
Investigation and
implementation of adaptive

workplace restrictions for the
KUKA LBR iiwa

Master Thesis
Antonio Aranzana Sánchez

Aalborg University
Department of Electronic Systems

Copyright © Aalborg University 2022

Here you can write something about which tools and software you have used for typesetting
the document, running simulations and creating figures. If you do not know what to write,
either leave this page blank or have a look at the colophon in some of your books.

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Investigation and implementation of adap-
tive workplace restrictions for the KUKA
LBR iiwa

Theme:
Control and vision

Project Period:
Spring Semester 2022

Project Group:
1067d

Author:
Antonio Aranzana Sánchez

Supervisors:
Dimitris Chrysostomou
Sebastian Hjorth

Page Numbers: 51

Date of Completion:
June 2, 2022

Abstract:

This project is aimed on providing a
adaptive solution for an already work-
ing 7 degree of freedom redundant se-
rial manipulator controller proposed in
the previous work of a student of AAU
in [1]. The industrial manipulator is the
KUKA LBR iiwa, for which the solution
has been tested out in the actual manipu-
lator in the laboratory. The robot’s kine-
matics and dynamics are modeled based
on the screw theory [2] and controlled by
an energy-aware impedance control [3].
This project presents an advanced ar-
chitecture for the implementation of vir-
tual limitations in its controller. The
new procedure is based on the analysis
of entire 3D models with the use of a ro-
bust multi-plane segmentation algorithm
[4]. Those planes are then inserted into
the software to create the relevant con-
straints. The current project has proven
the possibility of restricting entire areas
to the manipulator successfully.

The content of this report is freely available, but publication (with reference) may only be pursued due
to agreement with the author.

http://www.aau.dk

Acknowledgements

I would like to take this opportunity to give special thanks to my thesis supervisor
Dimitris Chrysostomou, who’s an associate professor at Aalborg University and has
developed my interest into robotics manipulation and control during my studies in the
master. He has also helped me developing and writing the current project along with
Sebastian Hjorth, a PhD fellow at AAU I also thank enormously as he has taught me
the principles of its control implementation strategy on the manipulator and helped me
whenever I had a question regarding his implementation, any bug that I encountered
on the way and with my own application.

I would also like to thank the closest ones, specially my parents, who have given me
the opportunity to not only study abroad but supported me in every decision I made.
Also, I thank my girlfriend, who’s been side by side in every up and down during the
entire master. I would like to acknowledge my sister, the beautiful people I had met in
Denmark and my friends in Spain, who have never forgotten me no matter how less did
we see each other.

Thank you.

v

Abstract

This project is aimed on providing a adaptive solution for an already working 7 degree
of freedom redundant serial manipulator controller proposed in the previous work of a
student of AAU in [1]. The industrial manipulator is the KUKA LBR iiwa, for which the
solution has been tested out in the actual manipulator in the laboratory. The robot’s
kinematics and dynamics are modeled based on the screw theory [2] and controlled by an
energy-aware impedance control [3]. Similarly to the suggested approach on Cartesian
restrictions revised in [1], this projects presents a different architecture for the virtual
limitations in its software. This new procedure is based on the analysis of entire 3D
models with the use of a robust multi-plane segmentation algorithm [4] which extracts
the planes of a point cloud on different scales depending of the application. In the end,
those planes are inserted into the software to create the relevant constraints. As it was
already proved to be possible to restrict the Cartesian and joint workspace of such a
serial manipulator, the current project goes a step further into the implementation of
entire entities restricting the workspace.

vii

Preface

This report was written in the spring of 2022 by Antonio Aranzana Sánchez, and it
describes his Master Thesis on behalf of the Electronics and IT study department at
Aalborg University. The project refers to the study and implementation of an adaptive
solution for the integration of virtual restrictions into the controller of an industrial
manipulator. In order to understand the work presented, knowledge in Linear Algebra,
Calculus, manipulator modeling, Control and Computer Vision is required.

In the thesis, the KUKA LBR iiwa robotic manipulator has been modeled and its
impedance control tested on the real manipulator to its use, everything coded in C++
language with the use of the Fast-Research-Interface library from KUKA. The KUKA
LBR iiwa specific data such as the Inertia Tensor, link masses, center of mass, has
been extracted from the URDF provided in a free available repository found in https:
//github.com/kuka-isir/iiwa_description. The 3D models that serve as constraint
entities in the controller were created as meshes in CloudCompare and its point cloud
was generated in the same software with a density of 1 million points. A multi-plane
detection algorithm [4] coded in C++ was used and various scripts in python and C++
were created on top for the combination of both the controller and the planes extracted
from the model.

Antonio Aranzana Sánchez Aalborg University, June 1, 2022

viii

https://github.com/kuka-isir/iiwa_description
https://github.com/kuka-isir/iiwa_description

Nomenclature

qi/q
i

Joint bounds applied to each of the joints of the manipulator

τT Total torque values calculated from the joints and wrenches

H0
i Homogeneous transformation matrix of the ith link based on the 0 reference

frame

ξb Twists displacements of a body represented as a column vector

AdHf
b

Adjoint homogeneous transformation matrix between the body and the inertial
reference frame

p(t) Trajectory of a link of a serial manipulator

pfb Coordinates of a point relative to the inertial reference frame

qi,J Threshold distance at which the joint limitations activates

qi Joint position ∈ R

Rfb Rotation matrix of a body link relative to the fixed reference frame

Sb Body link reference frame

Sf Inertial/fixed reference frame

T (x) Transformation matrix from Rn to Rm dependent of x

ix

Antonio Aranzana Sánchez Nomenclature

W b,bT

C Wrench that is to be applied to repel a specific link from a constraint

x

Table of Contents

1 Introduction 3
1.1 Problem Analysis . 4
1.2 State of the Art . 5
1.3 Report structure . 7

2 Robot modelling and control 8
2.1 Mathematical model . 8

2.1.1 Kinematics . 8
2.1.2 Dynamics . 12

2.2 Reactive control . 13
2.2.1 Cartesian constraints . 14
2.2.2 Damping injection . 16
2.2.3 Joint limit avoidance . 17

2.3 Controller architecture . 18
2.4 Constraints definitions in space . 19

2.4.1 Plane detection algorithms . 20

3 Model study 22
3.1 Virtual Walls . 22

3.1.1 First iteration: individual walls 23
3.1.2 Second iteration: 3D model . 24

3.2 Plane detection onto the model . 25
3.2.1 Data processing . 25
3.2.2 Topological analysis . 26

3.3 Overall software structure . 27
3.4 Curved constraints solution . 28

4 Model Validation 30

1

Antonio Aranzana Sánchez Table of Contents

4.1 Testing environment . 31
4.2 Simple collision tests . 32

4.2.1 Results evaluation . 40

5 Conclusion and Future Work 42
5.1 Discussion . 42
5.2 Future Work . 43
5.3 Conclusion . 44

Bibliography 48

A Implementation 49

2

Chapter 1

Introduction

The industry of industrial manipulators has grown over the years as they enable per-
forming various tasks that may be unsuitable for humans workers or harder for other
robotics solution. These type robotic applications can easily reduce the labor costs - in
comparison to a human worker, increment the work-safety - as it decreases the risk of a
person to suffer from injury, maximize the speed of manufacturing or reduce the cycle
time [5] among other pros.

It is a common believe that the robots are meant to take the work away from laborers
in the production line, but this is far from reality. Indeed, robotic manipulators applied
in the industry try maximize the production without replacing the workers in the pro-
duction chain. Rather than that, they have co-existed for years; this mechanical units
that share a workplace environment and develop their tasks along with human workers
have been named Collaborative robots (co-bots). This type of robots are one of the
most growing applications of the automatic applications in the industry [6]. However,
they are also one of the most restrictive applications as for what has to be with the
requirements to fulfill, as it can be seen in ANSI/RIA R15.06-1999 (R2009) or ISO
10218-1-2007 as examples.

Collaborative robots need to be as safe or safer than any other process in the production
line. Therefore, it has always been looked for the most suitable station for the robotic
manipulator. Normally, these manipulators count on fences and walls that limit the
environment surrounding and thus, the reachable space of the robot arm. For the
current report, the manipulator of study will be the KUKA LBR iiwa seen in Figure
1.1, a 7 degrees of freedom manipulator used in collaborative scenarios and difficult

3

Antonio Aranzana Sánchez Chapter 1. Introduction

assembly tasks.

1.1 Problem Analysis
The capacity of the industrial manipulators of behaving in a specific way taking into
account the electronics, mechanical aspects and the physics applied on themselves and
their surroundings is given by the control strategy implemented. Due to the nature of
the robotic manipulators of being able of reaching, commonly, various meters in a 360º
circumference around their base, a proper control scheme capable of reacting to the
continuous changing environment is crucial.

Fig. 1.1: KUKA LBR iiwa 1. Robotic manipulator of study of the current project.

In the literature, one of the most studied applications for the control strategies in ma-
nipulators are the reactive control designs, that can affect the behaviour of the robotic
manipulator when it encounters an object in its trajectory or if any unwanted inter-
action takes place [7], [8]. Essentially, they react to actual collisions and stimulus in
real-time. This strategies combined with the correct system design may enable the se-
rial manipulator be aware of its are of reach and react accordingly to the unpredictable
environment.

A good example of application for the combination of a reactive control such as an
impedance control [9], with the addition of predefined restrictions in space to avoid
known collisions has been studied previously, and would be the base and project of

1https://www.kuka.com/en-de

4

1.2. State of the Art Aalborg University

���������������

���������������

������������

Fig. 1.2: Use case scenario for the virtual limitation in the manipulator’s workspace. Extracted from
[1].

reference for the current study [1]. The study emphasises en on the idea of restricting
the Cartesian workspace so that the manipulator can be established in an already defined
work station, making the mechanical unit adapt to its environment without the need
of modifying the machinery nor the conditions of its adjacent space. With this idea
in mind, this report focuses on the study and implementation of an adaptive solution
for such an application, resolving on the side effect of the application demanding a
study of the environment and its actual implementation on the control software. At the
same time, a draft algorithm for the implementation of curved constraints is proposed,
improving the overall robustness of the system.

1.2 State of the Art
As mentioned above, collaborative robots play a huge role in the industry. Therefore,
along with this increase of use of such a unit, many studies dig deep into the research
of minimising the collision-effect of the manipulator against the environment [7], or
different solutions such as avoiding the obstacle that the robot arm would collide with
[10] for a given trajectory.

These researches have in common planning trajectories and resolving on the different
stated collision issues on predefined space. However, they are not suitable for real-time
manipulation of the robotic arm, either programmatically or by teaching. For instance,
if a worker would need to manipulate the unit to a desired position, the robot would only
know how to avoid a specific obstacle blocking the trajectory the robot was programmed

5

Antonio Aranzana Sánchez Chapter 1. Introduction

to do, and thus, the new trajectory would need to be specified along with the obstacles
on it in the proposed space. For any other application, the robot would fail into not
colliding to a determined space.

Specifically, the control of the robotic manipulators happens in most cases as a single-
input-single-output (SISO) systems, and for the handling of multi-input-multi-output
(MIMO) systems such as robots, complex neural networks and fuzzy logic approximators
are to be used. For instance, an interesting work presented in [11] addresses a solution for
manipulator with unknown dynamics or motion constraints. But neural networks and
other machine learning approaches do not normally apply alone and present themselves
in combination with other schemes, such as Model-Predictive-Control (MPC).

Some studies rely on ultrasound sensors, force resistors, cameras or other solutions such
that the application becomes context-aware and in advance, is able to behave according
to the changing environment. For example, in [12] an MPC solution is also used utilising
the response time of a worker when using a robot interface along with the time it took for
him to complete the task or the number of clicks done in the interface, then controlling
the system based on the external studied interactions in between the application and
the human worker.

Concerning its application on obstacle-avoidance or control limitations specifically, the
work of Shane et al. [13] also based on Model Predictive Control demonstrate on the
ability of collision avoidance for simple motions while taking into account for specific
known parameters of the obstacles, in which case are spheres and thus, they analyse the
cost function of the MPC for the balls radius. This study though is rather specific for
the type of obstacle analysed.

Others such as [14], [15], [16] combine context-aware strategies with the use of cameras
and depth sensors for the study of Human Robot Interaction (HRI) safety avoidance
techniques, adapting the manipulators trajectory based on sensors inputs. On the same
path, [17], [18] limit the robotic arm planned or guided movements with the implemen-
tation of repulsive force fields and admittance control strategies respectively, achieving
high-end solutions to maintain the robotic manipulator away from restricted areas.

While these strategies present a reasonable improvement of the control schemes in the
devices, none of the studies in the literature show an efficient control system for already
known restricted areas, which at the same time is inexpensive and suitable for a higher
degree-of-freedom manipulator and for any trajectory or application of use at the same
time. The research in [19], [20] investigates the last mentioned application while impos-
ing both static and moving Cartesian restrictions onto the manipulators end-effector on
top of the control strategy. Additionally, the work presented in [1] goes further into the
investigation of the manipulators energy exchange with its environment, ensuring the

6

1.3. Report structure Aalborg University

robots stability and safety.

This last control strategy [1] would be the base for the current project as it presents
itself as the most powerful application of all the ones studied in literature, plus it is also
the one most suitable to restrict common areas at a higher level approach.

1.3 Report structure
The current section will briefly define how is the document structured in case the reader
consider skipping to a relevant section. The report has been divided into chapters, each
chapter extending on different but related topics:

• Chapter 2: This chapter revises on the basis calculus concepts for the control of
the KUKA LBR iiwa as well as the previous research done regarding the power-
aware-impedance control used. Moreover, some concepts on plane detection for
the constraints implementation are showed.

• Chapter 3: The main work of the master thesis is detailed. Two iterations were de-
veloped but only the second one explained in the chapter will be analysed further.
Also, a draft algorithm for different surfaces than planes is described.

• Chapter 4: The validation of the model is conducted in Chapter 4 with the use
of a 3D model and the actual robotic manipulator. The results are presented in
force plots.

• Chapter 5: The conclusion of the report is presented along with the possible future
works that the project may take.

The final objective of the current study is to validate the proposed adaptive solution
for the implementation of Cartesian workplace restrictions on the KUKA LBR iiwa
manipulator, stating the viability and robustness of the suggested system architecture.

7

Chapter 2

Robot modelling and control

In Chapter 1 it is mentioned the KUKA LBR iiwa is the industrial manipulator used
for the current project along with the controller architecture of Sebastian [1], which is
revised further in the following chapter to better understand the robots mathematical
modeling, the control strategy itself and the system architecture behind the repulsive
actions of the constraints while the robot collides with a virtual entity. Also, the ap-
proaches for the description of the constraints in terms of analysing the environment
prior to the constraint implementation in the controller are studied.

2.1 Mathematical model
The definitions of a robot in the space reside on the kinematics and dynamics. These
are algorithms transform motion between the so-called joint space and the Cartesian
space. The kinematics of a serial manipulator represent geometrically the motion of a
robotic arm taking into account the joints and the end-effector tool. On the other hand,
the dynamics translate the motion at the end-effector based on the forces applied on the
joints and vice versa. Both kinematics and dynamics can be sub-divided into forward
and inverse calculations. To best introduce these two algorithms, some basic concepts
group up the mathematical description of them.

2.1.1 Kinematics
Both kinematics and dynamics share common algebraic concepts on its calculations.
One of the basis of those are transformation matrices. The transformation matrices are

8

2.1. Mathematical model Aalborg University

what determine the rotational and translational definitions of the manipulator. Specif-
ically, the transformation matrices that combines both of these concepts are the ho-
mogeneous transformation matrices. In linear algebra, a transformation matrix can be
defined as a linear mapping between two vector spaces which maintain the properties
of scalar multiplication and vector addition [21].

Considering the transformation matrix T from Rn to Rm, x being a column vector
constituted by n entries and A a mxn matrix, then

T (x) =


a11 a12 . . . a1n

a21
.

... . . .
am1 . . . amn


︸ ︷︷ ︸

A


x1
x2
...

xn


︸ ︷︷ ︸

x

(2.1)

This equation 2.1 serves as the starting point for the definition of the most common
transformations in linear algebra: the Euclidean transformations. These can be trans-
lations, rotations and reflections, but this report will focus on the first two.

The transformations of particles moving in the Euclidean space give the location of
such particles at each instant of time, relative to an inertial Cartesian coordinate frame.
Choosing three orthonormal axes (x, y, z) ∈ R3 such that each coordinate define the
projection of the particle’s location in space, we can define the trajectory of such a
particle [2] as shown in 2.2. A collective set of particles that constitute a rigid body (a
body link in the robot arm) needs to satisfy that the original distance between particles
where any motion or force is applied, must remain fixed [2]. This way, the trajectories
of the body links of the serial manipulator of study can be performed.

p(t) = (x(t), y(t), z(t)) ∈ R3 (2.2)

To define the rotational component of the homogeneous transformation matrix one
should take into account the orientation of the body relative to a fixed coordinate frame.
Let Sf be the inertial frame, Sb the body frame and the coordinates of the principal
axes of Sb relative to the fixed frame xfb, yfb, zfb ∈ R3, the rotational matrix is defined
[2] as

Rfb = [xfb yfb zfb] (2.3)

9

Antonio Aranzana Sánchez Chapter 2. Robot modelling and control

Considering a point p relative to the frame Sb with coordinates xb, yb, zb ∈ R3, the
coordinates of p relative to the inertial frame can be computed [2] as

pfb = [xfb yfb zfb]

xb

yb

zb

 (2.4)

thus, describing the mapping from R3 to R3 as a rigid body transformation, rotating
the coordinates from the relative to the fixed frame. For the current project, the screw
theory based modelling of the Kuka iiwa serial manipulator is adopted as in [1], where
the body motions are calculated by means of rotations around a screw axis w and a
translation along the same line.

In this theory, the homogeneous transformation matrix is used to calculate twist dis-
placements, denoted as ξ = (ν, ω) ∈ R6, defined in terms of the linear ν ∈ R3 and
angular ω ∈ R3 components of the rigid body [2]. The twists describe the instantaneous
velocity of the targeted rigid body as

ξ =
[

ν
ω

]
(2.5)

where ν defines the linear velocity and ω the angular velocity of the rigid body.

As mentioned before, there exists two kinematics modelling: forward and inverse. The
Forward or Direct Kinematics of a serial manipulator can be described as the geometric
configuration of the end-effector given the known joint angles and its angular velocities
[22]. Only the forward kinematics are of interest for the current project.

The orientation and position of the arbitrary point pi expressed in the reference frame
S1 explained earlier in the section can be used for the description of each of the links of
the serial manipulator with the use of the rule chain defined in equation 2.6.

H0
n(q0, ..., qn) = H0

1(q0)H1
2(q1)...Hn−1

n (qn) (2.6)

Bringing the twists exponential eξ̂1,n−1
n qn ∈ R4X4 dependent of an angle of rotation q ∈ R

into the equation 2.7 it can be finally defined the homogeneous transformation for the
robotic arm, where the exponential defines the transformation between Sn−1 and Sn

expressed in the inertial frame.

10

2.1. Mathematical model Aalborg University

S2

S1

S0

Sn

Fig. 2.1: Forward Kinematics representation. Each frame Si representing the pose of the ith link.
The reference frame is denoted by S1. Adapted from [23].

H0
n(q0, ..., qn) = eξ̂0,0

1 q0eξ̂0,1
2 q1 · · · eξ̂0,n−1

n qnH0
n(0) (2.7)

For the manipulator of study we can describe the homogeneous transformation matrix
for the tool-center-point (tcp) or end effector with respect to the inertial frame as follows

H0
tcp =


1 0 0 0
0 1 0 0
0 0 1 1266
0 0 1 1

 (2.8)

The tcp is placed as indicated in figure 2.2, knowing the KUKA LBR iiwa is constituted
by 7 joints, 7 links that connect those joints and a base link that actuates as the base
or inertial frame and fixes the robot arm to the ground.

The adjoint of this transformation matrix between the frame Sb and Sf can also be used
to express the coordinates of a twist such that

ξf
b = AdHf

b
ξb

b (2.9)

being AdHf
b

the adjoint homogeneous transformation matrix between the body and the

11

Antonio Aranzana Sánchez Chapter 2. Robot modelling and control

S0

Stcp

S6S5S4

S3

S2

S1

Fig. 2.2: Representation of the body frames of the KUKA LBR iiwa. Roll axis (x) being green, pitch
axis (y) being red and yaw axis (z) being blue. Extracted from [5].

inertial reference frame, thus obtaining the twist ξf
b expressed the same way in the fixed

frame Sf .

2.1.2 Dynamics
Unlike the kinematics, the dynamics of a serial manipulator describe how the robot
actuates in response to the forces being applied on it, either indirectly (e.g. the own
actuator opposite forces) or directly on the links. These calculations will be explained
as with the basis on the screw-theory presented in the subsection 2.1.1.

The forces acting on a single rigid body can be explained by the combination of a force
f ∈ R1x3 along the screw axis and a momentum m ∈ R1x3 [2], as seen in 2.10. This
forces are defined as a Wrench W ∈ R1x6, which can also apply the theories behind the
twists [2], [24].

W =
[

f
m

]
(2.10)

The Poinsot’s theorem [2] allows mapping the Wrench applied onto each link of the
manipulator as joint torques, in which definition the work W generated due to the
movement of the tcp through such wrench over a time interval t ∈ [t1, t2]:

12

2.2. Reactive control Aalborg University

W =
t2∫

t1

WV dt (2.11)

where the Cartesian velocity is defined by V ∈ R6 and the work applied on the wrench
is assumed to be friction-less. Furthermore, if one takes the transposed Jacobian J(q)
[25] dependent of the joint angles q the relation between the torques τT on the joints
and the wrenches is obtained as

τT = J(q)T W T (2.12)

Finally, the general equation of motion for a n-link is presented in equation 2.13 in the
joint space. This equation would be derive with the force-balance-based Newton-Euler
formalism described in [26] composed by a forwards and backwards iterations. This is
the method being used in the current project as it is less computationally expensive
than other calculus as described in [1].

M(q)q̈ + C(q, q̇)q̇ + G(q) = τT (2.13)

where q, q̇, and q̈ ∈ Rn are the positions, velocities and joint accelerations, M(q) ∈ Rnxn

express the matrix of mass, C(q, q̇) ∈ Rn are the centrifugal and Coriolis torques and
G(q) ∈ Rn describe the gravitational torques. This concept express the recursive inverse
dynamics algorithm in form of a set of matrix equations, forming Cartesian velocities
and Wrenches as stacked vectors and other block matrices that define the body twist
coordinates and mass inertia [26], [27].

2.2 Reactive control
Unlike traditional robot control schemes, reactive control architectures use the current
state of the robot at each time step along with its task description to calculate the
joint forces applied for the very next time step. One example of this dynamics control
currently used in literature for serial manipulators is the impedance control [8].

In the impedance control schemes a relation between the different state variables is made
to control the manipulator, rather than controlling a single state variable as it is done
in other position/velocity controllers. The impedance controller is described as a mass-
spring-damper system with adjustable stiffness and damping [9], and its interaction can
be seen as an energy exchange between the robotic arm and the environment [28], [29].

13

Antonio Aranzana Sánchez Chapter 2. Robot modelling and control

The description of the spring-like architecture of the Impedance controller comes in the
form of a 6 dimensional vector and describes the motion generated of the end-effector
from its current transformation H0

tcp towards its goal H0
d, modeled as a Wrench [28]

as in 2.10. In the current project, an Energy/Power-aware Impedance controller first
developed in [30] is used as in [1]. Specifically, this control strategy uses both Energy
shaping and Damping Injection [31].

Fig. 2.3: Illustration of the spring + damper control. K representing the Cartesian spring between
the tcp and the desired transformation. B represents the Cartesian damping while b5 is the damping
of the joint at the end-effector.

Definition of a spring

As introduced before in the chapter, the impedance controller is described as a mass-
spring-damper system. Specifically, the spring is mathematically described as in 2.10,
exactly like a Wrench 2.14, which is also the same way as any force acting on a rigid
body can be modeled as [2].

W tcp,tcpT

K =
[

f tcp,tcpT

K

mtcp,tcpT

K

]
(2.14)

In equation 2.14, all the variables are expressed in terms of the Cartesian spring K
relative to the tool-center-point of the robotic manipulator.

2.2.1 Cartesian constraints
In Hjorth’s research [1] the definition of the Cartesian constraints are described as a
smooth manifold C ∈ R3. Those, actuate as virtual walls in the controller in the form
of 2D planes in the Cartesian workspace. To create those planes, 3 independent points

14

2.2. Reactive control Aalborg University

P1, P2, P3 ∈ R3 are to be defined in space to be able to derive the normal vector with
the points cross-product.

njxx + njy y + njz z + n⃗j · P0 = 0 (2.15)

Moreover, once the plane is described in space as shown in 2.15, the projection of the
point of study onto the plane needs to be computed.

�
�

��

�
� ��

Fig. 2.4: Visualization of the projection of a point pb into a plane along with its normal vector n⃗j .

The projection of any point in space onto a plane can be described as in 2.16. With
these values, the wrench-like definition can compute its force and momentum applied
on the point of interest, which in this case it will be the end-effector, and thus, the
resulting torque that may be applied onto the point contrary to its current movement
to keep it away of the constraint.

pb, Cj = pb + n⃗jt =

pbx

pby

pbz

+

njx

njy

njz

 t (2.16)

Where pb describes the position of the bth link in R3 in reference to the manipulator’s
inertial frame, Cj represents the constraint, n⃗j is the normal vector derived from such
a constraint and t defines the distance measured between the end-effector/any other
joint of the serial manipulator in respect to the constraint. The final expression for the
wrench calculations in terms of the constraint application onto the end-effector of the

15

Antonio Aranzana Sánchez Chapter 2. Robot modelling and control

manipulator relative to the base reference frame used for the calculation of the τmotion

in equation 2.18 is

W b,bT

Cj
=
[

f b,bT

Cj

mb,bT

Cj

]
(2.17)

where W b,bT

Cj
expresses the repelling wrench that is to be applied to keep the link b

within the Constraint Cj , based on its force and momentum as defined in equation 2.10.

From [1] it can be extracted the resulting joint torques of the serial manipulator of study
2.18, which essentially is the combination of both the Wrench generated by the spring
2.14 and the constraint 2.17, described previously in 2.2.

τT
motion = J̃T (q)

W 0,tcpT

K −
n∑

b=1

(
m∑

j=1
W 0,bT

Cj

) (2.18)

where n is the number of joints, m is the number of constraints, W 0,tcpT

K is the elastic
wrench, W 0,b

Cj
is the wrench generated by the constraint relative to the base reference

frame and J̃T (p) is the spatial Jacobian describing the links spatial velocity in the same
reference frame.

2.2.2 Damping injection
After having defined the spring, the damping B matrix is left to be described. As
modeling the damping B constant is not ideal [1], the values of B will be dependent of
the state of the system such that B(q) ∈ Rnxn resulting from the multiplication of the
diagonal elements of the Mass matrix Mdiag(q) and B.

B(q) = Mdiag(q)B (2.19)

On top of the damping definition, the damping injection method is usually implemented
[3] so that the energy exchange in between the robot and the environment Pmotion is
limited. This, is controlled by a scaling factor β ∈ R, which will apply whenever the
threshold Pmax of the energy the robot would exchange with the environment is violated
[1], [3].

16

2.2. Reactive control Aalborg University

Pmotion =
(

J̃(q)WK
0,tcpT

− Binit(q)q̇
)T

q̇ (2.20)

where Binit(q) describes the damping prior to is multiplication with the factor β, which
value can be calculated from 2.21.

β =


1 if Pmotion ≤ Pmax(

J̃(q)T WK
0,tcpT)T

q̇ − Pmax

q̇T Binit(q)q̇ otherwise
(2.21)

The final calculation of the damping term comes as in 2.22.

τdamping
T = βB(q)q̇ (2.22)

2.2.3 Joint limit avoidance
As the robot is capable of reaching any point in space independent of the current joint
configuration, it is very likely to reach a joint limit, where the robot needs to be re-
initialised as it goes into a backlog. The method called joint limit avoidance as studied
in the literature [32] is then introduced. This method is similar on the way the ma-
nipulator’s links are kept within a constraint. The concept is described as a relation
between the predefined maximal and minimal bounds qi/q

i
, the distance at which the

constraint activates qi,J/q
i,J

and a scaling factor Ω ≥ 0.

τqi
(q) =


Ω
q2

i

(
1
q

i

− 1
q

i,j

)
if q

i
≤ q

i,J

− Ω
q2

i

(
1
qi

− 1
qi,j

)
if qi ≤ qi,J

0 otherwise

(2.23)

An illustration of this approach is showed in Figure 2.5, noticing the torque is dependent
of the current joint position qi and its difference to the upper/lower joint limits qi/qi.

17

Antonio Aranzana Sánchez Chapter 2. Robot modelling and control

Fig. 2.5: Visualization of the joint limit avoidance concept. The red coloured area represents where
the manipulator joint is not allowed to reach physically, the black dots is the line marking the midpoint
of the joint and the dashed orange line represents the distance to the upper limit of the constraint.

2.3 Controller architecture
The resulting torques applied on the serial manipulator can be calculated as the sum
of the torques explained earlier in this chapter. From those, only the damping torque
of the spring effect described in the energy-aware impedance strategy is opposite to the
rest of the calculated torques.

τT = τT
motion − τT

damping + τT
CC + τT

JLA + τT
Coriolis + τT

Gravity (2.24)

where tauT
Coriolis and τT

Gravity are the torques representing the compensation for the
Coriolis and gravitational forces respectively, τT

JLA is the torque computed by the joint
limit avoidance, τT

CC defines the torque of the Cartesian constraint, τT
motion describes the

actuation of the spring and finally τdamping is derived from 2.22. The overall structure
of the control system involving the impedance control, the virtual constraints and the
joint limitations looks like the one seen in Figure 2.6.

18

2.4. Constraints definitions in space Aalborg University

Fig. 2.6: Overall control strategy implemented. Extracted from [33].

2.4 Constraints definitions in space
As described in subsection 2.2.1, the base project defines the Cartesian constraints im-
plemented in the controller of the manipulator as 2D planes. For describing such a
planar constraint in space, at least 3 points were expected to be hard-coded in the
software such that the normal vector of the constraint is computed and inputted in the
wrench force and momentum calculus. To avoid hard-coding any instances in the soft-
ware and produce a more efficient and robust system an implementation of constraints
detection for the broadest scenario possible has been studied.

Several adaptive solutions for constraint detection were first introduced in section 1.2.
One of the most suitable solutions for the current application is considered to be the
detection of planes directly taken from 3D models, as it enables the software to calcu-
late the points in space that can be inputted into the running system to impose the
constraints explained in section 2.2.1. This specific application regarding the search of
planes for the creation of virtual constraints inside the manipulators controller has not
been combined before in literature. The utility this brings resides on implementing the
serial manipulator in any other facility, which normally the companies support owning
the physical modelling of the emplacement for the robotic arm, and whether this is not
the case, it can be easily extracted with the use of a simple camera (e.g. from the Intel
RealSense family [34]).

Taking this adaptive solution into practice, various iterations were done and detailed in
Chapter 3. The final solution is achieved with the use of a plane detection algorithm
that is able to analyse the constraints efficiently and thus, the software was adapted
to impose the restrictions based on the findings. The different algorithms found in the
literature will then be explained further in this section.

19

Antonio Aranzana Sánchez Chapter 2. Robot modelling and control

2.4.1 Plane detection algorithms
It is well known that there exists machine learning and deep learning algorithms capable
of detecting planes out of images in an easy way and computationally faster than other
traditional algorithms. An example of this is the work of Chen Liu et al. [35], where they
use a RCNN for the computation of the different planar surfaces from RBG images. As
the work is mainly focused on detecting planes on images, Zehao Yu et al. [36] combine
a fast-detection method using CNN and a mean shift clustering algorithm to cluster
the masked pixel embedding into plane instances, in an attempt to reconstruct the 3D
environment.

Despite the fact that their accuracy on plane detection is good enough for the case of
use, in the literature these approaches have only been studied for single images analysis
with 2D inputs, while a 3D model is required. For such reason, some other traditional
methods may fit better. Indeed, there is a concept that can describe a 3D model in
space giving a position for each point of a surface given an origin: point clouds [37].
Unlike 2D images, point clouds give 3D structural data of an object. Point clouds can
be recovered from an RGB-D image when a camera’s intrinsic parameters are known.

Some of the traditional algorithms for planar surface segmentation using point clouds
include the research done in [38], which utilises the RANSAC algorithm to determine
the probability of detecting a model using the minimal set of data to estimate it. Addi-
tionally, they compute a voxel growing algorithm having estimated the normal vectors
for the points in respect to the surface.

On the other hand, the much newer study for multi-scale planar segmentation [4] offers
a way more robust software, as it is able to detect millimeter-scale planes in large point
cloud data sets. It also offers more flexibility as the algorithm can be computed for
different scale values, detecting either simple small shapes or bigger areas that share a
common surface as seen in Figure 2.7. The only real downside of this specific work is
the time it takes to pre-process the data in order to be able to input it to the system,
however, the current work does not require real-time processing as the inspection of the
3D model is supposed to be done prior to the robotic manipulator implementation in
the actual field.

20

2.4. Constraints definitions in space Aalborg University

Fig. 2.7: Plane extraction algorithm for the search of constraints inside a 3D model of a church for 2
different scales. Extracted from [4].

Utilising such an algorithm to the estimation of planes in a 3D model can then be used
to used the points in space of a specific plane to limit the manipulators reachable space
around the area. This algorithm will be the one used in the current study and explained
further in Chapter 3.

21

Chapter 3

Model study

So far, the state of the art on previous implementation on workspace limitations along
with basic concepts regarding the robot’s manipulation and the control being used have
been covered. In this Chapter, further detailed explanations on virtual constraints
addition improving the overall efficiency and robustness of the system are described.
The final proposed adaptive solution is illustrated in section 3.3.

3.1 Virtual Walls
Previously in section 2.2.1 an approach on virtual wall-like constraints is proposed.
This method emphasises on the idea of the projection of the point that’s about to hit
against such constraint to understand the distance of activation of the repulsive force
needed to repel the point. The only requirement for it is to know the position and the
normal vector the constraint points to as it defines the direction of the repelling force.
However, this application also provides some limitations for two main aspects: these
virtual walls were hard-coded into the software, what makes the claim of ’adaptability
to the environment’ very vague in terms of work needed to be able to accomplish this.
And secondly, only virtual planes that are infinite along an axis are allowed to be added.
As suggested in [33], a more complex implementation of the constraints along with an
adaptive solution for it is studied.

In the current report, two different approaches on an adaptive implementation of the
virtual control limitations were implemented. The first one studies the viability of the
system on adding constraints while executing the application. The second approach pays

22

3.1. Virtual Walls Aalborg University

an special attention to the robustness of the solution in terms of flexibility, however it
is expected to be used prior to the manipulator’s use.

3.1.1 First iteration: individual walls
The first approach tested is almost entirely software related. It does use the basic
concepts explained in 2 such as the calculations of the position of the TCP with the
use of the forward kinematics or the wrench-like modelling for the repulsive force into
the joints. It offers a real-time wall placement of a constraint based on input points
calculated from the end-effector’s position.

The software-base concept that enables inputting these values while running a trajectory
in the manipulator with the previous proposed controller are the threads. A thread
in computer science is the smallest sequence of instructions that are to be managed
independently inside a program [39]. Its implementation into the code is easy to replicate
as the common libraries are already created by Microsoft and ready to be included.

Once a thread is open, the logic behind the application was as showed in the following
pseudocode:

Algorithm 1 Pseudocode of the secondary thread for implementation of constraints in
real-time

1: procedure Thread
2: Npoints = 0
3: while True do
4: if CheckForInput = True then
5: TCPpos = CalculateFK()
6: StorePoint = TCPpos

7: Npoints + +
8: if Npoints = 3 then
9: Plane = CalculateP lane(StorePoints)

10: SetConstraint(Plane)
11: Npoints = 0
12: end if
13: end if
14: end while
15: end procedure

This application offers great flexibility on constraint implementation if it is required
as a fast solution. Nonetheless, this method is still insufficient as it does not permit
either implementing other type of virtual constraints than planar surfaces nor multiple
constraints implementation at a time.

23

Antonio Aranzana Sánchez Chapter 3. Model study

3.1.2 Second iteration: 3D model
It has been mentioned the search for greater robustness and adaptability of the system in
terms of the different constraints shape or the number of constraints integrated into the
system at a time. With this objective in mind, it makes common sense to start thinking
about whole 3D model inputs into the system. This task brought new questions such
as the input type that the system required of what was to be analysed.

As revised in the previous sections 2.2.1, the unchanged attribute in the virtual walls
integration are the points for the plane creation, which calculation is far from labori-
ous and that makes it specially good for its software computation. A technology very
well known in literature for 3D model representation is point clouds. Point clouds are
essentially a set of data points in space, and they are the prior step to the creation of
accurate 3D modelling [37]. Point clouds can normally be obtained through modern
lasers or cameras, but they also might be obtained digitally by online softwares such as
MeshLab or CloudCompare.

In order to be able to analyse a specific model input into the software, an own 3D model
was created with the use of CloudCompare.

Simulation environment

1.4 m
1.4 m

2.2 m

(0,0,0)

Mesh
model

Point
Cloud

2

Fig. 3.1: Illustration of the 3D model that is used as an input to the system, where the constraints
will be placed.

24

3.2. Plane detection onto the model Aalborg University

As shown in Figure 3.1, a box of dimensions 1.4x1.4x2 m was created in the preferred
software. After some iterations, a point cloud of 1.000.000 points - enough to not slow
down the software - from the mesh model was then computed so that it is easier to work
with the model and the positions of all points in space can be obtained. Note that the
less number of points chosen for the model design the fastest the software will analyse
the point cloud, but the less precise it will be. At the same time, the normal vectors of
the points were calculated in CloudCompare such that we can understand the direction
of the surface of each point. The calculation of such normals from a the point cloud are
computed with a Randomized Hough Transform that serves as an image for the discrete
probability distribution of the possible normals [40].

Both software and normal calculation method are proved to be suitable for any sur-
face model [40] and thus, either applying this exact same calculations to a point cloud
obtained either from a RealSense camera or a CAD that already exists will output
a similar result. Therefore, despite the current application model is based on planar
surfaces, some other curved surfaces or more complex input models may be applied too.

3.2 Plane detection onto the model
Once a model input is selected and the point cloud is processed, a way to bring those
points into constraints must be devised. In order to produce the simplest transition from
the previous iteration to the current one, it was decided to continue loading constraints
as planes from a set of 3 points. This way, the software was missing on understanding
the points from the mesh as unified planes.

In the literature, it was revised in 2.4.1 the different strategies to segment point clouds
into planes. Among all, the work of [4] appears to be way more robust and flexible than
others, and it is the one to be studied further.

The software architecture followed in the paper includes pre-processing the data, run
the plane segmentation algorithm and compute some topological analysis onto the seg-
mented output.

3.2.1 Data processing
The first step is preparing the data that is going to be analysed. For doing so, they
compute a set of per-scale normal vectors from local surface reconstructions for each
point in the point cloud. Then, they simply group up the points at a certain scale in
regions with the use of a region growing algorithm. This regions will serve as what they
call nodes. The limits colliding of a region will at the same time be the edges. The end
of the data processing ends with the calculations of the components, which are sets of

25

Antonio Aranzana Sánchez Chapter 3. Model study

regions that are connected through the edges. With all these amount of data, they are
able to finally compute the persistence analysis of the extracted components.

In the Figure 3.2b, the set of computed extracted normals from the Box model is showed.

3.2.2 Topological analysis
The components stored have additional values: birth and death scales that represent
the levels of the regions. With these values and the Topological Data Analysis toolbox,
they are capable of determine the lower level difference to be meaningful planes at lower
scales while the higher level difference to be higher scales surfaces.

(a) Box normal vectors pointing towards the orthogo-
nal direction of the surface where they are in.

(b) Different planar surfaces found in the box model.
Each color represents one individual plane.

Fig. 3.2: Examples of the different stages of the software used: on the left side, pre-processed down-
sampled point cloud stage; on the right side, the actual output of the software at a high scale level.

In the paper [4] they also propose different thresholding methods to evaluate the point
clouds depending on the persistence level (birth - death values) or the scale at what
the planes will be looked for. The final solution given is proved to be robust for a
wide variety of 3D complex models and was compare to common RANSAC algorithms
amongst others. The results showed an impressively low Root Mean Square (RMS) error
on their approach with a more than decent plane extraction. The only major downside
of the application might be the time of computation, as the extraction of the components
increase the time it takes to perform the entire cycle quite a lot. However, this can be

26

3.3. Overall software structure Aalborg University

easily solved if the point cloud is first down-sampled to a decent amount. The quantity
of points needed for a specific situation varies from model to model, specifically, for a
robotic manipulator in an industrial environment, a set of 1 million points would be
more than enough as it is expected to control larger areas and not tiny shapes with
sharp edges.

3.3 Overall software structure
The final solution is presented as an adaptive constraints implementation into the control
of a serial manipulator. This procedure takes several steps, as shown in Figure 3.3. First,
either a 3D model that can be converted into point cloud or a point cloud achieved from a
modern camera is needed. Then, the data of the model is analysed to execute the plane
extractor software. Finally, from each of the computed planes, 3 points are selected
so that a virtual plane can be generated inside the software, thus creating a virtual
constraint in the axis of the plane extracted.

3D mesh
model

Point cloud
generation +

nomals
computation

Data pre-
processing:

 Regions
 Nodes/edges
 Components

Point
cloud

Data post-
processing:

Plane detection

Points +
components

Step 1 Step 2 Step 3

Constraint
implementation
into the control

software

3 points
of a plane

Step 4

Fig. 3.3: Visualization of the overall software structure for constraints implementation from 3D model
inputs.

27

Antonio Aranzana Sánchez Chapter 3. Model study

Despite that this solution integrates entire 3D model constraints, they are only viable
for planar surfaces that extend indefinitely in space. For such reason, a proposal that
includes logic for the handling of multiple-planes into the controller is described in the
upcoming section.

3.4 Curved constraints solution
Integrating more complex surfaces is possible when a solution for planar surfaces has
already been proposed. Indeed, the idea is based on bringing the effect performed with
the planes at a lower scale. As mentioned in 3.1, the plane detection focuses mainly on
the normal vector computations from the model. Also, as seen in Figure 3.2b, those
normal vector computations are being done for all points in the sets.

If the simplest curved model is brought to the scene, we can end up with what is
illustrated in Figure 3.4. Bringing the regions concept revised in [4] to a somewhat low
scale plane computation, close points share enough similarities to be scanned as unique
planes depending on the scaling factor as shown in the right side of the figure.

Fig. 3.4: Sphere model on the left side. On the right side, the grouped points or planes-like regions
detected on the sphere.

After having processed the plane segmentation on the curved surface, a logic can be cre-
ated into the software such that each of the constraints (planes) activates only whether
the projection of the required repelling point actually is on such plane. This way, the

28

3.4. Curved constraints solution Aalborg University

architecture would look like a constraint that’s imposed or not dependent of the projec-
tion of the end-effector. This same idea might be brought to lower scales multi-plane
computations to treat similar and more complex model structures.

Algorithm 2 Pseudocode of the logic for curved constraints handling.
1: verticesplane << knownvalue
2: TCPpos = CalculateFK()
3: projection = calculateProjection(TCPpos)
4: if verticesplane < projection[x, y, z] < verticesplane then
5: calculate : distance, Wrench, torque
6: else
7: // the wrench will not apply in this case
8: end if

The logic is self-explanatory, but essentially it will calculate the torque values for the end-
effector to stay away from the constraint depending on whether the projection is within
the limits of the constraint. This logic will also alleviate the software from unnecessary
computations in the case where the robot needs to handle several constraints which it
should not collide with at that time and so, the wrench values and torques will not be
calculated.

29

Chapter 4

Model Validation

The upcoming Chapter will focus on presenting the scenario and the tests required
to analyse whether the proposed system is reliable according to the aimed objective
in Chapter 1. The final goal includes creating a software model that is capable of
analyse 3D point clouds, extract the regions the manipulator will collide depending on
its position and at the same time, controlling the manipulator based on those constraints
imposed. Similarly, the multi-plane extraction system is independently validated in [4]
as well as the control strategy presented in [33].

To better define the objective and be able to determine the outcome of the tests, a set
of requirements are listed below:

The KUKA LBR iiwa must stay within the imposed constraints:
1. Never being physically able to reach the actual constraint.
2. The controller providing the robot more power as the robot approaches the constraint.
3. Stay within the limits when encountering more than 1 constraint.

As the target is validating the constraints position in space along with the force applied
by these, every constraint in the input model will be analysed for its relevant axis. It is
therefore expected to see an increase in the Cartesian force in the axis of the collision
to the constraint. For instance, let’s say we have a constraint in the plane x = 0.7, as
the origin is considered to be the center of the robot, it is common sense to assume the
resulting Cartesian force of the constraint into the end-effector should point towards the
x-axis in the opposite direction the robot is trying to push.

30

4.1. Testing environment Aalborg University

4.1 Testing environment
Despite it has been studied a system architecture where more complex models with
curved surfaces as shown in 3.4, the tests will be conducted only on the box-like model
described along the sections 3.1, 3.2b.

It is also worth mentioning that the 3D model has a height of 2 meters. As the KUKA
LBR iiwa is placed on top of a table and the software estimates planes in the entire
point cloud, it is known that the bottom constraint at z = −1 and the robot can not
hit it, therefore it has been erased and and new constraint placed at z = 0. Instead of
doing this, a different model could have been used for the tests, which is also revised in
the section 5.1.

�����

���

�����

Fig. 4.1: Simulation environment: virtual box constraint inputted in the system.

In the the Figure 4.1 it can be seen the virtual constraints that are to be imposed in
the controller. The fences of the laboratory surrounding the robot in the figure do not
correspond to the virtual box illustrated in white, plus the dimensions of the fences
are larger and so the manipulator cannot ever collide with them. Subsequently, the
robot colliding with every virtual constraint imposed will be shown individually plus an
additional demonstration of multi-collision in the end.

31

Antonio Aranzana Sánchez Chapter 4. Model Validation

(-0.4,0,0.6)

(0,0,0)

Fig. 4.2: Starting robot position with the origin being the base link and the end effector placed at
(-0.4, 0, 0.6)m approximately. The roll axis (x) coloured in green, pitch axis (y) coloured in red and
yaw axis (z) in blue.

4.2 Simple collision tests
For all the tests, the robot is set to be at a fixed starting position that makes the
end-effector be approximately in the point (−0.4, 0, 0.6).

That being said, the first test conducted was in the x axis, where it is to be expected
two constraints at x = 0.7 and x = −0.7.

Plane constraint at x = 0.7

X = 0.7

Fig. 4.3: Displacement of the robot to a position where it collides directly with the constraint of the
cube imposed at x = 0.7m.

32

4.2. Simple collision tests Aalborg University

0 5 10 15 20 25 30 35 40 45
-0.5

0

0.5

1

1.5

2

D
is
ta

n
ce

(m
)

End e,ector position

x [m]
Dist. to const. x [m]

0 5 10 15 20 25 30 35 40 45

Time (s)

-40

-30

-20

-10

0

F
o
rc

e
(N

)

Force applied at the end-e,ector

Force in the xaxis [N]

Fig. 4.4: End-effector’s trajectory along the X axis in the first figure, followed by the Cartesian force
applied onto the end-effector on the same trajectory.

In the Figure 4.4 it can be appreciated how the force the constraints applies on the
end-effector increases as it reaches the virtual wall at x = 0.7. The force increments
in the opposite direction of the movement the harder the robot is pushed against the
constraint, only experiencing a non 0 value when it hits the wall. This happens at
around 14 seconds into the execution of the test. After the second 27, the robot is
released and stabilises itself in the initial position thanks to the impedance control.

33

Antonio Aranzana Sánchez Chapter 4. Model Validation

Plane constraint at x = -0.7

0 5 10 15 20 25 30
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

D
is
ta

n
ce

(m
)

End e,ector position

x [m]
Dist. to const. x [m]

0 5 10 15 20 25 30

Time (s)

0

10

20

30

40

50

F
or

ce
(N

)

Force applied at the end-e,ector

Force in the xaxis [N]

Fig. 4.5: End-effector’s trajectory along the X axis in the first figure, followed by the Cartesian force
applied onto the end-effector on the same trajectory.

The same way it occurs with the previous virtual constraint, the further the KUKA is
pushed towards the constraint the higher the force applied is, but never surpassing the
mark of 0.7 m in the negative x axis. In the current test, the positioning of the KUKA
LBR iiwa is similar to the one shown in Figure 4.3 but on the opposite direction.

Then, the y axis is to be evaluated on matching planes as in the x axis but curved 90º,
due to the base of the model being a square. Hence, it is also to be expected two planes
at y = 0.7 and y = −0.7.

34

4.2. Simple collision tests Aalborg University

Plane constraint at y = 0.7

Similarly to the previous axis constraints, the virtual planes at the y axis demonstrates
how the force increases in the opposite direction the end-effector is colliding to when
encountering the constraint. For the next example in Figure 4.6, several pushes towards
the constraints produces some oscillations in the second graph as the constraint repels
the end end-effector.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

D
is
ta

n
ce

(m
)

End e,ector position

y [m]
Dist. to const. y [m]

0 5 10 15 20 25 30 35 40

Time (s)

-50

-40

-30

-20

-10

0

F
o
rc

e
(N

)

Force applied at the end-e,ector

Force in the yaxis [N]

Fig. 4.6: End-effector’s trajectory along the Y axis in the first figure, followed by the Cartesian force
applied onto the end-effector on the same trajectory.

The same way it is illustrated for the planes in the negative y axis in Figure 4.7.

35

Antonio Aranzana Sánchez Chapter 4. Model Validation

Plane constraint at y = -0.7

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

D
is
ta

n
ce

(m
)

End e,ector position

y [m]
Dist. to const. y [m]

0 5 10 15 20 25 30 35 40

Time (s)

0

10

20

30

40

F
or

ce
(N

)

Force applied at the end-e,ector

Force in the yaxis [N]

Fig. 4.7: End-effector’s trajectory along the Y axis in the first figure, followed by the Cartesian force
applied onto the end-effector on the same trajectory.

It can also be observed that for all presented figures there exists a direct or indirect
relation in between the position of the end-effector and the distance to the constraint.
This is worth showing as the distance to the constraint is proved to not being violated
in any case by not exceeding a negative distance to the constraint of target.

To finalise the tests, the constraints in the z axis are presented. As imposed by the 3D
model, a wall on top of the robot is reached at z = 1 shown in Figure 4.8.

36

4.2. Simple collision tests Aalborg University

Plane constraint at z = 1

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

D
is
ta

n
ce

(m
)

End e,ector position

z [m]
Dist. to const. z [m]

0 5 10 15 20 25 30

Time (s)

-10

-8

-6

-4

-2

0

F
o
rc

e
(N

)

Force applied at the end-e,ector

Force in the zaxis [N]

Fig. 4.8: End-effector’s trajectory along the Z axis in the first figure, followed by the Cartesian force
applied onto the end-effector on the same trajectory.

In the Figure 4.8 it is illustrated the collision of the manipulators end-effector to the
ceiling constraint placed at z = 1m. The behaviour is again equal as for the previous
collisions.

Plane constraint at z = 0

Lastly, not because the model imposed it but because it was indeed hard-coded, a
constraint was placed at z = 0 with some security margin of 0.2m. This was done as
there is a known surface in the actual robot that is not accounted for in the 3D model
created, and it is mainly for the robot not to hit the real table. The details are further

37

Antonio Aranzana Sánchez Chapter 4. Model Validation

explained in 5.1, but the main reason behind this is simplicity due to a lack of time for
the real tests scenario. It has already been mentioned earlier in the section that the
bottom model constraint was discarded as the robot was unable to hit it, and thus, this
constraint will not be shown in the current chapter.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is
ta

n
ce

(m
)

End e,ector position

z [m]
Dist. to const. z [m]

0 5 10 15 20 25 30

Time (s)

0

10

20

30

40

50

F
o
rc

e
(N

)

Force applied at the end-e,ector

Force in the zaxis [N]

Fig. 4.9: End-effector’s trajectory along the Z axis in the first figure, followed by the Cartesian force
applied onto the end-effector on the same trajectory.

38

4.2. Simple collision tests Aalborg University

Multi constraint collision

The Figure 4.11 presents the behaviour of the system when colliding with more than
one constraint at a time and proves the third requirement stated at the beginning on
the Chapter 4.

X = -0.4

Y = -0.7

(0,0,0)

Fig. 4.10: Illustration of the test where the manipulator collides with 3 constraints at a time.

In this figure, all 3 axis are relevant in terms of showing the increment of Cartesian
force applied in all directions as the robot collides with 3 planes at a time, each situated
on one different axis: x = −0.4, y = 0.7, z = 0. It is worth noticing that due to the
model placement, the collision with a corner of the box was never hit; therefore, the
plane situated in the x = −0.7 was displaced 20 cm in the positive xaxis becoming a
constraint in the x = −0.4.

39

Antonio Aranzana Sánchez Chapter 4. Model Validation

0 5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

D
is
ta
n
ce

(m
)

End e,ector position

x [m]
y [m]
z [m]
Dist. to const. x [m]
Dist. to const. y [m]
Dist. to const. z [m]

0 5 10 15 20 25 30 35 40

Time (s)

-40

-20

0

20

40

60

80

F
o
rc
e
(N

)

Force applied into in the end-e,ector

Force in the xaxis [N]
Force in the yaxis [N]
Force in the zaxis [N]

Fig. 4.11: Multi plane collision

4.2.1 Results evaluation
If we recap on the objective once again, it is aimed to automatize the implementation
of virtual limitations that command the controller to behave as desired by the model.
To validate the implementation of the system studied in the current report, a set of
requirements is listed and several tests were performed that are expected to fulfill those
requirements.

In the end, looking at all figures in the tests chapter, it can be observed how the distance
to the constraint to test is never violated by the serial manipulator, staying within the
limits imposed. Moreover, at the same time the constraint is approached, the forced is
exerted on the end-effector of the robot arm increases due to the virtual collision the
arm is suffering on the controller side. This can also be deducted from the different

40

4.2. Simple collision tests Aalborg University

pushes the robotic arm does against the wall in an attempt to violate the constraints.
Finally, a test on the collision with more than 1 limitation is examined in 4.2, proving
the effectiveness of the system while handling not only 1 but every limitation imposed
at a time.

It can then be stated that the system performs within the requirements, and it has been
proved the difficulty of the system violating the constraints while inputting an entire
3D model of the environment to the system.

41

Chapter 5

Conclusion and Future Work

The last chapter of the report focuses on discussing the various inconvenients encoun-
tered while developing the application and performing the different tests, comparing the
actual results with the expected ones initially. Furthermore, it revises in the section 5.3
the actual outcome, determining whether the requirements set in the tests Chapter 4
were fulfilled. Lastly, the possible future work is presented.

5.1 Discussion
In a further analysis of the results, the more obvious difference is in the output of
the Z axis constraints. The top constraint at z = 1 is almost hit despite the distance
calculated to the constraint is not ever reaching 0 and thus, not hitting. This might
be caused by an imperfect model of the box, either by not being the exact measures it
has been previously mentioned or there is a margin error while transforming the mesh
to point clouds and this causes the plane detection algorithm to impose the constraint
a bit further up. All in all, for a real world scenario the common application will be
to implement a security margin higher than the constraint activates on and repels the
projected point, for instance, 10 centimeters or more would ensure the manipulator will
never hit the actual environment.

In the same mentioned axis, a hard-coded constraint in the z = 0 plane was needed
for the KUKA LBR iiwa not to hit the table it is located on. Such specific model was
not created from the start as the software it was generated in (CloudCompare) lacks
of enough tools to do so. Indeed, the positioning of the origin couldn’t successfully be

42

5.2. Future Work Aalborg University

modified either in this software or others such as SolidWorks.

Additionally, the time factor has been crucial for this project. The knowledge behind
the control software taking care of repelling the robots end-effector based on the wrench
modelling and the twist theory revised in [1] is exigent enough for the start of the actual
development of the current solution to be delayed. An evaluation of all the concepts
the controller is handling in [1] may be also of interest to prove the system performs as
expected. This has been assumed for the current report as the controller has not been
changed but rather some computations have been added to it additional to the previous
work.

A good supplementary work for the tests presented would also have been able to simulate
the 3D environment at the same time the robot moves in the real scenario. This would
show visually what is illustrated with the use of plots in the Cartesian space to imagine
the real behaviour of the manipulator.

5.2 Future Work
Some possible additions and supplementary work have already been covered previously
in the report, but this section will enumerate on the possible future works that the
project may follow.

Due to the lack of time of the practical work, the first thing worth proving is obtaining
similar outputs on the controller side as the ones obtained in [1], validating the final
implementation in terms of the controller side, despite that it is already proved to repel
constraints as it has been done for the current project. Similarly, it would be practical
to simulate the box at the same time as the robot moving in Rviz or a similar program
verifying the correct placement of it in space through the software proposed.

In the same path, the curved constraints implementation are not tested out but a logic
was created for its handling with the suggested system; its logic presented in 3.4 lacks
of actual code implementation. Additionally, this method is assuming every surface can
be defined as bigger or smaller combination of planes. Further study on this topic may
be done to come up with a more efficient architecture. Besides, there are entire studies
about the projection of a point onto surfaces that may be revised further [41], [42].

In terms of the current system presented, different scales may be compared on the plane
extraction algorithm depending on the case of use; as well as different model inputs
being used.

In case you have questions, comments, suggestions or have found a bug, please do not
hesitate to contact me. You can find my contact details below.

43

Antonio Aranzana Sánchez Chapter 5. Conclusion and Future Work

5.3 Conclusion
In this project, an adaptive solution for the implementation of virtual trajectory limita-
tions for a 7-degree-of-freedom manipulator has been presented. The solution includes
the study of the previous controller designed and the concepts involved, the study of
the different approaches in literature for plane extraction and the combination of the
two techniques for the creation of a system capable of not only handling planar surfaces
but any kind of surface and constraint the robot may encounter in a 3D model input.

For doing this, a KUKA LBR iiwa industrial manipulator was utilised in the laboratory
of the University. A controller studied in [33] has been implemented along with a
multi-plane detection algorithm [4] that is capable of analyse planes at different scales.
Different scripts in both C++ and python were created for the handling of the point
cloud model into the plane segmentation software and those constraints imposition into
FRI application of the KUKA controller.

The system has finally been proved to work for each constraint of the tested model
used as input in Chapter 4, in this case, a box-like point cloud from a mesh was used,
as described in Chapter 2. The solution presents itself a robust application for the
utilisation of the workplace digital modelling as constraints that can be directly inserted
in the controller.

Further research may include testing of curved surfaces models such as the one presented
in 3.4 among others, detailed in 5.2.

Antonio Aranzana Sánchez
email: aaranz20@student.aau.dk

Friederik Bajers Vej 7
9220 Aalborg Ø

44

Bibliography

[1] S. Hjorth. Investigation and Implementation of Workspace restrictions for the
KUKA LBR iiwa. June 2019.

[2] R. M. Murray, Z. Li, and S. S. Sastry. “A Mathematical Introduction to Robotic
Manipulation”. In: CRC Press (1994).

[3] G. Raiola et al. “Development of a Safety- and Energy-Aware Impedance Con-
troller for Collaborative Robots”. In: IEEE Robotics and Automation Letters 3.2
(2018), pp. 1237–1244. doi: 10.1109/LRA.2018.2795639.

[4] T. Lejemble et al. “Persistence Analysis of Multi-scale Planar Structure Graph
in Point Clouds”. In: Computer Graphics Forum 39.2 (2020), pp. 35–50. doi:
https://doi.org/10.1111/cgf.13910.

[5] M. Stevens. “Pros and cons of using industrial robots in your manufacturing op-
eration”. In: (Sept. 2021). url: https://tinyurl.com/22prpfka.

[6] M. Knudsen and J. Kaivo-oja. “Collaborative Robots: Frontiers of Current Liter-
ature”. In: Journal of Intelligent Systems: Theory and Applications 3 (June 2020),
pp. 13–20. doi: 10.38016/jista.682479.

[7] J. Haviland and P. Corke. “Maximising Manipulability During Resolved-Rate Mo-
tion Control”. In: (Feb. 2020).

[8] F. J. Abu-Dakka and M. Saveriano. “Variable Impedance Control and Learn-
ing—A Review”. In: Frontiers in Robotics and AI (Dec. 2020). doi: 10.3389/
frobt.2020.590681.

[9] N. Hogan. “Impedance Control: An Approach to Manipulation”. In: 1984 Ameri-
can Control Conference. 1984, pp. 304–313. doi: 10.23919/ACC.1984.4788393.

[10] C. Scoccia et al. “Real-Time Strategy for Obstacle Avoidance in Redundant Ma-
nipulators”. In: (Jan. 2021), pp. 278–285. doi: 10.1007/978-3-030-55807-9_32.

[11] M. Li et al. “Adaptive Control of Robotic Manipulators With Unified Motion
Constraints”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems
47.1 (2017), pp. 184–194. doi: 10.1109/TSMC.2016.2608969.

45

https://doi.org/10.1109/LRA.2018.2795639
https://doi.org/https://doi.org/10.1111/cgf.13910
https://tinyurl.com/22prpfka
https://doi.org/10.38016/jista.682479
https://doi.org/10.3389/frobt.2020.590681
https://doi.org/10.3389/frobt.2020.590681
https://doi.org/10.23919/ACC.1984.4788393
https://doi.org/10.1007/978-3-030-55807-9_32
https://doi.org/10.1109/TSMC.2016.2608969

Antonio Aranzana Sánchez Bibliography

[12] N. Paperno et al. “A Predictive Model for Use of an Assistive Robotic Manipulator:
Human Factors Versus Performance in Pick-and-Place/Retrieval Tasks”. In: IEEE
Transactions on Human-Machine Systems PP (Aug. 2016). doi: 10.1109/THMS.
2016.2604366.

[13] S. Trimble et al. “Context-aware robotic arm using fast embedded model predictive
control”. English. In: Irish Systems and Signals Conference: Proceedings. Context-
aware robotic arm using fast embedded model predictive control. IEEE, June 2020.
doi: 10.1109/ISSC49989.2020.9180217.

[14] J.-H. Chen and K.-T. Song. “Collision-Free Motion Planning for Human-Robot
Collaborative Safety Under Cartesian Constraint”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 4348–4354. doi: 10.
1109/ICRA.2018.8460185.

[15] C. T. Landi et al. “Safety Barrier Functions for Human-Robot Interaction with In-
dustrial Manipulators”. In: 2019 18th European Control Conference (ECC). 2019,
pp. 2565–2570. doi: 10.23919/ECC.2019.8796235.

[16] F. Chen et al. “Evolutionary artificial potential field method based manipulator
path planning for safe robotic assembly”. In: 2009 International Symposium on
Micro-NanoMechatronics and Human Science. 2009, pp. 92–97. doi: 10.1109/
MHS.2009.5352075.

[17] P. Chotiprayanakul et al. “A 3-Dimensional Force Field Method for Robot Col-
lision Avoidance in Complex Environment”. In: Sept. 2007. doi: 10 . 22260 /
ISARC2007/0026.

[18] K. P. Tee, R. Yan, and H. Li. “Adaptive admittance control of a robot manipulator
under task space constraint”. In: 2010 IEEE International Conference on Robotics
and Automation. 2010, pp. 5181–5186. doi: 10.1109/ROBOT.2010.5509874.

[19] M. Rauscher, M. Kimmel, and S. Hirche. “Constrained robot control using control
barrier functions”. In: Oct. 2016, pp. 279–285. doi: 10.1109/IROS.2016.7759067.

[20] J. D. M. Osorio et al. “Physical Human-Robot Interaction under Joint and Carte-
sian Constraints”. In: 2019 19th International Conference on Advanced Robotics
(ICAR). 2019, pp. 185–191. doi: 10.1109/ICAR46387.2019.8981579.

[21] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow. Transformation Matrix.
Betascript Publishing, Aug. 2010, p. 88. isbn: 613123079X.

[22] M. B. Popovic and M. P. Bowers. Kinematics and Dynamics. Ed. by M. B. Popovic.
Academic Press, 2019, pp. 11–43. isbn: 978-0-12-812939-5. doi: 10.1016/B978-
0-12-812939-5.00002-1. url: https://www.sciencedirect.com/science/
article/pii/B9780128129395000021.

[23] C. A. D. Cardenas. “Development of a safety-aware intrinsically passive controller
for a multi-DOF manipulator”. In: 2017.

[24] B. Siciliano and O. Khatib, eds. Springer Handbook of Robotics. Spinger, 2008,
p. 1611. isbn: 978-3-540-30301-5. doi: 10.1007/978-3-540-30301-5.

46

https://doi.org/10.1109/THMS.2016.2604366
https://doi.org/10.1109/THMS.2016.2604366
https://doi.org/10.1109/ISSC49989.2020.9180217
https://doi.org/10.1109/ICRA.2018.8460185
https://doi.org/10.1109/ICRA.2018.8460185
https://doi.org/10.23919/ECC.2019.8796235
https://doi.org/10.1109/MHS.2009.5352075
https://doi.org/10.1109/MHS.2009.5352075
https://doi.org/10.22260/ISARC2007/0026
https://doi.org/10.22260/ISARC2007/0026
https://doi.org/10.1109/ROBOT.2010.5509874
https://doi.org/10.1109/IROS.2016.7759067
https://doi.org/10.1109/ICAR46387.2019.8981579
https://doi.org/10.1016/B978-0-12-812939-5.00002-1
https://doi.org/10.1016/B978-0-12-812939-5.00002-1
https://www.sciencedirect.com/science/article/pii/B9780128129395000021
https://www.sciencedirect.com/science/article/pii/B9780128129395000021
https://doi.org/10.1007/978-3-540-30301-5

Bibliography Aalborg University

[25] B. E. Rapp. “Chapter 7 - Vector Calculus”. In: Microfluidics: Modelling, Mechan-
ics and Mathematics. Ed. by B. E. Rapp. Micro and Nano Technologies. Oxford:
Elsevier, 2017, pp. 137–188. isbn: 978-1-4557-3141-1. doi: 10.1016/B978- 1-
4557-3141-1.50007-1.

[26] L. M. Kevin and F. C. Park. “MODERN ROBOTICS MECHANICS, PLAN-
NING, AND CONTROL”. In: Cambridge University Press, May 2017, p. 642.
isbn: 9781107156302.

[27] S. R. Ploen and F. C. Park. “A Lie group formulation of the dynamics of cooper-
ating robot systems”. In: Robotics and Autonomous Systems 21.3 (1997). Critical
Issues in Robotics, pp. 279–287. issn: 0921-8890. doi: https://doi.org/10.
1016/S0921-8890(96)00802-0.

[28] S. Stramigioli. Modeling and IPC Control of Interactive Mechanical Systems - A
Coordinate-Free Approach. Springer, 2001, p. 280. isbn: 978-1-85233-395-9. doi:
10.1007/BFb0110400.

[29] C. Ott. Cartesian Impedance Control of Redundant and Flexible-Joint Robots.
Springer Berlin, 2001, p. 192. isbn: 978-3-642-08873-5. doi: 10.1007/978- 3-
540-69255-3.

[30] S. Stramigioli. “From differentiable manifold to interactive robot control”. In: PhD
thesis, Dec. 1998. isbn: 90-9011974-4.

[31] C. Secchi, C. Fantuzzi, and S. Stramigioli. Control of Interactive Robotic Inter-
faces. Vol. 1. Springer-Verlag Berlin Heidelberg, 2007, p. 233. isbn: 978-3-540-
49715-8. doi: 10.1007/978-3-540-49715-8.

[32] O. Khatib. “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”.
In: 5 (Mar. 1986), pp. 90–98. doi: 10.1177/027836498600500106.

[33] S. Hjorth et al. “An Energy-based Approach for the Integration of Collaborative
Redundant Robots in Restricted Work Environments”. In: 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IEEE, 2020, pp. 7152–
7158. isbn: 978-1-7281-6213-3. doi: 10.1109/IROS45743.2020.9341561.

[34] I. Realsense. Intel Realsense D400 Series Product Family. Jan. 2019. url: shorturl.
at/ginFI.

[35] C. Liu et al. “PlaneRCNN: 3D Plane Detection and Reconstruction from a Single
Image”. In: (Jan. 2019).

[36] Z. Yu et al. “Single-Image Piece-wise Planar 3D Reconstruction via Associative
Embedding”. In: (Apr. 2019).

[37] D. S. Liu et al. 3D Point Cloud Analysis. Springer International Publishing, 2021.
isbn: 978-3-030-89179-4. doi: 10.1007/978-3-030-89180-0_1.

[38] J.-E. Deschaud and F. Goulette. “A Fast and Accurate Plane Detection Algo-
rithm for Large Noisy Point Clouds Using Filtered Normals and Voxel Growing”.
In: 3DPVT. Paris, France, May 2010. url: https://hal- mines- paristech.
archives-ouvertes.fr/hal-01097361.

47

https://doi.org/10.1016/B978-1-4557-3141-1.50007-1
https://doi.org/10.1016/B978-1-4557-3141-1.50007-1
https://doi.org/https://doi.org/10.1016/S0921-8890(96)00802-0
https://doi.org/https://doi.org/10.1016/S0921-8890(96)00802-0
https://doi.org/10.1007/BFb0110400
https://doi.org/10.1007/978-3-540-69255-3
https://doi.org/10.1007/978-3-540-69255-3
https://doi.org/10.1007/978-3-540-49715-8
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1109/IROS45743.2020.9341561
shorturl.at/ginFI
shorturl.at/ginFI
https://doi.org/10.1007/978-3-030-89180-0_1
https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361
https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361

Antonio Aranzana Sánchez Bibliography

[39] L. Lamport. “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs”. In: IEEE Transactions on Computers C-28 9 (1979),
pp. 690–691.

[40] A. Boulch and R. Marlet. “Fast and Robust Normal Estimation for Point Clouds
with Sharp Features”. In: Comput. Graph. Forum 31.5 (2012), 1765–1774. issn:
0167-7055. doi: 10.1111/j.1467-8659.2012.03181.x.

[41] S.-M. Hu and J. Wallner. “A second order algorithm for orthogonal projection onto
curves and surfaces”. In: Computer Aided Geometric Design 22.3 (2005), pp. 251–
260. issn: 0167-8396. doi: https://doi.org/10.1016/j.cagd.2004.12.001.

[42] H.-C. Song et al. “Projecting points onto planar parametric curves by local biarc
approximation”. In: Computers & Graphics 38 (2014), pp. 183–190. issn: 0097-
8493. doi: https://doi.org/10.1016/j.cag.2013.10.033.

48

https://doi.org/10.1111/j.1467-8659.2012.03181.x
https://doi.org/https://doi.org/10.1016/j.cagd.2004.12.001
https://doi.org/https://doi.org/10.1016/j.cag.2013.10.033

Appendix A

Implementation

The Appendix A focuses on describing the general setup and communication between the
different devices and tools used in the current project: the KUKA LBR iiwa manipulator
connected to KUKA’s Robot Controller (KRC) and the computer generating the control
through the Fast Research Interface (FRI).

A.1 KUKA LBR iiwa R800
It is mentioned throughout the project the manipulator of use is the KUKA LBR iiwa
R800. This collaborative robot is used as it is one of the free available robots that
the Manufacturing and Production department from the AAU could provide at the
moment, which counts on position/torque sensors and torque controlled motors for each
joint. Additionally, it was also the robot used in the previous studies the current project
is based on [1], [33].

A.1.1 KUKA Robot Controller - KRC
The manipulator of study is controlled with the use of the KRC, which is responsible for
the transmission control inputs at the same time as it reads the data of the integrated
sensors. To be able to build a control application using the FRI library from KUKA,
one needs to first upload a Java application into the KRC via the KUKA Line Interface
(KLI) port and Sunrise Workbench in a windows machine. This process will do the
KRC running natively, thus any other application connected to the Java application
will do as well.

49

Antonio Aranzana Sánchez Appendix A. Implementation

For creating such application interaction, an FRI User Datagram Protocol (UDP) client
is created on a Linux-based machine. In this specific case, a Windows computer with
the Windows Subsystem for Linux 2 (WSL2) tool was used. The Linux environment
connects then to the KRC via the UDP connection.

Fig. A.1: Caption

A.1.2 Fast Research Interface - FRI
The KUKA FRI library provides real-time interfacing between an FRI server application
running inside the KRC and the client created on the external Linux system via UDP.
This application needs to be specifically configured such that it overrides the control
signal sent by the FRI C++ client, overlaying its functionality and adding the new logic.
The new control signals sent through the application could either be positions, torques
or wrenches depending on the specified Java application onto the KRC.

A.2 Code description
The first thing that will run on the code is the analysis of the points inside the planes
found. An exhaustive pre-processing of the 3D model to implement is assumed to be
done prior to the execution of the program as described in Chapter 3. Once some planes
are found by the software, the are needed to be used as input for the next software step.

50

A.2. Code description Aalborg University

The analysis and implementation of constraints is done the very first thing when running
the code, based on the results of the pre-processing stages. After, the program will focus
on controlling the input τ such that the end-effector handles to stay within the Cartesian
constraints and the join limit avoidance strategy explained in Chapter 2. The procedure
is as follows:

1. The repelling Wrench W 0,i
Cj

is computed for the ith link, in this case being the
end-effector, for every constraint imposed by the system. If the euclidean distance
of the end-effector to a constraint C is not sufficient for the constraint to activate,
the Wrench is expected to be 0.

2. The reactive control is then executed, where the motion generating torque τctrl

based on the displacement Htcp
d and the repelling Wrenches from active constraints

are computed.

3. The torques resulting from the Joint-limit-avoidance scheme is also calculated,
along with the total torque τT resulting from eq. 2.24.

51

	Front page
	English title page
	Contents
	1 Introduction
	2 Robot modelling and control
	3 Model study
	4 Model Validation
	5 Conclusion and Future Work
	Bibliography
	A Implementation

