neglects some effects, i.e., the tendency
of high-frequency radiation to accumulate in regions of high refractive index [43]. Furthermore,
the effect of band gaps in the structure is also ignored. The reader is again referred to [103] for
a more thorough approach.

With the necessary assumptions established, the task then becomes to calculate the propagation
constant, βn, of the bound modes of the structure, and matching these to the diffraction orders,

βn = 2π
Λ m. (4.8)

The propagation constants can be found using various numerical methods. Two models were
tested, one based on the FEM, and one based on the finite difference method, with the former
being chosen because it exhibited higher stability for small frequencies. The results of this can
be seen in fig. 4.11 for a sample with dimensions identical to those of M1. In this figure, it can
be seen that only a discrete set of intersections are present in the range of interest, which is
the expected result. If the hypothesis holds, it would then be at these intersections that Fano
resonances are found, which will be tested shortly.

One interesting feature of this approach is that it immediately reveals that Fano resonances can
always be expected for S-polarised light, but not for P-polarised light [105]. This is because when
the dielectric profile is asymmetric the P-polarisation does not have a fundamental mode and
hence if the total height of the structure becomes small enough only the S-polarised light will
exhibit Fano resonances. Furthermore, simultaneous Fano resonances, that is Fano resonances
present at the same frequency for both S- and P-polarised light, are exceedingly rare and may
not be achieved for any frequency for a given configuration, as it requires an intersection at two
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Figure 4.11: The calculated propagation constants for the M1 sample in the range of frequencies of
interest along with the first three diffraction orders. Fano resonances are expected at the intersections,
with Fano resonances for S-polarised light shown with solid red diamonds while those for P-polarised
light are shown with solid blue squares. A figure using the same calculated data was first presented in [1].

different diffraction orders at the same time. Simultaneous Fano resonances are of interest, if
the structures are to be used as spectral filters for unpolarised sources.

4.2.1 Evaluation of the Propagation Constant Matching Model

The task is now to quantify to which degree the PMM is able to predict the location of the Fano
resonances, as if this new model does not replicate the FMM, which has already been shown to
be in great agreement with the measured results, it is of little use in any sense. The comparison
of the FMM and PMM using the settings of sample M1 can be seen in fig. 4.12. The frequency
location of the Fano resonances predicted with the FMM are found using visual inspection of the
transmittance graphs and can be seen as the red filled circles in fig. 4.12 while the predictions
made by the PMM are noted as black triangles.

From the graphs on the left in fig. 4.12 it is clear that there is a high level of agreement between
the two models. To quantify the result, box plots are presented on the right, with the input
being the difference between the two models for each resonance, calculated as

∆ν = νPMM − νFMM . (4.9)

A box plot is a way of quantifying the spread of a data set by sorting the data into four quartiles,
sorted from the lowest to the highest value. The second and third quartiles are contained inside
the blue box and are separated by the red line, indicating the median value of the data set.
The first and fourth quartiles are found between the lower and upper horizontal black line and
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Figure 4.12: Comparison of visual inspection of the FMM spectra and the predictions made by the
PMM for a structure with the same parameters as M1, which are presented in table 4.1. The FMM used
a spectral resolution of 0.1 GHz. The graphs shown to the left are the spectra calculated with FMM,
where the PMM predictions for the center frequencies have been overlayed. On the right, box plots of the
difference between the visual inspection and the PMM predictions are shown, as well as the root mean
square deviation of the data set. Tilted triangles: PMM predictions of Fano center frequencies. Filled
circles: Fano center frequencies found from visual inspection of the spectra. Black filled triangles: Root
mean square deviation. This data was first presented in [1].
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the blue box, respectively. The root-mean-square-deviation (RMSD) is represented as the filled
black triangle, and the amount of Fano resonances is marked with a number, in this case there
are 15 resonances. From the box plot, it can be seen that the difference in frequency location
of half of the resonances are within ∼ 14 GHz, while the entire data set is within ∼ 54 GHz.
The RMSD are 15.4 and 9.7 GHz for P- and S-polarisation, respectively, very comparable with
the difference found between the FMM and measured data. Besides being faster to compute,
the PMM also finds the location of the Fano resonances itself, whereas the FMM had to be
visually inspected. Additionally, the frequency resolution of the PMM need not be as high as
the FMM to find the most narrow Fano resonances, such as the one located at ∼ 1.8 THz for
the S-polarisation in fig. 4.5a. Hence the PMM has advantages over the FMM besides being
faster, while still maintaining high accuracy.

To further test the correspondence between the two models, all the 36 combinations arising
from the settings of h = {101, 149, 201} µm, Λ = {100, 125} µm, ε =

{
3.42}, t = {9, 15, 22}

µm, and wt = {21, 54} µm are tested. The spectral resolution of the FMM calculation is 100
MHz, and the Fano resonances found using FMM are again determined by visually inspecting
the calculated spectra. For each setting, a box plot is calculated for both polarisations, seen in
fig. 4.13.

The average RMSD values of all the box plots are 20.14 and 13.72 GHz for the S- and P-
polarisation, respectively. At the extremes, the largest (smallest) RMSD values are 62.42 (7.02)
GHz and 31.37 (3.85) GHz, for S- and P-polarisation respectively. The average absolute median
deviation is 2.4 GHz and 4.4 GHz for the P- and S-polarisation, respectively.
All these results are very comparable to what was found using the settings of sample M1,
presented in fig. 4.12, meaning that the results found there are not an isolated occurrence,
but in fact the standard result one can expect. Furthermore, the accuracy of the PMM is
excellent compared to the prediction accuracy of other models, e.g., the three-dimensional FEM
model which was used in [101], which had a prediction precision of 98 and 59 GHz for P- and
S-polarisation, respectively.

In figs. 4.14a and 4.14b the deviation of each Fano resonance is plotted as a function of normalised
frequency, i.e., ν

νΛ
, where the blue, red, and yellow asterisks are Fano resonances accessed by

the first, second, and third diffraction order. By plotting against the normalised frequency,
an interesting pattern occurs. When a diffraction order opens up, corresponding to the three
vertical lines in figs. 4.14a and 4.14b, the deviation between Fano resonances is closest to zero,
and then gradually spread out as the frequency is increased. This happens for all the diffraction
orders, though it is more pronounced for the first order. This pattern is probably caused by the
most significant assumption made in the PMM model, i.e., the empty lattice approximation,
which treats the dielectric profile as an effective medium. This is of course a simplification for
all frequencies, but it is an especially egregious assumption for high-frequency radiation, as it
tends to accumulate in the region of high refractive index [43]. While this is a fitting explanation
for Fano resonances utilizing the first diffraction order, marked as blue asterisks in fig. 4.14a
and fig. 4.14b, it does not explain why the deviation for resonances using the other diffraction
orders lies concentrated around zero deviation when their diffraction order becomes accessible.
This can, however, also be explained by the empty lattice approximation. Figure 4.14c sketches
the modelled structure as a slab waveguide where the periodic layer has been replaced by a
homogeneous material with a lower refractive index than the substrate. The sketch shows that
light with a wave vector equal to a diffraction order, e.g., |k| = 2πm

Λ travels horizontally along
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the structure, whereas it travels under an angle, θ, if the wave vector is larger, |k| > 2πm
Λ . Modes

that travel using a large angle penetrate deeper into the cladding, meaning that they have a
larger fraction of the field in the air and periodic region of the structure [44]. Thus, when a given
diffraction order opens up, the radiation will travel almost exclusively along x, and penetrate
minimally into the periodic layer. As the frequency increases, more of the radiation can be found
in the periodic region, and the empty lattice approximation therefore has an increasing effect
on the result, explaining the trend seen in figs. 4.14a and 4.14b.

Although a lot of attention was given to the deviations between the FMM and PMM models,
the overall takeaway is that there is a sufficiently high agreement between the two models, and it
is therefore concluded that the PMM model is a reliable tool for predicting the amount of Fano
resonances and their frequency location. It is particularly strong when it comes to determining
the existence of very sharp peaks, which would otherwise require a high spectral resolution when
using the FMM. Furthermore, it does so with a significantly lower computational time.

Before proceeding with the last use case of the PMM, some caveats regarding the calculation
of the box plots, fig. 4.13, will be covered. As stated, the location of Fano resonances found
using FMM was determined by a visual inspection of the calculated spectra. The frequency
range of the FMM calculation was limited to the range in eq. (4.7), however, the PMM was
allowed to search for Fano resonances 20% past this upper-frequency limit. This was done to
ensure Fano resonances found using the FMM near the upper frequency limit could always be
partnered with predictions made with the PMM. If multiple peaks were found for frequencies
in the extended region, only the resonances closest to the frequency region eq. (4.7) was kept.
The total amount of Fano resonances found and presented in the box plots is 1387, however,
two additional resonances were found. These two resonances were removed from the data sets
because the location of the resonances could not be unambiguously assigned, as the FMM
calculated spectra were hard to interpret. With there only being two issues out of 1387 found
resonances, it is concluded that the PMM predicts the amount of Fano resonances with very
high accuracy.
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Figure 4.13: Box plots of the deviation between the PMM and FMM for both polarisations.

(a) (b)

(c)

Figure 4.14: Deviation between the PMM and FMM plotted against the normalised frequency for (a)
S-polarisation and (b) P-polarisation. (c) Sketch of the structure as a slab waveguide with the periodic
part replaced by an effective medium.
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4.2.2 PMM Based Design Model

Because the PMMmodel is one-dimensional it is feasible to search the whole set of configurations,
for a given wafer height h, which in turn opens up for constructing a simple model that takes the
wafer height and desired frequency as input, and then finds the necessary parameters which have
a Fano resonance at the input frequency. As a first primitive model will search the entire set of
configurations for a given frequency to find a subset of configurations resulting in resonances at
this frequency. Then, as the frequency is kept constant the following parameters can be freely
varied

[d2, d3, Λ, wt],
which may be further reduced to two independent parameters. This is done by first fixing the
period of the structure such that the desired frequency is inside the range of interest, eq. (4.7).
For convenience, the period is chosen such that the frequency of interest is in the middle of the
range. This choice is completely arbitrary and any choice of period which results in the frequency
of interest being inside the range would be fine. It is therefore fine to limit the choice of period
to what can be feasibly fabricated with the tools available. Furthermore, it will be required
that the total height of the structure is constant, i.e., d2 + d3 = h. Thus these parameters are
coupled in such a way that only one needs to be varied as the other can be made dependent.
In the following algorithm, d2 was chosen as the varying parameter. The proposed algorithm is
then as follows:

1. Choose the frequency of interest: νi

2. Calculate the corresponding wavelength: λi = c
νi

3. Calculate the period: Λ = λi
(

2
1+nsub

)
4. Let d2 be defined in the range d2 ∈ [0, h]. The range may be changed based on the

fabrication specifications.

5. Let wt be defined in the range wt ∈ [0, 1]Λ. The range may be changed based on the
fabrication specifications.

6. For each wt calculate the effective refractive index.

7. For each set (d2, wt) calculate the propagation constants for the set of bound modes for
both polarisations.

8. Calculate the contour lines for the first N -diffraction orders, Gx,m = kx +m2π
Λ .

9. Each contour line represents the set of structures that will result in a Fano resonance at
the desired frequency.

The implementation of the algorithm can be seen in fig. 4.15, where both d2 and wt have been
sampled 100 times resulting in 10000 different combinations. As can be seen from fig. 4.15c a
wide set exists which allows for the construction of a structure that has a Fano resonance at 1.6
THz. Another feature which can be seen in fig. 4.15c is that for this period no simultaneous
resonances exist. If this was a requirement it is necessary to also vary the period to examine if
such a configuration is possible.
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(a) (b)

(c)

Figure 4.15: (a) Shows the map of propagation constants for the second bound mode, for S-polarised
light along with the contour line at the first diffraction order. It is along this line that the PMM model
predicts Fano resonances at the desired frequency. (b) The same as (a), but for P-polarised light. (c)
Shows the contour lines for each of the modes that result in a Fano resonance at the desired frequency,
according to the PMM model.
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4.3 Conclusion of Part I

In this part of the project, four samples supporting Fano resonances were presented along with
Fourier transformed time-domain transmittance spectra for angles of incidence up to 10◦. The
physical characteristics of the samples were measured, and the Fourier Modal Method was used
to calculate the transmittance spectra of the structures. High agreement between modelled and
measured transmittance spectra was shown, with the modelled and measured Fano resonances
being found within 15 GHz for all samples at normal incidence, and within 8 GHz for one
sample for angles of incidence between 0 and 10◦. A one-dimensional model, dubbed the Prop-
agation constant Matching Model, was developed, explaining the cause of the Fano resonances
as coupling of discrete and continuous guided modes in the structure. Despite approximations,
the one-dimensional model was in excellent agreement with the rigorous two-dimensional model
based on the Fourier Modal Method. Finally, a simple algorithm was presented, utilising the
inexpensiveness of the one-dimensional model to search parameter space for combinations of
etch depth and strip width that result in Fano resonances at some input frequency.
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5 | Results and Discussion

In this part of the project, two-dimensional photonic crystals exhibiting band gaps in the fre-
quency range 0.1-0.4 THz are presented along with their transmittance spectra. Furthermore,
samples with line and point defects are also presented. The samples are based on two fabrication
procedures, laser ablation, used to fabricate samples consisting of air holes in silicon, and reac-
tive ion etching used to fabricate free-standing silicon rods. The free-standing rods are based on
wafers of thickness 200 ±10µm. The photonic crystals based on air holes in silicon use wafers
of thickness 100 ±20µm.

The first step to create effective waveguides in the THz region based on photonic crystals is to
fabricate structures with band gaps in the regions of interest. As was outlined in subsection 2.3.2
the photonic crystals of interest are silicon rods as well as air holes in silicon. The former exhibits
band gaps for S-polarised light using both square and hexagonal lattice with a wide range of
r/Λ [43]. The holed structure features a band gap for both polarisations when a hexagonal
lattice is used, but it does so in a much narrower range of r/Λ. Hence these are the three
configurations that were fabricated and tested. To dimension the structures, the band diagrams
calculated using PWE are used (see subsection 2.3.4). Based on these calculations, and the
experience attained with the two fabrication methods, the focus was placed on the lower end of
the terahertz spectrum because the two fabrication methods lend themselves better to fabricate
structures with corresponding dimensions. To target the higher frequencies, rods, and holes of
smaller radii would have to be produced, which is a challenge because of the undercutting taking
place when using regular RIE, subsection 3.1.1. In the case of holed structures, smaller holes
would have to be produced which would significantly increase the fabrication time.

The optical response of the fabricated structures was measured using time domain-spectroscopy.
For direct comparison with the measured time-domain spectra, the FMM model presented in
subsection 2.4.5.3 was used to model transmittance graphs based on the measured dimensions of
the structures. The fabricated structures and their dimensions were introduced at the beginning
of the chapter, commenting on the quality of the samples and how the fabrication method
resulted in structures that deviate from the ideal versions, for which band structures and GMG
ratios were presented in subsection 2.3.4. Transmittance spectra of the fabricated samples
were then presented and a thorough analysis of the observed band gaps was made in relation
to the transmittance spectra calculated with the two-dimensional FMM model as outlined in
subsection 2.4.5.3. Then to bridge the gap between the ideal two-dimensional structures used
in the FMM model and the fabricated samples, the three-dimensional FFT model presented in
section 2.5 was used, where the effect of introducing a homogeneous dielectric layer between the
metal plate of the sample holder and the sample was investigated. The chapter is concluded
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by analysing the effect of introducing line defects (waveguides) and point defects (cavities) to
photonic crystals.

5.1 Photonic Crystals based on Laser Ablation

The photonic crystals fabricated using laser ablation were all based on hexagonal arrays of holes
in high-resistivity silicon wafers. A detailed description of the principles of laser ablation and
the system used can be found in section 3.2. In this chapter, only a select set of parameters are
commented upon.

The pulsed laser system was operated at a repetition rate of 1 kHz and provides an output effect
of ∼ 340 mW. The pulses were focused onto the surface of the Si wafer, ablating the surface.
Holes were cut using stepper motors such that the sample may be freely moved in a plane
perpendicular to the laser beam. The wafer was moved in a circle of radius 200 µm, which takes
∼ 0.5 seconds. To cut through the wafer, this motion was repeated between 30 and 160 times
for each hole, depending on the wafer thickness and the given day. After the circular motions
have been repeated for the set amount of times, a shutter blocks the beam, and the stepper
motor moves the wafer to the coordinates of the next circle. Every sample in this project has
between 240 and 595 individual holes, making the fabrication time last between 1 and 13 hours.

The various types of ablated photonic crystals can be seen in fig. 5.1, showing both one- and
two-dimensional structures. The ablation profile in this project was not vertical, as can be seen
in fig. 5.2(a), which is an SEM image of the ablation profile when cutting a line into a wafer
with a thickness of 100 µm. The result of this ablation profile was that the radius of the hole on
the entry side is larger than it is on the exit side, sketched in fig. 5.2(e). Another thing which
can be seen from fig. 5.2(a) is that there is a significant amount of redeposited material on the
entry side. Specifically, fig. 5.2(a) has in increased height around the cut on the entry side of
47±2µm. This is noteworthy because it prevents the metal plates on the sample holder to come
into direct contact with the wafer, resulting in an air layer between the photonic crystal and
sample holder. The issue of redeposition was eventually solved by using a lens of shorter focal
length and wafers of thickness 200±10µm, e.g., fig. 5.2(b). Originally, a lens with a focal length
of 50 cm was used, which did not provide enough fluence to cut through wafers with a thickness
of 200 µm. Therefore, focal lengths of 25, 10, and 7.5 cm were tested. It was found that the
shorter the focal length, the less material was redeposited and the number of circles needed to
cut through a wafer was significantly reduced. The shorter focal length also results in a higher
fluence at the laser focus, as written in section 3.2. This in turn means that the ablation process
is no longer dominated by the Coulomb explosion, instead, thermal evaporation dominates [88].
It was therefore expected that redeposition would increase, however, the opposite was instead
observed. This may be due to the gas phase being ejected at high velocities due to the vapour
pressure and the recoil pressure of light [90]. If the vapour phase is removed far enough from
the sample, the removed particles will not be redeposited on the wafer during the subsequent
solidification, explaining the decrease in redeposited material observed in this project when
lenses with shorter focal lengths were used.

However, as will be discussed later, only the samples based on wafers of thickness 100 ± 20µm
have a noteworthy optical signal, why the amount of redeposited material shown in fig. 5.2(a)
has to be taken into account, because no wafers remained to create new samples with the 7.5
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cm lens. Figure 5.2(c) and fig. 5.2(d) show ablated structures from the entry and exit sides,
respectively. It is clear that there is much less redeposited material on the exit side.

Figure 5.1: Images of the various types of photonic crystals fabricated using laser ablation. All structures
based on holes were designed to probe the K-direction.

5.2 Photonic Crystals based on RIE

Various types of photonic crystals fabricated using RIE are presented in fig. 5.3, featuring both
square and hexagonal arrays of silicon rods standing on a silicon substrate. A description of the
principles of RIE can be found in section 3.1. Because the fabrication time of these samples was
independent of the amount of placed rods, the hexagonal samples have been made so that both
the K- and M-direction can be probed on a single sample, as the rotation of 90 degrees changes
the direction from M to K or vice versa. The reason this was only done for the rod samples was
that for the Hex-hole samples the structured part of the samples, i.e. the surface area where the
dielectric function is periodic, was not made large enough in both directions, as can be seen by
comparing figs. 5.1 and 5.3.

There are three ways that the rods produced in this project deviate from the ideal rods modelled
in subsection 2.3.4. The first and most obvious deviation is that the free-standing rods are not
truly free-standing, but instead stand on a substrate layer, e.g., fig. 5.4(c). The effect of this
substrate layer and its thickness will be covered later in subsection 5.3.2. The second reason
was touched upon when the method of RIE was introduced, subsection 3.1.1, and that is the
significant undercutting taking place. Besides making it difficult to design the photolithography
masks, it also yields angled rods, which can be seen in fig. 5.4(c). The third way the produced
rods deviate is that they are not circular at the top or base, as can be seen in fig. 5.4(a). The
reason for the odd shape of the rods can be traced back to the photolithography mask, which was
printed by a regular laser printer, a RICOH IM C5500. This results in a photolithography mask
that does not consist of perfect circles, and therefore the resulting hardmask does not either,
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Figure 5.2: (a) SEM image of the ablation profile through a wafer with a thickness of 100 µm. A lens
with a focal length of 50 cm was used to focus the beam. It is clearly seen that the cut is wider and that
the height of the redeposited material is larger on the entry side. (b) SEM image of the ablation profile
of a wafer with thickness 200 µm. A lens with a focal length of 7.5 cm was used to focus the beam. It
is clearly seen that there is much less, if any, redeposited material. (c) SEM image of a photonic crystal
based on air holes in Si, imaged from the entry side of the pulsed laser. (d) SEM image of a photonic
crystal based on air holes in Si, imaged from the exit side of the pulsed laser. Both samples (c) and (d)
was cut using a lens with a focal length of 7.5 cm. (e) Sketches the hole profile resulting from the varying
ablation width through the wafer, not to scale with the actual holes produced in this project.
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as seen in fig. 5.4(d). This issue can easily be solved by using a professionally manufactured
photolithography mask, resulting in much sharper etch profiles as was the case for the Fano
samples, e.g., fig. 3.4b. However, due to the much longer etch times needed for the free-standing
rods, etch profiles as sharp as those achieved for the Fano samples are not expected, even with
better photolithography masks. For that to succeed, a more sophisticated etch process, like the
Bosch process is probably needed.

To account for the structures being angled and the silicon base that the rods are standing on,
the three-dimensional FFT model presented in section 2.5 was used instead. In it, the samples
were approximated as the structure shown in fig. 5.4(b), and the parameters r−, r+, h, and tw
therefore have to be determined. The radius at the top and bottom of the rods, r− and r+,
respectively, was determined by calculating the radius of a circle of equal area. The area was
determined by outlining the top and bottom of the rods, as shown by the red and blue lines
in fig. 5.4(a), and using ImageJ to calculate the area [81]. In fig. 5.4(c) both the remaining
wafer thickness, tw, and the height of the rods, h, can be measured directly. This was only
possible because the wafer has been fractured down its center. It was not possible to measure
tw or h on whole samples for two reasons. The first is that, by design, the edge of all samples
was protected by the hardmask during the etch, providing a surface more resilient where the
sample can be picked up by tweezers. As shown in fig. 5.4(f), this edge prohibits the samples
from being imaged from the side, and the height of the rods can therefore not be measured.
The profilometer used for the measurements of Fano samples proved imprecise for structures
with heights around ∼ 100µm, and was therefore not used. The second reason is that just like
the etch process undercuts the protective Cr layer, the etchant gas also diffuses underneath the
wafer, providing a slight etch to the edges on the bottom side of the wafers. Therefore, tw and
h were generally estimated from etching times, though a few samples have been broken from
which the etch rates have been determined.

In fig. 5.5(a)-(d), SEM images of some of the samples from the first series of free-standing rods
are presented. The samples were designed to have heights of 150 µm, and volumes equivalent
to a cylinder with a radius of 100 µm and a ratio r/Λ ∼ 0.175, which would produce a band
gap around 0.2 THz, according to the graphs in subsection 2.3.4. Six samples were prepared,
having hardmask radii in the range 165 - 215 µm in accordance with the considerations in
subsection 3.1.1. The etch times varied between 155 and 210 minutes. The sample presented
in fig. 5.5(a) had hardmask radii of ∼ 150 µm, and was etched for 210 minutes. The sample
was fractured, and the height was measured to 149 µm. Although the sample reached the
intended height, the shape of the top of the rods was too poor for the procedure to be deemed
a success. It is worth noting, that even with rods as misshapen as those presented in fig. 5.5(a),
a photonic band gap at 0.21-0.23 THz when illuminated along the M-direction was clearly
detectable, fig. D.7. The sample in fig. 5.5(b) also had an etch time of 210 minutes, but the
initial hardmask radii was ∼ 185 µm. Although the top of the rods is still far from circular, it
is a vast improvement from the rods presented in fig. 5.5(a). Figure 5.5(c) and fig. 5.5(d) are
from the same sample which also had a hardmask radii of 185 µm, but this sample was only
etched for 155 minutes. It is clearly seen that the shape of the rods in this sample is superior
to those presented in fig. 5.5(a) and fig. 5.5(b), though the height of the rods is smaller due to
the shorter etching time. Based on this initial series of samples, a compromise had to be made
between rod height and shape. To do this, all samples from this series were measured using
THz-TDS and based on the quality of the transmittance spectra, all subsequent samples used
the same fabrication parameters as the sample presented in fig. 5.5(c) and fig. 5.5(d). That is,
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even when ∼ 50% of the wafer remains as a substrate material, band gaps and point defects
were still detectable.
All relevant information about the samples for which optical spectra are presented has been
gathered in table 5.1 for both rods and holes.

Figure 5.3: Images of the various types of photonic crystals fabricated using reactive ion etching. From
left to right in descending order: Square array, hexagonal array, waveguide in square array, cavities in
hexagonal array and waveguide in hexagonal array.
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Figure 5.4: (a) Close-up SEM image of a rod viewed from the top. The radius at the top and bottom
of the rod is illustrated with red and blue, respectively. The red and blue outlines illustrate how the area
at the top and bottom was measured, from which the radius of an equivalent circle was calculated. It
was in this manner that the radii used in the various models were determined. (b) Sketches all relevant
structural parameters used in the models of the photonic crystals based on free-standing rods. (c) Side
view of the Hex-rod-4 sample. (d) Light microscope image of the hardmask before any etching has taken
place. It can be seen that the hardmask does not have the intended circular shape. (e) SEM image of a
photonic crystal sample fractured down by its centre. Using this sample, the wafer and rod height can be
directly measured. (f) SEM image of a photonic crystal sample that has not been fractured, illustrating
how the protective edges prohibit direct measurement of the rods.
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Figure 5.5: SEM images of the first series of photonic crystals based on free-standing rods. The different
images had differing hardmask radii and etch times. (a) 150 µm, 210 minutes. (b) 185 µm, 210 minutes.
(c), (d) 185 µm, 155 minutes.

Λ[µm] r−[µm] r+[µm] tw[µm] h[µm] Orientation Rows
Hex-hole-2 494.73 201.74 210.877 - 100 ±20 K 13

Hex-hole-WG-1 434.63 202.23 222.33 - 100 ±20 K 28
Hex-hole-WG-2 495.04 200.80 206.02 - 100 ±20 K 13
Hex-hole-WG-3 491.00 201.00 210.60 - 100 ±20 K 13

Hex-rod-3 616.35 76.26 124.96 92.11 98.74 M/K 36/51
Hex-rod-4 721.99 85.41 108.64 59.16 142.15 M/K 31/45

Square-rod-1 659.10 148.01 191.97 - 99.78† X 23
Square-rod-WG-1 668.55 167.17 197.97 - 99.78† X 23
Hex-rod-WG-1 660.00 152.99 202.03 - 99.78† K 22
Hex-rod-cavity-2 638.16 161.14 161.14 - 99.78† K 10

Table 5.1: Presents the dimensions relevant to modelling the fabricated samples. The naming convention
for holes and rods is visualised in fig. 5.2(e) and fig. 5.4(b), respectively. †: calculated from etch time. In
table D.1 the dimensions relevant for modelling all the fabricated samples can be found.
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5.3 Optical Characterisation of Two-Dimensional
Photonic Crystals

Figure 5.6: (a) Schematic of the experimental setup. (b) Image of the sample holder without the top
metal plate. Parts of a broken wafer were placed at each corner, such that an air channel of 100 - 200
µm (depending on the pieces) was created. This was how the reference spectra were obtained for the
two-dimensional photonic crystals. (c) Image of the sample holder with a photonic crystal placed inside
it. (d) Image of the experimental setup.

To measure the optical response of the samples the Menlo THz-TDS system was used, the
principles of which were outlined in section 3.3. The setup has been changed from what was
used to measure Fano resonances, i.e., a parallel-plate metal waveguide (PPMWG) was used,
and the edge of the sample was placed at the focus of the first lens, rather than at the collimated
part of the beam. A scanning stage has been implemented, used for scanning the opening of
the waveguides and the location of the point defects. The setup can be seen in fig. 5.6. All the
measured spectra can be viewed in Appendix D.

5.3.1 FMM Transmittance Spectra

In this subsection, the focus will be on four samples designed to exhibit band gaps, to tell a
more concise story. The four samples are Hex-hole-2, Square-rod-1, Hex-rod-3, and Hex-rod-4.
These represent all the different configurations of both dielectric profile and lattice type. The
measured results, FMM calculated transmittance spectra, and the band edges found using the
three-dimensional FFT model can be seen in figs. 5.9 to 5.12. The FMM calculated spectra
use the average of r− and r+, while the band edges found using the three-dimensional FFT
model uses the dimensions presented in table 2.1. Before analysing the modelled and measured
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spectra, it is noted that the measured transmittance reaches well above 1 for many frequencies
below 0.3 THz. There are a variety of possible reasons for this, one being that the Menlo
system used is particularly noisy for frequencies below 0.3 THz. Furthermore, the reference was
measured by keeping the PPMWG open using small pieces of either 100 or 200 µm thick wafer
pieces, such that it was essentially an air channel of corresponding thickness. This removes the
significant reflection loss expected when transitioning from air to silicon, and it would therefore
be expected that more radiation was transmitted through the reference, yet this, as mentioned,
was not the case. It was hypothesised that this might be due to a better field overlap with the
silicon-filled PPMWG-mode and hence a higher incoupling of power resulting in a higher signal
for the sample, although this has not been investigated. Additionally, the sample protrudes a
couple of mm outside the sample holder. Therefore, if the focus of the Menlo system lies a
couple of mm in front of the opening of the sample holder, it is expected that more signal can
be transmitted when a sample, rather than the reference, is measured.

The spectra in figs. 5.9 to 5.12 clearly show band gaps in the expected frequency region, where in
particular the K-direction of Hex-rod-4 shows excellent agreement between the FMM modelled
spectra and measurements. Generally, the Hex-rod samples exhibit acceptable agreement for
the lower band gap edge (LBGE) for both directions, whereas the upper band gap edge (UBGE)
is only well predicted for the K-direction, when compared to the FMM spectra. The Hex-hole-
2 sample on the other hand shows a large blueshift of the band gap in relation to the FMM
modelled spectrum with a lower band gap change of 77.64% and an upper band gap edge change
of 42.65%. All percent deviations in this chapter were calculated as the absolute deviation, i.e.,

percent deviation = measured value−modelled value
modelled value · 100. (5.1)

The Square-rod-1 sample also shows a shift of the band edges. However, in this case the upper
edge has moved to lower frequencies while the lower edge has moved to higher frequencies
resulting in a band gap that is situated in the right frequency region but is too small when
compared to the FMM modelled spectra. In table 5.2 the band gap shift in % of the four
samples presented here are shown along with the percentage of the wafer thickness which is
structured and calculated as

percentage = dPC
D
· 100, (5.2)

where dPC is the thickness of the photonic crystal, and D is the distance between the metal
plates. The distance D and dPC vary because of redeposited material and the remaining wafer,
for air holes in silicon and free-standing rods, illustrated in fig. 5.7(a) and (b), respectively.

Band gap shift: LBGE M UBGE M LBGE K UBGE K LBGE X UBGE X % PC
Hex-hole-2 - - 77.64% 42.65 % - - NaN
Square-rod-1 - - - - 16.22 % -17.18 % 50%
Hex-rod-3 -1.05 % -27.37 % 7.80 % -13.01 % - - 59 %
Hex-rod-4 -2.30 % -21.57 % 3.31 % -8.54 % - - 70 %

Table 5.2: Presents the deviation in % of the upper and lower band gap edges of the measured data
with respect to the spectra modelled with the FMM, calculated as eq. (5.1). The last column denotes
the percent of the wafer thickness which is a photonic crystal.

The discrepancy between the measured and FMM modelled spectra is quite pronounced for all
samples. A shift of band gaps has been reported earlier by Zhongping Jian et al 2005 [70].
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Figure 5.7: Schematic illustrating how the structured part of the photonic crystals does not extend
through the entire height of the sample holder. (a) Air holes in silicon, and (b) Silicon rods.

Here, a systematic blueshift was observed for the band gaps in a photonic crystal consisting
of a hexagonal array of air holes in a silicon wafer of thickness 300 µm. In their paper, they
attributed this shift to the finite thickness of the wafer, in accordance with the theory outlined in
Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si [106].
This theory outlines how the overall in-plane refractive index in the metal waveguide is lowered
as multiple modes are allowed within the guide. This in turn would result in the band gap
moving to higher frequencies [43]. For this to be a valid explanation for the blueshift observed
in Hex-hole-2, multiple modes have to exist inside the sample holder.
To investigate the number of possible modes, the cutoff frequency for a homogeneous medium
between two perfect electric conductors was derived (Appendix E) with the result being

ν >
mc

2Dni
. (5.3)

If m = 1 for the 200 µm wafer i.e., for one additional mode to exist other than the fundamental
mode, in the region between the PPMWG, the frequency has to be above ν > 0.22 THz if
the space is filled with silicon, or ν > 0.75 THz for an air-filled waveguide. Hence this could
only affect the upper band gap edge for Hex-hole-1, Hex-rod-3, and Hex-rod-4 samples. This
would be the case if the metal waveguide was filled with silicon, in reality most of the structured
space would be air, bringing the effective refractive index closer to that of air, and thus none of
the photonic crystals fabricated in this project would support multiple PPMWG modes for the
frequencies of interest, and therefore the explanation provided in [106] is not a valid explanation
for the deviations presented in table 5.2. Instead, a solution to this problem is presented in sub-
section 5.3.2 using the three-dimensional FFT model. Before proceeding with that explanation,
the size of the measured band gaps will be commented on.

As outlined in subsection 2.3.1 a measure of the size of the band gap is the GMG ratio. In

110



5.3. Optical Characterisation of Two-Dimensional Photonic Crystals Aalborg University

table 5.3 the measured GMG ratios and those modelled with the FMM and PWE have been
tabulated. It can be seen that the measured GMG ratios for the samples are in the range
∼ [19 − 34]%, the GMG ratios calculated with PWE being between ∼ [32 − 37]% for the rod
samples and ∼ 2% for the hole samples. The measured GMG ratios are good considering the
fabrication limitations when compared with the GMG ratios expected in table 2.1 on page 30.
However, these are all inferior to the GMG ratios predicted by the FMM model presented in
table 2.1. This has a simple explanation, namely that the FMM model has all its radiation
propagating along one specific direction, and it therefore probes a single transition in the band
structure, either M, K, or X, whereas the GMG ratios found with the PWE method were for
indirect band gap transitions, and are consequently lower. Between these two extremes are the
measurements, which probe some, but not all of the transitions in the band structure, because
the incident radiation was not collimated, as the lens has diameter of 38 mm and focal length
of 50 mm, corresponding to an angle-space of ∼ 21◦ at the focus. For reference, a rotation of
30◦ is equivalent to changing from the K to M direction, or vice versa.
Consequently, the measured GMG ratios are significantly reduced from their FMM calculated
counterpart, yet, some of them are still above the expected values for the indirect gap, especially
pronounced for the Hex-hole-2 band gap, despite the fact that the measured band gap has been
blueshifted upwards of 77 % as shown in table 5.2. In general, most of the measured GMG
ratios are reduced to about half of those modelled by the FMM. Furthermore, as will be shown
in fig. 5.13 for the holed sample, the fabrication limitations result in the band gap naturally
shrinking as it is blueshifted and hence both effects will result in a reduction of the GMG ratio.
For the rod samples, the expected shift is instead a redshift which would in turn result in a
higher GMG ratio, however, the band gap still shrinks, and it was furthermore speculated that
aperiodic effects can further reduce the band gap, further reducing GMG ratios [107].

GMG: M M FMM K K FMM X X FMM PWE
Hex-hole-2 - - 19.33% 40.75 % - - ∼ 2 %
Square-rod-1 - - - - 18.93 % 51.66 % 32 %
Hex-rod-3 22.82 % 52.59 % 31.21 % 51.72 % - - 36.5 %
Hex-rod-4 25.68 % 46.9 % 34.36 % 46.05 % - - 36.5 %

Table 5.3: Measured GMG ratios of the samples along with the ones found using the FMM and PWE
model. The FMM entries give the value of either the M or K transition, while the PWE gives the value
of the indirect gap based on the findings in subsection 2.3.4 using the r/Λ ratios from table 5.1.
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5.3.2 Three-Dimensional FFT Analysis

In this section, the cause of the shifted and shrunken measured band gaps, as compared to
those predicted by the FMM, see figs. 5.9 to 5.12, will be investigated by performing a three-
dimensional analysis of the structures using the FFT method outlined in section 2.5. The three-
dimensional treatment of the problem allows for the incorporation of some of the deviations
between the fabricated and idealised structures discussed in section 5.1 and section 5.2, i.e., the
silicon layer that the rods necessarily has to stand on, that all structures are angled, and the
existence of redeposited material on the ablated structures. In the case of the rods, incorporating
the silicon layer increases the effective refractive index in the metal waveguide and hence would
redshift the bands in accordance with the previously mentioned paper [106]. The opposite is
expected for the ablated structures. The sample Hex-hole-1 was fabricated with the same setup
that resulted in fig. 5.2(a) and it is therefore expected that a large amount of redeposited material
is present, around 47 µm. This would then result in an air layer being present between the wafer
and the metal plate, reducing the effective refractive index and thereby blueshifting the band
gap [106].

To determine to what extent these regions of homogeneous dielectric media might explain the
shifts observed in the measurements, the band structure was calculated for a two-layered system,
a photonic crystal layer, and a layer of homogeneous dielectric material, placed between two
metal plates. If the photonic crystal was based on silicon rods, then the distance between the
metal plates, D, was fixed, and for each calculation, the thickness of the dielectric material was
increased, while the photonic crystal layer, dpc, was correspondingly decreased. If the photonic
crystal is based on air holes, then the thickness of the photonic crystal, dpc, was held constant,
and the dielectric layer material, and the distance between the metal plates, D, were increased
for each calculation. Refer to fig. 5.7 for annotations. The result of these calculations along with
the measured shift of the band gaps with respect to the FMMmodel is presented in fig. 5.13. The
dotted lines are from the FFT calculations, while the triangles are from the measured spectra.

As mentioned, the exact height of redeposited material on the Hex-hole-1 sample was not able
to be measured without breaking the sample, and this height is therefore not known. Instead,
lines corresponding to the shift of the band edges have been drawn, seen as the horizontal blue
and red lines in fig. 5.13. It can be seen that there is great agreement between the measurement
of Hex-Hole-2 and the modelled band edges if the redeposited material constitutes about 37%
of the height within the metal waveguide. This would correspond to having redeposited 58.7µm
for a wafer of 100 µm thickness and 52.8 µm for a 90 µm wafer. This is between 10% and 20%
more redeposited material than was observed in fig. 5.2(a), which is not unrealistic although
higher than expected. The vertical red lines in fig. 5.9 is the result of shifting the LBGE and
UBGE of the FMM modelled spectra by the percent deviation corresponding to 40% air, found
in fig. 5.13(a). This produces a significantly better agreement between modelled and measured
band gap, though the measured LBGE and UBGE are found at slightly lower frequencies than
their modelled counterparts.

In the case of silicon rods, the effect on the position of the LBGE and UBGE when introducing
a silicon layer in the three-dimensional FFT model, and the measured deviations with respect
to the FMM spectra can be seen in fig. 5.13(b)-(d). It is clearly observed that the FFT model
predicts that both band gap edges move to lower frequencies when the silicon layer is increased.
However, because the shift is much larger for the UBGE the band gap shrinks with respect to
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the band gap predicted by the FMM, an effect observed for all the rod-based samples presented
in this chapter. The band edges predicted by the FFT model for the rod-based samples are
seen in figs. 5.10 to 5.12 as the vertical red bars. While the measured band gaps for the rod-
based samples were always found within the frequency range predicted by the FMM model, the
size of the band gap predicted by the FFT model is in much better correspondence with the
measurements, though a general tendency, with the exception being Hex-rod-4 K, is that the
FFT band edges are slightly red-shifted with respect to the measured band edges for rod-based
samples.

Further inspection of fig. 5.13 reveals that the photonic crystals based on air holes are more
sensitive to the dielectric layer, seeing as the LBGE and UBGE have changed by ∼ 30% and
∼ 42% after introducing a dielectric layer of 10%, far exceeding the modest changes of a couple
percent observed for the photonic crystals based on silicon rods when a dielectric layer of 10%
is introduced. The reason for this difference between the two sample types may be understood
by considering a simple one-dimensional configuration as shown in fig. 5.8, where the geometric
effective dielectric constant may be found as

1
εeff

= d/H

εSi
+ 1− d/H

1 . (5.4)

The reason for the effective dielectric constant being calculated as 1
εeff

is that only the S-
polarisation can exist for the waveguides in question, as argued in Appendix E. For the samples
produced in this project the factor d/H in eq. (5.4) will be rather small and it will further
be divided by εsi which in comparison is large. Therefore, when the equation is inverted to
calculate εeff it will be the second term that dominates and thus the value will be very close to
the dielectric constant of air. Hence increasing the silicon layer that the rods stand on will not
significantly increase the effective refractive index for this region, and the bands will not shift
by much. On the other hand, for the hole configuration the enumerators of the two terms will
be switched as

1
εeff

= 1− d/H
εSi

+ d/H

1 . (5.5)

For the same reason as outlined above, this will then result in the effective dielectric constant
in eq. (5.5) being somewhat close to that of air when it should be close to silicon. The dielectric
difference would, therefore, be smaller and this would shift the band gaps up. This simple model
thus offers a suggestion as to why the two configurations show differing sensibilities regarding
the thickness of the dielectric layer.

Figure 5.8: A sketch of the two configurations of photonic crystals used to explain the difference in
effective dielectric constant.

There are other significant effects that influence the location of the LBGE and UBGE, i.e.,
the FMM model assumes that the sample is only probed along a specific direction, e.g., the
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M-direction, while the measured spectra probe an angle space of ∼ 21◦. Another reason for
the smaller band gaps could be due to aperiodicity in the photonic crystals, which can result in
localised modes near the band edge [107]. In the case of a finite crystal, some of these modes
could be transmitted through the crystal, resulting in smaller band gaps.

It has thus been shown that two-dimensional photonic crystals exhibiting wide band gaps in
the low THz region can be created and characterised with the methods outlined in this project.
Furthermore, it has been shown that by utilising the PPMWG configuration it is possible to
create band gaps for dielectric rod structures which do not exhibit band gaps for P-polarised
light. It has also been shown that the band gaps persist even though the structured part of the
sample was contained to only half of the total wafer thickness, and despite defects such as angled
structures. The question then becomes if these photonic crystal structures can be utilised to
guide THz radiation and if cavity modes can be excited.

Figure 5.9: The measured and modelled transmittance spectra of the Hex-hole-2 sample, oriented such
that the light propagates along the K-direction. The measured band gap was determined to be between
0.29 and 0.35 THz while the calculated band gap lies between 0.16 and 0.24 THz. The red vertical
lines show the location of the band gap using a fully three-dimensional FFT method with an air layer
corresponding to 40 % of the height in the PPMWG, or equivalently 67 µm.
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Figure 5.10: The measured and modelled transmittance spectra of the Square-rod-1 sample oriented
such that the light propagates along the X-direction. The measured band gap was determined to be
between 0.13 and 0.16 THz while the calculated band gap lies between 0.11 and 0.19 THz. The red
vertical lines show the location of the band gap using a fully three-dimensional FFT method with a
Si-layer making up 50% of the space between the metal plates.
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Figure 5.11: The measured and modelled transmittance spectra of the Hex-rod-3 sample for light
propagating along both the M- and K-direction. The measured band gap for the M-direction was
determined to be between 0.16 and 0.20 THz, for the K-direction it was determined to lie between 0.17
and 0.24 THz. The calculated band gap lies between 0.16 and 0.27 THz for the M-direction, and between
0.16 and 0.27 THz for the K-direction. The red vertical lines show the location of the band gap using
a fully three-dimensional FFT method with a Si-layer making up 40% of the space between the metal
plates.
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Figure 5.12: The measured and modelled transmittance spectra of the Hex-rod-4 for light propagating
along both the M- and K-direction. The measured band gap for the M-direction was determined to be
between 0.15 and 0.20 THz, for the K-direction it was determined to lie between 0.16 and 0.22 THz.
The calculated band gap lies between 0.16 and 0.25 THz for the M-direction, and 0.15 and 0.25 THz for
the K-direction. The red vertical lines show the location of the band gap using a fully three-dimensional
FFT method with a Si-layer making up 30% of the space between the metal plates.
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Figure 5.13: The change in band edges in relation to the addition of a homogeneous layers. The lower
band edge is shown in blue while the upper band edge is shown in red. The triangles in (b)-(d) denote
the fabricated samples and their respective shift of band edges, while the horizontal blue and red lines in
(a) are the measured change of the LBGE and UBGE for sample Hex-hole-2, respectively. The addition
of the homogeneous layer for the rod samples amounts to fixing the height between the metal plates and
then letting a higher percent of this distance be taken up by the homogeneous silicon layer. For the
samples based on air holes in silicon the addition amounts to moving the upper metal plate by some
distance, keeping the thickness of the structured part constant.
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5.4 Waveguides

Having shown that band gaps can be produced in the lower THz region it is now of interest to
examine the possibility of creating waveguides based on these band gaps. This would make it
possible to guide the radiation, which opens up for the creation of a multitude of components
such as phased arrays, multiplexers or just to collect power from multiple sources [6, 29]. The
waveguides use the same photonic crystals as those presented in the previous sections, i.e. Hex-
hole, Hex-rod, and Square-rod. To characterise the samples the Menlo THz-TDS system was
used, fig. 5.6, where the scan stage was used to scan the entrance of the waveguide. In this
section the results of the ablated and the etched samples will be presented separately, starting
with the samples based on air holes in silicon.

5.4.1 Air Holes

All the waveguides created in the hole configuration were made to guide the radiation along the
K-direction and can be seen in fig. 5.1. Three waveguides were created, two of which have a
high-refractive-index silicon core, while one has an air core, thereby both hollow- and solid-core
configurations were tested. Theoretical calculations of the band structures were made based on
the two-dimensional FFT method outlined in section 2.5, and for all calculations, the waveguide
core was surrounded by 6 unit cells on either side resulting in a supercell with |a1| = 13Λ and
|a2| = Λ which may be seen in the inserts. The calculations use 40 bands with 50 k-points
along the K-direction. The calculations were made for both core types and can be seen in
figs. 5.14 and 5.15. Here the colored regions constitute continua, which in the case of infinitely
many unit cells on either side would be completely filled with allowed modes. Hence the bands
outside these continua are the waveguiding bands. It can readily be seen in fig. 5.14, which is
the spectra for a solid-core waveguide, that the otherwise forbidden region has a multitude of
bands, which extend throughout the entire forbidden region. The multiple bands correspond to
multiple modes of propagation in the waveguide which would result in a waveguide with high
modal dispersion. However, for detecting waveguide modes this is an advantage as it is expected
that the signal can readily be transmitted at every frequency in the otherwise disallowed region.

In fig. 5.15 the band structure for a hollow-core photonic crystal waveguide based on a hexagonal
array of air holes in silicon can be seen. It is clearly observed that there are almost no bands
penetrating into the forbidden region. Only one of these bands narrowly penetrates into the
omnidirectional band gap, marked with a red triangle and the number 2. This means that this
mode would appear as a reduction in the band gap, which as discussed in the previous section
is already an observed effect in the structure due to fabrication limitations. Hence, concluding
that guided modes are present for this sample is likely going to be troublesome.

Starting with the high index core samples, a scan was conducted over the opening of the Hex-
hole-WG-1 sample, the scan range was x ∈ [259, 269]mm and y ∈ [174, 174.3]mm, with 37 and
2 steps, respectively. This scan can be seen in fig. 5.16, where the spectrum is also plotted for
three positions, two on either side of the waveguide and the last in the waveguide. The band
gap can clearly be seen for the positions outside the waveguide. Furthermore, this band gap also
corresponds nicely with the band gap that was shown for the Hex-hole-2 sample. The difference
amounts to the LBGE being off by −0.66% and UBGE being off by 1.5%. For the spectrum

119



Group 5.340 Chapter 5. Results and Discussion

Figure 5.14: The band structure of a waveguide configuration with a high refractive index core inside a
hexagonal array of air holes. Multiple bands penetrate into the otherwise forbidden region and constitute
bound modes. The field distributions of three bands inside the forbidden region are also shown.
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Figure 5.15: The band structure of a waveguide configuration with a low refractive index core inside a
hexagonal array of air holes. Multiple bands penetrate into the otherwise forbidden region and constitute
bound modes. The field distributions of three bands inside the forbidden region are also shown.
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within the waveguide it can be seen that the overall transmittance is not significantly different
from that of the frequencies outside the band gap. This was also what was expected from the
band structure calculations shown in fig. 5.14, because waveguide bands extended all through
the entire band gap region and consequently it is expected that there is a transmitted signal
inside the band gap similar to the signal outside the band gap, just as observed. The same
effect is seen for Hex-hole-WG-3, which can be observed in fig. 5.17. This is also expected as the
two samples are almost identical with the main difference being the number of rows and that a
taper was made to better couple in the radiation, as can be seen in fig. 5.1. However, it can be
seen that the taper does not significantly increase the width of the sample which may be hit and
subsequently have light coupled into the waveguide, as both Hex-hole-WG-1 and Hex-hole-WG-3
has an incoupling length of about 2 mm, from [264-266] mm in the case of Hex-hole-WG-1 and
[263-265] mm for Hex-hole-WG-3.

The transmittance scan for the hollow-core waveguide is shown in fig. 5.18. It is immediately
clear that no significant signal can be found inside of the band gap region for the expected
positions. The highest transmittance within the band gap is 0.15. This was achieved at x = 266
mm, which is a shift of 2 mm with respect to the location of the waveguide. By inspection of
the measured spectral spectrum, the graphs on the right in fig. 5.18, it can be seen that the high
transmittance is due to the band edge creeping into the band gap. It was noted from fig. 5.15
that a waveguiding band would be present here. However, it is well below the continuum of
allowed modes and hence it is impossible to confidently conclude from the measurement that
this small increase in transmittance is caused by a waveguided mode. As was commented upon
previously, the band structure for this sample predicts much worse conditions for guided modes,
and it is therefore not surprising that such a mode could not be convincingly measured.

It has thus been shown that waveguides constructed using the Hex-hole configuration were
achieved successfully by using a high-refractive-index silicon core. In this configuration, the en-
tire forbidden region gets filled with waveguiding bands, and it was observed that when coupling
into the waveguide the radiation was transmitted throughout the otherwise forbidden frequency
region. The incoupling length of the waveguides were 2 mm. It was not possible to fabricate
a working hollow-core waveguide in this configuration. However, this was also expected from
two-dimensional FFT calculations showing very few bands in the forbidden region.
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Figure 5.16: Left: The transmittance value at 0.32 THz for a scan over the opening of the Hex-hole-
WG-1. Right: Three transmittance spectra, taken at three points of the scan namely at [262, 265,
268]mm.
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Figure 5.17: Left: The maximum transmittance value found in the band gap determined as BG ∈
[0.28; 0.34]THz. Right: Three transmittance spectra, taken at three points of the scan namely at [261,
264, 268]mm.
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Figure 5.18: Left: The maximum transmittance value found in the band gap determined as BG ∈
[0.31; 0.35]THz. Right: Three transmittance spectra, taken at three points of the scan namely at [264,
266, 269]mm.
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5.4.2 Si Rods

For the samples based on silicon rods, all the waveguides were created as hollow-core waveguides.
The FFT band structures can be seen in figs. 5.19 and 5.20, where it is observed that only one
band extends into the forbidden region. Yet, the configuration still shows more promise than the
hollow-core waveguide created with the Hex-hole configuration, as the waveguiding band extends
halfway into the forbidden region, and hence detecting a signal is more probable. However,
because the waveguiding band does not extends throughout the entire forbidden region, there
consequently will not be a signal in the entire forbidden region.

This waveguide configuration does present significant advantages over all the other waveguide
band structures that were presented in the previous subsection because it only has one waveg-
uiding band and it is therefore not expected to be dispersive in the same manner as is expected
for multi mode Hex-hole waveguide shown in the previous section.

Two waveguide configurations were created, a square and a hexagonal lattice, and the mea-
surements can be seen in figs. 5.21 and 5.22, neither of which show any guiding modes. For
the Hex-rod-WG-1 sample, the band gap is very clear at all positions and the maximum value
for the transmittance within the band gap never reaches above 0.08. As discussed previously,
subsection 5.3.2, the remaining silicon that the rods are standing on causes the UBGE to move
towards lower frequencies. If this effect is sufficiently pronounced, the continuum of states would
overlap with the guiding mode, and hence make it impossible to detect a guiding mode.

To the right in fig. 5.22 the spectral spectra of Square-rod-WG-1 can be seen. At first glance, it
does seem like there is a tendency for a higher transmitted signal in the middle of the scan range.
However, by inspecting the spectrum for x = 264.6mm, approximate position of the waveguide,
it can be seen that this is due to creeping of the lower band edge and that no distinct change
happen within the band gap. There is however a peak within the band gap around 0.136 THz
that was not observed in the Square-rod-1 sample. This peak is placed at the correct frequency
but is also present in all three of the shown spectra, which covers a much wider area than
the opening of the waveguide. It could be hypothesised that light could be scattered into the
waveguide when missing the waveguide opening, but as this was not observed for the Hex-hole
waveguides, it was instead concluded that this is in fact not a waveguiding mode.

As none of the Si-rod samples exhibit any waveguiding modes a cavity sample was created,
namely Hex-rod-cavity-2. As can be seen in fig. 5.3 this sample had cavities spaced ∼ 4mm
apart resulting in 4 cavities total. Due to the spacing of the cavities on the fabricated sample, it
was possible to choose the modeling parameters such that the distance between two cavities was
the same in the model. This corresponds to making a supercell out of 8× 8 standard unit cells,
the Γ−M−K− Γ route was then divided into 60 k-points and the calculation was done for 80
bands. An insert of the dielectric profile along with the band structure and a field distribution
plot can be seen in fig. 5.23. A single cavity mode is found within the forbidden region, which
is located at 0.156 THz, hence it is expected that if the light is focused onto the photonic
crystal where one of these cavities is located the crystal will work as a resonator, and hence a
large transmission is expected. Therefore, high transmittance around 0.156 THz spaced ∼ 4mm
apart is expected when the sample is scanned. This is also what is observed as can be seen in
fig. 5.24. Here the three spectral spectra seen to the right were taken at x = [265, 266.8, 268.9]
mm respectively. A clear peak inside the band gap at 0.1524 THz is visible in the spectra at
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265 and 268.9 mm while it is not present in the measurement at 266.8 mm which would then be
exactly between the two cavities. Furthermore, in the two-dimensional scan it can be seen that
there is another, albeit smaller peak, at x = 261.4, which would fit with there being another
cavity at this location. The measured resonance is only shifted by -2.3 % from the modelled
spectra in fig. 5.23, with the downwards shift being expected from having the rods placed on a
silicon base. These are all strong indicators that there is indeed a resonator transmission line
detected at this frequency.
The band gap of this sample is not very well defined as was otherwise observed for the rod-based
samples. One difference is the number of rows in this sample which is significantly reduced from
the other rod samples, as can be seen in table 2.1, likely contributing to a less defined band gap.
However, it is still clear that the signal is in a transmission valley around these frequencies as is
expected for a band gap. Hence it is concluded that it was possible to fabricate a structure in
the hex-rod configuration which exhibited a resonator mode.

For the two-dimensional photonic crystals based on silicon-rods hollow-core waveguides were
fabricated based on quadratic and hexagonal lattices, but it was not possible to detect waveguide
modes. This was attributed to the fact that the guiding modes extended from the UBGE into
the forbidden region, thus if the upper band gap was shifted down into the forbidden region it
might not be distinguishable from the upper continuum of modes. It is likely the case that a
solid-core waveguide based on a quadratic and hexagonal array of silicon rods would perform
better, a structure that can readily be fabricated using the same procedures with a slightly
altered photolithography mask. It was however possible to fabricate and detect a resonator-
mode created using a hexagonal array of silicon rods. As this band is exceedingly flat this does
show promise that using this fabrication technique it is possible to realise waveguiding modes.
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Figure 5.19: The band structure of a waveguide configuration with a hollow-core inside a hexagonal
array of Si-rods. A single band penetrates into the otherwise forbidden region and constitute a bound
mode. The field distributions of three k-points inside the forbidden region are also shown.
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Figure 5.20: The band structure of a waveguide configuration with a hollow-core inside a square array
of Si-rods. A single band penetrates into the otherwise forbidden region and constitute a bound mode.
The field distribution of three k-points inside the forbidden region is also shown.
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Figure 5.21: Left: The maximum transmittance value found in the band gap determined as BG ∈
[0.136; 0.176]THz. Right: Three transmittance, spectra taken at three points of the scan namely at [264,
266, 269]mm
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Figure 5.22: Left: The maximum transmittance value found in the band gap determined as BG ∈
[0.11; 0.15]THz. Right: Three transmittance, spectra taken at three points of the scan namely at [262.8,
264.6, 267.9]mm
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Figure 5.23: The band structure of a cavity configuration with a hollow-core inside a hexagonal array of
silicon rods. A single band penetrate into the otherwise forbidden region and constitute a bound mode.
The field distribution of the cavity mode inside the forbidden region is also shown.
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Figure 5.24: Left: The transmittance value at 0.15 THz for a scan over the opening of the Hex-rod-
cavity-2. Right: Three transmittance spectra, taken at three points of the scan namely at [265, 266.8,
268.9]mm
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6 | Summary and Conclusion

This project is sectioned into three parts. In the first part, theories that served as the basis for
the numerical programs used in this work were introduced and the two fabrication methods were
introduced. The method of Plane Wave Expansion was used to find the optimal design for wide
band gap photonic crystals, and also illuminated the need for a metal sample holder. The Fourier
Modal Method was extensively used to design one-dimensional sub-wavelength gratings and was
further used in the discussion of the band gaps of the two-dimensional photonic crystals. An
iterative Fast Fourier Transform model was introduced, used to bridge the figurative gap between
the idealised structures modelled with the Plane Wave Expansion method, and those fabricated
in this project. The method was also used to calculate the band structures of photonic crystals
where line- and point defects had been introduced. The first part concludes by introducing the
methods used to fabricate and characterise the photonic crystals.

In the second part of the project, the sub-wavelength all-dielectric gratings and their Fourier
transformed time-domain spectra were introduced. Four samples were fabricated using
capacitively-coupled reactive ion etching on high-resistivity silicon wafers with measured thick-
nesses of 100 − 105µm. The gratings had periods between 99.7 − 292.3µm, and etch depths of
12.9− 28.0µm and averaged strip widths in the range 39.9− 85.5µm, and exhibited Fano reso-
nances between 0.3 and 3.0 THz. The measurements were performed using collimated, linearly
polarised light with angles of incidence between 0◦ and 10◦. The frequency location of measured
Fano resonances were found within 15 GHz of the Fourier Modal Method for all four samples,
with the best having a deviation of only 8 GHz or less. Continuing with the best sample, the
angle of incidence was varied in steps of 1◦ and it was shown that the center location of the
Fano resonances could be tuned by ∼ 50 GHz, while the deviation between measurement and
the Fourier Modal Method remained within 8 GHz. To explain the underlying cause of Fano
resonances, and develop a model which could be used to design structures exhibiting Fano res-
onances at selected frequencies, the Propagation constant Matching Model was developed. The
ability of this model to predict the amount of Fano resonances and their frequency location
was tested against the Fourier Modal Method for 36 different sub-wavelength dielectric grat-
ings, showing deviations of resonance-frequency location comparable to those found between the
measured spectra and the Fourier Modal Method. The Propagation constant Matching Model is
therefore sufficiently capable of predicting Fano resonances and their frequency location, and the
explanation that these resonances are caused by coupling between a discrete set of diffraction
orders and a continuum of guided modes in the structure is therefore sound. The Propagation
constant Matching Model showed the lowest level of precision for the higher frequencies, which
was explained by the simplistic assumption of the empty lattice approach, used to approximate
the photonic crystal layer, in combination with higher frequencies propagating by higher-order
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modes and consequently being more localised in the grating-region of the structure. Finally, the
Propagation constant Matching Model was used as the basis for a simple algorithm that searches
parameter space for the combination of grating dimensions that result in a Fano resonance at
some input frequency. The idea being to have a model that could inexpensively find the grating
dimensions for a desired reflector, the spectra of which could then be calculated using the Fourier
Modal Method.

In the third and final part of this project, the two-dimensional photonic crystals were introduced.
Three varieties were fabricated, quadratic and hexagonal arrays of silicon rods standing on a
thin silicon substrate, and hexagonal arrays of air holes in a silicon wafer. All samples used
high-resistivity silicon wafers, where the wafers used for the rods and air holes had thicknesses
of 200± 10 and 100± 20µm, respectively. The rods were fabricated using capacitively-coupled
reactive ion etching while the air holes used femtosecond laser ablation. Using the Plane Wave
Expansion method the samples were designed to exhibit band gaps in the frequency range 0.1-0.4
THz. Samples were successfully fabricated for all three variations which exhibited band gaps for
frequencies between 0.15-0.35 THz. The measured transmittance spectra were obtained using
Fourier transformed time-domain spectroscopy. The samples were placed at the focus of a 50
mm lens and used a parallel-plate metal waveguide sample holder, removing the P-polarisation
and thereby allowing the structures based on silicon rods to exhibit band gaps. Obtained spectra
were compared directly to modelled transmittance spectra based on the Fourier Modal Method.
The correspondence between the measured and modelled band gaps was only satisfactory for
one sample. The general poor correspondence between modelled spectra and measurements
were explained by the measurements having multiple angles of incidence, and the fact that the
fabricated structures varied significantly from the idealised versions used in the Plane Wave
Expansion and Fourier Modal Method. To bridge this gap, the method of iterative Fast Fourier
Transform was used to include the effects of a homogeneous dielectric layer and the structures
being angled. This new model in conjunction with the limitations of the measurement setup
was used to explain the shift and reduction in the observed band gaps. To exploit these band
gaps in optical devices, it was tested if line and point defects would result in waveguides and
cavities, respectively. Band structures of photonic crystals with defects were obtained using the
two-dimensional Fast Fourier Transform.
The samples using a hexagonal array of air holes in silicon were fabricated both as solid- and
hollow-core waveguides. In accordance with the modelled band structure, the measurements
on the solid-core waveguide revealed waveguiding modes all throughout the photonic band gap.
No waveguiding modes were detected for the hollow-core waveguide. The band structure of the
hollow-core waveguide in a hexagonal array of air holes showed only a few waveguiding bands,
which did not extend far out from the continuum of states. Combining this with the general
tendency of narrower band gaps in the fabricated photonic crystals, caused by the homogeneous
dielectric layer, the lack of waveguided radiation was no surprise.
Hollow-core waveguides were fabricated by using both hexagonal and quadratic arrays of silicon
rods. Although the band structure of both samples had waveguiding bands extending signif-
icantly longer into the forbidden region, as compared to the structure based on air holes, no
significant signal was detected. The lack of transmitted radiation was probably caused by the
upper band gap edge being shifted down due to the homogeneous dielectric layer. The final sam-
ple presented in this project was a hexagonal array of silicon rods where four defects in the form
of missing rods were introduced. A scan across this sample clearly showed sharp transmittance
resonances at a frequency within 2.3% of the frequency predicted by the model.
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The methods used in this project to fabricate samples were reactive ion etching and laser ab-
lation. Although the methods were not used to create identical samples, their strengths and
weaknesses observed in this project can still be identified. The method of reactive ion etching
had more steps, and therefore opportunities for failure than laser ablation. From design phase
to produced sample, reactive ion etching was also far more laborious, however, the method
scales much better, because multiple samples can be etched simultaneously. It is therefore a
great method for "mass-producing" the finalised sample but slow during the initial iteration of
the sample design. On the other hand, the method of laser ablation can in the span of a few
hours go from design to finalised sample, but only one sample can be fabricated at one time.
Additionally, if structures with deep features are of interest, e.g., holes in silicon wafers, laser
ablation was found to be a better tool as the slope of the walls was much steeper than what
could be produced using reactive ion etching.

Conclusion

This project aimed to design, fabricate, and characterise passive optical devices able to manip-
ulate terahertz radiation. To this end, one- and two-dimensional all-dielectric photonic crys-
tals have been modelled, fabricated, and characterised using readily accessible methods. The
modelled and measured optical spectra were in excellent agreement with the one-dimensional
structures exhibiting Fano resonances. The two-dimensional photonic crystals exhibited the
calculated band gaps, though the models had to be extended from two to three dimensions to
achieve a better agreement with the measured spectra. Optical components exploiting photonic
crystals, such as spectral-specific reflectors, waveguides, and cavities, were fabricated and their
intended effect was shown.

Future Work

Although this project group achieved what it set out to do, many questions have been left
unanswered, and there is consequently room for more work, before the samples presented can
be integrated in optical devices.
Solid-core waveguides were successfully fabricated, but if they are to be used to, e.g., collect the
signal of multiple sources, it is necessary to introduce bends to the waveguides, which was not
attempted in this project.
Although never tested, the models predict that the rod-based photonic crystals only exhibit band
gap effects because P-polarised light was removed by a metal sample holder. At its thinnest,
this sample holder was multiple centimeters thick, which inhibits the design of compact optical
devices. It is therefore of interest to design structures, where a metal layer is deposited directly
onto the sample. This can easily be done for the backside of the wafer, i.e., the solid silicon
substrate that the rods are standing on. On the top side, it could be conceived that a sufficiently
thin metal plate could be glued on. The question of how thick the metal should be to suppress
P-polarised light is also an open question.
No hollow-core waveguides were successfully fabricated in this project, likely due to a relatively
thick layer of redeposited silicon during the laser ablation, or the remaining silicon substrate that
the rods are standing on. The issue of redeposited material has been solved by using lenses with
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shorter focal lengths, yet no wafers were left to fabricate new photonic crystals. It can therefore
easily be tested if hollow-core waveguides based on air holes can be successfully fabricated when
the redeposited material is significantly reduced. To reduce the substrate layer that the silicon
rods are standing on is more tricky, the issue being that the samples are prone to break when the
substrate gets sufficiently thin. A possible method could be to glue the previously mentioned
metal layer to the backside of the wafer, before the etching procedure is started, allowing more
of the substrate to be etched without the sample becoming too fragile.
Discrepancies were found between the measured and modelled photonic band gaps, which were
explained by a variety of factors, one being that the non-collimated light was used to measure
the sample. It is therefore of interest to investigate the samples using collimated light. All this,
and much more, are ideas that this project group did not explore. We leave the rest to the
coming generations at Aalborg University.

Sincerely,
Anders, Jesper, and Karl
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A | Change of Index on
Fourier Series

This appendix gives the reason for keeping the same summation limits on the Fourier series
under an index change. It is related to the possibility of writing the product of two periodic
functions as

v(t)w(t) =
∞∑

q=−∞
v{q}e

iqt
∞∑

n=−∞
w{n}e

int =
∞∑

n=−∞
w{n}

(
v(t)eint

)
. (A.1)

Here the Fourier coefficients for the parenthesis, by comparison with, e.g., eq. (2.75), can be
found as [108]

1
2π

∫ 2π

0
v(t)einte−imtdt = 1

2π

∫ 2π

0
v(t)e−i(m−n)tdt = v{m−n}, (A.2)

which then leads to [108]

v(t)w(t) =
∞∑

n=−∞
w{n}

( ∞∑
m=−∞

v{m−n}e
imt

)
=

∞∑
m=−∞

eimt
∞∑

n=−∞
v{m−n}w{n}, (A.3)

thus resulting in the same result as the otherwise rather simple and dubious substitution m =
n+ q that would lead to q = m− n.
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B | Photonic Crystal FMM Figures

(a)

(b)

Figure B.1: (a)-(b) Shows the transmittance of S-polarised light parallel with the K-direction in the
first Brillouin zone radiation through a photonic crystal that is composed of 10 lines of rods along z. The
insert in each figure shows the relative permittivity profile, where εrods = 3.42 and εsurroundings = 12. The
intermediate values arises from a geometric averaging of the relative permittivity for the points around
the interface between the rods and the surrounding medium. The radii of the rods are rrods = 168.6 µm
and the period between the rods along one of the crystal axes is Λ = 687.6 µm.
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Group 5.340 Appendix B. Photonic Crystal FMM Figures

(a)

(b)

Figure B.2: A comparison between the band diagram calculated with PWE for an infinite photonic
crystal seen on the left and the transmittance calculated with FMM seen on the right, both only for
S-polarisation. Only the even modes can be excited, since the odd modes does not match the symmetry
of the input field [70, 71] and the disallowed modes is not covered for the given propagation direction.
The number of layers along z used for the FMM is 481 for (a) and 959 for (b). Again the photonic
crystal for the FMM is composed of 10 lines of rods along z, which is parallel with the M-direction in
the first Brillouin zone, and εrods = 3.42, εsurroundings = 12, rrods = 168.6 µm, Λ = 687.6 µm. Contrary
to the result presented in fig. 2.20, comparing the graphs in (a) and (b) it is seen using ∼ 500 layers in
the z-direction for these settings does not really suffice for all band gaps. However, the placement of the
first band gap, which is the one of interest, is sufficiently precise. As such a division similar to that seen
in (a) will be used to compare the model with the experimental results.
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C | Angled Spectra: M2, M3 and
M5

Figure C.1: Surface plot of the modelled and measured transmittance spectra of the M5 sample for
various frequencies and angle of incidence.
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Group 5.340 Appendix C. Angled Spectra: M2, M3 and M5

Figure C.2: Surface plot of the modelled and measured transmittance spectra of the M3 sample for
various frequencies and angle of incidence.
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Figure C.3: Surface plot of the modelled and measured transmittance spectra of the M2 sample for
various frequencies and angle of incidence.
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D | THz-TDS Spectra

Λ[µm] r−[µm] r+[µm] tw[µm] h[µm] Orientation Rows
Hex-hole-1 495.59 213.85 218.10 - 100 ±20 M 17
Hex-hole-2 494.73 201.74 210.877 - 100 ±20 K 13

Hex-hole-WG-1 434.63 202.23 222.33 - 100 ±20 K 28
Hex-hole-WG-2 495.04 200.80 206.02 - 100 ±20 K 13
Hex-hole-WG-3 491.00 201.00 210.60 - 100 ±20 K 13

Hex-rod-1 615.74 71.81 171.79 - - M/K 36/51
Hex-rod-2 590.97 48.32 117.87 36.06 148.88 M/K 36/51
Hex-rod-3 616.35 76.26 124.96 92.11 98.74 M/K 36/51
Hex-rod-4 721.99 85.41 108.64 59.16 142.15 M/K 31/45
Hex-rod-5 662.84 121.48 164.70 - - M/K 32/45

Square-rod-1 659.10 148.01 191.97 - 99.78† X 23
Square-rod-WG-1 668.55 167.17 197.97 - 99.78† X 23
Hex-rod-WG-1 660.00 152.99 202.03 - 99.78† K 22
Hex-rod-cavity-1 630.22 124.95 124.95 - 99.78† K 10
Hex-rod-cavity-2 638.16 161.14 161.14 - 99.78† K 10

Table D.1: Presents the dimensions relevant to model the fabricated samples. The naming convention
for holes and rods are visualised in fig. 5.2(e) and fig. 5.4(b), respectively. †: calculated from etch time.
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Figure D.1: The measured and modelled transmittance spectra of the Hex-hole-1 sample oriented such
that the light propagates along the K-direction. The measured band gap was determined to be between
0.28 and 0.30 THz while the calculated band gap lies between 0.15 and 0.18 THz.
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Figure D.2: The measured and modelled transmittance spectra of the Hex-hole-2 sample, oriented such
that the light propagates along the K-direction. The measured band gap was determined to be between
0.29 and 0.35 THz while the calculated band gap lies between 0.16 and 0.24 THz. The red vertical
lines show the location of the band gap using a fully three-dimensional FFT method with an air layer
corresponding to 40 % of the height in the PPMWG, or equivalently 67 µm.
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Figure D.3: The measured and modelled transmittance spectra of the Hex-hole-WG-1 sample oriented
such that the light propagates along the K-direction. The measured band gap could not be determined
while the calculated band gap lies between 0.21 and 0.32 THz.
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Figure D.4: The measured and modelled transmittance spectra of the Hex-hole-WG-2 sample oriented
such that the light propagates along the K-direction. The measured band gap could not be determined
while the calculated band gap lies between 0.17 and 0.26 THz.
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Figure D.5: The measured and modelled transmittance spectra of the Hex-hole-WG-3 sample oriented
such that the light propagates along the K-direction. The measured band gap could not be determined
while the calculated band gap lies between 0.16 and 0.24 THz.
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Figure D.6: The measured and modelled transmittance spectra of the Hex-rod-1 sample for light
propagating along both the M- and K-direction. The measured band gap for the M-direction was
determined to be between 0.17 and 0.21 THz, for the K-direction it was determined to lie between 0.17
and 0.24 THz. The calculated band gap lies between 0.11 and 0.17 THz for the M-direction, and between
0.11 and 0.18 THz for the K-direction.
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Figure D.7: The measured and modelled transmittance spectra of the Hex-rod-2 sample for light
propagating along both the M- and K-direction. The measured band gap for the M-direction was
determined to be between 0.21 and 0.24 THz, for the K-direction it could not be determined. The
calculated band gap lies between 0.14 and 0.24 THz for the M-direction, and between 0.14 and 0.24 THz
for the K-direction.
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Group 5.340 Appendix D. THz-TDS Spectra

Figure D.8: The measured and modelled transmittance spectra of the Hex-rod-3 sample for light
propagating along both the M- and K-direction. The measured band gap for the M-direction was
determined to be between 0.16 and 0.20 THz, for the K-direction it was determined to lie between 0.17
and 0.24 THz. The calculated band gap lies between 0.16 and 0.27 THz for the M-direction, and between
0.16 and 0.27 THz for the K-direction. The red vertical lines show the location of the band gap using
a fully three-dimensional FFT method with a Si-layer making up 40% of the space between the metal
plates.
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Figure D.9: The measured and modelled transmittance spectra of the Hex-rod-4 for light propagating
along both the M- and K-direction. The measured band gap for the M-direction was determined to be
between 0.15 and 0.20 THz, for the K-direction it was determined to lie between 0.16 and 0.22 THz.
The calculated band gap lies between 0.16 and 0.25 THz for the M-direction, and 0.15 and 0.25 THz for
the K-direction. The red vertical lines show the location of the band gap using a fully three-dimensional
FFT method with a Si-layer making up 30% of the space between the metal plates.
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Figure D.10: The measured and modelled transmittance spectra of the Hex-rod-5 sample for light
propagating along both the M- and K-direction. The measured band gap for the M-direction was
determined to be between 0.13 and 0.17 THz, for the K-direction it was determined to lie between 0.14
and 0.19 THz. The calculated band gap lies between 0.12 and 0.20 THz for the M-direction, and between
0.12 and 0.21 THz for the K-direction.
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Figure D.11: The measured and modelled transmittance spectra of the Square-rod-1 sample oriented
such that the light propagates along the X-direction. The measured band gap was determined to be
between 0.13 and 0.16 THz while the calculated band gap lies between 0.11 and 0.19 THz. The red
vertical lines show the location of the band gap using a fully three-dimensional FFT method with a
Si-layer making up 50% of the space between the metal plates.
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Figure D.12: The measured and modelled transmittance spectra of the Square-rod-WG-1 sample ori-
ented such that the light propagates along the X-direction. The measured band gap was determined to
be between 0.13 and 0.15 THz while the calculated band gap lies between 0.11 and 0.19 THz.
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Figure D.13: The measured and modelled transmittance spectra of the Hex-rod-WG-1 sample oriented
such that the light propagates along the K-direction. The measured band gap was determined to be
between 0.14 and 0.19 THz while the calculated band gap lies between 0.12 and 0.20 THz.
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Figure D.14: The measured and modelled transmittance spectra of the Hex-rod-cavity-1 sample oriented
such that the light propagates along the K-direction. The measured band gap was determined to be
between 0.14 and 0.16 THz while the calculated band gap lies between 0.13 and 0.23 THz.
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Figure D.15: The measured and modelled transmittance spectra of the Hex-rod-cavity-1 sample oriented
such that the light propagates along the K-direction. The measured band gap was determined to be
between 0.15 and 0.19 THz while the calculated band gap lies between 0.134 and 0.23 THz.
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E | One-Dimensional Parallel Plate
Metal Waveguide

This appendix outlines the criteria for multiple modes to exist in a region homogeneous dielectric
medium between two perfect electric conductors for S-polarised light. The two parallel plates
are separated by a distance D along the y-axis, and extend infinitely in the xz-plane. As the
region is homogeneous the magnetic field has to satisfy the Helmholtz equation as(

∇2 + k2
0εi
)

H(r) = 0, (E.1)

with solutions on the form
H(r) = ẑH(y)eikxx. (E.2)

inserting eq. (E.2) into eq. (E.1) then yields(
∂2

∂y2 − k
2
x + k2

0εi

)
H(y) = 0, (E.3)

denoting γ2 = k2
0εi − k2

x and rearranging yields the following second order differential equation

∂2

∂y2H(y) = −γ2H(y), (E.4)

which has the following real solution

H(y) = Acos(γy) +B sin(γy). (E.5)

Using the boundary condition for perfect electric conductors, i.e.,

E||(0) = E||(D) = 0 (E.6)

which can be related to the magnetic field by ampere’s law in the frequency domain

∇×H = −iωε0εiE. (E.7)

As E(0, D) · x̂ = 0 this results in the following boundary conditions for the magnetic field

∂

∂y
H(y)

∣∣∣∣
y=0

= ∂

∂y
H(y)

∣∣∣∣
y=D

= 0. (E.8)
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By inspection of eq. (E.5) it is clear then that B = 0, furthermore the following must be true
for γ

γ = π

D
m, m = 0, 1, 2, 3... (E.9)

Based on this solution the following relation for kx emerges

kx =
√
k2

0εi −
(
π

D
m

)2
(E.10)

hence for propagating solutions to exist in the waveguide the following must be satisfied

k0 ni >
π

D
m, (E.11)

then using k0 = 2πν
c and isolating for ν results in the following requirement for the frequency

ν >
mc

2Dni
(E.12)

hence the fundamental mode will always exist but then a cutoff will emerge for the following
modes in the waveguide.
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