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Preface

This thesis is carried out by group 976 at the masters programme of Signal Processing and
Acoustics, with specialization in Signal Processing and Computing, at Aalborg University
from September 2021 to June 2022.

Reading instructions

This thesis is divided into 4 main parts. Within these parts are a number of chapters
numbered in the order which they appear. Sections, subsections etc. are also numbered
following this convention.

Figures, equations and tables are numbered as X.Y where X is the chapter in which they
appear, and Y is the order of which they appear within this chapter. Thus, the third table of
chapter 5 will be numbered 5.3. Unless explicitly noted by a citation, the figures in this report
is made by the author

Appendices are in the back of the report.

Sources are cited using the IEEE citation style. IEEE style is a numbered referencing style that uses
citation numbers in the text of the paper, provided in square brackets. A full corresponding reference is
listed at the end of the paper, next to the respective citation number.

References to the paper submitted to Interspeech 2022 is highlighted using bold text.
Example: section 2.1

Throughout the report, commas are used as thousand separators while dots are used as
decimal separators.
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Introduction 1
Voice Activity Detection

In recent years we have seen a boom in the use of communication devices targeted towards
transmitting audio in a wide range of applications and industries. A few examples are devices
commonly used for everyday-activities such as smartphones and headsets. Manufacturers in
this industry are continuously working towards increasing the capabilities of these devices in
terms of metrics as performance and power consumption. Meanwhile the consumers demand
these devices to be smaller, thus putting heavy constraints on the physical area available for
embedded systems. Increasing performance while decreasing power consumption and the
physical area calls for more and more advanced and optimised signal processing algorithms,
such as speaker verification, speech recognition and noise cancelling.

These are generally computationally expensive algorithms, thus it is not desired to execute
them at all times. Instead a common pre-processing step is Voice Activity Detection (VAD),
which is the process of classifying the presence of speech in a audio. The different applications
in which VAD can be used obviously entails different sets of requirements for the performance
in terms of accuracy, computational complexity, latency etc. In academia a VAD algorithm is
usually classifying speech in frames of 10 ms each.

Speech

In general, a noisy speech signal can be modelled using the additive noise signal model, such
that:

x(t) = s(t) + v(t) (1.1)

where x(n) and s(n) represents the noisy and clean speech signal respectively, sampled at
time n, while v(n) is the additive noise sampled at time n. This additive noise is what makes
the VAD a non-trivial task, as the algorithm is supposed to generalise well under different
noise types and Signal to Noise Ratio (SNR) levels. The task of VAD can be carried out by
several different algorithms. These different algorithms can broadly by categorised as either
a supervised or a non-supervised method.

Unsupervised methods

Unsupervised algorithms is the traditional approach towards the VAD. These algorithms
typically calculate some speech characteristics in a pre-processing step, and then exploit these
characteristics to classify the frames as either speech or non-speech. An example of this is

2



1.1. Scope of this thesis Aalborg University

the rVAD algorithm presented in [1] which exploits that the energy is typically higher in
segments where speech is present, as compared to non-speech segments.

Supervised methods

A supervised method on the other hand lies in the area of machine learning. Machine learning
is a very active area of research which has gained increased popularity in recent years. This
sudden boom in popularity arises from the increase in computational power available. A rule
of thumb is Moore’s law which states that the number of transistors in integrated circuits are
doubled every 18-24 months. This increased computational power has allowed for training
of more complex networks leading to better performance. VAD based on machine learning
is also an active area of research, which has already proven to outperform more conventional
methods for the task of VAD [2] [3]

These algorithms include training on some labeled data, from which the algorithm learns to
find the optimal parameters for the classification task at hand. Supervised methods are often
based on Deep Neural Network (DNN) [2][3][4][5]. In recent years it has shown beneficial
to perform the VAD directly on the time domain waveform, and let the network learn the
optimal parameters itself [2] [3].

Collaboration

This thesis is made in collaboration with RTX. RTX specialises mainly in short-range
wireless communication and audio signal processing. They operate in a wide range of
applications such as healthcare systems, intercom systems, gaming equipment and stage-
microphones and equipment. Many of these are battery powered devices which are limited
in both computational power, power consumption and physical area. Additionally, most of
these devices are subject to hard latency constraints ranging from microseconds to a few
milliseconds.

It is of RTX’ interest to conduct a feasibility study on a VAD algorithm based on machine
learning with focus on increasing the performance without introducing any additional
computational cost or latency to the execution-time - as well as observing the performance
when the latency is lowered. Additionally, methods for optimising the model with regards to
a potential implementation in an embedded system will be considered. In this work the total
latency will be considered a results of the algorithmic delay(i.e. how much future knowledge
do we need to generate and output) and the computational overhead(i.e. how long time does
it take to compute the output once all samples are ready.)

1.1 Scope of this thesis

This introduction of the work leads to the following three research questions:

1. Can we potentially increase the noise-robustness of a VAD without increasing its computational
cost and latency to the execution-time?

2. How will it affect the performance of the VAD if we allow it to use less future samples to generate
a VAD output and thus decrease the algorithmic delay?

3
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3. How can we reduce the computational cost of the VAD in a real time application while
maintaining performance?

These three research questions will act as the foundation for this work. In the first part of the
study will be presented an algorithm which will be used as the starting point of this thesis.
Then some necessary theory to get a deep understanding of the algorithm will be presented.
Following this presentation some early design choices will be made and the results from the
original paper will be attempted recreated. This will lead into a discussion on what data sets
will be used for training and testing, as well as how these data sets are used to resemble a
real world application in the best way possible.

After this early part of the work the focus will switch to the three research questions. First will
be introduced a way of potentially increasing the VAD performance without introducing any
cost to the execution-time. Secondly the algorithmic delay of the algorithm will be analysed
and some experiments carried out trying to reduce this delay. Lastly, the work will focus
on aspects related to a real-time implementation. First will be introduced some methods for
reducing requirements to the computational power, the power consumption and the physical
area needed for an implementation on an embedded system, where after these methods will
be further discussed and some experiments carried out in the use-case of this work. Lastly,
this discussion will be put in the context of a potential implementation on some different
hardware architectures.

4



1.2. Framework Aalborg University

1.2 Framework

As this work has a limited timeframe and is mainly focused on improving VAD performance
and finding its potential for a real-time application, an existing VAD algorithm will be used
as a framework.

In recent years supervised VAD algorithms taking the raw waveform as input has been an
active area of research [2][3]. Using the raw waveform as input allows the VAD to find the
optimal features on its own, leading to that the VAD performance is not limited by the quality
of the features found from a pre-processing step. Another benefit is that the VAD can make
predictions based both on the phase and the magnitude of the signal.

One VAD algorithm that takes as input the waveform is the Waveform based VAD presented
in [2]. This algorithm has shown state-of-the-art performance on the (Aurora-2) [6] database
and will be considered the framework for this work.

The method resolves to a Fully Convolutional Network (FCN) and consist of 3 separate blocks
which serves easily distinguishable purposes. The network being FCN means that the only
operations involved in the network is convolutional layers and activation functions. Thus
there are no pooling layers etc.

1.2.1 Algorithm architecture

The framework from [2] is presented in fig. 1.1.

In fig. 1.1a the structure of the network is shown, while fig. 1.1b outlines the notation used in
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Figure 1: The architecture of the porposed WVAD.

framework based on SVM [31] that shows huge improvements
compared to a single SVM for VAD. Zhang proposed an en-
semble of classifiers (multi-resolution stack, MRS) [32] based
on their proposed bDNN model. Noticeably, the MRS outper-
forms other VAD approaches by great margins in the area un-
der curve (AUC) metric. However, these approaches generally
use segmented spectral magnitude features, or power magnitude
features from time-frequency analyses, where the phase infor-
mation is not taken into consideration.

2.2. VAD based on time-domain or phase-aware scheme

Recently, phase features from time-frequency analyses have
been shown to be unignorable for an effective VAD, according
to what Wang proposed in their phase-aware framework [33].
For even better use of full information from speech signal, Zazo
proposed a CLDNN framework [34] that directly performs VAD
on segmented waveform utterances. The convolutional blocks
in CLDNN dissolve time-domain features as filter banks, and
feeds the extracted features to a LSTM-DNN block for finaliza-
tion of detection. However, the model complexity of CLDNN
can sometimes be great since it requires the integration of three
totally different neural network structures.

3. Proposed Method
To integrate the advantages of the aforementioned approaches
while maintaining a compact structure, we propose a waveform-
based VAD framework using a encoder-decoder structure con-
sisting of fully convolutional network, and we further im-
prove this framework by integrating multiple speech attributes
through an ensemble of encoders.

3.1. Encoder-Decoder FCN framework

Partially inspired by our previous works [35], this newly
presented scenario primarily adopts an encoder-decoder (ED)

Enc1 Enc2 Encn *Enc1 *Enc2 *Encn
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Figure 2: The structure of the proposed WEVAD framework,
using UAT-guided encoders.

scheme, which resorts to a fully convolutional network (FCN)
to implement VAD directly on the time-domain speech wave-
forms. This novel waveform-based VAD algorithm, with a
short-hand notation “WVAD”, is depicted in Figure 1(a), con-
sists of an encoder of four convolutional blocks, a framing
block, and a decoder of three convolutional blocks, which de-
tailed arrangements are shown in Figure 1(b).
Briefly speaking, WVAD converts the input waveform x(t) to
a series of frame-wise VAD output, ỹ = [ys[τ ], yns[τ ]], where
ys[τ ] and yns[τ ] refers to the scores for speech channel and
non-speech channel, respectively, and τ is the frame index. For
any specific frame τ in x(t), if ys[τ ] ≥ yns[τ ], it is predicted
as a speech frame; otherwise it is predicted as non-speech. In
the following sub-sections, we detail each portion of WVAD.

3.1.1. Encoder Framework

Each of the four encoder blocks (EBs) shown in Figure 1(a)
consists of a one-dimensional convolutional layer followed by a
leaky-ReLU activation function, as depicted in the upper part
of Figure 1(b). These four EBs are stacked in an inverted-
triangular fashion as in Figure 1(a) (by decreasing the number
of channels) to downscale the feature map into two channels,
denoted by s.

3.1.2. Framing Block (FB) framework

Since the VAD targets are labeled on the frames and stride half
of frame points each label (that is, the speech/non-speech la-
beling is frame-based and the neighboring frames have a 50%
overlap), we thus implement a framing block (FB) which adopts
a one-dimensional layer with the same stride as the VAD label-
ing. As shown in the middle part of Figure1(b), the FB con-
sists of a convolution layer, which receives the feature map s
from the preceding encoder framework, and a sigmoid activa-
tion layer. Briefly speaking, here the FB serves as a primitive
speech-nonspeech classifier, in which the two channels in the
convolutional layer attempt to reflect the speech and non-speech
frames, respectively.

3.1.3. Decoder Framework

Here the decoder framework is to further polish up the output
of the FB in order to achieve a superior VAD performance.
This decoder framework is created through stacking decoder
blocks (DBs), each consisting of a two-channel convolutional
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framework based on SVM [31] that shows huge improvements
compared to a single SVM for VAD. Zhang proposed an en-
semble of classifiers (multi-resolution stack, MRS) [32] based
on their proposed bDNN model. Noticeably, the MRS outper-
forms other VAD approaches by great margins in the area un-
der curve (AUC) metric. However, these approaches generally
use segmented spectral magnitude features, or power magnitude
features from time-frequency analyses, where the phase infor-
mation is not taken into consideration.

2.2. VAD based on time-domain or phase-aware scheme

Recently, phase features from time-frequency analyses have
been shown to be unignorable for an effective VAD, according
to what Wang proposed in their phase-aware framework [33].
For even better use of full information from speech signal, Zazo
proposed a CLDNN framework [34] that directly performs VAD
on segmented waveform utterances. The convolutional blocks
in CLDNN dissolve time-domain features as filter banks, and
feeds the extracted features to a LSTM-DNN block for finaliza-
tion of detection. However, the model complexity of CLDNN
can sometimes be great since it requires the integration of three
totally different neural network structures.

3. Proposed Method
To integrate the advantages of the aforementioned approaches
while maintaining a compact structure, we propose a waveform-
based VAD framework using a encoder-decoder structure con-
sisting of fully convolutional network, and we further im-
prove this framework by integrating multiple speech attributes
through an ensemble of encoders.

3.1. Encoder-Decoder FCN framework

Partially inspired by our previous works [35], this newly
presented scenario primarily adopts an encoder-decoder (ED)
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scheme, which resorts to a fully convolutional network (FCN)
to implement VAD directly on the time-domain speech wave-
forms. This novel waveform-based VAD algorithm, with a
short-hand notation “WVAD”, is depicted in Figure 1(a), con-
sists of an encoder of four convolutional blocks, a framing
block, and a decoder of three convolutional blocks, which de-
tailed arrangements are shown in Figure 1(b).
Briefly speaking, WVAD converts the input waveform x(t) to
a series of frame-wise VAD output, ỹ = [ys[τ ], yns[τ ]], where
ys[τ ] and yns[τ ] refers to the scores for speech channel and
non-speech channel, respectively, and τ is the frame index. For
any specific frame τ in x(t), if ys[τ ] ≥ yns[τ ], it is predicted
as a speech frame; otherwise it is predicted as non-speech. In
the following sub-sections, we detail each portion of WVAD.

3.1.1. Encoder Framework

Each of the four encoder blocks (EBs) shown in Figure 1(a)
consists of a one-dimensional convolutional layer followed by a
leaky-ReLU activation function, as depicted in the upper part
of Figure 1(b). These four EBs are stacked in an inverted-
triangular fashion as in Figure 1(a) (by decreasing the number
of channels) to downscale the feature map into two channels,
denoted by s.

3.1.2. Framing Block (FB) framework

Since the VAD targets are labeled on the frames and stride half
of frame points each label (that is, the speech/non-speech la-
beling is frame-based and the neighboring frames have a 50%
overlap), we thus implement a framing block (FB) which adopts
a one-dimensional layer with the same stride as the VAD label-
ing. As shown in the middle part of Figure1(b), the FB con-
sists of a convolution layer, which receives the feature map s
from the preceding encoder framework, and a sigmoid activa-
tion layer. Briefly speaking, here the FB serves as a primitive
speech-nonspeech classifier, in which the two channels in the
convolutional layer attempt to reflect the speech and non-speech
frames, respectively.

3.1.3. Decoder Framework

Here the decoder framework is to further polish up the output
of the FB in order to achieve a superior VAD performance.
This decoder framework is created through stacking decoder
blocks (DBs), each consisting of a two-channel convolutional

(b) Detailed view of each block

Figure 1.1: The VAD method presented in [2]
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fig. 1.1a as well as the activation function used.

In the following section the purpose of the three blocks of the algorithm will be described.
This description will only be on a conceptual level. In the next chapter the relevant theory
will be presented and a further analysis of the algorithm will be carried out.

Encoder Block

The Encoder Block (EB) consist of four convolutional layers with filters operating on features
sampled at the same rate as the audio input. In the first layer the raw waveform is convolved
with 30 different filters to generate 30 new feature maps of same size as the input - one for
each filter. These 30 feature maps are then through the next three layers gradually downscaled
into 2 feature maps, which will be the input for the next part of the algorithm.

Framing Block

Following the EB is the Framing Block (FB). This block is responsible for downsampling the
feature maps along the time-axis, such that each channel now has one feature per 10 ms
frame.

Decoder Block

The last block of the algorithm is the Decoder Block (DB). This block takes as input the
frame-wise features generated by the FB. Through 3 convolutional layers the feature maps
are refined into scores for speech and non-speech by taking into account the past and future
features. Thus the DB outputs a vector [yspeech ynon-speech] with one feature for each 10 ms
frame. The VAD decision is then chosen as the channel with the highest score.
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Presentation of theory 2
From the short introduction of the algorithm in section 1.2, further knowledge about the
theory behind the algorithm is necessary in order to get a deeper understanding. The relevant
theory will be presented in this chapter. Afterwards, this theory will be the foundation of a
series of design choices when implementing the algorithm presented in section 1.2.

2.1 Convolutional Neural Networks

The chapter will mainly focus on neural networks, in particular Convolutional Neural
Network (CNN)s. The theory will be presented in two steps: the forward step and the
backward step. The forward step is where the predictions are made by the CNN and
the backward step is where the parameters of the CNN are updated such that even better
predictions can be made in the next forward step.

2.2 Forward step

In general, a CNN consist of three types of layers. An input layer, an output layer and one
or more hidden layers in-between. These layers are called hidden because their inputs and
outputs are masked by activation functions and convolutions in the input and output layers,
and thus acts as a black-box system.

Each of these layers in a CNN consist of a linear convolutional layer followed by an activation
functions which applies an unlinearity to the layer. The next two sections will explain the
concepts of a convolutional layer and activation functions. Given that an audio signal is a 1-
dimensional time series, only 1-dimensional convolutions will be considered in the following.

2.2.1 Convolutions

This section on convolutions is based on [7, Chapter 9]. In the first part of a convolutional
layer the convolutions take place. A discrete time convolution is usually denoted as:

y[n] = x[n] ∗ w[n] (2.1)

In CNN terminology x is referred to as the input, w is referred to as the kernel or filter, while
y is the output, also referred to as the feature map. It is worth noting that convolving a time
domain signal x(t) with a filter w(t) is equivalent to multiplying the frequency representation
of a signal X( f ) with the frequency response of the filter W( f ). The convolution operation is
defined as:
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y[n] = x[n] ∗ w[n] =
∞

∑
k=−∞

x[k] · w[n− k] (2.2)

Which can in turn be computed efficiently using matrix multiplications:

y = Wx (2.3)

Additionally, in a CNN it is often beneficial to include a bias b in each layer. Further
generalising the matrix multiplication to span several layers, each layer l of a CNN can be
computed as:

x[l] = W [l]x[l−1] + b[l] (2.4)

And as mentioned in section 2.2 the output of a convolutional layer is masked by an activation
function. Thus the output of a convolutional layer can finally be expressed as:

x[l] = AF( f [l]x[l−1] + b[l]) (2.5)

Where l denotes the layer, w is the weights of the layer, x is the output of the previous layer
and b is the bias of the layer.

In terms of the convolutions in CNN, three concepts are particularly important to understand
the purpose of, and what happens if they are changed. These are:

• Filters and their size

• Stride

• Zero padding

Filter

In a CNN a filter w is the sequence of filter coefficients with which the input x is convolved
to produce the feature map y. The kernel size, i.e. how many filter coefficients it contains, is
crucial when it comes to designing CNN. In the case of a 1D convolution, a larger kernel size
would mean that the feature generated from the convolution will be less local and rely more
on its neighbours, while smaller kernels will extract more fine grained information. Because
of this it is often desirable to use small kernels, and instead more layers such that more and
more complex features can be extracted from the fine grained features through the layers.

When convolving an input with a kernel, the size of the resulting feature map will decrease.
That is because the kernel can only fit a limited number of times when sliding over the input.
The feature map will have the size N−M+ 1, where N is the length of the input and M is the
length of the kernel. This also emphasizes the benefit of a smaller kernel size. Additionally,
because of this property, it is desired to use an odd-sized kernel to ensure symmetry in the
convolutions
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Stride

Another important aspect in CNNs is the stride of a convolutional layer. The stride is the
number of samples with which the kernel is moved in between each convolution. In the
discussion of section 2.2.1 a stride of 1 was assumed. This means that by changing the stride,
you change the number of times the kernel can fit inside the input, and thus the size of the
feature map. Using a stride different from one can be an efficient way to downscale the size
of your feature map.

Zero padding

Through section 2.2.1 it was discussed which effect the kernel size and stride has on the size
of the feature map. One way to ensure that the size of the feature map remains the same
size as the input is to use zero-padding. When you zero-pad in a CNN you pad zeroes to
both sides of the input. Recall that assuming a stride of 1, the size of the feature map will be
N −M + 1. Thus in order to achieve the same size through the input and the feature map,
you will need to pad M

2 − 1 zeroes to both sides of the input.

2.2.2 Activation Functions

This section on activation functions is based on the overview provided in [8]. As seen in
eq. (2.2), convolutions are purely linear operations. The idea behind a CNN is that we stack
layers of convolutional layers, however since these convolutions are linear, it does not make
sense in itself. To apply an unlinearity to the layers, the convolutions are followed by activation
functions, which themselves are unlinear.

In the figure of the algorithm depicted in section 1.2, it is seen that the activation functions
used is Leaky ReLU and Sigmoid. For that reason, this section will be limited to a discussion
of these. However, to understand the Leaky Rectified Linear Unit (Leaky ReLU), one must
know its more simple variant, the Rectified Linear Unit (ReLU).

ReLU

A very popular activation function for use in CNNs is the ReLU. The ReLU is defined as:

f (x) = max(0,x) (2.6)

Thus it is simply setting negative parts of its input to 0 while keeping the positive parts.
This has the advantage that it is very simple and easy to compute. It is also invariant to the
magnitude of its input and therefore is scale invariant, such that:

max(0, a · x) = a ·max(0, x) (2.7)

Leaky ReLU

The Leaky ReLU is very similar to the ordinary ReLU function. The difference is that instead
of setting negative inputs 0, instead it will apply some small positive gradient to them, such
that:

f (x) = max(α · x,x) (2.8)
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α is usually a small number around the magnitude of 1e−2 to 1e−4.

The purpose of Leaky ReLU is to avoid the dying ReLU problem leading to vanishing gradients,
which will be explained further in the section on backpropagation.

Sigmoid

The last activation function to be used in the algorithm shown in section 1.2 is the Sigmoid
function. The Sigmoid functions is defined as:

σ(x) =
1

1 + e−x (2.9)

A plot of this function is seen below:
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Figure 2.1: The sigmoid function

It is seen that the output is squeezed in between 0 and 1, and while the input is defined for
every real value, in practice larger values will have little to no effect on the output. Therefore
in order to utilise the Sigmoid activation function it is crucial to make sure the inputs are
properly scaled, otherwise the vanishing gradient problem will occur. This will be further
explained in the section on backpropagation

2.2.3 Loss functions

This section on loss functions is based on [7, Chapter 7]. The two channels of the output layer
of the WVAD algorithm will each output vectors of values between 0 and 1, given that the
activation function of the outout layer is the Sigmoid. These output values are unnormalised
and therefore referred to as logits.

The last part of the forward step is to evaluate these logits. This evaluation can be done in
several ways, i.e. prediction accuracy or loss. The loss is of particular interest as this will be
a fundamental part of the backward step where the parameters of the network are updated.
VAD is a classification task, and therefore a loss function of interest is the Cross Entropy Loss
Function (CE LF).
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2.2.3.1 Cross Entropy Loss Function

While training a network the goal is to find the parameters that minimise the loss. In the case
of the CE LF the loss is calculated as the entropy between the predicted logits and the true
labels. First will be considered the multi class scenario, and this theory will be used to find
the Binary Cross Entropy Loss Function (BCE LF) that is of interest in the VAD classification
task where only two classes is to be considered; speech and non-speech.

The CE LF is defined:

JCE = −∑
i

tilog(pi) (2.10)

Where:

ti = The true label for the ith class
pi = The probability for the ith class
JCE = The cross entropy loss

The purpose of taking the log of the logits is to punish predictions that are far off the true
label, while the negative sign is to ensure a positive loss given that the probabilities are all in
the range of 0 to 1. In the CE LF defined in eq. (2.10) the predicted probability for each class
is needed. To get the probabilities the softmax function is applied to the logits. The softmax
function generates probabilities for each class, which in total sums up to 1.

An example on the use of the CE LF is shown below in fig. 2.2. In this example an
arbitrary CNN outputs one logit for each of its 4 classes. These logits are then converted
to probabilities by the softmax function, whereafter the cross entropy is found between the
predicted probabilities P and the true labels T.

0.63
0.09
0.05
0.23

1
0
0
0

P T
-0.67
0
0
0

3
1
0.5
2

Logits

CNN
Softmax

0.67

Figure 2.2: An example illustrating the use of the CE LF applied to an arbitrary CNN

2.2.3.2 Binary cross entropy loss function

In the case of WVAD, only two classes is part of the classification; speech and non-speech.
Because of this a simplified version of the CE LF can be used, namely the BCE LF.

The BCE LF is defined as:
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JBCE = −
2

∑
i=1

tilog(pi) (2.11)

(2.12)

By exploiting the fact that p1 + p2 = 1 and only one label is 1 while the other is 0, either one
of the probabilities with its corresponding label can be used to calculate the loss as:

JBCE = − [tlog(p) + (1− t)log(1− p)] (2.13)

In the case of WVAD each channel outputs a vector of scores each representing a 10 ms
segment of the input. To find the loss over the entire input signal, the loss is calculated for
each 10 ms segment whereafter the mean of the losses is found:

JBCE = = − 1
N

[
N

∑
j=1

[
tjlog(pj) + (1− tj)log(1− pj)

]]
(2.14)

2.3 Backward step

As briefly mentioned in section 2.1, the second part involved in training a CNN is the
backward step. The purpose of the forward step was to calculate the loss between the true
labels and the output y generated from the input x. The purpose of the backward step is to
update the parameters of the CNN, such that the loss will be smaller in the next forward step.
By computing the forward step and the backward step in turns, the loss will decrease until at
least a local minimum is found and thereby training the network.

The backward step consists of two main components. First, the gradients are to be calculated
based on the loss, such that the parameters can afterwards be updated based on the gradients.

2.3.1 Backpropagation

This section on backpropagation is based on [7, Chapter 6]. The first part of the backward
step is to compute the gradients of each of the parameters with respect to the loss function.
However, a CNN usually consists of a large amount of parameters making the direct gradient
computation numerically infeasible.

To ease the computations in the gradient computation the backpropagation algorithm is used.
This algorithm works by applying the chain rule to the computational graph used in the forward
pass. This computational graph stores the order of operations from the forward pass. In the
case of a CNN, it will propagate backwards through the layers of the network.

The chain rule is defined as in eq. (2.15) and works by computing the derivative of a function
by composing other functions whose derivatives are already known.

∂ f
∂x

=
∂ f
∂y

∂y
∂x

(2.15)
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In the case of a backpropagation the function f is the loss of the network, while the derivative
of this loss with respect to y is already known from the previous layer.

The chain rule can be applied in an iterative manner to the parameters of the CNN in the
order determined by the computational graph. This way the gradients of a layer can be
calculated once the gradient of the previous layer is known, and thus the complexity of the
gradient computations can be reduced.

2.3.2 Optimizers and updating parameters

Once the gradients have been calculated using backpropagation, then next part of the
backward step is to update the parameters. In doing this an optimisation algorithm capable
of optimising multi-variable functions is needed. In [9] is provided an overview of and
comparison between different state-of-the-art optimisers, and this will be the foundation of
this short overview. In the literature is multiple studies investigating the performance of
different optimisers with different results, and this field of research is so extensive that only
a short excerpt is included in this work as a short introdution.

2.3.2.1 SGD

Let us first consider a popular optimiser that is used both as an optimiser of its own and as
the foundation of more advanced optimisers; that is the Stochastic Gradient Descent (SGD)
optimiser.

The SGD is an extension of the gradient descent algorithm which calculates the gradients
based on the entire data set, which in case of a large data set will take a long time to compute
and thus take long time to converge towards an optimum.

The update rule for gradient descent is defined as:

θ = θ − α · ∇θ L(θ; x) (2.16)

where

θ = the parameters of the network
L = the loss computed over the full dataset x

In order to overcome this challenge we instead consider the SGD. The SGD solves the
optimisation by instead of calculating gradients and updating weights based on the entire
dataset, only a single sample from the data set is considered. This sample is randomly chosen,
thus the algorithm is named SGD. This however leads to the problem of higher variance in
the model parameters, leading to that the computed loss will fluctuate between each sample.

The update rule for stochastic gradient descent is defined as:

θ = θ − α · ∇θ L(θ; x[i])) (2.17)

where x[i] denotes a single piece of data from dataset x.
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Mini-batch gradient descent

One way to get both the lower variance from the gradient descent algorithm and the faster
convergence from the SGD algorithm is to use small batches from the data set for each weight
update. This method is referred to as mini-batch gradient descent. In each optimisation
step using mini-batch gradient descent N samples are chosen from the data set at random.
The loss is calculated for all of these, where after this combined loss is backpropagated and
parameters are updated.

The update rule for mini-batch gradient descent is defined as:

θ = θ − α · ∇θ L(θ; x[i:i+n]) (2.18)

where x[i:i+n] is a subset of data from dataset x.

2.3.2.2 RMSprop

Another gradient based method is Root Mean Squared propagation (RMSprop)[10]. It builds
on top of the SGD (or mini-batch gradient descent) and is designed specifically to deal with
the problem of vanishing and exploding gradients that will be introduced in section 2.3.3. It
deals with the problem of vanishing and exploding gradients by using a moving average of
squared gradients to normalise said gradient. This results in a balanced step size such that
larger gradients are decreased and smaller gradients are increased.

In algorithm 1 the update rule of the RMSprop optimiser is seen. The variables are named as
follows:

θ = the parameters
ε = very small non-zero value to avoid division by zero
ρ = the moving average decay factor
γ = weight factor for previous update step
η = the learning rate
L = the loss
m = the parameter update step
v = the moving average of the gradient

Algorithm 1: RMSprop update rule
Input: θ, ε, ρ, γ, η

Output: θ

Set v0 = 0, m0 = 0
for n = 0 to no. iterations do

vt+1 = ρvt + (1− ρ)∇L (θt)
2

mt+1 = γmt +
ηt√

vt+1+ε
∇L (θt)

θt+1 = θt −mt+1
end

The learning rate is not as was the case of SGD, where the learning rate was multiplied
directly by the gradient. Instead it is normalised by the gradient. Additionally the update
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step is added to the previous update step. This means that multiple consecutive gradients
of the same direction will lead to larger update steps, and it will not necessarily instantly
change direction in case the gradients sign is flipped.

2.3.2.3 ADAM

The last optimiser that will be considered is the (Adam) optimiser [11]. It is an adaptive
learning rate method that is computing different learning rates for different parameters. This
is achieved by using estimates of the first and second moments of the moving average of the
gradients similar to that of the RMSprop.

In algorithm 2 the update rule for the Adam optimiser is shown. The variables are as follows:

θ = the parameters
ε = very small non-zero value to avoid division by zero
η = the learning rate
β = the moving average decay factors
L = the loss
m = the moving average of the gradient of the first moment
v = the moving average of the gradient of the first moment

Algorithm 2: ADAM update rule
Input: θ, ε, η, β1, β2

Output: θ

Set v0 = 0, m0 = 0, b0 = 0
for n = 0 to no. iterations do

mt+1 = β1mt + (1− β1)∇L (θt)

vt+1 = β2vt + (1− β2)∇L (θt)
2

bt+1 =

√
1−βt+1

2
1−βt+1

1

θt+1 = θt − ηt mt+1√
vt+1+ε bt+1

end

Due to the normalisation using the first and second moments of the gradient step size of the
Adam optimiser is in fact invariant to the magnitude of the gradient. This can prove very
helpful when exploring saddle points or ravines where SGD will struggle due to the gradients
being close to 0.

Last few words on optimisers

An interesting conclusion of [9] is that the more sophisticated optimisers can always perform
at least as well as the optimiser on which it is built on top. Thus as both optimisers are
inspired by SGD it is possible to achieve at least the same performance. This however is very
dependent on optimal tuning of hyperparameters. And the more hyperparameters is present
in an optimiser the more difficult it is to initialise properly. Thus there is not "one optimiser
to rule them all", but what performs the best is very application specific.
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2.3.3 Exploding and vanishing gradient problems

The last topic to be discussed in the section on backpropagation is the vanishing and exploding
gradient problems [7, Chaper 8]. First, let us consider the chain rule used in backpropagation,
as seen in eq. (2.15). This states that the gradients of a layer is computed as a multiplication
using the gradient of the previous layer. This means that the gradient of a network of n
hidden layers will be multiplied together n times.

Following this the gradient will increase in magnitude through the layers in the case of large
gradients and the gradient is said to be exploding, and in the case of small gradients it will
decrease through the layers, and the gradient is said to be vanishing.

In a network with vanishing gradients the network is unable to learn, or at least learns very
slowly due to the small parameter updates that follow from the small gradients. Additionally,
it will lead to that the layers closer to the output will be learning more than the layers close
to the input, because of how the gradients will shrink through the layers.

In a network with exploding gradients the parameter updates acts adversarily to those of the
vanishing gradients; the parameter updates will be large, especially in the layers close to the
input. This will lead to instability making the loss of the network fluctuate at each update.
This will lead to the parameters overshooting in the optimisation step and it is not guaranteed
to ever reach a local minimum.

2.3.3.1 Parameter initialisation

One way to avoid the exploding and vanishing gradient is to initialise the parameters in
ways such that the output of each layer will remain similar in magnitude and variance.
Considering that the layers with the sigmoid activation function outputs between 0 and 1,
it is desirable to have layers with different activation functions also output values in this
range. Additionally, it is standard practice to have your inputs scaled such that they fall
within an normal distribution of mean 0 and standard deviation 1 [12].

In the Waveform-based VAD (WVAD) algorithm sigmoid and Leaky ReLU activation
functions are used. For that reason this section will focus only on parameter initialisation
for layers with these activation functions.

Parameter initialisation for sigmoid layers

Currently a go-to approach for initialising parameters in a layer with the sigmoid activation
function is to use the Xavier initialisation.[13] As mentioned above, it is desired that the
variance does not change through the layers, such that:

Var(x[l]) = Var(x[l−1]) (2.19)

In the Xavier initialisation the variance of the weights is chosen such that the following
constraints are satisfied:
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n[l−1] Var(W [l−1]) = 1 (2.20)

n[l] Var(W [l]) = 1 (2.21)

Where n is the number of nodes in the layer l. In the general case is referred to the number
of nodes in a feed-forward neural network, but this can be rewritten to instead consider
convolutional layers as:

n[l−1] = wsize · c[l−1] (2.22)

n[l] = wsize · c[l] (2.23)

• n the number of nodes

• w the kernel

• c the number of channels

Relating this to the problem of exploding and vanishing gradients, three cases can be
considered:

n[l] Var
(

W [l]
)

< 1 =⇒ Vanishing features

= 1 =⇒ Var
(

x[l]
)
= Var(x[l−1])

> 1 =⇒ Exploding features

(2.24)

Thus in order to satisfy eq. (2.20), the variance of the distribution of the weights have to be
initialised as:

Var(W [l]) =
1

n[l]
(2.25)

Var(W [l]) =
1

n[l−1]
(2.26)

The two constraints can be combined to:

2
n[l−1] + n[l]

(2.27)

Having found the variance, the initial weights can now be drawn from the normal
distribution:

W [l] ∼ N
(

0,
2

n[l−1] + n[l]

)
(2.28)
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2.3.3.2 Parameter initialisation for Leaky ReLU layers

In [14] a new way of initialising weights was proposed. This is known as the He initialisation
and is the go-to way of initialising weights in a convolutional layer with a ReLU activation
function [12]. It is derived based on some of the same thoughts as Xavier initialisation,
however it has proven to work very well when initialising ReLU layers. The Xavier
initialisation assumes linearity in the activation function, which is not the case for the ReLU.
Additionally ReLU is not differentiable, given that it is a combination of two separate linear
functions.

Similarly to Xavier initialisation, the key idea is that the variance of the feature maps remains
the same through the layers. In He initialisation this is ensured by:

n[l]

2
Var

(
W [l]

)
= 1 =⇒ Var(W [l]) =

2
n[l]

(2.29)

Thus the initial weights of the Leaky ReLU layers will be drawn from the normal distribution;

W ∼ N
(

0,
2

n[l]

)
(2.30)

2.3.3.3 Normalisation

In this section an alternative approach to avoid exploding and vanishing gradients is
presented. This method is Batch Normalisation (BN). The section is based on [15]. BN is
a method aiming towards making training of neural networks faster and more stable. In
short, the first and second statistical moments (mean and variance) of the current batch are
used for normalising the feature maps. Given the feature map x, the mean and variance can
be found as:

µ =
1
n ∑

i
x(i) (2.31)

σ2 =
1
n ∑

i
(x(i)− µ)2 (2.32)

The mean and variance are then used for normalising the feature map through eq. (2.33). This
way it is ensured that the feature maps follows a normal distribution

x(i)normalised =
x(i)− µ√

σ2 − ε
(2.33)

The magnitude and standard deviation of this normal distribution can then be modified using
the parameters γ and β. These adjust the standard deviation and applies a bias respectively.

x̂ = γ · x(i)normalised + β (2.34)

The BN can be considered a layer of its own which is introduced into the network. During
training the parameters γ and β is trained alongside the other parameters of the network.
Thus the BN layer can be used to keep the feature maps of the same variance and magnitude
throughout the network and thereby avoiding exploding/vanishing gradients resulting in
faster network training.
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2.4 Overfitting and underfitting

The section is based on [7, Chapter 7]. In this section will be introduced the concepts of
overfitting and underfitting. As the essence of machine learning is to approximate a target
function to fit some training data iteratively, there is a risk of fitting the function either too
well or too bad to the training data. If the target function is fitted too well to the training data
we may see that it does not generalize well to unseen testing data. On the other hand, if the
target funcion is underfitted we do not see good performance on either the training data or
the testing data.

In fig. 2.3a is shown an example of a target function that is overfitted to the training data
(green line) and a target function that provides better generalisation to new data (black line).

Thus we want target function that generalises the best to both the unseen data and the training
data. In order to obtain this we must stop the training at the right time. in fig. 2.3b is
illustrated the loss of the training data (blue line) and the loss of the testing data (red line).
This is only an illustration of the concept and is not subject to an actual training set. It is seen
that even though the loss on the training data keeps decreasing at some point the loss of the
testing data start increasing. In the example of fig. 2.3a this is the expected behavior once we
start learning the outliers of the training data and thus obtain the green line. Instead we want
to stop the training once we have obtained the black line. This is expected to be just before
the testing loss start decreasing as seen in fig. 2.3b

(a) Illustration of overfitting to the training
data (green line). Figure by Chabacano[16]

ε

!

(b) Illustration of the testing loss increasing because of
overfitting. Figure by Gringer[16]

Figure 2.3: Illustration of overfitting

2.4.1 Regularization

In the literature there are a variety of different methods to avoid overfitting, which are
generally referred to as regularization techniques. In this short overview we will present only
two of such techniques: early stopping and dropout. Before presenting these techniques will
be provided a short overview of how data is usually split up during training.

2.4.2 Training, validation and testing sets

So far in this overview of theory we have only considered the training set and the testing set,
however in practice an additional set is usually used. That is the validation set.
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Thus the purpose of the three sets are as follows:

Training set:

The set of data that is used for learning. The model is aiming to approximate a function that
minimises the loss on this set.

Validation set:

A set of the data that is used for providing unbiased evaluations of the model during training.
Evaluation on the validation set is often employed after each training epoch. This is usually
taken as a subset of the training data. This subset is not used for training.

Testing set:

A set of data that is used for providing unbiased evaluation of the model after training is
finished

Early stopping

The idea of early stopping is very simple. After each epoch the model is evaluated on the
validation split. We keep record of this performance and after a predefined number of epochs
with no further improvement on the validation set we stop training. Thus we also save
training time as we do not necessarily have to train all the planned epochs. In the example of
fig. 2.3b using early stopping we will stop training a set distance after the minimum loss is
observed and then use the model minimising validation loss for further testing.

Dropout

Another regularization technique is dropout. This procedure aims to reduce overfitting
by "turning off" neurons during training. The neurons are randomly dropped out with a
probability P which is typically P=0.2 for input layers and P=0.5 for hidden layers. Using
dropout we perform the forward step, the backpropagation and the parameter updates using
the non-dropped-out parameters only.

Due to the lower number of weights we need to scale the outputs by a factor of 1
1−P .

2.5 Evaluation of VAD

As the last part of this chapter on theory will be presented two ways of evaluating the
performance of a VAD algorithm. Given that VAD is a binary classification problem,
we consider first the accuracy and thereafter a more sophisticated approach: the Receiver
Operating Characteristic (ROC)

2.5.1 Accuracy

A popular way of evaluating a VAD algorithm is by finding its accuracy. That is, simply
put, how many of the VAD frames that is classified correctly divided by the total number of
frames. In a binary classification problem we consider four scenarios in which the outputs
lie. That is:
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• True Positive (TP)

• True Negative (TN)

• False Positive (FP)

• False Negative (FN)

The accuracy can then be found as:

Accuracy =
TP+TN

TP+TN+FP+FN
(2.35)

The accuracy however may not always be the best metric for evaluating performance. That is
for example if the data is heavily biased towards either 0 or 1. In that case a high accuracy
may be achieved by simply giving the same output regardless of the input.

2.5.2 Area Under the Curve

Because of this we introduce another way of evaluating a binary classification. That is by
considering the ROC. The ROC curve is a plot that illustrates the True Positive Rate (TPR)
against the False Positive Rate (FPR) as the classification threshold is varied. These are
computed as:

TPR =
TP

TP+FN
(2.36)

FPR =
FP

FP+TN
(2.37)

Thus the TPR and FPR are normalised to the total occurrences of positives and negatives and
thus are not prone to misleading results for biased data. In fig. 2.4 the ROC curve is illustrated
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Figure 2.4: Receiver Operating Characteristic curve [17]

As illustrated, the larger the area under the curve is, the better the performance of the binary
classification is. Therefore, through numerical integration of the ROC curve can be found a
good metric for evaluation of VAD. From now on that is referred to as Area Under the Curve
(AUC).
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environment 3

In this chapter it will be described how the simulation environment is set up based on the
knowledge from chapter 2. The aim is to have the network perform as good as possible based
on the theory, and then reproduce the results presented in [2] before the network will be
further modified to accommodate for the three research questions presented in section 1.1.

3.1 Dataset used

First let us consider one of the datasets used in the original work of [2], the Aurora-2
dataset [6]. This dataset contains a traning set and three different test sets. All speechdata
are derivatives of the TIdigits database downsampled to 8 kHz and filtered with a G712
characteristic. The spoken audio in this database is digits and letters. The Aurora-2 dataset
contains true labels for VAD and both the training sets and the test sets are labelled as
containing 73% speech. The labels used can be downloaded from the GitHub repository
of [1].

The training set contains both clean speech and noise corrupted speech. The noise corrupted
speech is at SNR levels of 20 dB, 15 dB, 10 dB and 5 dB. For the training set the following four
noies types are used:

• Recording inside a subway

• Babble

• Car noise

• Recording inside an exhibition hall

The training set contains 8,440 files, whereof each unique combination of noise type and SNR
level contains 422 files.

The three test sets all contain different noise types, however only set A and B will be
considered here. Each test set contains the same speech which has been corrupted by different
noise types at SNR levels of 20 dB, 15 dB, 10 dB, 5 dB 0 dB and -5 dB. In total each set contains
28,028 files, whereof each unique combination of noise type and SNR level contains 1,001 files.

The noise types of test set A are the same as those of the training set, while test set B is
corrupted with the following noise types:

• Restaurant

• Street

• Airport
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• Train station

Thus test set A can be considered to the model known noise types while test set B is unknown
noise types.

3.1.1 Training, validation and test splits

In section 2.4.2 it was explained how the usual approach towards creating a validation set is to
split the training set into two parts, such that a small part is reserved for unbiased validation.
However, in this work a slightly different approach is taken due to the two different test sets
used - set A and B which contains to the model known and unknown noise types respectively.
In order to obtain true unbiased validations it has been decided to split both test sets into a
validation and a test split. Thus the validation split is 1/3rd of the test set while the test
split is the remaining 2/3rd of the files. Additionally, this way more files will be available for
training.

3.2 Design choices

Based on the knowledge of the algorithm from section 1.2, the dataset from section 3.1 and
the presentation of theory in chapter 2, in this section will be made some initial design choices
that is left unanswered by the original work of [2].

3.2.0.1 Optimiser

In section 2.3.2 was introduced different popular algorithms for optimising a neural network
based on a comparison study. Because of its fast convergence capabilities, its relatively few
hyperparameters and its good performance has been chosen to use the RMSprop optimiser.
Additionally, later in this work this particular optimiser will prove useful (chapter 6).

3.2.0.2 Normalisation

In section 2.3.3.3 was introduced a method for normalising the outputs from each layer such
that training is faster and more stable. It is decided to use the batch normalisation after each
Leaky ReLU layer as the output values of these are unbounded. The Sigmoid layers on the
other hand are squeezing the outputs inside the range of [0,1] and for this reason it is not
necessary to apply normalisation to these layers.

3.2.0.3 Parameter initialisation

In section 2.3.3.1 was introduced different ways of initialising parameters in a way such that
the risk of exploding and vanishing gradients are minimised. In this work will be used Xavier
initialisation for the Sigmoid layers and He initialisation for the Leaky ReLU layers.

3.2.0.4 Loss function

In section 2.2.3 was introduced common choices of loss functions for classification. In
particular the cross entropy loss function and the binary cross entropy loss function. As
the VAD task is a binary classification problem it is decided to use the binary cross entropy
loss.
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3.2.0.5 Evaluation

In section 2.5 two approaches towards evaluation of the VAD was introduced and as
mentioned in section 3.1 the Aurora-2 dataset is labelled as 73% speech. Thus in order to
avoid misleading results (i.e. by achieving a "good" performance by labelling too much audio
as speech) it is chosen to disregard the accuracy and instead only consider the AUC when
evaluating the VAD

3.2.1 Training

The last two design choices considered are directly related to training of the model. It is the
value of the learning rate and the way in which the network is regularised in order to avoid
overfitting to the training data.

3.2.1.1 Learning rate scheduling

Experimentally it has been found that using a learning rate starting at 0.01 ensures fast and
stable convergence towards a solution. Additionally, to ensure more and more fine grained
features are found the learning rate is gradually decreased by a factor of 0.7 after each epoch.

3.2.1.2 Regularisation

In section 2.4.1 was introduced two regularisation techniques for reducing overfitting. These
were early stopping and dropout. It has been chosen to use the typical values for dropout
presented, i.e. P=0.2 for the input layer and P=0.5 for the hidden layers.

Using the dropout a test has been carried out to see whether additional regularisation is
needed. Further explanation of how this simulation is carried out can be seen in section 3.3.1:
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Figure 3.1: Validation curve used for deciding number of epochs to train.

From fig. 3.1 it is seen that even as the loss of the training set saturates the same behaviour as
illustrated in fig. 2.3b is not observed. In fact it is seen that the validation loss of both test sets
(as explained in section 3.1.1) follows the same pattern as the training loss. Additionally, the
AUC has been found on the validation sets after each epoch and the same pattern is observed.
Thus as no overfitting is observed it is decided to not use early stopping, but instead a fixed
20 training epochs.

24



3.3. Design of simulation environment Aalborg University

3.3 Design of simulation environment

Now that the initial design choices have been made we will now move on to implementation
of the network. First we consider the framework from fig. 1.1 and instead introduce an
illustration that includes more information about the algorithm, and also includes both the
forward step and the backward step. This illustration also allows for easy modifications later
on in this work:
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Figure 3.2: Visual representation of the network used as the framework of this project. The network is proposed
in [2] while this figure is made by the author of this thesis.

3.3.1 Design of environment

As the framework used does not include publicly available source code, it will have to be
built from scratch in this work. Some initial choices on the platforms used is listed below:

• The network will be implemented in Python

• The PyTorch [18] module will be used as it offers a lot of built-in functionality in terms of
neural network implementation, loss functions, data loading, Graphics processing unit
(GPU) kernels etc.

• Operations not supported by PyTorch will be implemented using Numpy and SciPy. The
plots will be made using Matplotlib and the result files will be saved using Pickle

• The network will be trained on a desktop with an NVIDIA GTX1080 GPU
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As described in section 2.4 a CNN is prone to overfitting. To make sure the network will not
overfit to the training set, the main loop of the algorithm will be set up as follows:

Algorithm 3: Main loop

for n = 0 to epochs do
Run training loop
Run validation loop

end
Run testing loop

The validation after each training will be used to make sure the model is not overfitting to the
training data. Later in this chapter the training and validation/testing loops will be further
described.

3.3.2 Model initialisation

First however, let us consider how the network is to be initialised in order to stay true to
the work presented in [2]. Only little information about the algorithm is described and thus
many design choices is left. These design choices will be based on the theory presented
in chapter 2. As the network is a FCN all the layers consists of only convolutions and an
activation function. Because of this most of the design choices are similar for every layer, and
thus it is decided to only consider the first layer in this description. A code snippet showing
the initialisation of the first layer of the network implemented in PyTorch is seen in listing 3.1.

The class contains a method for initialising the model and a method for defining the dataflow
in the forward step.

Code Listing 3.1: Initialisation of the model in Python

import torch
from torch import nn

class VAD_model(nn.Module):
def __init__(self):

""" Initialisation of the model """
super(VAD_model , self).__init__ ()
self.EB1 = nn.Conv1d(1,30,55 ,stride=1,padding='same')
nn.init.kaiming_uniform_(self.EB1.weight , 0.01, 'fan_in ','leaky_relu ')
self.relu = nn.LeakyReLU(negative_slope=0.01)
self.dropEB1 = nn.Dropout(p=0.2)
self.bnormEB1 = nn.BatchNorm1d ((30))

def forward(self , x):
""" Define the dataflow in the forward step of the model """
x = self.EB1(x)
x = self.relu(x)
x = self.bnormEB1(x)
x = self.dropEB1(x)

return x

The design choices are seen in the initialisation method, and elaborated in the following:
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• The channels in, channels out, filter size and stride are defined in [2]. padding=’same’
defines that the length of the output feature map is to remain the same as the length of
the input feature map. In order to accomplish this zeroes are padded as introduced in
section 2.2.1.

• The weights of the network is initialised using a uniform He (sometimes called Kaiming)
initialisation as presented in eq. (2.30). ’fan in’ means that the variance of the weights
are preserved in the forward step. ’leaky relu’ means the weights are further optimised
to retain the variance using the Leaky ReLU activation function.

• The Leaky ReLU layer is initialised using a negative slope of 0.01, which was found to
be a commonly used value in section 2.2.2.

• During training 20% of the weights in the layer is randomly dropped out to improve
regularization of the network and avoid overfitting. This was presented in section 2.4.1.

• In order to speed up the training a batch normalisation is introduced after each layer as
presented in section 2.3.3.3

Once the network is initialised the forward pass can be called. In this case the input is called x,
and after propagating the input through the entire model the output is returned. This output
is then used for further processing such as computing the loss, making VAD predictions and
computing the AUC.

3.3.3 Training loop

Having initialised the model, this section will elaborate the thoughts about the training loop
as presented in algorithm 3. The key tasks of the training loop is the following:

• Fetch an audio file and perform the forward step

• Compute the loss between true labels and predicted VAD labels

• Backpropagate through the network and update the parameters

The following code snippet shows the core functionality of one epoch of the training loop
implemented using PyTorch. First the optimiser is initialised. As mentioned in section 2.3.2.2
the RMS optimiser will be used in this work. Afterwards the forward step is computed,
and the loss is calculated and accumulated. Once batch size number of files have forward
propagated through the network, the backward step will be executed. In PyTorch the
propagation graph is saved when performing a forward pass. This propagation graph is
then used for efficiently calculating the new gradients using backpropagation as described in
section 2.3.1. Lastly, the parameters are updated based on their gradients. It is important to
note that the order in which the files are shown to the network is randomly shuffled in each
epoch.
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Code Listing 3.2: The training loop implemented in Python.

import torch
from torch import nn

optimizer_EB1 = torch.optim.RMSprop(VAD.EB1.parameters (), lr=learning_rate)

for file_number , (audio , true_labels) in enumerate(data_set):
VAD_predictions = VAD_model(audio) #Forward step
loss += nn.BCELoss(VAD_predictions , true_labels) #binary cross entropy loss

if file_number % batch size == 0:
optimizer_EB1.zero_grad () # Zeroing gradients
loss.backward () # Calculating new gradients
optimizer_EB1.step() # Performing parameter updates

3.3.4 Validation loop and testing loop

After each training loop a validation loop can be carried out for two reasons: to ensure we are
not overfitting the network and to keep track of the performance of the network. The testing
loop operates similarly to the validation loop in this work, and thus they will be introduced
together. The only difference between the validation and the testing loop is the data they are
operating on. In section 2.4.2 was described how a small part of the training set is usually
left for validation. Even though this is standard procedure in the field of machine learning,
a slightly different approach has been taken in this work. That is because in this work we
are interested in the network learning the characteristics of speech, and not those of noise.
For this reason both known (test set A) and unknown noise types (test set B) will be used for
validation to ensure we are not overfitting to the noise types.

Thus a validation and a test split is made from each test set. The validation split contains
1/3rd of the files while the testing split contains the remaining 2/3rds.

Additionally, while validating/testing we are interested in the network performance at each
individual noise type and SNR level. The testing loop will therefore loop over these.
Following this, the key functionality of the validation and testing loops are as follows:

• Fetch an audio file from the appropriate split and compute the forward step

• Compute the loss between true labels and predicted VAD labels

• Compute the AUC

In the following code snippet is shown how the validation/testing loop is constructed. The
end goal is to get the average loss and AUC over each unique combination of noise type
and SNR level, using the entire split. As presented in section 2.5 the AUC is the area under
curve of the ROC. Therefore this ROC curve is constructed and the AUC is computed using
trapezoidal integration. In order to find the TPR and FPR of the network a sweep of different
threshold values is carried out. As the last layer of the network is a sigmoid the outputs are
limited to the interval [0,1] and thus full range can be covered by varying the threshold within
the range [-1,1].
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Code Listing 3.3: The testing/validation loop implemented in Python

import torch
from torch import nn
import numpy as np

def compute_AUC(TP , TN, FP, FN):
TPR = TP/(TP+FN)
FPR = FP/(FP+TN)
AUC = -np.trapz(TPR , FPR)
return AUC

for SNR in SNR_levels:
for noise in noise_types:

for file_number , (audio , true_labels) in enumerate(data_set):
VAD_predictions = VAD_model(audio) #Forward step
loss += nn.BCELoss(VAD_predictions , true_labels)

for idx , threshold in enumerate(np.linspace(-1,1,samples)):
TP , TN , FP, FN = hits(VAD_predictions , true_labels , threshold)

TP_acc[idx] += TP # Accumulate for each threshold
TN_acc[idx] += TN # -,-
FP_acc[idx] += FP # -,-
FN_acc[idx] += FN # -,-

compute_AUC(TP_acc , TN_acc , FP_acc , FN_acc)

The two outer loops are looping over combinations of noise types and SNR levels. The third
loop is looping over all the files in this exact dataset and computing VAD predictions and
the loss. The inner loop is where the foundation of the AUC is computed. This threshold is
swept over aforementioned range and using this threshold the number of TP, TN, FP, FN in
this file is calculated. The number of these are then accumulated for each threshold value.
This way we can compute the AUC over the entire data set. Lastly the AUC is computed.

The source code can be found on https://github.com/aau-es-ml/VAD-with-adversarial-
multi-task-learning.

3.4 Reproducing the results

Now that the model network has been implemented, this section will focus on reproducing
the results originally published in [2]. The results are published as both accuracy and AUC,
thus both of these will be investigated, even though it was decided in section 3.2.0.5 that only
the AUC will be considered for the further work.

Accuracy

In table 3.1 the accuracy of the 4 noise types of test set B from both the original paper and
this work is presented. It is seen that the implementation in this work closely resembles
the original results at lower SNR levels, however at higher SNR levels we see a difference in
accuracy on 1-2.5%. This difference is not significant and thus we will carry on with the next
results.
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Test set B SNR Original results This work

Restaurant

-5 dB 86.99 86.64
0 dB 91.04 90.71
5 dB 94.31 93.17
10 dB 95.72 93.86

Street

-5 dB 86.89 87.26
0 dB 91.17 90.56
5 dB 94.27 92.87
10 dB 95.81 94.11

Airport

-5 dB 87.96 86.62
0 dB 91.95 90.56
5 dB 94.54 92.94
10 dB 95.89 93.96

Train

-5 dB 88.27 86.69
0 dB 92.37 90.43
5 dB 95.21 93.10
10 dB 96.14 93.75

Table 3.1: Results from original WVAD paper

AUC

Next up we compare the computed AUC of the original paper to this work. The AUC is
found as the average over 7 noise types at 6 SNR levels. However, it is not noted what these
7 noise types are. Instead the reproduced results will be averaged over the 8 noise types of
both test set A and B. The comparison is seen in table 3.2.

AUC Aurora-2 Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean

Original paper - 99.45 99.40 99.27 98.80 97.04 92.29 97.71
This work - 98.65 98.61 98.44 98.47 97.96 97.00 97.68

Table 3.2: AUC values when training and testing on the Aurora-2 database

It is seen that the AUC of the original results has a higher variance over the SNR levels
by performing worse at low SNR levels and performing better at higher SNR levels. The
difference is not significant. The mean however, is very similar. It has not been possible to
achieve a closer resemblence, so this model will be used for further experimenting in this
work.
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Paper submitted to
Interspeech 2022 4

As a part of this thesis has been submitted a paper to the Interspeech 2022 conference. This
paper covers a wide range of the work done in this thesis, however as the paper was limited to
only 4 pages of content and 1 page of references, it has not been possible to describe the work
and the thoughts behind thoroughly. For this reason, this part of the report will be based on
the paper and provide some more elaborate theory, discussions and analysis of results.

First, on the next pages the paper is presented. The paper will give an overview of the work,
whereafter the different aspects will be more thoroughly described, as mentioned above.

The paper use the algorithm presented in [2] as a baseline. This work then focuses on
answering the first 2 of the research questions mentioned in section 1.1:

1. Can we potentially increase the noise-robustness of a VAD without increasing its computational
cost and latency to the execution-time?

2. How will it affect the performance of the VAD if we allow it to use less future samples to generate
a VAD output and thus decrease the algorithmic delay?

32



Adversarial Multi-Task Deep Learning for Noise-Robust Voice Activity
Detection with Low Algorithmic Delay

Claus M. Larsen, Peter Koch, Zheng-Hua Tan

Department of Electronic Systems, Aalborg University, Denmark
cmla17@student.aau.dk, pk@es.aau.dk, zt@es.aau.dk

Abstract
Voice Activity Detection (VAD) is an important pre-processing
step in a wide variety of speech processing systems. VAD
should in a practical application be able to detect speech in both
noisy and noise-free environments, while not introducing sig-
nificant latency. In this work we propose to introduce an adver-
sarial multi-task learning method when training a supervised
VAD. The method has been applied to the state-of-the-art VAD
Waveform-based Voice Activity Detection. Additionally the per-
formance of the VAD is investigated under different algorithmic
delays, which is an important factor in latency. Introducing ad-
versarial multi-task learning to the model is observed to increase
performance in terms of Area Under Curve (AUC), particularly
in noisy environments, while the performance is not degraded at
higher SNR levels. The adversarial multi-task learning is only
applied in the training phase and thus introduces no additional
cost in testing. Furthermore the correlation between perfor-
mance and algorithmic delays is investigated, and it is observed
that the VAD performance degradation is only moderate when
lowering the algorithmic delay from 398 ms to 23 ms.
Index Terms: Voice Activity Detection, adversarial multi-task
learning, algorithmic delay, deep learning, noise robustness

1. Introduction
Voice Activity Detection (VAD) aims to detect which seg-
ments of an audio stream contains speech and the segments
are typically 10 ms each [1], [2], [3]. It is widely used as
a pre-processing step in more complex audio signal process-
ing tasks such as speech recognition [4], speaker verification
[5] or speech enhancement [6], but can also be applied on its
own to reduce the computational cost of downstream process-
ing. While detecting speech in a noise-free environment is a
trivial task, the difficulty in classification arises in noisy envi-
ronments [7].

Algorithms for performing VAD can generally be catego-
rized into classes of supervised and unsupervised methods. The
unsupervised methods can be energy based [8], however, this
approach is very sensitive to noisy conditions. More complex
unsupervised methods are generally based on assumptions of
speech and noise characteristics, e.g. using Mel Frequency Cep-
stral Coefficients (MFCCs) [9], [10], perceptural spectral flux
[11] or pitch detection and spectral flatness [1].

In recent years supervised methods for VAD has gained in-
creased popularity within the field of research [12], [13]. The
supervised methods require large amounts of labelled speech
data and their performance are highly dependent on the quality
of the labelled data used for training and testing. Some super-
vised methods contains a pre-processing step which aims to ex-
tract useful features from the audio such as MFCCs [14], while
other methods resolves to the raw waveform as their input [3],
[15]. A benefit of using the raw waveform as input to the su-

pervised VAD is that the method will potentially find the most
optimal features to be used for classification on its own, and is
therefore able to utilise both the magnitude and the phase of the
audio [3]. Using the raw waveform as features to the VAD is an
active area of research and has shown appealing performance in
terms of noise-robustness.

Two important factors in a VAD algorithm are how noise-
robust it is and how much latency it introduces. Adversarial
multi-task learning has proven to be effective to make appli-
cations invariant to noise and thereby more noise robust, e.g.
for speech recognition in [16] and speech enhancement in [17].
Noise robustness of speaker verification is largely boosted by
adversarial training in [18]. When applying VAD in a real-
world application, often the latency is of great concern. Even
though VAD is an active area of research, the algorithmic delay
it introduces is rarely explored.

In this work we aim to investigate if the noise-robustness
can be increased even further by introducing an additional sub-
network which aims to classify the noise types to a supervised
VAD, and train the VAD adversarially to these. The super-
vised VAD method presented in [3], which is based on fully
convolutional neural networks (CNN) and shows state-of-the-
art performance on the AURORA2 dataset [19], will be used as
the framework in this work. An additional discriminative sub-
network for adversarial multi-task training, inspired by the work
in [16] will be introduced. The additional network used for ad-
versarial multi-task learning is only introduced in the training
phase and thus introduces no additional cost in testing. Further-
more, we investigate the impact of different algorithmic delays
on VAD performance and realise this by varying CNN kernel
sizes. The source code for this work is publicly available on
GitHub 1.

2. Proposed method
In this work we propose to introduce adversarial multi-task
learning to enhance the robustness of deep model based VAD.
Specifically, an additional sub-network for adversarial training
is introduced to a state-of-the-art waveform-based VAD using
a CNN model. The entire framework is illustrated in Figure 1,
in which the adversarial-training sub-network is shown by the
green box, the algorithmic delay is investigated by modifying
the blue block, and the waveform-based VAD [3] consists of
the blue and red blocks.

2.1. Framework

In realising the adversarial multi-task learning for VAD, we
consider the model presented in [3] with our own implemen-
tation in Pytorch [20]. The method resorts to a fully convolu-

1https://github.com/aau-es-ml/VAD-with-adversarial-multi-task-
learning
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Figure 1: Overview of the proposed discriminative network (the green block) applied to the waveform-based VAD (the blue and red
blocks) proposed in [3].

tional neural network. It consists of an Encoder Block (EB), a
Framing Block (FB) and a Decoder Block (DB). The EB is tak-
ing as input the raw waveform of audio and the FB generates
features on a 10 ms basis. The DB further refines these features
into the VAD output, where the larger value of the two channels,
speech and non-speech, determines the VAD label as speech or
non-speech on a 10 ms basis.

In this work we introduce the additional Discriminative
Network (DN). It takes as input the output from the FB and aims
to learn to correctly classify the different noise types as well as
to adversarially train the EB and FB part to make it noise robust.

2.2. Adversarial multi-task learning

The first part of this work is to introduce adversarial learning.
The proposed DN is implemented in a similar way to the DB,
where each layer resolves time-frequency representations in the
channels of feature maps and the shrinking kernel sizes (55, 15,
5) reflect the decreasing modulation frequency (1.83 Hz, 6.66
Hz, 20 Hz) with the segment rate being 100 Hz [3]. The dis-
criminative network generates softmax probabilities for each of
the N+1 channels (i.e. outputs), where N is the number of dif-
ferent noise types in the training set, while the remaining chan-
nel is for clean speech. The labels used for the DN is the noise
types on a 10 ms basis, similarly to the VAD labels.

Following the DN, the cross-entropy loss is calculated be-
tween the noise types predicted by the DN and the true noise
types. Following the DB is the binary-cross-entropy loss calcu-
lated between the VAD labels and the truth labels. The losses
are expressed as:

Lz = −
∑

i

tilog(pi) (1)

Ly = − [tlog(p) + (1− t)log(1− p)] (2)

where t is the true labels and p is the scores output by the net-
works on a 10 ms basis.

When backpropagating the error through the model, the
gradients of the DN are updated based only on the loss Lz, the
gradients of the DB are updated based only on the loss Ly while
the gradients of the EB and the FB are updated based on both
losses. However, the sign of the gradients calculated from Lz is
flipped such that the EB and FB are trained adversarially to the
DN and friendly to the DB. Additionally the magnitude of this
gradient is multiplied by a scalar α that determines the contri-
bution from this sub-network. The key idea behind the method
is that the FB will then output features that are invariant to the
noise type which in turn will lead to a more noise-robust VAD
and hence better VAD performance. The DN is illustrated in
Figure 1. The gradients are noted as the partial derivatives of
the loss function L with respect to the parameters θ.

The convolutional operations of the DN can be expressed
as:

y
[l]

[c](τ) = AF
((

F
[l]

[c] ∗ y
[l−1]

[c] (τ)
)
+ b

[l]

[c]

)
(3)

where c denotes the channel, l denotes the layer, F[l]

[c] ∈ RC×k

is the convolutional kernel, b[l]

[c] ∈ RC×1 is the bias, y[l]

[c] ∈
RC×max(τ) is the feature map and AF is the activation function.

2.3. Algorithmic delay

Second part of this work focuses on reducing the latency of the
VAD. Only the algorithmic delay is considered, i.e. it is investi-
gated how the VAD performance is affected based on how many
future samples is used in the predictions, from here on referred
to as future context. The amount of future temporal context used
for a given classification is calculated based on the fact that the
feature map through a 1-dimensional convolutional layer will
shrink as stated by Eq. 4.
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Figure 2: Illustration of the context needed to generate an
output from the FB. In this example 10 outputs are generated
from an 8 kHz signal, but because of the 50% overlap between
frames, an additional fs

100
− 1 samples of context is needed to

generate an output.

n[l] − k + 1 = n[l+1] (4)

where n[l] is the size of the feature map generated by the lth

layer and k is the kernel size. The number of samples by which
the feature map is shrinking will have to be considered as con-
text where half of it is past and the other half is future. The algo-
rithmic delay introducd by the network is found by calculating
how much context is needed in each layer and finally summing
them together. The context introduced in the EB layers is sim-
ply found as in Eq. (4), while the context introduced in the
framing block is more complex and best illustrated by Figure 2.
The context introduced by the DB is dependent on the stride of
the FB and once again calculated using Eq. (4). The total algo-
rithmic delay in seconds is found by dividing the context with
the two times the sampling rate and is found as Eq. (5).

AD =

∑4
n=1(kEBn − 1) + fs

100
− 1 +

∑3
i=1(kDBi − 1) · fs

100

2fs
(5)

3. Speech corpora
In this work two speech corpora are used. The AURORA2 [19]
database and the TIMIT [21] database.

3.1. AURORA2

First is the AURORA2 [19] database which is used for multi-
condition training at a sampling frequency of 8 kHz. The train-
ing set consists of 8440 utterances with four noise types artifi-
cially added at SNR levels of 5 dB, 10 dB, 15 dB, 20 dB and
clean. The four noise types used are subway, babble, car and
exhibition hall. For each combination of noise type and SNR
level 422 utterances are used.

AURORA2 contains three test sets. Of these two are used
in this work. Test set A uses the same noise types as the training
set, and test set B uses four noise types unknown to the training
set. These are restuarant, street, airport and train station. In
the test sets the following SNR levels are used: −5 dB, 0 dB,
−5 dB, 10 dB, 15 dB, 20 dB and clean. The test sets each
consists of 4004 utterances which are evenly distributed on the
four noise types and repeated for each SNR level. The true VAD
labels are from the open-source rVAD repository [1].

3.2. TIMIT

Secondly, the TIMIT [21] speech corpus is used. The training
set and test set, respectively, consists of 4620 and 1680 spo-
ken sentences. For use in this work 6 noise types are artifically
added by the authors at SNR similar to those of the AURORA2

test sets. Different instances of the same noise type are used for
training and testing sets such that no instance of noise is ever
repeated. Furthermore, in this work the test set is split into val-
idation and test sets using a 1/3, 2/3 split. The purpose of the
validation split is to find the optimal hyperparameter α shown
in Figure 1, while the test split is used to obtain the rest of the
results in this work. The noise types used for training and test-
ing are the same, meaning the noise types will be known under
testing. The noise types babble, bus, caf and pedestrian are
from the CHiME3 dataset [22] while babble and speech shaped
noise are generated by the authors of [23]. The noise is artifi-
cally added as described in section 2.A of [24]. The true labels
for the TIMIT database is generated using the .WRD files which
states at which time stamps speech are present. These labels are
shared along with the source code of this work which are pub-
licly available on GitHub.

4. Experimental setup and results
In order to evaluate the performance of the proposed method for
adversarial training, the model is trained and tested on both the
TIMIT database and the AURORA database. When evaluating
Eq. (5) with the kernel sizes shown in Figure 1, the context to
generate a VAD label spans 398 ms to both sides. This means
that to generate the first/last VAD label of each file, 398 ms of
context is missing. This in combination with the short duration
of the files of AURORA2 (typically 0.8-2 seconds) and TIMIT
(typically 2-4 seconds) leads to that a large part of the VAD
outputs of each file will be generated without sufficient context.
Additionally, the files in these data sets are all following the
same structure. That is a short duration of silence in the begin-
ning and the end, while the middle part contains speech. This
leads to that the VAD learns to recognize this structure based
on the missing context in the beginning and the end. To deal
with this problem, during training 10 files are randomly chosen
and concatenated leading to longer inputs to the VAD and there-
fore a smaller part of the VAD outputs will be generated based
on insufficient context. The reason for using 10 files is that the
computer on which the model is trained runs into memory prob-
lems when using more files. This forward CNN calculation step
is performed three times before each backward step leading to
a mini-batch size of 30 audio files. For each three forward steps
a single backward step is performed using the RMSprop opti-
miser. The model is trained over 30 epochs, the learning rate
is initialised as 0.01 and the learning rate is multiplied by 0.7
after each epoch.

Table 1: AUC values on the validation sets using different val-
ues of α

α 0 0.01 0.1 1 10 100
AURORA2 A 93.90 93.93 94.44 94.58 95.18 92.97
AURORA2 B 91.15 91.22 92.10 91.99 91.85 90.99

TIMIT 88.78 89.98 90.32 89.3 88.91 87.94

4.1. Adversarial multi-task learning

First the optimum value of the scalar α is found experimentally
on both data sets by using validation data. Given that the AU-
RORA2 is labelled as 73% speech and TIMIT is labelled as 85%
speech, the results will be given by calculating the Area Under
Curve (AUC) of their respective Receiver Operating Character-
istics (ROC) curves while the accuracy will be disregarded as it
can be misleading. For finding the optimum value of α the aver-
age AUC over the noise types of the validation split at each SNR
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level is calculated. In each experiment the model is initialised
using the same set of parameters to remove the randomness that
can potentially be introduced by different initialisations. The
Leaky ReLU layers are initialised using He [25] while the pa-
rameters of the sigmoid layers are initialised using Xavier [26].
The Leaky ReLU layers use a slope coefficient of 0.01. The av-
erage AUC at α = 10n, n ∈ [−2,−1, 0, 1, 2] on the validation
sets are presented in Table 1. It is seen that the performance
of the VAD is increased by a wide range of values of α and in
general the addition of a discriminative network for adversarial
multi-task learning outperforms the baseline model in terms of
AUC. In the case of all 3 test sets, and thereby also to the model
both known and unknown noise types, it is found that a wide
range of values of α results in an increase in performance. In
two of three cases a value of 0.1 is found to be optimal, thus
this will be the value used for further experiments in this work.

The performance of the model using an α value of 0.1,
which was found optimal on the validation splits, is further in-
vestigated using the test splits of each data set. The results are
seen in Table 2. Once again the models are trained from the
same initial values using the same simulation settings as de-
scribed earlier and it is clearly seen that while the performance
at high SNR levels is approximately the same with and without
adversarial multi-task learning, at lower SNR levels the mod-
els trained using adversarial multi-task learning performs bet-
ter and proves to be more noise-robust. This is the case both
when it comes to noise types known to the model (TIMIT and
AURORA2 test set A) and noise types unknown to the model
(AURORA2 test set B).

Table 2: AUC values on the test sets of AURORA2 and TIMIT
with (W) and without (W/O) adversarial multi-task learning.
When adversarial multi task learning is used, an α value of 0.1
is used

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
AURORA2 A - W/O 98.46 98.46 98.37 98.19 97.05 91.19 75.58 93.90

AURORA2 A - W 98.42 98.40 98.32 98.19 97.19 92.81 77.78 94.44
AURORA2 B - W/O 98.46 98.44 98.22 97.58 94.36 84.90 66.08 91.15

AURORA2 B - W 98.42 98.37 98.13 97.39 94.67 87.51 70.24 92.11
TIMIT - W/O 95.44 95.41 94.63 92.64 88.60 82.67 71.96 88.76

TIMIT - W 95.62 95.49 94.92 93.91 90.75 84.94 74.26 89.99

4.2. Algorithmic delay

The second part of this work is to evaluate the performance of
the proposed method at lower algorithmic delays. The model
is trained with the optimum value of α = 0.1 while the kernel
sizes of the decoder block is reduced. The algorithmic delay
is calculated as a function of the sampling frequency and the
kernel sizes as in Eq. (5). The majority of the algorithmic delay
is introduced by the DB, thus only these kernel sizes will be
varied. The kernel sizes and their corresponding algorithmic
delays as used in the experiments are presented in Table 3. The
AUC is calculated as the average over the 7 SNR levels and the
noise types of each test set.

It is seen that the performance of the VAD decreases as
the algorithmic delay is lowered, however this performance de-
crease is not drastic. It is in particular interesting to note that
even when completely disregarding the decoder block with an
algorithmic delay of 23 ms the VAD still performs well. When
decreasing the algorithmic delay from 398 ms to 23 ms, only a
performance decrease of 7% AUC is seen. The performance of
different algorithmic delays at each SNR level for AURORA2

test set B is presented in Figure 3. In particular the performance
at clean speech seems to be unaffected by the low algorithmic
delay.

Table 3: VAD performance in terms of AUC at different kernel
sizes and algorithmic delays tested on AURORA2 test sets A and
B

DB1 DB1 DB1 AD [ms] AURORA2 B AURORA2 A
55 15 5 398 92.11 94.44
45 15 5 348 91.91 94.38
35 15 5 298 90.81 93.44
25 15 5 248 91.04 93.32
15 10 5 173 90.95 93.01
10 7 5 133 88.09 90.84
7 5 5 98 89.01 91.85
5 3 3 78 87.14 89.78
3 3 2 63 85.77 90.00
2 2 2 53 85.26 87.56
2 2 0 43 85.03 87.40
2 0 0 33 85.66 87.90
0 0 0 23 85.07 87.27

398 348 298 248 168 133 98 78 63 53 43 33 23
Algorithmic delay [ms]
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Figure 3: Average AUC at decreasing algorithmic delays on the,
to the model, unknown noise types of AURORA2 test set B

5. Conclusions
In this paper we proposed a novel approach of training a su-
pervised VAD using adversarial multi-task learning, where the
model is trained friendly to the VAD labels and adversarially
to the noise types aiming to make the VAD more invariant to
noise. This is done by introducing an additional sub-network
which aims to classify the noise types to the model. The VAD is
then trained adversarially to these. It is found that the adversar-
ial multi-task training is capable of increasing the VAD perfor-
mance especially in more noisy environments, and it is shown
to increase performance both when presented to unknown and
already known noise types. On SNR levels of -5 dB the perfor-
mance is boosted with up to 4% AUC. This multi-task learning
is only used when training the model and disregarded under test-
ing, meaning the proposed method is cost-less once training has
finished.

Furthermore it was investigated if this method can be useful
in a low-latency application. This was done by reducing the
kernel sizes of the DB resulting in lower algorithmic delays. It
was found that even at an algorithmic delay as low as 23 ms, at
which point the DB is completely disregarded, the performance
of the method was still good. When decreasing the algorithmic
delay from 398 ms to 23 ms the performance is only reducd by
7% AUC.
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Choice of speech corpora 5
A fundamental part of the work done is choosing what datasets to use for training and
testing, and how to use these datasets in a way that both resembles a real-life scenario while
also staying true to the academia. This is also presented in section 3 of the paper.

5.1 Aurora-2 database

As the original work introduced in [2] is trained and tested on the Aurora-2 database, it
seems intuitive to also use this database for further work. In academia the go-to approach for
testing a VAD algorithm on the Aurora-2 data base is to test on one file at a time and evaluate
the performance as the mean performance over the dataset. In the Aurora-2 dataset all files
follow the same structure. That is:

• A short duration of silence in the beginning. Typically around 200 ms

• A spoken utterance in the middle. Typically 400-2000 ms.

• A short duration of silence in the end. Typically around 200 ms

An example of an audio file of the Aurora-2 database is shown in fig. 5.1.

0 0.4 0.8 1.2
Time [s]

Input to the network
True labels

Figure 5.1: An example of an audio file from the Aurora-2 database

As mentioned in chapter 2 a CNN is simply aiming to minimise its loss and therefore does
not necessarily find patterns in the things the designer is aiming for. In the case of VAD it is
desired to find patterns in speech. But due to the typical structure of the files of the dataset it
is of interest to find if this structure is learnt by the network and thus artifically enhancing the
VAD performance. First will be analysed how much context (i.e. the number of future and
past samples) is needed to generate a VAD output. Following this analysis a few experiments
will be carried out.
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5.1.1 Analysis of context

In this section context needed to generate a VAD output will be found and analysed. The
analysis will focus on the algorithm as three seperate blocks: (EB, FB, DB) each introducing
their own context and then summing it in the end to find the total context.

First we will consider some properties that applies to the context in all three blocks. The
necessary context will be computed similarly to how much padding is needed to generate a
VAD label spanning 10 ms when only 10 ms of audio is available as input.

As introduced in section 2.2.1, the size of the feature map n through a layer will shrink
depending on the filter size k as noted by eq. (5.1) unless padding is applied:

n[l+1] = n[l] − k + 1 (5.1)

This expression will be rewritten and will be the foundation for further discussions on context:

n[l] = n[l+1] + k− 1 (5.2)

5.1.1.1 Encoder Block

The context introduced by the EB can simply be found by considering eq. (5.2) where it is
seen that the necessary padding to retain the size of the feature map is k− 1. This covers both
past and future context, and thus to find how much context is needed on each side of the
input it is divided by 2:

k− 1
2

(5.3)

And in order to find the combined context in seconds introduced in the EB, the context of the
four layers are summed up and divided by the sampling frequency:

∑4
n=1(kEBn − 1)

f s
(5.4)

5.1.1.2 Framing Block

In the FB a stride dependent on the sampling frequency is introduced. This stride is equal to
the number of samples that fit in a 10 ms frame, while the kernel size is the double of that.
This means that there is 50% overlap between frames. The stride does not have any direct
influence on the size of the context, thus the algorithmic delay introduced in this layer is the
overlap resulting in ≈ 5 ms.

The way in which the FB is downscaling the feature map from time samples into 10 ms
frames is illustrated in fig. 5.2. In this example 10 outputs is generated on an 8 kHz signal.
The vertical dashed lines shows the additional context needed to generate the output feature
map.
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Figure 5.2: Illustration showing that the context needed to generate n samples is f s
100 · (n + 1)

From fig. 5.2 it is seen that in order to generate n VAD labels a total of:

f s
100
· (n + 1) (5.5)

samples is needed.

5.1.1.3 Decoder Block

The DB takes as input the frames on a 10 ms basis generated by the FB. This needs to be taken
into account when calculating the context being introduced. Given that f s

100 time samples is
needed to generate a 10 ms frame, the context size will increase by the same factor.

Thus the context introduced by the DB can be found as:

k− 1
2
· f s

100
(5.6)

5.1.2 Finding total context

Combining the context needed to retain the correct size of the feature map through the layers
as seen in eq. (5.4), eq. (5.5) and eq. (5.6) and dividing by the sampling frequency the total
context in seconds can be found as:

context in seconds =
∑4

n=1(kEBn − 1) + f s
100 + ∑3

i=1(kDBi − 1) · fs
100

fs
(5.7)

Inserting the original filter sizes as presented in [2] in the expression in eq. (5.7), the necessary
input size to generate one output of a 10 ms frame is 806 ms. 10 ms of these correspond to
the output frame, leaving 398 ms of both past and future context. This effectively means that
in order to label a file from the Aurora-2 database, it is necessary to pad 398 ms of zeroes in
both the end and the beginning.

In order to illustrate the effect of this, on fig. 5.3 is shown a randomly selected file from the
Aurora-2 database. Towards the beginning and the end of thsis file is padded 398 ms of zeroes
to make sure the output is of correct size. Furthermore is illustrated the amount of context
that is needed to generate one VAD output as red, while the yellow square is the 10 ms frame.
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0 0.5 1 1.5 2
Time [s]

Input to the network
True labels
1 output label
Combined length of all kernels

Figure 5.3: Illustration of how much context is needed to generate a VAD output

A very interesting observation is that the length of the zero padding is larger than the length
of the silence in the beginning and the end. Thus in practice it is possible that the network
learns that if sufficient filter weights are convolved with these zeroes, the VAD is to be labelled
as non-speech. To test this theory a series of experiments has been carried out. The idea
behind this experiment is:

• If the network is actually learning the charateristics of speech, it should be able to generalize to
an input that has a different structure but still contains speech and noise similar to that of the
training set

To achieve this different structure of the files, a number of randomly chosen audio files is
concatenated. Thus the files themselves are unchanged, but the ratio between audio and zero
padding is significantly increased. An example of the proposed way to concatenate audio is
seen in fig. 5.4.

0 5 10 15 20 25
Time [s]

Input to the network
True labels

Figure 5.4: 10 sound files randomly chosen and concatenated. 398 ms of zeroes are padded to both the end and
the beginning.

A total of four different simulations has been carried out to validate whether the network is
actually learning the characteristics of speech. These are:

• The network is trained on single files as seen in fig. 5.3 and tested on similar single files

• The network is trained on single files as seen in fig. 5.3 and tested on concatenated files
as in fig. 5.4
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• The network is trained on concatenated files as in fig. 5.4 and tested on single files as in
fig. 5.3

• The network is trained on concatenated files as in fig. 5.4 and tested on similarly
concatenated files

The AUC values are found as the average over the 4 noise types of Aurora-2 test set B. The
AUC values are found at each SNR level, and the results are presented in table 5.1.

AUC Aurora-2 Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
Trained on single - test on single 98.81 98.61 98.44 98.47 97.96 97.00 95.60 97.84
Trained on single - test on concat. 81.60 70.52 67.99 65.92 60.29 56.81 54.70 65.40
Trained on concat. - test on single 97.41 97.24 95.34 90.20 82.69 73.30 67.03 86.17
Trained on concat. - test on concat. 98.47 98.44 98.22 97.58 94.36 84.90 66.08 91.15

Table 5.1: AUC values when training and testing on the Aurora-2 database

It is seen that when the network is trained on single files the performance is way superior
when testing on single files as compared to testing on concatenated files. Meanwhile, when
trained on concatenated files the difference in performance is way lower. This proves the idea
that when training this network on individual files of the Aurora-2 database, the characteristic
structure of the files is learned alongside the characteristics of speech. For this reason, the
rest of this work will be trained on randomly concatenated files, while testing will be done
concatenating files in the same order in every test to minimise the randomness introduced by
this.

5.1.3 TIMIT database

So far only the Aurora-2 database has been used in this work. However, to make sure the
future results obtained generalise beyond the Aurora-2 database an additional database will
be introduced. This will be the (TIMIT) [19] database, which is sampled at 16 kHz and
contains full spoken sentences instead of only letters and numbers like Aurora-2. The TIMIT
database contains only clean speech, therefore the files have been corrupted with noise by the
author as described in appendix A. The noise types used are street, bus, cafe and pedestrian
from the CHiME-3 [20] database while babble and Speech Shaped Noise (SSN) are generated by
the authors of [21]

The same experiment as that of table 5.1 is repeated for the TIMIT database and the results
are shown in table 5.2.

AUC TIMIT Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
Trained on single - test on single 87.51 87.10 86.38 85.23 84.87 84.36 83.96 85.63
Trained on single - test on concat. 58.52 58.66 58.71 58.83 58.75 57.70 56.36 58.22
Trained on concat. - test on single 94.33 93.97 93.09 90.59 84.39 73.22 59.59 84.17
Trained on concat. - test on concat. 95.25 95.38 94.78 93.15 90.22 83.24 72.72 88.78

Table 5.2: AUC values when training and testing on the TIMIT database
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Once again the same tendency is observed. When the network is trained on concatenated files
it generalises well to both single and concatenated files during testing. For the TIMIT dataset
the noise types are the same for both the training set and the testing set. However the actual
noise segments are unique to the two sets and thus the only overlap between the training and
testing is the noise type.
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Introducing Adversarial Multi
Task Learning 6

In this chapter will be elaborated the proposed method for improving VAD performance by
introducing adversarial multi-task learning. The method is shortly described in section 2.2 of
the paper, in chapter 4. The aim of this method is to answer the first research question:

• Can we potentially increase the noise-robustness of a VAD without increasing its computational
cost and latency to the execution-time?

The proposed method is inspired by the following previous works:

• Adversarial Multi-task Learning of Deep Neural Networks for Robust Speech Recognition [22]

• Adversarial Network Bottleneck Features for Noise Robust Speaker Verification [23]

6.0.1 Adversarial Multi-task Learning of Deep Neural Networks for Robust
Speech Recognition

In [22] is proposed a method for increasing the noise robustness of a speech recognition
system by introducing adversarial multi-task learning during training. In their work the
network is learning from two different targets using two seperate sub-networks. The primary
target is the ordinary speech recognition application, and the secondary target is the noise
types by which the audio is corrupted. Contrary to ordinary multi-task learning, the
secondary task is learned adversarially to the primary task. Thus the goal is to minimise the
networks ablility to recognize noise types while maximising the performance of the speech
recognition.

In fig. 6.1 the method is illustrated as originally proposed in [22]. In this example the
parameters of the three sub-networks are denoted θx, θy and θz which are optimised with
respect to the loss functions Ly and Lz:

• Parameter set θy is optimised with respect to loss Ly only

• Parameter set θz is optimised with respect to loss Lz only

• Parameter set θx is optimised with respect to both loss Ly and Lz. However, the gradient
with regards to Lz is reversed such that adversarial multi-task learning is achieved
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3. Method
3.1. Single-task learning

In this subsection, we briefly review the conventional training
method, i.e. single task learning of DNNs.

When we train a DNN for robust speech recognition, we
usually use a multi-condition dataset, which is a collection
of speech data recorded in various noise conditions, such as
car noise at 10 dB (in signal-to-noise ratio) and station noise
at 20 dB. Let {xi, yi}Ni=1 denote the training dataset, where
xi ∈ Rd is the input vector, e.g. Mel-frequency filterbank co-
efficients, yi ∈ {1, . . . , Cy} is the senone class, respectively
of the i-th data point (i.e. frame), d is the dimensionality of the
input vector, Cy is the number of senone classes, and N is the
number of data points. The DNN is trained to minimize the
cross-entropy loss function,

L(θ) = −
X

i

log P (yi|xi; θ), (1)

where P (y|x; θ) is calculated with a parametric classifier with
parameters θ ∈ RM , i.e. a DNN with a set of tunable weights
and biases, where M is the number of parameters. Stochastic
gradient descent (SGD) is commonly used to optimize the pa-
rameters so as to minimize the loss function. Specifically, for
each mini-batch (a small set of data points), the cross-entropy
loss function is defined, its gradient w.r.t. the parameters is cal-
culated via back-propagation, and the parameters are updated
by a small step towards the gradient direction as

θ ←− θ − ε
∂L
∂θ

, (2)

where ε ∈ R is the learning rate. This update procedure is
repeated until convergence.

3.2. Adversarial multi-task learning

In this subsection, we introduce adversarial multi-task learning
of DNNs. Note that the algorithm was originally proposed by
Ganin et al. [15, 16] for unsupervised domain adaptation, but
its application to supervised learning tasks has never been ex-
amined before.

In adversarial multi-task learning of DNNs, we use a multi-
condition dataset in a similar manner as single-task learning, but
this time an additional class label is given for each data point.
Namely, the training dataset is denoted by {xi, yi, zi}Ni=1,
where zi ∈ {1, . . . , Cz} denotes the domain class (noise con-
dition) of the i-th data point, and Cz denotes the number of
domain classes. In our experiment, we have used 17 noise con-
ditions for training (Cz = 17), such as car noise at 10 dB and
exhibition-booth noise at 20 dB.

Figure 1 depicts the overall architecture of the adversarial
multi-task DNN 1. This multi-task DNN simultaneously exe-
cutes senone classification and domain classification. It consists
of three sub-networks, namely two output sub-networks, one
for the primary task of senone classification and the other for
the secondary task of domain classification, and an input sub-
network shared among the tasks. The shared input sub-network

1Each box represents a processing component that converts a vec-
tor (or a matrix if a minibatch is used) to another vector (or a matrix).
For instance, the Linear component linearly transforms a vector, and
the Sigmoid component applies sigmoid transform to each element of a
vector.

Figure 1: An example of the adversarial multi-task deep neu-
ral network. See text for the gradient reversal layer (GRL)
and other details. The architecture was originally proposed in
[15][16] for unsupervised domain adaptation. Best viewed in
color.

acts as a feature extractor to convert an input vector to its repre-
sentation. Each output sub-network acts as a classifier to calcu-
late posterior probabilities of classes given the representation.
Other details of the Figure are described in the following.

Different from the standard multi-task learning, in which
the representation (input sub-network) is trained so as to maxi-
mize the classification accuracies of the primary and secondary
tasks, in adversarial multi-task learning, the representation is
learned adversarially to the secondary task (and friendly to the
primary task), so that domain-dependent information is purged
from the representation as it is irrelevant or nuisance for the pri-
mary classification task.

Let the parameters of the DNN consist of three parts, θ =
{θx, θy, θz}, and θx, θy , and θz denote the parameters of the
input and output sub-networks, respectively. The cross-entropy
loss functions for the primary and secondary tasks are defined
as

Ly(θx, θy) = −
X

i

log P (yi|xi; θx, θy), (3)

Lz(θx, θz) = −
X

i

log P (zi|xi; θx, θz), (4)

The parameters are updated as

θy ←− θy − ε
∂Ly

∂θy
, (5)

θz ←− θz − ε
∂Lz

∂θz
, (6)

θx ←− θx − ε

„

∂Ly

∂θx
− α

∂Lz

∂θx

«

, (7)

2370

Figure 6.1: Adversarial multi-task learning applied to speech recognition in [22]

6.0.2 Adversarial Network Bottleneck Features for Noise Robust Speaker
Verification

In [23] a similar idea has been applied to a speaker verification task. In this work however,
the additional sub-network for classifying noise types is cascaded after the original network.
The original network and the discriminative network are then trained in turns. The same loss
function is shared, however the target changes depending on which part is currently under
training. While training the original network all the speech is labelled as clean regardless of
its actual noise type, and when training the discriminative network the actual noise types are
used as labels. This approach is similar to that of a Generative adversarial network (GAN).

6.1 Relating to this work

In both of these cases the discriminative part of the network is discarded after training,
and thus no additional cost is introduced to the forward step. Because both approaches
have shown great results in different speech applications, it is of interest to find if a similar
approach can be used to enhance the performance of a VAD.

Both of these works are considering only feed forward neural networks, and therefore some
slight modifications will have to be done before it can be applied to the network of fig. 3.2
which is a FCN. First will be considered an approach similar to that of fig. 6.1 where two
things are important to consider:

• Where do we split the original network into two sub-networks, such that the output o
the first sub-network can be used as input to the discriminative network?

• What will be the structure of the discriminative network?
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The original network can be split into two sub-networks at two places: Between the EB and
the FB or between the FB and the DB. As we are interested in making the VAD frames on a
10 ms basis invariant to noise, it has been chosen to split the network between the FB and the
DB. Additionally, this also results in lower computational cost during training as the size of
the feature map is already downscaled significantly by the FB.

Now that the input to the discriminative network has been decided upon, let us move on
to finding the structure of the discriminative network. As presented in chapter 5, during
training files are randomly chosen and concatenated to keep the network from learning the
structure of the audio files instead of the speech characteristics. Because of this different noise
types may be present in the same audio segment of concatenated files. Thus while training
on the TIMIT database the labels for the discriminative network may look like fig. 6.2a while
the corresponding VAD labels may look like fig. 6.2b. Due to the problem being a multi-class
classification task the cross entropy loss function as presented in section 2.2.3.1 will be used
as loss function.
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(a) Example of truth labels for noise types for loss Lz

0 5 10 15 20 25
Time [s]

Input to the network
True labels

(b) Example of waveform with truth VAD labels for loss Ly

As the noise types is varying in time similarly to the VAD labels, it is desired to introduce
a sub-network with the same time-invariant capabilities as the rest of the network, i.e.
a convolutional network. An obvious solution is to replicate the DB and use as the
discriminative network. Applying all this results in the new network as seen in fig. 6.3
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Figure 6.3: The network for VAD after introducing adversarial multi-task learning

6.2 Experiments

Having establised the structure of the network utilising adversarial multi-task learning, this
section will contain a series of experiments as described in section 4.1 of the paper. First we
will find the optimal weight factor α, which determines the contribution of the discriminative
network to the EB.

For finding the optimal value of α, a series of experiments has been carried out with α

swept over the values 10nn ∈ [−2,−1, 0, 1, 2]. In these experiments the network has been
trained from scratch and tested after 20 epochs as was decided upon in section 3.2.1.2 To limit
the randomness in these experiments, the same initial parameter values (see eq. (2.30) and
eq. (2.28)) has been used in all experiments. The sweep has been made on both the Aurora-2
and the TIMIT database. The results are presented in table 6.1. In this table the performance
is found as the average AUC over both the noise types and the SNR levels.

Table 6.1: AUC values on the validation sets using different values of α

α 0 0.01 0.1 1 10 100
Aurora-2 A 93.90 93.93 94.44 94.58 95.18 92.97
Aurora-2 B 91.15 91.22 92.10 91.99 91.85 90.99

TIMIT 88.78 89.98 90.32 89.3 88.91 87.94
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From this it is seen that for a wide range of α values the performance is enhanced compared
to the reference with no adversarial multi-task learning (denoted by α = 0). On both Aurora-2
test set B and the TIMIT test set the optimal value of α is found to be 0.1, whereas the optimal
value for Aurora-2 test set A is found to be 10. Furthermore it is seen that as the value of α

converges towards 0, the performance gets closer to that of the reference, and on the other
hand when the value gets too high, the performance decreases below the reference. As the
most promising value of α is found to be 0.1, the further simulations will be trained using
this.

Having found the performance is increased by introducing adversarial multi-task learning, it
is of interest to investigate this more thoroughly. In table 6.2 is found the performance at each
individual SNR level averaged over the noise types of Aurora-2 test set A and B and TIMIT

Table 6.2: AUC values on the test sets of AURORA-2 and TIMIT with and without adversarial multi-task learning

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
Aurora-2 A - α = 0 98.46 98.46 98.37 98.19 97.05 91.19 75.58 93.90

Aurora-2 A - α = 0.1 98.42 98.40 98.32 98.19 97.19 92.81 77.78 94.44
Aurora-2 B - α = 0 98.46 98.44 98.22 97.58 94.36 84.90 66.08 91.15

Aurora-2 B - α = 0.1 98.42 98.37 98.13 97.39 94.67 87.51 70.24 92.11
TIMIT - α = 0 95.44 95.41 94.63 92.64 88.60 82.67 71.96 88.76

TIMIT - α = 0.1 95.62 95.49 94.92 93.91 90.75 84.94 74.26 90.32

It is seen that the performance increase is mainly found at the lower SNR levels, while the
performance at higher SNR levels is approximately unchanged. To further illustrate this the
results for the Aurora-2 test set B and TIMIT are visualised in fig. 6.4:
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Figure 6.4: AUC on the TIMIT and Aurora-2 databases found at each SNR level

Thus it is found that the performance of the VAD has been increased without adding further
cost during the forward step after training is finished and thus answering research question
1.
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6.3 Additional work done after paper submission

After submitting the paper to Interspeech 2022 an additional experiment has been carried out.
The aim of this experiment is to test if the performance can be improved further by instead
of concatenating random noise types as seen in fig. 6.2a during training, only similar noise
types and SNR levels (similar to how testing was already carried out) are concatenated for a
more realistic setting.

The experiment is carried out with similar settings as earlier, such that the only change is the
way in which files are concatenated. The same parameter initialisation as used previosuly is
used in this experiment. These experiments are only made on the Aurora-2 test sets.

In table 6.3 the experiment for finding the optimal value of α has been repeated concatenating
only files of similar noise type and SNR level.

Table 6.3: AUC values on the validation sets using different values of α

α 0 0.01 0.1 1 10 100
Aurora-2 A 94.08 94.15 95.18 94.74 94.30 94.24
Aurora-2 B 88.64 91.16 92.49 92.69 91.13 90.38

Similar to the results of table 6.1 the best performance is observed at different α values for the
different test sets. On test set A α = 0.1 is found to be optimal while α = 1 is found optimal
for test set B. Once again, at a wide range of α a performance increase is observed. In order to
stay true to the work published in the paper, the following comparisons will be made using
α = 0.1.

The next experiment is similar to that of table 6.2 and the results can be seen in table 6.4.
The goal is to find at what SNR levels the performance increase is observed by introducing
adversarial multi-task learning.

Table 6.4: AUC values on the test sets of Aurora-2 and TIMIT with and without adversarial multi-task learning

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
Aurora-2 A - α = 0 97.96 97.95 97.85 97.62 96.59 92.12 78.79 94.08

Aurora-2 A - α = 0.1 97.91 97.90 97.88 97.66 96.94 93.44 84.49 95.18
Aurora-2 B - α = 0 97.96 97.93 97.10 95.05 89.56 79.01 63.79 88.64

Aurora-2 B - α = 0.1 97.91 97.90 97.54 96.54 94.20 89.11 74.25 92.49

Similar to table 6.2 the largest increase of performance is found at the lowest SNR levels.
In fact the performance increase at the low SNR levels is even greater when trained on
concatenated files of similar type instead of random types (6-10% instead of 2-4%).
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As a last experiment is found the performance using randomly concatenated files against
using concatenated files of similar type during training. These results are presented in
table 6.5

Table 6.5: AUC values on the test sets of AURORA-2 and TIMIT with and without adversarial multi-task learning

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
Aurora-2 A - random noise 98.42 98.40 98.32 98.19 97.19 92.81 77.78 94.44
Aurora-2 A - similar noise 97.91 97.90 97.88 97.66 96.94 93.44 84.49 95.18
Aurora-2 B - random noise 98.42 98.37 98.13 97.39 94.67 87.51 70.24 92.11
Aurora-2 B - similar noise 97.91 97.90 97.54 96.54 94.20 89.11 74.25 92.49

Here it is seen that in fact the performance has been further improved by concatenating only
audio files of similar noise type and SNR level during training. Especially at lower SNR levels
where a performance increase of 4-7% in terms of AUC is observed.

6.4 Conclusion on research question 1

As mentioned in chapter 6, the purpose of the work in this chapter was to find an answer to
research question 1:

• Can we potentially increase the noise-robustness of a VAD without increasing its computational
cost and latency to the execution-time?

In section 6.0.1 and section 6.0.2 was conducted a small literature study and two ways of
introducing adversarial multi-task learning to speech processing tasks was described. It was
decided to use the approach described in section 6.0.1 as inspiration for the method proposed
in this work, which can be seen in fig. 6.3. In section 6.2 an important hyperparameter was
tuned, and during this tuning the performance increase achieved by introducing adversarial
multi-task learning was found.

Across 3 different test sets it was found that the performance was increased by 0.5-1.5% AUC
averaged over every noise type and SNR level. The performance was significantly increased
at lower SNR levels, while the performance remains unchanged at higher SNR levels. At -5
dB SNR the performance was increased by up towards 4% AUC.

Thus it was found that by introducing adversarial multi-task learning to the network, the
performance can be increased without introducing any additional cost once training is
finished and research question 1 is successfully answered.

After the paper was submitted to Interspeech 2022 it was found that the performance can
be increased further by only concatenating files of similar noise type and SNR level during
training.
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delay 7

Having successfully answered research question 1 in chapter 6, this chapter will focus on
research question 2:

• How will it affect the performance of the VAD if we allow it to use less future samples to generate
a VAD output and thus decrease the algorithmic delay?

This research question is more of a feasibility study than it is a question about finding the
best solution. It is expected that with a shorter algorithmic delay will follow a decreased
performance. For this reason it will be investigated how well the network is performing at
different algorithmic delays. The theory presented in this chapter is an extension of section
2.3 of the paper, while the experiments will be an extension of section 4.2.

As it has already been found that the network performance was increased by introducing
adversarial multi-task learning, this work will build on top of that. First will be investigated
how much algorithmic delay is introduced by the network presented in fig. 6.3. This analysis
will focus on one block at a time (i.e. EB, FB, DB), and afterwards it will be investigated how
the algorithmic delay can be reduced.

7.0.1 Finding the algorithmic delay

Conveniently, a large part of the work towards finding the algorithmic delay of the network
has already been investigated under the discussion of datasets in chapter 5. In this the goal
was to find how much context is needed to generate a VAD output. This context spans both
past and future samples, and thus the algorithmic delay can be found by dividing the size of
the context found in eq. (5.7) by 2 (such that past samples are disregarded).

The algorithmic delay introduced by the network is then:

Algorithmic delay in seconds =
∑4

n=1(kEBn − 1) + f s
100 + ∑3

i=1(kDBi − 1) · fs
100

2 fs
(7.1)

Inserting the filter sizes of fig. 6.3 the algorithmic delay is found to be:

Algorithmic delay in seconds = 0.398 (7.2)
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7.0.2 Reducing the algorithmic delay

As the goal of this work is to reduce the algorithmic delay and find how the performance
reacts to this, it will now be investigated how much algorithmic delay is introduced by each
block. In chapter 5 the context introduced in each layer was found and combined to form
eq. (5.7). Similarly to finding the combined algorithmic delay, the delay introduced by each
block can be found by dividing the total context by 2:

Delay of EB =
∑4

n=1(kEBn − 1)
2 f s

≈ 0.018s (7.3)

Delay of FB =
f s

100
2 f s
≈ 0.005s (7.4)

Delay of DB =
∑3

i=1(kDBi − 1) · fs
100

2 f s
≈ 0.375s (7.5)

Because the FB introduce a stride of of f s
100 , the majority of the algorithmic delay is induced

by the DB. For this reason only the DB will be considered in this work on algorithmic delay.
From eq. (7.5) it is seen that the algorithmic delay of the DB is directly proportional to the
filter sizes. Therefore, by shrinking the filter sizes the algorithmic delay will decrease as well.

7.1 Experiments

In order to investigate the performance under reduced algorithmic delay, a series of
experiments using varying filter sizes have been carried out. Unlike earlier experiments,
all of the models are trained using the same initial parameters in only the EB and FB, while
DB is initialised randomly in every experiment due to the varying filter sizes.

The filter sizes and their corresponding algorithmic delay and performance averaged over
every noise type and SNR level on the Aurora-2 test set A and B are listed in table 7.1. In
fig. 7.1 the performance at each SNR level averaged over the 4 noise types of Aurora-2 test set
B is plotted
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DB1 DB2 DB3 AD [ms] Aurora-2 B Aurora-2 A
55 15 5 398 92.11 94.44
45 15 5 348 91.91 94.38
35 15 5 298 90.81 93.44
25 15 5 248 91.04 93.32
15 10 5 173 90.95 93.01
10 7 5 133 88.09 90.84
7 5 5 98 89.01 91.85
5 3 3 78 87.14 89.78
3 3 2 63 85.77 90.00
2 2 2 53 85.26 87.56
2 2 0 43 85.03 87.40
2 0 0 33 85.66 87.90
0 0 0 23 85.07 87.27

Table 7.1: VAD performance in terms of AUC at different kernel sizes and algorithmic delays tested on Aurora-2
test sets A and B
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Figure 7.1: The VAD performance at decreasing algorithmic delays at each SNR level

The filter sizes is decreased in small steps until the DB is completely disregarded. At this
point the algorithmic delay is lowered to 23 ms. It is seen that the performance is steadily
decreased as the algorithmic delay is lowered, however the degradation is not significant.
When decreasing the algorithmic delay from 398 ms to 23 ms the performance is only reduced
by 7% AUC. It is interesting to note that in the case of clean speech the performance seems
to be unaffected by the lower algorithmic delay, whereas every other SNR level seems to be
following the same pattern in terms of performance decrease.

7.2 Conclusion on research question 2

This chapter has been focusing on research question 2:
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• How will it affect the performance of the VAD if we allow it to use less future samples to generate
a VAD output and thus decrease the algorithmic delay?

First the algorithmic delay of the network presented in fig. 6.3 was calculated to be used as
a reference. Most of the work towards computing this delay was already done in chapter 5
when discussing how to use the dataset. It was found that the majority of the algorithmic
delay of the network is introduced by the DB, and following this the filter sizes of this block
was reduced in small steps. The results are listed in table 7.1 where it was found that
performance decrease is significantly lower than the corresponding reduction in algorithmic
delay. In fact it was possible to reduce the algorithmic delay from 398 ms to 23 with only 7%
reduction in AUC.
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Introduction 8
So far this work has focused on algorithm selection, analysis and investigation of methods to
increase the noise robustness and reduce the algorithmic delay introduced by the network in
order to answer research questions 1 and 2. However, if the VAD is ever to be implemented
in a real-world scenario it is a neccessity that it operates in real-time. This next part of the
work will focus on this aspect and thereby answer research question 3. First will be discussed
what the goal is, and based on this discussion some key metrics which to optimize for will
be decided.

8.1 Motivation

In this section will be discussed what the aim of this part of the work is. So far the term
"real-time" has been used loosely as the aim at which the VAD is supposed to operate. In
a typical application of a VAD is as a pre-processing step before more complex audio signal
processing tasks such as speech recognition, speaker verification or speech enhancement.
A typical speech recognition task is wake-word or hot-word detection, speaker verification is
used to verify the identity of a speaker, while speech enhancement is typically used to enhance
the intelligibility of a noise corrupted signal. These are all applications which requires low
latency in order to provide the best user experience. Furthermore, given that the VAD is often
used in conjunction with more computationally expensive signal processing algorithms, it is
important that the latency and computational cost introduced by the VAD is minimal.

Some of these applications may be implemented on small devices like Intercom systems,
headsets or hearing aids. These devices are limited in both computational power, power
consumption and physical area available. So far all of these metrics have been disregarded in
this work, and due to the limited timeframe and scope of this project, not all of the metrics
will be considered equally. Four important metrics when considering an embedded system
is execution time, physical area, power consumption and precision (or noise when minimising)[24].
These four metrics are all dependent on each other and optimising for one will potentially
lead to degradation for other metrics. From these four metrics a cost function can be
established:

C = f (A,T,P,N) = ai · A + a2 · T + a3 · P + a4 · N (8.1)

We are interested in finding the methods that leads to the best trade-off between the metrics
described by eq. (8.1). To do this we introduce the Gajski-Kuhn Y-chart, which is mainly used
for development of integrated circuits:
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Figure 1: Gajski-Kuhn Y-chartFigure 8.1: Gajski-Kuhn Y-chart

The Y-chart depicts different important perspectives to consider when integrating an
algorithm onto a piece of hardware. According to the model, the hardware design is perceived
within three domains, and within these domains five different abstraction levels are defined.

In this project the main focus will be on the behavioural domain, while some considerations
will be based on the structural domain. Due to the scope and time frame of this project
the physical domain is disregarded. Furthermore, as this will be a feasibility study on the
whether the VAD part proposed algorithm as shown in fig. 6.3 is suitable for a real-time
application, only the higher abstraction levels will be considered.

8.2 Survey on metrics

Having outlined the need for investigating the metrics related to algorithm execution in small
embedded devices, this section will provide a short description of each metric and end up
choosing which are most relevant for this work.

8.2.1 Area

The amount of hardware available on an embedded device is an important factor to consider
when implementing algorithms. In the case of a CNN, first recall that the operations involved
are denoted as:

y(l)i =
N

∑
j=1

w(l)
j y(l−1)

j + b(l) (8.2)

where
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y(l)i is a single feature for the layer l.
w(l)

j is the jth weight of the kernel

y(l−1)
j is a single feature from the previous layer l − 1

b(l)i is the bias of the lth layer

Thus, the only operations taking place in a convolutional layer are multiplications and
additions. For this reason it will be assumed that the computations will be taking
place on Multiply ACcumulate (MAC) units, which are hardware units that perform one
multiplication and accumulates the result through an addition. Given that the calculation of
features within a layer is independent of each other, a large amount of parallelism can be
achieved and thus the execution time can be increased by introducing more MAC units [25].
In return this obviously increases the demand for hardware and also increases the physical
area required.

Additionally, the more memory is needed, the more Random Access Memory (RAM) is
required. In the case of a FCN, the kernel weights, the biases and the intermediate features
are saved in the RAM[25].

8.2.2 Execution time

As briefly mentioned above, the execution time is highly dependent on the available
hardware. More hardware results in better utilisation of the parallelism in the system, and
thus more computations can be carried out simultaneously. Other factor that play a role in
the execution time is the number representation used, i.e. if the calculations are carried out
as floating point or fixed point, as well as the number of bits used to represent a digit.

8.2.3 Power consumption

The power consumption of an embedded system is dependent on a variety of factors. Worth
noting is the amount of memory reads, the amount of computations to be carried out, the
clock frequency at which the system is operating and the number representation and bit
width[26]. Additionally, the power consumption is affected by low-level factors such as
instruction scheduling, adressing modes and even the size of the transistors[26]. These
factors are mostly out of scope of this project, and therefore power consumption will not
be considered in depth.

8.2.4 Precision

Precision is the last metric to be considered, and is also the only one which has already been
considered and optimised in this project. As with the other metrics, optimising the precision
can leave to a degradation in area, execution time and power consumption and vice versa.

8.2.5 Choice of metrics

Having outlined the four main metrics for designing an embedded system, it is clear that
within the time frame of this project not all of them can be considered equally. As already
mentioned the power consumption will mostly be disregarded, leaving time to work on the
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aspects of area and execution time. In the following sections some relevant literature will be
presented for methods on optimising these two metrics.

8.3 Survey on methods - litterature overview

As mentioned in section 8.2.2 and section 8.2.1, both the execution time and physical
area needed are dependent on the number representation used, as well as the number of
parameters and computations to be carried out. Therefore the presented literature will focus
on these aspects while being methods optimising on high abstraction levels.

8.3.1 Pruning

First let us consider the method for reducing the model size proposed in [27]. In their work
on some well-known network models like VGG-16 and AlexNet they have managed to reduce
the model size by 90% by pruning the network. Their approach for pruning a feed-forward
neural network is illustrated in fig. 8.2:

Train Connectivity

Prune Connections

Train Weights

Figure 2: Three-Step Training Pipeline.

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Figure 3: Synapses and neurons before and after
pruning.

3 Learning Connections in Addition to Weights

Our pruning method employs a three-step process, as illustrated in Figure 2, which begins by learning
the connectivity via normal network training. Unlike conventional training, however, we are not
learning the final values of the weights, but rather we are learning which connections are important.

The second step is to prune the low-weight connections. All connections with weights below a
threshold are removed from the network — converting a dense network into a sparse network, as
shown in Figure 3. The final step retrains the network to learn the final weights for the remaining
sparse connections. This step is critical. If the pruned network is used without retraining, accuracy is
significantly impacted.

3.1 Regularization

Choosing the correct regularization impacts the performance of pruning and retraining. L1 regulariza-
tion penalizes non-zero parameters resulting in more parameters near zero. This gives better accuracy
after pruning, but before retraining. However, the remaining connections are not as good as with L2
regularization, resulting in lower accuracy after retraining. Overall, L2 regularization gives the best
pruning results. This is further discussed in experiment section.

3.2 Dropout Ratio Adjustment

Dropout [23] is widely used to prevent over-fitting, and this also applies to retraining. During
retraining, however, the dropout ratio must be adjusted to account for the change in model capacity.
In dropout, each parameter is probabilistically dropped during training, but will come back during
inference. In pruning, parameters are dropped forever after pruning and have no chance to come back
during both training and inference. As the parameters get sparse, the classifier will select the most
informative predictors and thus have much less prediction variance, which reduces over-fitting. As
pruning already reduced model capacity, the retraining dropout ratio should be smaller.

Quantitatively, let Ci be the number of connections in layer i, Cio for the original network, Cir for
the network after retraining, Ni be the number of neurons in layer i. Since dropout works on neurons,
and Ci varies quadratically with Ni, according to Equation 1 thus the dropout ratio after pruning the
parameters should follow Equation 2, where Do represent the original dropout rate, Dr represent the
dropout rate during retraining.

Ci = NiNi−1 (1) Dr = Do

√
Cir

Cio
(2)

3.3 Local Pruning and Parameter Co-adaptation

During retraining, it is better to retain the weights from the initial training phase for the connections
that survived pruning than it is to re-initialize the pruned layers. CNNs contain fragile co-adapted
features [24]: gradient descent is able to find a good solution when the network is initially trained,
but not after re-initializing some layers and retraining them. So when we retrain the pruned layers,
we should keep the surviving parameters instead of re-initializing them.

3

Figure 8.2: The proposed approach to pruning [27]

Their approach is a 3-step process, which in a feed-forward neural network first trains the
connection between neurons, then prunes x% of the smallest connections by setting them
equal to zero, and lastly re-training the weights using the new updated connections. This is
an iterative approach that can be repeated until satisfactory performance and network size
is found. The pruned connections are not being retrained and thus remain zero. In order
to apply the method on a CNN, in which weights and biases are the only parameters, the
"Train connectivity" step is disregarded and instead the pruning connections weights are
being pruned

8.3.1.1 Regularization

Because all weights below a threshold are being pruned, it is important that only the least
important weights are below this threshold. In ensuring this a penalty term is added to the
loss function. In [27] it was found that using L2-regularization yields the best performance
under retraining.

L2 = λ
p

∑
j=0

θ2
j (8.3)

As seen above L2 regularisation adds a penalty term that aims to minimise the squared
magnitude of the parameters.

59



8.3.2. Quantization Aalborg University

8.3.2 Quantization

The second approach to be considered in this work is quantization of the network.
Quantization is the process of mapping values from high-precision number representation
to one with lower precision, and thus fewer bits. Let us first consider floating-point
representation and fixed-point representation.

8.3.2.1 Floating point representation

So far the simulations made in this project has been carried out in the default datatype of
PyTorch, which is a 32-bit floating point value using 1 sign bit, 8 exponent bits and 23
mantissa bits also referred to as single precision. The floating point operations are handled
accordingly to the IEEE-754 standard, which is illustrated in fig. 8.3. In IEEE-754 the first bit
of the mantissa is implicitly =1, such that the effective length of the mantissa is 24 bits [28, p.
169-188]. The following section on floating point representation is based on [28, p. 169-188].

s e0 e1 e2 e3 e4 e5 e6 m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10m11m12m13m14m15m16m17m18m19m20m21 m22

MantissaExponentSign bit

Figure 8.3: Representation of a single precision floating point number as in IEEE-754

In floating point the value of a number is represented by:

x =⇒ x̃ = (−1)s ·m · be (8.4)

where:

s = the sign bit
e = the exponent expressed as an integer ∑N

i ei · bN−1

m = the mantissa expressed as a scalar ∑N
i mi · b−i

b = the base/radix used. In this case it will be 2
N = the number of exponent or mantissa bits

Considering eq. (8.4) it is obvious that not an infinite number of values can be represented,
therefore floating point is considered finite precision. This means that an error will be
introduced when converting a continuous signal into finite precision. This process of
mapping a continuous infinite value into a discrete value is known as quantization. The
relative error introduced is defined as follows:

error =
∣∣∣∣ x− x̃

x

∣∣∣∣ : error ∈
[
−2e−p; 2e−p] (8.5)

where

x = the continuous infinite value
x̃ = the discrete finite approximation
p = the number of bits of the mantissa (24 in IEEE-754)
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By finding the maximum of the numerator and the minimum of the denominator we can find
the maximum error. In the case of fixed e we have:

max |x− x̃| = 2e−p (8.6)

min|x| = 1 · 20 · 2e − κ (8.7)

By inserting into eq. (8.5) we get an expression for the largest relative error. Also referred to
as the machine precision:

ε = max
∣∣∣∣ x− x̃

x

∣∣∣∣ = 2e−p

2e ± 2e−p =
2−p

1± 2−p ' 2−p (8.8)

Thus it is found that larger p provides lower quantization errors and thus higher accuracy.
This property will be the foundation for the next work in this project.

8.3.2.2 Floating point arithmetic

As mentioned in section 8.2.1, a FCN consist only of additions and multiplications when
disregarding the activation functions. For this reason it is interesting to also consider the
complexity of these operations using different number representations.

First let us consider floating point additions.

Floating point addition

The process of adding two floating point numbers is a process in several steps:

• First the exponents are aligned, such that the smaller number is written using the same
exponent as the larger number. For example consider the addition 1 · 21 + 1.25 · 25, then
we can align the exponents by rewriting as 0.0625 · 25 + 1.25 · 25

• Then we add the mantissas. Continuing the example we get (0.0625 + 1.25) · 25 =

1.3125 · 25

• Sometimes it is necessary with a third step to re-normalize the numbers, i.e. such that
the mantissa remains in the range of [1; 2] when using radix-2.

Floating point multiplication

Similarly to addition, floating point multiplications involves several steps. The example used
below will be similar to the one used in the addition: 1 · 21 × 1.25 · 25

• First the exponents are added: 21 + 25 = 2.024 · 25

• Secondly the mantissas are multiplied: 1 · 1.25 = 1

• Lastly the mantissa is normalized, and the exponent is adjusted accordingly: 2.024 · 25 =

1.012 · 26
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8.3.2.3 Fixed point representation

Now let us consider a different number system, fixed point, which will ease the computational
requirements for performing additions and multiplications. A fixed-point number consists of
an integer part, a fractional part and a sign bit (the sign bit is omitted in the case of unsigned
numbers). The name fixed-point arise from the fact that a fixed number of bits are reserved
for the integer part and the fractional part, as well as these bits always representing one and
only one value. In fig. 8.4 is illustrated an 8 bit fixed point number consisting of 1 sign bit, 4
integer bits and 3 fractional bits, where also the value represented by each bit is shown. The
number format is signed magnitude.

± 23 22 21 20 2-1 22 2-3

b0 b1 b2 b3 b4 b5 b6 b7
Sign 
bit

Integer part Fractional part

Figure 8.4: An example of a signed magnitude fixed-point number

Each bit in signed magnitude representation is a value of 2n, where n is an integer, such that
the numerical value of a signed magnitude number is:

x = (−1)x0 ·
N−1

∑
i=−M

xi · 2−i (8.9)

Similar to the floating point representation, a finite number of bits results in a finite number
of potential values. In fixed-point representation the interval between representable values is
called the quantization step, which will be denoted by: ∆ = 2−(N−1), where N is the number
of fractional bits. Just like in floating point representation, this means that a larger number of
fractional bits will result in a smaller quantization step and thus higher accuracy.

Having found ∆ we can now define the dynamic range as:

Dynamic range =
[
−2M + ∆; 2M − ∆

]
(8.10)

where M is the number of integer bits.

However, with signed magnitude follows two problems:

• We have a representation for both -0 and +0

• Arithmetic operations cannot be carried out directly

2’s complement

Because the main point of introducing fixed point numbers is to ease the arithmetic
operations, there is no point in looking any further on the signed magnitude representation.
Instead we consider 2’s complement notation which has only one representation of 0, and in
which arithmetic operations can be carried out directly, as shown in the example in eq. (8.11).
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0000 1111 (15)
+ 1111 0101 (-11)
==========

0000 0100 (4)

(8.11)

Positive numbers are represented in the same way as in signed magnitude, however for
negative values we invert all the integer and fractional bits, and add 1 to the Least Significant
Bit (LSB).

Using 2’s complement results in the same quantization step as for signed magnitude, however
adding 1 to the LSB for negative values acts as a bias in the value represented. This in
combination with inverting all bits after the sign in case of a negative results in values being
represented as:

x = −x0(1− ∆) +
N−1

∑
i=−M

xi · 2−i − x0 · ∆ (8.12)

And the dynamic range is slightly changed now that we only have 1 way to represent 0:

Dynamic range =
[
−2M; 2M − ∆

]
(8.13)

Additionally, multiplications can be carried out efficiently in 2’s complement using methods
such as shift and add multiplications or Booths algorithm [29]. However, as this project is
only focusing on optimizations on higher abstraction levels, we will not consider these
multiplication algorithms any further.

8.3.3 Quantization - continued

Having introduced two widely used number formats, IEEE-754 floating point and 2’s
complement fixed-point, we will in this section discuss two ways of performing the
quantization. It has already been established that the fixed-point arithmetic is more simple
than floating point arithmetic. In fact:

• an 8-bit fixed point addition requires 3.8× less area and 3.3× less energy than a 32-bit
fixed point addition. Compared to a 32-bit floating point, the 8-bit fixed point addition
requires 116× less area and 30× less energy [25] [30].

• an 8-bit fixed point multiplication requires 12.4× less area and 15.5× less energy than
a 32-bit fixed point multiplication. The 32-bit floating point multiplication requires an
additional 27.5× more area and consumes 18.5× more energy than the 8-bit fixed point
[25] [30].

Due to the fact that additions and multiplications are computationally cheaper, requires less
area and consume less power when carried out using fixed-point arithmetic, floating point
numbers will not be considered any further. Additionally, it is seen that lowering the bit
width of the fixed point numbers can be greatly beneficial.

In the following we consider two different approaches to quantization. The first approach
is the "naive quantization", where we simply choose one fixed bit width to be used through
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every part of the network. Afterwards we consider the method proposed in [31] where the
different layers operate with different bit widths.

8.3.3.1 Naive quantization

In the naive approach to quantization we use the same bit width in every part of the network.
Therefore this bit width will be used to represent both the feature maps, the weights, the
biases and the activation functions.

Every time a value is quantized, or an operation is performed using quantized numbers, some
additional quantization noise is added to the output:

x̃ = x + noisequantization = x + nx (8.14)

This error introduced by quantization noise will grow through the layers of the network, thus
deeper networks are more prone to quantization noise [31]. The ratio between quantization
noise and the true signal is called Signal to Quantization Noise Ratio (SQNR) and is defined
as:

SQNRDB = 10log10
E[x2]

E[n2
x]

(8.15)

The lower the SQNR, the higher the performance of the network can be achieved.

8.3.3.2 Cross-layer optimized quantization

Next we consider the method for efficient quantization presented in [31]. The main idea is
to optimize the bit widths in each layer with regards to the SQNR. The quantization noise
introduced is an unknown quantity, instead we estimate it:

SQNRDB = κ · β (8.16)

where

κ = the quantization efficiency
β = the bit width

In their work an important observation is that the SQNR introduced by a convolutional layer
can be described as:

1
SQNRw[l+1]·x[l]

=
1

SQNRw[l+1]
+

1
SQNRx[l]

(8.17)

where

x[l] = the feature map of the l’th layer
w[l+1] = the weights of the (l+1)’th layer
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And additionally, the combined SQNR introduced through multiple layers can be described
as:

1
SQNRoutput

=
1

SQNRw[1]·x[0]
+

1
SQNRw[2]·x[1]

· · · 1
SQNRw[L]·x[L−1]

+
1

SQNRx[l]
(8.18)

Now that we have a definition of the SQNR introduced through a network, we can consider
some key points that will be important for selecting the optimal bit widths:

• Every quantization step contributes equally, i.e. none of them are weighted

• The network performance will be bottlenecked by the quantization step providing the
largest SQNR

• Doubling the network depth results in 3 dB decrease of SQNR.

From eq. (8.18) we see that we can obtain the same total SQNR in infinitely many ways, for
example by using smaller bit widths in some layers and larger bit widths in other layers.
From this we can write an optimization problem which aims to minimize the model size
while still maintaining a fixed SQNR. To keep the focus of this project on the main ideas and
applications of this quantization strategy, the derivations of the optimization problem will
not be described.

The problem is formulated as:

min
λi

−∑
i

ρilog10λi

s.t. ∑
i

λi ≤
1

SQNRmin

(8.19)

where:

ρi = the number of parameters being quantized in the i’th quantization step.
λi =

1
SQNRi

, the SQNR introduced in the i’th quantization step.

This is a convex optimization problem with the water-filling solution [32]. Introducing
Lagrange multipliers and solving for the Karush Kuhn Tucker (KKT) conditions we get the
following expression for the optimal bit widths in two layers:

βi − β j =
10log10(

ρj
ρi
)

κ
(8.20)

Thus the difference between the optimal bit width of two quantization steps is inversely
proportional to the difference of parameters to be quantized in dB. This is then scaled by the
quantization efficiency. This means that when fixing the bit width in any quantization step,
the minimum bit widths of every other quantization step satisfying the SQNR constraint can
be found.
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Experiments 9
While the previous chapter introduced different methods for minimising the size of the
network and easing the computations involved, this chapter will implement these methods
on the model presented in fig. 6.3.

We will continue the work towards developing a low-latency VAD, by further optimising the
network in which the DB was disregarded resulting in the lowest algorithmic delay of 28
ms. However, since this had a negative impact on the VAD performance as compared to the
original network with an algorithmic delay of 398 ms, this network will also be optimised.

Thus 2 different cases will be explored and their potential for further optimization discussed:

Kernel sizes
Layer EB1 EB2 EB3 EB4 FB DB1 DB2 DB3

Case 1: High algorithmic delay 55 160 160 160 160 55 15 5
Case 2: Low algorithmic delay 55 160 160 160 160 N/A N/A N/A

Table 9.1: Kernel sizes of the two cases considered

With these kernel sizes the number of parameters in each layer of the network can be
computed as:

(n ·m · l + 1) · k (9.1)

where

• n = kernel width

• m = kernel height

• l = input channels

• k = output channels

• 1 = bias

Thus for the two cases, the number of parameters in the network is:
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No. of parameters
Case 1: High algorithmic delay 93,392
Case 2: Low algorithmic delay 93,692

Table 9.2: Number of parameters in the models used in each case

Due the the majority of parameters residing in the EB, only the first 3 convolutional layers
are pruned. These 3 layers contain a total of 90,502 parameters. All the results in this
chapter will be the average AUC of the 4 noise types of Aurora-2 test set A. Thus a total
of (noise types× SNR levels) =⇒ (4× 7 = 28) AUC values in unique settings are averaged.

9.1 Pruning

First we investigate the VAD performance after pruning. The approach used is the iterative
method presented in [27] which has already been described in section 8.3.1. Their work
found that in order to obtain the best performance under pruning it was beneficial to add a
penalty term in the form of L2-regularization to the loss function. The weight factor of this
regularization is very application specific, and will therefore have to be found experimentally.
This is however not the only unknown. The hyperparameters that will have to be decided
upon before pruning is listed below:

• The weight factor of L2-regularization

• The learning rate

• The number of pruning iterations

• The number of parameters pruned in each iteration

• The re-training time after each pruning iteration

Due to the limited time frame of this project not all hyperparameters can be found
experimentally, and thus some of them will be set initially based on intuition. Only the
learning rate and L2 weight factor will be found experimentally

9.1.1 Finding hyperparameters

It has been decided to run parameter sweeps for finding the optimal learning rate and L2
weight factor experimentally. The number of pruning iterations is set to 5, the re-training
time is set to 2 epochs after each pruning iteration, and the number of parameters pruned
in each iteration is set to 10% of the remaining parameters. This leads to that the number of
remaining weights after pruning is:

remaining weights = (1− p)r =⇒ (1− 0.1)5 = 59% (9.2)

where p is the part of parameters pruned each iteration, and r is the number of iterations.
Thus in these sweeps 59% of the weights still remain.
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In section 9.1.1 parameter sweeps for finding the optimal learning rate and L2 weight factor is
shown. First the optimal learning rate is found in fig. 9.1a whereafter the optimal L2 weight
factor used in conjunction with the optimal learning rate is found.

In fig. 9.1a the AUC without retraining is used as reference and shown by the red line. The
performance for different learning rates is shown by the blue line. It is seen that a too low
learning rate results in a performance similar to the reference without retraining, while a
too large learning rate causes the weights to explode and the performance to decrease. The
optimal learning rate is found to be 10−2

Afterwards this learning rate is used to find the optimal L2 weight factor, as seen in fig. 9.1b.
The red line denotes the performance found using the optimal learning rate in fig. 9.1a.
It is seen that too large weight factors leads to poorer performance. This is because the
network is now more focused on minimising the L2-term and thus neglecting minimising
the loss from the VAD. Interestingly, the performance is also seen to decrease when using
"too low" L2 weight factors. This behaviour is indeed unexpected as a lower L2 weight factor
eventually means the L2 penalty term will be disregarded. For now this behaviour will not
be investigated any further, and instead the optimal L2 weight factor of 10−8 will be used for
further experiments.
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(b) Parameter sweep of L2 weight with optimal learning rate

Figure 9.1: Parameter sweeps for finding optimal hyperparameters

Having found the optimal hyperparameters, we will now investigate how different levels
of pruning will affect the performance of the VAD. For varying the aggressiveness of the
pruning, the number of parameters pruned in each iteration is varied, while the rest of the
hyperparameters are kept fixed as noted in the beginning of section 9.1.1. In this experiment
the two cases presented in chapter 9 are both investigated. The results are shown in fig. 9.2.
The red line is denoting the performance with all parameters still present, and the blue line
represent the performance of the pruned networks.
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Figure 9.2: Experiments for finding the performance degradation at different aggressiveness of the pruning

For case 1 with the large algorithmic delay, a performance decrease is seen with less than 60%
of the weights still remaining. From this point the performance seems to decrease linearly
with further reduction of network size. For case 2, with the low algorithmic delay, a slight
performance decrease is seen already when the remaining weights go below 75% and from
this point the performance is decreased drastically as the network size is decreased.

An interesting observation is that the the network with the large algorithmic delay can be
pruned very aggressively and still perform as well - or even better than the un-pruned model
with low algorithmic delay. With only 20% of the weights remaining in the network with high
algorithmic delay, the performance is similar to that of the un-pruned low algorithmic delay.
Additionally, by reducing the network size to 3% the AUC is only 3% lower than that of the
low algorithmic delay.

Due to this only the network with high algorithmic delay will be investigated further in terms
of pruning. For further work it is chosen to prune the network by 59% which results in 53415
remaining parameters (in the first 3 layers of the EB).

In fig. 9.3 the kernel density estimate of the weights of the layers involved in pruning is shown
before and after.

4 3 2 1 0 1 2 3 4

(a) The weights before pruning

4 3 2 1 0 1 2 3 4

(b) The weights after pruning

Figure 9.3: Kernel density estimates of layers EB 1 to 3
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It is seen that the weights are initially normal distributed around 0. Then the smallest weights
are removed, but due to the retraining we instead get 2 approximately normal distributions
on each side of 0.

9.1.2 Memory considerations

Pruning weights from the network leads to a new problem when it comes to the memory
requirement. The parameters of the un-pruned network can be stored in a contiguous format
in the same order as they are used, leaving no need for further addressing in memory.
However, when some weights are pruned from the network there is no need for a place
of these weights in the memory. As this sparsity increase there will be more gaps between
weights. In order for the network to then fetch the correct parameter at the right time, an
additional variable storing the address of where the parameters fits in the network is needed.
Thus each parameter of the sparse network will now take up two variables in memory. The
reduction in memory is therefore not directly proportional to the number of parameters
pruned from the network. One way of storing the addresses of each parameter is using
Compressed Row Storage (CRS) as shown in [33]. This is illustrated in fig. 9.4. The downside
of storing addresses using this format is that the necessary bit width to store the addresses
is dependent on the number of parameters in the original network, which in this case was
found in chapter 9 to be ≈53,000 parameters. In order to store integers as large as this, a total
of 17 bits is needed.

Index 0 1 2 3 4 5 6 7 8 9 10 11

Value 0 0 1.7 0.9 0 0 -0.7 0 0 0 0 0.4

Figure 9.4: Storing the addresses of each parameter as its absolute index

For this reason a different approach of storing the addresses is proposed in [33]. Instead
of storing the absolute value of the addresses, instead the relative difference between the
addresses of two adjacent non-pruned weights can be stored. In case the relative difference is
larger than can be represented by the chosen bit width, instead a filler zero can be inserted.
This acts as a regular parameter with its own address, but weight 0. This approach is
illustrated in fig. 9.5.

Index 0 1 2 3 4 5 6 7 8 9 10 11
Difference 2 1 3 4 1

Value 1.7 0.9 -0.7 0 0.4

Filler zero

Figure 9.5: Storing the relative difference between parameters instead of addresses. Filler zeroes are ínserted if
the relative difference can not be represented by the chosen bit width of addresses

9.1.2.1 Minimising memory requirements

In the following will be looked further into the approach illustrated in fig. 9.5, and the optimal
bit width for reducing memory requirements will be found. In table 9.3 is shown the number
of parameters that has a relative address difference that falls within the representable range
of different bit widths.
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Relative difference <2 <4 <8 <16 <32 >32 Total
Occurences 51986 261 263 284 307 314 53,415

Table 9.3: Distribution of the relative difference in addresses

From this it is clear that a large number of the parameters are in fact still adjacent or
separated by a maximum of 1 pruned weight, while the remaining weights are somewhat
equally distributed among the larger relative differences. Having found the indeces of the
pruned weights it is of further interest to find the bit width for representing the relative
differences that minimise the required memory. For finding the needed memory 3 parameters
are needed:

• The bit width of parameters

• The bit width of relative difference in adresses

• The number of filler zeroes

The bit width of parameters will be discussed later under quantization, and is therefore
disregarded for now. Instead we focus on the bit width of the adresses and the number of
filler zeroes needed,

Given a bit width β and the relative difference of address d, the number of filler zeroes z can
be found as:

z = dd + 1
β
− 1e (9.3)

For example let us consider the β = 2bit example. If the relative address difference is larger
than 3 a filler zero is needed. For every increment of 4 in the address an additional filler zero
is needed. By applying eq. (9.3) to every parameter in the pruned part of the network it is
possible to find the optimal bit width. It is important to note that each filler zero will have to
be stored as a parameter, thus increasing memory cost.

In section 9.1.2.1 the total number of parameters needed to be stored, the number of these
which are filler zeroes, and the total number of bits needed to store the addresses are denoted
for different bit widths:

Bit width 1 2 3 4 5
Parameters needed (including filler zeroes) 71,156 61,777 57,241 55,041 54,019

Filler zeroes 17,741 8,362 3,826 1,626 604
Bits needed 71,156 123,554 228,964 440,328 864,304

Table 9.4: Comparison of the implication on memory requirements using different bit widths for storing the
relative difference in addresses
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It is seen that the larger the bit width, the fewer filler zeroes is needed. However, the cost
of the extra bit width is larger than the cost of the filler zeroes. This is due to the very large
amount of parameters that can be addressed using a single bit as shown in table 9.3. Even
though an additional 17,741 filler zeroes are needed (which is 33% of the actual parameters),
a bit width of 1 for addressing is found to be optimal. This is assuming the filler zeroes can
be stored using a single bit, which is not necessarily the case in every architecture.

9.1.2.2 Conclusion on pruning

In this section has been investigated whether pruning is a valid approach for reducing the
size of the network. Due to the majority of parameters residing in the first 3 layers of the
EB, only these are pruned. Pruning was investigated for both the network with low and high
algorithmic delay. The network with the large algorithmic delay was succesfully pruned by
41% while the network with the low algorithmic delay was successfully pruned by 25% with
only an insignificant performance decrease. From this point on only the network with the
large algorithmic delay was considered further. The approach would have been the same
using the low-delay model.

Pruning the model size by 41% corresponds to pruning away 37,087 of 90,502 paramet-
ers.However, pruning the network results in the need for addressing of parameters as these
are no longer contiguous in memory thus increasing the model size. It was found that
the remaining 53,415 parameters can be addressed efficiently using only 71,156 bits in sec-
tion 9.1.2.1.
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9.2 Quantization

In this section quantization will be applied on the VAD algorithm. First some initial
considerations on choosing the number of integer bits based on the dynamic range as
presented in section 8.3.2 is discussed. Afterwards the VAD performance at different levels
of quantization is found experimentally. The quantization is performed using both the naive
approach presented in section 8.3.3.1 and the approach aiming to minimise the model size
while maximising the SQNR presented in section 8.3.3.2

9.2.1 Dynamic range considerations

This part of the work will find the optimal number of integer bits based on the discussion
of dynamic range in 2’s complement presented section 8.3.2 and parameters from the trained
model. First recall that a number in 2’s complement is represented as:

x = −x0(1− ∆) +
N−1

∑
i=−M

xi · 2−i − x0 · ∆ (9.4)

And the dynamic range is then:

Dynamic range =
[
−2M; 2M − ∆

]
(9.5)

where M is the number of integer bits and N is the total number of integer plus fractional
bits. Thus in order to avoid overflow and underflow it is necessary to make sure the numbers
represented in the VAD remains within the dynamic range at all times.

In fig. 9.6 kernel density functions of the filter weights and the features output from the
convolutional layers are shown. First let us consider the weights. It is seen that in most
of the layers the weights are approximately gaussian distributed with a mean around 0.
Additionally, the majority of the weights are within the range of [−2; 2]. Some of the layers
have some outliers which falls inside the range of [−4; 4]. All weights of the trained network
falls inside this range. Thus in order to fully cover the dynamic range of the weights 2 integer
bits are needed.

Next let us consider the features output from the convolutions after being batch normalised
and before the activation functions. These are shown in section 9.2.1. The figure is made
using samples from a total of 5 minutes of audio where the noise type and SNR levels are
randomized. The features are therefore representative for every environment considered in
this work. It is seen that for the 4 layers of the EB the features are mostly falling within
the range of [−4; 4] with only a few outliers. Next up is the FB, which contains way larger
values than the earlier layers. This is due to no batch normalisation being used in this layer as
explained in section 2.3.3.3. To fully represent the features from this layer a total of 7 integer
bits is needed such that the dynamic range covered is [−128; 128]. The features from the DB
seems to fall in between those of the EB and FB. To fully cover their dynamic range 5 integer
bits is needed for [−32; 32].

The raw audio input is not included in this, however as these experiments are carried out
using .WAV files, every sample lies in the interval [−1; 1].
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(a) Kernel density functions of weights
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(b) Kernel density functions of features output from convolu-
tional layers

Figure 9.6: Kernel density functions of the weights and features of the trained un-pruned network.

Due to having different dynamic ranges for the weights and the features of each block of the
network, it is not trivial to decide on the number of integer bits to use. For this reason some
more in depth discussions will follow on the topic.

As these features are sampled after the convolutions and before the activation functions it
seems reasonable to consider the different activation functions as well. In the EB the Leaky
ReLU activation function is used. The Leaky ReLU activation function is described as:

f (x) = max(α · x,x) (9.6)

Thus for every positive feature the value is unchanged. Because of this it is of interest to have
the full dynamic range covered. Next let us consider the sigmoid activation function which
is used in the FB and DB layers. This is described as:

σ(x) =
1

1 + e−x (9.7)

As the sigmoid function only output values between 0 and 1 this has an effect on the dynamic
range of the features. In fig. 9.7 is illustrated how the resolution of the sigmoid activation
function is affected by the dynamic range used, and in section 9.2.1 the exact resolution of
the output is shown. For a range of different dynamic ranges is drawn a box on top of the
function. These boxes represent the resolution of both the input and the output of the sigmoid
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function. The horizontal lines depict the resolution of the input, while the vertical lines depict
which part of the output can be activated when having the aforementioned resolution in the
input. It is seen that when no integer bits are used, and the dynamic range is thus [−1; 1],
only a very small part of the sigmoid function will ever be activated. In contrast, when using
3 integer bits, and a dynamic range of [−8; 8] almost the full output resolution is used. Thus
the effect of features outside this range will only have a minimal effect on the performance.
Additionally, as the VAD is a binary classification problem it is not necessarily a problem that
the features converge towards 0 or 1 in these parts of the network.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid function
3 integer bits
2 integer bits
1 integer bit
0 integer bits

Figure 9.7: Resolution of the sigmoid function using different numbers of integer bits - and thus having different
dynamic ranges

To further highlight this the resolution of the outputs from sigmoid is shown in the table
below. Working with a dynamic range of [−8; 8] the resolution of the output is [0.0003; 0.9997].

Integer bits 3 2 1 0
Sigmoid resolution [0.0003; 0.9997] [0.0180; 0.9820] [0.1192; 0.8808] [0.2689; 0.7310]

Table 9.5: Resolution of the sigmoid activation functions using different number of integer bits. It is assumed that
the number of fractional bits is very large in this case, such that the dynamic range is ≈ [−2M; 2M].

Further experiments have been carried out to investigate the effect of the dynamic range. First
is an experiment in which it is found what the probability of overflow occuring before the
activation function is for each layer at different choices of integer bits. As the overflow mainly
seems to occur in the FB block our intuition is confirmed. The overflow in the sigmoid layers
is as previously mentioned not necessarily a problem, due to the fact that we work with a
binary classification problem.
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Integer bits 4 3 2 1
EB1 0 0.001 0.011 0.053
EB2 0 0.001 0.014 0.076
EB3 0 0.001 0.001 0.024
EB4 0 0 0.933 0.016
FB 0.720 0.866 0.933 0.965

DB1 0.008 0.182 0.329 0.607
DB2 0 0.040 0.186 0.336
DB3 0 0 0.577 0.736

Table 9.6: The probability of overflow in each layer using different numbers of integer bits

9.2.2 Experiments fixed point performance

The following section will contain experiments finding the VAD performance at different
levels of quantization. Additionally, quantization and pruning will be tested when used in
conjunction.

Having analysed the effect on the dynamic range of the network in theory, this next
experiment will aim at finding the effect of dynamic range in practice. In this experiment
the pre-trained model is quantized into different dynamic ranges. The tool used is QPyTorch
[34], which is a python module that can be used in extension with PyTorch to simulate low-
precision arithmetic of a network. The features used in this work are:

• Numbers can be represented as floating point and fixed point

• For floating point the number of bits used for exponent and mantissa can be set. (Cannot
go higher than a single precision number)

• For fixed point the integer bits and fractional bits can be set.

• "Nearest rounding" is used for quantization.

• The number format for each variable can be set individually, allowing for different bit
widths through the network

• Overflowing values will not roll over, but will instead saturate at the nearest
representable value

Even though the module has some good features for this project it also has some minor
limitations:

• Overflow within an operation is not detected, i.e. if the intermediate results in the MAC
overflows but the final result is within dynamic range

• The arithmetic operations are still carried out using floating point arithmetic, however
this is not of importance as all values used will be quantized beforehand.

Experiment on dynamic range

As mentioned briefly above, first will be tested experimentally what effect the dynamic range
has on the performance. These results are seen in section 9.2.2 where is found the VAD
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performance using fixed-point representation. The word length is fixed at 32 bits, whereas
the number of integer bits - and therefore also fractional bits is varied. However the number
of fractional bits is so large that it will have no effect when decreased due to the quantization
step being very small. Thus the effect of integer bits is isolated. The experiment is carried out
using the network with large algorithmic delay.

Dynamic range ±0.5 ±1 ±2 ±4 ±8 ±16 ±32 32 bit floating point
AUC 92.72 93.42 94.01 94.05 94.07 94.12 94.19 94.20

Table 9.7: Performance using different number of integer bits. Total word length is 32 bits in all tests

It is seen that even with very small dynamic ranges the performance of the VAD is still
good. Between having a dynamic range of [−2; 2] and 32 bit floating point the difference in
performance is minimal. This suggests that the network is not heavily affected by overflow
and the exact magnitude of features is less important than their sign.

Following the analysis of dynamic range and the experiment in section 9.2.2 it is decided
that only two integer bit will be used for further experiments, resulting in a dynamic range
of [−4; 4]. This way the performance is proven to be good in section 9.2.2 while most of the
features and weights can be fully represented as shown in fig. 9.6

9.2.2.1 SQNR optimized quantization

An important part of this work on quantization is to find the performance of two different
approaches to quantization. The naive approach as described in section 8.3.3.1 and the
approach which aims to optimise for SQNR while minimising the model size as described
in section 8.3.3.2.

First we will find the optimal bit widths for each layer, using the first layer of the EB as a
reference. In section 8.3.3.2 it was described that the optimal bit width is given as:

βi − β j =
10log10(

ρj
ρi
)

κ
(9.8)

where:

β = the bit width of the layer
ρ = the number of parameters in the layer

Given that the number of parameters contained in each layer is:

Layer EB1 EB2 EB3 EB4 FB DB1 DB2 DB3
Bit width 1680 72015 16807 2242 642 222 62 22

Table 9.8: The number of parameters in each layer
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The optimal bit widths are found to be:

Layer EB1 EB2 EB3 EB4 FB DB1 DB2 DB3
Parameters β0 β0 − 5 β0 − 3 β0 − 1 β0 + 1 β0 + 3 β0 + 5 β0 + 6

Table 9.9: The optimal bit width for each layer for minimising model size while maximizing SQNR

Thus the layer containing more parameters need a smaller bit width.

Further experiments

Now that the optimal bit widths are known, a series of 24 experiments is carried out on the
network with the large algorithmic delay. The aim is to find the VAD performance under
different levels of quantization. The experiments are as follows:

• a reference - found using single precision floating point

• 13 experiments using the naive approach to quantization. For each experiment the bit
width is lowered by 1, covering the range from 16 bits to only 4 bits.

• 10 experiments using the SQNR optimised approach. The bit widths are found as
table 9.9. For each experiment, the bit width of every layer is reduced by 1.

The results from these experiments are shown in table 9.10. Each case has been tested on both
the full network and the pruned network. Additionally, the resulting network size in bits is
denoted for each case. The model sizes for the pruned network is including filler zeroes and
bits needed for adressing as described in section 9.1.2.1. Thus the model size is increased by
71,156 bits when the network is pruned.
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Bit width per layer Model size
(
×103 bits ) AUC (%)

EB1 EB2 EB3 EB4 FB DB1 DB2 DB3 Pruned Not pruned Pruned Not pruned
Case #0 32 32 32 32 32 32 32 32 1765 2514 94.01 94.23
Case #1 16 16 16 16 16 16 16 16 1078 1257 93.64 93.92
Case #2 15 15 15 15 15 15 15 15 1015 1178 93.58 93.89
Case #3 14 14 14 14 14 14 14 14 952 1100 93.53 93.86
Case #4 13 13 13 13 13 13 13 13 889 1021 93.34 93.70
Case #5 12 12 12 12 12 12 12 12 826 942 93.12 93.70
Case #6 11 11 11 11 11 11 11 11 763 864 92.96 93.02
Case #7 10 10 10 10 10 10 10 10 700 785 92.07 93.02
Case #8 9 9 9 9 9 9 9 9 637 707 92.07 92.74
Case #9 8 8 8 8 8 8 8 8 574 628 92.17 92.55
Case #10 7 7 7 7 7 7 7 7 511 550 91.84 92.58
Case #11 6 6 6 6 6 6 6 6 448 471 91.96 91.99
Case #12 5 5 5 5 5 5 5 5 385 392 90.55 85.90
Case #13 4 4 4 4 4 4 4 4 322 314 41.38 39.61
Case #14 16 11 13 15 17 19 21 22 806 891 93.54 94.07
Case #15 15 10 12 14 16 18 20 21 743 812 93.42 93.72
Case #16 14 9 11 13 15 17 19 20 680 734 93.11 93.42
Case #17 13 8 10 12 14 16 18 19 617 655 93.07 93.14
Case #18 12 7 9 11 13 15 17 18 554 577 92.90 93.60
Case #19 11 6 8 10 12 14 16 17 491 498 92.08 93.27
Case #20 10 5 7 9 11 13 15 16 428 420 91.99 92.91
Case #21 9 4 6 8 10 12 14 15 366 341 91.29 92.19
Case #22 8 3 5 7 9 11 13 14 303 262 90.60 91.91
Case #23 7 2 4 6 8 10 12 13 241 184 89.59 90.50

Table 9.10: Performance of the VAD and model sizes at different levels of quantization, both with and without
prior pruning.

9.3 Analysis of results

It is seen that as the bit widths are decreased, the performance of the VAD is also decreased,
but not exceedingly so. An interesting observation is that using the naive quantization, an
approximately linear decrease in performance is seen from a bit width of 16 until a bit width
of 5, where after the performance explodes and simply stops working. This is believed to be
due to the quantization step being as large as 0.5 when using only 4 bits, which is not enough
to contain the more fine grained features of the sigmoid layers. In contrast when using the
SQNR optimised approach it is seen that the approximately linear decrease in performance
is kept even at bit widths as low a 2 in the EB.

Using the bit width optimised approach it is possible to reduce the un-pruned model size by
almost 3× with very limited decrease in performance (case #14). Using the naive approach it
is possible to half the model size with very limited decrease in performance (case #1)

In section 9.3 is visually illustrated the performance at different quantization levels introduced
in table 9.10. Here it is seen that the SQNR optimised approach is outperforming the naive
quantization in terms of performance compared to model size for both the pruned and un-
pruned models.
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(a) Large algorithmic delay - quantized only
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(b) Large algorithmic delay - pruned and quantized

Figure 9.8: Visualization of the results from table 9.10 - comparison of the two approaches to quantization for
large algorithmic delay

In section 9.3 is the same experiment as shown in section 9.3 repeated for the model with the
low algorithmic delay. Interestingly, the results from this experiment is in sharp contrast to
those using the model with large algorithmic delay. In fact a drastical decrease in performance
is observed at every quantization level. In particular the already pruned model seems unfit
for quantization.
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(a) Low algorithmic delay - quantized only
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(b) Low algorithmic delay - pruned and quantized

Figure 9.9: Visualization of the results from table 9.10 - comparison of the two approaches to quantization for low
algorithmic delay

9.3.1 Thoughts on combined pruning and quantization

In the previous section it was discussed how the choice of quantization approach affected the
VAD performance compared to the network size. The VAD has also been tested both with and
without pruning as a step before quantization, and under which circumstances using both in
combination is beneficial will be discussed in this section. In section 9.3 it was found that
applying quantization to the model with low algorithmic delay decreased the performance so
badly that the VAD is no longer capable of detecting speech, thus only the model with large
algorithmic delay will be further considered.

In section 9.3.1 is the VAD performance after quantization plotted against the model size
for both the pruned and the un-pruned. The results are the same as already presented in

80



9.3.2. Conclusion on quantization Aalborg University

table 9.10.
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(a) Fixed bit width quantization with and without pruning
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(b) SQNR optimised quantization with and without pruning

Figure 9.10: Visualization of the results from table 9.10 - comparison of performance with and without prior
pruning

It is seen that when using the naive approach to quantization, it is possible to reduce
the model size more if the model is pruned beforehand. However, for SQNR optimised
quantization the performance is generally better when the model is not pruned beforehand.

The reason why the model size is eventually getting lower when the model is not pruned
is that in a pruned layer it is necessary to consider addressing of parameters as already
described in section 9.1.2.1. It was found that a total of 71,156 bits is the minimum needed to
store the addresses only. As the bit width of the parameters get smaller, the addressing has a
larger effect on the model size. The different combinations of using pruning and quantization
will be further discussed in the next section.

9.3.2 Conclusion on quantization

Having carried out simulations for finding the performance of the VAD using different
approaches to quantization, this section will be a discussion rounding off the work on
quantization. Two different approaches to quantization has been considered, and both of
these have been used both standing alone and in combination with pruning. For all of the
experiments two models have been considered: one with an algorithmic delay of 398 ms
and one with an algorithmic delay of 23 seconds. For the following four cases, the results
considered are all listed in table 9.10.

Naive quantization without pruning

This approach to quantization is the most simple. The entire model is quantized to the
same bit width. This approach generally leads to bad performance when compared to the
approach using SQNR optimised bit widths as seen in section 9.3 and section 9.3, however
it outperforms the model which has been pruned before the naive quantization is applied as
seen in section 9.3.1.
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Naive quantization with pruning

This approach prunes the model before it is quantized with a fixed bit width for the entire
model. In fig. 9.2 it was found that the large-delay model can be pruned by 41% while the
low-delay model can be pruned by 25% with only insignificant performance decrease. In
section 9.3.1 it is seen that pruning before quantization does not lead to better performance
at the same model size as compared to the un-pruned model. This is partly because
the addressing needed takes up a significant part of the model size as the bit widths are
decreased.

Optimised quantization without pruning

This approach has shown the best performance. The bit widths used in each layer of the
network is minimised while maximising for the SQNR as found in section 8.3.3.2. From
section 9.3 and section 9.3 it is seen that this approach to quantization outperforms the naive
approach, and from section 9.3.1 is is seen that the performance is better when the model is
not pruned.

Optimised quantization with pruning

This approach shows worse performance than SQNR optimised quantization without
pruning, however it still outperforms the model using naive quantization - both pruned and
un-pruned.

9.4 Conclusion on experiments

Both pruning and quantization have been implemented and an extensive series of
experiments has been carried out. The results when applied to the network of fig. 6.3 from
these experiments are all seen in table 9.10, and for further analysis of these results a series of
plots have been made. From this analysis of the results it was found that the best approach
for minimising model size while retaining VAD performance was using the SQNR optimised
quantization approach with no prior pruning.

The methods have both been tested for both the model with large and small algorithmic
delays. It was found that the model with the large algorithmic delay is way more suitable for
pruning and quantisation than the model with low algorithmic delay.
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In this chapter the work on pruning and quantization presented in the two previous chapters
will be discussed in the context of a real-world implementation. This discussion will be based
on two different types of architectures commonly used for embedded devices - a Digital
Signal Processor (DSP) and an Field Programmable Gate Array (FPGA)/Application-Specific
Integrated Circuit (ASIC).

The discussion will focus on fixed point arithmetic, memory alignment before and after
pruning, and the potential for implementing the SQNR optimised quantization

10.1 DSP

First will be discussed how the network with aforementioned optimisations can be
implemented on a DSP. More specifically will be considered the Tencilica Hifi3 DSP that is
used in the low-power peripheral audio solution Dialog DA14195 that is currently in use by
RTX.

The DA14195 is an open audio platform for high-end active headphones, which is used
for various speech processing tasks such as noise cancellation, noise reudction, voice
enhancement and echo cancellation. It integrates a 32-bit ARM Cortex-M0 microcontroller
and a 32-bit Tencilica Hifi3 DSP in the same chip [35]. Due to the large amount of MAC
operations in the network only the DSP will be considered while the ARM microcontroller
will be disregarded.

Detailed information and schematics of the DA14195 is not publicly available, and for this
reason only the DSP will be considered. The discussions of this section is based on the
datasheet of the DSP [36].

10.1.1 Architecture

The Hifi3 DSP is a Single Instruction/Multiple Data (SIMD) processor that can work in
parallel on two 24/32 bit data items or four 16-bit data items. Additionally, it supports
fixed-point MAC of four 24x24-bit, four 32x16-bit or four 16x16-bit operands per cycle. Two
32x32-bit operands can be multiplied per cycle. The floating point unit supports two IEEE-754
floating point MACs per cycle

The load/store unit is capable of loading or storing up to two 24-bit or 32-bit elements, four
16-bit elements or one 64 bit element in each cycle.

The Hifi3 DSP is based on the Very Long Instruction Word (VLIW) which supports execution
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of three operations in parallel in just a single instruction. These three operations are carried
out by different slots in the architecture:

• Slot 0: Responsible for loading and storing, bitstream and Huffman operations. Also
contains an Arithmetic Logic Unit (ALU) for performing core operations

• Slot 1: Contains an ALU and a MAC unit as well as a unit for performing floating point
operations.

• Slot 2: Contains an ALU and a MAC unit.

In fig. 10.1 the architecture of the Hifi3 DSP is illustrated

Figure 10.1: Architecture of the Hifi3 DSP [36]

10.1.2 Quantization

Based on the above description of the architecture, this section will provide an analysis on
how to apply quantization of the network when implemented on a DSP. Two things are
particularly important to consider in terms of quantization. That is:

• Which bit widths can the parameters be stored as?

• Which bit widths is supported by the MACs?

This was briefly mentioned in the architecture overview. Only elements of 16, 24, 32 or 64
bits can be loaded and stored using standard instructions. The same is the case when it
comes to MACs. Thus the architecture of the DSP is putting a constraint on the potential for
introducing quantization into the network.

First of all, the SQNR optimised approach is not applicable as the DSP can not operate on
different bit widths of each layer. Secondly, the DSP does not support operations using fewer
than 16 bits.

Considering the cost function presented in eq. (8.1), if it is considered more important to
reduce the memory than the the execution time and number of operations it can be beneficial
to encode multiple parameters of smaller bitwidth within a single word. This would however
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introduce the need of a custom routine than can fetch the parameters correctly from memory
and therefore introduce an additional overhead in computation time.

As the smallest possible operations supported by the MACs of the DSP is 16x16-bits zeroes
would have to be padded as Most Significant Bit (MSB) until a valid bit width is reached.

If computation time is of higher importance than memory cost, it is beneficial to use the naive
approach to quantization to 16 bit fixed point as presented in section 8.3.3.1.

10.1.3 Pruning

In section 8.3.1 was found how much the network can be pruned before performance is
decreased. In this section will be discussed how this can be implemented on a DSP similarly
to the section of quantization above.

Additionally, in section 9.1.2 was described how introducing pruning would ruin the
contiguous alignment of parameters in memory, and thus introduce the need for an additional
routine that can fetch the correct parameters at the right time. This was followed by an
additional analysis on how the remaining parameters can be saved in the most efficient way
in terms of memory usage. It was found that the most optimal way to save the locations of
the remaining parameters was by using the relative difference in address at a bit width of 1
and then include filler zeroes, also of bit width 1, when the maximum representable relative
difference was exceeded. As also explained in section 10.1.2, on the DSP it is not possible to
save any parameters using a bit width of 1. For this reason both the relative differences in
memory addresses and the filler zeroes would have to be saved as a minimum of 16 bits -
unless an additional routine for unpacking the 1-bit words is introduced. This would while
reducing the memory requirement lead to a significant decrease in computation time.

Following the same logic as in section 9.1.2.1, a 16-bit word for the relative difference in
addresses of each parameter would have to be saved. With a bit width of 16 it is not necessary
to include any filler zeroes. After pruning 53.415 parameters was still remaining while 37.087
was removed. In section 10.1.2 it was found that at least 16 bits is necessary in order to
perform the operations on the DSP. Having the relative difference in addresses being stored
using the same bit width as the parameters the memory requirement would only increase by
introducing pruning.

10.1.4 Conclusion on DSP implementation

In section 10.1.2 and section 10.1.3 was discussed whether the methods for reducing the
computational time and memory requirements from chapter 8 is suitable for implementation
on a DSP. It was found the SQNR optimised quantization and pruning is not feasible for DSP
implementation due to the limitation in customizable word lengths. This problem can be
circumvented by introducing an additional routine responsible for unpacking the parameters
of smaller bit widths stored together within a larger word. This would however lead to
increased computation time. For an implementation on a DSP the most feasible approach is
found to be quantization to 16 bits with no prior pruning.
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10.2 FPGA and ASIC

In section 10.1 it was discussed how the optimisations considered in chapter 8 could
potentially by implemented on a DSP. It was found that due to the limitation of bit widths
supported by the DSP only the naive approach to quantization proved to be feasible.

In this section will instead be considered a potential implementation on customizable
hardware architecture like FPGA and ASIC. As these architectures are only rarely used by
RTX, this discussion will instead be based on a type of FPGAs used for educational purposes
at Aalborg University. The FPGA of interest is of the Altera Cyclone V series [37]. More
specifically it is chosen to consider the Cyclone V GTD5 which specifications can be found
in [38]. As was the case in the discussion of DSP implementation, the focus will be on how
pruning and quantization as presented in chapter 8 can be utilised on this architecture.

The discussion will focus on how the optimisations of chapter 8 can be implemented on this
FPGA.

As seen in eq. (2.2) the convolutional operations involved in the network is similar to those
of a Finite Impulse Response (FIR) filter. For this reason let us consider the approach for
implementing a FIR filter on an FPGA as presented in [39]. The approach is illustrated in
fig. 10.2:

Figure 10.2: Approach for implementing a FIR filter as presented in [39]

Disregarding the clock signals, the rest of the figure will be used as foundation for this
discussion on pruning and quantization on an FPGA. To ensure a natural flow of this
discussion, quantization will be considered first followed by pruning.

10.2.1 Quantization

This discussion on how to utilise quantization on an FPGA will focus on the multiplier
and accumulator blocks of fig. 10.2. Thus the only operations that will be considered is
multiplications and additions.
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On an FPGA the adders and multipliers can be set up the way in which the designer wants,
that includes both fixed point and floating point as well as different word lengths. Thus it is
also possible to use varying word lengths in the different parts of the networks such that the
SQNR optimised quantisation can be implemented.

Additionally, in terms of storing the parameters in memory is important to consider what at
which word lengths the parameters can be stored. On an FPGA the built-in memory blocks
can be configured to store variables using the desired bit width.

10.2.2 Pruning

Having shortly outlined that quantisation is no problem on an FPGA, this section will
continue the discussion on pruning with focus on the specific FPGA Altera Cyclone V GTD5.
The main issue that will be discussed is how to address the parameters after pruning as
found in section 9.1.2, i.e. how to make sure we only perform perform computations using
the remaining parameters.

As was already found in section 9.1.2 we need to store both the parameters and their
respective address in the original un-pruned network. For this reason we will first present
the two types of embedded memory available in the Altera Cyclone V GTD5: Memory 10K
(M10K) and Memory Logic Array Block (MLAB).

The Altera Cyclone V GTD5 contains 446 M10K memory blocks, each of which can store 10
Kb of data and are ideal for larger memory arrays. Additionally it contains and 679 MLAB.
These are optimised for the implementation of shift registers allowing for fast data transfer
and are therefore useful in a variety of DSP applications and thus also useful for storing
parameters of the network in this work. Each of these contains 640 bits of memory. Thus the
combined memory of the Altera Cyclone V GTD5 is:

• 4,460 Kb M10K memory

• 424 Kb MLAB memory

For the fastest possible data transfer it is desired to use the MLAB as much as possible.

In table 9.10 was found the model sizes for both the pruned and the non-pruned network at
different levels of quantisation. The majority of the cases considered are larger than 424 bits
and can thus not fit inside the MLAB. In this case it is necessary to either pick a larger FPGA
or resort to using the M10K memory instead which contains more than enough memory.

10.3 Conclusion on research question 3

The previous 3 chapters have focused on answering research question 3:

• How can we reduce the computational cost of the VAD in a real time application while
maintaining performance?

In chapter 8 was discussed different methods for optimising the network on a high abstraction
level. More specifically, these methods have been pruning and quantisation. Both of these
methods have been based on recent up-to-date academic publications. Only one approach
to pruning was investigated, while two different approaches to quantisation was discussed.

87



10.3. Conclusion on research question 3 Aalborg University

Pruning was achieved through an iterative process where parameters were pruned and
the remaining parameters retrained in turns. When pruning parameters from a network
the parameters can no longer be stored contiguous in memory and applied to the right
convolutions with no further addressing. For this reason two approaches for storing the
address of the parameters have been discussed. Quantisation was discussed as a naive
approach where the entire network operate on the same bit width, as well as an approach
aiming to maximise the SQNR while minimising the network size.

Following this introduction to the methods, in chapter 9 these methods have been applied
to the network of this work presented in fig. 6.3. As this has been a natural extension from
research question 1 and 2, the model includes adversarial multi-task learning and has been
tested at both a large and a low algorithmic delay. It was found that the best performance
can be achieved using the SQNR optimised quantisation with no prior pruning for the model
with the large algorithmic delay. The model with low algorithmic delay has proven unfit for
both pruning and quantisation.

Finally in chapter 10 was investigated how the results obtained in chapter 9 can be utilised
on different hardware architectures. Both DSP and FPGA architectures have been discussed.
It was found that while a DSP allows for fast development and efficient computations of the
convolutions of the network, it is limited in terms of quantisation. The DSP investigated is
currently in use by RTX and only supports arithmetic fixed-point operations at word lengths
of 16, 24, 32 and 64 bits. From table 9.10 it is seen that the word length can be decreased
significantly lower than 16 bits while still maintaining performance. Thus in order to fully
utilise the quantisation an FPGA implementation is necessary. Using an FPGA also allows for
using the SQNR optimised approach to quantisation. An FPGA implementation is however
expected to result in higher development time.
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In this last part of the project will be an evaluation of the work done. First will be a discussion
on some of the results obtained throughout the work, whereafter some recommendations for
further implementation will be listed.

In the following section will be discussed some questions that is still left unanswered. That
includes the quality of the datasets, some important trade-offs and the approach to lowering
the algorithmic delay.

11.0.1 Datasets

In this work has been used the Aurora-2 and the TIMIT databases. Both of these follows a
characteristic structure in which the speech is always present in the middle part of the files
while the beginning and the end contains no speech. It was found that when training the
network on these individual files it was overfitting to this structure. In order to avoid this
overfitting, instead a number of files was concatenated after each other.

In the case of the Aurora-2 database around 73% of the audio is labelled as speech and the
speech segments is very short utterances of single letters and numbers. The TIMIT database
contains 85% speech and the speech segments is full sentences. Thus the two databases
both got some challenges seperating it from a real-life scenario: Aurora-2 consists of very
short utterances while TIMIT is very biased towards speech. However, TIMIT does actually
resemble a real life conversation quite good, as it contains full length sentences of different
speakers only interrupted by a short silence. The same goes for Aurora-2 even though the
utterances are of much shorter duration

In both cases a real-life scenario is resembled much better when audio files are concatenated
than when audio files are used ony by one. This real-life resemblance can be further enhanced
by only concatenating audio corrupted by the same noise type at the same SNR level.

11.0.2 Algorithmic delay vs computational complexity trade-off

Early in this work was introduced that one of the goals of this work is to find a VAD algorithm
with low latency. In order to ensure low latency two aspects are of importance. That is the
algorithmic delay and the computational overhead, i.e. the time it takes to compute. In
chapter 7 was investigated how the network is performing when the algorithmic delay is
lowered.

In chapter 9 was then investigated how the network is performing after pruning and
quantization. These experiments were carried out on both the network introducing 398
ms of algorithmic delay and the network introducing only 23 ms of algorithmic delay. It
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was found that while the large algorithmic delay network could be moderately pruned and
heavily quantized and still perform well, the network with low algorithmic delay was very
sensitive to both pruning and quantization. In fact the performance was so heavily degraded
that it was worse than randomly guessing.

Because of this it seems that we can not have both low algorithmic delay and low
computational complexity at the same time. Therefore, this trade-off is dependent on the
scenario and hardware platform in which the VAD is to be used.

11.0.3 Other approaches to reducing algorithmic delay

In chapter 7 was investigated the performance under different algorithmic delays. In this
work it was assumed that the past and future context was of the same size. This obviously
puts a natural constraint on how much the algorithmic delay can be lowered, but also limits
the total context on which the VAD decision has to be made. Therefore we will shortly list
other potential approaches that can possibly lead to an even lower algorithmic delay or even
better performance at similar algorithmic delays. Due to the limited time frame of the project
these have not been thoroughly investigated, and it is therefore not known if they are actually
better approaches.

• Instead of considering the middle frame as the frame to be labelled, instead this frame
can be shifted forward in time. This way the past context will be larger than the future
context and thus the VAD decision can be made on a larger foundation of samples
without increasing the algorithmic delay.

• When lowering the algorithmic delay a shorter timespan of audio is considered. A
potential way of increasing performance is to introduce a "hold-time" after detecting
speech. This will reduce the flickering of the VAD labels and reduce the sensitivity to
short breaks in the speech.

11.1 Recommendations - from academia to industry

This work has mainly been an academic investigation of a deep learning based VAD which is
potentially to be applied in an industrial context. Therefore some recommendations on how
to take this from an academic project to an industrial implementation will be listed below:

• The vast majority of operations included in the forward step is MACs. Thus an
architecture that is optimised for these operations - like a DSP - is desired.

• Even though pruning the network has proved useful for reducing the memory
requirement, this removes the potential for storing parameters contiguously in memory
and introduces the need for more advanced methods for retriving parameters from
memory.

• As the network contains ≈93,000 parameters this is the minimum memory requirement.
It has not been investigated how much memory is needed to store the intermediate
values of the network, thus the actual memory requirement is higher.

• For a fully optimised implementation of the network an FPGA or ASIC platform is
necessary. However this also comes at a cost of a higher development time, so in many
cases a DSP implementation will be sufficient.
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• If an FPGA or ASIC approach is taken it can be beneficial to treat the VAD as a system
of its own. Then when speech is detected an interrupt or similar can be sent to the
system to which it is attached (for example noise cancelling), and thereby reducing
power consumption by not running the rest of the system when not necessary

• It is important to include many different noise types in the training set, as the
performance of the VAD is proven to be better when presented to known noise types.

• The lower the algorithmic delay, the lower is the VAD performance. It may be beneficial
to investigate for further optimisations on this aspect before an implementation is
considered.

• The network contains a lot of inherent parallellism that has not been investigated in
this work. Before an implementation this will have to be investigated for further
optimisation.
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This thesis has been on VAD with focus on a potential real-time implementation in mind.
To limit the scope of the project to match the time-frame, three research questions were
formulated early which has then been the starting point of this work.

1. Can we potentially increase the noise-robustness of a VAD without increasing its computational
cost and latency to the execution-time?

2. How will it affect the performance of the VAD if we allow it to use less future samples to generate
a VAD output and thus decrease the algorithmic delay?

3. How can we reduce the computational cost of the VAD in a real time application while
maintaining performance?

The thesis has been carried out in three parts. Below will be concluded on the work done in
these three parts separately

Part 1

In part 1 the scope of the project, RTX’ interests and the three research questions around which
the work revolved was introduced. As the research questions aim to further investigate and
improve the performance of a VAD algorithm under different conditions, it was decided to
use an already existing method as a framework for this work. As framework was chosen
a method proposed in [2] which has proven state-of-the-art performance on the Aurora-2
database. This method resorts to a FCN which essentially is a deep neural network that
consists only of convolutional layers and activation functions. In order to understand this
method in depth, some relevant theory on convolutional neural networks was presented in
chapter 2.

In the paper where the method was originally published, only a few design choices were
presented. Therefore it was up to the author of this thesis to decide on a series of design
choices. Among these are which optimiser to use, the learning rate, the number of training
epochs etc. These choices were made based on the theory presented in chapter 2 and can be
seen in the beginning of chapter 3.

Having settled on some design choices, the last work in part 1 of the project was to set up a
simulation environment implementing the network of [2]. As no source code was available
this had to be built from scratch. The approach towards building this simulation environment
is presented in chapter 3. After setting up the simulation environment the results of the
original paper was attempted reproduced. Some slight deviations between the original results
and the reproduced results was found, however as the difference was not deemed significant
it was chosen to carry on using the implementation as is.
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Part 2

Part 2 of this thesis revolved around research question 1 and 2. As part of this work was
submitted a paper to Interspeech 2022 which can be seen in chapter 4. The paper is used as
the main reporting format of part 2, however some more detailed discussions that were left
out of the paper due to lack of space are provided afterwards in this report.

The three key points of the paper are:

• By introducing adversarial multi-task learning to the network training the performance
can be increased without introducing any cost in run-time. (Research question 1)

• When reducing the algorithmic delay of the network the performance of the VAD is
decreased, however not significantly. It was possible to reduce the algorithmic delay
from 398 ms to 23 ms with approximately 7% degradation in terms of AUC. (Research
question 2)

Training and testing has been done on both the Aurora-2 and the TIMIT databases. It was
found that the method is prone to overfitting on both databases due to the characteristic
structure of the files and the large filter sizes of the network. Therefore it was chosen to
concatenate files such that the network was learning characteristics of speech instead of the
structure of the files. Here it was found that the performance can be further increased by
concatenating only files of similar noise type and SNR level.

Part 3

The last part of this work focused on research question 3. Whereas the first two parts have
been considering the network on an algorithmic level without considering an implementation,
this third part changes the scope of the work and consider exactly this aspect. In
chapter 8 is introduced some methods that can potentially be useful in terms of a real-time
implementation on a device with only limited memory and computational power. The two
concepts considered are pruning and quantization. Pruning is the process of reducing the
number of parameters in the network while still maintaining performance - thus leading
to lower memory requirements. Quantization is the process of converting to fixed-point
representation and lowering the number of bits used to represent numbers. Both of these
concepts are based on up-to-date papers proposing methods which have proven efficient on
other neural networks.

In chapter 9 these methods are applied on top of the networks resulting from part 2. Both the
network with an algorithmic of 398 ms and 23 ms are considered. Following the simulations,
in chapter 10 is discussed if these methods are feasible optimisations before implementation
on a DSP and an FPGA. In chapter 10 it is found that in order to fully utilise the optimisations
presented in chapter 8 a customizable architecture like FPGA or ASIC is needed

Summary

Shortly summarised, the three research questions can be answered by:

1. By introducing adversarial multi-task learning under training, the performance of the
VAD can be improved. Especially under noisy conditions.
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2. The algorithmic delay of the network can be reduced by lowering the filter sizes.
Especially those of the DB. When decreasing these filter sizes the VAD performance
is decreased as well. It has been found that the algorithmic delay can be lowered from
398 to 23 ms while only degrading the performance by 7% in terms of AUC

3. The computational cost can be lowered by pruning the network and quantizing the
parameters and feature maps to fixed-point representations of smaller bit widths.
This however gives rise to discussions on how to align the data in memory, which
architecture to implement the network on etc.

12.1 Further work

Further works on this project will include additional considerations on lowering the latency
while maintaining performance. In particular it is of interest to investigate further alternative
approaches towards reducing the algorithmic delay as also shortly covered in the discussion
in chapter 11. The computational overhead that is also an important part of the latency has
not been covered deeply in this work. Therefore to get a deeper understanding of the exact
latency introduced by the network it is of interest to investigate this further.
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TIMIT dataset A
This section aims to describe the approach of adding noise to the TIMIT data set

A.0.1 Structure of train set and test set

The goal is to artificially add noise to clean speech from the TIMIT database.

A.0.2 Training set

The training set of TIMIT consist of 4620 spoken sentences. In the training set, each file are
used only once. There are 6 different noise types, and it is desired to train it on SNR levels of:

• -5 dB

• 0 dB

• 5 dB

• 10 dB

• 15 dB

• 20 dB

Additionally, 1
7th of the files will be without noise. Thus each unique noise type and SNR level

will be used for 4620
6·7 ≈ 110 files. All of these files are placed in the same directory, allowing

for multi condition training:

Training set

4620 unique files. Equally distributed between the 7 noise types and 6 SNR levels

In the training set, each file is corrupted with a unique part of the noise file, such that no
noise is seen more than once each epoch.

A.0.3 Test set and validation set

The test set contains 1680 spoken sentences. These will be split into a test set and a valid-
ation set using a 2

3 and 1
3 split. Thus 1120 files are used for test and 540 for validation. In

both sets all files are used for each SNR level. The SNR levels are similar to those in the
training set. Thus the files will be distributed equally between the 6 noise types. Thus each
unique noise type and SNR level will be used for 1080

7 ≈ 160 files for test and 80 for validation.
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These files are placed in different directories as shown below, to allow for easy testing under
different conditions:

Test set

SNR -5 dB.

str

186 files

bus

186 files

ssn

186 files

ped

186 files

bbl

186 files

car

186 files

The validation set has a similar structure with 80 files per folder instead of 160.

A.1 Approach for adding noise to the TIMIT dataset

A.1.1 Ensuring correct SNR

To ensure the noisy files end up having the desired SNR levels, the approach used is as
follows:

To calculate the SNR of the files, the following equation is used:

SNRdB = 20 · log10
speechRMS

noiseRMS
(A.1)

Where the RMS is calculated as:

xRMS =

√√√√ 1
N

N

∑
n=1
|xn|2 (A.2)

However in order to ensure that the SNR represents only the speech active region of the files,
only the parts which contains speech are used. Thus omitting the silent regions in the end
and the beginning of the files. The audio files are labelled using the .WRD files, in which it is
described what words are spoken at what time.
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For finding the desired RMS of the noise signal, the following equation is used:

20 · log10
speechRMS

y · noiseRMS
= SNRdB (A.3)

This is solved for y, where y is the scalar needed to multiply the noise signal to achieve the
desired SNR level:

noisescaled = noise · y (A.4)

Finally, the noise is simply added to the speech signal and the noisy signal is obtained:

speechnoisy = speech + noisescaled (A.5)

Additionally, when generating the noisy files the SNR level has been verified using the snr
function in matlab.
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