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Summary of notation
.
= Equality relation that is true by definition
∼ Is distributed as
U The uniform distribution
Pr{} Probability
| On the condition
| · | The size of the set ·
‖·‖ The euclidean distance of vector ·
max

x
f (x) The maximization of function f(x)

ε The probability of taking a random action
α The learning rate
γ The discounting rate
s Current state
s′ Next state
r A reward
a An action
⊂ The subset of
∈ Is an element of
t Discrete time step
T The total amount of discrete time step
At Action at time t
St State at time t
Rt Reward at time t
Gt The return after time t
p(s’,r|s,a) Probability of transitioning to state s′ with reward

r by taking action a in state s
q∗(s, a) Value of taking action a in state s under optimal

policy
Qt State-action value function estimate
R Deployment area
pn Center position of subnetwork n
A Subnetwork coverage area
Rsubnetwork The radius of the subnetwork area
∆n Position of device n within subnetwork area
sn′ The absolute position of device n in cartesian coor-

dinates
K The channel allocation set
kn Channel allocation of subnetwork n
m The total amount of channels available for alloca-

tion
Ymi

n The total received power at subnetwork n on chan-
nel mi

X′n The transmit power of device n′
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B The bandwidth of the used channel
wn The noise power spectral density
dn,n′ Distance between subnetwork n and device n′

Gn,n′ The channel gain between subnetwork n and device
n′

Gpl(dn,n′) The path loss gain as a function of distance
hn,n′ The small scale fading gain between subnetwork n

and device n′

Gs(pn, sn′) The shadowing gain as a function of position pn

and s′n
δ[.] The Kronecker delta
mi The channel for which a value holds true
ui The power level to use
Imi
n The total interference power at subnetwork n on

channel mi
SINRmi

n The SINR value at subnetwork n on channel mi
Ct The capacity at time t
O The target capacity for the binary reward function
S The set of states
sth The state quantization threshold value
A The set of actions
cn Channel available for allocation
pn Power level available for allocation
u The total amount of power levels available for allo-

cation
z The total amount of channels to group together
ε(t) ε decay as a function of t
εmax The maximum value for the ε decay function
εmin The minimum value for the ε decay function
εsteps The amount of time steps to use to go from εmax to

εmin

LSn,n′ The large scale fading between subnetwork n and
device n′

d0 The reference distance for the large scale fading
model

η The path loss exponent
cov( f (pn), f (sn′))The covariance between point pn and sn′

σs The standard deviation for the shadow map
δd The decorrelation distance for the shadow map
σr The Rayleigh distribution scale parameter
NF Noise figure





Chapter 1

Introduction

Electronic technology is in a constant state of evolution. Technological break-
throughs are sought in every avenue whether the goal is to make devices smaller,
cheaper, less power consuming or something else there is a constant drive to
achieve better performance. The push for better performance also affects the world
of wireless communication. Indicative of this is the different generations of cellu-
lar networks that enable mobile telephony. The Fifth Generation (5G) of cellular
technology is currently being adapted throughout the world. It promises higher
data rates and stability through the enhanced Mobile Broad Band (eMMB) use
case well know from our personal devices. The eMMB use case is not the only
advancement made by the fifth generation. Progress is also made in the field of
Machine Type Communication (MTC). MTC is characterized by the lack of a hu-
man initiator of the communication [11]. It is machines communicating with each
other or a server. MTC is an enabler of the Internet of Things (IoT), smart -houses,
-cities, -metering etc. Common for these use cases is small data packets but high
machine density. The fifth generation of cellular technology addresses this type of
communication through the massive Machine Type Communications (mMTC) core
service. Another type of MTC addressed by 5G is the Ultra Reliable Low Latency
Communication (URLLC). This core service aims to support industrial automation,
self driving vehicles and remote surgery. Common for these applications is the use
of control loops that require high reliability and low latency to guarantee stability
[26].

With adaption of 5G well underway some research focus has shifted towards
the Sixth Generation (6G) radio access technology[30]. No unequivocal vision for
6G has been reached by different working groups. Common for most though is
the vision to seamless interconnect the digital-, physical- and human world. This
vision poses a huge demand on the wireless technology that shall implement it.
Targets that have been identified includes throughput exceeding 1 Tbps, reliability
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2 Chapter 1. Introduction

of one in a billion bit errors and latency of no more than 0.1 ms[19]. In [7] these
requirements where dubbed "extreme" and the need to move intelligence and de-
cision making to the edge of the infrastructure was identified.

1.1 In-X subnetworks

The extreme demands envisioned in 6G has led to the proposal of In-X Subnet-
works [6]. In-X subnetworks are to be deployed where the extreme demands
arises. The subnetworks are necessary because the extreme demands requires a
lot of radio resources. If the extreme demands where to be handled at a macro- or
microcell level the base station would simply run out of resources.

The X part of In-X is substituted for the relevant use cases. Some examples are
In-Robot, In-Vehicle, In-Body and In-House [7]. These use cases stipulate that the
deployment of In-X subnetworks will happen in an uncoordinated fashion. It is the
use cases that outlines where and when to use In-X subnetworks. Requirements
on where somebody with an In-body subnetwork can go or which vehicle they can
use would be detrimental to the applicability of In-X subnetworks.

The uncoordinated deployment approach is in stark contrast to the usual coor-
dinated deployment scheme used in cellular networks.This departure from coordi-
nation exacerbate the problem of interference. Interference in this case is when two
or more transmitters try to use the same radio resource. A relatable comparison
is when two or more people speak at the same time in a conversation. It becomes
more difficult for the listener to decipher what each individual says. In the same
way it becomes difficult for a radio receiver to decipher a message if multiple trans-
missions are received at the same time.

The task of In-X subnetworks is to support extreme demands. The support
of extreme demands is however not the only characterizing feature of In-X sub-
networks. In [7] four characterizing features are defined. The four characterizing
features of In-X subnetworks are:

• Support for extreme requirements

• Limited up- and downlink transmission power for a limited coverage area

• Hierarchical structure with tree or star topology controlled by an Access Point
(AP)

• No mobility across subnetworks. Devices can only connect to one subnet-
work for the operation time.
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Use case
In-robot,
In-production module

In-vehicle In-body In-house

Example of
applications

Motion control,
force/torque control,
position/proximity control

Engine control,
electric power steering,
ABS, electric park brakes,
suspensions, ADAS sensors

Heartbeat control,
vital signs monitoring,
insulin pumping,
muscle haptic control

Entertainment, gaming
training, education
healthcare(robotic-aided
surgery)

Number of devices
~20 (motion/force control)
~20-40 (mobile robots)

~50-100 <20 ~10

Max range ~5 m ~10 m ~2 m ~10 m
Data rate
per link

<10 Mbps
<10 Mbps (control)
<10 Gbps (ADAS sensors)

<20 Mbps ~7 Gbps

Traffic type Periodic, event-based
Periodic, event-based
uncompressed video
streaming

Periodic, event-based
Event-based, compressed
video streaming

Min latency ~100 µs ~54 µs ~20 ms
~5 ms (VR)
~2 ms (healthcare)

Communication service
availability

99.999 9 % to
99.999 999 %

99.999 9 % to
99.999 999 %

99.999 999 9 %
99.999 9 % (VR)
99.999 999 % (healthcare)

Max subnetwork density ~40 000 km/m2 ~150 / lane-km (car)
~15 /aircraft (~80 m long)

~2/m2 ~1 / room

Life-critical No Yes Yes
No (entertainment, gaming,
training education)
Yes (healthcare)

Criticality of
power consumption

Low Low High Low/medium

Table 1.1: Table of key parameters for 6G In-X subnetworks. [7]

All four characteristics must be fulfilled to characterize an In-X subnetwork. The
purpose of the In-X subnetworks can broadly be categorized into two categories.
One is a low data rate, low latency, and high reliability. The other is high data rate
with more relaxed latency and reliability requirements although compared to other
technologies the latency and error rate is still low. The first category encompasses
the use cases that require a closed loop control function for rapid processes. Such
processes could be fast moving robots or ignition timing in an internal combustion
engine. The second category involves application where data intense information
is to be conveyed. Data intense information could be a video link used in a life
critical application such as remote surgery or Advance Driver Assistance Systems
(ADAS) in a vehicle [7]. A summary of identified use cases and their requirements
are given in table 1.1

Combining some of the identified use cases can lead to one subnetwork con-
tained within another i.e. a person with an in-body subnetwork who uses a car
with it’s own in-vehicle subnetwork. The uncoordinated deployment necessitates
some considerations as to how to handle interference in areas dense with subnet-
works.
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1.2 Machine learning in wireless technology

Advances in electronic technology has led to a whole new era of connectivity.
Whether it is computer, network or wireless technology they all play an instru-
mental role in the technological landscape today. The high level of connectivity
and interaction has brought about massive amounts of data and computational
power [15]. The large amount of data is incomprehensible for the individual who
tries to analyze and process it [5]. It does however beg the question: is it possi-
ble to use computational resources to learn from a data set this question is the epitome
of machine learning. Machine learning encompasses computer algorithms whose
objective it is to infer knowledge about the given task. How the algorithms do it
depends on the task at hand which can generally be split in to three categories.
The three categories are: supervised learning, unsupervised learning ,and rein-
forcement learning [25].

Supervised learning relies on a knowledgeable agent to feed it labelled train-
ing data. The task of the supervised learning agent is to find a mapping between
input data and the desired output which is given by the data labels. The learnt
mapping can be applied to other data which was not in the training data set. Cor-
rect mapping for other data is based on the assumption that the training data set
generalized the task that the learning agent is supposed to learn. This type of ma-
chine learning is used in classification and regression problems mapping input to
labels or values respectively [25]. Examples of areas where supervised learning can
be applied in wireless communication includes signal detection, channel encoding
and decoding, channel estimation and prediction, and link adaption.

Unsupervised learning uses unlabelled data as input and finds clusters in the
data set. The clusters are groupings of data points that are more similar to each
other than the other data points. The learning agent looks for some kind of struc-
ture or other commonalities that tie data points together. This type of machine
learning is used for tasks such as density function estimation [25].

Reinforcement learning is fundamentally quite different from the other two
kinds of machine learning. The objective of the learning agent is to interact with
its environment in order to learn how to solve a task. It does not need a large
set of input data, it creates its own data through interaction. The learning agent
interacts with its environment through its states and actions. A state is a summary
of relevant information about the environment. The actions represents acts taken
by the learning agent that influences the environment. As the action interact with
the environment it leads to changes in the state. Each action is associated with a
reward and the learning agent tries to maximize the cumulative reward. To max-
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imize the cumulative reward it forms a policy. The policy is a mapping between
the states and the probability of taking each action. To learn the policy some de-
gree of exploration is necessary for the agent to learn all the rewards associated
with the state and action space [28]. To use reinforcement learning careful consid-
erations must be made in how to define states, actions and rewards. Unintended
or detrimental behavior might ensue from a bad design. Reinforcement learning
is an obvious choice to use in problems that require decision making based on
environmental states. Robot trajectory planning, autonomous driving, game play-
ing and interference management is obvious candidates for reinforcement learning
solutions.

1.3 Scope of project

In the previous sections the concepts of 6G In-X subnetworks, interference chal-
lenges and machine learning was summarized. The scope of this project is to
combine the task of interference management in 6G In-X subnetworks with the
concept of reinforcement learning. The concept is to use reinforcement learning
to learn how to allocate channels and transmit power levels in In-X subnetworks.
The performance of the reinforcement learning method will be characterized by
the achieved Signal to Interference plus Noise Ratio (SINR) and capacity values. A
performance comparison is made between reinforcement learning and other meth-
ods such as a Centralized Graph Coloring (CGC) algorithm and a greedy selection
algorithm.





Chapter 2

Interference management in dense
subnetworks

In this chapter, the problem of interference is presented, along with common ap-
proaches for dealing with it. In particular, the most suited interference manage-
ment approaches for subnetworks will be analyzed.

2.1 Deployment of In-X subnetworks

In this section an example is given on how a possible deployment of an In-X sub-
network could be.

To describe the concept of interference it is worthwhile to consider how In-X
subnetworks are envisioned to be deployed. One of the prerequisites of an inter-
ference event is the close proximity of multiple radios. For interference to cause
problems the deployment of In-X subnetworks must lead to multiple radios in
close proximity of each other. In section 1.1 different use cases were identified.
Even though each use case is different the problem of interference is the same for
all. The level of interference is governed by the effective deployment density. The
use cases with the highest probable density includes in-vehicle and in-robot sub-
networks. The in-vehicle happens in close traffic and in-robot when a large amount
of robots is deployed in the same area.

A possible scenario where In-robot subnetworks can be employed is in au-
tonomous robots in a factory setting. Each robot uses its own subnetwork to com-
municate between a controller, actuators and sensors. The position of each robot
in the factory depends on the given task for the robot. A very common task for
an autonomous robot in a factory setting is to transport components or modules

7



8 Chapter 2. Interference management in dense subnetworks

between factory units. Many robots may operate at the same time and each one
has its own distinct task. This leads to an environment where the robots would
come very close to each other from time to time.

An environment where subnetworks may come in close contact with each other
is the case of an uncoordinated radio deployment. An uncoordinated radio deploy-
ment is characterized by the lack of regard to radio performance in the placement
of radio units. The placement of radio units is driven by other requirements such
as the ability to move freely in space. Every use case summarized in section 1.1
has elements of an uncoordinated deployment. The in-Robot use case requires
mobility so robots may come in close contact with each other. In-car subnetworks
come in close contact in traffic. The in-body use case is even worse because an in-
body subnetwork may be fully contained within other subnetworks. This situation
arises when a person with an in-body subnetwork is a passenger in a vehicle with
a subnetwork or is an occupant of a house with a subnetwork. The in-house use
case is also uncoordinated as subnetworks will be placed by the end user with no
regard to other subnetworks.

A coordinated deployment is one where radio performance is taken into con-
sideration when placing some or all radio units. An example of a coordinated
deployment is cellular networks. In a cellular network the Base Stations (BS) are
placed in a hexagonal grid to tessellate the coverage area. In the context of in-X
subnetworks it is possible to make a coordinated deployment in the in-production
module use case. Production modules are static which enables the possibility of
coordinating the deployment.

A comparison of a coordinated and uncoordinated deployment is shown in
figure 2.1. Notice how some devices are part of multiple Access Points (APs)
coverage areas in the uncoordinated case. This overlap in coverage area exacerbates
the interference.

2.2 The problem of interference

The concept of interference was shortly presented in section 1.1. It was defined
as two or more radios trying to access the same resources shared by multiple de-
vices. The resources in the interference case can be subdivided into three domains:
space, time and frequency. An overlap must occur in all domains for an interfer-
ence event to happen. Interference deteriorates the receivers ability to discern the
received message.

In the context of cellular networks two types of interference exist: inter-cell
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CoordinatedUncoordinated

Access Point

Device

Coverage area

Figure 2.1: A comparison of an uncoordinated and a coordinated radio deployment. Notice the
overlap in coverage area in the uncoordinated case.

and intra-cell. The distinction between the two is the relation between the inter-
fering radios. In intra-cell interference the interfering radios belong to the same
cell. An example is two User Equipments (UEs) transmitting at the same time in
the uplink. In intra-cell interference the interfering radios belong to different cells.
The worst case scenario in intra-cell interference is when UEs are located along
a cell edge. Assuming that the cell radius is equal for both cells and the fading
is roughly equal then the downlink signal from each cell is received with almost
equal strength. In the uplink a similar problem occurs. The signal from the UE is
received with roughly equal strength at both BS. In figure 2.2 the geometry of a UE
on a cell edge is shown.

A fourth possible radio resource domain is spreading codes as used in spread
spectrum access. The use of spread spectrum techniques requires Power Control
(PC) to mitigate the near-far problem [22]. PC is a method where a control loop is
used to vary transmission power. The control loop guarantees a link quality with
the lowest possible transmission power which in turn corresponds to the lowest
possible interference power. PC methods exist on a inter-cell level. Applying PC
with coordination between cells to mitigate intra-cell interference is a much more
complex task. As PC in spread spectrum requires coordination between cells it is
considered a poor choice for networks using uncoordinated deployment. Spread
spectrum techniques are thus not considered a viable option for In-X subnetworks.
Another issue with PC is the control loop sample time. When the communication
has to operate with very low latencies the sample time must be very small. This
introduces a large overhead in communication which is not desired.
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UE

Desired BS

Interfered BS

r

r

d1

d2

d1 ≈ d2

Figure 2.2: The cell geometry of a worst case interference scenario with an UE on a cell edge.

2.3 Interference management techniques

In this section the different radio resources and interference mitigation methods
within each domain is presented.

2.3.1 Spatial interference management

Propagation of radio waves have naturally occurring attenuation with distance
due to path loss [22]. This phenomenon introduces the idea of separating radios in
space with a distance such that the interference power between the radios becomes
negligible [22]. Separation is a very simple solution to the problem of interference
but it is often not a viable solution. To use space separation rules must be applied
on the placement of radios that is it necessitates a coordinated deployment. An
example of such deployment is cellular network planning where BS are placed in
hexagonal grids to tessellate the coverage area. Many applications dictate require-
ments in opposition to intelligent placement such as the need for mobility or lack
of a placing agent.

Another spatial interference management method is PC as described in section
2.2. By reducing the transmission power the perceived interference power level
for others are also reduced [14]. PC is a spatial method because the lower power
reduces the coverage area due to path loss.To have a positive effect for every radio
in range of each other everyone must use PC.

Directional antennas are also a case of a spatial interference management tech-
nique. The directional antenna differs from the omnidirectional antenna in that it
has a peak in directivity i.e. it transmits and receives more power in a certain di-
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rection than others [14]. This solution is appropriate when it is possible to aim the
antennas at each other. An example of where directional antennas are used is when
sectoring a cell. Here the directional antennas replace an omnidirectional one. The
cells are divided into sectors of typically 120 or 60 degrees. In mobile applications
the directional antenna must be mounted on a servo gimbal to aim. A servo gimbal
is both expensive and bulky so their use is limited. Another issue with aiming is
the necessity of tracking the recipients position. An application where the price
and bulkiness of an aimed antenna is tolerated is in satellite communication.

Beamforming is similar to directional antennas in that it achieves directionality.
The method to achieve directionality is different though. A directional antenna
achieves its directionality through its physical design. In beamforming the direc-
tionality is achieved with an antenna array and signal processing [22]. An antenna
array is a collection of antennas in close physical proximity. The radiation pattern
of each antenna element augment each other to form a combined radiation pat-
tern. By adjusting phase and amplitude of the signal for each antenna element
in the array it is possible alter the combined radiation pattern and form a steer-
able beam. As no mechanical movement of the antenna array is necessary to aim
beamforming is more rapidly adaptable. Similarly to directional antennas it is also
necessary to either track the recipients position or derive it based on the recipients
transmissions.

Common for both directional antennas and beamforming is that they will only
work as a solution to interference if the interfering radios are not in the same direc-
tions as the desired link. Another drawback is the size of directional antennas and
antenna arrays. They are generally bulkier than non directional antennas. This is
a limitation when the application requires a small form factor.

2.3.2 Time domain interference management

One of the prerequisites of an interference event to happen is for two or more
transmission to take place at the same time. An opportune possibility is then to
separate all transmissions in time. To separate in time each radio must have knowl-
edge about when other radios transmits. A regulatory solution to this problem is
the Listen Before Talk (LBT) procedure where each radio listens whether any other
radios are transmitting before starting its own transmission [22]. This approach is
used in unlicensed bands.

Another way to coordinate transmissions in the time domain is to use a central
coordinator that keeps track of every radio in an area and their wish to transmit.
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This case is often encountered in cellular networks where the central coordinator
is the scheduler of the BS. The scheduler allocates unique time slots for each de-
vice. This solution requires strict time synchronization between BS and the device.
The time synchronization is necessary because if a device were to drift out of time
alignment it might end up transmitting out of turn and thereby interfere the com-
munication of another radio [14]. The centralized coordination is often used in
licensed bands as regulations for the unlicensed bands may prohibit its use.

Heterogeneous Network (HetNet) is the coexistence between cellular networks
and femtocells. Femtocells are short range devices using the same resources as the
cellular network it exist within. Femtocells are deployed based on demand and
with no regard for the cellular network. To coexist in time domain Almost Blank
Sub Frames (ABSFs) are used. ABSF is sub frames where only reference subcarriers
are transmitted. Macro User Equipments (MUEs) in the vicinity of the femtocell
are then scheduled to transmit in the blank subframe and will not interfere the
femtocell [20].

2.3.3 Frequency interference management

Frequency interference management concerns the frequency at which a transmis-
sion takes place. Transmissions on different frequencies will not interfere with each
other. A simple solution to interference could be to assign a unique frequency to
each radio pair that wish to communicate [14]. Unfortunately there is a scarcity
of available frequencies. The scarcity is caused partly by technological limitations
and partly by the properties of different frequencies. Properties such as propaga-
tion through walls is only observed for a limited set of frequencies. Only a finite
amount of frequencies is available and the usage of large parts of it are regulated.
Therefore one has to buy a license to be the sole user of a frequency block or op-
erate in a frequency block that is free to use [22]. The free to use blocks however
suffers from congestion and it is unlikely to be interference free. Especially the
blocks below 10 GHz see heavy usage.

2.4 Interference management in In-X subnetworks

In this section the different interference domains are analyzed for their eligibility
for In-X subnetworks.

With three possible domains to combat interference in some considerations can
be made as to which is suitable for In-X subnetworks.
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The spatial domain has multiple drawbacks when it comes to In-X subnet-
works. The concept of separation distance is impossible in an uncoordinated de-
ployment. PC is a possibility and may be beneficial with respect to power con-
sumption. It depends on how much power is necessary to transmit feedback on
the received Signal to Interference plus Noise Ratio (SINR) versus how much power
is saved with respect to the transmissions. The eligibility of directional antennas
and beamforming depends on the form factor of the antennas. The size of the an-
tennas in turn depends on the frequency used. The higher the frequency the lower
the wave length and smaller antennas can be used. No decision has been made on
what frequency area In-X subnetworks should operate in. Therefore it is difficult
to assess the eligibility of directionality methods with respect to antenna size. Even
if the antenna form factor is not a problem the directionality methods still suffer
from the case of an interferer being in between entities in a desired link. Another
consideration is the necessity to track mutual positions that introduce overhead to
the communication. This overhead is detrimental because it requires even greater
radio performance to support it. The directionality methods are therefore not con-
sidered a viable option for In-X subnetworks.

The time domain separation is in direct opposition to the low latency require-
ment. Postponing a transmission would require even faster pre- and post process-
ing of the signal to meet the latency requirement. The processing time without
scheduling delay is already a difficult requirement to meet so time separation is
considered unfeasible for In-X subnetworks.

The frequency domain is much more promising than the other two domains.
Even if frequencies are a limited resource it still ought to be possible to operate in
a frequency band that can be subdivided into a number of channels. Frequency
interference management is thus the primary method to use in In-X subnetworks.

Even though the three domains have been presented separately there is nothing
preventing a combination of multiple domains to be used. PC can be combined
with frequency allocation and is a viable option in In-X subnetworks.

2.4.1 Interference management in the frequency domain

Two types of interference management is employed in the frequency domain.
Those based on heuristic methods and those based on Machine Learning (ML)
methods. To discuss the different methods some key concept should be explained.
The first concept is whether the interference management is coordinated or un-
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Coordinated Uncoordinated

Distributed Centralized

Figure 2.3: The relations between (un)-coordinated and centralized and distributed interference man-
agement.

coordinated. In the coordinated case relevant information is exchanged between
radio entities. In the uncoordinated case no information is shared. Another con-
cept is whether the interference management is centralized or distributed. In a
centralized setup a central agent handles every channel allocation decision for ev-
ery radio entity. In a distributed scheme each radio is responsible for its own
channel allocation. The two concepts combine into three possible classifications of
interference management methods. The centralized method is always coordinated.
The distributed method can be either coordinated or uncoordinated. In figure 2.3
the relations of the concepts are summarized.

Two groups of interference mangament methods exist: those based on heuris-
tics and those based on ML.

Heuristic channel allocation methods

As In-X subnetworks are a relatively new area of research, inspiration for how to
do channel allocation must be sought elsewhere. Two research areas that touch
upon the problems of interference, channel allocation, and uncoordinated deploy-
ment are cognitive radio and HetNets.

Cognitive radio has come about due to the scarcity of frequency resources. Cog-
nitive radio seeks to utilize licensed bands when they are unused [10]. The users
of the licensed band is divided into two groups: the primary users which holds
the license, and the secondary users. The cognitive part of the secondary users
relates to how they sense the presence of the primary users and adapt their own
communication to not interfere the primary users.

HetNets were introduced in subsection 2.3.2 as femtocells deployed in an un-
coordinated fashion in a cellular network. HetNets are relatable in the sense that
In-X subnetworks are also deployed in an uncoordinated fashion so the problem
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of interference is similar between the two.

Many methods have been proposed on how to handle the channel allocation
task. Some of the first methods for cellular networks were Fixed Channel Allo-
cation (FCA) where a centralized agent made an allocation based on maximizing
the frequency reuse distance [18]. FCA evolved into Dynamic Channel Allocation
(DCA) where a centralized agent can redistribute frequency resources based on
demand [18].

Two distributed and uncoordinated frequency allocation methods have been
proposed in [8] and [12]. The first method is based on balancing resources with
game theory and using cognitive radio to sense the environment. Game theory
is a mathematical way to describe decision making among multiple agents. It
encompasses complex interactions between agents based on each agent’s own de-
cisions. Such decision processes are often encountered in games where each player
must chose a strategy to beat the other players. When game theory is applied in
ressource allocation it is often with purpose to balance resource use among agents.
The method in the paper is called Game-based Ressource Allocation in a Cognitive
Radio Environment (GRACE).

The second method proposes to use local knowledge to identify a pool of low
interference resources and make them available to the scheduler. The paper uses
game theory to prove the stability of allocation with selfish agents. It also compares
performance of the distributed approach and an optimal centralized solution.

Two distributed and coordinated methods have been proposed in [31] and [13].
The first one proposes the Generalized Autonomous Component Carrier Selection
(G-ACCS) scheme. The scheme is based on cognitive sensing of the environment
and explicit communication between femtocells about which Component Carriers
(CCs) they use and at which power level. This information is used to make the CC
allocation for each cell.

The second method is based on coalitional game theory. It is called Self Orga-
nizing Coalitions for Conflict Evaluation and Resolution (SOCCER). A coalition is
a group of cells that agree on a certain policy on how to share CCs among them.
This method differs from G-ACCS in that it reduces overhead by limiting coordi-
nation to those femtocells that are in a coalition.

In [2] and [1] some heuristics based channel allocation methods were applied
to in-X subnetworks. In [2] three distributed methods were tried. The three meth-
ods are: ε-greedy channel selection, minimum SINR (minSINR) guarantee, and
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Nearest Neighbor Conflict Avoidance (NNCA). The ε-greedy algorithm selects the
channel with the lowest interference power with probability ε. with the remain-
ing probability 1− ε it selects the channel at random. The minSINR selects the
worst channel that will satisfy a minimum SINR requirement. If no channel is
able to satisfy the SINR requirement the channel with the least interference power
is selected. The NNCA method relies on the controllers ability to discern which
channels are in use by m− 1 nearest neighbor subnetworks where m is the amount
of channel available. This method then selects the remaining channel not in use by
the nearest neighbor. The NNCA method only rely on local measurements to infer
the channels in use by neighboring subnetworks. Every method is then distributed
and uncoordinated. In [1] the ε-greedy and NNCA method is also used. The only
difference is that the ε is fixed at one which leads to a purely greedy selection.
The ε-greedy method may lead to channel changes relatively often. Many channel
changes requires communication overhead to signal the devices about the channel
change. The minSINR may also lead to rapid channel changes. Another issue is
the choice of the worst channel. This choice assumes that the channel performance
will remain constant for the next transmission. In an uncoordinated method no
guarantee of this can be made. This leads to a higher probability of packet loss.
The NNCA adds complexity to the controller to infer who the nearest neighbors
are. This complexity may be detrimental in terms of cost or it may migrate to the
overall system design and make it unfeasible.

Machine Learning Based Channel Allocation Methods

As ML has gained ground it has become relevant to consider ML as a possible
method to use for channel allocation tasks.

One approach to applying ML to channel allocation is to use supervised learn-
ing to learn how to map between channel states and channel selection. In [3] a
Deep Neural Network (DNN) is used to learn a map based on a graph coloring
algorithm. The DNN performs well even in propagation environments different
from those used for training. The DNN method does not perform better than
heuristic methods.

In [16] a similar approach is used where a convex optimization algorithm does
the assignment but at high computational load. To optimize the computational
load different ML methods were tried. The ML methods used were Convolutional
Neural Networks (CNNs), Feed-forward Neural Networks (FNNs), random forest
and Gated Recurrent Unit networks (GRUs). The ML methods reduce computa-
tional complexity with only a small loss in performance compared to the convex
optimization solution.
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Another possible approach is to use reinforcement learning. This method learns
how to allocate channels through interactions with the environment which it be-
longs to. In [4] reinforcement learning was used for channel assignment in a Body
Area Network (BAN) context. The error rate is improved by 30% compared to a
fixed channel assignment. This master thesis focuses on applying reinforcement
learning to the channel allocation task for in-X subnetworks. A thorough explana-
tion of how to apply reinforcement learning in In-X Subnetworks will be given in
chapter 4.

2.5 Summary

In the preceding chapter the concept of interference was presented. It was defined
as overlaps in transmissions of two or more radios. Two different types of radio
deployment were defined: coordinated and uncoordinated. Three domains of re-
sources were described. How they contribute to interference and how they can be
used to mitigate interference was explained. The frequency domain was identified
as the most applicable for In-X subnetworks. Different state of the art methods for
channel allocation were briefly summarized both methods based on heuristics and
those based on ML.





Chapter 3

Reinforcement learning

This chapter presents the concept of reinforcement learning and the mathematical
framework to analyze it. This chapter is largely inspired by [28].

In section 1.2 the basic concept of reinforcement learning was introduced. Re-
inforcement learning consists of a learning agent that learns to perform a task
through interaction with an environment. Some examples of problems where re-
inforcement learning could be applied is to solve a maze or play a game. For both
problems there is a clear defined goal i.e. solve the maze or win the game. As
the learning agent does not have any prior knowledge about the given problem it
resorts to a trial and error approach. For each trial the learning agent formalizes
what it has learned from the trial. It is advantageous to do as many different tri-
als as possible and learn from them in the beginning. The learning agent is said
to be in an exploration phase. As the trials progress the learning agent becomes
wiser. It can begin to use what it has learned to affect which trials to try next. The
learning agent is now progressing to an exploitation state. The formal definition in
the mathematical sense of reinforcement learning is made with Markov Decision
Processes (MDPs).

3.1 Markov decision processes

In this section Markov Decision Processes is presented as a framework to use for
the mathematical analysis of reinforcement learning.

To thoroughly understand reinforcement learning a more formal definition of
the learning agent and the environment is necessary. The learning agent is an en-
tity with ability to perform actions and learn from them. The actions influence the
environment. The environment consists of two parts: the states, and the rewards.
The states summarise everything of importance for the learning agent in the en-
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Figure 3.1: The agent and environment interaction model[28].

vironment. The reward is a numerical value that expresses how well the learning
agent is performing with respect to the goal. The agent environment interaction is
described in figure 3.1. The interaction happens at discrete time steps t = 1, 2, 3...
At time step t the learning agent receives the state St based on the state it chooses
the action At. At the next time step t + 1 the learning agent receives a new state
St+1 and a reward Rt+1. The new state and the reward values are influenced by the
chosen action. Other factors that influence the states and rewards might be beyond
the control of the learning agent.

If the sets of all states, actions and rewards have a finite number of elements the
MDP is said to be finite. In this case it is possible to describe St and Rt as random
variables with discrete probability distributions [24]. The Markov property states
that the probability of each possible St and Rt depends only on the immediately
preceding state and action St−1, At−1. For the remainder of this chapter it will be
assumed that the Markov property holds. The probability of a certain state St = s′

and reward Rt = r happening at time step t is then defined as

p(s′, r|s, a) .
= Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (3.1)

Where the | denotes conditional probability. An interesting consequence of the
Markov property is the requirement it poses on the states. The states must suc-
cinctly summarize every past agent-environment interaction.

The description of MDPs has been made at a high level of abstraction. As
MDPs are very versatile and can be applied to many different problems the high
level of abstraction is necessary. The choice of how to define the interface between
learning agent and environment i.e. the states, actions and rewards are of crucial
importance to the succes of the learning agent. How to design these parts depends
on the goal of the reinforcement learning that is the task the designer seeks to
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solve.

3.1.1 Goals and rewards

Recall that the reward is a value from the environment at each time step and
it is indicative of how well the learning agent is performing with respect to the
goal. The learning agent seeks to maximize the cumulative reward over time. The
rewards have to formalize what is beneficial and what is detrimental to do. In
the previous used example of solving a maze, the reward could be -1 for every
time step that the maze is not solved. This reward encourages the learning agent
to solve the maze as quickly as possible. If the goal is to win a game the reward
could be +1 when the game is won or -1 if it is lost and 0 for every time step
where it is neither won or lost. It is important in this case to reward only the final
time step. If sub goals were rewarded as well it might result in behaviour where
the learning agent becomes more focused on achieving sub goals rather than to
actually win. The rewards are the designers way of telling the learning agent what
to achieve but not how to achieve it.

3.1.2 Returns

In the previous subsection it was stated that the learning agent seeks to maximize
the cumulative reward. What to maximize is not immediately clear from this defi-
nition. At time step t the parameter to maximize is the expected return. The return
is a function of the reward sequence Rt+1, Rt+2, Rt+3, .... in its simplest form it is
just the sum of the reward sequence

Gt
.
= Rt+1 + Rt+2 + Rt+3....RT (3.2)

Here Gt is the return at time step t and Rt+1 is the reward at time step t + 1 and
so on and T is a final time step. The return is well defined for episodic tasks.
That is tasks that have a terminal state. Such tasks could be playing a game or
solving a maze. Other task might not have a terminal state but will run forever.
These are continuing tasks. A problem then arises with the definition of the return
being the cumulative future reward. No guarantee can be made that a infinit sum
will converge for any reward formulation. The cumulative reward might even
approach infinity which makes it impossible to maximize. For continuing tasks
the return formulation must contain discounting. Discounting introduces a factor
to the rewards in the sum. The introduced factor is called the discount rate and
it is denoted by γ. The discount rate must fall within the interval 0 ≤ γ ≤ 1. In
equation (3.3) the return with discounting is shown.

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞

∑
k=0

γkRt+k+1 (3.3)
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The choice of the discount rate influences the learning agents outlook with re-
spect to time. For γ = 0 the learning agent is only concerned with the immediate
next reward. When the discount rate approaches one the learning agent becomes
more far sighted and put greater emphasis on future rewards.

3.2 Q-learning

Q-learning (QL) is part of a class of reinforcement learning methods called Tem-
poral Difference (TD) [32]. The characterizing features of TD compared to other
reinforcement learning methods is its ability to bootstrap. Bootstrapping is to base
new estimates on old estimates as time progresses. The quantity to estimate is the
state-action value function. The state-action value function describes how bene-
ficial it is to chose a certain action when in the given state. The task of the QL
learning agent is then to find an optimal policy based on the state-action values.
The policy is what constitutes the learning agent that is it defines which actions to
take based on the state-action values.

TD methods can be split into two problems: how to estimate the state-value
function, and how to find an optimal policy. The estimation of the value functions
with TD methods is described in the update equation (3.4). The update equation
is based on the Bellman equation [28].

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (3.4)

Q(St, At) is the estimate of the value function for state St and action At, and
α is a parameter on the interval (0,1] called the learning rate. The learning rate
describes how much is learnt at each time step. The bootstrapping is evident in
that the value estimate Q(St, At) is based on the future value estimate Q(St+1, a).

The characteristic that sets QL apart from other TD methods is how it finds an
optimal policy. QL is an off-policy TD algorithm which means that it learns the
optimal policy even if it does not follow the optimal policy. The key difference is
the maximum selection of the next state-action value with respect to the actions.
The maximum selection is what makes QL an off-policy algorithm. In the ordinary
case what is learnt is the value of the chosen action but in QL it is the maximum
value of all possible actions.

The off-policy aspect of QL enables a very simple action selection. A ε-greedy
algorithm is used to select actions based on the state-action value estimates. With
probability ε the algorithm choses a random action and with probability 1-ε the
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algorithm chooses the action with the greatest Q-value. The ε parameter is at the
heart of the exploration and exploitation dilemma. This dilemma encompasses the
need for experience from all states and actions to learn the optimal policy with
the desire to perform optimally at each time step. It is proofed that the estimated
state-action values will converge to the optimal state-action values q∗ if every state
and actions keep being visited [28].

The application of QL is described in the algorithmic description 1.

Algorithm 1 Q-learning algorithm

1: S0 ← Initial state
2: Q0 ← 0
3: T ← Number of discrete time steps to use
4: for t < T; t++ do
5: Choose At form Qt with St and ε-greedy policy
6: Take action At and observe Rt+1, St+1

7: Update Qt with update equation
8: end for

3.3 Summary

In this chapter the key concepts of reinforcement learning was presentend. At the
core of reinforcement learning is the learning agent which is capable of learning
through interaction with an environment. The environment consists of states and
rewards. The states are the information presented to the learning agent that are
relevant for the learning agent to take an action. The actions are decisions that
affects the environment. The rewards are values that describe how beneficial the
actions were in completing the task of the learning agent. The rewards arise as a
direct consequence of the actions. Based on the rewards the learning agent formu-
lates a policy. The policy dictates which actions to take in which states. To form
the policy the learning agent uses value functions. The value functions describes
how beneficial a state or a state action pair is in the terms of expected reward.

QL is reinforcement learning method of the temporal difference type. It uses
bootstrapping where estimates are based on other estimates. QL is an off-policy
method. It achieves the off-policy by using a maximum selection over actions in
its update equation. A simple ε-greedy algorithm can be used to select actions.
The choice of the ε parameter is difficult due to the exploration and exploitation
dilemma. It is possible to proof that QL achieves the optimal state-action values if
every state and actions keeps being visited.





Chapter 4

Interference management with Q-
learning

In this chapter a system model of the proposed solution on how to apply Q-
learning (QL) to the interference management problem is presented. Comparison
metrics are derived and a thorough explanation of how to apply QL is given.

4.1 System model

In section 2.1 the In-robot use case was introduced. This use case is chosen as the
basis for the system model. The task of an in-robot subnetwork is to facilitate com-
munication between a controller, sensors, and actuators. The controller is in this
case equivalent to the Access Point (AP) the sensors and actuators are collectively
called devices. The AP makes the channel allocation based on uplink performance.
Each robot contains a single subnetwork. The total number of subnetworks that
coexist in the system is denoted as nsubnetworks. The subnetworks exist in a rectan-
gular area denoted

R = [0, x]× [0, y] ⊂ R2

The position of a subnetwork n in the area is distributed uniformly

pn ∼ U (R)

Where U is the uniform distribution. The shape of each subnetwork is assumed
identical and circular with the AP at the center. The position of one subnetwork is
dependent on the position of every other subnetwork. This distinction is made to
avoid physical overlaps of the robots which are not possible.
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Figure 4.1: A subnetwork deployment with three subnetworks and one device each and illustrations
of desired and interfering links.

The number of devices per subnetwork is denoted ndevices. The devices are
within the subnetwork area and randomly distributed. The subnetwork area is
given as

A = {∆ ∈ R2 : 0 ≤ |∆| ≤ Rsubnetwork} ∩R2

Where Rsubnetwork is the subnetwork radius. The position of the device n in the
subnetwork area is given as

∆n′ ∼ U (A)

The absolute position of the sensor n in the area R then becomes

sn′ = pn + ∆n′

In figure 4.1 an example of an deployment is shown with three subnetworks
each with one device and illustration of desired and interfering links.

The main task of the system is to make a channel allocation. The channel
allocation assigns one or more channels to each subnetwork. The allocation is

K = [k0, k1, . . . , knsubnetworks ]|kn ∈ {1, 2, . . . , m}

Where m is the total amount of channels available. To keep the notation intu-
itive it does not account for multiple channels in the allocation even though it is
possible. The channels in this context is a set of non overlapping partitions of the
total available bandwidth in to equal parts. The bandwidth of each part is denoted
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the channel bandwidth B.

The total received power at a controller is then given as

Ymi
n = ∑

n′
Xn′ · Gn,n′ · δ[kn = kn′ ] + B · wn

Ymi
n is the received power at subnetwork n on channel mi, Xn′ is the transmit

power of device n′, Gn,n′ is the channel gain, δ is the Kronecker delta and wn is the
receiver noise Power Spectral Density (PSD).

The channel gain is defined as

Gn,n′ = Gpl(dn,n′) · |hn,n′ |2 · Gs(pn, sn′) (4.1)

Where Gpl is the path loss gain and it is a function of distance between AP
and the device. hn,n′ is the small scale fading and Gs is shadowing gain and it is a
function of AP and device position. The distance is calculated as

dn,n′ = ‖pn − sn′‖

Where the ‖.‖ is the euclidean norm operator. The interference power at a
controller is then

Imi
n = ∑

n′ 6=n
Xn′ · Gn,n′ · δ[mi = kn′ ]

A new index is added to the notation mi which indexes which channel the
interference value is true for. The Signal to Interference plus Noise Ratio (SINR) is

SINRmi
n =

Xn · Gn,n

Imi
n + B · wn

(4.2)

The addition of mi is made because in the channel allocation task it is of interest
to know the SINR for every channel not just the one in use. Note that the SINR
values for the channels not in use assume that the desired link power will be equal
across all channels.

4.2 Channel allocation problems

Interference is an inherent problem in multi-agent radio systems. To mitigate inter-
ference in the frequency domain a channel allocation must be made. To succinctly
define an optimization problem some performance metric must be defined. An
obvious choice to characterize the level of interference is to use the interference
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power. The interference power in itself does no tell anything about how much in-
formation is exchanged. A metric closer related to communication performance is
the SINR level. The SINR contains information about the interference power but
it takes the ratio between the desired link power and the interference power plus
the Additive White Gaussian Noise (AWGN). The SINR metric manages to capture
dynamics which the interference power does not. For instance if the interference
power is very high but so are the desired link power the communication perfor-
mance might still be good. The opposite is also true if both interference power and
link power are very low the communication performance might be poor. It all de-
pends on the ratio not absolute power. Another metric closely related to the SINR
is the capacity. The capacity is the theoretical upper bound of information that can
be transmitted. The Shannon-Hartley theorem describes the relation between the
capacity and the SINR

C = B · log2(1 + SINR)

Where C is the capacity and B is the channel bandwidth. The Shannon-Hartley
theorem assumes that the interference is noise like. This assumption might not
hold true but the capacity is still useful as a comparison metric. The theorem is
applied consistently so any bias introduced will be equal for all results.

With the performance metrics defined a formulation of the resource allocation
task can be given. Three separate but similar problems will be considered. Com-
mon for all problems is the objective of maximizing the sum capacity.

Problem I

The first problem is to only allocate a single channel.

K = max
C

nsubnetwork

∑
n=1

B · log 2(1 + SINRmi
n ) (4.3)

Where C = {mi ∈ {1, m}}nsubnetwork
i=1

Problem II

For the second problem the transmit power level is added to the resource allocation
task

K = max
C,K

nsubnetwork

∑
n=1

B · log 2(1 + SINRmi
n ) (4.4)

Where C = {mi ∈ {1, m}}nsubnetwork
i=1 and K = {ui ∈ {1, u}}nsubnetwork

i=1 Where ui is
the power level to use and u is the amount of power levels available for allocation.
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Problem III

The third problem uses channel aggregation for the channel allocation. Channel
aggregation is to use multiple channels simultaneously. Using more channels ef-
fectively increase the bandwidth which in turn increase capacity. The optimization
formulation is the same as for problem I with the only difference being that mul-
tiple channels can be allocated. Then mi becomes a set where z = |mi| and z is a
design parameter to chose.

4.3 Reinforcement learning in the optimization task

In chapter 3 reinforcement learning was presented as a method to learn how to
solve a task through experience. This makes reinforcement learning a possible
candidate for the channel allocation task. The QL method will then be applied to
the channel allocation task. In chapter 3 reinforcement learning was described in
a theoretical and abstract way. Some adaptation of concepts must be made before
reinforcement learning is applicable to the channel allocation task. This entails the
definition of the: state space, action space, reward function, and policy.

4.3.1 State space representation

The states are the signals to the learning agent about the environment which the
learning agent uses to make decisions. The state signal must then contain the rel-
evant and available information about the environment. The state signal is chosen
to be the estimated SINR. It is assumed that the controller is able to measure the
interference level of each channel. The controller also knows the received power of
the desired link. It is then able to estimate the SINR of each channel under the as-
sumption that the received power of the desired link is equal for all channels. This
choice of state signal relies only on local knowledge at the controller. Therefore it
satisfies the uncoordinated requirement. Other information that could be beneficial
to include in the states are the positions of every other subnetwork or their channel
allocation. Including such information would void the uncoordinated requirement
though.

The Q-learning method is inherently discrete as, the states and actions are
stored as discrete values. The SINR calculation contains multiple continuous ran-
dom variables so a quantization of the SINR values is necessary. The quantization
introduces two design parameters how many quantization thresholds to use and
their value. The quantized threshold values are in the radix of the number of quan-
tization thresholds plus one. The quantization function for a single quantization
threshold is shown in equation (4.5).
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S =

{
0 SINR < sth

1 SINR ≥ sth
(4.5)

The state signal is then the collection of quantized SINR values for one for each
channel used. The size of the state space then becomes

|S| = (nthresholds + 1)m (4.6)

Where nthresholds is the number of thresholds and m is the number of available
channels. The size of a state space with one quantization threshold and four chan-
nels is then 16. The state space contains every possible permutation of state values
from 0000 to 1111.

4.3.2 Action space representation

The action space contains all the possible actions the learning agent can take. In
section 4.2 three different problems were presented. Each problem has its own
unique action space.

Problem I

For problem I the actions are trivial they are simply the available channels

A = {1, . . . , m}

Problem II

In problem II the action space becomes the permutation of the available channels
and power levels. The amount of actions is the product of the amount of power
levels and channels.

nactions = m · u

Where u denotes the total amount of power levels available for allocation. The
action set then becomes

A = {{c1, p1}, . . . , {cm, pu}}

Where cn denotes the channel with index n that is available for allocation. pn

denotes the power level with index n that is available for allocation. With two
power levels and four channels the amount of actions become eight. The amount
and value of the power levels is a design choice. The addition of transmit power



4.3. Reinforcement learning in the optimization task 31

level to the action space is made to enable the learning agent to limit its interfer-
ence power.

Problem III

Problem III introduces the concept of channel aggregation. The aggregation adds
a new design parameter which is how many channels to use at the same time.
Choosing channels from a pool is an unordered sampling without replacement.
The action space consist of the permutations from choosing one channel and up to
z channels which is the maximum amount of channels to use simultaneously. The
total amount of actions then become

nactions =
z

∑
j=1

m!
j!(m− j)!

(4.7)

Where z is the maximum number of channels to use simultaneously. Given
four channels and a maximum of two channels used simultaneously the amount of
actions becomes 10. The action set then contains the trivial action (1), . . . , (4) and
the permutations (1, 2) through (3, 4).

A = {{c1}, . . . {c4}, {c1, c2}, . . . {c3, c4}}

4.3.3 Reward function

The rewards inform the learning agent how beneficial the last action was with
respect to solving the given task. It is essentially the designers possibility to define
the task with respect to the learning agent. In section 4.2 the goal to maximize the
cumulative capacity is stated. The reward function shall then motivate the learning
agent to maximize the capacity. The most simple approach is then to equate the
rewards with the capacity.

Rt = Ct

This type of reward is always positive. The learning agent then learns which
actions gives the highest rewards. This reward function will be called capacity re-
ward.

A different approach is to try to guarantee that every subnetwork achieves a
target capacity. The pure capacity reward function motivates a greedy choice of
actions. If the reward function is only concerned with good enough instead of best
it might chose an action which is not the lowest interfered channel. This leaves a
good channel open for other subnetworks to use. When each subnetwork has not
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A0 A1 A2 A3



S0 Q(0, 0) Q(0, 1) Q(0, 2) Q(0, 3)
...

...
...

...
...

Sj Q(j, 0) Q(j, 1) Q(j, 2) Q(j, 3)
...

...
...

...
...

S15 Q(15, 0) Q(15, 1) Q(15, 2) Q(15, 3)

Figure 4.2: Q-table for a scenario with one quantization threshold, four channels, and problem I
actions.

chosen greedily it is more probable that a reasonable channel is available for the
last subnetwork to chose. This leads to a more balanced allocation. The reward
function is then based on a comparison between the achieved capacity and a target
capacity. The reward function then becomes

Rt(Ct, O) =

{
1 Ct ≥ O

0 Ct < O

Here O denotes the target capacity. As this reward function values only as-
sumes the binary values it will be refereed to as binary reward function.

4.3.4 Policy

A unique feature of the Q-learning method is the off policy aspect of learning an
optimal policy while following a different policy. This is made possible by the
selection of the best action in the update equation rather than the chosen action.
Q-learning uses state-action values. As the states and actions have a finite size the
Q-table will also have finite dimmensions. In practical applications this often leads
to the Q-values being stored in a table with dimensions nstates× nactions. The dimen-
sions of the Q-table with one quantization threshold, four channels, and problem I
actions is 16× 4. In figure 4.2 an example of this Q-table is shown.

In section 3.2 the ε-greedy algorithm was presented as a possible policy to
use for Q-learning. The ε-greedy selects a random action with probability ε and
the action with the greatest Q-value with probability 1 − ε. The exploration vs
exploitation dilemma governs the choice of ε. Instead of choosing a fixed value
for ε a function can be used instead [28]. By using a function which starts at
a high level and decays to a lower level as time progresses, a gradual shift can
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be made from favoring exploration to favoring exploitation. Such a function is
called an ε decay function. Functions suitable for ε decay are functions that are
bounded within the time steps the Q-learning runs for. The probability cannot
exceed one or go below zero. Function prototypes that satisfies these constraints
are power functions with base less than one or negative exponent. A straight line
function is also applicable given that the number of time steps are known before the
learning process starts. This is generally an undesired requirement. Alternatively
the straight line function can be bounded by applying a maximum selection

ε(t) = max(εmin, εmax − t · (εmax − εmin)/εsteps)

Where εmin and εmax are the minimum and maximum bounds respectively,
εsteps is the number of steps to use to go from the maximum bound to the minimum
bound, and t is the time step. The choice of the ε bounds and number of time steps
to use is a design parameter. The proof of optimality states that Q-learning will
reach an optimum policy on the condition that every state and action still receives
visits [28]. To satisfy this requirement the lower bound εmin must be greater than
zero.

4.3.5 Training framework

Another consideration is the amount of learning agents to use and how they re-
late to the environment. In section 2.4.1 the concepts of centralized, distributed,
coordinated, and uncoordinated were presented in the context of interference man-
agement. The extreme requirements of In-X subnetworks necessitates a distributed
and uncoordinated approach as there is no room for the overhead necessary to
centralize and coordinate efforts. This implies that each subnetwork gets its own
learning agent leading to a Multi-Agent Q-learning (MAQL) scenario. In MAQL
for distributed resource allocation two common methods are used viz: centralized
training with distributed execution, and distributed training and execution. In cen-
tralized training also called parameter sharing a single learning agent is trained
with independent local measurements from each subnetwork. When the training
is complete the learned parameters are copied from the centralized agent to the
distributed agents for the execution phase. This is illustraited in figure 4.3. The
distributed training simultaneously train a learning agent for each subnetwork.
The distributed training has shown to exhibit slower convergence in the literature
[36]. The centralized learning agent is then chosen for implementation. The train-
ing procedure in algorithmic form is shown in algorithm 2

in table 4.1 the state and action space is summarized together with the reward
functions.
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Figure 4.3: The Q-table and subnetwork relation in training and execution phase.

Algorithm 2 Training procedure

1: S0 ← Initial state
2: Q0 ← 0
3: D ← Number of snapshots to use
4: T ← Number of discrete time steps to use
5:

6: for i < D; i++ do
7: {p0, . . . , pnsubnetworks}, {s0, . . . , snsubnetworks} ← Generate deployment
8: Gn,n′ ← Generate channel gain
9: for t < T; t++ do

10: if ε(t) > U[0,1] then
11: At ← U[1,m]

12: else
13: At ← arg max

a
Q(St, a)

14: end if
15: Take action At

16: Calculate SINR and capacity
17: Update Qt with update equation and Rt+1, St+1

18: end for
19: end for
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Table 4.1: Summary of QL design parameters. Note that problem III action space is based on the
assumption z = 2.

Problem I II II
State
space

Based on estimated SINR with n-quantization thresholds

Action
space

{1, . . . , m} {{c0, p0}, . . . , {cm, pu}}
{{c1}, . . . , {cm},
{c1, c2}, . . . , {cm−1, cm}}

Rewards
Capacity or binary based on achieved capacity and
target capacity

4.4 Summary

The system model describes how a number of subnetworks are distributed in an
area. Each subnetwork contains devices that communicate with an AP at the center
of the subnetwork. The communication links are affected by channel effects. It is
the task of the AP to allocate the channels to use for the communication. To do
the channel allocation Q-learning is used. The states are the quantized SINR value
for each channel combined into a single state value. The actions are governed by
three distinct problems to solve. The problems are I) channel selection II) channel
and transmit power level selection and III) channel selection with aggregation. Two
types of reward functions are to be considered: capacity reward and binary reward.
The ε-greedy algorithm is to be used as the policy. A suitable decay function must
be used to balance exploration and exploitation. If a guarantee on optimality is to
be made the ε must not decay all the way to zero.





Chapter 5

Performance evaluation

In this chapter the details on the simulator implementation are presented. This
includes channel models and choice of simulation parameters. This leads to a pre-
sentation of the simulation results divided into sections addressing each problem.
In the end a discussion on the results is given.

5.1 Simulation overview

The simulator is an implementation of the system model described in section 4.1.
The system model is implemented with an object oriented programming approach
as a class in python. It uses a Monte Carlo method to generate snapshots. A
snapshot is a deployment of numerous subnetworks. The simulator implements
a centralized Q-learning (QL) based learning agent. The learning agent is trained
for a number of time steps for each snapshot. The simulator also implements some
heuristics based benchmarks algorithm for the sake of performance comparisons.

5.2 Channel models

Before a complete implementation of the system model is possible specific models
must be chosen for the channel gain. In equation (4.1) the channel gain was identi-
fied as containing three parts. Path loss and shadowing are often grouped together
into the term large scale fading which leaves the small scale fading.

5.2.1 Large scale fading model

The large scale fading is modelled with a close in free space reference distance
model for industrial settings as proposed in [17]. The formulation is as follows

37
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LSn,n′ = 20 log10

(
4π f d0

c

)
+ 10η log10

(
dn,n′

d0

)
+ Gs(pn, sn′)

Where f is the channel center frequency, d0 is the reference distance = 1 m, c is
the speed of light = 3 · 108 m/s, η is the path loss exponent, and Gs(pn, sn′) is the
shadow contribution. The shadow contribution is based on a correlated shadow
map model.

The chosen shadow map model is a stationary, isotropic random gaussian field
with zero mean and exponential decaying spatial correlation. To apply the model
the deployment area must be quantized into sections of a reasonable size. The
chosen size is 0.1 m. The covariance between two grid points in the quantized area
map which is characterized by the following equation [21]

cov( f (pn), f (sn′)) = σ2
s exp

(
−dn,n′

δd

)
(5.1)

Where f (pn) is the gaussian random field at position pn. σs is the shadow map
standard deviation, δd is the decorrelation distance and dn,n′ is the distance between
the subnetwork and device.

To evaluate the shadowing loss in the shadow map the following equation is
used [21]

Gs(pn, sn′) =
1− exp

(
− dn,n′

δd

)
√

2
√

1 + exp
(
− dn,n′

δd

) ( f (pn) + f (sn′)) (5.2)

Gs(pn, sn′) is the shadow loss between pn and sn′ , dn,n′ is the euclidean distance
between pn and sn′ , δ is the decorrelation distance, and f (·) is the shadow map at
the given position.

5.2.2 Small scale fading model

The small scale fading is modeled as an Independent Identically Distributed (IID)
Rayleigh random variable. If Multiple-Input and Multiple-output (MIMO) tech-
niques are used the contribution for each channel is assumed uncorrelated.

hn,n′ ∼ Rayleigh(σr)

Where σr is the distribution scale parameter. The Rayleigh distribution is suit-
able when no Line Of Sight (LOS) exist between the transmitter and the receiver
[27].
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5.2.3 Noise model

The Additive White Gaussian Noise (AWGN) power is calculated with the follow-
ing equation

wn · B = 10(−174+NF+log10(B))/10

Where NF is the noise figure of the receiver and B is the bandwidth of the used
channel.

5.3 Simulation procedure

With the models defined it is possible to focus on how to apply them in a simu-
lation. Two distinct phases characterize each simulation. The two phases are: a
training phase, and a test or execution phase. In the training phase the central-
ized Q-table is initialized to all zeros. Then a number of snapshots are generated.
A snapshot encompasses a single deployment of the subnetworks and a shadow
map. The number of snapshots to use for the training phase is a design parameter.
For each snapshot the Q-learning makes a channel allocation and learns from its
experience. The ε decay function decreases for each snapshot and the Q-learning
should approach the optimal policy. When the chosen number of snapshots have
elapsed the simulation transitions to the test phase. The test phase also consists of
a number of snapshots but the Q-learning is disabled. Instead the Q-table is only
used greedily to make the channel allocation.

Each snapshot is subdivided into a number of time steps. The time steps relate
to the Q-learning procedure as described in section 3.2. To avoid that every sub-
network tries to update the centralized Q-table at the same time each subnetwork
is given a certain time step where they can update the Q-table. The update time
step for each subnetwork is found at random and it is constant over all time steps
for each snapshots.

5.4 Result types

The two simulation phases lead to two different kinds of results. In the training
phase it is relevant to verify whether any thing is actually learned. To do this the
reward values associated with Q-table updates over every snapshot is saved. The
reward values for each subnetwork is then averaged to produce a single value for
each snapshot. The reward values for each snapshot is then averaged with a mov-
ing average filter with a rectangular window of size 50 and plotted. If anything
has been learned the reward values should grow as a function of snapshots.
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The results of the testing phase are Cumulative Distribution Function (CDF)
plots of the achieved Signal to Interference plus Noise Ratio (SINR) and capacity.
As no update of the Q-table takes place the result data is taken after the warmup
time. The warmup time covers the time duration it takes for each subnetwork to
stabilize in a channel allocation. When a new deployment is made a new channel
allocation is necessary. The result data is taken for each subnetwork at the last time
step of each snapshot.

5.5 Benchmark algorithms

To evaluate the performance of Q-learning three benchmark algorithms are used.
The three benchmark algorithms are:

• Random allocation

• Greedy allocation

• Centralized Graph Coloring allocation

5.5.1 Random allocation

The random allocation algorithm allocate channels based on samples of a uni-
formly distributed random variable

K ∼ U{0, m}

The distribution for each subnetwork is IID. When the distributions are in-
dependent there is no way for the random variable to account for the channel
allocation of other subnetworks. It is therefore distributed and uncoordinated.

5.5.2 Greedy allocation

The greedy allocation is based on the calculated SINR values of each channel for
the previous time step. The channel allocation choses the channel with the greatest
SINR value.

kn = max
mi

(SINRmi
n )

The algorithm always choses greedily for each subnetwork. It does not take the
channel allocation of other subnetworks in to consideration. It is then distributed
and uncoordinated.
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5.5.3 Centralized Graph Coloring allocation

A third possible allocation algorithm is Centralized Graph Coloring (CGC) based.
The CGC algorithm breaks the distributed requirement of in-X subnetworks. The
CGC algorithm then enables the possibility of comparing distributed and central-
ized channel allocation. The CGC algorithm draws a conflict graph where each
subnetwork is a vertex. Each vertex is connected to every other vertex with an
edge, except for the vertex with the least mutual link power. A graph coloring
algorithm is then used to color each vertex with a unique color for each vertex
that share an edge [34]. In this case the colors represent channels. The maximum
available colors are the number of available channels. If it is not possible to color
the conflict graph with the available colors the conflict graph is redrawn but now
with the two weakest link powers unconnected. The coloring is then attempted
again. These iterations continue until a coloring of the conflict graph is achieved.

5.6 Choice of simulation parameters

A large slew of parameters have been implemented to make the simulations realis-
tic. The simulation parameters can be subdivided into two groups: those relating
to the subnetwork environment, and those relating to the Q-learning. Those two
groups can be further subdivided into: those that remain constant for all results,
and those that change between simulations. Those that remain constant will be
presented now and those that change will be accounted for in the presentation of
the simulations results.

The constant parameters for the subnetwork environment is summarized in ta-
ble 5.1. The choice of the first six parameters from the top is based on an initial
sensitivity analysis. These parameters affect the subnetwork density and the num-
ber of available channels which in turn affects the SINR and capacity. The exact
values of SINR and capacity is not important with regard to the results. What is
important is the comparison to the benchmark algorithms. The remaining parame-
ters relates to the radio channel. These parameters must be based on real observed
statistics to be applicable. The path loss exponent is reported to be in between 2.40
and 2.94 in [9]. The shadowing standard deviation is reported in [3] as 5.7 dB.
The decorrelation distance describes the distance necessary for the shadowing to
become uncorrelated. This in turn describe the size of the objects that lead to the
shadowing. In industrial settings these objects might be large machinery. In [3] a
deecorrelation distance of 10 m was used. The receiver noise figure is also reported
in [3] to be 10 dB.
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Parameter name Value unit
Factory area [R] [40, 40] m
Number of subnetworks [nsubnetworks] 30 .
Number of channels [m] 4 .
Number of receive antennas 2 .
Minimum subnetwork separation distance 3 m
Bandwidth [B] 5.00 MHz
Channel group size [z] 2 .
Path loss exponent [η] 2.55 .
Shadowing standard deviation [σs] 5.7 dB
Decorrelation distance [δ] 10 m
Noise figure [NF] 10 dB
Rayleigh scale [σr] 1 .

Table 5.1: The constant parameters relating to the subnetwork environment.

Parameter name Value
Discount rate [γ] 0.9
Learning rate [α] 0.8
ε lower bound [εmin] 0
ε upper bound [εmax] 1
snapshots from upper to lower bound [εsteps] 4000
Number of time steps 60
Number of snapshots 6000
Max update delay 30

Table 5.2: The constant parameters for the Q-learning.

The constant parameters for the Q-learning is shown in table 5.2. These values
are chosen based on the initial sensitivity analysis. These parameters show rapid
learning and saturation of the reward results indicating no more learning is possi-
ble. The ratio between number of time steps and max update delay indicates that
each subnetwork chooses action twice for one snapshot and makes two updates to
the Q-table.

5.7 Simulation results

The presentation of the simulation results is divided into five parts. First the choice
of the parameters to analyze is presented. Then some results of the training phase
are presented to stipulate that learning happens. The last three parts are based
on each problem as introduced in subsection 4.3.2. For each problem the relevant
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parameters to analyze are presented along with the actual results and observations.

5.7.1 Initial simulation parameters

The four parameters to analyze are: reward function, number of state quantiza-
tion thresholds, values of the state quantization thresholds, and target capacities.
Some initial analysis must be made to derive which values to use. Calculating the
expected SINR and capacity values is very difficult as the calculations contain mul-
tiple dependent random variables and the expected values depend on the values
not yet chosen. Another approach is to use data derived with the random alloca-
tion of the benchmark algorithms. The random allocation does not depend on any
of the unknown parameters. It does however operate in the same environment as
Q-learning. The random allocation can then be used as a baseline for the choice
of the unknown parameters. The analysis with the random allocation can be split
into three parts

1. Run a simulation with only random allocation and collect SINR and capacity
values

2. Generate CDF plots of the collected data

3. Choose quantization threshold and target capacity values based on the CDF
percentiles

This procedure does not specify how many state quantization thresholds to use.
The parameter influences the number of states as expressed in equation (4.6). This
equation shows that for one state quantization threshold the amount of states is 16.
If more state quantization thresholds were to be used the amount of states grow to
the power of four. So for two thresholds 64 states results and for three it is 256. The
large growth in states is detrimental to the Q-learning training time. Many states
lead to a large Q-table. The training must then run for a longer time to visit every
state-action combination. A single state quantization threshold is chosen as an ini-
tial value to keep training time low. The value of the threshold is chosen to be the
50% percentile of the SINR CDF the value is 12.71 dB. This choice assumes that the
possible SINR values for the two types of allocation are similar. The target capacity
is chosen based on the capacity CDF of random allocation. As the purpose of the
target capacity is to guarantee a minimum performance the value is chosen at the
low end of the capacity CDF. The chosen percentile is 10% which corresponds to
a capacity of 10 Mbps. The reward functions serve two different purposes so both
should be tried.
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Value
Tx power -10 [dBm]
Threshold 12.71 [dB]
Reward type Capacity
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Figure 5.1: The training result for problem one with capacity reward and the initial choice of param-
eters.

5.7.2 Initial training results

In figure 5.1 and 5.2 the training results for the two reward functions are shown.
Both figures show signs of learning because the Q-learning traces increase over
snapshots. Both traces also show signs of saturation when ε reaches 0. The satura-
tion shows that no improvement will happen with an increase of snapshots.The
two traces differ with respect to the benchmark algorithms. The capacity re-
ward reaches similar performance to the CGC algorithm. The binary reward only
slightly improves compared to random allocation. It is worth noting that the CGC
and greedy algorithms seek to maximize SINR which in turn also maximizes the
capacity. The goal of the binary reward function is that every subnetwork should
reach a target and not the largest cumulative capacity. The two reward functions
have different units and are not directly comparable. The difference between the
two rewards with respect to the benchmark is then a matter of scale. To better as-
sess the performance of the different reward functions the test phase results should
be used. From this point on only test results will be used. The training results for
every simulation is shown in appendix A, when it contains relevant information it
will be referenced.
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Value
Tx power -10 [dBm]
Threshold 12.71 [dB]
Reward type Binary
Target capacity 10 [Mbps]
Aggregation No
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Figure 5.2: The training result for problem one with binary reward and the initial choice of parame-
ters.

5.7.3 Test phase results for problem I

In the test phase results it is possible to compare the two reward functions. As the
binary reward function depends on the chosen target capacity multiple values can
be compared. This enables the possibility to verify that the target capacity works
as intended. The chosen target capacities are based on the capacity CDF under ran-
dom allocation. The chosen percentiles are 8%, 10% and 25% the corresponding
capacity values are 8, 10, and 15 Mbps. The comparison results are shown in figure
5.3. The expected trace shape for the binary reward is low and flat from zero until
the target capacity is reached. When the target capacity is reached a large growth
is expected. This is however not what is observed. Every reward function type
seems to perform very similarly. In figure 5.4 a zoomed view is given of the low
end of the results. In this figure it is clear that no major change happens when
the target capacities are reached. The binary reward does not work as intended.
The two best performing reward functions are the capacity and binary with target
capacity of 15 Mbps. The capacity reward function has been selected, for further
use, as it has been observed that the simulation run time is lower with the capacity
reward function.

The binary reward function turns out to be robust to change in target capac-
ity. From a system perspective it can be beneficial to choose the binary reward to
minimize overhead in Reinforcement Learning (RL) feedback. This happens when
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Value
Tx power -10 [dBm]
Threshold 12.71 [dB]
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Figure 5.3: The reward function comparison results in the test phase.
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Figure 5.4: The reward function comparison results focused on the low end in the test phase.
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the Q-table is placed at the device and the Access Point (AP) sends feedback on
the reward. It can also happen when the Q-table is placed at the AP and relies of
feedback on the reward for the Down Link (DL). As the binary reward is a sin-
gle bit it is much smaller than the capacity reward which is a real value typically
represented as a double data type. Minimizing the feedback data size improves
reliability and latency. The feedback overhead is not implemented in the simu-
lation. The consideration on feedback data size should not govern the choice of
reward function then. The consideration is made to exemplify what could govern
the choice in a real implementation.

The state quantization threshold value is another avenue to explore. By shifting
the threshold value from the initial choice of 50% of the random allocation CDF
towards lower SINR values it might be possible to boost low end performance. By
shifting the quantization threshold value more emphasis is put on the channels
that perform very poorly. Four threshold values are chosen based on the random
allocation SINR CDF. The four values are the 50%, 10%, 5%, and 1% which corre-
sponds to 12.71 dB, 4.60 dB, 1.37 dB, and -6.73 dB. The different threshold value
comparison is shown in figure 5.5. The desired effect of the lower threshold value
leading to better performance is observed for the 4.60 dB trace compared to the
12.71 dB trace. The results also show that there is a limit to how low the threshold
value can go. The two lowest values 1.37 dB and -6.73 dB performs very poorly.
The bad performance is also evident in the training data where the Q-learning
traces declines when ε = 0 this is shown in figure A.2 in the appendix.

The reason why the two lowest threshold values performs poorly could be due
to an over representation of only a few states. This happens when the threshold
value becomes so low that the channel SINR value is almost always quantized as
performing well. To assess whether this happens in this case the state histogram
for each threshold has been plotted in figure 5.6. The state histograms show that
the zero state is the most prevalent for the 50% threshold value. The zero state is
the one where every channel performs poorly. For the 10% threshold value it is the
opposite state that is most prevalent. It is the state where every channel performs
well. For the two lowest threshold values only very few states are visited. Espe-
cially for the 1% threshold. Almost no other state than the best is visited. Limiting
the amount of states also limits the possible actions. In the test phase the action
is always chosen greedily from the Q-table. If the state is always the same so is
the chosen action. If every subnetwork choses the same action the corresponding
channel becomes heavily interfered.

The knowledge about state distribution leads to a new opportunity for how to
choose the threshold values. Heavily skewed state distribution leads to poor per-
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Figure 5.5: The quantization threshold values comparison in the test phase.

Figure 5.6: The state histograms for each quantization threshold.
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Figure 5.7: The state histogram of the 8.66 dB threshold compared to 12.71 dB and 4.60 dB.

formance. A more uniform state distribution leads to action diversity. A theoretical
state distribution can be calculated under the assumption that every channel is in-
dependent. This assumption does not hold true. The performance of one channel
is heavily dependent on the other channels because of the channel allocation.The
theoretical state distribution can serve as starting point to understand the signifi-
cance of the state quantization threshold value. The theoretical probability of each
state is

Pr(s) = pi(1− p)m−i

Where Pr(s) is the probability of the state s, p is the probability that the channel
performs well, i is the number of channels that performs well, and m is the num-
ber of channels to use. The theoretical uniformly state distribution occurs when
p = 0.5. It is difficult to calculate which threshold value that corresponds to this
probability. Previously the random allocation was used to derive the threshold
value. The values from the random allocation cannot be directly applied to the
RL allocation. Instead a threshold value in between the 12.71 dB and 4.60 dB was
tried. The median between the two is 8.66 dB. In figure 5.7 the state distribution
with threshold value 8.66 dB is compared to the 12.71 dB and 4.60 dB thresholds.
The 8.66 dB threshold value leads to a more uniform distribution.

The 4.60 dB threshold showed good performance in the low end and the 8.66
dB threshold showed good state distribution. To gauge the overall performance
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Figure 5.8: The two threshold values compared to the benchmark algorithms.

of these threshold they should be compared to the benchmark algorithms. This is
done in figure 5.8. The 8.66 dB threshold value performs very similarly to the CGC
algorithm but slightly worse. It also performs better than the random allocation
from 0 to 26 Mbps for the capacity and -5 to 16 dB for the SINR. It is difficult to
assess performance in the low end from the given figure. Figure 5.9 contains the
same data but focused on the low end and in log scale. The 4.66 dB threshold is
better than the 8.66 dB threshold from 0 to 6 Mbps for the capacity and from -5 to
1 dB for the SINR. Both threshold values out perform the random allocation. The
best performance is observed for the CGC allocation from 0 to 8 Mbps with respect
to capacity and -5 to 3 dB with respect to the SINR.

5.7.4 Results of problem II

Problem II introduces the transmit power level to the action space. To compare
any possible change in performance from this addition the parameters used for
problem I is reused. Specifically the 8.66 dB state quantization threshold value and
the capacity reward function. Three power levels will be used for the simulation:
10, 0, and -10 dBm. The values are chosen based on the short coverage range
necessary for an In-X subnetwork but still with a large enough difference to give
significant changes in the results. The test phase results of problem II is shown
in figure 5.10 here the variable power selection is compared to the fixed power
of -10 dBm for problem I. The performance of variable power compared to fixed
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Figure 5.9: The two threshold values compared to the benchmark algorithms focused on low end in
log scale.

is very similar. It is difficult to discern the difference. A possible explanation
could be that the low power levels are not used. In 5.11 the action histogram for
problem II in the test phase is shown. The histogram shows that the low power
actions are used. Another observation to make is that two actions are unused and
the zero channel with power 10 dBm is very frequently used. In figure 5.10 the
greedy algorithm performs well with a fixed power level. The action histogram
for the greedy algorithm is shown in figure 5.12. The greedy algorithm has a
uniform action distribution. This is very different from the Q-learning. The chosen
action depends on the state. The state quantization threshold value was chosen
to uniformly distribute the states. In states where two or more channels perform
well the is a randomness to the action selection. This randomness is impossible to
account for through design parameters. The fact that the reduced transmit power
level leads to similar performance as to more powerful levels can be utilized in
use cases where power consumption is a critical parameter such as implantable
in-body subnetworks.

5.7.5 Results of problem III

In problem III the channel aggregation is added to the action space. The group
size is chosen to be two. That is a maximum of two channels can be used simul-
taneously. The addition of aggregation to the action space might change the state
distribution. As the states depend on the chosen actions it is not possible to reuse
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Figure 5.10: Test phase result of problem II compared to fixed power.
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Figure 5.11: Test phase action histogram for problem II.
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Figure 5.12: Test phase action histogram for the greedy algorithm.

the threshold values of previous results. In figure 5.13 the different state quan-
tization threshold values of problem I are tried. The results show that the 4.60
dB threshold value performs best. In the very low end lowest threshold value per-
forms the best. Two threshold values are then chosen to compare to the benchmark
algorithms. The values are 4.60 and -6.73 dB. The comparison is made in figure
5.14. The CGC algorithm is not easily adaptable to include aggregation and it has
been left out. The greedy algorithm is adapted to choose the two channels with the
greatest SINR value. The random algorithm is also adapted and chooses channel
pairs at random. The results only contain capacity data. Combining multiple link
capacities is simply the sum of the capacities for each link. The same is not true for
SINR values. The results show that the 4.60 dB threshold value performs slightly
better than random allocation. The -6.73 dB threshold value is best in the low end
but only up to 1 Mbps. These results correlate with the results given in subsection
5.7.3 with regard to changes in state quantization threshold values and in compar-
ison to the benchmark algorithms. The addition of channel aggregation has then
not fundamentally changed the possible results and the leaning agents’ task must
be similar.

5.8 Discussion

A sensitivity analysis is made for three parameters: state quantization threshold
values, binary reward target capacities, and reward functions. Initial choices of
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Figure 5.13: Test phase comparison of different quantization threshold values for problem III
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Figure 5.14: Test phase comparison of the Q-learning and benchmark algorithms for problem III
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threshold values and target capacities are based on the performance of the random
allocation algorithm. The initial parameter choices are made under the assumption
that the random allocation performs similarly to Q-learning. Training results with
the initial parameter choices show that learning does take place due to the growing
rewards with respect to snapshots.

The sensitivity analysis of the reward functions and target capacities were com-
bined into one. The analysis shows that the performance is insensitive to changes
in reward function and target capacities. This shows that the learning agent is not
able to shape its performance through its actions. The binary reward function only
rewards those actions that have led to an exceedance of the target capacity. These
actions are the same that score high with the capacity reward function. This leads
to similar behaviour when the Q-table is used greedily for action selection. The
expectation that the binary reward function should be able to limit results below
the target capacity is flawed. The expectation is based on the assumption that pre-
vious experience can be generalized for each deployment. That is a certain action
will always exceed target capacity. Due to changes in environment or the actions
of other learning agents no such guarantee can be made.

In [35] it was recognized that using multiple learning agents in the same en-
vironment lead to a non-stationary environment from each learning agents’ local
perspective. The environment becomes non-stationary when a learning agent can-
not infer whether the state transition and reward happens due to its own action
or the actions of other learning agents. Some provisions are made to address this
issue by randomizing at which time step each subnetwork makes updates to the
Q-table. The chosen randomizing method does not guarantee that multiple sub-
networks does not make concurrent updates.

The analysis of the state quantization threshold values show that the perfor-
mance can be modified by changing these parameters. There is a limit though.
If the state distributions become too skewed in either direction the performance
suffer due to the lack of diversity in action selection. The amount and values of
the state quantization thresholds should then be chosen to avoid a heavily skewed
state distribution. A strategy to improve low end performance could be to add
multiple thresholds with low values to motivate state and action diversity in the
low end. The problem of state space size and training time does limit what is fea-
sible.

The inclusion of transmit power offers no discernible difference in performance.
In section 2.3 Power Control (PC) was presented as a method that depends on ev-
ery subnetwork using it. No cooperation happens between subnetworks which
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enables a collective decision to reduce transmit power. The reduced power actions
do see usage though. A possible benefit is then that the reduced power level can
be used in application where power consumption is critical without loss in perfor-
mance.The action distribution shows that the action selection is not uniform. The
greedy benchmark algorithm shows that a uniform distribution is desired. The
action distribution for QL in a purely exploitation state depends on the learned
experience. In a problem I scenario a single channel must be chosen. In states
where two or more channels are good the chosen channel depends on which of the
two channels has performed best previously. There is some degree of randomness
to which channel is the better. Past shadow maps, deployments, small scale fading
etc coupled with the problem of non-stationarity leads to a non uniform action
distribution. For instance in the used state space for the simulation 16 different
state values are possible. The state values can be represented with four digits of
binary value where each digit represents a channel. The first state is then 0000
where every channel is bad. The states with values 3, 5, 7, 9, 11, 13, and 15 have
the right most channel performing well. Then that exact channel may be used up
to seven times instead of four times if everything was balanced. There is no modi-
fiable simulation parameter that directly affects the action distribution.

The addition of channel aggregation does not fundamentally change the per-
formance of Q-learning compared to the benchmark algorithms. The extra channel
does lead to an increase in capacity but otherwise the performance is similar to
single channel selection.

5.9 Summary

In this chapter the details on the simulator is presented. This includes chosen chan-
nel models and a genereal characterization of its functionality. Choices of the sim-
ulation parameters are argued for and initial results show that the learning agent
is able to learn. Results are presented for each defined problem. It is observed that
the capacity and binary reward with different target capacities performs similarly.
It turns out that Multi-Agent Q-learning (MAQL) suffers from problems of non-
stationary environment. The choice of state quantization threshold value is able
to shape the result within some limits. Too large or small threshold value leads
to very few states being visited. This in turn leads to poor action diversity. The
addition of transmit power level to the action space offers no discernible differ-
ence in results. It is apparent that a uniform state distribution does not lead to a
uniform action distribution. Results with reduced transmit power level do show
that a reduced transmit power level can be used for power consumption critical
applications. Adding channel aggregation to the channel allocation task leads to a
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boost in achieved capacity but the performance is otherwise similar to the single
channel selection.





Chapter 6

Conclusion and future work

This master thesis has studied interference management for dense subnetworks.
The motivation to treat this subject is In-X subnetworks. In-X subnetworks has
been proposed as a solution to handle the extreme demands of the Sixth Genera-
tion (6G) of radio access technology. Such demands could be data rates in excess of
5 Gbps and latencies less than 100 µs. These requirements demand large amounts
of radio resources such as frequency. If every User Equipment (UE) with extreme
demands should be handled at a macro level there simply would not be enough
resources for everyone to have their demands met. The In-X subnetworks are to
be deployed in an uncoordinated fashion where the extreme demands arises. The
In-X subnetworks are to operate at a low power level for a limited coverage area.
The uncoordinated deployment enables the issue of interference.

The prerequisites for an interference event to happen are overlaps in resource
use for multiple radios. Three domains were identified where an overlap must
happen between two or more radios for interference to take place. The three do-
mains are: spatial, time and frequency. Each domain also offers techniques to
mitigate interference. The frequency domain was identified as the most suitable
for interference management in In-X subnetworks. Interference management in
the frequency domain entails channel allocation. A distributed and uncoordinated
channel allocation is appropriate for In-X subnetworks due to the extreme de-
mands. Distributed and uncoordinated channel allocation method encompasses
those based on heuristics and those based on Machine Learning (ML) methods. A
Reinforcement Learning (RL) based method is chosen for further analysis in the
In-X subnetworks context.

The RL method was described and Markov Decision Processes (MDPs) serve
as the framework for the mathematical analysis of RL. The MDP contains a learn-
ing agent that interacts with an environment. This interactions happens through

59



60 Chapter 6. Conclusion and future work

three signals: states, actions, and rewards. The design of these three parameters
define the goal of the learning agent. The learning agent uses value functions to
summarise the benefit of different choices. The value function is learned through
the interaction. If the learning agent initially explore all possible choices it will
gather experience. Gradually the focus can be shifted from exploring every pos-
sible choice to focus on the choice with the greatest value. This is the exploration
- exploitation trade-off. The trade-off is governed by the policy. Q-learning is a
type of Temporal Difference (TD) learning. Q-learning is based on estimates of
the state-action value function. The state-action values are stored in a Q-table. By
using a ε-greedy policy the focus of the learning agent is gradually shifted from
exploration to exploitation.

A system model of an In-X subnetwork deployment was given. The system
model is based on an identified use case of In-X subnetworks. Performance met-
rics are derived and based on those, the channel allocation goal is defined. With a
clear defined goal the design of the state, action and reward signals can be made
to be used with the Q-learning method. Three separate problems are identified to
be solved.

A detailed description of the implemented simulator is presented. A charac-
terization of the simulation results is given. A number of benchmark algorithms
are introduced to compare to Q-learning. Reasons and citations are argued for the
choice of simulation parameters.

The simulation results show that learning does take place. The simulator is
insensitive to variations in target capacity and reward function. The state quanti-
zation threshold values do affect the the performance but a too skewed state dis-
tribution should be avoided. Reducing the transmit power shows that a reduction
can be applied which benefits power consumption critical applications. Common
for all problems is the issue of the non-stationary environment and skewed action
distributions.

6.1 Future work

Several avenues lends themselves to further exploration. A simple modification
to the current code base can be made to address the non-stationarity issue. By
changing the random update time step for each subnetwork to avoid concurrent
updates. Another approach is to keep concurrent updates but modifying the Q-
learning algorithm to account for the non-stationarity problem. In [23] Concurrent
Experience Replay Trajectories (CERT) is proposed to address the non-stationarity
issue. In [33] CERT is used for spectrum access in a vehicular network setting. The
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achieved performance is similar to centralized "brute-force" method [33].

The results show that state quantization threshold values affect performance
but suffers from quickly growing state space with the addition of more thresh-
olds. To avoid this limitation deep Q-learning has been proposed [29]. In deep
Q-learning the Q-table is replaced with a Deep Neural Network (DNN). The DNN
can be designed with the number of input nodes equal to the number of channels
to use. Each input node can take a continous input and no quantization is necesas-
rcy. The output layer has a node for each action. The output is then the Q-value
for each action. The action selection is then still governed by the ε-greedy policy.
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Figure A.1: The target capacities comparison in the training phase.
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Figure A.2: The state quantization threshold values comparison in the training phase.
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Figure A.3: The two threshold values compared to benchmarks in the training phase.
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Figure A.4: Comparison of fixed and variable power Q-learning and benchmark in the training
phase.
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Figure A.5: The state quantization threshold values comparison for problem III in the training phase.
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Figure A.6: The two state quantization threshold values compared with the benchmark algorithms
in the training phase for problem III.
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