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Introduction 1
The financial market is concerned with trading of assets and in this regard a useful concept
is risk. Investors construct portfolios with the intent of generating profit and avoid loss,
however the outcome of a portfolio is uncertain and thus it is beneficial to investigate the
risk exposure of a portfolio. In order to construct models that are able to describe the risk
exposure of a portfolio, the models need to reflect the risk factors of the data. For this reason
it is beneficial to understand the data in the portfolio.

Financial time series often exhibit some stylised facts, which are empirically observed ten-
dencies that are consistently present in financial data. These stylised facts stated in [18, p.
79-80] include

• Log-return series are not independent and identically distributed.

• The squared log-returns show serial correlation.

• The volatility of a log-return series varies over time.

• The log-return series exhibit volatility clustering.

• Log-return series are heavy tailed.

These stylised facts indicate there are dependencies and correlation in the log-return series,
which can then be used for prediction purposes. In order to incorporate these stylised facts
and construct a model that reflects these tendencies seen in financial data an ARMA-GARCH
model is used to address the autoregressive and heteroskedastic behaviour of the log-return
series. Such a model can then be used to evaluate the risk exposure of a portfolio. Fur-
thermore, portfolios often consist of numerous assets, which may not exhibit the same tail
heaviness or distribution. Thus, copulas are introduced to allow for more flexibility in describ-
ing the univariate log-returns and combine them in a joint distribution. Different types of
copulas exist and they are used to describe the dependencies between the univariate margins
in a multivariate distribution. After the ARMA-GARCH models are fitted in a multivariate
manner using copula theory, the model can be used in risk assessment of a portfolio. One
method to measure the risk is Value-at-Risk. This method calculates the highest expected
loss to occur with a specified probability. Value-at-Risk describes a bound, the loss will not
exceed with a specified probability, which is typically a 95% or a 99% confidence level. In
other words, Value-at-Risk describes a maximum loss to occur e.g. 5% or 1% of the time
and can be used by investors to determine if a portfolio is too risky or to determine the
amount of capital an investor should posses in case of a loss. There are different methods to
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Master Thesis Group 1.204a 1. Introduction

calculate the Value-at-Risk, which include non-parametric estimation, parametric estimation
and Monte Carlo simulations. The focus of this project is to investigate the performance of
a Monte Carlo method.

When Danish pension companies and financial institutions assess an investment product in
regard to risk and return, their calculations are based on the common expectations published
by the Council for Return Expectations. The council publishes the expected returns, expected
standard deviations and expected correlations for different groups of assets. Two of these
groups are global equity and emerging markets equity. In this project, the focus will be
on these two groups. Global equity consists of assets from developed markets, which are
countries such as the United States, Denmark and Japan. Emerging markets equity consists
of assets from emerging markets, which are countries such as Mexico, Korea and Taiwan.
A portfolio for each of these groups are constructed with five assets to represent the two
groups. The Council for Return Expectations publishes their expectations twice a year and
for different holding periods. The council published their first expectations in January 2020.
Expectations on the short term are anticipated to be realised after a year. For this reason, only
the reports for 2020 are considered, in order to be able to evaluate the realised performance
of these reports in risk assessment. These reports are published shortly before or during the
development of the corona pandemic, which may affect the accuracy of the predictions.

1.1 Statement of Intent

This leads to the following statement of intent:

How can one-day-ahead Value-at-Risk be forecasted for portfolios using copulas and Monte
Carlo simulations and how can these forecasts be evaluated? How does the forecasts per-
form compared with the common expectations of return and standard deviation published by
the Council for Return Expectations and are the portfolios representative for the respective
groups?
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Risk and Model Theory 2
In this chapter, fundamental theory to asses risk of a portfolio and model data to obtain
accurate one-day-ahead forecasts of risk is presented. The method to calculate risk is called
Value-at-Risk and is used to determine the highest expected loss to occur with some probabil-
ity. Then a mean-variance model called ARMA-GARCH is introduced to capture information
in the data and obtain a fitted model. Then copula theory is introduced in order to allow
for flexibility in the distribution of residuals from multiple ARMA-GARCH models. Next, a
Monte Carlo procedure is presented with the purpose of forecasting Value-at-Risk using an
ARMA-GARCH model with copulas. Lastly, backtesting methods are introduced in order to
evaluate the forecasted Value-at-Risks.

2.1 Value-at-Risk

This section is based on [1], [18] and [20].

In this section, a method to measure risk called Value-at-Risk (VaR) is introduced. This
method is commonly used amongst financial institutions to determine the risk exposure of
a portfolio. The risk measure VaR is the highest expected loss to occur with a specified
probability over a specified holding period. The method has two parameters, namely the
time horizon denoted T and the confidence level denoted α, where α ∈ [0, 1] and typical
values of α are 0.95 or 0.99. The VaR describes a bound, where the probability of having a
loss greater than this bound over the time horizon is smaller than 1−α. The VaR is defined
as

VaRα = inf{x : P(L > x) ≤ 1− α},

where L is the loss over the holding period T . To exemplify the VaR, suppose the holding
period is a year, the confidence level is 95% and the VaR is 1 million. Then there is a 5% risk
of having a loss greater than 1 million. Thus, VaR measures a potential loss of an investment
with a specified probability and can be used to determine the amount of extra capital an
investor should posses to avoid bankruptcy in case of a loss.

2.1.1 Estimation of Value-at-Risk

There are different methods to estimate VaR, which is non-parametric estimation, parametric
estimation and Monte Carlo estimation. These methods are described next in the case where
the portfolio consists of one asset.

In non-parametric estimation the loss is not assumed to belong to a parametric family, such
as the normal distribution or the t-distribution. Instead the VaR is calculated from historical
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data. The confidence level, α, is found by estimating the α-quantile of the return distribution.
This quantile is estimated as the α-quantile of a sample of historical returns, which is denoted
as q̂(α). Let S denote the size of the current position. The non-parametric estimate of VaR
is defined as

V̂aR
np
α = −S × q̂(α).

Note, the minus sign means the potential loss is returned rather than potential revenue. Since
non-parametric estimation uses historical data and is build on the idea that the history will
repeat itself, it is preferable to have a large data set to ensure there is enough information
in the data to represent different outcomes in time, such as financial crises. In addition, the
quantiles are used to calculate the VaR, so the data set should be reasonably large and α
should not be too high to avoid inference on outliers. The non-parametric approach has the
advantage of not assuming the distribution of data, which means the distribution of the data
cannot be misspecified. If the distribution is misspecified it could lead to overestimation or
underestimation of the VaR. The problems of misspecification are especially noteworthy in
times of financial crises. However, non-parametric estimation needs large data sets to be
accurate and thus also heavier computations. For this reason the parametric approach is
introduced.

In parametric estimation the loss is assumed to belong to a parametric family, such as the
normal distribution or the t-distribution. Assume FL(x) = P(L ≤ x) is the loss distribution
with mean µ and variance σ2. Let ϕ be the standard normal distribution function and let
ϕ−1(α) be the α-quantile of ϕ. Then the normal parametric VaR can be calculated as

V̂aR
par, Ga
α = −S × (µ̂+ σ̂ϕ−1(α)). (2.1)

A point x0 is called the α-quantile of the distribution function F if F (x0) ≥ α and F (x) <
α for all x < x0. This method of calculating the VaR is proved for S = 1 by showing
FL(VaRα) = α as

P(L ≤ VaRα) = P(L ≤ µ+ σϕ−1(α))

= P
(
L − µ

σ
≤ ϕ−1(α)

)
= P

(
ϕ
(L − µ

σ

)
≤ α

)
= ϕ(ϕ−1(α)) = α.

Note, in the second last equality Proposition 2.2 is used. Assume for the loss function that
L−µ
σ has a standard t-distribution with ν degrees of freedom, where the loss distribution is

denoted as L ∼ t(ν, µ, σ2). Note, for the t-distributed losses E(L) = µ and var(L) = σ2 ν
ν−2 ,

thus σ is not the standard deviation, but instead a scale parameter. The parameter is found
by isolation, as

var(L) = σ2 ν

ν − 2
⇔ σ =

√
var(L)ν − 2

ν
. (2.2)

The VaR is then calculated as

V̂aR
par, t
α = −S × (µ̂+ σ̂t−1

ν (α)), (2.3)

where tν is the standard t-distribution function with ν degrees of freedom. The Monte Carlo
approach uses simulations to imitate possible outcomes, and from these simulations find the
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VaR. The idea is to simulate a number of log-returns, which represent the possibly and
likely outcomes. These log-returns are sorted in increasing order and the α-quantile of these
simulated log-returns is the VaR.

The three methods can be extended to the case where a portfolio consists of multiple assets.
This extension is presented for the parametric method in the next section. The extension of
the Monte Carlo approach is presented in Section 2.4.

2.1.2 Estimation of Value-at-Risk for a Portfolio

In this section, the parametric estimation method to calculate VaR is presented for a portfolio
with multiple assets. The parametric estimation in this case is based on the assumption that
returns of assets are multivariate normal or t-distributed, where the return of the portfolio
consisting of the assets is univariate normal or t-distributed [20]. This assumption is relaxed
by use of copulas, which allow returns of different assets to have different distributions.
Copula theory is presented in Section 2.3.

The following theory is true for portfolios containing only stocks and no other types of assets.
If other types of assets are included the estimation of VaR becomes more complex. For a
portfolio consisting only of stocks, when the means are estimated, the expected return of the
portfolio is calculated as

µ̂P =
d∑

i=1

wiµi = w⊤µ,

where d is the number of assets, wi is the weight for asset i, w is the vector of portfolio
weights such that 1⊤w = 1, µi is the expected return of asset i and µ is the vector of the
expected returns. Further, the variance of the return of the portfolio is calculated using the
estimated variance-covariance matrix Σ as

σ̂P = w⊤Σw.

Then, assuming normally distributed returns of the portfolio, VaR is estimated as

V̂aR
par, Ga
P,α = −S × (µ̂P + ϕ−1(α)σ̂P ),

where S is the current position of the portfolio and ϕ−1(α) is the normal quantile. If the
returns of the portfolio follow a t-distribution instead with scale parameter σP given in (2.2),
mean µP , and tail index ν, then

V̂aR
par, t
P,α = −S × (µ̂P + t−1

ν (α)σ̂P ),

is the estimated VaR of the portfolio. Further, if the stocks have a joint normal or a joint
t-distribution, then VaR can be calculated by (2.1) or (2.3) since the returns of the portfolio
then follow a univariate normal or t-distribution with the same tail index.
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2.2 Mean-Variance Model

This section is based on [20].

In this section, the ARMA-GARCH model is briefly introduced in order to capture autore-
gressive and heteroskedastic behaviour in the data and fit the best model, which in terms
will produce more accurate forecasts of VaR.

An Autoregressive Moving Average (ARMA) model consists of two terms, which is an au-
toregressive (AR) part and a moving average (MA) part. An AR(p) model for Yt is defined
as

Yt = µ+

p∑
i=1

ϕiYt−i + εt, ∀t,

where εt is a white noise process, εt ∼ wn(0, σ2
ε), and ϕi for i = 1, . . . , p are parameters that

depend on the past. Information from the past is incorporated into the model through ϕiYt−i,
where larger values of ϕi incorporate more information from the past.

Consider the AR(1) model. If the process is stationary, then Yt and Yt−1 have the same
variance, denoted σ2

Y . Then the variance of the AR(1) model can be written as

σ2
Y = ϕ2σ2

Y + σ2
ε .

In order for Yt and Yt−1 to have the same variance |ϕ| must be smaller than 1, which equates
to the process being stationary. If |ϕ| > 1 the process has an explosive behaviour. When
the process Y is repeatedly inserted into the AR(1) model for |ϕ| < 1, it yields the infinite
moving average, denoted MA(∞), representation of the process, which is

Yt = µ+ εt + ϕεt−1 + ϕ2εt−2 + · · · = µ+
∞∑
h=0

ϕhεt−h.

The MA(∞) process is a weighted average of all past values of the white noise process. This
process can be approximated with fewer past values since ϕh → 0 for h → ∞, which mean
for large values of h the weight on the past value is small and thus the past value will have
almost no effect on the process Yt. The MA(q) model is defined as

Yt = µ+

q∑
j=1

θjεt−j + εt, ∀t.

An ARMA(p,q) model is a combination of the AR process and the MA process, defined as

Yt = µ+

p∑
i=1

ϕiYt−i +

q∑
j=1

θjεt−j + εt, ∀t.

In the ARMA model, the process Yt depends on both lagged values of itself and lagged
values of the noise process. The AIC and BIC values can be used to determine which model
is preferred. Furthermore, the ACF, QQ-plot and time series plots of the residuals can
be used to analyse if the assumptions on the error term are satisfied. Such an analysis
will often show heavy tails in the QQ-plot and volatility clustering in the time series plot
for financial data. These problems can be addressed using a Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) model on the residuals. The GARCH(p,q) model
is defined as

εt = atσt,
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2.3. Copulas Aalborg University

where

σt =

√√√√ω +

p∑
i=1

αiε2t−i +

q∑
j=1

βjσ2
t−j ,

and at is a white noise process with σ2
a = 1. Further, ω, αi for i = 1, . . . , p and βj for

j = 1, . . . , q are constants, where ω > 0. The sum satisfies that
∑p

i=1 αi+
∑q

j=1 βj < 1 where
αi, βj ≥ 0.

The term
∑p

i=1 αiε
2
t−i contains past values of the process, εt, which mean the process depends

on its past. The term
∑q

j=1 βjσ
2
t−j contains past volatilities and allows the conditional

standard deviation to exhibit periods with more persistent volatility compared to an ARCH
model, which is a special case of the GARCH model defined with σt =

√
ω +

∑p
i=1 αiε2t−i.

2.3 Copulas

This section is based on [10], [11], [18], [19] and [20].

In this section, copula theory is introduced to allow for more flexibility in the fitting of a
model. Copulas can evaluate a number of univariate processes in a multivariate distribution,
where the univariate processes can assume different distributions. Copulas characterise the
dependence between these univariate components in the joint distribution and is useful in risk
assessment of portfolios. As an example, the univariate assets in a portfolio may have weakly
correlated returns but their largest losses may occur in the same periods and be dependent on
each other. Copulas are used to describe these extreme behaviour dependencies. Furthermore,
when copulas are used to forecast VaR parametrically a number of problems are alleviated,
which include there is no longer an assumption of a joint multivariate distribution. A copula
is defined as follows.

Definition 2.1 (Copula)
A copula is a multivariate cumulative distribution function (CDF)1, which consists of stan-
dard uniform univariate marginal distributions with notation U(0, 1).

When using copulas it is often useful to transform the probability function, thus the following
proposition is presented.

Proposition 2.2 (Probability Transformation)
If Y has a continuous CDF denoted FY , then the probability transformation of Y denoted
FY (Y ) has a uniform distribution, U(0, 1). If FY is strictly increasing, then F−1

Y exists such
that

P{FY (Y ) ≤ y} = P{Y ≤ F−1
Y (y)} = FY {F−1

Y (y)} = y,

holds true [20, p. 675].

Assume Y = (Y1, . . . , Yd) has a multivariate CDF, denoted FY , with continuous marginal
univariate CDFs, denoted FY1 , . . . , FYd

. Then by Proposition 2.2, FY1(Y1), . . . , FYd
(Yd) ∼

U(0, 1). For that reason, the CDF of {FY1(Y1), . . . , FYd
(Yd)} is a copula. It is called the copula

of Y and is denoted by CY . The copula, CY , contains information about the dependence
between the components of Y and no information about the marginal CDFs of Y . The next
theorem shows the multivariate distribution can be defined as a copula.

1See Definition A.1 in Appendix A.1.
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Theorem 2.3 (Sklar’s Theorem)
Let Y = (Y1, . . . , Yd) be a random vector with joint CDF, FY , and marginal univariate CDFs
FY1 , . . . , FYd

. Then, there exists a d-dimensional copula function C : [0, 1]d → [0, 1] such that

FY (y1, . . . , yd) = C(FY1(y1), . . . , FYd
(yd)), (2.4)

for all y1, . . . , yd ∈ Rd. If the marginal univariate CDFs are continuous, then C is unique.
Otherwise, C is uniquely determined only on Ran(FY1) × · · · × Ran(FYd

), where Ran(FYi)
denotes the range2 of FYi for i = 1, . . . , d.

Conversely, let C be a copula and FY1 , . . . , FYd
be marginal univariate CDFs. Then, FY is a

multivariate CDF with marginal univariate CDFs defined as in (2.4) [10, p. 2].

Proof.
For pointers on the general proof of Sklar’s Theorem we refer to [18, p. 223]. ■

In the following the existence and uniqueness properties of a copula from Sklar’s Theorem in
the case of continuous marginal distributions FY1 , . . . , FYd

are shown.

Suppose all random variables have CDFs which are continuous and strictly increasing, mean-
ing the CDFs are assumed to be increasing on their support. These assumptions are reason-
able in many financial applications, since a continuous distribution is considered. Further,
the assumption of continuity entails the probability will increase strictly. Recall CY is the
CDF of {FY1(Y1), . . . , FYd

(Yd)}, and by the definition of the CDF the following is obtained

CY (u1, . . . , ud) = P{FY1(Y1) ≤ u1, . . . , FYd
(Yd) ≤ ud}

= P{Y1 ≤ F−1
Y1

(u1), . . . , Yd ≤ F−1
Yd

(ud)} (2.5)

= FY {F−1
Y1

(u1), . . . , F
−1
Yd

(ud)},

which shows the uniqueness. Let uj = FYj (yj) for j = 1, . . . , d, then

FY (y1, . . . , yd) = CY {FY1(y1), . . . , FYd
(yd)}, (2.6)

which is the identity (2.4) in Sklar’s Theorem 2.3 and thus the existence is shown.

The probability density function of CY is introduced for later usage in Section 2.3.3 to find
the estimates in maximum likelihood. Let cY be the probability density function associated
with CY , then

cY (u1, . . . , ud) =
∂d

∂u1 · · · ∂ud
CY (u1, . . . , ud).

The probability density function of Y is found by differentiating (2.6), which is

fY (y1, . . . , yd) = cY {FY1(y1), . . . , FYd
(yd)}fY1(y1) · · · fYd

(yd), (2.7)

where fY1 , . . . , fYd
are the univariate marginal probability density functions of Y1, . . . , Yd,

respectively.

Copulas are invariant to strictly increasing transformations of the marginals, meaning they
do not change after such transformations are used. This is stated in the following proposition.

2See Definition A.2 in Appendix A.1.
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Proposition 2.4
Let g1, . . . , gd be strictly increasing functions and let Y = (Y1, . . . , Yd) be a random vector
with copula C and continuous marginal distributions. Then, (g1(Y1), . . . , gd(Yd)) also has the
copula C.

Proof.
Assume the transformation gj is strictly increasing and Xj = gj(Yj) for j = 1, . . . , d. The
CDF of X = (g1(Y1), . . . , gd(Yd)) is

FX(x1, . . . , xd) = P{g1(Y1) ≤ x1, . . . , gd(Yd) ≤ xd}
= P{Y1 ≤ g−1

1 (x1), . . . , Yd ≤ g−1
d (xd)} (2.8)

= FY {g−1
1 (x1), . . . , g

−1
d (xd)},

where the CDF of Xj is given as

FXj (xj) = FYj{g
−1
j (xj)}.

This implies that

F−1
Xj

(uj) = gj{F−1
Yj

(uj)}

g−1
j {F−1

Xj
(uj)} = F−1

Yj
(uj). (2.9)

Using (2.5), (2.8) and (2.9) the copula of X is

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F
−1
Xd

(ud)}
= FY [g

−1
1 {F−1

X1
(u1)}, . . . , g−1

d {F−1
Xd

(ud)}]
= FY {F−1

Y1
(u1), . . . , F

−1
Yd

(ud)}
= CY (u1, . . . , ud),

which mean X and Y have the same copula. ■

2.3.1 Types of Copulas

In this section, different copulas are introduced, which are the Gaussian copula, the t-copula
and four types of Archimedean copulas. Copulas are used to model dependencies in the data
and these different types of copulas represent different dependency structures, where the best
fitting copula is selected after evaluation.

First two examples of implicit copulas are defined, which are the Gaussian and the t-copula.
Implicit copulas refer to copulas extracted from multivariate distributions by use of Sklar’s
Theorem. Such copulas do not necessarily have a simple closed form expression. Next, four
examples of explicit copulas are presented, which are the Gumbel copula, the Clayton copula,
the Frank copula and the Joe copula. Explicit copulas refer to copulas that have a simple
closed form expression and follow a construction known to yield copulas.

The Gaussian and the t-copula are obtained from multivariate distributions using Sklar’s
Theorem 2.3. In order to define these two copulas, the following relation between the variance-
covariance and correlation matrices is presented. Let Σ denote the variance-covariance matrix.
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Two useful operations on the variance-covariance matrix are

∆(Σ) := diag(
√
σ11, . . . ,

√
σdd),

℘(Σ) := (∆(Σ))−1Σ(∆(Σ))−1,

where ∆(Σ) extracts a diagonal matrix of standard deviations from Σ and ℘(Σ) extracts the
correlation matrix, P . Then the relation between the variance-covariance matrix Σ and the
correlation matrix P of the d-dimensional random vector of returns X is

P = ℘(Σ).

A copula is called a Gaussian copula if Y ∼ Nd(µ,Σ) is a multivariate normal random
vector. This copula does not depend on the univariate normal marginal distributions but
on the dependencies within Y . The marginal distributions are standardised using strictly
increasing transformations, thus Proposition 2.4 can be used, which implies the copula of Y
is the same as the copula of X ∼ Nd(0, P ), where P = ℘(Σ) is the correlation matrix of Y .
This copula is by (2.5) given as

CGa
P (u) = P(Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud)

= ΦP (Φ
−1(u1), . . . ,Φ

−1(ud)),

where Φ is the standard univariate normal distribution function and ΦP is the joint distri-
bution function of X. There are 1

2d(d − 1) parameters in the correlation matrix and when
d = 2 the notation CGa

P is converted to CGa
ρ , where ρ = ρ(X1, X2).

For the Gaussian copula if P = Id the independence copula3 is obtained and if P = Jd,
meaning the d × d matrix consists only of ones, the co-monotonicity copula3 is obtained. If
d = 2 and ρ = −1 then the counter-monotonicity copula3 is obtained. Thus, the Gaussian
copula for d = 2 can be considered as a dependence structure where the parameter ρ indicates
the strength of the dependence.

The d-dimensional t-copula is given by

Ct
ν,P (u) = tν,P (t

−1
ν (u1), . . . , t

−1
ν (ud)),

where P is the correlation matrix, tν,P is the joint distribution function of the vector X ∼
td(ν,0, P ) and tν is the distribution function of the standard univariate t-distribution with
ν degrees of freedom. The ν parameter affects both the univariate marginal distributions
and the tail dependence between the components. The amount of tail dependence of the
random vector with a t-copula is determined by ν which is described in Section 2.3.2. As for
the Gaussian copula, if P = Jd, the t-copula equals the co-monotonicity copula. However,
if P = Id the independence copula is not obtained since the uncorrelated multivariate t-
distributed random variables are not independent when assuming ν < ∞.

Note, the method used to extract a copula from the multivariate normal distribution and
multivariate t-distribution can be used to extract other copulas from any other distribution
with continuous marginal distribution functions.

3See Section A.2 in Appendix A for a description of the independence copula, the co-monotonicity copula
and the counter-monotonicity copula.
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Examples of copulas with simple closed form expressions are Archimedean copulas. Such
copulas are referred to as explicit copulas. An Archimedean copula with a strict generator is
defined as

C(u) = φ−1{φ(u1) + · · ·+ φ(ud)}, (2.10)

where φ is the generator function, which satisfies the conditions,

(1) φ is continuous, strictly decreasing and convex, which maps [0, 1] onto [0,∞],

(2) φ(0) = ∞,

(3) φ(1) = 0.

The generator function φ is not unique, i.e. if φ is multiplied with any positive constant a,
it generates the same copula as φ. If assumption (2) is relaxed, the generator is no longer
strict and the construction of the copula is more complicated. Note, if u is permuted in
(2.10), the value of C(u) is unchanged, which means the distribution is called exchangeable.
Archimedean copulas are most useful, when all univariate components are expected to have
similar dependencies. In this project, four types of Archimedean copulas are considered,
namely the Gumbel, Clayton, Frank and Joe copula. The copulas are presented with their
generator function, inverse generator function and multivariate definition derived using (2.10).

The Gumbel copula has the generator function φGu(u|θ) = (− log(u))θ, where θ ∈ [1,∞).
Thereby, the inverse generator function is given by φ−1

Gu(u|θ) = exp(−u1/θ) and then by (2.10)
the Gumbel copula is defined as

CGu
θ (u) = exp

(
−
( d∑

i=1

(− log ui)
θ

)1/θ
)

= exp

(
−
(
(− log u1)

θ + . . .+ (− log ud)
θ
)1/θ)

.

In the case where θ = 1 the independence copula is obtained. Further, in the case where
θ → ∞ the co-monotonicity copula is obtained. This means the Gumbel copula cannot
have a negative dependence and will interpolate between independence and perfect positive
dependence, where the amount of dependence is determined by the value of θ. The Clayton
copula has the generator function φCl(u|θ) = 1

θ (u
−θ − 1), where θ ∈ (0,∞). The inverse

generator function is given by φ−1
Cl (u|θ) = (1 + θu)−1/θ. The Clayton copula is then defined

as

CCl
θ (u) =

( d∑
i=1

(u−θ
i − 1) + 1

)−1/θ

= (u−θ
1 + . . .+ u−θ

d + 1− d)−1/θ.

Note, the Clayton copula is not defined for θ = 0, thus the limit as θ approaches zero is
considered instead. In the case where θ → 0, it is the independence copula and in the
case where θ → ∞ it is the co-monotonicity copula. This means, the Clayton copula will
interpolate between independence and perfect positive dependence, where the strength of
the dependence is determined by θ. Further, the Frank copula has the generator func-
tion φFr(u|θ) = − log

( exp(−θu)−1
exp(−θ)−1

)
, where θ ∈ R\{0} and the inverse generator function is
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φ−1
Fr (u|θ) = −1

θ log(1 + exp(−u)(exp(−θ)− 1)). The Frank copula is defined as

CFr
θ (u) = −1

θ
log

(
1 +

∏d
i=1(e

−θui − 1)

(e−θ − 1)d−1

)
.

For θ → 0 the Frank copula is the independence copula. As θ → −∞ the Frank cop-
ula converges to the counter-monotonicity copula, and as θ → ∞ it converges to the co-
monotonicity copula. This means, the Frank copula interpolates between perfect negative
dependence and perfect positive dependence. Lastly, the Joe copula has the generator func-
tion φJoe(u|θ) = − log(1 − (1 − u)θ), where θ ∈ [1,∞). Here, the inverse generator function
is φ−1

Joe(u|θ) = 1− (1− exp(−t))1/θ. The Joe copula is defined as

CJoe
θ (u) = 1−

(
1−

d∏
i=1

(
1− (1− ui)

θ
))1/θ

.

For θ = 1 the Joe copula is the independence copula, and as θ → ∞ it converges to the
co-monotonicity copula. Similar to the Gumbel copula, the Joe copula cannot have negative
dependence.

2.3.2 Tail Dependence

In this section, the concept of tail dependence is introduced with the purpose of being able
to describe extreme dependencies between the components of the joint distribution. Tail
dependence between random variables is a measure of their association in the tails of the
distribution. This measure depends only on the copula of the random variables in the con-
tinuous case. The coefficients of tail dependence are given by the limits of the conditional
probabilities exceeding the quantile q. Note, the tail dependence is only presented for the
bivariate case, but can be extended to the multivariate case [17, p. 291-292].

Let (Y1, Y2) be a random vector with copula CY . The coefficient of lower tail dependence is
defined as

λl = lim
q↓0

P{Y2 ≤ F−1
Y2

(q) | Y1 ≤ F−1
Y1

(q)} (2.11)

= lim
q↓0

P{Y1 ≤ F−1
Y1

(q), Y2 ≤ F−1
Y2

(q)}
P{Y1 ≤ F−1

Y1
(q)}

= lim
q↓0

P{FY1(Y1) ≤ q, FY2(Y2) ≤ q}
P{FY1(Y1) ≤ q}

(2.12)

= lim
q↓0

CY (q, q)

q
.

Here, the extreme left tail is considered, since the limit is taken as q ↓ 0. If Y1 and Y2 are
independent, then P{Y2 ≤ y2 | Y1 ≤ y1} = P{Y2 ≤ y2} for all y1 and y2. This means the
conditional probability in (2.11) is equal to the unconditional probability P{Y2 ≤ F−1

Y2
(q)},

which is converging to 0 as q ↓ 0. Thus, λl = 0, which implies Y1 and Y2 behave as if they
are independent in the extreme left tail. Consider (2.12), the numerator is the definition of
the copula, and the denominator equals q, since FY1(Y1) ∼ U(0, 1).
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The coefficient of upper tail dependence is defined as

λu = lim
q↑1

P{Y2 > F−1
Y2

(q) | Y1 > F−1
Y1

(q)}

= lim
q↑1

1− P{Y1 ≤ F−1
Y1

(q)} − P{Y2 ≤ F−1
Y2

(q)}+ P{Y1 ≤ F−1
Y1

(q), Y2 ≤ F−1
Y2

(q)}
1− P{Y1 ≤ F−1

Y1
(q)}

= lim
q↑1

1− P{FY1(Y1) ≤ q} − P{FY2(Y2) ≤ q}+ P{FY1(Y1) ≤ q, FY2(Y2) ≤ q}
1− P{FY1(Y1) ≤ q}

= lim
q↑1

1− q − q + CY (q, q)

1− q

= lim
q↑1

1− 2q + CY (q, q)

1− q

= lim
q↑1

2− 2q − 1 + CY (q, q)

1− q

= lim
q↑1

2(1− q)

1− q
− 1− CY (q, q)

1− q

= lim
q↑1

2− 1− CY (q, q)

1− q

= 2− lim
q↑1

1− CY (q, q)

1− q
.

If λl ∈ (0, 1], C has lower tail dependence, which means Y1 and Y2 are lower tail dependent. If
λl = 0 then C has no lower tail dependence, which means Y1 and Y2 are lower tail independent.
This is analogue for λu.

Any bivariate Gaussian copula, CGa, with ρ ̸= 1 does not have tail dependence, that is
λGa = 0 [20, p. 197]. For a bivariate t-copula Ct with correlation ρ and degrees of freedom
ν, the coefficient of lower tail dependence is given by

λt
l = 2Ft,ν+1

{
−

√
(ν + 1)(1− ρ)

1 + ρ

}
,

where Ft,ν+1 is the CDF of the t-distribution with ν + 1 degrees of freedom. The t-copula
converges to the Gaussian copula when ν → ∞, since Ft,ν+1(−∞) = 0 meaning that λt

l → 0
as ν → ∞. Further, λt

l → 0 when ρ → −1, since λt
l measures positive tail dependence. For

both the Gaussian copula and the t-copula, it holds true that λu = λl.

For the Archimedean copulas the tail dependence coefficients are listed in Table 2.1.

Copula Upper tail Lower tail

Gumbel 2− 21/θ 0

Clayton 0 2−1/θ

Frank 0 0

Joe 2− 21/θ 0

Table 2.1. Coefficients of tail dependence for the Archimedean copulas [11, 18].

The Clayton copula is the only copula with lower tail dependence. When lower tail depen-
dence is present in a loss distribution it suggests a great loss for one asset is likely to occur
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simultaneous with a great loss for another asset in the portfolio. Upper tail dependence
will instead suggest a great return for one asset will occur simultaneous with a great return
for another asset in the portfolio. The Gumbel and the Joe copulas have the same upper
tail dependence but the Joe copula allows for even stronger upper tail dependence than the
Gumbel copula [20, p. 192]. The Frank copula does not take tail dependence into account.

The concept of tail dependence is essential for risk management, since it indicates whether
the risk of an extreme negative return in the portfolio is low or high. The risk of simultaneous
negative returns is small if there is no lower tail dependency in the returns of the assets in
the portfolio, which suggests less extreme risk. The risk of simultaneous negative returns in
the portfolio can be high if there is lower tail dependency. Thus, it is beneficial to consider
tail dependencies when assessing the diversification and risk of a portfolio.

2.3.3 Estimation of Parameters

In this section, estimation of an unknown copula is presented for the parametric setting. Here,
methods to estimate marginal distribution parameters, θ1, . . . ,θd, and copula parameters,
θC , are presented.

Let Y 1:n = {(Yi,1, . . . , Yi,d) : i = 1, . . . , n} be a random sample of a d-variate random vector
Y with distribution function, FY , and univariate marginal distributions FY1 , . . . , FYd

, which
are continuous. Then Sklar’s Theorem 2.3 states there exists a unique d-dimensional copula
function C : [0, 1]d → [0, 1] such that

FY (y1, . . . , yd) = C(FY1(y1), . . . , FYd
(yd)).

In order to estimate the copula parameters the marginal distributions are needed, wherefore
these are estimated first. In the parametric setting it is assumed that FY1 , . . . , FYd

belong
to absolutely continuous parametric families of univariate distribution functions. In order to
estimate the parameters of FY1 , . . . , FYd

and the copula, the two methods maximum likelihood
and pseudo-maximum likelihood are presented.

Maximum Likelihood

Assume the marginal CDFs are given by parametric models FY1(· | θ1), . . . , FYd
(· | θd) and

a parametric model cY (· | θC) is given for the density of the copula. The log-likelihood is
obtained by taking the logarithm of (2.7),

log{L(θ1, . . . ,θd,θC)} =

n∑
i=1

(
log
[
cY
{
FY1(Yi,1 | θ1), . . . , FYd

(Yi,d | θd)
∣∣ θC

}]
+ log{fY1(Yi,1 | θ1)}+ · · ·+ log{fYd

(Yi,d | θd)}
)
. (2.13)

Maximum likelihood estimation (MLE) finds the maximum of (2.13) with respect to the
set of parameters (θ1, . . . ,θd,θC). Nevertheless, there are two problems with this type of
estimation. First, for large values of d, it can be computationally burdensome to maximise
(2.13) numerically, because of the curse of dimensionality. Second, the method requires
parametric models for both the univariate marginal distributions and the copula. If these are
misspecified it may cause the estimated parameters to be biased. The former issue can be
solved using the pseudo-maximum likelihood explained below, so the computational burden
is reduced compared to the maximum likelihood estimator. The latter issue can be avoided
by estimating the univariate marginal distributions FY1 , . . . , FYd

non-parametrically.
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In the next section, pseudo-maximum likelihood is introduced, which can handle both the
parametric and the non-parametric approach. The parametric approach is also called Infer-
ence Functions for Margins (IFM). The non-parametric approach will not be studied in this
project.

Pseudo-Maximum Likelihood

Pseudo-maximum likelihood estimation consists of two steps. The first step is to estimate
the d univariate marginal distributions individually by assuming parametric models FY1(· |
θ1), . . . , FYd

(· | θd) for the univariate marginal CDFs. Thereafter, estimation of the unknown
marginal parameters θj for j = 1, . . . , d is performed by maximum likelihood using the data
Y1,j , . . . , Yn,j , hence F̂Yj (·) = FYj (· | θ̂j). The second step maximises the following expression
with respect to θC ,

n∑
i=1

log[cY {F̂Y1(Yi,1), . . . , F̂Yd
(Yi,d) | θC}].

This method avoids optimisation with a high dimension by estimating the parameters in
the univariate marginal distributions and in the copula separately. The values F̂Yj (Yi,j) for
i = 1, . . . , n and j = 1, . . . , d should be approximately uniformly distributed and therefore
they are called the uniform-transformed variables.

Recall, the pseudo-maximum likelihood estimator has a computational advantage over the
maximum likelihood estimator. Nevertheless, a disadvantage is that the pseudo-maximum
likelihood estimator is less efficient than the maximum likelihood estimator [13]. For both
estimation methods one should be aware that misspecified marginal distributions may cause
a bias in the estimation.

2.4 Monte Carlo Forecasts

This section is based on [16].

In this section, a Monte Carlo procedure to forecast one-day-ahead VaR is presented. Here,
only equally weighted portfolios consisting of d assets are considered. From this point forward
the notation for the number of observations n is changed to T , since time observations are
considered. The daily log-return of asset j is defined as

rjt = log

(
P j
t

P j
t−1

)
= log(P j

t )− log(P j
t−1), for j = 1, . . . , d,

where P j
t is the price of asset j at time t. The log-return of the portfolio is given by

rPt =
1

d
r1t + · · ·+ 1

d
rdt .

In order to estimate the VaR of a portfolio, the joint distribution of the vector of log-returns,
(r1t , . . . , r

d
t ), is found. The vector of log-returns is modelled using a mean-variance model

introduced in Section 2.2 and copula theory presented in Section 2.3. Hereafter, the VaR is
forecasted using Monte Carlo simulations. In order to forecast VaR, the data is first fitted
using an ARMA-GARCH model, where two different density functions for the standardised
residuals are assumed: The normal distribution and the t-distribution. Note, when ν → ∞
the t-distribution reduces to the normal distribution.
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The profit and loss (P&L) function of the portfolio composed of d assets is denoted Lt and
is given by

Lt =
1

d
P 1
t + · · ·+ 1

d
P d
t −

(
1

d
P d
t−1 + · · ·+ 1

d
P d
t−1

)
=

1

d
P 1
t−1(exp(r

1
t )− 1) + · · ·+ 1

d
P d
t−1(exp(r

d
t )− 1).

(2.14)

The procedure is based on T observations of log-returns of d assets. In the following procedure
an ARMA-GARCH model and copulas are used to forecast one-day-ahead VaR at a 95% and
a 99% confidence level.

(1) Use T observations to fit an ARMA-GARCH model to each return series and estimate
the marginal distributions for each of the standardised residual processes.

(2) Forecast one-step means, r̂jT+1, and variances, σ̂j
T+1, at time T + 1 for j = 1, . . . , d.

(3) Estimate the copula parameters by the probability integral transforms u1t , . . . , udt of the
standardised residuals a1t , . . . , a

d
t .

(4) Simulate k random variables (u1,kT+1, . . . , u
d,k
T+1) for k = 1, . . . , N from the copula4.

(5) Obtain the simulated standardised residuals aj,kT+1 for j = 1, . . . , d using the inverse
functions of the estimated marginal distributions as

(a1,kT+1, . . . , a
d,k
T+1) =

(
F−1
1,T+1(u

1,k
T+1; θ̂1), . . . , F

−1
d,T+1(u

d,k
T+1; θ̂d)

)
.

(6) Obtain the simulated asset log-returns by

(r1,kT+1, . . . , r
d,k
T+1) =

(
r̂1T+1 + a1,kT+1 ·

√
σ̂1
T+1, . . . , r̂

d
T+1 + ad,kT+1 ·

√
σ̂d
T+1

)
.

(7) Calculate the values of Lk
T+1 for k = 1, . . . , N by (2.14).

(8) Sort the N values of Lk
T+1 in increasing order and calculate the 95% VaR and the 99%

VaR as:

(i) 95% VaR is the absolute value of the N × (1− 0.95) ordered value in Lk
T+1.

(ii) 99% VaR is the absolute value of the N × (1− 0.99) ordered value in Lk
T+1.

(9) Repeat steps (1)-(8) M times by rolling over the daily returns. In other words, after
forecasting the next trading day, the log-return and price of the next day are added to
the data set and the first log-return and price in the data set are deleted. This ensures
the data set always consists of T observations.

The procedure results in M rolling forecasts of VaR with N Monte Carlo simulations. These
forecasts are one-day-ahead out-of-sample forecasts, which can be evaluated with methods
called backtesting introduced in Section 2.5.

4See [11, p. 88, 90] for simulation of copulas.
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2.5 Backtesting

This section is based on [4], [5] and [16].

In this section, backtesting methods are presented, which are methods used to evaluate the
predictive performance of a model using historical data. Such methods are introduced to
assess the performance of the forecasted VaR.

First a hit series is defined, which has the value 1 when the loss exceeds VaR and 0 otherwise.
This is written as

It =

{
1 if Lt < −VaRt

0 if Lt ≥ −VaRt

, for t = 1, . . . , T.

It is expected that the VaR is violated with a probability of 1− α and the number of times
a loss exceeds the VaR is calculated as

Z =

T∑
t=1

It.

The ratio of VaR exceedances is calculated as Z/T . With this notation, Kupiec’s uncondi-
tional coverage test is introduced, which is a likelihood ratio test statistic defined as

LRUC = −2 log
[
αT−Z(1− α)Z

]
+ 2 log

[
(1− Z/T )T−Z(Z/T )Z

]
,

where T−Z is the successes and Z is the failures and the term αT−Z(1−α)Z is the probability
of having T − Z successes. Thus, it is tested if it holds true that 1 − α = Z/T . In other
words, the test statistic compares the predicted number of times VaR is exceeded against
the observed number of times VaR is exceeded. This test is asymptotically distributed as
χ2(1) under the null hypothesis, which states the observed number of exceedings statistically
equals the predicted number of exceedings. Note, (1− α) is the probability for the losses to
exceed the VaR which is (1−α) ·100 percent and if the losses exceed the VaR more frequently
it underestimates the risk of the portfolio and conversely if the losses exceed the VaR less
frequently the risk of the portfolio is overestimated. Kupiec’s method is able to reject the
model for having both too many and too few failures, however it is very simple and has a
number of disadvantages. Kupiec’s test requires a large sample size to be accurate and it
only focuses on the number of failures and does not consider the nature of the losses. For this
reason Christoffersen’s independence test is presented, which further examines if the failures
and successes are independent. This test is defined as

LRCC = −2 log
[
αT−Z(1− α)Z

]
+ 2 log

[
(1− π01)

n00πn01
01 (1− π11)

n10πn11
11

]
,

where nij is the number of observations with value i followed by value j in the hit series It for
i,j = 0,1 and πij =

nij∑
j nij

is the corresponding probability. This test is asymptotically dis-

tributed as χ2(2) under the null hypothesis, which is the probabilities of VaR exceedings are
independent. These probabilities are independent if π01 = π11 = α. Where Kupiec’s uncondi-
tional coverage test restricts the number of violations allowed, Christoffersen’s independence
test further restricts on the way the violations occur. The reasoning behind this test is VaR
should take clustering into account, where periodic low or high volatilities are reflected in
the expected probability of failures and successes. Thus, Christoffersen’s independence test
is further able to reject a model for having too many or too few clustered violations.
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Kupiec’s and Christoffersen’s statistical tests compare the calculated and observed number
of exceedings of VaR to determine the accuracy or reliability of a model. These methods do
not address the magnitude of the violations, for which reason it is beneficial to additionally
consider a loss function. Such methods can be used to evaluate the number of violations and
further distinguish between models under the alternative hypothesis, where the magnitude
of the exceedings is assessed. The first loss function proposed by Lopez equals the hit series
and is defined as

CL1
t =

{
1 if Lt < −VaRt

0 if Lt ≥ −VaRt

. (2.15)

This loss function ignores the magnitude of the losses. For this reason Lopez proposes another
loss function, which has an added term (|Lt| − VaRt)

2 that incorporates the magnitude of
the exceedings, where larger failures are penalised. It is defined as

CL2
t =

{
1 + (|Lt| − VaRt)

2 if Lt < −VaRt

0 if Lt ≥ −VaRt

. (2.16)

Another loss function proposed by Blanco and Ihle incorporates the average size of the ex-
ceedings of VaR and is defined as

CBI
t =

{
|Lt|−VaRt

VaRt
if Lt < −VaRt

0 if Lt ≥ −VaRt

. (2.17)

There are different methods to evaluate the outcome of the loss functions. One method is to
evaluate the sample average of the loss functions,

Ĉ =
1

T

T∑
t=1

Ct. (2.18)

The sample average of different models can then be compared, where the model with the
smallest Ĉ is preferred because it indicates a better goodness-of-fit.

In practice, the two statistical tests from Kupiec and Christoffersen are used to select the
best model. Next, the loss functions are used to compare the costs of different admissible
choices.
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Modelling 3
In this chapter, data processing and modelling are presented. First, the data is presented for
two categories of assets, which are global equity assets and emerging markets equity assets.
Then the data is modelled using a mean-variance model from Section 2.2 and copula theory
from Section 2.3, after which the VaR is forecasted using the Monte Carlo procedure in
Section 2.4 on an equally weighted portfolio containing five assets. These forecast are then
evaluated using the backtesting methods from Section 2.5.

3.1 Data Description

The data used in this project is collected from Yahoo Finance. As described in Chapter 1
the focus is on two groups of assets, which are global equity and emerging markets equity.
To represent the two groups, two portfolios are considered containing five assets which are
selected from different countries and different sectors of industry. The two portfolios are
referred to as group 5 for the portfolio representing global equity and group 6 for the portfolio
representing emerging markets equity. The observations are given in United States dollar
(USD). For group 5 the chosen assets are:

• Apple (AP) from the US, which is information technology.

• Adidas (AD) from Germany, which is clothing, accessories and luxury goods.

• Novo Nordisk (NN) from Denmark, which is from the pharmaceutical industry.

• Sony Group (SG) from Japan, which is cyclical consumption.

• Prudential Financial (PF) from England, which is from the financial sector.

For group 6 the chosen assets are:

• Fomento Económico Mexicano (FM) from Mexico, which is mineral water and beverage.

• Korea Electric Power Corporation (KE) from South Korea, which is electric utility.

• PLDT Inc. (PH) from the Philippines, which is telecommunication.

• Taiwan Semiconductor Manufacturing (TS) from Taiwan, which is information tech-
nology.

• United Overseas Bank (UO) from Singapore, which is from the financial sector.
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These assets are divided into three samples with one observation each day. The full sample
is from 2010-01-04 to 2021-12-30 containing 3020 observations. The estimation sample is
from 2010-01-04 to 2019-12-31 containing 2516 observations. The forecasting sample is from
2020-01-02 to 2021-12-30 containing 504 observations, which is concurrent with the corona
pandemic. Further, the adjusted close price is considered in the analysis and is referred to
as the price. The prices of the equally weighted portfolios for group 5 and 6 are shown in
Figure 3.1.

G
roup 5

G
roup 6

2010 2015 2020

50

100

20

30

40

50

Date

P
ric

e

Figure 3.1. The equally weighted portfolio prices for group 5 and 6. The dashed line represents the
split between the estimation sample and the forecasting sample.

Note, the scales of the prices for the two groups are different. The prices are increasing
throughout the period. However, in the beginning of 2020 there is a relatively high decrease
in the price, which is probably caused by the corona pandemic. To further investigate the
portfolios, the correlations between the two groups for the three periods are calculated and
the results are shown in Table 3.2.

Correlations between portfolio prices for group 5 and 6

Full sample Estimation sample Forecasting sample

Correlation 0.85 0.71 0.96

Table 3.2. Correlations.

There is a high correlation between the two groups for all time periods and the correlation is
especially high in the forecasting sample.
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To model a mean-variance model of each asset, the price processes need to be stationary
and therefore, the price processes are converted into daily log-returns. The full samples of
log-returns are plotted in Figure 3.3 for the respective assets in group 5 and 6.
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(a) The log-returns of the assets from group 5.
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(b) The log-returns of the assets from group 6.

Figure 3.3. Illustration of the log-returns from the respective groups, where the dashed black line
represents the date that splits the estimation sample and the forecasting sample.
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The figure shows the time series are approximately stationary, but with some volatility clus-
tering. The corona pandemic starts in the beginning of 2020 where a considerable clustering
appears for most of the time series. The estimation sample is used to estimate the model and
the forecasting sample is used for out-of-sample predictions of the models.

In Table 3.4 and 3.5 the descriptive statistics for the log-returns of the five assets are presented
for the three periods for the assets in group 5 and 6, respectively. In Table 3.4 it is seen the
mean of AP is higher than the mean of the remaining assets for the three periods, while the
standard deviations are similar for all five assets. Note, the mean of AD in the forecasting
sample is negative. The 95% VaR and the 99% VaR are calculated from historical returns
and for both levels of VaR, the values in the forecasting sample are higher than the values in
the estimation sample for all assets except for SG. It is expected that the VaR is higher in the
forecasting sample since the corona pandemic is emerging in this time period. The tendency
seen for SG can be caused by the corona pandemic as well, where their products and services
are more desired during the corona pandemic. Note, the lower number of observations in the
forecasting sample may cause a less reliable historical VaR estimation. The skewness of SG is
positive in the three periods, while the four other assets exhibit negative skewness. Further,
all assets exhibit excess kurtosis. The Jarque-Bera test is used to test for normality, which is
described in Appendix A.3. The null hypothesis states that the data is normally distributed
with kurtosis equal to 3 and no skewness. All of the test statistics are relatively high and all
the p-values are less than 0.05, which mean the test rejects the null hypothesis of normality
for the three periods for all assets. The Augmented Dickey-Fuller (ADF) test is a unit root
test, which tests the null hypothesis of non-stationarity of the time series. Here, the p-values
of all tests are less than 0.05, which indicates all assets are stationary. The Ljung-Box test
is an autocorrelation test, which is described in Appendix A.4. The null hypothesis of the
Ljung-Box test states there is no autocorrelation. This test is conducted on the log-returns
at lag 25, which means the statistic is based on 25 autocorrelation coefficients. The p-values
for AP, AD and PF are less than 0.05 in the full sample and the p-values are less than 0.05
for AP and PF in the estimation sample. The p-values for AD in the estimation sample,
and for NN and SG for both the full and the estimation sample are greater than 0.05, which
mean the time series are not autocorrelated. All p-values are less than 0.05 in the forecasting
sample.

In Table 3.5 it is seen that the mean of TS is higher than the mean of the four other assets
and the mean of KE is negative for the three periods. Further, the mean of PH is negative
in the estimation sample and the mean of FM is negative in the forecasting sample. The
standard deviation varies for all assets, but are highest in the forecasting sample. The 95%
VaR of all assets is lower for the estimation sample than for the forecasting sample. This is
also true for the 99% VaR for all assets except for PH where the 99% VaR is higher in the
estimation sample than in the forecasting sample. All assets exhibit negative skewness and
excess kurtosis, except the skewness of KE, which is positive in the three periods. The test
statistics of the Jarque-Bera test are relatively high and the p-values are less than 0.05, thus
the assets exhibit non-normality in the three periods. The p-values of the ADF test are less
than 0.05, which indicates all assets are stationary. Further, the p-values of the Ljung-Box
test with lag 25 are less than 0.05, except for FM for both the full sample and the estimation
sample. A p-value less than 0.05 indicates the assets are autocorrelated.

Page 22 of 65



3.1. Data Description Aalborg University

G
ro

up
5:

G
lo

ba
lE

qu
it
y

Fu
ll

sa
m

pl
e

E
st

im
at

io
n

sa
m

pl
e

Fo
re

ca
st

in
g

sa
m

pl
e

A
P

A
D

N
N

SG
P

F
A

P
A

D
N

N
SG

P
F

A
P

A
D

N
N

SG
P

F

M
ea

n
0.

00
11

0.
00

06
0.

00
08

0.
00

05
0.

00
04

0.
00

10
0.

00
08

0.
00

07
0.

00
04

0.
00

04
0.

00
18

-0
.0

00
2

0.
00

14
0.

00
12

0.
00

05

St
.

D
ev

.
0.

01
77

0.
01

88
0.

01
63

0.
02

03
0.

02
09

0.
01

62
0.

01
78

0.
01

59
0.

02
04

0.
01

77
0.

02
36

0.
02

32
0.

01
78

0.
01

95
0.

03
25

95
%

V
aR

0.
02

63
0.

02
83

0.
02

30
0.

03
13

0.
03

14
0.

02
53

0.
02

63
0.

02
26

0.
03

22
0.

02
89

0.
03

42
0.

03
47

0.
02

47
0.

02
61

0.
04

37

99
%

V
aR

0.
04

74
0.

04
94

0.
04

50
0.

05
39

0.
05

56
0.

04
41

0.
04

62
0.

04
36

0.
05

51
0.

04
90

0.
06

76
0.

06
64

0.
04

99
0.

04
55

0.
08

21

Sk
ew

ne
ss

-0
.3

11
3

-0
.3

66
1

-0
.7

09
9

0.
17

44
-0

.8
00

0
-0

.3
41

6
-0

.1
27

6
-0

.8
39

0
0.

17
80

-0
.5

25
9

-0
.2

72
2

-0
.8

33
2

-0
.2

55
8

0.
16

87
-0

.8
60

2

E
xc

es
s

ku
rt

os
is

6.
12

90
7.

02
24

8.
27

06
4.

64
96

14
.7

73
4.

82
97

5.
78

92
9.

55
78

4.
65

89
4.

17
56

5.
50

26
7.

60
48

3.
72

60
4.

55
65

12
.1

41

Ja
rq

ue
-B

er
a

te
st

47
74

62
71

88
58

27
35

27
77

4
24

93
35

19
98

68
22

88
19

43
64

1
12

70
29

6
43

8
31

51

P
-v

al
ue

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

A
D

F
te

st
-1

3.
80

80
-1

4.
21

00
-1

5.
36

96
-1

4.
14

20
-1

4.
22

63
-1

2.
85

07
-1

3.
62

87
-1

4.
21

16
-1

3.
18

30
-1

3.
47

93
-8

.6
36

3
-7

.9
39

1
-9

.5
64

7
-7

.6
52

0
-7

.9
20

8

P
-v

al
ue

<
0.
01

<
0
.0
1

<
0
.0
1

<
0.
01

<
0
.0
1

<
0
.0
1

<
0.
0
1

<
0
.0
1

<
0
.0
1

<
0.
01

<
0
.0
1

<
0.
01

<
0
.0
1

<
0
.0
1

<
0
.0
1

Lj
un

g-
B

ox
te

st
99

.7
20

0
43

.9
72

9
34

.5
61

1
33

.0
31

0
10

6.
94

08
41

.9
62

6
34

.7
09

2
25

.7
54

6
21

.0
75

6
75

.5
99

1
12

3.
27

63
53

.0
31

1
51

.2
86

7
58

.7
08

0
68

.8
54

3

P
-v

al
ue

7e
-1

1
0.

01
09

0.
09

64
0.

13
03

4e
-1

2
0.

01
81

0.
09

36
0.

42
08

0.
68

84
5e

-0
7

6e
-1

5
0.

00
09

0.
00

15
0.

00
02

6e
-0

6

T
ab

le
3.

4.
D

es
cr

ip
ti

ve
st

at
is

ti
cs

of
th

e
lo

g-
re

tu
rn

s
of

gr
ou

p
5.

G
ro

up
6:

E
m

er
gi

ng
M

ar
ke

ts
E

qu
it
y

Fu
ll

sa
m

pl
e

E
st

im
at

io
n

sa
m

pl
e

Fo
re

ca
st

in
g

sa
m

pl
e

F
M

K
E

P
H

T
S

U
O

F
M

K
E

P
H

T
S

U
O

F
M

K
E

P
H

T
S

U
O

M
ea

n
0.

00
02

-0
.0

00
1

0.
00

01
0.

00
09

0.
00

02
0.

00
03

-0
.0

00
0

-0
.0

00
2

0.
00

08
0.

00
02

-0
.0

00
3

-0
.0

00
4

0.
00

15
0.

00
15

0.
00

02

St
.

D
ev

.
0.

01
68

0.
01

95
0.

01
73

0.
01

76
0.

01
44

0.
01

55
0.

01
84

0.
01

64
0.

01
57

0.
01

38
0.

02
19

0.
02

46
0.

02
14

0.
02

51
0.

01
74

95
%

V
aR

0.
02

55
0.

02
98

0.
02

55
0.

02
67

0.
02

19
0.

02
41

0.
02

90
0.

02
52

0.
02

44
0.

02
17

0.
02

96
0.

03
46

0.
02

76
0.

03
47

0.
02

30

99
%

V
aR

0.
04

04
0.

05
24

0.
04

81
0.

04
30

0.
03

90
0.

03
84

0.
04

95
0.

04
81

0.
03

91
0.

03
70

0.
06

36
0.

06
71

0.
04

56
0.

06
12

0.
05

04

Sk
ew

ne
ss

-0
.5

06
3

0.
04

68
-0

.7
67

3
-0

.0
92

2
-0

.2
40

0
-0

.4
68

8
0.

05
66

-0
.7

24
4

-0
.0

65
8

-0
.1

64
7

-0
.4

89
2

0.
04

03
-0

.9
02

6
-0

.1
56

2
-0

.4
10

5

E
xc

es
s

ku
rt

os
is

8.
20

26
4.

99
81

11
.9

08
2

4.
38

17
4.

78
91

4.
62

00
2.

91
29

9.
84

51
1.

78
42

1.
77

33
10

.3
30

3
6.

90
33

13
.5

17
2

4.
10

22
9.

77
41

Ja
rq

ue
-B

er
a

te
st

85
93

31
43

18
13

4
24

19
29

14
23

29
89

1
10

37
7

33
5

34
1

22
60

10
13

38
99

35
9

20
17

P
-v

al
ue

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

<
2e

-1
6

A
D

F
te

st
-1

4.
36

57
-1

4.
13

28
-1

4.
66

51
-1

4.
37

14
-1

4.
86

59
-1

4.
38

39
-1

3.
31

28
-1

3.
44

10
-1

3.
37

29
-1

3.
85

52
-7

.1
61

0
-8

.5
05

4
-7

.7
79

7
-7

.9
31

4
-7

.8
26

3

P
-v

al
ue

<
0
.0
1

<
0.
0
1

<
0.
01

<
0
.0
1

<
0
.0
1

<
0.
01

<
0.
0
1

<
0
.0
1

<
0.
0
1

<
0
.0
1

<
0.
01

<
0.
0
1

<
0
.0
1

<
0.
0
1

<
0.
0
1

Lj
un

g-
B

ox
te

st
31

.8
27

9
45

.8
86

3
52

.6
74

6
10

5.
83

72
10

0.
88

42
33

.0
63

1
42

.3
51

8
64

.7
30

2
40

.7
76

9
47

.1
15

1
38

.6
57

1
52

.7
91

1
51

.8
37

8
10

6.
43

69
13

3.
26

09

P
-v

al
ue

0.
16

31
0.

00
66

0.
00

10
6.

4e
-1

2
4.

5e
-1

1
0.

12
95

0.
01

65
2.

3e
-0

5
0.

02
42

0.
00

48
0.

03
99

0.
00

10
0.

00
13

5.
1e

-1
2

<
2.

2e
-1

6

T
ab

le
3.

5.
D

es
cr

ip
ti

ve
st

at
is

ti
cs

of
th

e
lo

g-
re

tu
rn

s
of

gr
ou

p
6.

Page 23 of 65



Master Thesis Group 1.204a 3. Modelling

In Table 3.6 the correlation matrices based on the Pearson correlation coefficient for group 5
are shown for the three periods.

Group 5: Global Equity Correlations

Full sample Estimation sample Forecasting sample

AP AD NN SG PF AP AD NN SG PF AP AD NN SG PF

AP 1.00 0.34 0.28 0.36 0.42 1.00 0.32 0.24 0.31 0.40 1.00 0.39 0.44 0.56 0.47

AD 0.34 1.00 0.33 0.32 0.46 0.32 1.00 0.33 0.30 0.43 0.39 1.00 0.35 0.42 0.55

NN 0.28 0.33 1.00 0.28 0.30 0.24 0.33 1.00 0.25 0.31 0.44 0.35 1.00 0.40 0.30

SG 0.36 0.32 0.28 1.00 0.41 0.31 0.30 0.25 1.00 0.41 0.56 0.42 0.40 1.00 0.46

PF 0.42 0.46 0.30 0.41 1.00 0.40 0.43 0.31 0.41 1.00 0.47 0.55 0.30 0.46 1.00

Table 3.6. Correlation matrices.

The correlations between the assets are positive, which mean there is a positive degree of
linear dependence. In general, the correlation coefficients are slightly higher in the forecasting
sample. In Table 3.7 the correlation matrices based on the Pearson correlation coefficient for
group 6 are shown for the three periods.

Group 6: Emerging Markets Equity Correlations

Full sample Estimation sample Forecasting sample

FM KE PH TS UO FM KE PH TS UO FM KE PH TS UO

FM 1.00 0.32 0.23 0.37 0.43 1.00 0.29 0.24 0.36 0.38 1.00 0.42 0.22 0.38 0.57

KE 0.32 1.00 0.22 0.34 0.35 0.29 1.00 0.19 0.31 0.29 0.42 1.00 0.30 0.41 0.49

PH 0.23 0.22 1.00 0.25 0.27 0.24 0.19 1.00 0.24 0.25 0.22 0.30 1.00 0.27 0.31

TS 0.37 0.34 0.25 1.00 0.46 0.36 0.31 0.24 1.00 0.45 0.38 0.41 0.27 1.00 0.51

UO 0.43 0.35 0.27 0.46 1.00 0.38 0.29 0.25 0.45 1.00 0.57 0.49 0.31 0.51 1.00

Table 3.7. Correlation matrices.

In group 6, the correlations between the assets are positive. Again, slightly higher correlations
are seen in the forecasting sample except for the correlation between FM and PH, where the
correlation in the forecasting sample is lowest compared with the two other periods.

3.2 Modelling of Marginal Distributions

In this section, the mean-variance model introduced in Section 2.2 is fitted. As seen in Table
3.4 and 3.5 each asset is stationary, but autocorrelation is present in almost all series and
thus it is suitable to fit an ARMA-GARCH model to the data. Here, the observations in
the estimation sample are modelled. The models ARMA(0,0)-GARCH(1,1) and ARMA(1,1)-
GARCH(1,1) are compared assuming two different marginal distributions, namely the normal
distribution and the t-distribution. Note, only a GARCH(1,1) model is considered, since this
order is sufficient in most cases [9]. The results for group 5 are shown in Table 3.8.
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Group 5: The ARMA(0,0)-GARCH(1,1) model

Normally distributed standardised residuals t-distributed standardised residuals

AP AD NN SG PF AP AD NN SG PF

LL -6895 -6610 -6846 -6284 -6745 -7036 -6776 -7125 -6460 -6866

AIC -5.4795 -5.2533 -5.4412 -4.9938 -5.3608 -5.5910 -5.3843 -5.6624 -5.1331 -5.4564

BIC -5.4703 -5.2441 -5.4319 -4.9846 -5.3515 -5.5794 -5.3727 -5.6508 -5.1215 -5.4448

(a) Model selection criteria of the model with ARMA(0,0) for group 5.

Group 5: The ARMA(1,1)-GARCH(1,1) model

Normally distributed standardised residuals t-distributed standardised residuals

AP AD NN SG PF AP AD NN SG PF

LL -6895 -6613 -6848 -6285 -6746 -7037 -6778 -7128 -6462 -6869

AIC -5.4784 -5.2538 -5.4412 -4.9930 -5.3598 -5.5902 -5.3843 -5.6631 -5.5902 -5.4571

BIC -5.4645 -5.2399 -5.4273 -4.9791 -5.3459 -5.5740 -5.3681 -5.6469 -5.5740 -5.4409

(b) Model selection criteria of the model with ARMA(1,1) for group 5.

Table 3.8. The log-likelihood, AIC and BIC values for different orders of ARMA-GARCH models
for group 5.

The best models are selected by comparing the log-likelihood, AIC and BIC values. The
analysis yields the best model for AP is ARMA(0,0)-GARCH(1,1) and for the remaining
assets the ARMA(1,1)-GARCH(1,1) is best. Furthermore, all of the preferred models assume
t-distributed standardised residuals. To check whether it is reasonable to fit a GARCH model,
the residuals of the ARMA models are investigated for heteroskedasticity and thus GARCH
effects, using the Ljung-Box test on the squared residuals where the results are shown in
Table 3.9.

Group 5: Ljung-Box test on the squared residuals of the ARMA model

AP ARMA(0,0) AD ARMA(1,1) NN ARMA(1,1) SG ARMA(1,1) PF ARMA(1,1)

Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value

Lag 5 36.1434 8.9e-07 28.9162 2.3e-06 12.8800 0.0049 29.7529 1.6e-06 338.3136 < 2e-16

Lag 15 94.1037 1.7e-13 42.8566 4.7e-05 15.1855 0.2959 47.0656 9.4e-06 515.4989 < 2e-16

Lag 25 119.6249 2.6e-14 61.0355 2.7e-05 19.3666 0.6798 62.4980 1.7e-05 668.2209 < 2e-16

Table 3.9. Test for heteroskedasticity in the residuals of the ARMA models.

A p-value less than 0.05 rejects the null hypothesis, which is no GARCH effects. The table
shows there is GARCH effects of orders 5, 15 and 25 present in all the squared residuals for
all assets at the 5% significance level, except for NN. The test for NN shows there is GARCH
effects present at lag 5, but not at lags 15 and 25. Thus, the GARCH model is incorporated
to capture the heteroskedasticity in the residuals.
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The log-likelihood, AIC and BIC values of the ARMA-GARCH estimation for group 6 are
shown in Table 3.10.

Group 6: The ARMA(0,0)-GARCH(1,1) model

Normally distributed standardised residuals t-distributed standardised residuals

FM KE PH TS UO FM KE PH TS UO

LL 6988 6525 6884 6915 7344 7060 6650 7040 6980 7385

AIC -5.5539 -5.1855 -5.4714 -5.4956 -5.8371 -5.6102 -5.2842 -5.5944 -5.5465 -5.8692

BIC -5.5446 -5.1762 -5.4621 -5.4863 -5.8278 -5.5986 -5.2726 -5.5828 -5.5349 -5.8576

(a) Model selection criteria of the model with ARMA(0,0) for group 6.

Group 6: The ARMA(1,1)-GARCH(1,1) model

Normally distributed standardised residuals t-distributed standardised residuals

FM KE PH TS UO FM KE PH TS UO

LL 6989 6525 6894 6920 7346 7060 6652 7047 6983 7388

AIC -5.5529 -5.1842 -5.4773 -5.4983 -5.8366 -5.6088 -5.2839 -5.5987 -5.5478 -5.8696

BIC -5.5390 -5.1703 -5.4634 -5.4844 -5.8227 -5.5925 -5.2677 -5.5824 -5.5316 -5.8534

(b) Model selection criteria of the model with ARMA(1,1) for group 6.

Table 3.10. The log-likelihood, AIC and BIC values for different orders of ARMA-GARCH models
for group 6.

The log-likelihood, AIC and BIC values in the table indicate the best models are ARMA(0,0)-
GARCH(1,1) for FM and KE, and ARMA(1,1)-GARCH(1,1) for the remaining assets. Again,
these models assume t-distributed standardised residuals. The results of the Ljung-Box test
conducted on the squared residuals of the chosen ARMA models are shown in Table 3.11.

Group 6: Ljung-Box test on the squared residuals of the ARMA model

FM ARMA(0,0) KE ARMA(0,0) PH ARMA(1,1) TS ARMA(1,1) UO ARMA(1,1)

Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value

Lag 5 40.4877 1.2e-07 40.6360 1.1e-07 32.0920 5e-07 28.9397 2.3e-06 230.8579 < 2e-16

Lag 15 85.5052 6.8e-12 70.8666 3.1e-09 55.0577 3.9e-07 56.2952 2.4e-07 491.6890 < 2e-16

Lag 25 116.9596 7.6e-14 89.8282 3.1e-09 70.6998 9.5e-07 77.7983 7.2e-08 620.1089 < 2e-16

Table 3.11. Test for heteroskedasticity in the residuals of the ARMA models.

The Ljung-Box test indicates there are GARCH effects of orders 5, 15 and 25 present in all
time series. Thus, it is appropriate to use a GARCH model on the residuals to capture the
heteroskedasticity.
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The parameter estimates for the marginal distributions for group 5 are listed in Table 3.12.

Group 5: Parameter estimates for marginal distributions and statistic tests

AP ARMA(0,0) AD ARMA(1,1) NN ARMA(1,1) SG ARMA(1,1) PF ARMA(1,1)

Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.0015 0.0000 0.0008 0.0047 0.0010 0.0000 0.0005 0.1499 0.0011 0.0000

ϕ 0.6855 0.0003 0.8397 0.0000 -0.7129 0.0001 0.5463 0.0450

θ -0.7134 0.0001 -0.8641 0.0000 0.6878 0.0002 -0.5867 0.0256

ω 0.0000 0.0000 0.0000 0.1394 0.0001 0.0002 0.0000 0.2288 0.0000 0.0000

α 0.1054 0.0000 0.0339 0.0000 0.1071 0.0001 0.0345 0.0000 0.0926 0.0000

β 0.8464 0.0000 0.9519 0.0000 0.6687 0.0000 0.9626 0.0000 0.8758 0.0000

ν 4.3587 0.0000 4.8110 0.0000 3.9458 0.0000 4.2946 0.0000 4.9784 0.0000

Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value

Ljung-Box test on the standardised residuals

Lag 5 5.1582 0.3969 3.6168 0.3059 2.1867 0.5346 3.3611 0.3392 5.0182 0.1705

Lag 15 19.9352 0.1744 14.7849 0.3210 9.2697 0.7523 13.8709 0.3830 26.0063 0.0170

Lag 25 32.6064 0.1412 25.8046 0.3102 20.3519 0.6206 17.7059 0.7732 37.8929 0.0262

Ljung-Box test on the squared standardised residuals

Lag 5 3.8034 0.5781 0.8335 0.8414 1.3949 0.7067 2.8029 0.4230 3.6663 0.2998

Lag 15 9.3577 0.8581 2.8231 0.9985 4.6137 0.9827 8.4551 0.8127 8.7071 0.7947

Lag 25 14.6315 0.9496 5.1851 1.0000 10.7147 0.9859 13.3819 0.9432 12.2316 0.9667

Table 3.12. Estimation results for group 5 with the chosen models.

The table shows the mean parameter µ is significant for all models except for SG. Here, AP
has the highest mean estimate which is consistent with Table 3.4. The constant from the
GARCH model, which is the parameter ω, is significant for AP, NN and PF but not for AD
and SG. However, the only ω estimate different from zero is for NN. The remaining parameters
ϕ, θ, α and β are all significant for all assets, which indicates the ARMA-GARCH model is an
appropriate choice of model. Further, the degree of freedom parameter ν is significant for all
models, and the values are around 4-5. The Ljung-Box test is used to inspect the standardised
residuals for autocorrelation and the squared standardised residuals for GARCH effects. The
test does not reject the null hypothesis of no autocorrelation in the standardised residuals
at lags 5, 15 and 25 at the 5% significance level, except the test for PF, which rejects the
null hypothesis at lags 15 and 25. Further, the test conducted on the squared standardised
residuals does not reject the null hypothesis of no autocorrelation at lags 5, 15 and 25. Thus,
the marginal distributions seem to be adequately fitted for all of the assets.
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In Table 3.13 the parameter estimates are shown for the marginal distributions of group 6.

Group 6: Parameter estimates for marginal distributions and statistic tests

FM ARMA(0,0) KE ARMA(0,0) PH ARMA(1,1) TS ARMA(1,1) UO ARMA(1,1)

Value P-value Value P-value Value P-value Value P-value Value P-value

µ 0.0005 0.0414 -0.0002 0.5500 0.0002 0.5740 0.0007 0.0000 0.0004 0.0511

ϕ -0.0026 0.9875 0.9938 0.0000 0.3503 0.2206

θ 0.0757 0.6504 -1.0000 0.0000 -0.3941 0.1595

ω 0.0000 0.0000 0.0000 0.0013 0.0000 0.0430 0.0000 0.0057 0.0000 0.0923

α 0.0614 0.0000 0.0296 0.0000 0.0285 0.0000 0.0328 0.0000 0.0675 0.0000

β 0.8946 0.0000 0.9570 0.0000 0.9637 0.0000 0.9553 0.0000 0.9109 0.0000

ν 6.2919 0.0000 4.1064 0.0000 4.4720 0.0000 6.1126 0.0000 7.3999 0.0000

Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value Q-stats. P-value

Ljung-Box test on the standardised residuals

Lag 5 12.7825 0.0255 5.2032 0.3916 9.0979 0.0280 4.7286 0.1928 4.2569 0.2350

Lag 15 20.7479 0.1451 18.8445 0.2209 16.1224 0.2426 16.5120 0.2226 30.4350 0.0041

Lag 25 27.8071 0.3168 31.8624 0.1620 25.0983 0.3452 34.8820 0.0534 40.7468 0.0127

Ljung-Box test on the squared standardised residuals

Lag 5 0.2776 0.9980 7.7870 0.1684 10.6159 0.0140 6.9593 0.0732 12.1560 0.0069

Lag 15 3.4458 0.9991 10.4135 0.7930 15.6135 0.2706 10.8895 0.6201 16.1224 0.2426

Lag 25 7.3692 0.9998 17.4709 0.8640 22.2098 0.5076 14.7369 0.9038 27.5986 0.2313

Table 3.13. Estimation results for group 6 with the chosen models.

The mean parameter µ is only significant for the model for FM and the model for TS.
The ARMA parameters ϕ and θ are only significant for the model of TS. The parameter
ω is significant for all models, except the model for UO, but all the estimates are zero.
The GARCH parameters α and β are significant for all models. In addition, the degree of
freedom parameter ν is significant for all models, and the values are around 4-7, which is
slightly higher than for group 5. The Ljung-Box on the standardised residuals does not reject
the null hypothesis of no autocorrelation at the 5% significance level for most of the lags and
assets. At lag 5 for FM and PH and lags 15 and 25 for UO the test rejects the null hypothesis
of no autocorrelation. The Ljung-Box test on the squared standardised residuals does not
reject the null hypothesis of no GARCH effects at lags 15 and 25 at the 5% significance level.
The test rejects the null hypothesis at lag 5 for PH and UO.
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3.3 Modelling of Copulas

In this section, the copula parameters are estimated after having modelled the marginal
distributions. Here, The Normal copula, the t-copula, and the four Archimedean copulas
introduced in Section 2.3.1 are estimated. Table 3.14 shows the estimation results based on
t-distributed marginals for all assets in group 5.

Group 5: Copula estimation with t-distributed marginals

Copula Parameter DF LL AIC BIC Upper tail Lower tail

Normal 0.5976 33863 -67725 -67719 0.0000 0.0000

Student’s t 0.5732 4.2829 40208 -80412 -80401 0.2822 0.2822

Clayton 0.7542 31022 -62041 -62035 0.0000 0.3989

Gumbel 1.778 27853 -55704 -55699 0.5233 0.0000

Frank 8.649 13876 -27751 -27745 0.0000 0.0000

Joe 1.24 12289 -24576 -24570 0.2514 0.0000

Table 3.14. Results from fitting different copulas for group 5.

The preferred copula is the t-copula based on the log-likelihood, AIC and BIC values. This
supports the conclusion made in [16, p. 349], which states a t-copula often yields a better fit
for multivariate financial return data. The second best is the Normal copula followed by the
Clayton and the Gumbel copula. The worst copula is the Joe copula followed by the Frank
copula. The Clayton copula has lower tail dependence, while the Gumbel copula and the Joe
copula have upper tail dependence. In Table 3.15 the results of copula estimation are shown
for group 6 based on t-distributed marginals.

Group 6: Copula estimation with t-distributed marginals

Copula Parameter DF LL AIC BIC Upper tail Lower tail

Normal 0.655 32020 -64038 -64032 0.0000 0.0000

Student’s t 0.6326 6.6073 34547 -69090 -69079 0.2289 0.2289

Clayton 0.5492 24245 -48487 -48481 0.0000 0.2831

Gumbel 1.788 26394 -52786 -52780 0.5265 0.0000

Frank 7.091 12241 -24480 -24474 0.0000 0.0000

Joe 1.384 13253 -26504 -26498 0.3498 0.0000

Table 3.15. Results from fitting different copulas for group 6.

The same observations as for group 5 are seen for group 6, where the preferred copula is the
t-copula based on the log-likelihood, AIC and BIC values. The t-copula is followed in order
by the Normal copula, the Gumbel copula and the Clayton copula. The worst copula is the
Frank copula followed by the Joe copula. In the next section, VaR is estimated based on the
four best copulas for groups 5 and 6.
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3.4 Estimation of Value-at-Risk

In this section, one-day-ahead out-of-sample VaR is forecasted using the Monte Carlo proce-
dure introduced in Section 2.4. In the implementation of the procedure N = 10.000 Monte
Carlo simulations and M = 504 one-day-ahead out-of-sample forecast are used. These fore-
casts are evaluated using the backtesting methods presented in Section 2.5, which include
both statistical tests and loss functions. Table 3.16 shows the forecasting performances of
the procedure based on different copulas with t-distributed standardised residuals for group
5, which includes the ratio of VaR exceedances, Kupiec’s unconditional coverage test and
Christoffersen’s independence test.

Group 5: Backtesting of VaR forecasts with statistical tests

Copulas 95% VaR 99% VaR

Z/T LRUC LRCC Z/T LRUC LRCC

Normal 0.0656 4.3718 5.7915 0.0159 0.2291 0.2934

P-value 0.0365 0.0553 0.6322 0.8636

Student’s t 0.0755 12.2748 12.2811 0.0159 4.8617 4.8657

P-value 0.0005 0.0022 0.0275 0.0878

Clayton 0.0696 7.8881 8.4776 0.0139 4.8617 4.8657

P-value 0.0050 0.0144 0.0275 0.0878

Gumbel 0.0736 11.1007 11.1325 0.0278 0.1780 0.3231

P-value 0.0009 0.0038 0.6731 0.8508

Table 3.16. Results from evaluating the one-day-ahead out-of-sample VaR forecasts for group 5.

The table shows the procedure based on the Normal copula is closest to the desired ratio of
VaR exceedances for the 95% VaR and the procedure based on the Clayton copula is closest for
the 99% VaR. This result is conflicting with Table 3.14, where the t-copula is the best choice.
Recall, the null hypothesis of Kupiec’s unconditional coverage test states the observed number
of exceedings statistically equals the predicted number of exceedings, and the null hypothesis
of Christoffersen’s test states the VaR exceedings are independent. Thus, a p-value greater
than 0.05 is needed to not reject a models reliability. The null hypothesis is rejected for all
models with a 95% confidence level, except for the Normal copula tested with Christoffersen’s
test. When the tests are performed for the 99% confidence level, Kupiec’s unconditional
coverage test rejects the null hypothesis for the t-copula and Clayton copula but does not
reject the null hypothesis for the Normal copula and the Gumbel copula. Christoffersen’s test
does not reject the null hypothesis for any of the models. This backtesting analysis indicates
the Normal copula is the preferred copula for modelling the assets in group 5. In Table 3.17
the results from backtesting are shown for group 6.
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Group 6: Backtesting of VaR forecasts with statistical tests

Copulas 95% VaR 99% VaR

Z/T LRUC LRCC Z/T LRUC LRCC

Normal 0.0577 1.8149 0.1780 0.0139 2.5426 0.3231

P-value 0.1779 0.6731 0.2805 0.8508

Student’s t 0.0557 2.9671 0.0002 0.0119 4.0140 0.1008

P-value 0.0850 0.9893 0.1344 0.9509

Clayton 0.0596 4.3718 0.1780 0.0119 4.4472 0.3231

P-value 0.0365 0.6731 0.1082 0.8508

Gumbel 0.0596 3.6388 1.5021 0.0179 3.7784 1.7612

P-value 0.0564 0.2203 0.1512 0.4145

Table 3.17. Results from evaluating the one-day-ahead out-of-sample VaR forecasts for group 6.

The table shows the t-copula is closest to the ratio of VaR exceedances for both the 95% VaR
and the 99% VaR. This is consistent with Table 3.15. Note, the ratios of VaR exceedances
are all quite close to 5% and 1% for the respective VaR levels. This indicates all models
can adequately represent the 95% and the 99% VaR. The results of Kupiec’s unconditional
coverage test and Christoffersen’s independence test are that the null hypothesis is not re-
jected for all copulas for the 95% VaR and the 99% VaR, which also suggests the models
are reliable in producing accurate VaR forecasts. The only exception is the Clayton copula
for the 95% VaR, which for the Kupiec’s unconditional coverage test has a p-value less than
0.05, which means the Clayton copula statistically fails to accurately predict the number of
observed exceedings. This analysis shows the t-copula is preferred for modelling the assets in
group 6. Further, based on the backtesting analysis, the VaR forecasts are better for group
6 than for group 5

Next, the loss functions from Section 2.5 are used to determine which copula is better. Here,
the two loss functions proposed by Lopez and the one proposed by Blanco and Ihle are
considered. The results of the loss functions for group 5 are shown in Table 3.18.

Group 5: Backtesting of VaR forecasts with loss functions

Copulas 95% VaR 99% VaR

CL1
t CL2

t CBI
t CL1

t CL2
t CBI

t

Normal 0.0716 0.4812 0.1085 0.0080 0.2284 0.0274

Student’s t 0.0875 0.5018 0.1160 0.0020 0.2245 0.0267

Clayton 0.0795 0.4970 0.1146 0.0020 0.2052 0.0224

Gumbel 0.0855 0.5050 0.1185 0.0119 0.3018 0.0422

Table 3.18. Results from evaluating the violations of VaR for group 5.

The loss functions are used to evaluate the violations and further distinguish between models.
Note, in CL1

t the loss function equals the hit series in (2.15), for CL2
t the loss function in (2.16)

is used and in CBI
t the loss function in (2.17) is used. The three loss functions are evaluated
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with the sample average of the loss functions in (2.18). Table 3.18 shows the Normal copula
is again preferred for the 95% VaR based on the three loss functions. For the 99% VaR the
Clayton copula is preferred. In Table 3.19 the results of the loss functions are shown for
group 6.

Group 6: Backtesting of VaR forecasts with loss functions

Copulas 95% VaR 99% VaR

CL1
t CL2

t CBI
t CL1

t CL1
t CBI

t

Normal 0.0636 0.0935 0.0297 0.0119 0.0285 0.0058

Student’s t 0.0676 0.0926 0.0309 0.0099 0.0256 0.0057

Clayton 0.0716 0.0996 0.0360 0.0119 0.0270 0.0062

Gumbel 0.0696 0.0975 0.0331 0.0159 0.0350 0.0077

Table 3.19. Results from evaluating the violations of VaR for group 6.

The table shows the Normal copula and the t-copula for the 95% VaR yield the best goodness-
of-fit. The t-copula is best in CL2

t , which takes the magnitude of the exceedings into account
where larger failures are penalised. For the 99% VaR the t-copula violates the VaR the least
for all loss functions.

For an illustration of the predictive performance of the VaR for group 5 and 6, the portfolio
returns, the 95% VaR and the 99% VaR are plotted in Figure 3.20. The figure shows the
forecasts based on the Monte Carlo procedure with the Normal copula for group 5 and the
t-copula for group 6.
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(a) Forecasting performance of group 5 with the Normal copula.
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(b) Forecasting performance of group 6 with the t-copula.

Figure 3.20. Depiction of returns for group 5 and 6 with their respective VaR forecasts from the
Monte Carlo procedure, where the red curve represents the 95% VaR and the blue curve represents

the 99% VaR.

Figure 3.20 shows how the VaR fluctuates with the portfolio returns for both groups. Here,
the ratios of VaR exceedances shown in Table 3.16 and 3.17 are the percentage of returns
that exceeds the 95% VaR and the 99% VaR.
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In this chapter, the analysis conducted in Chapter 3 is evaluated by comparing the findings
with the common expectations for return and standard deviation published by the Council
for Return Expectations. In addition, two index funds that represent group 5 and 6 are
introduced with the purpose of determining if the findings for the portfolios consisting of five
assets are representative for the respective groups.

4.1 Council for Return Expectations

This section in based on [3].

In this section, the Council for Return Expectations is introduced along with their published
expectations of returns, standard deviations and correlations for different categories of assets.
These expectations are then compared with the analysis and forecasts conducted in Chapter
3. The expectations from the Council for Return Expectation are published on the cite
www.afkastforventninger.dk1. These published expectations are used by various different
financial institutions, e.g. pension companies and banks.

The Council for Return Expectations was established in 2018 by Insurance & Pension Den-
mark and Finance Denmark and the first report was published in 2020. The council consists
of three independent experts who are appointed their position for three years at the time.
Currently, the council consists of chairman Jesper Rangvid, who is a professor at Copenhagen
Business School and head of the Pension Research Centre, Torben M. Andersen, who is a pro-
fessor at Aarhus University and chairman of ATP’s Council of directors and former president
of the Danish Economic Councils, and lastly Peter Engberg Jensen, who is the chairman of
the council of directors for Finansiel Stabilitet and former group CEO at the bank Nykredit.

The purpose of the council is to determine the common expectations of returns to be used by
pension companies and financial institutions when calculating pension prognoses and return
expectations from investments. The expectations are determined twice a year. The motive
behind having all danish pension companies and financial intuitions conduct their analysis
on the same return expectations is to ensure realistic forecasts and thus reliable investments
products for the consumer.

1The links to the reports from the Council for Return Expectations are given here:
https://www.afkastforventninger.dk/media/1431/samfundsforudsaetninger-2020-3.pdf
https://www.afkastforventninger.dk/media/1440/samfundsforudsaetninger-andet-halvaar-2020.pdf
https://www.afkastforventninger.dk/media/1453/samfundsforudsaetninger-1-halvaar-2021-1.pdf
https://www.afkastforventninger.dk/media/1483/samfundsforudsaetninger-2-halvaar-2021-fejlret
tet.pdf
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The council calculates the expectations on different time horizons, which are 1-5 years, 1-10
years, 6-10 years and 11+ years. However, the report from the first half of 2020 only contains
expectations for 1-10 years and 11+ years. Nonetheless, this project will focus on the short
term and the expectations in Table 4.1 are for 1-10 years for the 1st half of 2020 and 1-5
years for the remaining reports. The expectations are calculated for 10 different categories of
assets. This project focuses on the two categories global equity and emerging markets equity,
which are group 5 and 6, respectively. The expectations for all categories of stocks can be
seen in Appendix A.5. The expectations for the categories in focus are given in Table 4.1.

5. Global Equity 6. Emerging Markets Equity

Return St. Dev. Return St. Dev.

1st half of 20202 5.5% 11.0% 9.5% 28.4%

2nd half of 2020 6.0% 13.5% 9.5% 29.9%

1st half of 2021 5.6% 13.5% 8.5% 25.1%

2nd half of 2021 5.4% 13.9% 7.7% 24.5%

Table 4.1. Common return expectations for global equity and emerging markets equity on the
short term.

Table 4.1 shows the expected return and standard deviation for an asset, whose holding
period approximately spans from start January or start July for 2020 and 2021 and then
either 1-5 years or 1-10 years ahead, depending on the report. It appears stocks from group
5 are expected to have a return around 5.5% and this expectation rises in the second half of
2020. In 2021 the expected return slightly reduces. The standard deviation increases from
11.0% in the first half of 2020 to 13.9% in the second half of 2021. These evolutions might be
caused by the corona pandemic, which started in the beginning of 2020. If the expectations
for group 6 are considered, it shows the expected return decreases from 9.5% to 7.7% in the
period from 2020 to 2021 and the standard deviation decreases from 28.4% to 24.5%. If the
two groups are compared, stocks from group 5 have a smaller standard deviation than stocks
from group 6. This indicates stocks from group 5 are less risky. The expected return from
stocks in group 5 are also smaller compared with group 6. The higher return for emerging
markets can be caused by the potential for economical growth in the countries. The higher
standard deviation can be caused by an unstable government, a volatile currency and lack
of labor and materials in the countries. For a more detailed explanation, see [8]. Developed
countries will typically have a more mature and robust economy [22].

The expectations for the correlation between the two groups global equity and emerging
markets equity published by the Council for Returns Expectations are given in Table 4.2.

Correlation between group 5 and 6

1st half of 20202 2nd half of 2020 1st half of 2021 2nd half of 2021

Correlation 0.8 0.8 0.7 0.7

Table 4.2. Correlation expectations between global equity and emerging markets equity on the
short term.

2The expectations for 1-10 years are listed for the 1st half of 2020. For the remaining reports, the
expectations for 1-5 years are listed.
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The table shows the expected correlations for the 1st half and the 2nd half are equal in the
respective years and are relatively high. The correlation in 2020 decreases from 0.8 to 0.7 in
2021.

In order to compare the VaRs calculated in Section 3.4 with the expectations provided by
the Council for Return Expectations, the parametric method is used to calculate the VaR
based on these expectations. The expectations are seen in Table 4.1. The parametric method
is introduced in Section 2.1.1 and the formula for VaR with normally distributed losses is
repeated as,

V̂aR
par, Ga
α = −S × (µ̂+ σ̂ϕ−1(α)). (4.1)

The current position, S, is the value of the portfolio at the start of the period. Thus, S is
calculated as the portfolio value at the last banking day in December 2019 for the report
published in the first half of 2020 and the last banking day in June for the report published
in the second half of 2020. In this project, the focus is on these two reports. In (4.1), µ̂ and
σ̂ are the expected return and standard deviation found in Table 4.1. The α-quantiles are
more commonly called z values and are chosen for the 95% and the 99% confidence level in
a one-tailed distribution. For the normal distribution, these values are

z = −1.65 for the 95% VaR,

z = −2.33 for the 99% VaR.
(4.2)

The values of σ for the normal distribution is the standard deviation for the respective periods,
which are the following values

σ = 0.11 for the 1st half of 2020 for group 5,
σ = 0.135 for the 2nd half of 2020 for group 5,
σ = 0.284 for the 1st half of 2020 for group 6,
σ = 0.299 for the 2nd half of 2020 for group 6.

(4.3)

For t-distributed losses the formula for VaR is repeated as,

V̂aR
par, t
α = −S × (µ̂+ σ̂t−1

ν (α)),

The current position S and µ̂ are found in the same way as for the normally distributed
losses. Recall, σ̂ is no longer the standard deviation but a scale parameter defined as

σ =

√
var(L)ν − 2

ν
.

The degree of freedom, ν, determines the corresponding z values for the 95% VaR and the
99% VaR. The analysis conducted in Section 3.2 shows ν = 4 is an appropriate degree of
freedom for group 5, where the corresponding z values are

z = −2.132 for the 95% VaR,

z = −3.747 for the 99% VaR.

The analysis shows ν = 6 is an appropriate degree of freedom for group 6, where the corre-
sponding z values are

z = −1.943 for the 95% VaR,

z = −3.143 for the 99% VaR.
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The scale parameter σ for the t-distribution is determined by the degrees of freedom and the
variance of the losses for the respective periods, which yield the following values

σ = 0.11 ·
√

(4− 2)/4 = 0.0778 for the 1st half of 2020 for group 5,

σ = 0.135 ·
√
(4− 2)/4 = 0.0955 for the 2nd half of 2020 for group 5,

σ = 0.284 ·
√
(6− 2)/6 = 0.2319 for the 1st half of 2020 for group 6,

σ = 0.299 ·
√

(6− 2)/6 = 0.2441 for the 2nd half of 2020 for group 6.

(4.4)

The VaRs calculated in percent with the parametric method with these values are given in
Table 4.3.

5. Global Equity

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 12.65% 16.275% 9.6130% 12.5478%

99% VaR 20.13% 25.455% 18.9468% 24.0029%

(a) The VaR calculated in percent for group 5 with the five assets introduced in Section 3.1.

6. Emerging Markets Equity

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 37.36% 39.835% 35.5552% 37.9349%

99% VaR 56.672% 60.167% 63.3812% 67.2308%

(b) The VaR calculated in percent for group 6 with the five assets introduced in Section 3.1.

Table 4.3. Annualised VaR calculated for the respective assets in group 5 and 6.

In Table 4.3 the current position for the first half of 2020 is calculated with the prices on the
banking day 2019-12-31. The portfolio value for group 5 is S = 87.7915 and the portfolio
value for group 6 is S = 42.3278. The current position for the second half of 2020 is calculated
with the prices on the banking day 2020-06-30. The portfolio values for group 5 and 6 are
respectively S = 81.6282 and S = 34.3751.

Table 4.3 shows the VaR increases from the first half of 2020 to the second half of 2020. If the
VaR for group 5 is considered, it appears the VaR is smaller for the t-distribution compared
with the normal distribution for both the 95% VaR and the 99% VaR. If the VaR for group 6
is considered, it appears the VaR with a 95% confidence level is smaller for the t-distribution
compared with the normal distribution. For the 99% confidence level the opposite appears to
be true, where the VaR is larger for the t-distribution compared with the normal distribution.
This tendency is not expected as the t-distribution normally has heavier tails and thus VaR
is expected to be greater for the t-distribution. The reason for the tendency seen in Table 4.3
is examined. First, compare the z values for the normal distribution and the t-distribution.
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Here, the absolute value of z is greater for the t-distribution with the respective confidence
levels, which indicates a larger VaR. If the respective values for σ are considered in (4.3) and
(4.4), it appears the values are lower for the t-distribution for both groups. These σ values
appear to cause the tendency seen in Table 4.3 and the same tendencies are seen in other
literature including [12].

In order to compare the Monte Carlo VaR with the VaR based on the expectations from the
Council for Return Expectations, the latter VaR needs to be calculated for daily returns and
standard deviations rather than annual. Thus, the annual returns and standard deviations
must be converted. The formulas for converting an annual return to a daily return and
for converting an annual standard deviation to a daily standard deviation are derived from
formulas stated in [14, 21]. Since only the trading days are considered, the formulas are
rewritten with 250 days. The formulas are given by

Rdaily = 250
√

Rannual/100 + 1− 1,

σdaily =
σannual√

250
.

Here, R is the return and 250 is the approximate number of trading days in a year. Note, the
expectations from the Council for Return Expectations apply for the holding period between
1-5 and 1-10 years, depending on the report. Thus, the number of trading days could be
scaled to the number of trading days in a 5 or 10 year period instead of a 1 year period. With
these conversions the daily VaR is calculated and given in Table 4.4.

5. Global Equity

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 0.9890 1.1309 0.8203 0.9385

99% VaR 1.4042 1.6049 1.3386 1.5299

(a) The daily VaR calculated with the parametric method for group 5.

6. Emerging Markets Equity

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 1.2639 1.0600 1.1908 1.0188

99% VaR 1.7560 1.5021 1.9357 1.6557

(b) The daily VaR calculated with the parametric method for group 6.

Table 4.4. The daily VaR calculated for group 5 and 6 with the parametric method for the normal
and the t-distribution. The daily returns and standard deviations are calculated by converting the

annual returns and standard deviations published by the Council for Return Expectations.

In Table 4.4, the daily VaR is calculated in losses rather than percentages. The same ten-
dencies that describe Table 4.3 are applicable for these daily VaR.
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4.1.1 Comparison with Monte Carlo Value-at-Risk Forecasting

In this section, the VaR forecasts calculated using the Monte Carlo procedure in Section
3.4 are compared with the parametric VaR based on the expected returns and standard
deviations published by the Council for Return Expectations. In Figure 4.5 these values are
plotted for group 5 and 6.
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(b) Forecasting performance of group 6 with the
normal distribution.
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(c) Forecasting performance of group 5 with the
t-distribution.
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(d) Forecasting performance of group 6 with the
t-distribution.

Figure 4.5. The dashed lines represent the forecasts based on the Monte Carlo procedure with the
Normal copula for group 5 and the t-copula for group 6. The (dashed) red curve represents the 95%

VaR and the (dashed) blue curve represents the 99% VaR.

In Figure 4.5 the black line is the observed daily portfolio return, the dashed lines are the
forecasted VaR from the Monte Carlo procedure based on the Normal copula for group 5 and
the t-copula for group 6 with a 95% and a 99% confidence level and the solid constant lines
are the VaR calculated with the parametric approach. Here, the solid line that spans the
entire period is calculated from the expectations published in the report from the first half
of 2020 and the solid line that spans the period from July 2021 to January 2022 is calculated
with the expectations published in the second half of 2020. The daily VaR can be seen in
Table 4.4. Note, the blue dashed line and the blue solid line are the 99% confidence level and
the red lines are the 95% confidence level.

In Figure 4.5 there is little difference between the forecasts based on different distributions.
For group 5 it appears the VaR calculated using the Monte Carlo procedure is larger than
the VaR calculated using the parametric approach. Here, the Monte Carlo VaR with a 99%
confidence level appears to capture almost all realised losses, whereas the parametric VaR is
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lower and appears to be violated more frequently. For group 6 the VaR using Monte Carlo
and the VaR using the parametric approach seem to be close to each other. However, the
parametric VaR with both the normal distribution and the t-distribution is never violated
for the 99% confidence level. To investigate the violations further, the ratios of the VaR
exceedances are calculated for the parametric VaR, which is seen in Table 4.6. The ratio of
VaR exceedances for the Monte Carlo procedure is seen in Table 3.16 for group 5 and Table
3.17 for group 6.

Group 5: Ratio of VaR exceedances

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 0.1952 0.0837 0.2191 0.1036

99% VaR 0.1116 0.0478 0.1155 0.0518

(a) The ratio of VaR exceedances for group 5.

Group 6: Ratio of VaR exceedances

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 0.0279 0.0199 0.0359 0.0199

99% VaR 0.0000 0.0000 0.0000 0.0000

(b) The ratio of VaR exceedances for group 6.

Table 4.6. The ratio of VaR exceedances, Z/T , with the normal distribution and the t-distribution.

Consider the exceedances for group 5 based on the Normal copula in Table 3.16 and the
exceedances for group 5 with the normal distribution in Table 4.6 for the 95% confidence
level. Here, the Monte Carlo VaR is violated 6.56% of the time, the parametric VaR for
the first half of 2020 is violated 19.52% of the time and the parametric VaR for the second
half of 2020 is violated 8.37% of the time. Thus, the Monte Carlo VaR is closer to being
violated only 5% of the time. Furthermore, it appears the Council for Return Expectations
had underestimated the risk in the first half of 2020 but an adjustment in the expectation for
the second half of 2020 had improved the level of VaR. If the t-distribution is considered for
the 95% confidence level the parametric VaR for the first half of 2020 is violated 21.91% of
the time and the parametric VaR for the second half of 2020 is violated 10.36% of the time.
Thus, the same tendencies are seen as for the normal distribution. If the 99% confidence level
is considered the same pattern appears with lower percentile violations.

Consider the exceedances for group 6 based on the t-copula in Table 3.17 and the exceedances
for group 6 with the normal distribution in Table 4.6 for the 95% confidence level. The Monte
Carlo VaR is violated 5.57% of the time, the parametric VaR for the first half of 2020 is
violated 2.79% of the time and the parametric VaR for the second half of 2020 is violated
1.99% of the time. If the t-distribution is considered, the parametric VaR for the first half
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of 2020 is violated 3.59% of the time and 1.99% of the time for the second half of 2020.
This suggests, the parametric VaR is overestimating the risk whereas the Monte Carlo VaR
represents a more accurate 95% VaR. The Monte Carlo VaR is violated 1.19% of the time
for the 99% confidence level and the parametric VaR is never violated as seen in Figure 4.5.
These observations also indicate parametric VaR based on the expectations published by the
Council of Return Expectations overestimates the risk in group 6.

4.2 Comparison with Index Funds

In this section, it is investigated if the portfolios consisting of five assets are representative of
group 5 and 6. The assets in the respective portfolios are chosen with the assumption of them
being representative of their respective group. However, it is unlikely these 5 assets are fully
characteristic for their groups. To get a better picture of how the markets are developing
in general, two index funds are introduced to represent group 5 and 6, respectively. The
funds are designed to measure the performance of equity securities in the large and mid-
capitalization in the respective markets. For group 5 the index fund iShares MSCI World
ETF (DM) is used and for group 6 the index fund iShares MSCI Emerging Markets ETF
(EM) is used [7, 6]. The same analysis conducted for the portfolios for group 5 and group 6
in Chapter 3 is performed in this section for the index funds in order to compare them.

The two index funds are divided into three samples as in Section 3.1. The full sample is from
2012-02-01 to 2021-12-30 containing 2496 observations. The estimation sample is from 2012-
02-01 to 2019-12-31 containing 1992 observations. Note, the full sample and the estimation
sample do not start from 2010 since the DM index fund did not exist until mid-January 2012.
The forecasting sample is from 2020-01-02 to 2021-12-30 containing 504 observations. As for
the analysis conducted in Chapter 3, the forecasting sample is concurrent with the corona
pandemic. Further, the adjusted price is used in the analysis and is referred to as the price.
In Figure 4.7 the prices for the index funds are depicted.
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Figure 4.7. The prices of the index funds. The dashed line represents the split between the
estimation sample and the forecasting sample.
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The price of DM increases in the estimation sample with minor fluctuations. In the start of the
forecasting period, and thereby in the start of the corona pandemic, a negative fluctuation is
seen but after a year the price is back to the same level as before the corona pandemic, where
the same increasing tendency is seen. The price of EM rises slowly with notable fluctuations.
Here, a negative fluctuation is also seen in the start of the forecasting period. Note, the
scale for DM and EM differs. The plots in Figure 4.7 are similar to the plots in Figure 3.1,
which are the portfolio prices consisting of five assets for group 5 and 6, respectively. From
these plots it seems the two portfolios in Chapter 3 are representative for the two markets,
although the portfolios consists of a low number of assets.

To further investigate the movements in the index funds the log-returns are illustrated in
Figure 4.8.
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Figure 4.8. The log-returns of the index funds. The dashed line represents the split between the
estimation sample and the forecasting sample.

The figure shows clustering in the log-returns for both index funds. Especially in the start
of 2020 where the corona pandemic started, more extreme values of the log-returns are seen.
The same pattern is present for the assets in the portfolios, which is illustrated in Figure 3.3

In Table 4.9 the descriptive statistics for the log-returns of the two index funds are presented
for the three periods. The same methods used in Table 3.4 and 3.5 for the portfolios for
group 5 and 6 are used in this table.
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Descriptive statistics

Full sample Estimation sample Forecasting sample

DM EM DM EM DM EM

Mean 0.0005 0.0001 0.0004 0.0001 0.0007 0.0002

St. Dev. 0.0108 0.0130 0.0092 0.0116 0.0158 0.0173

95% VaR 0.0154 0.0197 0.0141 0.0189 0.0213 0.0235

99% VaR 0.0308 0.0339 0.0273 0.0314 0.0509 0.0534

Skewness -1.0501 -0.8312 -0.3104 -0.2186 -1.4684 -1.4863

Excess kurtosis 17.8792 8.8836 4.5458 1.1957 16.5955 12.2935

Jarque-Bera test 33753 8510 1752 135 6020 3392

P-value < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16

ADF test -11.0070 -10.0806 -9.3010 -8.8794 -5.3454 -4.3022

P-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Ljung-Box test 369.1604 114.8658 71.0103 29.2865 279.9802 161.5437

P-value < 2.2e-16 1.8e-13 2.7e-06 0.2521 < 2.2e-16 < 2.2e-16

Table 4.9. Descriptive statistics of the log-returns of the index funds.

The table shows DM has the highest mean and it also varies the most across the three sample
periods. The mean is higher for the forecasting sample, especially for DM. This is also seen
in the reports from the Council for Return Expectations in Table 4.1, where the expected
return is increased from the 1st half of 2020 to the 2nd half of 2020 for global equity. The
standard deviation is higher for EM than for DM and the standard deviations are higher
for the forecasting sample. This is consistent with the reports from the Council for Return
Expectations and the plots of the prices for the index funds in Figure 4.7. The 95% VaR and
the 99% VaR are highest for the forecasting sample, which is consistent with the mean and
standard deviation. In all periods the index funds are negatively skewed and exhibit excess
kurtosis. The Jarque-Bera test has relatively high test statistics and p-values less than 0.05
for DM and EM in all samples which indicates non-normality. For the ADF test all p-values
are less than 0.05, which indicates both index funds are stationary. The Ljung-Box test
is performed on the log-returns with lag 25. All p-values are less than 0.05, which indicate
there is autocorrelation present in the log-returns, with the exception of EM in the estimation
sample.

When comparing the descriptive statistics in Table 4.9 for the index funds with the descriptive
statistics in Table 3.4 and 3.5 for the portfolios for group 5 and 6, the same tendencies are seen,
which include a higher mean, standard deviation, 95% VaR and 99% VaR for the forecasting
sample. Furthermore, nearly all assets are negatively skewed and exhibit excess kurtosis. In
Table 4.10 the correlation between the two index funds is given for the three sample periods.
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Correlations of the index funds

Full sample Estimation sample Forecasting sample

Correlation 0.72 0.63 0.86

Table 4.10. Correlations.

The correlations between the index funds are all positive and relatively high, especially for
the forecasting sample. The correlation for the forecasting sample can be compared to the
expected correlations in Table 4.2 published by the Council for Return Expectations. Here,
the correlation expectations are 0.8 for both reports which is close to 0.86. Note, the reports
from the Council for Return Expectations become effective a year after they are released.
Therefore, the forecasting sample cannot be directly compared with the reports. The corre-
lations between the portfolios seen in Table 3.2 have the same tendencies as the index funds.
However, the correlations between the index funds are smaller than for the portfolios.

4.2.1 Modelling

In this section, a mean-variance model is fitted in order to conduct one-day-ahead forecasts for
the index funds. The order of the ARMA-GARCH model is selected as well as the distribution
of the standardised residuals. The analysis is conducted on the estimation sample and the
results are shown in Table 4.11.

The ARMA(0,0)-GARCH(1,1) model

Normally distributed t-distributed

standardised residuals standardised residuals

DM EM DM EM

LL 8302 7584 8448 760

AIC -6.6521 -6.0765 -6.7679 -6.0899

BIC -6.6427 -6.0671 -6.7563 -6.0782

(a) Model selection criteria of the model with ARMA(0,0) for index funds.

The ARMA(1,1)-GARCH(1,1) model

Normally distributed t-distributed

standardised residuals standardised residuals

DM EM DM EM

LL 8314 7586 8463 7603

AIC -6.6598 -6.0758 -6.7784 -6.0892

BIC -6.6458 -6.0618 -6.7621 -6.0728

(b) Model selection criteria of the model with ARMA(1,1) for the index funds.

Table 4.11. The log-likelihood, AIC and BIC values for different orders of ARMA-GARCH models.
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The best models for the index funds are selected by considering the log-likelihood, AIC and
BIC values. This yields the best models assume t-distributed standardised residuals and an
ARMA(1,1)-GARCH(1,1) for DM and an ARMA(0,0)-GARCH(1,1) for EM. The orders of
the ARMA model are consistent with the autocorrelation results from the Ljung-Box test on
the estimation sample in Table 4.9, where the null hypothesis of no autocorrelation is rejected
for DM and not rejected for EM in the estimation sample.

To check for heteroskedasticity, and thus GARCH effects, the Ljung-Box test is performed
on the squared residuals of the ARMA model and the results are seen in Table 4.12.

Ljung-Box test on the squared residuals

DM ARMA(1,1) EM ARMA(0,0)

Q-stats. P-value Q-stats. P-value

Ljung-Box test

Lag 5 177.7048 < 2e-16 167.0099 < 2e-16

Lag 15 316.9475 < 2e-16 291.5252 < 2e-16

Lag 25 373.8124 < 2e-16 310.6521 < 2e-16

Table 4.12. Test for heteroskedasticity in the residuals of the ARMA models.

Table 4.12 shows the Ljung-Box test on the squared residuals of the ARMA models rejects
the null hypothesis of no GARCH effects. This indicates there are GARCH effects of orders
5, 15 and 25 present in the index funds. To capture the heteroskedasticity a GARCH(1,1)
model is included.
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In Table 4.13 the parameters and statistical tests of the selected ARMA-GARCH models are
presented.

Parameter estimates and statistic tests

DM ARMA(1,1) EM ARMA(0,0)

Value P-value Value P-value

µ 0.0008 0.0000 0.0004 0.0548

ϕ 0.8033 0.0000

θ -0.8682 0.0000

ω 0.0000 0.1515 0.0000 0.0218

α 0.1724 0.0000 0.1073 0.0000

β 0.8266 0.0000 0.8550 0.0000

ν 3.5040 0.0000 13.6392 0.0000

Q-stats. P-value Q-stats. P-value

Ljung-Box test on the standardised residuals

Lag 5 10.6039 0.0141 2.8665 0.4127

Lag 15 17.4270 0.1805 5.7016 0.9563

Lag 25 23.6414 0.4239 23.5464 0.4293

Ljung-Box test on the squared standardised residuals

Lag 5 4.3562 0.2255 1.7766 0.6200

Lag 15 12.0812 0.5210 18.2511 0.1482

Lag 25 19.7651 0.6560 25.1411 0.3431

Table 4.13. Estimation results for the index funds with the chosen models.

The table shows the mean parameter µ is significant for DM but not for EM. The ARMA
parameters ϕ and θ are both significant for DM. The constant from the GARCH model, ω,
is zero for both index funds and is not significant for DM. The GARCH parameters α and
β are all significant. The degree of freedom parameter ν is significant for both index funds.
Further, the value of ν for EM is relatively larger than for DM. In Table 3.12 and 3.13, which
is the estimation results for the portfolios, it is also seen that the ν parameter is higher for
group 6 than for group 5. The Ljung-Box test on the standardised residuals does not reject
the null hypothesis of no autocorrelation at lags 5, 15 and 25 for both index funds, except at
lag 5 for DM. The Ljung-Box test on the squared standardised residuals does not reject the
null hypothesis of no autocorrelation, thus there is no GARCH effects at lags 5, 15 and 25.

4.2.2 Estimation of Value-at-Risk

In this section, VaR is forecasted one-day-ahead for the index funds based on the previous
analysis of the orders of the ARMA-GARCH models and distributions of the standardised
residuals, which are assumed to be t-distributed. Then, the predicted VaR is tested by
statistical tests.
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The forecasting procedure for VaR is given by the following steps:

(1) Use the estimation sample with T observations to fit the respective ARMA-GARCH
models on the log-returns.

(i) Use the degree of freedom from Table 4.13 to find the critical value z for the 95%
VaR and the 99% VaR.

(2) Forecast one-step means, r̂T+1, and variances, σ̂T+1 at time T + 1.

(3) Use the values from steps (1)-(2) to find the forecasted VaR by (2.3).

(4) Repeat steps (1)-(3) M times by rolling over the daily returns, where M is the number
of days needed to be forecasted.

(5) Convert VaR from log-returns to returns by

Rt = Pt−1(exp(rt)− 1).

Table 4.14 shows the forecasting performances of the two index funds after the implementation
of the aforementioned VaR procedure with M = 504.

Backtesting of VaR forecasts with statistical tests

95% VaR 99% VaR

Z/T LRUC LRCC Z/T LRUC LRCC

DM 0.0536 0.2080 10.1307 0.0179 2.4130 10.1307

P-value 0.6483 0.0015 0.2992 0.0063

EM 0.0694 0.0611 0.0003 0.0258 0.0709 0.0806

P-value 0.8048 0.9857 0.9652 0.9605

Table 4.14. Results from evaluating the one-day-ahead out-of-sample VaR forecasts.

The table shows DM is closest to the ratio of VaR exceedances for both levels of VaR.
The p-values of Kupiec’s unconditional coverage test for the index funds are greater than
0.05, which mean the null hypothesis is not rejected. Recall, the null hypothesis states the
observed number of exceedings equals the predicted number of exceedings. The p-values of
Christoffersen’s independence test for DM are less than 0.05, which mean the null hypothesis
is rejected. The p-values for EM are greater than 0.05 so the null hypothesis is not rejected.
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In Figure 4.15 the performance of the forecasted VaR for the index funds is illustrated.
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(b) Forecasting performance of EM.

Figure 4.15. Depiction of returns of the index funds with their respective VaR forecasts, where the
red curve represents the 95% VaR and the blue curve represents the 99% VaR.

The figure shows the VaR curves for EM are closer to the returns than the VaR curves for
DM. This agrees with the results for Z/T in Table 4.14, since the values for EM are higher
and thus more returns are exceeding the VaR compared to DM. Further, the start of 2020
seems to contain a lot of violations for EM, which can be caused by the high fluctuations in
the start of the corona pandemic.

Page 49 of 65



Master Thesis Group 1.204a 4. Comparison of Value-at-Risk

4.2.3 Comparison with Value-at-Risk Forecasting

In this section, the performance of the forecasted VaR is compared with the VaR based on
information from the Council for Return Expectations. Further, these results are compared
with the results in Section 4.1.1 to examine how representative the portfolios are for the
two groups. The VaR based on information from the Council for Return Expectations is
calculated using the same method as in Section 4.1 where the current position, S, and the
degree of freedom, ν, are adjusted to fit the index funds. This adjustment affects the z values
and the scale parameter, σ. Recall, the losses are assumed to be normally distributed or
t-distributed. For the normal distribution the values for z is given in (4.2) and is repeated as

z = −1.65 for the 95% VaR,

z = −2.33 for the 99% VaR.

Note, these z values for the normal distribution are not affected by the change in ν. For
the t-distribution the analysis conducted in Section 4.2.1 indicates an appropriate degree of
freedom for DM is 3.5, which yields the following z values,

z = −2.22 for the 95% VaR,

z = −4.06 for the 99% VaR.

The analysis further shows an appropriate degree of freedom for EM is 13.6, which yields the
following z values,

z = −1.76 for the 95% VaR,

z = −2.63 for the 99% VaR.

Here, it appears the z values for the t-distribution with ν = 13.6 degrees of freedom is closer
to the z values for the normal distribution, and thus it is expected the VaR for EM based on
normally distributed losses is closer to the VaR based on t-distributed losses. The σ values
for losses assuming the normal distribution is given in (4.3) and is repeated as

σ = 0.11 for the 1st half of 2020 for DM,

σ = 0.135 for the 2nd half of 2020 for DM,

σ = 0.284 for the 1st half of 2020 for EM,

σ = 0.299 for the 2nd half of 2020 for EM.

(4.5)

For losses assuming a t-distribution the σ values are

σ = 0.11 ·
√
(3.5− 2)/3.5 = 0.0471 for the 1st half of 2020 for DM,

σ = 0.135 ·
√
(3.5− 2)/3.5 = 0.0579 for the 2nd half of 2020 for DM,

σ = 0.284 ·
√

(13.6− 2)/13.6 = 0.2422 for the 1st half of 2020 for EM,

σ = 0.299 ·
√
(13.6− 2)/13.6 = 0.2550 for the 2nd half of 2020 for EM.

(4.6)

The current position of the two index funds is found on the trading day 2019-12-31 for the
expectations published in the report for the first half of 2020. The portfolio value for DM
is S = 95.5830, and for EM it is S = 43.3183. For the expectations published in the report
for the second half of 2020, the current position for DM is S = 90.0621 and for EM it is
S = 38.8311. The daily VaRs with these values are calculated and shown in Table 4.16.
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DM

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 1.0767 1.2478 0.9460 1.0966

99% VaR 1.5289 1.7707 1.7470 2.0228

(a) The daily VaR for iShares MSCI World ETF.

EM

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 1.2681 1.1975 1.2490 1.1794

99% VaR 1.7972 1.6968 1.8742 1.7695

(b) The daily VaR for iShares MSCI Emerging Markets ETF.

Table 4.16. The daily VaR calculated with the parametric method, assuming the normal
distribution or the t-distribution.

This table shows the 95% VaR for DM with losses assuming a normal distribution is larger
compared with losses assuming a t-distribution. For the 99% VaR for DM the opposite is true.
For EM the 95% VaR based on losses with a normal distribution and t-distribution appears
to be close to each other but slightly lower with the t-distribution. For the 99% VaR, losses
assuming a normal distribution is lower compared with losses assuming a t-distribution. The
aforementioned tendencies are also seen for the portfolios for group 5 and group 6 in Table
4.4 with the exception of the 99% VaR for DM.

As for Table 4.3 and 4.4, the reason for these tendencies is examined by considering the z and
σ values. The absolute z values are greater for the t-distribution for the respective confidence
levels, which indicates larger tails and thus larger VaRs. Thus, the tendency is found by
comparing the values for σ in (4.5) and (4.6). It is seen the σ values for the t-distribution
are lower compared with the values for the normal distribution. This causes the tendency in
Table 4.16, where losses assuming the t-distribution have a lower VaR compared with losses
assuming the normal distribution for the 95% VaR.

In order to compare the VaR based on information from the Council for Return Expectations
in Table 4.16 with the one-day-ahead VaR calculated with the method in Section 4.2.2, both
are plotted with the returns of the index funds in Figure 4.17.
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(c) Forecasting performance of DM with the
t-distribution.

−2

−1

0

1

Jan 2021 Apr 2021 Jul 2021 Okt 2021 Jan 2022
Date

R
et

ur
n

(d) Forecasting performance of EM with the
t-distribution.

Figure 4.17. The (dashed) red curve represents the 95% VaR and the (dashed) blue curve
represents the 99% VaR.

The figure is interpreted like Figure 4.5 just based on the index funds instead. The figure
shows the VaR for DM based on the information from the Council for Return Expectations
appears to be lower than the forecasted VaR, which results in more violations. The VaR for
EM based on the information from the Council for Return Expectations generally appears
to be higher than the forecasted VaR, which results in less violations. Further, no returns
violate the 99% VaR for EM based on information from the Council for Return Expectations.
The VaR of EM calculated with the common expectations from the report for the first half
of 2020 has a lower value than the VaR calculated with the common expectations from the
report for the second half of 2020 where the reverse is true for DM.

To further investigate the VaR based on information from the Council for Return Expecta-
tions the ratios of VaR exceedances, Z/T , are shown in Table 4.18.
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DM: Ratio of VaR exceedances

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 0.1195 0.0866 0.1434 0.1102

99% VaR 0.0518 0.0394 0.0398 0.0315

(a) The ratio of VaR exceedances for DM.

EM: Ratio of VaR exceedances

Normal distribution t-distribution

1st half 2nd half 1st half 2nd half

2020 2020 2020 2020

95% VaR 0.0279 0.0157 0.0279 0.0157

99% VaR 0.0000 0.0000 0.0000 0.0000

(b) The ratio of VaR exceedances for EM.

Table 4.18. The ratio of VaR exceedances, Z/T , with the normal distribution and the
t-distribution.

The table shows the ratio of VaR exceedances for DM are too high for both the 95% VaR and
the 99% VaR. However, the ratio of VaR exceedances for the second half of 2020 is improved
compared with the first half of 2020. The change in the ratio of VaR exceedances can be
caused by the higher VaR for the second half of 2020 seen in Table 4.16. For EM both levels
of VaR have a too low ratio of VaR exceedances. Here, the ratio of VaR exceedances is even
lower for the second half of 2020, which might be caused by higher return fluctuations in
the first half of 2020 compared to the second half of 2020. The ratio of VaR exceedances
for EM based on the normal distribution and the t-distribution are identical, which can be
partially caused by the high degree of freedom for the t-distribution. The tendencies seem to
be similar to those for the portfolios consisting of 5 assets for the two groups seen in Table
4.6. However, the ratios of VaR exceedances change for the two distributions for the 95%
VaR of the portfolio for group 6 in the first half of 2020. This can be caused by the VaR
being based on a lower degree of freedom for the portfolios.
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In this chapter, some of the choices and reflections made in this project are discussed. In this
project, the risk exposure of a portfolio is investigated through a risk measure called Value-at-
Risk. In order to understand this measure, basic theory and different calculations method are
presented. Furthermore, an ARMA-GARCH model is introduced to capture autoregressive
and heteroskedastic behaviour in the data and different copulas are introduced to combine
univariate distributions in a joint distribution with more flexibility. Then, Value-at-Risk
is one-day-ahead out-of-sample forecasted by implementing a Monte Carlo procedure that
utilises both an ARMA-GARCH model and a copula. These forecasts are then evaluated
using backtesting methods. Furthermore, the forecasts are compared with the parametric
Value-at-Risk calculated from the common expectations published by the Council for Return
Expectations. Moreover, it is investigated if the constructed portfolios are representative of
their respective groups by analysing and comparing with two index funds for the groups.

There are different methods to calculate Value-at-Risk. In this project, the Monte Carlo
procedure with an ARMA-GARCH model and a copula is used to calculate the one-day-ahead
out-of-sample forecasts. This method relies on simulations to calculate Value-at-Risk, which
must be reflective of future scenarios in the data. If the data is poorly fitted the procedure will
yield inaccurate Value-at-Risk forecasts. This means the Monte Carlo procedure is subject
to both model and distribution misspecification. In this project, different orders of ARMA-
GARCH are investigated. However, only the GARCH(1,1) is examined, wherefore it could
be beneficial to see if different orders would yield a better fit. It could also be beneficial
to consider different models, e.g. the TGARCH model as in [16], to examine for a better
fit. Furthermore, only the normal distribution and the t-distribution are examined in this
project. However, Table 3.4, 3.5 and 4.9 conclude there is skewness present in the log-returns.
For this reason, it could be beneficial to consider other types of distributions, such as the
skewed t-distribution, in the margins of the copula. This also indicates it could be beneficial
to consider a skewed t-copula as well. Note, only the normal copula, the t-copula and four
Archimedean copulas are considered in this project. Moreover, the number of Monte Carlo
simulations must be high enough to reflect different scenarios. In this project, 10.000 Monte
Carlo simulations are used, but other literature such as [5] suggests to use 100.000 simulations,
thus it could be beneficial to increase the number of simulations in this project.

The Monte Carlo procedure is implemented for two portfolios consisting of 5 assets with
equal weighting for an ease of computation. However, it could be beneficial to include more
assets in the portfolios and optimise the weights to represent their groups more accurately.
Additionally, assets from the same country or industry could be added to the portfolio to
investigate the effect on the correlations and the resulting Value-at-Risk. It is tried to include
the assets Microsoft and Johnson & Johnson in group 5, which is not included in the project,
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since it did not change the correlations considerable in the group. However, it could be
interesting to see the effects of the inclusion of an asset that introduced more correlation in
the portfolio.

The Monte Carlo procedure is implemented to forecast one-day-ahead out-of-sample forecasts.
It could be beneficial to investigate longer term forecasts such as one-week-ahead or one-
year-ahead out-of-sample forecasts. Such longer term forecasts could yield an interesting
comparison with the Value-at-Risk calculated from the common expectations published by
the Council for Return Expectations. Furthermore, the common expectations are published
for the short term, which is 1-5 years and 1-10 years depending on the report. The conversion
from these annual expectations to daily expectations may be misrepresenting. Thus, it would
be interesting to compare the annual common expectations with longer term Value-at-Risk
forecast.

The forecasted Value-at-Risks are evaluated using backtesting methods, which include sta-
tistical tests and loss functions. These loss functions are evaluated by a sample average.
Another method to evaluate the loss functions is to compare the loss function with a bench-
mark model, which is the expected score, through a quadratic probability score (QPS) defined
as

QPS =
2

T

T∑
t=1

(Ct − C∗
t )

2 ,

where C∗
t is the benchmark model. For the first Lopez loss function, CL1

t , the benchmark
model is the expected number of violations. For the second Lopez loss function, CL2

t , the
benchmark model needs to be estimated, e.g. using Monte Carlo methods. For the Blanco
and Ihle loss function, CBI

t , the benchmark model is the expected difference between the loss
and the Value-at-Risk divided with the Value-at-Risk [4].

When analysing the Value-at-Risk based on the Council for Return Expectations it can be
expected that the annual returns and standard deviations are determined in a way to allow
for unforeseen events, which mean they are constructed with a wide gap. Such a gap could
entail larger standard deviations and lower expected returns. In the portfolio based on global
equity it is seen the Value-at-Risk is underestimated and in the portfolio for emerging markets
equity it is seen the Value-at-Risk is overestimated.

In this project, two index funds are considered to investigate how representative the portfolios
are for the two groups. These index funds are modelled and Value-at-Risk is one-day-ahead
out-of-sample forecasted using another method, which does not use copulas and Monte Carlo
simulations. Thus, it is arguable if it is appropriate to compare these forecasts with the
Monte Carlo forecasts. Further, when index funds are considered information regarding how
the assets in the respective index funds interacts is not available.
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Throughout this project, risk assessment is investigated for portfolios with the purpose of
forecasting the Value-at-Risk for portfolios by ARMA-GARCH, copulas and Monte Carlo
simulations and compare the results with the Value-at-Risk based on the common expecta-
tions from the Council for Return Expectations. Furthermore, the portfolios are tested to see
if they are representative for the groups global equity and emerging markets equity. The aim
of this project is to obtain knowledge to be able to answer the questions in the statement of
intent in Section 1.1. The statement of intent is repeated as:

How can one-day-ahead Value-at-Risk be forecasted for portfolios using copulas and Monte
Carlo simulations and how can these forecasts be evaluated? How does the forecasts per-
form compared with the common expectations of return and standard deviation published by
the Council for Return Expectations and are the portfolios representative for the respective
groups?

In Section 2.1 a method to calculate risk, called Value-at-Risk, is presented, which is the
highest expected loss to occur with a specified probability over a specified holding period.
Value-at-Risk can be estimated by three different methods, namely non-parametric estima-
tion, parametric estimation and Monte Carlo simulations. The parametric approach and
the Monte Carlo approach are extended to consider a portfolio consisting of multiple assets,
where the last-mentioned is the focus of this project and is presented in Section 2.4.

In the Monte Carlo procedure, a mean-variance model and copulas are used to model the data.
Therefore, in Section 2.2 the ARMA-GARCH model is introduced to capture autoregressive
and heteroskedastic behaviour in the data. Hereafter, copulas are presented in Section 2.3
in order to describe the dependence between the components in a portfolio. The advantages
of modelling univariate ARMA-GARCH models with copulas compared to modelling multi-
variate ARMA-GARCH models are the possibility of choosing different distributions for the
univariate margins and the number of parameters needed to be estimated is considerable re-
duced. Multivariate ARMA-GARCH models require increasing numbers of parameters to be
estimated when adding a univariate process. Thus, the multivariate ARMA-GARCH model is
subject to the curse of dimensionality and large data sets are needed to construct an accurate
model. The relationship between the univariate processes that multivariate ARMA-GARCH
models capture through the variance-covariance matrix is also indirectly captured with a cop-
ula, since the correlation matrix is a transformed variance-covariance matrix. The presented
copulas are the Normal copula, the t-copula, the Gumbel copula, the Clayton copula, the
Frank copula and the Joe copula. In addition, the tail dependence coefficients are introduced
to describe the risk of simultaneous extreme negative returns on a portfolio. Then, the Monte
Carlo procedure is presented in Section 2.4 to conduct one-day-ahead out-of-sample forecast.
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These forecast are evaluated using backtesting methods introduced in Section 2.5, where the
ratio of exceedances, statistical tests and loss functions are presented.

In Chapter 3 the data processing and modelling are presented for portfolios consisting of five
assets, that are chosen in order to represent the groups global equity and emerging markets
equity. This chapter presents the data, which is collected from Yahoo Finance from 2010-01-
04 to 2021-12-30, where the data for 2020 and 2021 is the forecasting sample. This period
is concurrent with the corona pandemic. Next, modelling of the marginal distributions and
modelling of copulas are presented, where the former shows the t-copula is preferred for the
portfolios for both global equity and emerging markets equity, which are group 5 and 6 re-
spectively. Based on the four best copulas, the Monte Carlo procedure is implemented to
estimate Value-at-Risk with 10.000 simulations and 504 one-day-ahead out-of-sample fore-
casts. The backtesting of these forecasts shows the Normal copula and the Clayton copula
are preferred for group 5 and the t-copula is preferred for group 6. Furthermore, to determine
which copula is preferred for the groups, especially for group 5, the loss functions are used,
which conclude the Normal copula is best for group 5 and the Normal copula and the t-copula
are best for group 6. In [16], it is stated that the t-copula yields a better fit for financial
data, however it is only one of the best for group 6. Intuitively, the t-copula is better for
group 6 than for group 5, since the assets in group 6 are more uncertain, which are seen
in the higher standard deviations and the heavier tails. In addition, the Clayton copula is
preferred for group 5 in backtesting, which can be because it has lower tail dependence and
the assets in group 5 might exhibit a negative dependence in the tails. Based on the results
in Chapter 3 the Normal copula is chosen for group 5 and the t-copula is chosen for group
6, where the predictive performances of the Monte Carlo procedure with these copulas are
plotted in Figure 3.20.

In Chapter 4 parametric Value-at-Risks are calculated with the common expectations for
returns and standard deviations published by the Council for Return Expectations. These
Value-at-Risks are compared with the Monte Carlo Value-at-Risk forecasts and Value-at-
Risk calculated for two index funds, which represent global equity and emerging markets
equity. In general, the comparisons show the risk is underestimated for global equity and
the risk is overestimated for emerging markets equity based on information from the Council
for Return Expectations. Therefore, the Value-at-Risk based on the Monte Carlo procedure
and the Value-at-Risk based on the index funds represent more accurate forecasts for both
the 95% and the 99% confidence levels. The analysis conducted on the portfolios consisting
of five assets chosen in Chapter 3 and the analysis conducted for the index funds show the
same tendencies, which indicate the chosen portfolios are representative for global equity and
emerging markets equity.

To sum up, the Value-at-Risk forecasted with the Monte Carlo procedure provides the best
results and gives the most information on a day to day basis. The information can be useful
for investment purposes. The Monte Carlo method forecasts one-day-ahead and incorporates
day to day information into the rolling forecasts. The Monte Carlo method produces accurate
Value-at-Risk forecasts and is preferable for e.g. day trading. The daily Value-at-Risk based
on information from the Council for Return Expectations is calculated with annual expecta-
tions that are converted. These expectations do not incorporate day to day realisations and
are constant for the holding period. This method might be more accurate and preferable for
longer term investments.
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Appendix A
A.1 Probability Theory

This section focuses on probability distributions and technical terms which are used in the
project.

Definition A.1 (Cumulative Distribution Function)
The cumulative distribution function (CDF) of Y is defined as

FY (y) = P{Y ≤ y}.

If Y has a PDF, fY , then

FY (y) =

∫ y

−∞
fY (u)du.

For d random variables Y = (Y1, . . . , Yd) the CDF is given by

FY (y1, . . . , yd) = P{Y1 ≤ y1, . . . , Yd ≤ yd},

[20, p. 669].

Definition A.2 (Range)
Given a univariate distribution function F , the range of F is given by

Ran(F ) = {F (x) : x ∈ R},

[11, p. 23].

A.2 Fundamental Copulas

This section is based on [18] and [20].

In this section, three d-dimensional fundamental copulas, which have domain [0, 1]d and
range [0, 1], are introduced. Fundamental copulas represent a variety of important special
dependence structures.
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The CDF of d mutually independent U(0, 1) random variables is an independence copula C0.
In other words, C0 is given by

C0(u1, . . . , ud) =
d∏

i=1

ui, (A.1)

where the associated density is uniform on [0, 1]d, meaning it is zero everywhere except
when c0(u1, . . . , ud) = 1 on [0, 1]d. The random variables with continuous distributions
are independent if and only if their independent structures are given by (A.1) which is a
consequence of Sklar’s Theorem 2.3.

The d-dimensional co-monotonicity copula C+ indicates perfect positive dependence. Let
U ∼ U(0, 1), then C+ is given as

C+(u1, . . . , ud) = P(U ≤ u1, . . . , U ≤ ud)

= P{U ≤ min(u1, . . . , ud)}
= min(u1, . . . , ud).

Note, the co-monotonicity copula is the CDF of U = (U, . . . , U), so all d elements of U are
equal. Further, the copula is an upper bound of all copula functions, i.e. C(u1, . . . , ud) ≤
C+(u1, . . . , ud) for all (u1, . . . , ud) ∈ [0, 1]d.

The counter-monotonicity copula C− is a two-dimensional copula defined as the CDF of
(U, 1− U) that has perfect negative dependence. Thus,

C−(u1, u2) = P(U ≤ u1, 1− U ≤ u2)

= P(1− u2 ≤ U ≤ u1)

= max(u1 + u2 − 1, 0).

(A.2)

The last equation is true since if 1−u2 > u1 then the probability for the event {1−u2 ≤ U ≤
u1} is 0. Otherwise, the probability is u1 + u2 − 1 for the interval (1− u2, u1). When d > 2
the counter-monotonicity copula does not exist, but when d = 2 all copulas are bounded by
(A.2).

A.3 Jarque-Bera Test

This section is based on [18], [20], [2] and [23].

In this section the Jarque-Bera test is presented. This test is introduced in order to determine
if the data is normally distributed based on the skewness and kurtosis values. The Jarque-
Bera test is a goodness-of-fit test and it produces a test statistic which is positive. The test
statistic indicates the sample data follows a normal distribution if it is close to zero.

The test statistic is

JB =
n

6
S2 +

n

24
(κ− 3)2.

Here, S is the sample skewness coefficient and κ is the kurtosis coefficient, which are defined
as

S =
n−1

∑n
i=1(Xi − X̄)3

(n−1
∑n

i=1(Xi − X̄)2)3/2
, κ =

n−1
∑n

i=1(Xi − X̄)4

(n−1
∑n

i=1(Xi − X̄)2)2
.
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The test statistic, JB, is distributed as χ2(2) under the null hypothesis of normality. Under
normality, S and κ has the values 0 and 3 respectively, which implies JB is zero.

In this project, the Jarque-Bera test is performed using the command jarque.bera.test
from the package tsoutliers.

A.4 Ljung-Box Test

This section is based on [15].

In this section, the Ljung-Box test is presented in order to understand the results from the
analysis performed in this project with this test.

The test considers a discrete time series wt, which is fitted by an autoregressive model. The
fit of the model is then analysed by investigating the residuals of the model, a1, . . . , an. The
correlations between the residuals are defined as

ρ̂k =

∑n
t=k+1 atat−k∑n

t=1 a
2
t

, k = 1, 2, . . . .

The Ljung-Box test is then given by the statistic

Q̃(ρ̂) = n(n+ 2)
m∑
k=1

ρ̂2k
n− k

,

where m is the number of lags being tested. The null hypothesis states there is no correlation
in the residuals and the alternative hypothesis is that the residuals exhibit serial correlation.
Thus, this statistic is used to test for autocorrelation in the residuals and can be used to
determine if the model is adequately fitted. If there is autocorrelation present in the residuals
it suggests there is more information to be extracted, such that only white noise is left in the
residuals.

The Ljung-Box test can also be applied to the squared residuals, in which case the test
examines if the sizes of the residuals are correlated. If the sizes of the residuals are correlated
it suggests there are GARCH effects present in the residuals, and it would be beneficial to
include a GARCH model to capture these effects.

In this project, the Ljung-Box test is performed using the command Box.test from the
package stats.
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A.5 Council for Return Expectations

In this section, the common expectations published by the Council for Return Expectations
are listed. Note, the returns for group 7, 8, 9 and 10 are calculated after net of fees to the
funds. These fees includes all fees an investor will pay to the funds.

Return St. Dev.

1. Government and mortgage bonds 0.3% 3.1%

2. Investment-grade bonds 1.6% 4.2%

3. High-yield bonds 3.3% 6.5%

4. Emerging markets sovereign bonds 4.4% 8.4%

5. Global equity (developed markets) 5.5% 11.0%

6. Emerging markets equity 9.5% 28.4%

7. Private equity 8.7% 23.9%

8. Infrastructure 5.4% 10.6%

9. Real estate 5.6% 11.2%

10. Hedge funds 4.6% 8.9%

Table A.1. Common return expectations for the 1st half of 2020 for the short term 1-10 years.

Return St. Dev.

1. Government and mortgage bonds -0.3% 3.4%

2. Investment-grade bonds 1.1% 4.6%

3. High-yield bonds 5.0% 10.9%

4. Emerging markets sovereign bonds 3.9% 8.6%

5. Global equity (developed markets) 6.0% 13.5%

6. Emerging markets equity 9.5% 29.9%

7. Private equity 8.5% 23.8%

8. Infrastructure 5.9% 13.2%

9. Real estate 2.8% 6.8%

10. Hedge funds 3.9% 8.5%

Table A.2. Common return expectations for the 2nd half of 2020 for the short term 1-5 years.
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Return St. Dev.

1. Government and mortgage bonds -1.2% 3.2%

2. Investment-grade bonds -0.2% 3.9%

3. High-yield bonds 3.1% 8.0%

4. Emerging markets sovereign bonds 2.4% 6.9%

5. Global equity (developed markets) 5.6% 13.5%

6. Emerging markets equity 8.5% 25.1%

7. Private equity 8.7% 26.4%

8. Infrastructure 5.3% 12.7%

9. Real estate 3.0% 7.8%

10. Hedge funds 3.5% 8.6%

Table A.3. Common return expectations for the 1st half of 2021 for the short term 1-5 years.

Return St. Dev.

1. Government and mortgage bonds -0.7% 3.2%

2. Investment-grade bonds -0.4% 3.4%

3. High-yield bonds 1.9% 6.0%

4. Emerging markets sovereign bonds 2.7% 7.3%

5. Global equity (developed markets) 5.4% 13.9%

6. Emerging markets equity 7.7% 24.5%

7. Private equity 8.0% 24.1%

8. Infrastructure 4.1% 10.2%

9. Real estate 3.0% 7.8%

10. Hedge funds 2.5% 6.9%

Table A.4. Common return expectations for the 2nd half of 2021 for the short term 1-5 years.
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