
Dynamic Malware Analysis through a
Custom Network Topology

supervised by Marios Anagnostopoulos and Jens Myrup Pedersen

Adil Khurshid, Omar Nabil Hawwash

Department of Electronic Systems, CYBER6, 2022-06

Master’s Thesis

S
T

U

D
E

N
T R E P O R T

Preface

Adil Khurshid
akhurs20@student.aau.dk

Omar Nabil Hawwash
ohawwa20@student.aau.dk

Copyright © Aalborg University 2021

i

Department of Electronic Systems
Fredrik Bajers Vej 7B

DK-9220 Aalborg
https://www.es.aau.dk/

Title:
Dynamic Malware Analysis through a
Custom Network Topology

Theme:
Master thesis

Project Period:
Fall semester 2021 - Spring semester
2022

Project Group:
Group 908

Participant(s):
Adil Khurshid
Omar Nabil Hawwash

Supervisor(s):
Marios Anagnostopoulos
Jens Myrup Pedersen

Copies: 0

Page Numbers: 106

Date of Completion:
May 30, 2022

Abstract:

The project aims to create a virtual
platform for the dynamic analysis of
malware samples through sandboxing.
For this purpose, a virtual network
topology is created with EVE-NG, a
network emulation application, while
within the network a sandbox machine
is installed. Furthermore, a num-
ber of virtual machines with different
levels of hardening with anti-evasion
techniques have been set up and are
dynamically infected with malware.
In addition, honeypots running sev-
eral services, such as FTP and sev-
eral web services, have been installed.
This topology is configurable, mean-
ing that the network architecture and
the virtual machines and services can
be modified. This setup allows the
researchers to monitor the behavior
of the malware and capture its net-
work activity in a controlled environ-
ment. The preliminary results show
that when a malware infects a machine
with a higher level of hardening, it
has more active behavior and triggers
more detection signatures.

The content of this report is freely available, but publication (with reference) may only be pursued due to

https://www.es.aau.dk/

agreement with the author.

Preface iv

Reading Guide

This chapter aims to reach a common understanding of various phrases the group
often will utilize throughout this report. Concretely a definition of key phrases
used can be found below:

• "VM" → Virtual Machine

• "Sandbox" → A containerized environment, often used for malware analysis
in a technical context

• "Cuckoo" → The Cuckoo sandboxing platform

• "GUI" → A graphical user interface

• "CAPE" → The CAPE sandboxing platform

• "SHADE" → The SHADE sandboxing platform

• "EVE-NG" → The network emulation platform used for the foundation of this
project called EVE-NG

• "VMWare" → A virtualization platform suite, which houses VMWare Player
and VMWare WorkStation, with the latter having been used for this project

• "Hardened"→ The Windows 7 virtual machine in which system artefacts have
been removed to better hide the fact that it indeed is a virtual machine. This
machine has network access, but no internet access.

• "Weak" → The Windows 7 machine in which system artefacts have been left
untouched. This machine has network access, but no internet access.

• "Blind" → The Windows 7 machine in which system artefacts have been left
untouched. This machine has no network access nor internet access, hence
the name being "Blind".

• "Re-image/re-imaging"→ The process of restoring the Windows machines to
a previously captured state, using an image. This is used to restore Windows
to a usable and uninfected state after running a malware sample.

• "FOG" → The imaging server used to re-image the virtual machines used for
this project

• "OVF" → Open Virtualization Format

Preface v

• "VMDK" → The disk files for virtual machines created using VirtualBox, an
open source virtualization platform

• "QEMU" → A type 1 hypervisor virtualization platform

• "NAT" → Network Address Translation - a network type

• "QCOW2" → The file format for hard disks used by QEMU/KVM

• "Crawlers"→ This is a term commonly used in the cyber security community
to refer to software traversing through IP addresses or websites, whether for
legitimate or nefarious purposes. Google’s web crawlers which run through
websites to check their legitimacy and metadata are one example. IP crawlers
that traverse through IP addresses on the World Wide Web to check for vul-
nerabilities, are another, such as Shodan.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope . 2

1.3 Contributions . 3

2 Preliminary Analysis 4

2.1 Introduction . 4

2.2 Malware explained . 4

2.2.1 Background . 4

2.2.2 Types of malware . 5

2.2.3 Real-life examples . 6

2.3 Static and dynamic analysis . 7

2.4 Automatic and manual . 8

2.5 Overview of sandboxing and its hypervisors 9

2.5.1 Hypervisors . 9

2.5.2 Sandboxing tools . 11

2.6 Summary . 13

vi

Contents vii

3 Dynamic Analysis Evasion Techniques 15

3.1 Introduction . 15

3.2 Related work . 15

3.3 Advantages and drawbacks . 16

3.4 Dynamic manual analysis evasion techniques 16

3.4.1 Probing for system artefacts . 17

3.4.2 Search for breakpoints . 17

3.4.3 Analyzing the Process Environment Block 18

3.5 Dynamic automatic analysis evasion techniques 18

3.5.1 Hardware-based fingerprinting 18

3.5.2 Application- and position-based fingerprinting 18

3.5.3 Network-setup-based fingerprinting 19

3.5.4 Other techniques used to evade sandboxes 19

3.6 Summary . 19

4 The Tools, Requirements and Process 20

4.1 Introduction . 20

4.2 Motives behind the selected tools . 20

4.3 The requirements . 24

4.3.1 Virtual network connection types 25

4.3.2 The chosen network connection type 26

4.4 The process . 26

4.4.1 The network infrastructure . 28

4.5 Summary . 28

Contents viii

5 Architecture 29

5.1 Introduction . 29

5.2 Setting up . 29

5.2.1 Setting up VMWare Workstation Pro 16 30

5.2.2 The requirements for EVE-NG 30

5.3 The tools and their role . 31

5.4 The Topology . 32

5.4.1 The physical machines . 34

5.5 Summary . 40

6 System Testing and Malware Analysis 41

6.1 Introduction . 41

6.2 Finding and sorting malware . 41

6.3 The hypothesis . 42

6.4 The results . 43

6.5 Analyzing the results . 45

6.6 Confirming the hypothesis . 48

6.7 Summary . 48

7 Project outlook 49

7.1 Getting FOG to work, integrating it and Cuckoo into the network
topology . 50

7.2 Certain things being more time consuming than initially expected . 51

7.3 Inconsistencies in the VM’s behavior and matched Cuckoo signatures 51

7.4 Cuckoo not allowing memory dumps for physical machines 52

Contents ix

7.5 Re-imaging being very time consuming 52

7.6 Acquiring the binary files for Al-Khaser 53

7.7 The lack of simulated network traffic via INetSim 53

8 Conclusion 55

8.1 Future directions . 57

8.2 Contributions . 58

Bibliography 59

A Thesis contract 68

A.1 The workflow and communication . 69

B Technical setup 70

B.1 EVE-NG VM Setup and Settings . 70

B.2 Import and usage of disk images in EVE-NG 73

B.2.1 Uploading the disk images . 74

B.2.2 Convert the VMware disk image to a QEMU disk image . . . 75

B.3 Building and configuring the topology 77

B.4 Cuckoo Sandbox Setup . 84

B.4.1 Setting up the FOG project . 87

B.4.2 The physical machines . 89

B.5 Capture an image at FOG . 95

B.5.1 Registering the machine at FOG 96

B.6 Dionaea - Setting up a Honeypot . 100

Contents x

C List of malware binaries 104

D Malware reports and source code 106

Chapter 1

Introduction

1.1 Motivation

Cyber security is an ever-growing field, and has seen rapid growth since the Inter-
net was first introduced in 1995. Back then, 16 million people used the internet [1]
- now that same number has risen to an astounding 5,168 million [2]. And as the
user base and online assets continue to increase, rewards for adversaries become
more easily obtainable. This project aspires and aims to help cyber security pro-
fessionals and defendants to further strengthen the security of assets and prevent,
as well as inform of, potential threats and intrusion attempts.

To help combat cyber security adversaries and further study the behavior of mal-
ware, so-called “sandboxes” have been introduced. Sandboxes allow for malware
analysts and cyber security researchers to simulate the behavior of a real user
system, and infect it with malware. Through this, behavioral analysis can be con-
ducted, in order to see how the malware would behave, which techniques a mal-
ware makes use of, and this can be used for forensic research or as part of a longer
fortification process of, say, a system, against a certain type of malware [3].

Unfortunately, however, malware authors have become increasingly aware of the
existence and patterns of these sandboxes, and thus deploy certain sandbox eva-
sion techniques to avoid the malware running in artificial environments. This is
achieved by checking certain system information and artefacts, the usage patterns
on the system, installed applications, and so forth. That is the point, we find
ourselves in: there is a constant battle between malware adversaries and cyber se-
curity professionals as they continue to analyze each other’s arsenal and change

1

1.2. Scope 2

their own accordingly.

This master thesis aims to delve into malware analysis through sandboxing. Specif-
ically, the project aims to investigate the available techniques for malware analysis
that aim to create resilient infrastructures for sandboxing environments. Based on
these findings, it will be developed a platform for sandboxing, which will facilitate
the study of malware’s behavior both local, on the devices under examination, and
on the network level. In turn, the collected evidence will contribute to intricate
knowledge in analysis, detection and enabling of malware and its behavior, with
the hope that this thesis will support the continued combat against cyber security
threats in the modern age.

This has led to the identification of several issues, and poses the following research
questions, (see section 1.2), which we will attempt to answer throughout the course
of this project.

1.2 Scope

We have defined this project’s scope has been defined, prior to the project’s initia-
tion. This has been done to help narrow down the choice of tools for the duration
of the project, as well as help us decide on which methodologies to make use of.

The project’s scope is as follows:

• Malware analysis

• Network traffic analysis

• Sandboxing of files and applications

• Sandboxing anti-evasion techniques

The following items are considered out of scope for this project:

• Memory analysis

• 64-bit systems

• Systems running macOS or cell phone operating systems

Anti-debugging techniques has been deemed within the project’s scope, although
not at a memory level nor at a very low level of abstraction.

1.3. Contributions 3

The scope is elaborated as:

• Which techniques do malware commonly use to circumvent sandboxing-
based analysis environments, and how can this be mitigated?

• How can network traffic of a malware’s propagation and execution be col-
lected for further analysis in a scalable manner?

• How can behavioral analysis on malware be done in a controlled environ-
ment while not hindering the malware’s full execution?

Problem statement:

How can a platform for sandboxing be made resilient enough to allow the study
of malware’s behavior, providing evidence for further fortification of systems and

help future research on the topic?

1.3 Contributions

The following points are considered to be the project’s contributions, from a tech-
nical standpoint:

• An implementation of a virtualized network topology in Eve-NG for malware
analysis

• Usage of FOG with Cuckoo in Eve-NG

• All instances and nodes in the topology are configurable and scalable, mean-
ing that nodes can be removed or added to the topology easily and quickly

• Multiple test machines running the same operating system, but with differ-
ent setups and different images in FOG, allowing for behavioral analysis on
malware based on its execution environment in a scalable and easily main-
tainable manner

• Two honeypots are set up on the local network, in order to see whether mal-
ware probing certain protocols served by the honeypots will be triggered

• A third instance of the Dionaea honeypot is set up facing the public inter-
net, set to acquire binaries that can be analyzed in our scalable sandboxing
environment

Chapter 2

Preliminary Analysis

2.1 Introduction

Having defined the scope, the problem statement and the research questions to
be answered throughout the course of this project in chapter 1, this chapter will
deal with the preliminary analysis. This includes outlining the background of the
project, malware as a concept and at a more technical level, the different levels of
analysis that will be relevant for this project, as well as sandboxing and hypervisors
in general.

2.2 Malware explained

2.2.1 Background

When speaking about malware, it is important to consider the different types of
malware that exists, and how they spread. This forms part of the preliminary
analysis for delving deeper into the initial parts of the project.

Interestingly enough, as cyberspace has grown over the years, a rise in the amount
of malware is evident. In 2012, 99.17 million malicious programs were recorded,
whereas that number has risen exponentially to an astounding 1292.90 million
programs as of November 9, 2021 [4]. This calls for more attention from the side
of the cyber security specialists, defendants and researchers. However, given the
transparency in the methods used by the people within cyber security looking to

4

2.2. Malware explained 5

improve defense against malware as part of the educational process, the assailants
can tweak their arsenal accordingly. This, in turn, makes it increasingly harder to
further fortify already existing systems to an extent of certain security, which also
is part of the reason why the expression “you are never 100 percent secure” has
become such a big part of the cyber security community [5].

2.2.2 Types of malware

Arguably the biggest hurdle or challenge when dealing with malware and viruses
is the fact that so many different types exist [6]. Following, some are outlined in
further detail [6].

• Ransomware - a type of malware that encrypts data to hold it for ransom

• Adware - a type of malware that generates income by showing ads to the
users on the infected machines

• Keylogger - malware that logs keystrokes on the infected machine and sends
them back to the malware developers, can be used for compromization of
user accounts

• Trojan - malware that disguises itself within a seemingly legitimate applica-
tion

• Botnet - malware that enslaves a machine into part of a botnet, where the
command-and-control center / botmaster can execute remote commands [7].
These can be used for mining or other nefarious purposes.

The category a malware falls into, depends on the classification and distinction be-
tween the types of malware, which at times can be a subjective assessment based
on the program’s behavior or pattern of movement. The most tricky part of this
is that some malware can be placed into multiple categories as, for instance, could
serve ads (Adware) while collecting keystrokes from the user’s input device (Key-
logger). Another type of malware can be a program that retrieves certain info
and leaks it to the internet as part of making a statement; this has been seen with
regards to hacktivism and skilled civilians fighting against their governments.

2.2. Malware explained 6

2.2.3 Real-life examples

In this section, specific real-life examples will be brought to light, to help further
the understanding of the potential consequences of attacks. This section will also
highlight the methods adversaries have successfully utilized in the past.

The attack on SolarWinds

An example of a well-crafted malware is the malware behind the Sunburst attack,
also known as the SolarWinds. One of the things to note about this specific attack is
that the malware is hard to put into a single box. In analytical terms, it falls under
the “rootkit” umbrella, since it allowed the adversaries a backdoor into the in-
fected devices once they had infected the supply chain, thus distributing malicious
firmware they intended to be infected [8]. They, however, had been monitoring
e-mails from the NTIA and Treasury staff for months as the attack was going on
[9], which falls under Spyware. As far as the code goes, a quick run-down can be
found below, as one of the group members investigated the source code for the
malware once the attack had been dealt with by the United States authorities and
code had become publicly available.

The malicious code was injected into a DLL (dynamic library) file that would be
run through Sunburst’ standard procedure [8]. It would be initialized through
other functions as to not raise suspicion. The code was written in a way that made
it blend in with the rest of the platform code - no obfuscation was done, as the
adversaries wanted their code to blend in as well as possible with the already
existing code.

The code was extremely dormant and patient, clearly crafted by someone skilled
and someone who had done a lot of reconnaissance (see: cyber kill chain [10])
beforehand. Parts of the code consisted partly of if statements without else clauses;
the code would check if hashes matched certain files and then proceed. If the files
did not match the sought after hash, the code would simply do nothing, and thus
avoid detection.

The WannaCry ransomware

The WannaCry ransomware is one of the more well-known examples of malware
within the cyber security community. It spread as a worm, and it was made by
the hacker group called The Shadow Brokers, who a year prior to the attack had

2.3. Static and dynamic analysis 7

found a weakness in Microsoft Windows and made a hack known as EternalBlue
available to the public.

Two months prior to the attack, Microsoft released a patch to protect users against
these systems, but since some companies and users had not updated their operat-
ing systems at that time, they were left exposed to this attack — and that helped
it spread through EternalBlue [11], a Windows Server-Message-Block vulnerability
exploiter created by the NSA [12].

WannaCry essentially would encrypt users’ data and request a certain amount of
money to be paid through Bitcoin, which was a popular cryptocurrency at the
time. The user data would remain encrypted until the amount of money was paid,
the amount initially being 300 U.S. Dollars worth of Bitcoin, then rising to 600 U.S.
Dollars if the user had not paid the requested price after a certain amount of time.

F-Secure claim that some users got their data back after the attack, although the
decryption code has, by others, been claimed to be faulty and thus not able to asso-
ciate the victim’s computers with the payments. This would mean that users would
pay, but not get their data back [13]. In any case, the WannaCry attack served as an
example for cyber security professionals, general users, and companies, as malware
continues to increase in volume, as previously mentioned. Interestingly enough,
North Korea were blamed for the attack by several countries, including the United
States of America [14].

2.3 Static and dynamic analysis

With malware having been explained in section 2.2, the question it poses would be
how malware is analyzed. When talking about malware analysis, there are several
methodologies and techniques to do so. The ones mentioned in this chapter will be
static and dynamic analysis, and automated and manual analysis. This section will deal
with static and dynamic analysis, while the next section will deal with automatic
and manual analysis.

Static analysis, in brief, is the inspection of code without executing the code. There
are tools that allow analysts to automate this process to some extent, although
it also can be done manually. Static analysis can be done manually, by simply
inspecting the code, its method calls, variables, libraries it asks for, and so on.
However, this can also be achieved with the help of tools, both open-source and
closed-source for personal or enterprise use [15].

Dynamic analysis is inspecting the code on run-time. Here, system or API calls

2.4. Automatic and manual 8

can be analyzed, network traffic and enquiries the software makes can be put
under scrutiny and this can be used to deduce a verdict: say, whether a program
is malicious or intended for nefarious purposes [16].

Dynamic analysis can be done manually, using tools like WireShark to monitor
network traffic while the program is running, or a debugger [17]. Automated tools
for automated dynamic analysis include sandboxing, which will be explained in
section 2.5, but also websites such as VirusTotal.com where a binary file, URL or
IP address can be submitted by the user and consequently automatically scanned
for malicious patterns or behavior, returning a full report of the scan and its con-
tents. Honeypots are also tools that can be used for malware behavior, although
honeypots are the first step of malware analysis: catching the malware. Honeypots
are decoy systems that present themselves as real systems to lure attackers into
attacking them [18]. The resulting malware binaries or system changes are then
used by analysts to further analyze the malware which, depending on the type of
malware, can be done in different ways as explained in this chapter.

2.4 Automatic and manual

Having spoken about static and dynamic analysis techniques, two types of analysis
should also be emphasized: automatic and manual.

In brief, automatic malware analysis is the usage of tools to analyze malware with
minimal user input. Sandboxing is an example of this [19].

Manual malware analysis, on the other hand, is where previous experiences or
knowledge by the human analysts come into place. This includes techniques such
as reverse engineering, where the user attempts to recreate the malware in question
to gain a better understanding of its inner workings, by inspecting the source code
manually. This process is also known as reverse engineering [20].

Another manual technique is debugging, where code is run in chunks; this is a
technique through which the analyst would be able to insert so-called breakpoints,
at which the code will stop running. This is done through the use of debuggers,
which allow testing or examination of code or another program [17]. This method
allows for more intricate insight into the inner workings of malware with regards to
input and output, albeit requiring a significant amount of manual labor compared
to some automated solutions.

Given the project’s scope and problem statement set forth by us, automatic dy-
namic analysis was the chosen methodology for this project. Subsequently, sand-

2.5. Overview of sandboxing and its hypervisors 9

boxing was chosen as the baseline, since it allows us to reach its objective men-
tioned in the problem statement, and can, if done in a proper manner, allow for
customization to the extent of satisfying our needs completely.

The section below will therefore discuss an automatic dynamic analysis method-
ology known as sandboxing, the different tools thereof, and which tools the group
ultimately chose to use.

2.5 Overview of sandboxing and its hypervisors

Having now looked into different types of viruses and their methods of propa-
gation, it should become increasingly clear why the cyber defense continues to
strengthen its arsenal, and why focus on defending assets continues to grow.

However, there are multiple ways of doing this: the arguably most popular method
is called sandboxing, as mentioned in chapter 1. Sandboxing essentially allows
for a virtualized, contained environment, in which malware can be run and its
behavior analyzed. This has proven to be an excellent strategy [21] for analyzing
how an attack exactly is conducted, or how a malware propagated, as well as
making analysis on certain types of malware to better fortify existing systems and
infrastructures.

However, before diving into the different sandboxing tools readily available, it is
vital to gain a brief understanding of hypervisors, of which there are two types.

2.5.1 Hypervisors

When talking about hypervisors, there is a distinction between type 1 and type 2
hypervisors. Type 2 hypervisors will be discussed first.

Type 2 hypervisors distinguish themselves from type 1 hypervisors by deploying
software that acts as a middle-man between the host operating system and the
guest machine’s operating system. This is depicted in figure 2.1 [22]. If the user
of a hypervisor would like to virtualize a Windows 10 machine, the resources on
the host computer would be provided to the guest in proxy [23]. For instance,
the graphics card would not be directly provided to the guest machine; instead, it
would request a portion of the graphics card through the Virtual Machine Monitor,
retaining the physical graphics card in possession of the host’s OS. The same goes
for CPU cores, RAM allocation and PCI/PCIe devices that are emulated on the
guest machine as if it was a physical one [23]. Examples of these hypervisors

2.5. Overview of sandboxing and its hypervisors 10

include VMWare [24] and Oracle VirtualBox [25], with both having free editions
for non-commercial use.

Figure 2.1: The difference between type 1 and type 2 hypervisors, visualized [22].

Type 1 hypervisors on the other hand, are also referred to as bare-bone or bare-
metal hypervisors [23]. In the case of virtualizing a Windows 10 machine with, say,
a single graphics card unit, as well as a single CPU, it would work the following
way:

• For the GPU, for a graphically intense setup using Citrix’ hypervisor, for
instance, it would be allocated to the virtual machine. This is called a GPU
pass-through [26]. However, contrary to the case of type 2 hypervisors, the
graphics card unit would not be emulated, but the physical card itself is
assigned to the virtual machine. If the host machine only has one graphics
card unit, the guest machine would receive a so-called pass-through of said
graphics card, and in usual cases only release it back to the host machine
upon shutdown of the virtual machine. The host machine would however,
based on our experience, still be accessible albeit headlessly through SSH or
similar remote access protocols.

• For the CPU, virtualization works similarly in both cases, although more
efficiently in the case of type 1 hypervisors [23] since the hypervisor com-
municates between the hardware and guest directly — see fig. 2.1 — rather
than through the host operating system which otherwise could pose some
virtualization limitations.

• As far as PCI/PCIe devices go, the process will differ from hypervisor to
hypervisor. However, generally speaking, type 1 hypervisors give virtually

2.5. Overview of sandboxing and its hypervisors 11

unhindered access to the devices whereas virtualization software for type 2
hypervisors may pose obstacles with certain hardware [27]

Both types have drawbacks and advantages, and the use case scenario defines
whether type 1 or type 2 hypervisors are needed. For sandboxing, the virtualized
system will depend on the needs. For this project, a Windows 7 machine running
separately will be needed virtualized; this is needed so traffic can be monitored to
and from the machine in isolation so the most accurate results can be acquired and
conveyed in this report. In terms of virtualizing this machine, type 1 hypervisors,
given our experience, require a lot of overhead, whereas type 2 hypervisors for
the most part are plug-and-play. Given our needs and time constraints, a type
2 hypervisor will be used for deployment of the Windows 7 machine. Namely,
VMWare Player will be used for this purpose.

With that in mind, sandboxing tools shall be discussed below before the group
decides on which to use for this project.

2.5.2 Sandboxing tools

There are different types of sandboxing tools, both cloud-based and ones that can
be run locally. Different tools provide different capabilities and certain limitations:
for instance some locally-run sandboxing tools are free to use, whereas cloud-
based ones would require a certain fee [28], perhaps even a recurring one, as to be
compensated for the price for upkeep, maintenance of the space and consumption
of resources in the cloud, and so on.

Below is a brief list of the sandboxing tools that have been considered for this
project:

• SHADE Sandbox (local)

• Cuckoo (local)

• CAPE (local and cloud)

SHADE Sandbox is a sandboxing tool that caters towards an average user, who
cares about security, more-so than focusing on experiments. It works for pre-
existing applications on the host machine and allows for said applications to run
in a containerized environment by locally virtualizing applications and locking
internet files and potential malware [29].

2.5. Overview of sandboxing and its hypervisors 12

It allows for creation of reports with the findings from running a certain application
provided by the user, and is deemed “a lightweight protection layer” with its ease
of access being a big selling point. SHADE also has enterprise support against
what it views as general company-wide threats, and even offers compatibility with
other vendors and product customization [30].

Cuckoo Sandbox is an extremely versatile sandboxing platform, and despite its lat-
est version, at the time of writing being version 2.0.7, being from back in 2019 [31],
it still holds up well, given our previous experiences with the platform. Cuckoo
operates locally on the user’s computer, but could also be deployed in a system on
the cloud [32]. One of Cuckoo’s trades is allowing different types of input to run
in an encapsulated environment. Cuckoo can handle executable and binary files,
documents, PDF files, e-mails, and URLs [33]; with URLs, it even opens up the
browser automatically in the virtual machine, and attempts to actively instrument
it [34].

Cuckoo also allows freedom in terms of setting up a virtual machine in the desired
environment for the user. The options preferred by Cuckoo is VirtualBox, although
it also allows physical machines; through some virtualization, it would be possible
to create a virtual machine and have it behave as a physical machine, thus using
Cuckoo that way. It also allows for other virtualization environments, such as
VMWare, and claims to support most options on the market natively [35].

Cuckoo also automatically generates reports while analyzing and running the mal-
ware on the virtual machine provided by the user. This allows for easier under-
standing of the malware’s ongoings and behavior, and theoretically would function
well on a larger scale as a middle-man for malware behavior analysis and evasion
technique analysis. It is able to analyze network traffic even when encrypted via
SSL, and supports rerouting or dropping certain traffic packets and network traffic
rules natively. It is also able to analyze memory usage of malware through either
YARA [36] or Volatility [37], if configured to do so [31].

Compared to SHADE, Cuckoo works with files rather than applications, thus giv-
ing more options to its users. For instance, an executable can be run within Cuckoo,
and, usually, within minutes, Cuckoo will create a report of all the recorded activ-
ity for the file [31]. If scaled, this theoretically would allow to be a baseline for
trial-error probing with artefacts with efforts which hide the fact that it indeed is
a sandbox, and seeing how those changes affects the malicious binaries. This, in
essence, is the idea of the project from a more technical standpoint, and resulted
in Cuckoo being the chosen tool for sandboxing.

CAPE is an independently made open source extension of Cuckoo, published by

2.6. Summary 13

Kevin O’Reilly [38]. It aims to add automated malware unpacking and extraction
of configuration details to a Cuckoo platform, and a community version publicly
and freely available exists. The community version is only an online version of
the platform with limitations, as opposed to the so-called premium version which
operates on a locally installed hypervisor; CAPE itself suggests using KVM for
guest machine virtualization.

It mainly works through its debugger, which was built on the notion that instruction-
level control was necessary for achieving its goal. The debugger aims to be efficient
by maximizing use of processor hardware and minimizing the use of Windows’
default debugging interfaces. It operates at a granular level, with hardware break-
points set using API calls or YARA signatures. It uses the latter to detect unpacked
payloads. [39]

CAPE essentially operates at the memory level, making it quite unique in how it
achieves its goal. CAPE also includes tools to help combat anti-evasion malware;
this type of malware will not run if it detects that it is in a virtualized environment.
CAPE comes ready with tools that combat this dynamically, and takes advantage
of malware techniques to be able to capture unpacked payloads [39]. The afore-
mentioned tools all have advantage as well as drawbacks when the group selected
their tool to go forward with and base the platform on.

Ultimately, in order to have as much control and freedom as possible, Cuckoo
was chosen. SHADE works with applications rather than files, and while certain
malware does hide itself in programs, it certainly would narrow the scope of the
project. CAPE offered a good starting point from a theoretical point in terms of
helping the group shape up the project from a technical standpoint, and will be
used for comparison in chapter 6.

The idea, with which the group will go forward, is that the platform for this project
is based on Cuckoo. CAPE will serve as a kind of benchmark for dynamic malware
analysis and anti-evasion techniques, and will be compared to our platform once
fully deployed. It also will be used for inspiration in terms of finding the right
tools to add on top of Cuckoo.

2.6 Summary

This chapter gave an insight into malware as a concept, the different types of mal-
ware and provided two of the most notorious examples of malware, briefly men-
tioning the aftermath thereof. The chapter then delved deeper into the different
types of malware analysis, and the techniques considered by us. Then, techniques

2.6. Summary 14

to combat malware were discussed, and the options we would have going forward
were presented. Ultimately, we deemed Cuckoo the most fitting sandboxing plat-
form for the baseline of this project. With that in mind, the system and toolbox to
be built for this project are presented in the coming chapters.

Chapter 3

Dynamic Analysis Evasion Techniques

3.1 Introduction

Having established malware, sandboxing and the different types of analysis that
can be used to analyze malware, this chapter will deal with dynamic analysis
evasion techniques. This is a focal point for the project, since malware alters its
behavior based on the environment it finds itself in. In order to better understand
how to use that knowledge to the defender’s advantage, it is vital to understand
which techniques there have been used over time. This chapter aims to clarify that,
as well as outline the techniques in detail.

3.2 Related work

Malware is a topic that has been covered extensively in many reports and surveys.
When discussing malware, debugging is a topic often mentioned.

In this regard, Sikorski and Honig [17] discuss the hands-on aspect of dissecting
malware and working with debuggers. Moreover, Tyler Shields [40] discusses anti-
debugging from a developer’s point of view, in order to provide more insight into
anti-debugging techniques which can be employed by malware looking to avoid
detection.

Sandboxing is based around the idea of testing and observing malware or mali-
cious files in a contained, safe environment. Of newer surveys, namely in 2019, [19]
by Afianian et al. can be mentioned, and its findings will be a grand inspiration

15

3.3. Advantages and drawbacks 16

for the duration of this project.

Yoshioka et al. [41] discuss the impact of injecting decoys with regards to sandbox
evasion. Additionally, Blackthorne et al. [42] discuss how malware behaves while
in an emulated environment and techniques malware uses to combat such envi-
ronments. Moreover, [43] presents and compares the usage of anti-debugging and
anti-VM techniques across different malware families.

In terms of major inspiration behind the motive of this project, [44] by Muhovic
can be mentioned. The research done in that project inspired us to extend on parts
of it, while using other parts of said thesis as an inspiration and for building a
foundation of knowledge ahead of this thesis.

3.3 Advantages and drawbacks

The complexity of malware nowadays means that some go beyond normal source
code, but instead obfuscate it [19] to plant confusion on the analysts’ end. This es-
sentially renders that aspect of manual analysis useless. Although dynamic anal-
ysis relies on the malware executing its payload on run-time, it does have some
advantages over static manual analysis that have been deemed worthwhile for the
scope of this project. For instance, source code, such as the one used in SolarWinds
section 2.2, could lay dormant, and thus dynamic manual analysis of the code it-
self would not suffice in laying the landscape for the program’s functionality, in
actuality. However, manual analysis, when compared to automatic analysis, could
be more time-consuming depending on the task at hand.

These are just some of the challenges presented by the two types of evasion tech-
niques, and thus both will be explained and discussed in this chapter.

3.4 Dynamic manual analysis evasion techniques

Starting off with dynamic manual analysis evasion techniques, these techniques
would mostly target debuggers. In a sample size of 6,222 malware samples, 40
percent of malware run in the presence of a debugger albeit not in a virtual-
ized environment would exhibit less malicious behavior [45]. Malware combat-
ing dynamic manual analysis will mostly deploy anti-debugger or anti-reverse-
engineering techniques; the former can be done by using the debuggers’ own tech-
niques, e.g., trap flags or single stepping, against them, while the latter can be done
through obfuscation of the code or by introducing excessive complexity [45].

3.4. Dynamic manual analysis evasion techniques 17

Following, some techniques used for evasion of dynamic manual analysis will be
explained. It is worth noting that anti-debugging techniques and anti-VM tech-
niques are not necessarily more prevalent in targeted malware compared to generic
malware, which could lead to unexpected results [43].

To start off with, fingerprinting techniques, mentioned below, will be explained in
brief detail:

• Probing for system artefacts

• Search for breakpoints

• Analyzing Process Environment Block

3.4.1 Probing for system artefacts

One of the common methods for fingerprinting is probing for system artefacts,
since virtualization software is known to leave traces that expose the fact that the
system at hand is virtualized. In fact, there are multiple examples of malware fin-
gerprinting virtualized systems [46], checking for the isDebuggerPresent flag among
other flags. Other malware would simply look for a flag for a specific type of de-
bugger, namely the process file, and see if it was running. Examples of this are [40]
and [47]. In the example of [48], the malware would be more sophisticated; when
running a virtualized environment, programs’ parent processes would belong to,
say, a debugger, instead of the Windows Explorer process (explorer.exe. Malware
would check if the parent process matched the name of a known debugger as a
fingerprinting technique, and act accordingly.

3.4.2 Search for breakpoints

When debugging, debuggers will at times set breakpoints, so code can be analyzed
a couple of lines at a time. These breakpoints can be done in two ways: the hard-
ware way or the software way. In the former’s case, the breakpoint address could
be saved into the CPU’s register [19], and this can be read by malware [49] operat-
ing at a low abstraction level, such as the direct memory of the machine if running
with escalated privileges. In terms of software breakpoints, some debuggers write
a special INT3 instruction operation code called 0xCC [19], which would expose
it to malware iterating through flags in the system [50] [51]. Breakpoint searching
was in 2019 the second-most ’popular’ anti-debugging technique used by malware
[19] [48].

3.5. Dynamic automatic analysis evasion techniques 18

3.4.3 Analyzing the Process Environment Block

Another rather low-level anti-debugging technique is analyzing the Process Envi-
ronment Block, colloquially dubbed the PEB, being a per-process data structure in
the user system. The PEB will in debugged systems have the flag ’BeingDebugged’
[52], which malware can read to determine whether it is running in a debugged
system, and thus alter its behavior.

3.5 Dynamic automatic analysis evasion techniques

For automated analysis environments, malware also use fingerprinting techniques,
although for sandboxes and honeypots rather than debuggers. There are multiple
parts of a system, which can be fingerprinted. The whitepaper [19] classifies these
into several types.

The categories for fingerprinting, which will be dealt with in this section, are:

• Hardware-based fingerprinting

• Application- and position-based fingerprinting

• Network-setup-based fingerprinting

3.5.1 Hardware-based fingerprinting

It makes use of the emulated devices plugged in to the system, and depending
on the virtual machine at hand, this can be quite easy to fingerprint [53]. For
popular virtual machine hypervisors, artefacts pertaining to said manufacturer will
by default exist in the system, such as "VMToolsHook.dll" [19] and devices such as
the VMXNET driver [54] in the case of VMWare.

3.5.2 Application- and position-based fingerprinting

This fingerprinting technique is similar to that of system artefact probing for de-
buggers. Since applications tend to leave behind traces in, say, the registry keys
or simply on the disc, malware can detect this [55]. For sandboxes altering data
residing in the lower abstraction level such as the memory or kernel, the hooks

3.6. Summary 19

linking control between the host and guest operating systems can be found and
abused by malware [56].

3.5.3 Network-setup-based fingerprinting

It is done based on probing from the malware’s side. Malware has been proven
to probe the network by checking for fixed IP addresses usually used by certain
sandboxing platforms [41]. These IP addresses can at times be achieved through
reconnaissance work carried off before this part of an attack. Other giveaways
from the network setup’s side when malware is investigating could be the lack of
an internet connection [42] or unrealistically fast speeds. The latter is usually the
case for host to guest connections or host-only connections within hypervisors.

3.5.4 Other techniques used to evade sandboxes

As previously mentioned in section 2.2, certain malware operates in a dormant
way. In a more technical sense, malware authors with that in mind are aware of
the fact that sandboxes allocate a certain amount of time for analysis per sample
[19]. Among the techniques used are stalling, in which malware halts its execution
until after the analysis phase is over, thus evading the sandbox analysis and still
infecting its target [57]. Other techniques include triggers based on certain facts,
such as the system time and date [58], the title of a certain app appearing in a
window, or other keyword triggers that will activate the malware in question [59].

3.6 Summary

This chapter began by outlining the work related to this project, and define part of
the literature that would be used for the duration of it. The chapter then went on
to discuss advantages and drawbacks for both types of analysis, namely manual
and automatic, before delving deep into dynamic manual analysis and automatic
analysis evasion techniques. Lastly, the chapter outlined other techniques that
historically have been used to evade sandboxes. Having decided on Cuckoo, as
mentioned in chapter 2, the next chapters will deal with defining the system used
for this project as well as implementing Cuckoo and the relevant tools.

Chapter 4

The Tools, Requirements and Pro-
cess

4.1 Introduction

This chapter will lay out the main points of the thought process behind the system
specifications, as well as the design thereof. The chapter will begin by outlining
the tools deemed useful for the project, the usage of said tools and what they aim
to achieve with regards to the scope and vision of the project. How they relate to
each other will also be mentioned in this chapter, and this chapter is considered
the first part of the project’s platform implementation. The technical aspects of the
implementation have been explained more in depth in appendix B.

4.2 Motives behind the selected tools

For the project, as previously mentioned, virtualization is the key, see section 2.2.
For purposes of preference, it was decided to use VMWare WorkStation Pro 16 and
Eve-NG, which will host and handle the emulated corporate network tools and
systems that pertain to the topology.

The guest machines, which Cuckoo will run malware samples on, will all be run-
ning genuine 32-bit versions of Windows 7 Ultimate. The Ultimate edition was
chosen as it allows for granular control with regards to permissions and superuser
control [60]. This is done to ensure that no differences in architecture or installation
can be a cause behind differing results when testing malware.

20

4.2. Motives behind the selected tools 21

Before delving deeper into the system’s design and specifications, it is essential to
understand what Eve-NG is, its function as well as the other tools made use of in
this project.

EVE-NG is an emulated virtual environment for IT professionals with different
backgrounds in the field of IT such as networking, security, DevOps, and NetDe-
vOps. It allows security and network professionals to demonstrate a virtual proof
of concept [61] with regards to, amongst other things, network setups and infras-
tructure. It provides a platform for “images” of other operating systems to both
inter-communicate and be run and controlled through it, and has a plethora of
compatible systems and software: from Cisco and Juniper products to Linux and
Windows images.

Two versions of Eve-NG currently exist: the free-to-use ’Community’ edition, and
the premium option, i.e., the ’Professional’ edition. Eve-NG can be installed either
as a separate instance on a virtual machine, or bare-bone on a machine in the
cloud, and thus allows for some flexibility with regards to its application. Despite
the limitations within this choice, we opted for the Community edition of Eve-NG.

Eve-NG was also compared to other network emulation tools, such as GNS3 and
VIRL from Cisco. First and foremost, GNS3 and VIRL have limitations and depen-
dencies that are not present in VMWare, and VMWare would therefore in theory
have less hurdles related to its setup process within the emulated corporate net-
work we aimed to build. Moreover, there were differences in how the platforms
operate [62], and we were already well acquainted with EVE-NG.

We have previous experience with EVE-NG compared to the two other aforemen-
tioned tools, meaning there would be less of a learning curve with the former.
Moreover, EVE-NG, in a virtualized environment, cannot run on VirtualBox [63].
Thus, VMWare seemed a more logical decision.

Docker was considered an option when looking into alternatives to VMWare from
a virtualization standpoint. In fact, one of our formal acquaintances had been
working in parallel with a Docker-based solution for sandboxing, and had yielded
successful results. Furthermore, using EVE-NG with Docker would require the
Professional version of EVE-NG. This alongside multiple other factors meant that
we discarded Docker for virtualizing the Cuckoo host and guest machines.

QEMU, a type 1 hypervisor [64], was opted for, alongside VMWare. This was
due to VMWare’s ease of use, as well as QEMU’s native integration with Eve-NG.
QEMU has been specifically chosen seeing as Eve-NG was the chosen topology
emulator, and Eve-NG’s community edition only allowed for QEMU images to be
used. This eliminated the idea of using Docker, which was a Professional feature,

4.2. Motives behind the selected tools 22

and seeing as the QEMU-img utility allowed easy conversion from VMWare image
files to QEMU. Another option would have been to use nested virtualization, if we
wanted to use VMWare or VirtualBox, in the machine hosting Eve-NG. However,
this meant less granular control in terms of artefacts as well as performance drop
issues, and QEMU was favored in this regard.

We would create the machines in VMWare originally, then convert these to QEMU
images, import them into the topology and run them using QEMU instances linked
to EVE-NG. This is the case for the Weak and Blind Windows 7 instances. The
Hardened machine was created strictly in QEMU.

Firstly, we do not want a headless setup for the sandboxing-relevant machines,
as granular control is easier on a scalable setup if the GUI for those machines is
present. Second, EVE-NG functions uses QEMU images for its machines; using
Docker would have meant finding a workaround to that, with VMWare instead
readily available. Most of the documentation for EVE-NG and Cuckoo is based on
more traditional virtualization software such as VMWare and VirtualBox, and we
did not feel a need to create further hurdles with regards to the setup.

One of the main goals of this thesis is to make a product that is resilient and scales
well; this can be achieved through Docker too, but due to VMWare’s popularity in
terms of potential troubleshooting forums meant that we opted for a combination
of VMWare and QEMU.

With that in mind, the next step in the process would be to build a resilient malware
analysis platform, as mentioned in 2. We, with regards to the platform, decided
to use the Cuckoo sandboxing platform. However, seeing as Cuckoo expects some
kind of virtualization and, in our case, should be implemented in the network
infrastructure, we needed a cloning or imaging server. This would be needed for
storing the images of the Cuckoo host and guest machines. For this purpose, the
FOG imaging server was used [65].

FOG is a free open source imaging server, known as the FOG Project. It helps
in taking imaging of different operating systems. The FOG project binds together
various open source tools, such as a PHP-based web interface for managing im-
ages and host machines. It does not boot the machine from the hard disk itself,
but through the WOL (Wake-On-LAN) protocol using PXE (Pre-boot Execution
Environment), with the help of TFTP (Trivial File Transfer Protocol) [65]. The boot
process and use of PXE will be covered in chapter 5.

The FOG project was also compared to other open source cloning or imaging
servers for instance CloneZilla, and Deepfreeze. However, we opted for FOG,
since it is the preferred and tested server for Cuckoo, according to Cuckoo’s own

4.2. Motives behind the selected tools 23

documentation [66].

Furthermore, the QEMU disk image utility was used to convert the *.vmdk disk
to a *.qcow2 disk. The QEMU disk image utility is a utility allowing for cre-
ation, management and conversion of image file formats, offline and in a QEMU-
supported format. Since Eve-NG uses QEMU-based images, the utility was needed
in order to provide the platform with images of an appropriate file format. [67].

Additionally, WinSCP, an open source file transfer tool was made use of. WinSCP
is commonly used for transferring files or documents from a local machine to
a remote machine; in this case, it allowed us to transfer files from the physical
host machine to the virtual machine running Eve-NG. WinSCP supports different
protocols, including the Secure File Transfer Protocol (SFTP) [68], which was used
in this case.

Given that the envisaged setup is one with a network topology, a central point of
communication is needed. For this, we have opted for a layer-3 switch through a
Cisco IOS image. This has been chosen due to our previous positive experiences
and knowledge of the inner workings of Cisco routers.

Another tool that will be made use of is Dionaea, a low-interaction honeypot that
captures binary files of malware targeting certain protocols enabled in Dionaea
[69] [70]. This tool will be deployed both locally in our network topology, and on
a machine hosted on the cloud by DigitalOcean, a cloud machine hosting service
[71].

The reason behind this, is that we wish to investigate whether malware that trig-
gers protocols hosted by Dionaea will be captured by the Dionaea machine in the
topology. Certain malware has been chosen with this in mind. This machine will
be put in the same network segment, also known as VLANs, as the Windows ma-
chines. Whether this machine captures malware binaries from infected machines
in the topology will be elaborated on and investigated in the upcoming chapters.

The machine hosted on the cloud will be facing public internet, contrary to the
machine in our internal topology. The idea behind this is that the public-facing
machine should capture binaries that trigger certain protocols in Dionaea, and
these will then be tested in our topology to see whether this yields the same result
if the Dionaea machine is not facing the Internet. The WannaCry ransomware is
known to target the SMB protocol [11], and this is one that is expected to target the
internal Dionaea machine.

We will also make use of WireShark, in order to monitor network traffic while
the malware is running. Cuckoo, however, as part of its reporting, also creates a

4.3. The requirements 24

network traffic dump in form of a *.PCAP file, readable in WireShark. We will look
into whether these two line up to determine the usability of said *.PCAP file. The
information provided by said network dump will also be available in the reports,
which can be found in appendix D.

4.3 The requirements

For Eve-NG to run properly, many resources are required. For now, Eve-NG is
set-up on a computer. Eve-NG is set up on VMWare Workstation Pro 16, hence-
forth referred to as VMWare, as a virtual machine, where it has been allocated 32
gigabytes of RAM, 12 CPU cores, as well as 3 virtual hard drives with the sizes 50
gigabytes, 100 gigabytes and 300 gigabytes, respectively.

VMWare itself is running on a Microsoft Windows 10-based machine with 64 gi-
gabytes of RAM and 3 SATA-hard drives with 500 gigabytes each, alongside a 1
terabyte solid state drive.

In summary, the following tools will be used for this thesis:

• VMWare WorkStation Pro 16 and QEMU

• The EVE-NG network emulator

• WinSCP for transferring the image files to EVE-NG

• Linux-distro, Ubuntu, on the Cuckoo and FOG host machine

• The Cuckoo sandboxing platform

• FOG imaging server

• Windows 7 on the Cuckoo guest machines

• A CISCO Layer-3 switch image, set up on EVE-NG

• YARA

• TCPDump

The following tools will be used for artefact modification of the Hardened machine,
which will be explained in chapter 5.

• Pafish (Paranoid Fish, virtual environment detection tool [72])

4.3. The requirements 25

• Al-Khaser v0.81 (deploys techniques used by malware to determine whether
it is in a sandboxing or monitored environment) [73]

• SEMS (Anti-Sandbox and Anti-Virtual Machine Tool) [74]

We will elaborate on how the last five tools will be used in the context of this
project, and what they achieve, in chapter 5. For more technical details as far as
their set up goes, see appendix B.

4.3.1 Virtual network connection types

Before explaining the process, it is essential to understand the virtual connection
types, which a VMWare Workstation uses in order to communicate the nodes
with each other and with the internet, depending on the end user requirements.
For these virtual connections the basic principle for communication is the same
whether they are virtual or physical. There are three network connection modes
when setting up a virtual NIC (Network Interface Card) for a virtual machine [75].

Bridged connection or VMnet0 In the bridged connection mode, a VM connects
to the physical network directly through the host’s physical NIC. The host NIC
is the bridge to all the virtual machines, similarly to the host machine and other
physical machines on the network. Virtual machines obtain their IP address from
the DHCP server on the physical network. When connected using the bridged
connection mode, a virtual machine appears as just another node on the physical
network. Thus, all the computers, virtual or physical all get their IP addresses
allocated from the host’s NIC. Therefore, the virtual machines on the network are
accessible and directly connected to each other [76].

NAT (Network Address Translation) or VMnet8 The next connection mode that
will be explained is Network Address Translation, colloquially referred to as NAT.
In this mode, the virtual machine relies on the host to work as a NAT device.
With NAT mode, a virtual DHCP server is responsible for assigning the IP ad-
dresses to the virtual machines, creating a sub-net separated from the physical
network. Other physical machines get their IP address from the physical DHCP
server, which acts as an external network. The host NIC acts as a NAT device
between these two networks, it translates the IP address from the virtual machines
to the IP address of the host, to reach the internet from the virtual machine. It
also listens to the returning traffic for the virtual machine. It is mainly useful in a
scenario, where the client virtual machine would access the internet [77].

Host-only Connection or VMnet1 The last and third connection type is a host-

4.4. The process 26

only connection. In this mode, the virtual machines are assigned IP addresses by
the virtual DHCP server. The virtual machines can communicate with each other
on the network but cannot communicate beyond or outside of the network. This
connection is useful when wanting to set up an isolated virtual private network
for doing analysis of malware, or experimenting with something that should not
spread across the network [78].

4.3.2 The chosen network connection type

Initially, we decided to use the host-only connection as it provides an isolated
private network for malware analysis, However it would not allow the EVE-NG
virtual machine to communicate with the internet, and also the node within the
topology on the EVE-NG virtual machine.

Therefore, the NAT connection type was preferred as it provides a separate sub-net
from the host network and enables the virtual machine to communicate with the
internet for installing dependencies.

The sub-net used for NAT connection mode is 192.168.45.0/24, and the static IP
address used to access the web interface of the EVE-NG is 192.168.45.128 and the
gateway address is 192.168.45.1/24.

The inter-connectivity between the nodes on the internal network used for testing,
as depicted in 4.1, is handled and created through a sub-net on EVE-NG itself.

4.4 The process

We installed the community edition of the EVE-NG operating system, which comes
pre-packaged with extensions and features catered to integration in VMWare [79].
Once this was imported and installed on VMWare, we proceeded to import images
of the systems needed to build the emulated corporate network, as can be seen in
figure 4.1.

The network, hence the figure, will contain a Cuckoo sandboxing host machine
as well as a guest machine; the host machine will be running Ubuntu, whereas
the guest machines will be a virtual machines running Windows 7. The reason
why these are run separately and the Windows 7 machines are not virtualized
within Cuckoo is that this setup provides separation of network traffic in the logs.
This allows a clearer read-out when we analyze potentially malicious traffic among
nodes on the emulated corporate network.

4.4. The process 27

Figure 4.1: The network topology for the project.

It also is worth noting that Cuckoo and FOG run on the same Ubuntu-based ma-
chine, as denoted in fig. 4.1. FOG is used to restore the Windows 7 machines on
which malware is run and tested, to a clean slate after each analysis is conducted.
EVE-NG is complemented by its Windows integration pack, allowing for the topol-
ogy to function fully with the Windows guest machines.

The technical side of preparing the images for EVE-NG, functions like so, using
VMWare, QEMU-img and WinSCP. The following example regards the Windows
7 machine, although the process was repeated for the Ubuntu machine running
Cuckoo and FOG. For more details, see appendix B:

• The image is acquired in the form of an *.ISO file

• The ISO image is installed on a virtual machine on VMWare

• Once the image is installed, a *.VMDK (virtual hard disk) file is retrieved
through VMWare

• This file is then converted to the *.QCOW2 format using the QEMU-img
utility.

• WinSCP is used to upload the newly converted files to Eve-NG’s platform.

• The machine running said image will now be manageable through Eve-NG

The conversion and uploading processes will be described in further detail in ap-
pendix B.

4.5. Summary 28

4.4.1 The network infrastructure

The network infrastructure has been built with two VLANs configured: VLAN 10
and VLAN 20. This allows for network segregation and mitigates the potential risk
of malware spreading across devices on the network; this way they, for the most
part, would only be able to spread to devices on the same VLAN. They would
only be able to cut across VLANs if the layer 3 switch is configured to do so. In
this architecture, the switch is not configured to allow that, seeing as we believe
an easier solution would be to simply allocate the machines in question the same
VLAN.

The switch is in place to handle DHCP configuration for the subnets; it sets IP
addresses with the following ranges excluded from the DHCP assignment. This
was done to leave a buffer for more static devices, i.e. the layer-3 switch and the
Ubuntu machine running Cuckoo and FOG. DHCP options number 66 and 67
have been set manually by us in order to allow for PXE or Wake-On-LAN booting.
This allows Eve-NG to function as a manager of sorts, making nodes manageable
through the platform itself.

• 192.168.10.100 to 192.168.10.110 for nodes on VLAN 10

• 192.168.20.1 to 192.168.20.101 for nodes on VLAN 20

WireShark [80] is used to capture the network traffic packets and keep an eye on
the traffic going back and forth between the different network nodes. This will also
be used to analyze network behavior for the virtual machine that will be used for
testing and analyzing the malware binaries.

4.5 Summary

This chapter covered the groundwork for the upcoming Architecture chapter. In
detail, the chapter presented tools deemed useful in helping us achieve our goals
set forth with this thesis. The tools’ place in the project, why they took precedence,
and which role they would assume was then explained in brief detail. Lastly, the
chapter covered converting the operating system images to a format usable by
EVE-NG, as well as the technical aspect of the network infrastructure that pertains
to the project.

Chapter 5

Architecture

5.1 Introduction

This chapter aims to further explain how the concepts and tools explained in chap-
ter 4 were introduced from a technical standpoint to the project. The chapter will
begin by laying the foundation for the implementation itself, describing the tools
needed in a concise way. Then, it will delve deeper in how exactly each tool was
implemented. In this chapter, the sandboxing environment including the relevant
tools are set up, with the entire process explained in detail. The chapter also at-
tempts to demonstrate how the problem statement in chapter 1 has been initially
formulated from a technical standpoint.

5.2 Setting up

To start with the chapter of architecture and implementation, initially, a foundation
on which the malware analysis platform could be built was needed. Dynamic mal-
ware analysis through sandboxing required virtualization to some extent, in which
the malware could run as if it was deployed in a real environment, as described in
section 2.5.

The previous chapter, which describes a brief overview of system requirements,
tools and why they were selected, acts partially as the foundation for the rest of
this chapter. This chapter digs deeper into the technical implementation of these
tools. In the following subsection, the technical setup of the following tools will be
described, with their context briefly reiterated to ensure a more coherent reading

29

5.2. Setting up 30

experience:

• VMWare Workstation Pro 16

• EVE-NG community Edition

• Cuckoo Sandbox

• FOG Imaging Server

5.2.1 Setting up VMWare Workstation Pro 16

Setting up VMWare Workstation Pro 16 Windows 10 is fairly straightforward. The
installation guide can be found in [24].

5.2.2 The requirements for EVE-NG

EVE-NG comes in OVF (The Open Virtualization Format), which is an open stan-
dard for packaging and distributing virtual appliances and ISO files. It can be
deployed or installed on different virtualization platforms and software, and the
chosen platform to install EVE-NG on was VMWare.

Furthermore, the recommended hardware requirements for EVE-NG are as follows
[63]:

• CPU: Intel CPU supporting Intel(R) VT-x/EPT virtualization

• Operating System: Windows 10 or a Linux desktop distribution

• VMWare Workstation, version 12.5 or later

The full recommended requirement sheet can be seen in table 5.1.

CPU
8/1 (Number of processors/Number of cores per processor)
Enabled Intel VT-x/EPT virtualization engine

RAM 24 GB or more
HDD Space 200 GB or more
Network VMware NAT or Bridged network adapter

Table 5.1: Requirements for the virtual machine setup running EVE-NG

5.3. The tools and their role 31

5.3 The tools and their role

With the above requirements, the PC will be able to run a small to medium topol-
ogy, though the performance and quality of the topology depends on the number
of nodes deployed. Images for the nodes in the topology are also needed. EVE-
NG provides some of the images, although the project requires custom images in
such a way that they are configured fully, with regards to the problem statement
at hand. These images are obtained from different sources and are elaborated on
in detail in appendix B.

VMWare is used to initially set up the virtual machines. Seeing as it offers VMWare
Tools and thus a more fluent user experience when setting up the machines, it
ensures a more time-efficient setup of the topology’s machines.

Cuckoo is used as the sandboxing platform itself, handling the malware behavior
analysis side of the process. Cuckoo communicates with the machines, runs the
binaries in question, then generates a report based on the malware’s behavior on
runtime. Cuckoo then communicates with FOG to ensure proper reboot of the
machine.

As part of installing Cuckoo, various tools have been downloaded and installed,
for instance:

• YARA for Malware identification and classifications

• Volatility for forensic analysis on memory dumps

• MongoDB used by cuckoo for database management

• TCPDump, the network packet analysis module used for the network dump
files referenced by the reports generated by Cuckoo [81].

Cuckoo, when it analyzes malware, maps them up to signatures provided and
maintained by its community [66]. It analyzes the malware’s behavior and the
generated report provides information as to how many signatures matched the
behavior shown by the malware during the sample run [31].

YARA complements Cuckoo very well [36], by having rules that are based on a
continuously expanding large database of malware samples’ signatures and behav-
ioral patterns [82] that can be matched based on a binary file’s behavior. This has
been deemed very important to the project, as there may be malware that Cuckoo
signatures will match but YARA rules will fail to recognize, and vice versa. This is
something we have noticed in some sample runs conducted post-installation.

5.4. The Topology 32

Furthermore, Volatility, which is Cuckoo’s memory dump module, has been dis-
carded for this project, as Cuckoo does not have memory dump support for phys-
ical machines [37]. This decision, and its subsequent drawbacks, will be addressed
in chapter 7.

FOG itself handles the imaging of the virtual machines. FOG allows to capture
a live image of the Windows machines with the desired configurations, and then
revert the machines to the captured states after the binaries are run. This happens
through Cuckoo, which tells FOG when the malware analysis is over. Cuckoo
will request the machine to reboot, and once rebooted, FOG will handle the re-
installation of the pre-captured image through the PXE network boot described
previously in chapter 4.

Dionaea has been set up, as mentioned in chapter 4, in order to allow us to:

• a) Acquire more recent binary files

• b) Test these malware files in the internal topology

• c) For the local Dionaea instance: see whether the other machines will probe
the machine and fall into the honeypot trap

• d) For the public facing machine: see a difference in Dionaea’s efficiency
when it is in an internal network with no internet access compared to it
being publicly facing the Internet thereby making it visible to crawlers that
traverse the web for vulnerable machines

Dionaea has been hosted on two machines running Ubuntu 18.04 in exactly the
same manner both locally and on the cloud instance hosted on DigitalOcean’s
servers. Two machines host Dionaea, one in VLAN 10, with the other machines,
and one in VLAN 20.

5.4 The Topology

In order for the project to be representative of malware’s behaviors in different
environments, we have opted to install multiple machines onto the topology.

The topology can be seen below, in fig. 5.1 with each node signifying a machine.

5.4. The Topology 33

Figure 5.1: The network topology for the project.

• In the aforementioned figure, the green color, seen on the left and right,
represents VLAN10, which is named Cuckoo

• The red box, shown on the right, represents VLAN20, named Dionaea.

• These two VLANs are then connected by the Cisco switch, which acts as the
default gateway for both the VLANs. This can be seen in the center of the
topology.

• The blue area, on the right, in the topology signifies nodes isolated from the
rest of the network, in this case Win7-Blind

• The Cuckoo-FOG machine is a Linux-based machine running Ubuntu 18.04,
and hosting EVE-NG and the FOG server. This machine is also connected to
the Internet-NAT interface, in order to provide internet access, as we needed
it for the installation of different dependencies.

• The three Windows machines which are referred to as physical machines are
all running a 32-bit genuine copy of Windows 7 Ultimate.

• Windows 7-Hardened is a machine that has had system artefacts removed
to masquerade its status as a virtual machine in an analytical environment.
How this is specifically implemented can be seen in appendix B. This machine
has access to the internal network, but not to the Internet.

• Windows 7-Weak is a machine that has not had system artifacts removed.
This machine has access to the internal network, but not to the Internet.

• Windows 7-Blind is an identical copy of Windows 7-Weak. However, this
machine does not have access to the internal network nor to the Internet.

5.4. The Topology 34

• The last machine in the same VLAN, VLAN10, is an Ubuntu 18.04-based
machine running Dionaea.

• In a separate VLAN, a Dionaea instance has been placed.

This has been done to ensure scalability in the project, seeing as machines easily
can be added to a different VLAN and thereby segregated. This is the case for a
Dionaea instance identical to the one in VLAN10, in VLAN20. This has been added
merely to test whether malware would cross VLANs if not configured to do so on
the layer-3-switch. If desired, it would also be possible to enable VLAN crossing
on the L3 switch itself, although we have deemed this redundant, as previously
mentioned. Instead, we opted for including all machines, barring the one Dionaea
instance, in the same VLAN.

5.4.1 The physical machines

This section describes the configuration of the three Windows 7 VMs as depicted
in fig. 4.1. In our case, we will configure them in an emulated corporate network
infrastructure, and we will also use the term physical machines [83] to refer to
these three machines going forward.

The following changes are made to all of the three machines. These changes are
are required by the Cuckoo host machine in order to communicate with them [84].

• Python : Allows the agent to run and collect data from the physical machine

• Pillow (Python Imaging Library) : This adds capability to the python to take
snapshots, and is used to take snapshots from the physical machine desktop.

• Cuckoo Agent - older version : Allows the VM to send data back and forth
to the Cuckoo host machine. We used the older version of the Cuckoo agent,
because only this version works with physical machine. The agent file is a
Python script, which should be executed upon startup. This ensures that the
Cuckoo host machine can communicate with the guest.

• Enable auto-logon (Allows for Cuckoo the agent to start upon reboot)

• Enable Remote RPC (Allows for Cuckoo to reboot the sandbox using RPC).

5.4. The Topology 35

Physical machine: Win7-Weak

The Win7-Weak machine is left with the default aforementioned configuration, the
default gateway, and the DNS are set to the switch IP instead of the host machine
IP address, allowing it to send traffic to the network.

Physical machine: Win7-Blind

The Win7-Blind machine has also the aforementioned configuration. However, to
isolate it from the network the following configuration was added to the switch
in order to make it communicate only with the host machine, without having any
interaction with the network. This is achieved through the VLAN Access Control
List and VLAN access map by configuring them in the switch’s global configura-
tion mode. This will make Win7-blind to see only the Cuckoo host machine and
not other machines on the network [85]. Additionally, the default gateway and the
DNS for the machine are set to the host machine IP.

Pafish is a tool that detects the virtual machine or malware analysis environments
with different techniques that malware usually uses to see them. Pafish can be
downloaded from here [72]. The process of installing them on the hardened ma-
chine and removing the artefacts from the machine is straightforward [44]. Addi-
tionally, we could not remove all the artefacts from the machine since every tool
looked for different artefacts for a virtual machine, and some of them were not
possible to be mitigated.

However, fig. 5.2 will depict the results of Pafish before and after the mitigation of
the found artefacts.

5.4. The Topology 36

Figure 5.2: Pafish detecting artefacts before mitigation

In the aforementioned figure, we can see that Pafish has detected all the artefacts
on hardened machine using different techniques described in chapter 3. fig. 5.3
will now show the results after mitigating these artefacts.

5.4. The Topology 37

Figure 5.3: Pafish detecting artefacts after mitigation

Al-Khaser v0.81 is another tool and a proof of concept, which probes the system
in order to see if the system can be flagged as a sandboxing environment or not.
The source code and the artifacts it looks for can be found on [73].

This tool uses several malware techniques, which are used by malware found in
the wild to detect whether a malware is running in the virtual environment [73],
such as anti-debugging, emulation and sandbox detection, and anti-virtualization.
However, among all the detection types, the ones deemed noteworthy for this
project are anti-VM detection and anti-sandboxing detection. Since this tool pro-
duces a very large report and thus would not be feasible to include in this report,
we will show the results relevant to the project. Furthermore, a decision was made

5.4. The Topology 38

to not remove all the artefacts Al-Khaser flagged on the machine; for instance re-
moving the fingerprinting of CPU voltage was discarded, with this among others
having been deemed out of scope.

Figure 5.4: Al-Khaser detecting artefacts before mitigation

The artefacts deemed relevant were analyzed by us and subsequently removed.
The difference shown in fig. 5.4 and fig. 5.5 is the artefacts removed. The ones
retained have been deemed out of scope.

5.4. The Topology 39

Figure 5.5: Al-Khaser detecting artefacts after mitigation

SEMS: Anti-Sandbox and Anti-Virtual Machine Tool

In order to evade analysis, modern malware authors supply anti-analysis tech-
niques to the malwares. SEMS is a tool which, much like the other aforementioned
tools, uses common malware techniques to detect if it is running in a monitored
environment [74]. In our project, since we have already mitigated most of the
artifacts, this tool is used to confirm and verify that those changes took effect.
The following, in fig. 5.6, are the results of the tool, having only detected that
the Cuckoo agent is running. However, it is not able to detect any sort of virtual
machine environment otherwise.

Figure 5.6: SEMS detecting artefacts after mitigation

Simulation of internet access is a concept that can help provide more interactive
malware analysis [86]. It is less automatic, but allows to e.g. send an executable file
to a malware expecting an executable file, and observe a potential change in behav-
ior due to this [86]. This can be achieved through INetSim, but has been deemed
out of scope for the project. This decision will be elaborated on in chapter 7.

5.5. Summary 40

5.5 Summary

The tools explained in the previous chapter were explained in technical detail in
this chapter, with regards to their setup and how they co-exist and cooperate. The
sandboxing environment as well as the machines needed to fulfill the scope and
problem statement were too described in detail.

Chapter 6

System Testing and Malware Anal-
ysis

6.1 Introduction

This chapter will cover the testing part of the project. Having established the tools
used as well as the topology for this project, the next step is to analyze the behavior
of malware in this containerized environment. This phase of the project will be
discussed in detail here, although technical details can be found in appendix B.

6.2 Finding and sorting malware

When deciding on which malware to use to make the testing part appropriately
representative, we decided on 20 malware binaries from different malware families
or groups. Ultimately, we opted for 20 different malware binaries, with a full list
provided below. Four of them will be botnets, three will be trojan horses, and four
will be a mixture of different malware families, with worms, cryptolockers and
similar. Additionally, we set up a Dionaea machine, as previously mentioned, to
capture malware binaries when attacked. Three of these have also been analyzed.
The full list of binaries can be found in appendix C.

41

6.3. The hypothesis 42

Botnet1 Conficker7
Botnet2 IRCBot5
Botnet3 Cutwail4
Botnet4 Zeus6
Trojan2 Tapaoux
Trojan4 Sality
Trojan5 Hupigon.exe
Various2 KRLocker/CrimClient
Various3 SkyWiper-A.Flame
Various8 Variant Kazi
Various10 Carberp
Dionaea1 WannaCry instance
Dionaea2 Coin miner worm
Dionaea3 WannaCry instance

The binaries are run once on each of the three respective machines, and their be-
havior is then analyzed by Cuckoo. This is then interpreted by us using a report
extractor program to extract the most important details from the JSON report gen-
erated by Cuckoo. The report extractor has been inspired by one of our colleagues,
who built the baseline of the extractor. We have since changed the code and de-
veloped the program’s functionality, allowing it to extract more data, including
information regarding YARA rules. The program’s source code can be found in
the link to the GitHub repository in appendix D.

The behavioral details are then compared. This is done by analyzing the amount
of Cuckoo signatures matching for each run of a malware sample, and the amount
of YARA signatures matched for the same run. The analysis will be in comparing
whether there is a difference when malware is run on the hardened machine, the
weak machine, or the blind machine, or whether it, in some cases, makes no dif-
ference. The analysis will also attempt to determine whether other nodes on the
network, such as the Dionaea machines, will be influenced by the sample runs.

6.3 The hypothesis

The hypothesis that this analysis will attempt to investigate is as follows:

Malware that checks for whether it is in a virtualized environment should not
execute its payload as equally if it registers itself as being part of a virtualized
environment. Malware that aims to propagate on a local network should not

6.4. The results 43

attempt to execute its payload if it receives information of it not being on a
network, and its impact on said machine should therefore be minimal or

non-existent.

In technical terms, the hypothesis states that malware checking for whether it is
in a virtualized environment should trigger on the Hardened machine more func-
tionalities than on the Weak machine, seeing as the Hardened machine has had
certain artefacts and flags removed from its configuration. Thus, malware that is
dependent on whether it is being run in a sandbox environment, should not run.
On the other side, malware that does not check for sandbox artifacts should run
equally on both the Hardened and the Weak machine. Malware that aims to prop-
agate across the local network should not run on the blind machine, seeing as it
has no access to any other devices on the network.

Moreover, it is deemed of interest to note whether any malware binaries do try to
enumerate devices on the local network at all.

6.4 The results

This section will present the results, starting with the botnets [87], then the trojans
and the malware in the ’various’ category, and ending with several binaries caught
by our Dionaea honeypot deployed, publicly facing the internet.

On tables where there are differences between the runs of the same malware sam-
ple across the three machines, the presence of a difference will be signified by
either yellow (no difference) or green (difference present). If the table has neither
of these two colors, it is because the runs yielded no difference on any of the three
machines, regardless of the malware sample run.

6.4. The results 44

Table 6.1: The Botnets

Chosen Malware Machine
Cuckoo Signatures

Matched
YARA rules

Matched
Botnet1 Hardened 18 21
Botnet1 Weak 14 21
Botnet1 Blind 2 21
Botnet2 Hardened 2 19
Botnet2 Weak 2 19
Botnet2 Blind 2 19
Botnet3 Hardened 3 9
Botnet3 Weak 3 9
Botnet3 Blind 3 9
Botnet4 Hardened 18 16
Botnet4 Weak 16 16
Botnet4 Blind 16 16

Table 6.2: Trojans and ’various’

Chosen malware Machine
Cuckoo Signatures

Matched
YARA Rules

Matched
Trojan2 Hardened 23 22
Trojan2 Weak 23 22
Trojan2 Blind 23 22
Trojan4 Hardened 1 8
Trojan4 Weak 1 8
Trojan4 Blind 1 8
Various2 Hardened 2 19
Various2 Weak 2 19
Various2 Blind 2 19
Various3 Hardened 1 25
Various3 Weak 1 25
Various3 Blind 1 25
Various8 Hardened 14 25
Various8 Weak 14 25
Various8 Blind 14 25
Various10 Hardened 18 17
Various10 Weak 18 17
Various10 Blind 18 17

6.5. Analyzing the results 45

Table 6.3: Malware caught by our Dionaea honeypot

Chosen malware Machine
Cuckoo Signatures

Matched
YARA Rules

Matched
Dionaea1 Hardened 3 0
Dionaea1 Weak 3 0
Dionaea1 Blind 3 0
Dionaea2 Hardened 4 18
Dionaea2 Weak 4 18
Dionaea2 Blind 4 18
Dionaea3 Hardened 3 0
Dionaea3 Weak 3 0
Dionaea3 Blind 3 0

6.5 Analyzing the results

For the malware samples at hand, we expected to see results indicative of the
assumption that a machine with removed artefacts would trigger more aspects of
a malicious binary file. However, with most of the samples yielding similar results
across the three machines, this assumption seems to not hold ground, at least for
these samples and this sample size.

All the samples yielded the same YARA rules triggered, independent of the ma-
chine the sample was run on. If a binary matched 21 YARA rules on the Hardened
machine, it would also match 21 on both the Weak and the Blind machine. This
also was the case for botnets, which, to us, was quite surprising.

For the first botnet sample, namely Conficker7, a difference was noted in the
Cuckoo signatures matched by the sample runs. The Hardened machine triggered
the highest amount of Cuckoo signatures, 18, which is what we expected. The
Weak machine triggered 14, while the Blind machine only triggered 2 signatures.
The signatures that were triggered by the Hardened one compared to the Weak
one were the following 4:

• Attempts to modify Explorer settings to prevent file extensions from being
displayed

• Attempts to modify Explorer settings to prevent hidden files from being dis-
played

• Attempts to modify Explorer settings to hide desktop icons

6.5. Analyzing the results 46

• Executed a process and injected code into it, probably while unpacking

Zeus6 was also one of the few samples that yielded different results on the Hard-
ened machine compared to its counterparts. Here, the signatures "Creates hid-
den or system file" and "Checks the presence of IDE (Integrated Drive Electronics)
drives in the registry, possibly for anti-virtualization" were triggered, indicating
that the hardening of the machine artefacts indeed did make a difference, as ex-
pected in the hypothesis, seeing as a system file was created alongside the check
for IDE drives.

The remaining botnet samples showed no differences in neither Cuckoo signatures
or YARA rules matched across the different machines for their respective samples.

For the Trojans and Various categories, the latter was the case across all sample
runs conducted by us.

This was also the case for all the malware samples caught by our Dionaea honey-
pot. We suspect that this is due to the samples potentially being fairly new, seeing
as the honeypot was set up in early May, which would mean less widespread bi-
naries, both in terms of YARA rules and Cuckoo signatures. This assumption is
backed up by 2 of the 3 samples yielding zero YARA rule matches and only three
signatures, which were the same regardless of the machine they were run on.

A difference also worth exploring is the difference, or lack thereof, in network traf-
fic dump files. The PCAP files have been studied closely by us, both by monitoring
the malware runs manually through WireShark and by observing the PCAP files
reported by Cuckoo. These were a 1-to-1 match, and there is no notable difference
between the two PCAP files in terms of monitoring of network traffic.

The Dionaea machines had a noticeable difference. The local machine did not
trap any malware binaries, despite WannaCry being a malware targeting the SMB
protocol, as previously mentioned. However, the Dionaea deployed on the cloud
captured three malware binaries, all of which have been tested in the internal topol-
ogy. These, too, did not yield any results in the locally deployed instance of the
honeypot. This was confirmed by us, seeing as the three malware in the very end
of the table shown in section 6.4 all triggered protocols in Dionaea on the public
machine. These were tested on all three Windows machines and nothing was cap-
tured on the local Dionaea instance in VLAN 10. We can, moreover, confirm that
no malware crossed VLANs over to the Dionaea instance on VLAN 20, either.

Two of the three binaries caught by Dionaea have through analysis proven to be
instances of the WannaCry malware, targeting the SMB protocol amongst other

6.5. Analyzing the results 47

things, as previously mentioned. The third binary is a coin miner, which is a type
of malware that uses resources for financial purposes on the adversaries’ end. In-
terestingly enough, neither of the three binaries made any contact with the outside
world through the public network. This has been confirmed both through the anal-
ysis conducted on the report and PCAP file provided by Cuckoo on the cloud in-
stance, as well as when the three files were submitted to VirusTotal, which yielded
identical results to the ones we found through its cloud instance of Dionaea.

We believe that the lack of capturing on the local machine could be due to either
malware spreading through crawlers and only then targeting Dionaea, seeing as
the setups were identical on both the local and the cloud-hosted instance of Dion-
aea. Another theory we have is that the malware, due to not enumerating the local
network, as found out by us through research conducted on the network traffic
files, does not see the Dionaea machine. This could be due to these malware bina-
ries not prioritizing local network spreading, but rather encrypting machine files,
in the case of WannaCry, or simply spreading on the public Internet rather than
locally, in the case of the coin miner worm. We believe that a larger malware sam-
ple size could provide a more conclusive result, but the group deems this theory
satisfactory and well within the scope of the project.

We believe that the lack of difference in the signatures and rules triggered across
the different machines can be due to two factors. One factor being that malware
in recent times has been focusing more on anti-debugging rather than anti-virtual-
machine techniques, as previously mentioned in chapter 2. This theory can be
backed up by the reminder of the Cuckoo agent being present on all three ma-
chines, regardless of artifacts, and Cuckoo and its sub-processes could potentially
trigger flags on a low level, which would then be caught by the anti-debugging
aspects of malware. Regardless of whether other artefacts have been removed,
Cuckoo and its sub-processes would prevail, seeing as these are independent of
the machine itself, but relate to the agent on the client/guest machine.

Moreover, as mentioned in chapter 5, Cuckoo does not natively support memory
dump usage with regards to what it considers physical machines. This could,
from our understanding, lead to Cuckoo signatures that otherwise would have
been triggered due to work in memory, not be triggered at all, and thus swings the
findings. Alternatives to Cuckoo, which for future work could help alleviate this
issue, will be mentioned in the next chapter, but using Cuckoo as part of the setup
has potentially influenced the results.

The findings are by us deemed to be representative and conclusive within the
scope of the project, given the aforementioned theories and ideas. Moreover, the
hypothesis is considered by us to be well-founded and backed by the findings

6.6. Confirming the hypothesis 48

above. In a more elaborate manner, we will break down the hypothesis’ soundness
in the following section.

6.6 Confirming the hypothesis

The hypothesis shall, to ease the explanation and assessment, be split into two
parts:

A) Malware that checks for whether it is in a virtualized environment should not
execute its payload as equally if it registers itself as being part of a virtualized
environment.

B) Malware that aims to propagate on a local network should not attempt to ex-
ecute its payload if it receives information of it not being on a network, and its
impact on said machine should therefore be minimal or non-existent

Part A is considered fulfilled. As evident by the highlighted botnet samples and
backed up by the statements in the previous section, a notable difference can be
seen in whether the malware binary registers itself as part of a virtualized environ-
ment, and alters its behavior based on this.

Part B is considered fulfilled. In the Conficker7 sample, the signatures vary from
18 on the Hardened machine, 16 on the Weak to 2 on the Blind machine, with
the latter having no network access and no internet access. The lack of network
access would be part of what hindered the execution of the botnet sample. A
similar trend can be seen in Zeus6, although not as evident. Once again, the lack
of memory dump usage by Cuckoo for physical machines could potentially have
changed the outcome of these reports, results, and thus the findings. However,
given the circumstances, this part of the hypothesis too is considered fulfilled.

Thus, the hypothesis is, by us, considered confirmed, based on the aforementioned
findings and presented theories and results.

6.7 Summary

This chapter covered the testing aspect of the project. The malware samples and
their results were presented visually, as well as respectively analyzed in deep de-
tail. The hypothesis was then reiterated and split into two parts, both of which we
consider fulfilled given the circumstances and the scope and vision set forth for the
project and thesis.

Chapter 7

Project outlook

The project, being based on the prospect of a long thesis, has been a very chal-
lenging one. The extended time frame has allowed us to experiment with different
types of potential solutions, before settling for the one deemed most suitable for
the project’s goals and scope.

The following challenges will be addressed:

• Getting FOG to work, lack of documentation

• Integration of FOG and Cuckoo into the network topology

• Certain things being more time consuming than first expected due to the
project’s uniqueness

• Inconsistencies in the VM’s behavior

• Cuckoo not allowing memory dumps for physical machines

• Re-imaging being a very time-consuming process

• Cuckoo’s inconsistency in which signatures it caught in certain runs

• Acquiring the binary files for Al-Khaser

49

7.1. Getting FOG to work, integrating it and Cuckoo into the network topology 50

7.1 Getting FOG to work, integrating it and Cuckoo into the
network topology

One of the challenges that presented itself during the course of the project, and
one that had quite grave effects with regards to the deadline, was making FOG
function in our desired topology.

FOG is a fairly new project, with its first official release on GitHub dating back
to December of 2016 [88]. What we believe this is partly due to, is the lack of
documentation, especially when it comes to integrating it with other tools, such as
Cuckoo. The documentation presented by the people behind FOG focuses on FOG
as a concept and how it can be installed [65].

This proved to be helpful in setting up FOG on its own, although its integration
with EVE-NG and Cuckoo proved to be a challenge that took much longer than
initially expected. Cuckoo’s documentation merely mentions FOG as an option for
physical machines, but does not elaborate on this. With the Cuckoo community
only having tested a certain version of FOG with a certain version of Cuckoo that
has been confirmed as working, this proved to be a challenge due to certain features
and outdated dependencies for both of FOG and Cuckoo.

Moreover, once the issues with dependencies were resolved, we had to find a way
to ensure that the Cuckoo machine, which now also housed FOG, could properly
communicate with the other nodes on the EVE-NG-managed network. This step
also took longer than expected, seeing as EVE-NG’s Community edition, despite
it offering a lot, still is quite limited in some areas, and harder to set-up than
if we had acquired the Professional edition. In hindsight, this could have helped
avoid certain bottlenecks with regards to the automation aspect of the project when
conducting malware sample runs. We would also definitely advise entities making
use of this project and setup in the future to utilize the Premium version of EVE-
NG.

With regards to EVE-NG, we, as previously mentioned, partly chose it as the net-
work emulation platform due to previous positive experience with it. This proved
to be a good choice, as it meant we needed to set aside less time to familiarize itself
with the inner workings of EVE-NG.

7.2. Certain things being more time consuming than initially expected 51

7.2 Certain things being more time consuming than initially
expected

However, due to the project’s unique combination of EVE-NG, Cuckoo running
what it believes to be physical machines, and FOG, challenges prevailed. For in-
stance, the initial idea was to simply have one Windows machine in the topology.
This proved to be rather easy, seeing as the machine should not have any limita-
tions with regards to its communication with the rest of the network.

Later in the process, however, the project’s supervision team suggested the intro-
duction of multiple machines with changes made to each, as to distinguish them
in the topology and potentially present differing results for each of the malware
samples. This in turn provided challenges with regards to limiting some of the
access the devices should have, as well as introducing VLAN’s and ensuring they
would work properly. We had to familiarize ourselves with VLAN access lists and
other VLAN concepts, which proved to be quite time consuming, seeing as the
setup for such aspects of a network differ from device to device and OS version to
OS version.

Figuring out which gateway to use for the Blind machine also proved to be a
challenge, as the two options, namely the FOG machine and the layer 3 switch,
both would work, but in different ways, before we ultimately opted for the more
logical choice: the host machine, to avoid any potential contact with the switch.

7.3 Inconsistencies in the VM’s behavior and matched Cuckoo
signatures

Once the machines were set up and confirmed to work in the topology as we
expected, another problem arose: inconsistencies in the machines’ behavior. On
certain runs, the Python agent for Cuckoo would crash on the client, prompting a
restart of the client file, or even Python as a whole on said client machine.

This would happen on what seems to be random occasions, with no apparent
explanation behind it, seeing as no difference was made by us with regards to
how the machines were booted up or how programs were loaded. We believe part
of this could be caused by Cuckoo’s communication with physical machines, with
that part of Cuckoo still being in its infancy as evident by the lack of documentation
on Cuckoo’s end [83].

7.4. Cuckoo not allowing memory dumps for physical machines 52

Contrary to Cuckoo’s work with VirtualBox, which the team behind Cuckoo sug-
gests as the primary manager for virtual machines that work with Cuckoo, memory
dumps through Volatility are not possible using Cuckoo with what it believes is
physical machines. This is something we believes has had an impact on the in-
consistencies also shown in some of the malware reports generated by Cuckoo for
certain malware binaries.

The reason why this is deemed an inconsistency rather than an error on our end
is that a binary file could have 2 matched Cuckoo signatures in one run on the
Hardened machine, then 17 on the immediately following run on the same machine
with no settings altered.

7.4 Cuckoo not allowing memory dumps for physical ma-
chines

We believe this is due to Cuckoo’s lack of memory dump support for physical
machines, as well as it being a non-’native’ way of working with Cuckoo, seeing as
it uses FOG to manage the machine’s state and images. We believe we could have
used VirtualBox had the project objectives been different, although this would not
have allowed for EVE-NG to be as good of a management tool as it has been for
us, despite its shortcomings in the Community edition. Moreover, we believe that
with scalability being one of our main objectives, the setup with FOG, Cuckoo and
EVE-NG was the right choice.

7.5 Re-imaging being very time consuming

Another issue we encountered throughout the course of the project was the re-
imaging process. This became a problem once all the tools had been set up prop-
erly and the intercommunication for the machines was set up accordingly. When
Cuckoo runs a malware binary on a machine, the report is not fully generated be-
fore the machine has been re-imaged. This takes, according to our timing, around
10-20 minutes per machine, depending on the machine and the sample run, again
due to inconsistencies in FOG and the virtual machines themselves, for reasons
seemingly outside our control, and outside the scope of this project, seeing as this
is meant to be a proof of concept.

This, unfortunately, makes the automation aspect of the project setup, thus far, less
good than what it could be. However, we believe that, with the right amount of
time dedicated into researching potential causes or alternatives to this, this part

7.6. Acquiring the binary files for Al-Khaser 53

too could be time efficient for when machines are running samples.

The workaround we have used, for now, when wanting to run a malware samples
across the three machines, is initiating a sample on machine A, waiting for the
re-imaging to start, then running it on machine B, and so forth. This has proven to
be the most time efficient way to run a malware sample across all three machines
in this current setup, and we have deemed this a satisfactory solution.

7.6 Acquiring the binary files for Al-Khaser

The last issue that will be addressed in this section, was the gathering of the binary
files for Al-Khaser, a tool used to check how hardened the Hardened machine
was, as mentioned in chapter 5. Due to Google’s Safe Browsing heuristics being
triggered by the binary files hosted on the GitHub repository [73], the files had
been removed some time ago by the author known as LordNoteworthy.

Acquiring the binary files needed to run the software took roughly two weeks, as
we initially contacted LordNoteworthy on the e-mail address they had provided
online, before settling for looking through online archives on the WayBackMachine
and forums mentioning Al-Khaser. Most only mentioned the tool or the tool’s
objectives, with the very few links to the binaries being links back to the GitHub
repository. After intensive searching, we found a re-upload by a forum user on the
GitHub repository, uploaded to MEGA, a file-sharing platform, and these binaries
were used for that part of the project.

7.7 The lack of simulated network traffic via INetSim

Simulating network traffic in general is something we have deemed a relevant topic
to this project. Instead of simulating network traffic to make malware believe it is
on a real corporate network, or using INetSim to communicate with the malware
as a spoofed command-and-control center, nodes were added to the network to
make malware believe it was in a production environment.

If we wanted to add a node for a simulated DNS server, such as what could be
achieved using INetSim, we believe it would have been best to do so on a machine
different from the one hosting Cuckoo and FOG. In our topology, this could have
been the machine hosting Dionaea.

However, this would mean that traffic would go towards the Dionaea machine de-

7.7. The lack of simulated network traffic via INetSim 54

liberately, and this would defeat the purpose of Dionaea’s inclusion in this project:
to see whether malware targeting its protocols naturally would be drawn to it or
not. Dionaea has been included to see whether malware targeting a protocol, e.g.
SMB, would go towards a machine on the local network serving a service on the
SMB protocol. Asking the malware to contact that same machine in order to use it
as a DNS server would mean deliberately showing it that machine, rather than it
probing the network on its own, which in turn would give a false indicator of the
malware’s behavior, thus making the project’s results less representative.

The reason why INetSim, or a similar service, would have to be hosted on the same
machine as Dionaea in our topology is due to resource restrictions, seeing as we
could not have resources provided by the university on a physical machine, which
was the initial idea when forming this project with the supervising team.

Chapter 8

Conclusion

The project has overall presented many challenges and setbacks due to its unique-
ness. The project’s main goal and problem statement was the following:

How can a platform for sandboxing be made resilient enough to allow studying
malware’s behavior, providing evidence for further fortification of systems and

help future studies on the topic?

The problem statement posed three questions, relating to common malware tech-
niques, anti-sandbox techniques and how behavioral analysis on malware can be
conducted without hindering malware executing their full payload. Following the
project, gathering of malware and analysis thereof, the questions as well as the
problem statement are considered fulfilled.

For the first question about the techniques malware makes use of to combat sandboxing-
based defenses, the answer is checking system artefacts and flags, whether on the
system level or in the memory level. Since sandboxing and debugging are actions
that trigger certain flags or leave behind certain artefacts that expose virtualization
to crawlers, these are some of the ways in which malware analyzes its environment.

Moreover, checks such as the amount of RAM a machine has or the hard disk size,
as well as vendor information, are used to see whether they are ’realistic’ when
compared to what physical machines usually would have.

For instance, a machine with less than 60 GB of hard drive space running Windows
7 could for certain malware be indicative of a virtualized environment, as we saw
in one of the malware sample runs. This issue can, bluntly put, be circumvented

55

56

by removing certain artefacts left behind by virtualization software, and making
machines look as realistic as possible in terms of hardware specifications.

However, working in memory and removing certain flags could also prove to be
important, depending on the amount of hardening desired for a certain machine.
This has, however, been deemed out of scope for this project, although it had been
considered an option throughout the project.

For the second question, the answer has been achieved through the usage of Wire-
Shark and the TCPDump module on Cuckoo. Cuckoo itself has helped make this
project scalable when paired with Eve-NG and QEMU machines, and has made the
project easily manageable on scale, since adding and removing nodes to different
VLANs is easily achievable. As for analyzing the traffic, TCPDump allows Cuckoo
to provide us with network traffic analysis as part of the report files generated for
that specific sample run on each of the machines used for analysis. Eve-NG al-
lows for live capturing of network traffic through two clicks on the layer-3 switch,
and this means that both traffic captures can be compared, if need be. However,
Cuckoo automatically creates a network dump file in a PCAP format as part of the
sample run and includes this in the report, making this part of the project very
scalable. This question is therefore deemed fulfilled.

This leads into the third and final question about how behavioral analysis on mal-
ware can be conducted while not hindering the malware’s full execution. This
question, too, is deemed satisfied. Part of the answer lies in the previous para-
graphs of this chapter. The other part lies in ensuring that the sandboxing environ-
ment is one that can conduct analysis on even the most devastating of malware,
such as Petya or WannaCry, which encrypt entire hard drive partitions.

This has been achieved through Cuckoo. The other part of the question, can, as
previously mentioned, be answered through hardening of machines by removing
certain artefacts. Analyzing memory dumps, as mentioned in chapter 7 could also
be done in future work relating to this project, as it would give more insight into
how the malware operates on a deeper level.

With those questions addressed, one prevails: the problem statement.

The problem statement is considered fulfilled. The fact that three machines with
different environments surrounding them, and different setups in terms of arte-
facts, have been setup for this project, has helped the project’s cause greatly.

Removing certain system artefacts has in some cases proven to drastically alter the
behavior of certain malware, especially network-reliant ones, where it in others has
proven to not make a difference.

8.1. Future directions 57

This, as previously mentioned, is suspected to be due to anti-debugging techniques
being more common than anti-VM techniques, meaning that some of the removed
artefacts would not impact the debugging flags’ status in memory, as us operating
on the memory level was deemed out of scope, see section 1.2.

Despite this, we believe it has made a platform resilient enough to allow studying
of malware’s behavior and providing evidence that can benefit future studies as
well as further fortification of systems.

8.1 Future directions

As far as future directions of the project goes, we believe the project can be devel-
oped on using other tools as well. Docker is an example of a virtualization tool that
is meant to be very scalable [89], but using this with Eve-NG would require the
Professional version of the software. If Docker is an opportunity wanting to be ex-
plored by researchers working on this project in the future, another option could be
to drop using Eve-NG altogether, and focusing efforts on GNS3 or other network
emulator management tools with free support for other virtualization software.

Acquiring the Professional version, which has more advantages such as native
Docker container support, custom image templates and the ability to configure
startup flags for multiple nodes at once, could be an interesting choice, as some of
the features, especially bulk configuration, were missed by us during the course of
this project.

Future work based on this project could include using more Dionaea modules to
see which protocols malware would target on the local network.

In terms of memory analysis, attempting nested virtualization, thus allowing for
usage of Volatility, seeing as the test machines would not be viewed as physical
machines by Cuckoo, could also be an option worth exploring, if the hosting com-
puter has more resources allocated than was the case for us.

This could then be used to analyze whether the reports generated by Cuckoo differ
from a setup similar to ours, if Volatility is used by Cuckoo, despite this being
through nested virtualization.

Finally, INetSim is another aspect that will be touched upon, seeing as it was
discarded, see chapter 7. INetSim could be interesting for projects with a more
interactive aspect to their analysis, and we believe it would definitely add a new
layer to seeing whether a small amount of anti-anti-detection techniques deployed,

8.2. Contributions 58

paired with interaction with the malware, would be enough to make it execute
as if it was in a real environment, compared to using a lot of anti-anti-detection
techniques and no manual interaction with the malware.

We feel this project, either way, can act as a baseline for interesting projects explor-
ing malware and their behavior in the field of cyber security.

We deem all initially presented questions, the hypothesis, as well as the problem
statement, addressed and fulfilled to a satisfactory extent.

8.2 Contributions

This project, moreover, contributes with the following to the field of cyber security:

• A network-emulator based sandboxing platform, which, to the group’s knowl-
edge is the first one in the industry at this level

• A full thesis addressing any and all issues that arose throughout the research,
rather than a privately conducted on-site experiment

• Issues addressed in a manner that hopefully will benefit future studies on
the subject

• An open-source code foundation for the parts of this project that readily can
be used by others, such as a report extractor script, Cisco’s switch configura-
tion and bash scripts for ease of installation of some of the tools used.

Bibliography

[1] Internet World Stats. Internet Growth Statistics 1995 to 2021 - the Global Village
Online. 2021. url: https://www.internetworldstats.com/emarketing.htm
(visited on 10/24/2021).

[2] Internet World Stats. World Internet Users Statistics and 2021 World Population
Stats. 2021. url: https://www.internetworldstats.com/stats.htm (visited
on 10/24/2021).

[3] Chris Greamo and Anup Ghosh. “Sandboxing and Virtualization: Modern
Tools for Combating Malware”. In: IEEE Security Privacy 9.2 (2011), pp. 79–
82. doi: 10.1109/MSP.2011.36.

[4] AVTest. Malware Statistics & Trends Report. 2021. url: https://www.av-test
.org/en/statistics/malware/ (visited on 11/10/2021).

[5] Shuman Ghosemajumder Harvard Business Review. You Can’t Secure 100%
of Your Data 100% of the Time. 2017. url: https://hbr.org/2017/12/you-can
t-secure-100-of-your-data-100-of-the-time (visited on 02/23/2022).

[6] CrowdStrike. 11 Types of Malware. 2021. url: https://www.crowdstrike.com
/cybersecurity-101/malware/types-of-malware/ (visited on 11/10/2021).

[7] Marios Anagnostopoulos and John André Seem. “Another Step in the Lad-
der of DNS-Based Covert Channels: Hiding Ill-Disposed Information in
DNSKEY RRs”. In: Information 10.9 (2019), p. 284.

[8] Ashok Sharma Dev.to. What does SolarWinds Hack tell us about Backdoor At-
tacks? 2021. url: https://dev.to/ashok83/what-does-solarwinds-hack-te
ll-us-about-backdoor-attacks-41jn (visited on 02/23/2022).

[9] Twosense.ai. Russian Hackers target US Treasury, NTIA and more in Huge Cyber
Espionage Campaign against the US. 2020. url: https://www.twosense.ai/bl
og/2020/12/14/russian-hackers-target-us-treasury-ntia-and-more-in-

huge-cyber-espionage-campaign-against-the-us (visited on 02/23/2022).

59

https://www.internetworldstats.com/emarketing.htm
https://www.internetworldstats.com/stats.htm
https://doi.org/10.1109/MSP.2011.36
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://hbr.org/2017/12/you-cant-secure-100-of-your-data-100-of-the-time
https://hbr.org/2017/12/you-cant-secure-100-of-your-data-100-of-the-time
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://dev.to/ashok83/what-does-solarwinds-hack-tell-us-about-backdoor-attacks-41jn
https://dev.to/ashok83/what-does-solarwinds-hack-tell-us-about-backdoor-attacks-41jn
https://www.twosense.ai/blog/2020/12/14/russian-hackers-target-us-treasury-ntia-and-more-in-huge-cyber-espionage-campaign-against-the-us
https://www.twosense.ai/blog/2020/12/14/russian-hackers-target-us-treasury-ntia-and-more-in-huge-cyber-espionage-campaign-against-the-us
https://www.twosense.ai/blog/2020/12/14/russian-hackers-target-us-treasury-ntia-and-more-in-huge-cyber-espionage-campaign-against-the-us

Bibliography 60

[10] Lockheed Martin Corp. The Cyber kill chain, Lockheed Martin. 2015. url: http
s://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documen

ts/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_In

telligence_Platform.pdf (visited on 02/23/2022).

[11] KasperSky. Ransomware WannaCry: All you need to know. 2021. url: https:
//www.kaspersky.com/resource- center/threats/ransomware- wannacry

(visited on 11/15/2021).

[12] Carly Burdova for Avast. EternalBlue Exploit | MS17-010 Explained | Avast.
2020. url: https://www.avast.com/c-eternalblue (visited on 05/10/2022).

[13] BBC News. Cyber-attack: US and UK blame North Korea for WannaCry. 2017.
url: https://www.bbc.com/news/world-us-canada-42407488 (visited on
11/15/2021).

[14] The United States of America’s Department of Justice. North Korean Regime-
Backed Programmer Charged With Conspiracy to Conduct Multiple Cyber Attacks
and Intrusions. 2018. url: https://www.justice.gov/opa/pr/north-korean-
regime-backed-programmer-charged-conspiracy-conduct-multiple-cyber

-attacks-and (visited on 02/23/2022).

[15] Liku Zelleke for Comparitech. 7 Best Static Code Analysis Tools. 2021. url:
https://www.comparitech.com/net-admin/best-static-code-analysis-to

ols/ (visited on 03/07/2022).

[16] Radu S Pirscoveanu et al. “Analysis of malware behavior: Type classification
using machine learning”. In: 2015 International conference on cyber situational
awareness, data analytics and assessment (CyberSA). IEEE. 2015, pp. 1–7.

[17] Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Soft-
ware. No Starch Press, 2012.

[18] Imperva. What is a Honeypot. 2019. url: https://www.imperva.com/learn/a
pplication-security/honeypot-honeynet/ (visited on 03/13/2022).

[19] Amir Afianian et al. “Malware Dynamic Analysis Evasion Techniques: A
Survey”. In: ACM Computing Surveys. Vol. 52. 2019, Article 126.

[20] NC State University. Ethics in computing: Reverse engineering. 2019. url: htt
ps://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws

.using.doc/GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95.html#GUID-893

11E3D-CCA9-4ECC-AF5C-C52BE6A89A95 (visited on 03/07/2022).

[21] Fortinet. Why Do You Need Sandboxing For Protection? 2014. url: https://ww
w.fortinet.com/content/dam/fortinet/assets/solution-guides/Why-Do-

You-Need-Sandboxing.pdf (visited on 03/15/2022).

https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.avast.com/c-eternalblue
https://www.bbc.com/news/world-us-canada-42407488
https://www.justice.gov/opa/pr/north-korean-regime-backed-programmer-charged-conspiracy-conduct-multiple-cyber-attacks-and
https://www.justice.gov/opa/pr/north-korean-regime-backed-programmer-charged-conspiracy-conduct-multiple-cyber-attacks-and
https://www.justice.gov/opa/pr/north-korean-regime-backed-programmer-charged-conspiracy-conduct-multiple-cyber-attacks-and
https://www.comparitech.com/net-admin/best-static-code-analysis-tools/
https://www.comparitech.com/net-admin/best-static-code-analysis-tools/
https://www.imperva.com/learn/application-security/honeypot-honeynet/
https://www.imperva.com/learn/application-security/honeypot-honeynet/
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95.html#GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95.html#GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95.html#GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95.html#GUID-89311E3D-CCA9-4ECC-AF5C-C52BE6A89A95
https://www.fortinet.com/content/dam/fortinet/assets/solution-guides/Why-Do-You-Need-Sandboxing.pdf
https://www.fortinet.com/content/dam/fortinet/assets/solution-guides/Why-Do-You-Need-Sandboxing.pdf
https://www.fortinet.com/content/dam/fortinet/assets/solution-guides/Why-Do-You-Need-Sandboxing.pdf

Bibliography 61

[22] Wikipedia. Hyperviseur - Hypervisor - Wikipedia. 2022. url: https://en.wi
kipedia.org/wiki/Hypervisor#/media/File:Hyperviseur.svg (visited on
03/15/2022).

[23] Colin Steele Brien Posey Anil Desai. Type 2 hypervisor (hosted hypervisor).
2021. url: https://searchservervirtualization.techtarget.com/definit
ion/hosted-hypervisor-Type-2-hypervisor (visited on 03/02/2022).

[24] VMWare. Downloading and installing VMware Workstation (2057907). 2021.
url: https://kb.vmware.com/s/article/2057907/ (visited on 03/01/2022).

[25] Oracle. Oracle VM VirtualBox. 2022. url: https://www.virtualbox.org/
(visited on 03/15/2022).

[26] Citrix. Type 2 hypervisor (hosted hypervisor). 2021. url: https://docs.citrix
.com/en-us/citrix-hypervisor/graphics.html (visited on 03/21/2022).

[27] Greg Shields. Q. Is VMware Workstation a type 1 or type 2 hypervisor? 2010.
url: https://www.itprotoday.com/server-virtualization/q-vmware-work
station-type-1-or-type-2-hypervisor (visited on 03/21/2022).

[28] OpenSystems. Cloud Sandbox | Cloud Based Sandbox | Open Systems. 2022.
url: https://www.open- systems.com/sase/cloud- sandbox/ (visited on
03/01/2022).

[29] SHADE. Download alternative for Windows sandbox software. 2021. url: https
://www.shadesandbox.com (visited on 03/01/2022).

[30] SHADE. Enterprise. 2021. url: https://www.shadesandbox.com/enterprise
(visited on 03/01/2022).

[31] Cuckoo Sandbox. Cuckoo Sandbox - Automated malware analysis. 2019. url:
https://https://cuckoosandbox.org (visited on 03/01/2021).

[32] Cuckoo Sandbox. Cuckoo Sandbox. 2022. url: https://cuckoo.cert.ee (vis-
ited on 03/02/2022).

[33] Neil Fox. Varonis - Cuckoo Sandbox Overview. 2021. url: https://www.varoni
s.com/blog/cuckoo-sandbox/ (visited on 03/03/2022).

[34] Cuckoo. FAQ - Cuckoo Sandbox v2.0.7 book. 2021. url: https://cuckoo.readt
hedocs.io/en/latest/faq/#can-i-analyze-urls-with-cuckoo/ (visited on
03/03/2022).

[35] Cuckoo. Requirements - Cuckoo. 2021. url: https://cuckoo.sh/docs/inst
allation/host/requirements.html#virtualization-software (visited on
03/02/2022).

[36] YARA. Cuckoo module - yara 4.1.0 documentation. 2021. url: https://yara.re
adthedocs.io/en/stable/modules/cuckoo.html/ (visited on 03/02/2022).

https://en.wikipedia.org/wiki/Hypervisor#/media/File:Hyperviseur.svg
https://en.wikipedia.org/wiki/Hypervisor#/media/File:Hyperviseur.svg
https://searchservervirtualization.techtarget.com/definition/hosted-hypervisor-Type-2-hypervisor
https://searchservervirtualization.techtarget.com/definition/hosted-hypervisor-Type-2-hypervisor
https://kb.vmware.com/s/article/2057907/
https://www.virtualbox.org/
https://docs.citrix.com/en-us/citrix-hypervisor/graphics.html
https://docs.citrix.com/en-us/citrix-hypervisor/graphics.html
https://www.itprotoday.com/server-virtualization/q-vmware-workstation-type-1-or-type-2-hypervisor
https://www.itprotoday.com/server-virtualization/q-vmware-workstation-type-1-or-type-2-hypervisor
https://www.open-systems.com/sase/cloud-sandbox/
https://www.shadesandbox.com
https://www.shadesandbox.com
https://www.shadesandbox.com/enterprise
https://https://cuckoosandbox.org
https://cuckoo.cert.ee
https://www.varonis.com/blog/cuckoo-sandbox/
https://www.varonis.com/blog/cuckoo-sandbox/
https://cuckoo.readthedocs.io/en/latest/faq/#can-i-analyze-urls-with-cuckoo/
https://cuckoo.readthedocs.io/en/latest/faq/#can-i-analyze-urls-with-cuckoo/
https://cuckoo.sh/docs/installation/host/requirements.html#virtualization-software
https://cuckoo.sh/docs/installation/host/requirements.html#virtualization-software
https://yara.readthedocs.io/en/stable/modules/cuckoo.html/
https://yara.readthedocs.io/en/stable/modules/cuckoo.html/

Bibliography 62

[37] Cuckoo. Configuration - Cuckoo. 2021. url: https://cuckoo.readthedocs.io
/en/latest/installation/host/configuration/ (visited on 03/02/2022).

[38] Kevin O’Reilly. GitHub - kevoreilly/CAPEv2: Malware Configuration and Pay-
load Extraction. 2021. url: https://github.com/kevoreilly/CAPEv2/ (visited
on 03/03/2022).

[39] Kevin O’Reilly. CAPE Sandbox. 2021. url: https://capesandbox.com (visited
on 03/03/2022).

[40] Tyler Shields. Anti-debugging — A developer’s view. Veracode Inc., USA, 2010.

[41] Katsunari Yoshioka et al. “Your sandbox is blinded: Impact of decoy injec-
tion to public malware analysis systems”. In: Journal of Information Processing
19 (2011).

[42] Jeremy Blackthorne et al. “AVLeak: Fingerprinting antivirus emulators through
black-box testing”. In: Proceedings of the 10th USENIX conference on Offensive
Technologies, USENIX Association (2016).

[43] Ping Chen et al. “Advanced or Not? A Comparative Study of the Use of
Anti-debugging and Anti-VM Techniques in Generic and Targeted Mal-
ware”. In: SEC 2016: ICT Systems Security and Privacy Protection (2016).

[44] Tarik Muhovic. Behavioural Analysis of Malware Using Custom Sandbox Envi-
ronments. Aalborg University, 2020.

[45] Xu Chen et al. “Towards an understanding of anti-virtualization and anti-
debugging behavior in modern malware”. In: IEEE International Conference
on Dependable Systems and Networks with FTCS and DCC (2008).

[46] JoeSandbox. Automated Malware Analysis Report for shcndhss.exe. 2018. url: ht
tps://www.joesandbox.com/analysis/50204/0/html (visited on 03/11/2022).

[47] Joshua Tully. An Anti-Reverse Engineering Guide. 2008. url: https://www.c
odeproject.com/Articles/30815/An- Anti- Reverse- Engineering- Guide

(visited on 03/11/2022).

[48] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto.
“Scientific but not academical overview of malware anti-debugging, anti-
disassembly and anti-vm technologies”. In: Black Hat (2012).

[49] Peter Ferrie. The "Ultimate" Anti-Debugging Reference. 2011. url: https://an
ti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Revers

ing_Reference.pdf (visited on 03/11/2022).

[50] McAfee. The W9x.CIH virus — via [19]. 2000. url: https://home.mcafee.co
m/virusinfo/virusprofile.aspx?key=10300 (visited on 03/11/2022).

[51] McAfee. The W32.Mydoom.M@mm virus. 2007. url: https://www.symant

ec . com / security - center / writeup / 2004 - 072615 - 3527 - 99 (visited on
03/11/2022).

https://cuckoo.readthedocs.io/en/latest/installation/host/configuration/
https://cuckoo.readthedocs.io/en/latest/installation/host/configuration/
https://github.com/kevoreilly/CAPEv2/
https://capesandbox.com
https://www.joesandbox.com/analysis/50204/0/html
https://www.joesandbox.com/analysis/50204/0/html
https://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide
https://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide
https://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
https://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
https://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
https://home.mcafee.com/virusinfo/virusprofile.aspx?key=10300
https://home.mcafee.com/virusinfo/virusprofile.aspx?key=10300
https://www.symantec.com/security-center/writeup/2004-072615-3527-99
https://www.symantec.com/security-center/writeup/2004-072615-3527-99

Bibliography 63

[52] Microsoft. PEB (winternl.h. 2021. url: https://docs.microsoft.com/en-us
/windows/win32/api/winternl/ns-winternl-peb (visited on 03/11/2022).

[53] Anish for MalwareCrypt. Reptile Malware - Behavioral Analysis. 2012. url:
http://malwarecrypt.blogspot.com/2012/01/reptile-malware-behaviora

l-analysis.html/ (visited on 03/13/2022).

[54] VMWare. Choosing a network adapter for your virtual machine (1001805). 2021.
url: https://kb.vmware.com/s/article/1001805/ (visited on 03/13/2022).

[55] Microsoft. Worm:Win32/Rbot.ST. 2017. url: https://www.microsoft.com/en
-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32

/Rbot.ST (visited on 03/13/2022).

[56] Sophos. W32/Agobot-OT. 2015. url: https://www.sophos.com/en-us/threat
-center/threat-analyses/viruses-and-spyware/W32%5C%20Agobot-OT/det

ailed-analysis.aspx (visited on 03/13/2022).

[57] Christopher Kruegel. Evasive malware exposed and deconstructed. RSA Confer-
ence, 2015.

[58] Anton Cherepanov eSet. WIN32/INDUSTROYER - A new threat for industrial
control systems. 2017. url: https://www.welivesecurity.com/wp-content/u
ploads/2017/06/Win32_Industroyer.pdf (visited on 03/16/2022).

[59] Paul Roberts. Mydoom Sets Speed Records. 2004. url: https://www.pcworld.c
om/article/114461/article.html (visited on 03/16/2022).

[60] Austin for groovyTips. Windows 7 Detailed Version Comparison [groovyTips].
2018. url: https://www.groovypost.com/howto/geek-stuff/windows-7-det
ailed-comparison/ (visited on 03/01/2022).

[61] EVE-NG. EVE-NG. 2021. url: https://www.eve-ng.net (visited on 11/09/2021).

[62] ipwithease.com. Introduction to Eve-NG, GNS3 and VIRL. 2020. url: https:
//ipwithease.com/gns3-vs-eve-ng-vs-virl/ (visited on 02/24/2021).

[63] EVE-NG. Community Cookbook. 2021. url: https://www.eve-ng.net/index
.php/documentation/community-cookbook/ (visited on 02/25/2022).

[64] QEMU. QEMU. 2022. url: https://www.qemu.org/ (visited on 04/01/2022).

[65] FOGProject. FOG Wiki. 2020. url: https://wiki.fogproject.org/wiki/ind
ex.php?title=Introduction#What_is_FOG (visited on 02/24/2021).

[66] Cuckoo Sandbox. Introduction to Eve-NG, GNS3 and VIRL. 2020. url: https:
//cuckoo.readthedocs.io/en/latest/installation/guest_physical/savi

ng/#fog (visited on 02/24/2021).

[67] QEMU. QEMU image utility. 2020. url: https://qemu.readthedocs.io/en/l
atest/tools/qemu-img.htm (visited on 02/24/2021).

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
http://malwarecrypt.blogspot.com/2012/01/reptile-malware-behavioral-analysis.html/
http://malwarecrypt.blogspot.com/2012/01/reptile-malware-behavioral-analysis.html/
https://kb.vmware.com/s/article/1001805/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32/Rbot.ST
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32/Rbot.ST
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32/Rbot.ST
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%5C%20Agobot-OT/detailed-analysis.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%5C%20Agobot-OT/detailed-analysis.aspx
https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32%5C%20Agobot-OT/detailed-analysis.aspx
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.pcworld.com/article/114461/article.html
https://www.pcworld.com/article/114461/article.html
https://www.groovypost.com/howto/geek-stuff/windows-7-detailed-comparison/
https://www.groovypost.com/howto/geek-stuff/windows-7-detailed-comparison/
https://www.eve-ng.net
https://ipwithease.com/gns3-vs-eve-ng-vs-virl/
https://ipwithease.com/gns3-vs-eve-ng-vs-virl/
https://www.eve-ng.net/index.php/documentation/community-cookbook/
https://www.eve-ng.net/index.php/documentation/community-cookbook/
https://www.qemu.org/
https://wiki.fogproject.org/wiki/index.php?title=Introduction#What_is_FOG
https://wiki.fogproject.org/wiki/index.php?title=Introduction#What_is_FOG
https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/saving/#fog
https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/saving/#fog
https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/saving/#fog
https://qemu.readthedocs.io/en/latest/tools/qemu-img.htm
https://qemu.readthedocs.io/en/latest/tools/qemu-img.htm

Bibliography 64

[68] WinSCP corp. Intro to WinSCP. 2020. url: https://winscp.net/eng/docs/i
ntroduction (visited on 02/24/2021).

[69] Dionaea Honeypot. dionaea honeypot documentation. 2021. url: https://dion
aea.readthedocs.io/en/latest/installation.html (visited on 04/02/2022).

[70] Kroland.no. Dionaea - Setting up a Honeypot environment (Part 2). 2021. url:
https://kroland.no/2019/10/14/dionaea-setting-up-a-honeypot-enviro

nment-part-2/ (visited on 04/02/2022).

[71] DigitalOcean. DigitalOcean. 2022. url: https : / / www . digitalocean . com/

(visited on 11/16/2021).

[72] Alberto Ortega. GitHub repository. 2015. url: https://github.com/a0rtega
/pafish (visited on 03/14/2022).

[73] LordNoteWorthy. Github Repo. 2021. url: https://github.com/LordNotewo
rthy/al-khaser (visited on 04/11/2022).

[74] AlicanAkyol AlicanAkyol. Anti-Sandbox and Anti-Virtual Machine Tool. 2021.
url: https://github.com/AlicanAkyol/sems (visited on 04/07/2022).

[75] VMWare. Understanding Common Networking Configurations. 2019. url: http
s://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.u

sing.doc/GUID-D9B0A52D-38A2-45D7-A9EB-987ACE77F93C.html (visited on
03/01/2022).

[76] VMWare. Configuring Bridged Networking. 2019. url: https://docs.vmware
.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-

BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A.html#GUID-BAFA66C3-81F0-4FCA-

84C4-D9F7D258A60A (visited on 03/01/2022).

[77] VMWare. Configuring Network Address Translation. 2022. url: https://ethic
s.csc.ncsu.edu/intellectual/reverse/study.php (visited on 03/07/2022).

[78] VMWare. Configuring Host-Only Networking. 2019. url: https://docs.vmwar
e.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-

93BDF7F1-D2E4-42CE-80EA-4E305337D2FC.html#GUID-93BDF7F1-D2E4-42CE-

80EA-4E305337D2FC (visited on 03/01/2022).

[79] EVE-NG. Download. 2021. url: https://www.eve-ng.net/index.php/downlo
ad/ (visited on 02/24/2022).

[80] WireShark. Wireshark - Go Deep. 2021. url: https://www.wireshark.org/
(visited on 11/16/2021).

[81] Cuckoo. Requirements - Cuckoo. 2021. url: https://cuckoo.sh/docs/instal
lation/host/requirements.html (visited on 03/02/2022).

[82] YARA. Yara-Rules/rules: Repository of yara rules. 2022. url: https://github.c
om/Yara-Rules/rules (visited on 12/02/2021).

https://winscp.net/eng/docs/introduction
https://winscp.net/eng/docs/introduction
https://dionaea.readthedocs.io/en/latest/installation.html
https://dionaea.readthedocs.io/en/latest/installation.html
https://kroland.no/2019/10/14/dionaea-setting-up-a-honeypot-environment-part-2/
https://kroland.no/2019/10/14/dionaea-setting-up-a-honeypot-environment-part-2/
https://www.digitalocean.com/
https://github.com/a0rtega/pafish
https://github.com/a0rtega/pafish
https://github.com/LordNoteworthy/al-khaser
https://github.com/LordNoteworthy/al-khaser
https://github.com/AlicanAkyol/sems
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-D9B0A52D-38A2-45D7-A9EB-987ACE77F93C.html
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-D9B0A52D-38A2-45D7-A9EB-987ACE77F93C.html
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-D9B0A52D-38A2-45D7-A9EB-987ACE77F93C.html
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A.html#GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A.html#GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A.html#GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A.html#GUID-BAFA66C3-81F0-4FCA-84C4-D9F7D258A60A
https://ethics.csc.ncsu.edu/intellectual/reverse/study.php
https://ethics.csc.ncsu.edu/intellectual/reverse/study.php
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC.html#GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC.html#GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC.html#GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC
https://docs.vmware.com/en/VMware-Workstation-Pro/16.0/com.vmware.ws.using.doc/GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC.html#GUID-93BDF7F1-D2E4-42CE-80EA-4E305337D2FC
https://www.eve-ng.net/index.php/download/
https://www.eve-ng.net/index.php/download/
https://www.wireshark.org/
https://cuckoo.sh/docs/installation/host/requirements.html
https://cuckoo.sh/docs/installation/host/requirements.html
https://github.com/Yara-Rules/rules
https://github.com/Yara-Rules/rules

Bibliography 65

[83] cuckoo sandbox. Preparing the Guest (Physical Machine). 2020. url: https://c
uckoo.readthedocs.io/en/latest/installation/guest_physical/ (visited
on 03/14/2021).

[84] Cuckoo Sandbox. Network Configuration — Cuckoo Sandbox v2.0.7 Book. 2020.
url: https://cuckoo.readthedocs.io/en/latest/installation/guest_phy
sical/network/ (visited on 02/24/2021).

[85] Cisco Community. How do I isolate one workstation on a LAN. 2007. url: http
s://community.cisco.com/t5/switching/how-do-i-isolate-one-workstat

ion-on-a-lan/td-p/892503 (visited on 03/07/2022).

[86] Erik Hjelmvik for NetreSec. Installing a Fake Internet with INetSim and Po-
larProxy. 2019. url: https://www.netresec.com/?page=Blog&month=2019
-12&post=Installing-a-Fake-Internet-with-INetSim-and-PolarProxy

(visited on 05/02/2022).

[87] Marios Anagnostopoulos, Georgios Kambourakis, and Stefanos Gritzalis.
“New facets of mobile botnet: architecture and evaluation”. In: International
Journal of Information Security 15.5 (2016), pp. 455–473.

[88] FOGProject. Releases - FogProject/fogproject. 2016. url: https://github.com
/FOGProject/fogproject/releases (visited on 04/02/2022).

[89] Turbo. Turbo and Docker. 2021. url: https://app.turbo.net/docs/about/tu
rbo-and-docker#layering (visited on 11/16/2021).

[90] EVE-NG site. what is difference between native and htm management. 2020. url:
https://www.eve-ng.net/index.php/documentation/howtos-video/use-ht

ml5-and-native-console/ (visited on 03/02/2021).

[91] EVE-NG. EVE-NG Supported images. 2021. url: https://www.eve-ng.net/in
dex.php/documentation/supported-images/ (visited on 03/03/2022).

[92] Qemu. Qemu definintion. 2021. url: https://wiki.qemu.org/Main_Page
(visited on 03/03/2022).

[93] iteasypass. Dynamips / Dynagen Tutorial. 2021. url: https://www.iteasypas
s.com/dynamips.htm (visited on 03/03/2022).

[94] iteasypass. Recommended IOL image versions: 2021. url: https://www.eve-ng
.net/index.php/documentation/howtos/howto-add-cisco-iol-ios-on-lin

ux/ (visited on 03/03/2022).

[95] EVE-NG. Ready to go images for EVE-NG. 2021. url: https://www.eve-ng.net
/index.php/documentation/howtos/howto-create-own-linux-host-image/

(visited on 03/07/2022).

[96] proliferoustech. Setting up the successor to UnetLab: EVE-NG! 2017. url: http
s://www.proliferoustech.com/blogs/20170411-setting-up-the-successo

r-to-unetlab-eve-ng/ (visited on 03/07/2022).

https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/
https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/
https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/network/
https://cuckoo.readthedocs.io/en/latest/installation/guest_physical/network/
https://community.cisco.com/t5/switching/how-do-i-isolate-one-workstation-on-a-lan/td-p/892503
https://community.cisco.com/t5/switching/how-do-i-isolate-one-workstation-on-a-lan/td-p/892503
https://community.cisco.com/t5/switching/how-do-i-isolate-one-workstation-on-a-lan/td-p/892503
https://www.netresec.com/?page=Blog&month=2019-12&post=Installing-a-Fake-Internet-with-INetSim-and-PolarProxy
https://www.netresec.com/?page=Blog&month=2019-12&post=Installing-a-Fake-Internet-with-INetSim-and-PolarProxy
https://github.com/FOGProject/fogproject/releases
https://github.com/FOGProject/fogproject/releases
https://app.turbo.net/docs/about/turbo-and-docker#layering
https://app.turbo.net/docs/about/turbo-and-docker#layering
https://www.eve-ng.net/index.php/documentation/howtos-video/use-html5-and-native-console/
https://www.eve-ng.net/index.php/documentation/howtos-video/use-html5-and-native-console/
https://www.eve-ng.net/index.php/documentation/supported-images/
https://www.eve-ng.net/index.php/documentation/supported-images/
https://wiki.qemu.org/Main_Page
https://www.iteasypass.com/dynamips.htm
https://www.iteasypass.com/dynamips.htm
https://www.eve-ng.net/index.php/documentation/howtos/howto-add-cisco-iol-ios-on-linux/
https://www.eve-ng.net/index.php/documentation/howtos/howto-add-cisco-iol-ios-on-linux/
https://www.eve-ng.net/index.php/documentation/howtos/howto-add-cisco-iol-ios-on-linux/
https://www.eve-ng.net/index.php/documentation/howtos/howto-create-own-linux-host-image/
https://www.eve-ng.net/index.php/documentation/howtos/howto-create-own-linux-host-image/
https://www.proliferoustech.com/blogs/20170411-setting-up-the-successor-to-unetlab-eve-ng/
https://www.proliferoustech.com/blogs/20170411-setting-up-the-successor-to-unetlab-eve-ng/
https://www.proliferoustech.com/blogs/20170411-setting-up-the-successor-to-unetlab-eve-ng/

Bibliography 66

[97] EVE-NG. Versions this guide is based on. 2021. url: https://www.eve-ng.net
/index.php/documentation/howtos/howto-add-vm-ware-esxi/ (visited on
03/07/2022).

[98] EVE-NG. This table shows correct foldername for QEMU images used under EVE.
2021. url: https://www.eve-ng.net/index.php/documentation/qemu-image
-namings/ (visited on 03/03/2022).

[99] EVE-NG. Download Links and info for EVE-NG. 2021. url: https://www.eve-
ng.net/index.php/download/ (visited on 03/08/2022).

[100] Cisco. Using the command line interface. 2021. url: https://www.cisco.com/c
/en/us/td/docs/switches/lan/catalyst3850/software/release/3se/con

solidated_guide/b_consolidated_3850_3se_cg_chapter_01.html (visited
on 03/10/2022).

[101] Pivitgolbal. Overview of the DHCP Server. 2021. url: https://info.pivitg
lobal.com/resources/cisco-ios-dhcp-server-configuration (visited on
03/10/2022).

[102] Ciscopress. Verifying and Troubleshooting DHCP Configuration. 2010. url: ht
tps://www.ciscopress.com/articles/article.asp?p=1574301&seqNum=6

(visited on 03/10/2022).

[103] Cisco Inc. Configuring VLANs. 2021. url: https://www.cisco.com/c/en/us
/td/docs/routers/ir910/software/release/1_0/configuration/guide/ir

910scg/swvlan.pdf (visited on 03/11/2022).

[104] Cisco Inc. Configuring InterVLANs Routing. 2021. url: https://www.cisco.c
om/c/en/us/support/docs/lan-switching/inter-vlan-routing/41860-how

to-L3-intervlanrouting.html (visited on 03/11/2022).

[105] Utopianknight.com. Cuckoo Installation on Ubuntu 20. 2020. url: https://u
topianknight.com/malware/cuckoo-installation-on-ubuntu-20/ (visited
on 03/14/2022).

[106] Cuckoo Sandbox. Cuckoo Installation. 2020. url: https://cuckoo.readth

edocs . io / en / latest / installation / host / installation / # (visited on
03/14/2022).

[107] cuckoo sandbox. Cuckoo working directory. 2020. url: https://cuckoo.readt
hedocs.io/en/latest/installation/host/cwd/ (visited on 03/14/2021).

[108] Cuckoo Sandbox. Code of the physical.py file on GitHub. 2020. url: https://g
ithub.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physic

al.py (visited on 03/14/2021).

[109] FOG Project. FOG 1.4.4 Officially Released. 2017. url: https://news.fogproj
ect.org/fog-1-4-4-officially-released/ (visited on 03/14/2021).

https://www.eve-ng.net/index.php/documentation/howtos/howto-add-vm-ware-esxi/
https://www.eve-ng.net/index.php/documentation/howtos/howto-add-vm-ware-esxi/
https://www.eve-ng.net/index.php/documentation/qemu-image-namings/
https://www.eve-ng.net/index.php/documentation/qemu-image-namings/
https://www.eve-ng.net/index.php/download/
https://www.eve-ng.net/index.php/download/
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3850/software/release/3se/consolidated_guide/b_consolidated_3850_3se_cg_chapter_01.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3850/software/release/3se/consolidated_guide/b_consolidated_3850_3se_cg_chapter_01.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3850/software/release/3se/consolidated_guide/b_consolidated_3850_3se_cg_chapter_01.html
https://info.pivitglobal.com/resources/cisco-ios-dhcp-server-configuration
https://info.pivitglobal.com/resources/cisco-ios-dhcp-server-configuration
https://www.ciscopress.com/articles/article.asp?p=1574301&seqNum=6
https://www.ciscopress.com/articles/article.asp?p=1574301&seqNum=6
https://www.cisco.com/c/en/us/td/docs/routers/ir910/software/release/1_0/configuration/guide/ir910scg/swvlan.pdf
https://www.cisco.com/c/en/us/td/docs/routers/ir910/software/release/1_0/configuration/guide/ir910scg/swvlan.pdf
https://www.cisco.com/c/en/us/td/docs/routers/ir910/software/release/1_0/configuration/guide/ir910scg/swvlan.pdf
https://www.cisco.com/c/en/us/support/docs/lan-switching/inter-vlan-routing/41860-howto-L3-intervlanrouting.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/inter-vlan-routing/41860-howto-L3-intervlanrouting.html
https://www.cisco.com/c/en/us/support/docs/lan-switching/inter-vlan-routing/41860-howto-L3-intervlanrouting.html
https://utopianknight.com/malware/cuckoo-installation-on-ubuntu-20/
https://utopianknight.com/malware/cuckoo-installation-on-ubuntu-20/
https://cuckoo.readthedocs.io/en/latest/installation/host/installation/#
https://cuckoo.readthedocs.io/en/latest/installation/host/installation/#
https://cuckoo.readthedocs.io/en/latest/installation/host/cwd/
https://cuckoo.readthedocs.io/en/latest/installation/host/cwd/
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physical.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physical.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physical.py
https://news.fogproject.org/fog-1-4-4-officially-released/
https://news.fogproject.org/fog-1-4-4-officially-released/

Bibliography 67

[110] Cuckoo Sandbox. Code of the physical.py file on GitHub. 2020. url: https://g
ithub.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physic

al.py (visited on 03/14/2021).

[111] Cisco community. DHCP option 67 on a 3750. 2014. url: https://communi
ty.cisco.com/t5/switching/dhcp-option-67-on-a-3750/td-p/2486406

(visited on 10/24/2021).

[112] FOG Project. Capture an image. 2020. url: https://docs.fogproject.org/en
/latest/getting_started/capture_an_image.html (visited on 11/15/2021).

[113] open-suse. Running Virtual Machines with qemu-kvm. 2020. url: http://open
-suse.ru/opensuse-doc/cha.qemu.running.html (visited on 11/15/2021).

[114] Brian Linkletter. Build a custom Linux Router image for UNetLab and EVE-NG
network emulators. 2017. url: https://www.brianlinkletter.com/2017/03/b
uild-custom-linux-router-image-unetlab-eve-ng-network-emulators/

(visited on 11/15/2021).

[115] DinoTools. Home of the dionaea honeypot. 2021. url: https://github.com/Din
oTools/dionaea (visited on 03/02/2022).

https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physical.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physical.py
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/machinery/physical.py
https://community.cisco.com/t5/switching/dhcp-option-67-on-a-3750/td-p/2486406
https://community.cisco.com/t5/switching/dhcp-option-67-on-a-3750/td-p/2486406
https://docs.fogproject.org/en/latest/getting_started/capture_an_image.html
https://docs.fogproject.org/en/latest/getting_started/capture_an_image.html
http://open-suse.ru/opensuse-doc/cha.qemu.running.html
http://open-suse.ru/opensuse-doc/cha.qemu.running.html
https://www.brianlinkletter.com/2017/03/build-custom-linux-router-image-unetlab-eve-ng-network-emulators/
https://www.brianlinkletter.com/2017/03/build-custom-linux-router-image-unetlab-eve-ng-network-emulators/
https://github.com/DinoTools/dionaea
https://github.com/DinoTools/dionaea

Appendix A

Thesis contract

Project Title: Analyzing malware through Sandboxing
Starting: 1 September 2021
Deadline: medio/ultimo May 2022
ECTS: 50
If long master’s thesis please indicate courses: Advanced Topics in Cyber Security
– Privacy Engineering (elective).

Supervisors: Marios Anagnostopoulos and Jens Myrup Pedersen

Project description: This master thesis aims to delve into malware analysis through
sandboxing. Specifically, we will investigate the available techniques for malware
analysis that aim to create resilient infrastructures for sandboxing environments.
Based on these findings, we will implement a platform for sandboxing, which will
facilitate the study of the malware’s behavior and the capturing of network traffic
and other evidence. In turn, this evidence will contribute to the creation of a com-
prehensive data set for training and evaluation of ML techniques for the detection
of malware.

Plan for thesis supervision and lab work: Weekly meetings with Marios have
been agreed on. We, Omar and Adil, will work on virtually a daily basis on-
site (in the study hall for Cyber Security & ICTE on 3rd floor at Frederikskaj)
unless otherwise agreed on in private. Jens and other interested cyber security
professionals working on a similar project using AAU’s resources will from time
to time take part in some of the meetings.

Approved by the supervisors and the Study Board’s Head of Studies.

68

A.1. The workflow and communication 69

A.1 The workflow and communication

The group, consisting of Adil Khurshid and Omar Nabil Hawwash, hereinafter
referred to as the project group, has agreed to meeting for 6-hour workdays every
day at 10:00 AM local time in Copenhagen, and work on-site at Aalborg University,
henceforth referred to as ’the university’, in the Cyber Security group rooms facil-
itated by the university. On days with course classes, the group will meet briefly
before the class starts, for roughly two hours.

Any obstacles that would mean no meetings on a certain day will be communicated
beforehand amongst the group, in writing or verbally. Fridays are considered days
off, and weekends are days on which either no work is done, or days considered
for homework.

A thesis contract has been formed with supervisors Marios Anagnostopoulos and
Jens Myrup Pedersen, with Peyman Pahlavani helping from time to time. The idea
is that some of the documentation for the project work is converted to scientific
articles to help further solidify the project and research put forth with regards to
this thesis.

Meetings with the supervisors take place on a weekly basis unless otherwise agreed
on. Meetings are, usually, done on-site, unless obstacles mean that they will be held
online, in which case this is also agreed on in writing.

For project planning and resource sharing, a spreadsheet and a shared Google
Drive as well as a Discord server are used. For planning of the project, a Google
Spreadsheet and Trello are made use of, and the thesis source code shall be avail-
able on a GitHub repository shared among the project stakeholders (consisting of
the project group and the project supervisors).

Appendix B

Technical setup

B.1 EVE-NG VM Setup and Settings

The virtual machine hosting EVE-NG is an Ubuntu-flavored Linux distribution,
hence the installation process being very similar to installing a normal Ubuntu
virtual machine on VMWare. It is quite simple and rather straightforward to do.

• First, the group downloaded the ISO file provided on the EVE-NG website
[79]

• Then, a new virtual machine was created and set-up on VMWare, given the
requirements shown in figure B.1, and the ones provided by EVE-NG in their
cookbook [63].

The configuration that the group ended up with can be seen in figure B.1.

70

B.1. EVE-NG VM Setup and Settings 71

Figure B.1: EVE-NG Virtual Machine Configuration

As can be seen in figure B.1, the machine has been allocated 32 gigabytes of RAM,
a total of 2 processors with 12 cores, and a total of 350 GB of hard drive space.
Consequently, the machine has been configured to use NAT as well as the Host-only

interface.

The details about two virtual network interfaces, NAT and Host-only, can be found
in section 4.3. Initially, the group decided to use the host-only connection as it
provides an isolated private network for malware analysis, However it would not
allow the EVE-NG virtual machine to communicate with the internet, and also the
node within the topology on the EVE-NG virtual machine.

Therefore NAT connection mode was preferred as it provides a separate sub-net
from the host network and enables the virtual machine to communicate with the
internet for installing dependencies.

The sub-net used for NAT connection mode is 192.168.45.0/24, and the static IP
address used to access the web interface of the EVE-NG is 192.168.45.128 and the
gateway address is 192.168.45.1/24.

The inter-connectivity between the nodes on the internal network used for testing,
as depicted in 4.1, is handled and created through a sub-net on EVE-NG itself, and
is thus not part of the virtual machine’s configuration on VMWare.

Once the configuration for the VM is set up, EVE-NG is then installed through
the ISO file downloaded from EVE-NG’s website. The important configuration,
while installing the EVE-NG on VMware Workstation is configuring the network
or sub-net 192.168.45.0/24 and the static IP address 192.168.45.128/24 that we
want to use to access the web interface of the EVE-NG machine. In this section,

B.1. EVE-NG VM Setup and Settings 72

the installation will not be described in detail, although it, if desired, can be found
in [63]. However, The network configuration in EVE-NG installation is described
below. We can see the configuration options provided by the EVE-NG installation
set up in fig. B.2.

• In the network configuration window we select configure network manually
instead of DHCP

• The desirable EVE-NG Web Interface IP is entered i.e. 192.168.45.128/24

• The gateway for the sub-net is configured as 192.168.45.1/24

• Other configuration for the network can be configured according to the re-
quirements, though the aforementioned ones were the only ones needed for
this stage of the project.

Figure B.2: Network Configuration for EVE-NG virtual machine

Consequently, following the network configuration and installation of EVE-NG,
the group is greeted with a message from the EVE-NG VM, confirming the web
interface address:

1 http ://192.168.45.128/

B.2. Import and usage of disk images in EVE-NG 73

Figure B.3: EVE-NG login screen

The default username for the virtual machine is root and the password eve. In
order to access the EVE-NG web interface, the username admin and password eve
are used.

Visiting the aforementioned IP address prompts the group for a username and
password see fig. B.3, in addition to a drop-down menu with two options: an
HTML5 console and the native console. There is a slight difference between the two
consoles regarding their functionality [90]. Since the project goals can be achieved
using the native console, it will be used as the main console for the project when
dealing with EVE-NG.

Once EVE-NG is running and accessible, the next step would be to upload the
desired images to EVE-NG. These images are an integral part of setting up the
network topology and infrastructure that will be used for malware analysis.

B.2 Import and usage of disk images in EVE-NG

EVE-NG is an Ubuntu Server-based Virtual Machine (VM) that supports pre-
configured multiple hypervisors on one virtual machine, and essentially accepts
three types of images, see below [91].

B.2. Import and usage of disk images in EVE-NG 74

• QEMU images to emulate real world devices running Windows, Linux, Mikrotik,
Cisco, and many others [92].

• Dynamips to run virtual Cisco devices. These are Cisco router emulated
images used to emulate routers as if they were physical devices [93].

• Cisco IOL (Internet Operating System on Linux) images can also be config-
ured to run on EVE-NG. These images are usually in .bin format, and are
Cisco proprietary images, therefore IOL can only be used by Cisco employ-
ees or by authorized consumers [94].

Initially, to configure the topology in fig. 4.1 the group needed to have a switch or
a router for the topology to communicate. Other open source images like Linux
router template and pfsense can be used as the communicating device for the nodes
in the topology.

However the image the group ended up using is a Cisco IOL image of a Cisco
switch. As mentioned previously, IOL images from Cisco are only to be used by
authorized customers; one of the group members already has been granted access
to the image from the member’s Cisco certification. The image is trusted and
lightweight, compared to other open source router images available.

In addition to the aforementioned images, the remaining images, i.e. Ubuntu,
Windows 7, Windows Server, Kali Linux and an Ubuntu LTS 18.04 image had to
be acquired separately. Ubuntu and Window machine were acquired from their
official websites and then converted to Qcow2 as mentioned in section 4.4. Fur-
thermore, EVE-NG also provide some ready to go images which can be used for
different purposes for instance Kali linux, and VirtualPC [95].

B.2.1 Uploading the disk images

Now that we have one IOU image for the Cisco switch and disk files .vmdk for
the Ubuntu, Windows virtual machine, after installing it on the VMware, we will
upload them to the EVE-NG, and then we will convert them to the .qcow2 format.
Additionally, the list of the images that EVE-NG supports can be found her [91].

The directories where the images will be uploaded are as follow [96]:

1 # Dynamips images goes here

2 opt/unetlab/addons/dynamips

3 # IOL or IOU images will be uploaded here

4 /opt/unetlab/addons/iol/bin

5 # QEMU images upload here

B.2. Import and usage of disk images in EVE-NG 75

6 /opt/unetlab/addons/qemu

Furthermore, the tool which is used by the group for uploading the images is
WinScp, however any other SFTP connection tool, such as FileZilla. can be used.
The setup of WinSCP can be seen in fig. B.4

Figure B.4: WinSCP Setup for uploading images

B.2.2 Convert the VMware disk image to a QEMU disk image

This section will now describe, how the group converted the VMware disk im-
age .vmdk of Cuckoo-FOG machine (UbuntuServer.vmdk) to (hda.qcow2, and
hdb.qcow2) with the help of the QEMU imaging utility. The steps described as
follows are also repeated to acquire .qcow2 image disk for Windows virtual ma-
chines[97].

• SSH to EVE-NG virtual machine with root access from PuTTY, and create a
directory with any name, for instance abc.

1 root@eve -ng:~# mkdir abc

2 root@eve -ng:~#cd abc

B.2. Import and usage of disk images in EVE-NG 76

• Upload the .vmdk image to the EVE-NG root/abc directory using WinSCP.

• Convert the .vmdk hard disk file to the .qcow2 format.

1 /opt/qemu/bin/qemu -img convert -f vmdk -O qcow2 UbuntuServer.vmdk hda

.qcow2

• Now, create another hard disk, as this will be used as a storage unit by our
VM.

1 /opt/qemu/bin/qemu -img create -f qcow2 hdb.qcow2 100G

• While working with QEMU disk images, it should be ensured that a direc-
tory with the image name in the image specific directory exists, see naming
convention [98].

1 mkdir /opt/unetlab/addons/qemu/esxi -Cuckoo

• Move the created files, i.e. hda.qcow2 and hdb.qcow2 to the recently created
directory.

1 mv hda.qcow2 hdb.qcow2 /opt/unetlab/addons/qemu/esxi -Cuckoo/

• Delete the directory abc, and fix the permissions accordingly, per the docu-
mentation.

1 /opt/unetlab/wrappers/unl_wrapper -a fixpermissions

The attributes of the created disk image hda.qcow2 can be seen below.

1 root@eve -ng:~# cd /opt/unetlab/addons/qemu/esxi -Cuckoo/

2 root@eve -ng:/opt/unetlab/addons/qemu/esxi -Cuckoo# qemu -img info hda.qcow2

3 image: hda.qcow2

4 file format: qcow2

5 virtual size: 100G (107374182400 bytes)

6 disk size: 34G

7 cluster_size: 65536

8 Format specific information:

9 compat: 1.1

10 lazy refcounts: false

11 refcount bits: 16

12 corrupt: false

B.3. Building and configuring the topology 77

B.3 Building and configuring the topology

At this point, the starting blocks for building the desired topology in EVE-NG
can be laid out. However, before diving deep into building the topology, and
configuring the end-devices, a Window client-side pack, provided by EVE-NG,
will be needed. This will install the necessary tools on the host machine in order
to communicate with end devices of the topology.

EVE-NG also provides a client-side pack for Linux, though the host machine for
this project is a Windows 10 machine. Therefore, the Windows client-side pack,
which includes tools such as UltraVNC, Putty, and Wireshark, will be installed.
[99]. Once it is installed, the group then pointed the browser of the host machine
to the IP address of the EVE-NG and log in with the default credentials admin:
eve, and the native console.

Once logged in to EVE-NG, navigate to Add new lab under File Manager to create
the lab. The name and description thereof can be added, and then swiftly saved.
see fig. B.5.

Figure B.5: Add new lab in EVE-NG

Building topology from the images that are uploaded to EVE-NG in the afore-
mentioned appendix B.2 is relatively straightforward. However, for illustrative
purposes, the process of adding an object or image for building the topology shall
be described below. The same steps can be repeated to add other disk images as
well. Firstly, a node containing the Cisco IOL switch image will be added.

• After saving the lab, right click in the empty grid and chose add a new node
tab.

B.3. Building and configuring the topology 78

Figure B.6: Add new node to the topology

• By selecting the node, we will see a long drop-down list of the templates
provided by the EVE-NG, which requires images from different vendors. We
can however use the templates, with our uploaded images. Here we select
Cisco IOL from the drop-down list, rename it and select the icon that we
want to reflect it with in the topology.

• Furthermore, we can see in fig. B.7, that we have added two Ethernet port-
groups of 4 interfaces each to the switch. This means we can add a total of 8
end devices to the switch.

B.3. Building and configuring the topology 79

Figure B.7: Adding switch node to the topology

• Similarly, we added the rest of the end devices in the topology and connected
them to the switch on different interfaces as show in fig. 4.1.

• subsequently, we also want to add a network interface in the topology, which
will connect to the cuckoo host machine, and will be used to provide internet
connectivity to the cuckoo host machine for installing and configuring the
cuckoo sandbox, its respective dependencies, and the FOG imaging server
respectively. This will take an IP address from the 192.168.45.0/24 NAT vNIC
of the VMware. As shown in fig. B.8

B.3. Building and configuring the topology 80

Figure B.8: Internet connectivity to cuckoo host machine

At this point, the topology is ready for configuration, initially, we will start con-
figuring the switch, which will work as the default gateway, and DHCP server for
both VLAN10, and VLAN20 as described in section 4.4.1. the group started the
switch by right click on the device and then click start, after starting the switch we
were able to get a telnet connection from the switch with SecureCRT application,
any other tool like Putty can also be used for this purpose.

Figure B.9: Getting telnet connection from the switch

After getting the telnet connection we need to know some of the Cisco commands,
the Cisco user interface is divided into many different modes for instance User
EXEC, Privileged EXEC, and Global configuration. Therefore the commands de-
pend on the mode in which the user is [100].

B.3. Building and configuring the topology 81

Once we are familiar with different modes, the following fig. B.10 will show the
configuration of the DHCP on the switch for VLAN10 and will also depict excluded
addresses, that we want to use for static purposes in our topology[101].

Figure B.10: Configuration of DHCP

Similarly, we also configured the DHCP for VLAN20. On top of that, the group
also segregated the network of the switch by creating two VLANS, VLAN10, and
VLAN20, following fig. B.11 depicts the show command results of the VLANS,
and DHCP configuration [102].

Figure B.11: Show command results for DHCP configuration

We are not allowing the two VLANs to communicate with each other, therefore
we did not configure the interVLAN routing between the VLANs. VLAN10 was
named Cuckoo and VLAN20 was named Kali. fig. B.12 shows how to create

B.3. Building and configuring the topology 82

VLANs on the switch.

Figure B.12: VLAN configuration on the switch

In the aforementioned diagram, we can see that all the interfaces are part of the
default vlan1.To make the end device part of the specific VLAN, each interface
port connected to the end-devices were configured to access the required VLAN
respectively. fig. B.13 shows how to configure a port as an access port in VLAN 10
[103].

Figure B.13: Configure a port as an access port in VLAN 10

Similarly, all the ports in the switch connected to different endpoints in the topol-
ogy were configured in their respective VLAN. Below we can see different ports
within their respective VLANS, for instance, Ethernet port 0/0 is connected to
Windows7-Hardened machine, Ethernet port 0/1 is connected to Windows-Weak
machine, and Ethernet port 0/2 is connected to Cuckoo-Fog machine, and they are
all part of the VLAN10 as show in fig. 4.1.

B.3. Building and configuring the topology 83

Figure B.14: Switch Port access to their respective VLANS

The last think to configure on the switch at this point is to configure the VLANs
interface for an IP address 192.168.10.1/24 on VLAN10, and 192.168.20.1/24 on
VLAN20, which will work as the default gateway for the VLANs respectively[104].
fig. B.15 shows the IP address configuration on VLAN10 switch interface.

Figure B.15: Configuration of the Switch VLAN Interface

At this stage, the configuration that the group wanted to do on the switch is now
done, all the configuration on the switch can be checked and confirmed with the
below command in the privilege EXEC mode of the switch.

1 Switch#show running -config

Finally, we need to save the running configuration on the switch, to the startup
configuration. We can do that with one of the following commands.

1 Switch#copy running -config startup -config

2 OR

3 Switch#write

B.4. Cuckoo Sandbox Setup 84

B.4 Cuckoo Sandbox Setup

This part of the report will now explain the process of installing, and configuring
the Cuckoo sandbox on the virtual machine reflected as Cuckoo-FOG in fig. 4.1,
which is an Ubuntu based VM. However, before diving deeper into the installation
and configuration of the Cuckoo sandbox, we first need to understand the network
configuration of the VM.

In fig. B.16 we can see that this VM has three interfaces:

• ens3 with IP address: 192.168.10.101/24, which is used to connect the VM to
the internal subnet of VLAN10, and will be configured to speak to the guest
VM running Windows 7, with the help of FOG imaging server.

• ens4 with IP address: 192.168.45.133/24, which is connected to the cloud,
and to the external NAT vNIC of the VMware machine. This will be used by
the machine to gain access to the internet for installation and configuration
purposes.

• loopback with IP address: 127.0.0.1/8, which is used to access the web inter-
face of the Cuckoo sandbox.

Figure B.16: Interfaces of Cuckoo-FOG virtual machine

B.4. Cuckoo Sandbox Setup 85

To start off with installing Cuckoo sandbox, the group has been through extensive
configuration of the Ubuntu VM in order to get cuckoo installed properly. As part
of Cuckoo, various tools have been downloaded and installed, for instance :

• Volatility for Forensic analysis on memory dumps

• YARA for Malware identification and classifications

• MongoDB for Database Management

• TCPDump for Network packet analyser

On top of that a cuckoo user was also created, which we did not used to log in
to, though is used by the cuckoo sandbox. The list of the installed dependencies
for Cuckoo can be found in the proof of concept code repository appendix D. For
installing these dependencies, the group got inspiration from [105].

After the installation of dependencies and tools that were needed for Cuckoo, the
group installed the sandbox itself, which can be installed in different ways [106].

1 #Checks for the requirements

2 pip install -U pip setuptools

3 #install the cuckoo sandbox

4 sudo -H pip install -U cuckoo

5 #create default directories

6 cuckoo

This installation will create different directories, in the path of Cuckoo Working
Directory(CWD).

In our case the CWD is on the default path, which is /home/cuckoo/.cuckoo. The
directories are used to store the results of the Cuckoo, configurable components,
and generated data by the analysis. Similarly the agent directory, which consists of
agent.py and agent.sh will be used to speak with the cuckoo guest machine. The
files, and directories includes the following [107], described in fig. B.17.

B.4. Cuckoo Sandbox Setup 86

Figure B.17: Directories created by cuckoo in the CWD

All the configuration files, that we will be configure to make cuckoo work properly
are in the directory $CWD/conf i.e $CWD/conf/cuckoo.conf, $CWD/conf/physical.conf
and so on. we configured these files as follows:

1 sudo nano .cuckoo/conf/cuckoo.conf

2 version_check = yes

3 #This will check physical.conf

4 machinery = physical

5 memory_dump = yes

1 sudo nano .cuckoo/conf/physical.conf

2 [physical]

3 machines = Win7 -Hardened ,Win7 -Weak ,Win7 -blind

4 #Credentials to access the guest machines

5 user = Hardened

6 password = Test123

7 #Default network interface.

8 interface = ens3

9 [fog]

10 hostname = 192.168.10.101

11 username = fog

12 password = password

13 [Win7 -Hardened] # Windows 7 Hardened

14 label = Win7 -Hardened

15 ip = 192.168.10.102

16 [Win7 -Weak] # Windows 7 Weak

17 label = Win7 -Weak

18 ip = 192.168.10.103

19 [Win7 -blind] # Windows 7 Blind

B.4. Cuckoo Sandbox Setup 87

20 label = Win7 -blind

21 ip = 192.168.10.104

1 sudo nano .cuckoo/conf/memory.conf

2 #Guest Machine

3 guest_profile = Win7SP1x86_64

4 delete_memdump = yes

1 sudo nano .cuckoo/conf/processing.conf

2 [memory]

3 enabled = yes

1 sudo nano .cuckoo/conf/reporting.conf

2 [singlefile]

3 # Enable creation of report.html and/or report.pdf?

4 enabled = yes

5 # Enable creation of report.html?

6 html = yes

7 # Enable creation of report.pdf?

8 pdf = no

B.4.1 Setting up the FOG project

This section narrates the installation and settings of the FOG Imaging server, also
known as FOG project as described in section 4.2. FOG imaging server or FOG
project is installed on the same Ubuntu machine, on which the group installed the
cuckoo sandbox.

Furthermore, the purpose of installing FOG is to have a way for cuckoo guest
machine to returned back to a clean state after the analysis. Initially, the group
installed and configured FOG project, v1.5.9. However, Cuckoo only supports
some specific version i.e., 1.3.4 and 1.4.4 [108]. To install and configure FOG project
the following steps were taken.

• Download the FOG project v1.4.4 or 1.3.4 with wget from FOG project website
[109]

• Now change to Downloads directory and unzip the file.

1 accessgroup@CuckooPC :~#cd Downloads/

2 accessgroup@CuckooPC :~#tar -zsvf fog_1 .4.4. tar.gz

B.4. Cuckoo Sandbox Setup 88

• Now change to the unzip directory and then to bin directory within fog_1.4.4,
and run the file installfog.sh, as shown below in fig. B.18.

Figure B.18: Installing FOG Project

• The FOG project installation will now ask for some settings, for instance,
server IP address for FOG server,which is 192.168.10.101/24, the Interface
that we wanted to use is ens3, the setting can be configured depending upon
the requirements, and setup that one would like to use [110]. In our case, the
settings can be seen in fig. B.19.

Figure B.19: settings of the FOG imaging server

• With the settings of the FOG, we can also see a message about setting up of
the DHCP options, i.e. option 066, and option 067 need to be configured on
the DHCP server. The DHCP server in our case is Cisco switch, which will
be configured for these options later on.

• Once the installation is completed. FOG sever can be access through the
following IP. see fig. B.20

B.4. Cuckoo Sandbox Setup 89

Figure B.20: FOG management portal information

• At this point, the FOG imaging server is installed, and ready to take an image
from the physical machines. Hence we will now setup our physical machines,
and image them with the help of PXE network boot.

B.4.2 The physical machines

This section describes the configuration of the Windows 7 VMs as depicts in fig. 4.1,
These machines are . Since we will configure this machine as a cuckoo guest
machine, and as a separate entity on the network. This is therefore refer to as a
physical machine. Which can be deployed in a real network. In our case, we will
configure it in an emulated corporate network infrastructure, and we will also use
the term physical machines [83].

Each machine is named in accordance with the artefacts they provide to the mal-
ware, and access to the network within the topology.

• Win7-Weak machine without anti-evasion techniques, plus network access

• Win7-Blind machine without anti-evasion techniques plus without network
access

• Win7-Hardened machine with anti-evasion techniques, plus network access

The following changes are made to all of the three machine, Which are required by
the cuckoo host machine to communicate with them.

• Python : Allows the agent to run and collect data from the physical machine

B.4. Cuckoo Sandbox Setup 90

• Pillow (Python Imaging Library) : This adds capability to the python to take
snapshots, and is used to take snapshots from the physical machine desktop.

• Cuckoo Agent - older version : Allows the VM to send data back and forth to
the Cuckoo host machine. We used the older version of cuckoo agent, because
only this version works with physical machine. The agent file is a Python
script, which should be executed upon startup. This ensures that the Cuckoo
host machine can communicate with the guest. The file is placed in the
following directory, allowing it to launch when the user account Hardened
is logged in to.

1 C:\Users\$USERNAME$\AppData\Roaming\Microsoft\Windows\Start Menu\

Programs\Startup

• Enable auto-logon (Allows for the agent to start upon reboot)

• Enable Remote RPC (Allows for Cuckoo to reboot the sandbox using RPC).
This can be achieved by running the following commands in cmd as admin.

1 reg add "hklm\software\Microsoft\Windows NT\CurrentVersion\WinLogon"

/v DefaultUserName /d Hardened /t REG_SZ /f

2 reg add "hklm\software\Microsoft\Windows NT\CurrentVersion\WinLogon"

/v DefaultPassword /d Test123 /t REG_SZ /f

3 reg add "hklm\software\Microsoft\Windows NT\CurrentVersion\WinLogon"

/v AutoAdminLogon /d 1 /t REG_SZ /f

4 reg add "hklm\system\CurrentControlSet\Control\TerminalServer" /v

AllowRemoteRPC /d 0x01 /t REG_DWORD /f

5 reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

\Policies\System" /v LocalAccountTokenFilterPolicy /d 0x01 /t

REG_DWORD /f

6

Physical machine: Win7-Weak

The win7-Weak machine is left with the default aforementioned configuration, the
default gateway, and the DNS are set to the switch IP instead of the host machine
IP address, allowing it to send traffic to the network.

1 IP Address: 192.168.10.103

2 Subnet Mask: 255.255.255.0

3 Default Gateway: 192.168.10.1

4 Primary DNS: 192.168.10.1

B.4. Cuckoo Sandbox Setup 91

Physical machine: Win7-Blind

The win7-blind machine has also the aforementioned configuration. However, to
isolate it from the network the following configuration was added to the switch
in order to make it communicate only with the host machine, without having any
interaction with the network. This is achieved through the VLAN Access Control
list and VLAN access map by configuring them in the switch’s global configuration
mode. This will make Win7-blind to see only cuckoo host machine and not other
machine on the network [85].

1 ip access -list extended blind -cuckoo

2 permit ip host 192.168.10.104 host 192.168.10.101

3 exit

4 ip access -list extended blind -vlan

5 permit ip host 192.168.10.104 192.168.10.0 0.0.0.255

6 exit

7 vlan access -map vacl1 10

8 match ip address blind -cuckoo

9 action forward

10 exit

11 vlan access -map vacl1 20

12 match ip address blind -vlan

13 action drop

14 exit

15 vlan access -map vacl1 30

16 action forward

17 exit

18 vlan filter vacl1 vlan -list 10

19 exit

Code B.1: VLAN Access Control list

Additionally, the default gateway and the DNS for the machine are set to the host
machine IP. which can be seen as follows.

1 IP Address: 192.168.10.104

2 Subnet Mask: 255.255.255.0

3 Default Gateway: 192.168.10.101

4 Primary DNS: 192.168.10.101

Physical machine: Win7-Hardened

With the default configuration, the group also implemented some anti-evasion
tools on this machine to make it difficult for the malware to detect if it is run-
ning in a virtual environment. The tools used by the group are as follows:

B.4. Cuckoo Sandbox Setup 92

Pafish Pafish is a tool that detects the virtual machine or malware analysis envi-
ronments with different techniques that malware usually uses to see them. Pafish
can be downloaded from here [72]. The process of installing them on the hardened
machine and then rectifying the artefacts from the machine is straightforward [44].
Additionally, the group could not remove all the artefacts from the machine since
every tool looked for different artefacts for a virtual machine, and some of them
were not possible to be mitigated.

However, following we will show the results of Pafish before see fig. B.21 and after
the mitigation of the artefacts see fig. B.22.

Figure B.21: Pafish detecting artefacts before mitigation

In the aforementioned figure, we can see that Pafish has detected all the artefacts on
hardened machine using different techniques described in chapter 3. The following
figure will now show the results after mitigating these artefacts.

B.4. Cuckoo Sandbox Setup 93

Figure B.22: Pafish detecting artefacts after mitigation

Al-Khaser v0.81 is another tool and a proof of concept, which performs different
malware tricks in order to see if the system can be flagged as a sandbox envi-
ronment or not. The source code and the artifacts it looks for, can be found here
[73].

This tool uses a bunch of malware techniques, which are used by the malware au-
thor in the wild to detect whether a malware is running in the virtual environment,
to name some of the techniques that it uses are anti-debugging, emulation, sand-
box detection, and Anti-virtualization. However, among all the detection, for our
project the detections that we are interested in are the anti-vm detection, and anti
sandboxing detection. Since this tools produces a huge report and it would not be

B.4. Cuckoo Sandbox Setup 94

feasible to include all the results that it generates. the group will show the result,
which are deemed important to the project. Furthermore, it was also not possible
to remove all the artifacts, that Alkhaser found on the machine, for instance it was
difficult for the group to remove the fingerprinting of CPU voltage.

Figure B.23: AlKhaser detecting artefacts before mitigation

Every single the artifacts that are found by Alkhaser, is then mitigated or removed
by the group. Hence following is the results of Alkhaser after mitigation of the
artifacts.

B.5. Capture an image at FOG 95

Figure B.24: AlKhaser detecting artefacts after mitigation

SEMS: Anti-Sandbox and Anti-Virtual Machine Tool

In order to evade analysis, modern malware authors supply anti-analysis tech-
niques to the malwares. SEMS is a tool which is also like the other above mentioned
tools uses these techniques to find out, and detect if it is running in a controlled
environment. In our project, since we have already mitigated most of the artifacts,
this tool is used to confirm and verify those changes. The tool can be found here
[74]. Following are the results of the tool, which can only detect that the agent of
cuckoo is running and can detect cuckoo or the sandbox, however, it is not able to
detect any sort of virtual machine environment.

Figure B.25: SEMS detecting artefacts after mitigation

B.5 Capture an image at FOG

With the above mentioned tools and configurations for the physical machines. The
physical machines are now ready to be imaged on the FOG imaging server, which

B.5. Capture an image at FOG 96

will then be used by the cuckoo host to restart these machines to a clean slate after
the analysis. The next step is to register the images of the above machines at FOG
imaging server.

Furthermore, before registering the image at FOG, we will configure the DHCP
option 066, for the IP of the TFTP, and option 067 for the file on the default gateway
i.e Cisco Switch, from which the physical machine will boot through network. This
is done as follows [111].

1 ip dhcp pool VLAN10

2 network 192.168.10.0 255.255.255.0

3 dns -server 192.168.10.1

4 option 66 ip 192.168.10.101

5 option 67 ascii undionly.kpxe

6 default -router 192.168.10.1

B.5.1 Registering the machine at FOG

Now that the FOG imaging server, and the physical machines are ready. It is time
to capture the images from the physical machines. We can use a single image for
all three of the machines, which can be used to start the machine to a clean slate
from, after the analysis.

However, in our project we are using all three machines with different configu-
rations and we want to see the impact of malware on each of these machines.
Hence we will capture images from all three physical machines. Following we will
describe the process of capturing image from one machine, The same process is
repeated for the other two as well. To capture the image, First we want to boot the
machine from the network, and register it in the FOG [112].

To boot the physical machine from the network, initially the group changed the
boot order of the QEMU image, by right clicking on the node and then clicking
edit. where we then changed the boot order in QEMU custom options as shown
below [113].

1 -machine type=pc,accel=kvm -cpu host ,+pcid ,+ kvm_pv_unhalt ,+kvm_pv_eoi ,

hv_spinlocks =0x1fff ,hv_vapic ,hv_time ,hv_reset ,hv_vpindex ,hv_runtime ,

hv_relaxed ,hv_synic ,hv_stimer -vga std -usbdevice tablet -boot order=

nd #bootorder

2 -drive file=/opt/qemu/share/qemu/virtio -win -drivers.img ,index=1,if=floppy ,

readonly

As QEMU uses -boot options to specify the boot order of the drives, for instance

B.5. Capture an image at FOG 97

-boot order=ndc first tries to boot from the network, then from the first CD-ROM
and finally from the harddisk. Here we changed it to the network and then hard-
disk. However, as soon as we restarted the machine, it would change the boot
order again to the default boot order which was -boot order=cd. Hence we wanted
to permanently boot the machine t from the network as the first option.

In Eve-NG every node has a template file that will specify the startup parameters,
we changed the boot order in the parameters of the windows machines to -boot
order=nc [114].

1 root@eve -ng:/opt/unetlab/html/templates/intel# sudo nano win.yml

2 type: qemu

3 description: Windows

4 name: Win

5 cpulimit: 1

6 icon: Desktop.png

7 cpu: 1

8 ram: 4096

9 ethernet: 1

10 console: vnc

11 shutdown: 1

12 qemu_arch: x86_64

13 qemu_version: 4.1.0

14 qemu_options: -machine type=pc,accel=kvm -cpu host ,+pcid ,+ kvm_pv_unhalt ,+

kvm_pv_eoi ,hv_spinlocks =0x1fff ,hv_vapic ,hv_time ,hv_reset ,hv_vpindex ,

hv_runtime ,hv_relaxed ,hv_synic ,hv_stimer

15 -vga std -usbdevice tablet -boot order=nc -drive file=/opt/qemu/share/

qemu/virtio -win -drivers.img ,index=1,if=floppy ,readonly

Through this change, the physical machine will now first look for a network boot
task, if FOG has a task for it, it will boot from the network otherwise it will start
from the harddisk. Now that the machine can start from network its time to turn
it on, and register the machine at FOG server.

In fig. B.26 we can see physical machine starting from the network. Once it starts
from network we will be greeted with a FOG menu see fig. B.27, though which we
can quick register the desire machine at the FOG.

B.5. Capture an image at FOG 98

Figure B.26: Physical machine booting from Network

Figure B.27: FOG boot menu

We can see that the physical machine is not registered from the above menu. This
tells us that the physical machine is not known by FOG Server. By choosing the
quick registration and inventory we can register the physical machine in the FOG.
To capture the image, we must first register the machine into the FOG.

Once the machine is registered, we will rename the image to win7-Hardened and
assigned it to a host. The process is repeated for all the three Windows 7 machines
[112].

Once the image is assigned to a host named Win7-Hardened, Next we will create
a new task in the FOG server for this machine to capture an image from it, while
it starts from the network.In the following fig. B.28, an image captured from a

B.5. Capture an image at FOG 99

Win7-Hardened machine can be seen.

Figure B.28: Capturing image from Win7-Hardened

After Capturing the image from all the three machine on FOG server, we are ready
to send malware to each machine by spinning cuckoo and the cuckoo web server.
Below fig. B.29 shows three images captured from all three machine in the topology.

Figure B.29: Captured images in FOG from all three machine

At this point, all three machines are ready to be used as cuckoo guests. Next, we

B.6. Dionaea - Setting up a Honeypot 100

will install and configure Dionaea honeypot to see, if it can capture the malware
interacting in the local network.

B.6 Dionaea - Setting up a Honeypot

In this section of the report, we will go through the installation and the configura-
tion of a honeypot application named Dionaea. Dionaea is usually used to capture
the malware that interacts with its exposed network services. It is recommended
to be used on a public IP, however, it can also be used in a local network for testing
purposes.

In our project, we ran this honeypot on a node in the EVE-NG topology, to see if the
malware that runs in the cuckoo guest machine does interact with the honeypot.
For this purpose, we installed Dionaea in both VLANs, i.e VLAN10 and VLAN20.
the source code and the protocols, which Dionaea offers can be found at [115].

The requirements for installing Dionaea honeypot are Ubuntu 18.0 LTS, and Python
Runtime 3.9 as recommended [69]. The process of installing and converting the
Ubuntu machine is described in appendix B.2.2. This installation can also be done
by uploading the .ISO file of the Ubuntu to EVE-NG [95].

Once the image is uploaded, this Ubuntu machine which is named as Dionaea-10,
is then connected to the Internet by attaching it to the Cloud in fig. 4.1.

Once the machine is up and running, the following steps were taken in order to
install Dionaea.

1 Sudo apt update && upgrade -y

2 git clone https :// github.com/DinoTools/dionaea.git

3 cd dionaea

Hereafter the required dependencies were install by.

1 sudo apt -get install \

2 build -essential \

3 cmake \

4 check \

5 cython3 \

6 libcurl4 -openssl -dev \

7 libemu -dev \

8 libev -dev \

9 libglib2.0-dev \

10 libloudmouth1 -dev \

11 libnetfilter -queue -dev \

B.6. Dionaea - Setting up a Honeypot 101

12 libnl -3-dev \

13 libpcap -dev \

14 libssl -dev \

15 libtool \

16 libudns -dev \

17 python3 \

18 python3 -dev \

19 python3 -bson \

20 python3 -yaml \

21 python3 -boto3 \

22 fonts -liberation

Once all the dependencies were installed, we then created a build directory and
run cmake to setup the build process.

1 mkdir build

2 cd build

3 cmake -DCMAKE_INSTALL_PREFIX:PATH=/opt/dionaea ..

Lastly, we run make to build and run make install to install the honeypot.

1 make

2 sudo make install

The honeypot is now installed and can be found in the directory

1 /opt/dionaea

Now that honeypot is installed we wills start the honeypot by

1 /opt/dionaea/bin/dionaea

At this point, the honeypot is up and running. Now we will move this machine to
VLAN10 and will assign an IP to it through DHCP of the Cisco Switch.

Furthermore, we will leave the configured service as default, since we are not
checking any specific services, and we want to see if any of the services are con-
tacted by the malware. if any of the services is contacted, we can see it in the
Dionaea log file.

Additionally, we wanted to run the Dionaea process to run as a system service
in the background as this machine will be stopped and started while doing the
malware analysis. For this purpose, We created a file in [70].

1 sudo nano /etc/systemd/system/dionaea.service

B.6. Dionaea - Setting up a Honeypot 102

and then we pasted the dionaea binary in the file in order to make it easy to manage
the dionaea service.

1 [Unit]

2 Description = making network connection up

3 After = network.target

4 [Service]

5 ExecStart = /opt/dionaea/bin/dionaea

6 [Install]

7 WantedBy = multi -user.target

Now we will enable the service by and we can check that the service active and
running.

1 sudo systemctl enable dionaea.service #Enable the dionaea service at the

boot

2 sudo systemctl start dionaea.service # Starts the dionaea service

3 sudo systemctl stop dionaea.service # Stop the dionaea service

4 sudo systemctl status dionaea.service # To check the status of the service

let’s now confirm that the service is up and running. see fig. B.30

Figure B.30: Dionaea honeypot service up and running

To check the protocol and service that it is offering. see fig. B.31

B.6. Dionaea - Setting up a Honeypot 103

Figure B.31: Ports on which Dionaea is listening

In the technical setup we have now configured all the nodes in the Topology fig. 4.1.
The platform is now ready to be used and the malware can be sent to analysed in
the topology.

Appendix C

List of malware binaries

Below, a table can be found containing a list of all the malware binaries we have
used during this project. They have been split into colors based on their category,
to allow for an easier overview.

Dionaea1 and Dionaea3 are instances of the WannaCry malware, while Dionaea2 is a
coin miner malware, as can be seen by looking up their hashes on platforms such
as VirusTotal.

104

105

Table C.1: A list of all malware binaries tested throughout the course of this project

Malware alias File name / hash
Botnet1 Conficker7.exe
Botnet2 IRCBot5.exe
Botnet3 Cutwail4.exe
Botnet4 Zeus6.exe
Botnet5 Zeus1.exe
Trojan1 LoadMoney1.exe
Trojan2 Tapaoux.exe
Trojan3 Sinowal.exe
Trojan4 Sality.exe
Trojan5 Hupigon.exe
Various1 Keylogger-Ardamax.exe
Various2 KRLocker/CrimClient.exe
Various3 SkyWiper-A.Flame - <hash>advnetcfg.ocx
Various4 CryptoLocker 2014 - 1002.exe
Various5 Artemis - install.exe
Various6 njRAT.exe
Various7 PlugX.exe
Various8 Variant Kazi - 21.exe
Various9 ZeroAccess - zeroaccess_porn.avi.exe
Various10 Carberp/AAA.exe
Various11 Win32.InfoStealer.Dexter - win33.exe
Dionaea1 017f63d0be693e53bc5b8edd426cfbd1
Dionaea2 fcb6b0f95853dfda72d5535a424b3a29
Dionaea3 02c5f1515bf42798728fac17bfe1e4c1

Appendix D

Malware reports and source code

The source code portions of this project, any scripts and so on, can be found on the
following link, as a GitHub repository: https://github.com/n3xtd00rpanda/Netwo
rkSandboxScripts

A link to most of the malware reports and binaries — some have been stripped
due to Google Drive’s auto-scan feature — can be found here:

https://mega.nz/folder/wttGlRZa#e3xUPxTCzDW6ZCrYXgH8dQ

106

https://github.com/n3xtd00rpanda/NetworkSandboxScripts
https://github.com/n3xtd00rpanda/NetworkSandboxScripts
https://mega.nz/folder/wttGlRZa#e3xUPxTCzDW6ZCrYXgH8dQ

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Contributions

	2 Preliminary Analysis
	2.1 Introduction
	2.2 Malware explained
	2.2.1 Background
	2.2.2 Types of malware
	2.2.3 Real-life examples

	2.3 Static and dynamic analysis
	2.4 Automatic and manual
	2.5 Overview of sandboxing and its hypervisors
	2.5.1 Hypervisors
	2.5.2 Sandboxing tools

	2.6 Summary

	3 Dynamic Analysis Evasion Techniques
	3.1 Introduction
	3.2 Related work
	3.3 Advantages and drawbacks
	3.4 Dynamic manual analysis evasion techniques
	3.4.1 Probing for system artefacts
	3.4.2 Search for breakpoints
	3.4.3 Analyzing the Process Environment Block

	3.5 Dynamic automatic analysis evasion techniques
	3.5.1 Hardware-based fingerprinting
	3.5.2 Application- and position-based fingerprinting
	3.5.3 Network-setup-based fingerprinting
	3.5.4 Other techniques used to evade sandboxes

	3.6 Summary

	4 The Tools, Requirements and Process
	4.1 Introduction
	4.2 Motives behind the selected tools
	4.3 The requirements
	4.3.1 Virtual network connection types
	4.3.2 The chosen network connection type

	4.4 The process
	4.4.1 The network infrastructure

	4.5 Summary

	5 Architecture
	5.1 Introduction
	5.2 Setting up
	5.2.1 Setting up VMWare Workstation Pro 16
	5.2.2 The requirements for EVE-NG

	5.3 The tools and their role
	5.4 The Topology
	5.4.1 The physical machines

	5.5 Summary

	6 System Testing and Malware Analysis
	6.1 Introduction
	6.2 Finding and sorting malware
	6.3 The hypothesis
	6.4 The results
	6.5 Analyzing the results
	6.6 Confirming the hypothesis
	6.7 Summary

	7 Project outlook
	7.1 Getting FOG to work, integrating it and Cuckoo into the network topology
	7.2 Certain things being more time consuming than initially expected
	7.3 Inconsistencies in the VM's behavior and matched Cuckoo signatures
	7.4 Cuckoo not allowing memory dumps for physical machines
	7.5 Re-imaging being very time consuming
	7.6 Acquiring the binary files for Al-Khaser
	7.7 The lack of simulated network traffic via INetSim

	8 Conclusion
	8.1 Future directions
	8.2 Contributions

	Bibliography
	A Thesis contract
	A.1 The workflow and communication

	B Technical setup
	B.1 EVE-NG VM Setup and Settings
	B.2 Import and usage of disk images in EVE-NG
	B.2.1 Uploading the disk images
	B.2.2 Convert the VMware disk image to a QEMU disk image

	B.3 Building and configuring the topology
	B.4 Cuckoo Sandbox Setup
	B.4.1 Setting up the FOG project
	B.4.2 The physical machines

	B.5 Capture an image at FOG
	B.5.1 Registering the machine at FOG

	B.6 Dionaea - Setting up a Honeypot

	C List of malware binaries
	D Malware reports and source code

