
Generating appropriate object orientations for
robot-to-human handovers using

synthetic object affordances

10th semester project

Group 1064

Aalborg University
Electronics and IT



Robotics
Aalborg University

Department of Electronic Systems
Fredrik Bajers Vej 7B

DK-9220 Aalborg
http://www.robotics.aau.dk

Title:
Generating appropriate object orientations
for robot-to-human handovers using syn-
thetic object affordances

Theme:
MSc. thesis

Project Period:
Spring Semester 2022

Project Group:
1064

Participant(s):
Albert D. Christensen
Daniel Lehotský

Supervisor(s):
Dimitris Chrysostomou

Copies: 1

Page Numbers: 90

Date of Completion:
June 1, 2022

Abstract:

This project is an investigation into apply-
ing object affordances to robot-to-human
handovers. Our research makes two con-
tributions. A state-of-the-art deep neural
network for segmentation of object affor-
dances named AffNet-DR, trained solely
on synthetic data. Secondly, an object
affordance enabled method for orienting
objects appropriately for robot-to-human
handovers. A user study with 6 partic-
ipants showed that our method for com-
puting handover orientations outperforms
a method that uses random orientations.
Finally, a robotic handover system was
programmed in ROS Melodic and imple-
mented on a KUKA LBR iiwa 7 R800 with
an Intel RealSense D435i RGB-D sensor
and a Robotiq 3-finger gripper. The system
performs robot-to-human handovers with
a success rate of 91.67 %.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.robotics.aau.dk


Preface
This master thesis was produced in the period from the 1st of February 2020 to the 2nd

of June 2022 at Aalborg University as part of the Robotics master program. The thesis
was supervised by associate professor Dimitris Chrysostomou from the department of
Materials and Production, Aalborg University.

The aim of this thesis is to develop a pipeline that allows for task-oriented robot-
to-human handovers using object affordances rather than object classes. Moreover, the
pipeline should provide proper orientations at the moment of handover. In order to detect
affordances, a synthetic dataset generator was developed, and synthetic data produced by
the aforementioned generator were used to a train neural network called AffNet-DR. Part
of this work has been submitted to IROS 2022 with the title "Learning to Segment Object
Affordances on Synthetic Data for Task-oriented Robotic Handovers", where we present
the neural network AffNet-DR and our synthetic dataset generator.

As this master thesis concludes our time as students at Aalborg University, the authors
of this master thesis would like to offer their thanks to all the people that helped and
supported us throughout our studies. We would like to thank our families, friends, and
significant others for emotional support. Next, we would like to thank our supervisors
and professors for all the knowledge and experience they shared with us. Furthermore,
there is Aalborg University which provided us with all the needed space and equipment
to realize our research. Lastly, we also offer our thanks to all the people who participated
in our user study and dataset collection.

June 1, 2022, Aalborg University

Albert D. Christensen
<alchri17@student.aau.dk>

Daniel Lehotský
<dlehot17@student.aau.dk>

ii



Contents

1 Introduction 2

2 Problem Analysis 5
2.1 Defining robot-to-human handovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Affordance analysis and object affordance segmentation . . . . . . . . . . . . . . . . . 11
2.3 The problem of object orientation at handovers . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Implementation 31
3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Affordance analysis with synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 The object handover orientation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Testing 61
4.1 Affordance segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Object handover orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Full system test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Results 68
5.1 Affordance segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Object handover orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Full system test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Discussion 72
6.1 Affordance segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 User study of the object handover orientation . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Full system test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusion 76

Bibliography 77

A Analysis of the axes orientations 86

B Links of interest 90

1



1 - Introduction

Robotic handovers are essential to enable robots and humans to perform collaborative
tasks together. The handing over of diverse tools and objects could see applications rang-
ing from disassembly applications [1], and assistive surgery [2], to the service industry [3].

A handover is a joint action where an object is transferred from a giver to a receiver
for a specific task. To successfully perform such joint actions, the ability to share repre-
sentations, predict actions, and integrate the predicted effects is needed [4]. This comes
naturally to humans, and people, therefore, excel at handovers. However, handovers in
the field of robotics remains a field of active research [5, 6, 7].

Whereas humans have an intuitive understanding of how to perform a handover, a
robotic system must solve the constituting sub-problems of the handover task. This re-
quires that the robotic system can detect objects in its surroundings, perform precise
grasping of said objects, and plan a trajectory that transports the object to the human
receiver [8].

Humans are naturally good at anticipating and adjusting their behaviour to that of
their handover partner. In order to optimize and achieve a smooth handover, a robot will
need to generate motions that allow a human to anticipate and adapt to the actions of the
robot [9].

The tasks of the giver and the receiver has shown to influence where and how objects
are grasped as well as the object orientation during the handover [8, 10, 11]. A robotic
handover system needs to consider the subsequent task of the receiver in order to generate
appropriate handovers. Therefore, objects and tools must be grasped and oriented using
task-oriented methods.

Grasping an object appropriately for a given task requires that the functional parts of
an object are identified [12]. Likewise, proper object orientations during handovers have
shown to be dependent on the functionalities inherent to the object [11]. However, current
methods for computing object orientations suitable for a handover task are either limited
to pre-defined rules [13, 14, 15] or object classes such as a hammer, mallet, saw, knife,
etc [16, 10, 11]. Therefore, current object orientation methods either do not consider the
functionalities of the object or only consider them implicitly by knowing the object class.

Humans are capable of utilizing their semantic understanding of the functional prop-
erties of an object to perform task-oriented grasping [17] and handover object orienta-

2



3 Chapter 1. Introduction

tion. Robotic systems lack this semantic understanding. However, affordance theory, as
first proposed by Gibson [18], can be used for understanding the semantic and functional
properties of objects [19, 20, 21, 22, 23, 7].

Object affordances refer to the functionalities that an object facilitates irrespective of the
current state of the object [24]. Objects can offer several different affordances, with each
constituting part having a different affordance. This, therefore, allows object affordance
detection to be treated as a pixel-wise segmentation problem [19, 25], see Figure 1.1.

Figure 1.1: Pixel-wise object affordance detection performed on a spoon. Lime green is the scoop affordance.
Red indicates the grasp affordance.

Detecting object affordances with neural networks has become the norm since Nguyen
et al. [20] outperformed previous methods using a deep neural network. Neural networks
require a vast amount of data to learn a given task [26]. Annotating datasets for affordance
segmentation requires pixel-wise labelling, which is a resource-expensive task. As such,
current object affordance datasets are of a limited size and scope [19, 21]. Synthetic data
is considerably cheaper to generate, as the labelling and annotation of the data can be
automated [27]. Synthetic data, however, suffers from what is known as the sim2real gap,
where the neural network can not generalize to real-world data when trained on synthetic
data [28]. Only limited work and investigations has been conducted into using synthetic
data for object affordance detection [29, 30].

Domain randomization has been proposed as a method for overcoming the sim2real
gap. Domain randomization suggests that varying parameters such as illumination, object
poses, textures, environment, and etc. when generating the synthetic data would make
the real-world data appear as just another variation to a system trained on synthetic data
generated with domain randomization [28].

With this work, the authors propose a novel framework for generating synthetic data
for object affordance detection using domain randomization. A Mask-RCNN like neural
network named AffNet-DR is then trained on the synthetic data and evaluated on real-
world data. Afterwards, the method is validated on a real-world robotic system, where
AffNet-DR is implemented into a robot-to-human handover pipeline.

Furthermore, we show that proper handover orientations only need to consider the
affordances of an object. Two methods for computing handover orientations based solely
on affordances are, therefore, also proposed with this report.



4 Chapter 1. Introduction

With this work, the following contributions are made to the field of robotic handovers:

• A robot-to-human handover system that can incorporate task-oriented grasping, han-
dover location, and proper handover orientation of objects.

• A state-of-the-art deep neural network named AffNet-DR capable of segmenting ob-
ject affordances, trained solely on synthetic data.

• A novel synthetic data generator for object affordance detection. Data is generated
using domain randomization principles, which we show is capable of overcoming
the sim2real gap and enabling real-world robot-to-human handovers.Figure 3.10 on
page 41 shows a sample from the dataset. The dataset itself can be found on our
GitHub [31].

• A synthetic object affordance dataset, available on the project’s GitHub [31].

• A method for learning handover orientations from observations based solely on ob-
ject affordances.

• A novel rule-based method for computing handover orientations by only considering
the object affordances.

This work is a continuation of a 9th semester [32]. The main contributions of the
previous work were:

• A pipeline for task-oriented handovers based on object affordances rather than object
classes.

• A method for associating task-agnostic tasks with affordances, effectively transform-
ing task-agnostic grasps into task-oriented grasps.

This pipeline was developed on a setup consisting of 6-DOF UR5 robot, a Robotiq 3-finger
gripper, an Intel RealSense D435 RGB-D sensor.

The previous work is expanded upon by also considering what is known as the han-
dover location and orientation. The object affordance segmentation is improved upon by
utilizing synthetic data. The robot-to-human handover pipeline has been implemented
onto a robotic system consisting of a 7-DOF KUKA LBR iiwa 7 R800 robot, a Robotiq 3-
finger gripper, an Intel RealSense D435i RGB-D sensor, and a Hokuyo URG-04LX-UG01
laser scanner. UR5 robot was replaced in favor of 7-DOF KUKA iiwa in order to achieve
more challenging end-effector poses.



2 - Problem Analysis

The following section analyzes and defines the robot-to-human handovers, and what con-
stitutes an appropriate robot-to-human handover. Later in the section, specific areas re-
lated to robot-to-human handovers are investigated more in depth.

2.1 Defining robot-to-human handovers

A handover is defined as a joint action between two agents, a giver and a receiver, where
the giver’s goal is to present the object as stably as possible to the receiver, and the re-
ceiver’s goal is to obtain and stabilize the object [33], thereby transferring an object of
interest from the giver to the receiver [8]. For humans, handovers are natural and easy.
However, in robotics this remains an unsolved problem as robots still struggle to perform
handovers. This section examines what makes up a handover and what factors influence
a handover between robots and humans.

2.1.1 Phases of the handover

A handover can be split into four phases - initiation, pre-handover, physical handover, and
the performance phase [8], see Figure 2.1. Each phase has its own set of intricacies that the
system should consider when performing the handover.

Initiation

Grasp planning

Communication

Handover
location and
orientation

Motion planning
and control

Physical
handover Perform task

Pre-handover phase Physical handover
phase

Figure 2.1: Block diagram of a handover process [32].

5



6 Chapter 2. Problem Analysis

At first, the handover is initiated. This can be initiation by an object request, which
is when the receiver requests an object, or initiation by a task request, which is when the
giver requests the receiver to perform a specific task by handing the receiver an object [8].
An example of the initiation by an object request is a person verbally asking for a tool.
This report focuses on initiation by object request where the human is always the receiver
and initiator and the robotic system is always the giver. This type of handover is known
as robot-to-human handover.

The initiation phase is followed by the pre-handover phase. The pre-handover phase
encapsulates everything that happens after the initiation and before the physical handover.
During this phase, the giver has to plan a trajectory that moves the handover object from
its initial position to what is known as the handover location. The trajectory of the giver
can be decomposed into segments dealing with grasping of the object, handover location
and orientation, as well as trajectory properties, such as velocity and object orientation
constraints. All of these aspects are influenced by communication between the giver and
the receiver, which can be either verbal or non-verbal, such as eye-gaze and body lan-
guage [8]. Ortenzi et al. have shown that the perceived quality of the handover increases
if the giver also considers the subsequent task of the receiver, in what is known as task-
oriented handovers [34]. Task-oriented handovers influence how the giver should grasp
the object as well as place and orient it in regards to the receiver amongst other things.
For example, if the receiver asks for a hammer, the giver should hand it over with the
handle unobstructed and should place and orientate the hammer in such a way that is
comfortable for the receiver to reach. The handover phase ends when the receiver makes
physical contact with the handover object.

The physical handover phase begins once the receiver makes contact with the handover
object [8]. During this phase, the giver continuously decreases the grip force as the receiver
simultaneously increases their grip on the handover object. If the giver relaxes the grip
force too soon, the object falls to the ground. A smooth transfer of the handover object from
the giver to the receiver is, therefore, enabled by correctly timing the grip force modulation
between the giver and the receiver. After the physical handover is complete, the receiver
will proceed with the task, starting the performance phase of the handover [8].

2.1.2 Planning the pre-handover phase trajectory

As was already mentioned, one of the giver’s considerations is the receiver’s task. Ideally,
the giver hands over the object in a way that is not only comfortable for the receiver but
also allows the receiver to continue in the task without any interruptions. This is known as
a task-oriented handover, and strongly influences the trajectory that has to be computed in
the pre-handover phase, see Figure 2.2. Task-oriented handovers, therefore, influence how
to grasp the object, where to place it, and how to orient the object in regards to the receiver,
amongst other considerations. This section investigates the trajectory of the pre-handover
phase.



7 Chapter 2. Problem Analysis

2. Grasping 3. Handover location

Receiver

Robot

1. Start

Grasp point

Receiver
Grasp point

Handover point

Grasp point

Handover point

Ready pose

4. Handover orientation Complete handover trajectory

Figure 2.2: A visualization of the trajectory that is planned for in the pre-handover phase.

Grasp point considerations

Task-oriented handovers are tightly coupled with task-oriented grasping [34]. Unlike task-
agnostic grasping, which only considers the stability of the grasp, task-oriented grasping
is the task of selecting a grasp that is not only stable but also suitable for the receiver’s task
and is aware of the functionalities that the individual object parts offers. As an example,
a human receiver might prefer to grasp the handle of a hammer, and as such, the robotic
giver should grasp the object in a way that leaves the handle free and available to the
receiver. In terms of the trajectory presented in Figure 2.2, the task is to find the grasp
point.

Detry et al. [12] suggest that task-oriented grasping can be solved by solving two sub-
problems. At first, the part of an object which is suitable for the specific task must be
identified. Afterwards, a mechanically stable grasp, suitable for the specific task, must
be generated. It has been shown that humans utilize their semantic understanding of the
object’s functional properties to grasp items appropriately for a given task [17]. Robots
can not do the same as they lack such knowledge. However, affordance theory, which is
concerned with understanding the functional properties of objects, has proven a popular
approach to the first sub-problem of task-oriented grasping [20, 21, 12, 35, 23, 36, 7]. The
concept of affordances is further explained in section 2.2.



8 Chapter 2. Problem Analysis

Task-oriented grasping was addressed in our previous work [32], where we showed
how affordance theory could help solve task-oriented grasping. It was solved by seg-
menting the affordances of an object in an RGB image using AffordanceNet proposed
by [22] and sampling task-agnostic grasps in a point cloud using grasp generator pro-
posed by [37]. Task-agnostic grasps were turned into task-oriented grasps by determining
which affordance they would grasp, which was done by examining their direction vectors,
see Figure 2.3. The experiments showed that the affordance analyzation method used in
our previous work was challenged by varied illumination conditions and object poses.
For more details on the implementation of both the grasping and the grasp-association
module, see the previous work [32].

Point cloud

RGB

AffordanceNet

GraspNet

Input

Input

Affordance
segmentation

Potential grasps

Grasp
affordance
association

Task-oriented grasps

Figure 2.3: Task-oriented grasps are found by combining affordance theory with sampled task-agnostic
grasps [32].

Handover location considerations

The handover location is the task of finding the position in the 3D space that is the most
suited for the physical handover phase to take place, see step 3 in Figure 2.2.

Hansen et al. [38] show that the handover location in human-to-human handovers
happens at the midpoint in the shared workspace and is independent of an object mass.
The handover location is chosen dynamically and adapts to when the giver and receiver
moves [39].

Choosing the right handover location can help the receiver understand an intent to han-
dover an object [40] as well as increase the perceived safety and comfort of the receiver [9].
Further considerations can be made to the physical strains imposed on the receiver during
the handover in order to alleviate said strains [41]. Such considerations can be valuable
when interacting with motor-impaired people.

A robotic handover system that can generate suitable handover locations can help a
robotic system to perform smooth handovers.



9 Chapter 2. Problem Analysis

Handover orientation considerations

The orientation of an object at the transition from the pre-handover phase to the physical
handover phase is known as the object handover orientation. At this point in the handover,
the object is passed with a specific orientation. The position and orientation of an object
during a handover has shown to affect the efficiency as well as perceived safety of the
handover [9, 42]. The giver can convey an intent to perform a handover by the orientation
of the object [42, 14]. Proper handover orientation can, therefore, help achieve a more
smooth handover.

Proper handover orientation of various objects depends on the object’s geometry, phys-
ical properties, functions, as well as object affordances [42, 10, 11]. Human-to-human user
studies have shown that people will pass an object with the handle available to the receiver,
when handing over objects with a grasp affordance [43, 44].

Computing object handover orientation can, therefore, improve the perceived han-
dover. Additionally, affordance theory might be able to help solve the object handover
orientation problem.

Additional considerations

The grasping point, the handover location, and the handover orientation are only a few
out of many considerations of the pre-handover trajectory planning. There exist more
elements that could be considered, and some of these will be discussed here.

Ortenzi et al. [8] recommend robot trajectories for robot-human handovers to be legi-
ble, predictable, safe, robust, reactive, and context-aware. A study by Cakmak et al. [13]
showed that human-like configurations of the robot are more readable and, therefore, pre-
ferred by the humans. In a study by Huber et al. [45], study participants demonstrated
faster reactions and an increased sense of subjective safety when co-working with the
robot following a minimum jerk velocity profile of the end-effector. Moreover, using the
minimum jerk velocity profile, the receiver’s comfort levels remained the same even with
the robot moving at a higher speed. The authors of the study suggest that the minimal
jerk velocity profile is more similar to the human velocity profile than the commonly used
trapezoidal velocity profile in the joint space. Because of the similarity, the study par-
ticipants felt safer when cooperating with the robot. Therefore, human-like trajectories
increase the legibility and predictability of the trajectories along with the user’s feeling of
safety.

Another constraint of the trajectory planning might be the handover object itself. In-
dividual items might require individual approaches. For example, handing over a cup or
a bottle without a cap should be done without spilling it. Handing over a knife should
be done without endangering the user in any way. A similar idea applies to dull but still
possibly dangerous items, such as hammers or screwdrivers.

As was already mentioned, communication in both verbal and non-verbal forms is
crucial during handovers. It can be used for initiation but also to further coordinate the



10 Chapter 2. Problem Analysis

handover action once it started [46]. For the case of trajectory planning, gaze and body
language are important factors. Both Moon et al. [47] and Boucher et al. [48] provided
evidence that enhancing the robot system with human-like gaze abilities improves the
reaction times of the humans during the handover. In order to improve the naturalness
of the handover, Gharbi et al. [49] identified two gaze patterns that achieve similar levels
of naturalness, as perceived by the human receiver, regardless if done by the robot or the
human giver. With the first pattern, the giver initially looks at the object and then moves
its gaze from the object to the receiver once the handover object reached the handover
location. With the second pattern, the giver looks at the receiver, then at the handover
object, and then back at the receiver once the handover object is at the handover location.
The act of looking at the object and then at the receiver once the object reaches the handover
location was identified as the most important gaze pattern.

Body language, such as stance, arm pose, and gestures, can also be used to enhance
the handover experience. Cakmak et al. [42] identified the failure to convey the intention
of handing over and the lack of intuitive signalling to indicate the timing of the handover
as the two main reasons for delays in the transfer of the handover object. In order to
alleviate these problems, they propose to design handover trajectories using spatial and
temporal contrast in the robot’s poses. A spatial contrast refers to how recognizable is
the pose in which the robot is presenting the item to the receiver compared to all the
other poses. A temporal contrast refers to how recognizable is the pose in which the robot
is presenting the item to the receiver compared to the robot’s previous pose. However,
after performing an experiment with study participants, only the temporal contrast is
shown to improve the fluency of the handover by removing early attempts at the handover.
Nevertheless, the authors of the study argue that the spatial contrast was not properly
tested in their experimental settings, thus the effect of the spatial contrast can not be
evaluated. Still, the authors noticed that when the robot extended its arm, several human
receivers misunderstood this as the invitation to take the object from the robot. This study
shows how the body language of the robot induces different behaviour from humans.

The additional considerations covered here show just some of the challenges and in-
tricacies of the pre-handover phase. The pre-handover phase trajectory can be improved
upon by allowing it to adapt dynamically to the signals sent by the receiver, or by being
more predictable among other considerations. However, in order to perform a basic han-
dover, the grasp point, handover location and orientation must be solved first, thereby,
making them the most immediate problems to solve.

2.1.3 Improving upon the pre-handover trajectory

The main focus of this report is the generation of the pre-handover phase trajectory, with
special attention given to the planning and computation of the handover orientation.
Proper handover orientation and position of various objects depend on the object’s geom-
etry, physical properties, functions as well as object affordances [42, 10, 11]. It is, therefore,



11 Chapter 2. Problem Analysis

worth investigating if object affordance analysis can help solve the issue of object handover
orientation.

However, as was shown in [32] and also discussed in section 2.2, current object affor-
dance analysis methods do not generalize very well into the real world as issues in regards
to object pose and illumination conditions were observed in our previous work [32]. There-
fore, this report also investigates if the current object affordance analysis methods can be
made more robust to object pose and illumination condition challenges.

2.2 Affordance analysis and object affordance segmentation

Originally proposed by Gibson [18], affordance analysis is the theory that various objects
and places allow for various actions depending on the agent. This report focuses on the
zero-order object affordances, which is a set of functionalities that the object provides
regardless of the object’s current state [24]. Because different parts of an object provide
different affordances, object affordance detection can be addressed as a pixel-wise segmen-
tation problem [25], which will be referred to as the affordance segmentation throughout
the rest of this report. Therefore, the task is to classify each pixel with its affordance. As
such, affordance segmentation is most often solved in the vision domain with data ob-
tained from RGB sensors. An example of the pixel-wise affordance segmentation can be
seen in Figure 2.4.

Figure 2.4: An example of pixel-wise segmentation of the hammer. The yellow pixels represent pound affor-
dance. The blue pixels are the grasp affordance.

2.2.1 Evaluation

The weighted Fw
β -measure metric, see equation (2.1), is the most commonly used perfor-

mance metric when evaluating the performance of affordance segmentation methods. The
weighted Fw

β -measure metric, proposed by Margolin et al. [50], expands on Fβ-measure by
extending the definition of True Positives, True Negatives, False Positives, and False Neg-
atives to non-binary values, which allowed for weighting the error based on its location
and neighbourhood.



12 Chapter 2. Problem Analysis

Fw
β = (1 + β)

Precisionw.Recallw

β2.Precisionw + Recallw (2.1)

Although multiple affordance segmentation datasets exist, see Table 2.1, the affordance
datasets are more limited in size and scope compared to datasets commonly used for
object detection, segmentation, and classification. This is due to how resource-expensive it
is to annotate images with ground-truth affordances. Out of a few affordance datasets, the
UMD [19] and IIT-AFF [21] datasets have become the norm for benchmarking affordance
segmentation methods, with the IIT-AFF dataset being the more challenging out of the
two.

The UMD dataset [19] contains manually annotated, pixel-wise affordance labels of
105 tools captured in a calibrated environment. The calibrated environment only provides
limited variation in the background texture, lighting, and camera viewpoint. Moreover, the
dataset provides only a few examples for some of the object categories, further decreasing
the variability of the data. A sample from the UMD dataset can be seen in Figure 2.5.

Figure 2.5: A sample of images and their respective ground truths from the UMD dataset.

In order to introduce more diversity and variation, the IIT-AFF dataset [21] also in-
cluded a subset of images from ImageNet. This made IIT-AFF more challenging by intro-
ducing occlusions with a higher variety of background textures and lighting conditions. A
sample from the IIT-AFF dataset can be seen in Figure 2.6.



13 Chapter 2. Problem Analysis

Figure 2.6: A sample from the IIT-AFF dataset. Taken from [22].

Dataset Year Size Modality Labels

UMD [19] 2015 10,000 RGB-D
grasp, cut, scoop,
contain, pound, support,
wrap-grasp

IIT-AFF [21] 2017 24,677 RGB-D

contain, cut, display,
engine, grasp, hit,
pound, support
wrap-grasp

CAD-120-Affordance [51] 2017 9916 RGB
open, cut, contain,
pour, support, hold

3D-AffectNet [52] 2021 23,000 Point cloud

grasp, lift, contain,
open, lay, sit, support
wrap-grasp, pour
dislay, push, pull
listen, wear, press
cut, stab, move

Table 2.1: A list of affordance segmentation datasets.



14 Chapter 2. Problem Analysis

2.2.2 Related work concerning improvements to affordance segmentation ar-
chitectures

This section covers related works that focus on improvements to the architectures of the
affordance segmentation methods. The section is split into two parts - performance im-
provements and the inference time improvements.

Performance improvements

Affordance detection using visual data has been investigated and used in many robotic ap-
plications [53, 54, 55]. In 2015, Myers et al. [19] introduced the UMD dataset and were the
first researchers to cast the affordance detection as the pixel-wise segmentation problem.
Using their own UMD dataset, they trained two solutions - the S-HMP and SRF. These
reached Fw

β scores of 0.557 and 0.466 respectively.
Deep learning methods have been shown to exceed the performance of the traditional

affordance segmentation methods. Nguyen et al. were approached the affordance seg-
mentation problem with a deep learning approach. Their encoder-decoder solution out-
performed previously proposed methods [20], achieving a Fw

β score of 0.770 on the UMD
dataset. In 2020, Abdalwhab et al. [56], similarly to Nguyen et al., used a modified Seg-
Net encoder-decoder to perform affordance segmentation. By including skip connections,
Abdalwhat et al. managed to achieve a Fw

β score of 0.707 on the IIT-AFF dataset.
Nguyen et al. [21] showed that casting the affordance prediction problem as an in-

stance segmentation problem can achieve higher accuracy. Using a modified Faster-RCNN
network in combination with a conditional-random-field as a post-processing step, their
method named BB-CNN-CRF achieved a Fw

β score of 0.696 on the IIT-AFF dataset.
In 2018, Do et al. [22] achieved state-of-the-art results on the IIT-AFF and UMD

datasets, with Fw
β scores of 0.734 and 0.799 respectively, using their modified Mask-RCNN

network called AffordanceNet. This network has since become the baseline that many
other methods compare themselves against [57, 58, 59, 60, 61, 62, 63, 64].

In 2020, Minh et al. [58] and Qian et al. [59] experimented with the AffordanceNet
architecture by examining the influence of the quality of the features used. This was done
by switching the feature extractor from VGG16 to various ResNets. Minh et al. also
made further changes to the alignment layer. Both of the approaches saw incremental
improvements over AffordanceNet, with Minh et al. achieving a Fw

β score of 0.802 on the
IIT-AFF dataset, and Qian et al. achieving a Fw

β score of 0.814 on the UMD dataset.
Attention modules have lately become an area of interest for affordance segmenta-

tion networks [57, 60, 61, 64]. Common to these approaches is that they do not perform
instance segmentation. Instead, the methods rely on encoder-decoder architectures for
segmentating affordances, without performing object detection. In 2019, Zhao et al. [57]
proposed a model that implements both attention and relationship-aware modules. Zhao
et al. argue that affordances and objects have a symbiotic relationship of which the pro-



15 Chapter 2. Problem Analysis

posed relationship-aware module can take advantage of. Zhao et al. achieved a Fw
β score

of 0.861 on the UMD dataset, and 0.789 on the IIT-AFF dataset.
In 2021, Gu et al. [61] reported state-of-the-art results on the UMD dataset, a Fw

β score
of 0.941, by utilizing an encoder-decoder architecture with a DRN network used as the
feature extractor. Furthermore, they apply a self-attention module to improve upon the
salient details of the affordance map.

In 2022, Yin et al. [64] applied recent advances in image segmentation methods with
their network called SEANet, which they modified to include a spatial gradient fusion
module and a shared gradient attention module. They achieved a Fw

β score of 0.794 on the
IIT-AFF dataset.

Inference time improvements

While some researchers focus on improving the accuracy of the affordance segmentation,
others aim to reduce the inference time by finding the balance between the accuracy and
the size of the model.

The aforementioned model proposed by Gu et al. [61] not only reportedly achieves
state-of-the-art results, but it is also considerably faster than AffordanceNet. Due to the
self-attention module, the network proposed by Gu et al. has only 16 million parameters
compared to the 41 million parameters of AffordanceNet [62].

Another way to cut the inference time is to replace the encoder in encoder-decoder
methods with smaller and more efficient convolution neural networks such as the Mo-
bileNet architectures or ESPNetv2. Tsai et al. [62] proposed a one-stage method based on
the ESPNetv2 with only 4.6 million parameters, achieving a Fw

β score of 0.610 on the IIT-
AFF dataset. Ragusa et al. [63] make use of MobileNetv1 and MobileNetv3, which they
combined with the segmentation architectures UNet, SegNet, and LR-ASPP. Ragusa et al.
managed to achieve results comparable to AffordanceNet with only 7.6 million parame-
ters, achieving a Fw

β score of 0.750 on the UMD dataset. Moreover, they also proposed a
lightweight model with only 0.6 million parameters that can run in real-time on a Jetson
Nano. However, this lightweight model managed to achieve a Fw

β score of only 0.586 on
the UMD dataset.

An overview of all the discussed methods, both regarding performance and inference
time improvements, can be seen in Table 2.2.



16 Chapter 2. Problem Analysis

Method Year Millions of parameters Fw
β UMD Fw

β IIT-AFF
Myers et al. S-HMP [19] 2015 N/A 0.557
Myers et al. SRF [19] 2015 N/A 0.466
Nguyen et al. [20] 2016 N/A 0.770
Nguyen et al. BB-CNN-CRR [21] 2017 N/A 0.696
Do et al. AffordanceNet [22] 2018 41 0.799 0.734
Zhao et al. [57] 2019 N/A 0.861 0.789
Minh et al. [58] 2020 N/A 0.802
Qian et al. [59] 2020 N/A 0.814
Abdhalwhab et al. [56] 2020 N/A 0.707
Xu et al. AffKp [60] 2021 N/A 0.820
Gu et al. [61] 2021 16 0.941
Tsai et al. [62] 2021 4.6 0.610
Ragusa et al. V1_se [63] 2021 7.6 0.750
Ragusa et al. V1_U [63] 2021 10.4 0.736
Ragusa et al. V3_LR [63] 2021 0.6 0.586
Yin et al. [64] 2022 N/A 0.794

Table 2.2: Summary of the investigated methods. Gu et al. [61] and Minh et al. [58] achieve state-of-the-art
results.

2.2.3 Related work concerning the issue of limited data and scalability

The majority of the improvements in the field of affordance segmentation concentrate
on improving the architecture. Very few works focus on improving the datasets which
are limited in size, scope, and variation compared to the datasets for other computer
vision tasks e.g., object detection, segmentation, and classification [65, 66, 67]. As a result,
the affordance segmentation methods trained on the UMD or IIT-AFF datasets do not
generalize very well. The remainder of this subsection will describe methods that have
been proposed to alleviate the issue of the limited data.

Weakly supervised learning methods

Supervised learning methods require all pixels belonging to a certain affordance to be
labelled. However, this is not true for the weakly supervised learning methods, which
only require sparse annotations. As sparse annotations are less resource-heavy than pixel-
wise annotations, weakly supervised learning methods might be an approach to alleviate
the issue of the limited data.

Sawatzky et al. [51] proposed VGG and ResNet based networks that can train on data
annotated with only sparse keypoints. They showed it is possible to train on weakly
annotated data, but the results are sub-par. In order to improve the performance, they
deploy the Grabcut algorithm to refine the train set predictions of the neural network



17 Chapter 2. Problem Analysis

trained on the keypoint annotations only. Afterwards, the training continues but using the
refined annotations, see Figure 2.7.

Sawatzky et al. later expanded upon this method in [68]. In this new work, they
removed the Grabcut segmentation step from the pipeline by introducing an approach for
adaptive binarization of the prediction during the training process.

Figure 2.7: Visualisation of the method proposed by [51]. The first row shows the keypoint annotations. The
second row shows the predictions of the neural network trained on only the keypoint annotations. The third
row shows the refined predictions of the neural network trained on keypoint annotations only. Finally, the
fourth row shows the final predictions of the neural network after training on a train set annotated with the
refined annotations. Taken from [51].

Gall et al. [69] leveraged already existing large datasets with object annotations, such as
object detection datasets, in order to segment affordances. This was achieved by using a se-
mantic alignment network to transfer affordance annotations, in the form of an affordance
bounding box, from a small set to a larger set of images with annotations only at the ob-
ject level i.e., the object class and the bounding box are known but there is no affordance
information. After the complete dataset is assembled, consisting of the small manually
annotated dataset combined with the large dataset automatically compiled through the
semantic alignment network, a VGG-based neural network was trained for pixel-wise af-
fordance segmentation in a weakly supervised manner. See Figure 2.8 for the visualisation
of the labels transfer process.

Nevertheless, all three aforementioned weakly supervised methods achieved poor per-
formance compared to the supervised methods.



18 Chapter 2. Problem Analysis

Figure 2.8: The visualisation of the label transfer process proposed by [69]. The training data on the right is a
small set of images annotated with bounding boxes for available affordances. The data on the left is collected
from an object detection dataset. As such, only the bounding box and the object class are available. In order
to transform labels from the training set to new images, the semantic alignment network was used to find the
best match. Taken from [69].

Category-agnostic affordance segmentation

Most of the previously described methods are object-dependent, meaning that the methods
predict both the object class and the affordance segmentation. For the object-dependent
methods, optimizing class detection and affordance prediction simultaneously improves
the performance of the models. But this limits the object-dependent based methods to the
class labels in the training dataset. In order to improve generalizability, category-agnostic
methods have been proposed

Category-agnostic affordance segmentation is done by separating the affordance seg-
mentation from object categories. Apicella et al. [70] and the aforementioned Chu et
al. [23], have achieved category-agnostic affordance segmentation by discriminating only
between the background and the foreground. Chu et al. [71] later improved their previ-
ous solution by introducing the attribute module, which allowed the model to learn the
attributes of an object class and the region-based self-attention module. Using this im-
proved model, they achieved state-of-the-art performance on the UMD dataset with a Fw

β

of 0.690 on novel object categories. Object-based category-agnostic methods, therefore,



19 Chapter 2. Problem Analysis

like the weakly-supervised methods, suffer from a performance drop compared to the
object-dependent methods.

Finally, it could be argued that the previously mentioned encoder-decoder net-
works [57, 60, 61, 64] are also category-agnostic as none of them performs object detection.
Instead, they learn affordances for all objects present in an image. However, these methods
do not perform object detection, which might be detrimental to a robotic handover system.

Affordance segmentation using synthetic data

The limited amount and scope of affordance datasets could be addressed using synthetic
data. Annotating real-world data with affordance labels for each pixel is a resource-heavy
process that does not scale well. On the other hand, synthetic datasets are easy to generate,
provide error-free ground truth labels without the need to annotate manually, and are
inexhaustible [26].

The issue with synthetic data is that methods trained on such data might perform
poorly in real-world scenarios [27]. This is commonly referred to as the sim2real gap,
which refers to a challenge of transferring the capabilities of the learned model from the
simulated environment to the real-world. The sim2real gap exists because models of the
simulated environment are not sufficiently accurate to represent real-world models [72].

Nevertheless, the sim2real gap can be bridged, or at least shortened, using either do-
main adaptation, domain randomization or both methods [28]. Domain adaptation is
used for fitting models trained in a source domain to a previously unseen target domain.
Domain randomization speculates that with enough variety in the synthetic data, the real-
world data could appear as another variation to the model. This can be achieved by ran-
domizing parameters of the synthetic data, such as scene lighting, lighting colour, object
poses, or background textures.

The remainder of this subsection will investigate the methods proposed for affordance
segmentation using synthetic datasets.

In 2017, Detry et al. [12] trained a segmentation network called MultiNet, which used
the VGG16 as the backbone and the FCN encoder-decoder architecture. They synthesized
a small dataset of manually annotated 3D meshes, which were later used to generate
synthetic scenes. The dataset contained ten meshes, five from the YCB dataset, where each
mesh was binary annotated for tasks transport, handover, pour, and open, see Figure 2.9.
Nevertheless, this method was not evaluated on either the UMD or IIT-AFF dataset.



20 Chapter 2. Problem Analysis

(a) (b)

Figure 2.9: (a) Annotated meshes with binary labels for each task. Green represents an area suitable for a task,
red represents unsuitable for a task. For example, the item on the left shows the handover task constraints for
a brush. The robot can grasp the item anywhere in the green area, leaving the handle, red area, unobstructed
for the user. Similar constraints were defined for all combinations of the four tasks and the dataset objects. (b)
An example of the generated synthetic scene. From the left - RGB, depth, and annotations for the transport
task [12].

In 2019, Hämäläinen et al. [30] made use of the synthetic data for training manipula-
tion policies based on a latent representation of affordances. Affordance information was
extracted using the custom encoder-decoder structure named VAED. The work proposed
three neural networks, all trained on synthetic data, including the VAED network. The
object of interest for this work was a mug with the affordances contain and wrap-grasp.

In order to train the three neural networks, Hämäläinen et al. synthesized a dataset
with the following domain randomization techniques:

• randomized textures,

• randomized mug geometry,

• randomized distractor objects,

• randomized camera viewpoints.

In total, 1 million pairs of RGB images and affordance masks with the affordances contain
and wrap-grasp were generated, see Figure 2.10. However, Hämäläinen et al. do not report
any evaluation metric on either the IIT-AFF or UMD dataset after training on synthetic
data. Therefore, it is impossible to measure quantifiably measure how well the authors
managed to overcome the sim2real gap.

The most comprehensive work done on affordance segmentation using synthetic data
was done by Chu et al. [29]. They collected 93 object meshes from 3DWarehouse 1 covering
17 object categories and seven affordance categories present in the UMD dataset, which
were used to create a dataset of 37k images, see Figure 2.11, compared to 28k images in
the UMD dataset. A network similar to AffordanceNet was then trained on this synthetic
data in a supervised manner. In order to tune the weights from the synthetic domain to
the real world domain, Chu et al. implemented three domain adaptation modules into

1https://3dwarehouse.sketchup.com/?hl=en



21 Chapter 2. Problem Analysis

Figure 2.10: Sample from the synthetic dataset generated that the VAED network was trained on. From the
left - RGB, depth, and ground truth affordance mask [30].

their network. One after the feature extractor, and the other two in the two task branches.
The domain adaptation modules were trained in an unsupervised manner.

Figure 2.11: Sample from the synthetic UMD dataset with the ground truth affordances - contain (blue), wrap-
grasp (light blue), and grasp (red) [29].

The method by Chu et al. trained on their synthetic UMD data achieved a Fw
β score

of 0.546 on the real UMD dataset compared to a Fw
β score of 0.799 achieved when they

trained their network on the real UMD dataset with no synthetic data. In order to achieve
a better performance, Chu et al. experimented with fine-tuning of the network trained on
the synthetic data on a subset of the real UMD dataset after training on the synthetic data.
By sampling 25 % of the real UMD data, they attained a Fw

β score of 0.714. With 50 % real
data, they get managed to achieve a Fw

β score of 0.730.



22 Chapter 2. Problem Analysis

2.2.4 Identified areas for improvement

In conclusion, all three of the aforementioned approaches i.e., weakly supervised methods,
category-agnostic affordance segmentation, and synthetic data, aim to address the issue
of limited data and scalability in one way or another. On the one hand, weakly super-
vised methods do not require large datasets with pixel-wise annotations, but they do not
perform very well compared to the supervised methods. On the other hand, category-
agnostic methods achieve high performance, but they are still limited by the datasets they
are trained on.

Affordance segmentation using synthetic data appears to be a promising way to ad-
dress the data scalability limitations. As was mentioned before, synthetic datasets are easy
to generate, have error-free annotation, and are inexhaustible. Yet, affordance segmenta-
tion from synthetic data has only been briefly explored so far. Although Chu et al. [29]
achieved a comparable Fw

β score to that of the AffordanceNet, this was only achieved after
applying the domain adaption technique with 50 % samples from the real UMD dataset.
Without it, a 30 % performance drop was recorded. Hämäläinen et al. [30] also trained
their network using synthetic data. In order to overcome the sim2real gap, they used
the domain randomization technique instead. However, because the produced synthetic
dataset only contained a single class, the capabilities of their proposed VAED network
were also quite limited.

2.3 The problem of object orientation at handovers

As mentioned in section 2, proper orientation of an object at the handover time has shown
to improve the perceived quality of the handover. This section, therefore, investigates
previous methods for computing object handover orientations as well as how to evaluate
said methods.

2.3.1 Related work in object handover orientation

This section covers related work that focuses on computing a suitable or proper object han-
dover orientation. Early work focused simply on performing handovers with orientations
specific to an object. The authors of these methods used predefined handover orientations
for each object. As such, these methods do not not scale well [13, 14, 15].

Cakmak et al. [13] proposed two methods for object handover orientation. The first
method computes the handover location such that the human receiver does not have to
move. The position and orientation of the object at the handover was based on a kinematic
model of a 162 cm tall human. The object orientation is computed by maximizing the
possible number of grasps available on the object presented to the user, using a kinematic
model of a human hand. The second method learns handover orientations from human
guidance. A user study was conducted where each participant had to select four good and



23 Chapter 2. Problem Analysis

four bad handover orientations in a simulation for five different objects, examples can be
seen in Fig. 2.12. They found that people prefer the learned method.

Figure 2.12: Examples generated with the methods from [13]. Top is the first method based on a kinematic
model, bottom row is generated using their learned method.

The initial work by Aleotti et al. [14], later slightly extended in [15], presents a system
that can handover objects with a six DOF robot combined with a Kinect depth sensor.
An object, known in advance, is scanned and segmented into its part using the REEB
graph method, see Figure 2.13. The position of the receiver is detected using the Kinect
depth sensor, and it is used to compute the handover location and orientation. One of the
segmented parts, chosen in advance for each object, is oriented towards the receiver.

Figure 2.13: The segmented parts of an object using the method presented in [14]. One of the segmented parts
is chosen in advanced to be oriented towards the user.



24 Chapter 2. Problem Analysis

The methods presented so far all rely on knowing the object in advance and assigning
a handover orientation manually on a per object basis. Orientations computed with these
methods are often also not appropriate or natural because they do not consider the object’s
affordances. Cakmak et al. further found that people prefer handover orientations learned
from human examples rather than a loss function proposed by the authors [13].

Chan et al. [16] addressed this issue when they proposed to learn handover orienta-
tions from natural handovers as performed by humans on 10 different objects. A knowl-
edge base is created by observing objects being used. From this, they can extract manually
defined features describing the object affordances. Features regarding the affordances cut,
screw, translate and slide are extracted. At the same time, a database of proper object ori-
entations with respect to the receiver is also created. Objects along with their associated
handover orientations are then clustered based on the extracted features. Object orienta-
tions can then be computed by classifying a new unseen objects using k-nearest neighbour
algorithm using the extracted features. In their follow up work [10], a different method
for computation of object handover orientation was developed which does not rely on
features nor a knowledge database. Instead, handover orientations are learned directly
from observing human handovers on a per object basis. For each object, they compute
what they name the ’affordance axis’ at the moment of handover. They argue the affor-
dance axis orientation depends on the affordances of the object. Their method can also
differentiate between a good and a bad handover orientation, which is something they
slightly expanded upon in their follow up work [11]. Finally, Razalli and Demiris [73]
applied deep learning to the problem and developed a multitask variational autoencoder
that could predict human and object pose from the dataset created in [10].

As an addition, it is also worth mentioning that some works address the handover ori-
entation problem implicitly. Ardon et al. [7] developed a method for choosing the proper
handover location as well as configuration of the robot for people with limited arm mobil-
ity. The method considered appropriateness, safety, and reachability. Task-oriented grasps are
sampled based on affordances, and the sampled grasp location that best leaves the grasp
affordance free for the receiver is chosen. In order to maximize safety, they maximize the
distance between the robot and the human, thereby, unintentionally addressing some of
the handover orientation problem. Such methods do not generalize to all types of objects.

Improving upon current methods

Research into object handover orientation remains rather limited, with most of the related
work using orientations tied to specific object categories, such as a hammer, a spoon, or
a teapot. These methods do not generalize to novel object categories. Learning object
handover orientation from human observations in combination with affordances in such
a way that the object categories can be completely disregarded remains an open area of



25 Chapter 2. Problem Analysis

research. By separating learned handover orientations from their object categories, a more
generalizable system might be achieved.

The majority of the related work has focused on learning handover orientations from
human handover examples. However, obtaining datasets of human handovers can be
expensive and time consuming. Works such as Ray et al. [43] and Cini et al .[44], show
that people orient objects with the grasp affordance i.e., a handle, towards the receiver.
A set of pre-defined rules might, therefore, be sufficient for generating object handover
orientations, as long as the object affordances are considered.

2.3.2 Methods to evaluate the object handover orientation

Evaluation methods and metrics are used to quantitatively express the performance of a
method and allows for comparison to other methods. The methods covered in this section
does not have a unified framework for evaluation, but the evaluation methods can be
split into two broad categories - quantitative evaluation on a dataset [16, 10, 11, 73] and
human-robot-interaction (HRI) experiments [13, 14, 15].

Evaluating with human-robot-interaction experiments

Methods that evaluate using HRI experiments often conduct small scale user studies of 10
to 16 participants. The experiments are set up to compare two methods against each other,
and therefore, only report relative performance of the two methods.

Cakmak et al. [13] test their two proposed methods against each other by perform-
ing HRI handover experiments with 10 participants. The methods are compared on the
metrics liking, naturalness, practicality and appropriateness, where the participants are asked
to consider the position and orientation of the object during the handover. These criteria
do not capture handover orientation directly, but relates to the performance of the whole
robotic system.

Aleotti et al. [14, 15] conducted a user study with 16 participants that had to per-
form handovers, see Fig. 2.14. Their proposed method was compared against a perturbed
version of their own method. In the perturbed version, the object handover position and
orientation were randomly pertubed. The methods were compared on the criteria of com-
fort. Their proposed method achieved higher levels of comfort compared to the perturbed
version.

Quantitative evaluation on a dataset

Where qualitative evaluation, such as the aforementioned HRI experiments, suffers from
reproducibility issues, which complicates the comparison of methods, quantitatively eval-
uating methods on a dataset do not. Chan et al. [16] produced a training set of 10 different
objects with 20 handover orientations and an evaluation dataset containing three novel



26 Chapter 2. Problem Analysis

Figure 2.14: An example of the handover experiment carried out by Aleotti et al. [14] while evaluating the
proposed system.

objects not present in the training dataset. They treated the evaluation as a classification
problem.

In another study, Chan et al. [10] captured a dataset of handovers demonstrations
with 20 objects and 20 participants. The participants were asked to handover the objects
under three different conditions - A, B, and C. Condition A was natural handover with
no instructions. Under the condition B, the giver had to prioritise their own comfort. In
condition C, the giver had to prioritise the receiver’s comfort. Based on this data, they
showed that their method could differentiate between condition B and condition C.

Razali and Demiris [73] is the only study that reported orientation errors quantitatively
on a continuous scale. This was done on the dataset described above produced by Chan et
al. [10]. Errors were reported as the L1 error in radians around each axis of a 3D coordinate
system, see Table 2.3.

X-axis Y-Axis Z-axis
0.961 0.452 1.749

Table 2.3: Handover object orientation error reported in radians by [73].

Quantitatively measuring the orientation errors, as done by Razali and Demiris [73],
suffers from the issue that the orientation of some objects are equivariant or multi-
polar [11]. This means that the orientation around one or several axis is irrelevant or
equally good. As an example, the rotation around a bottle’s vertical axis can vary drasti-
cally in a handover as said rotation does not affect the perceived quality of a handover.

Evaluation by user studies, therefore, seems as the most promising method for evalu-
ating the performance of object handover orientation methods.

2.4 Problem formulation

Before the final problem formulation is proposed, a summary of the problem analysis and
its findings is provided.

Ortenzi et al. [8] argues that the handover action is usually initiated to allow the re-
ceiver to carry out a task with the transferred object. Thus, one of the giver’s key con-



27 Chapter 2. Problem Analysis

siderations during the handover should be the subsequent task of the receiver. As such,
task-oriented handovers are preferred over their task-agnostic counterparts.

In order to perform a handover, a trajectory must be planned. The process of trajectory
planning involves, among other considerations, grasp synthesis and computation of a
handover location and object orientation. A study by Ortenzi et al. [34] showed that what
is considered a good grasp depends on the task that is to be performed with the grasped
item. Given the focus of this report is robot-to-human handovers, a suitable grasp is a
grasp that allows for a proper handover. However, an appropriate handover grasp depends
not only on the mechanical stability of the grasp but also on the subsequent task of the
user, as shown in [8]. Thus, task-oriented handovers are tightly coupled with task-oriented
grasping, which was addressed in our previous work [32].

Our solution to task-oriented grasping is built upon the concept of affordances. As
was shown in section 2.2, currently available affordance segmentation datasets are limited
in size, scope, and variation, but creating a new dataset is a resource-heavy process. This
in turn affects the affordance segmentation methods trained on said datasets, as smaller
datasets lack variety. This was observed in our previous work [32], in which change in illu-
mination and object pose severely affected the performance of the affordance segmentation
method.

In order to overcome the issue of the limited data, three strategies have been explored in
past works, namely weakly supervised methods, category-agnostic methods, and training
on synthetic datasets. The weakly supervised methods perform poorly, while the category-
agnostic methods perform better than weakly supervised methods, but still suffer from
a performance drop compared to the object-dependent methods. Synthetic data could
be used to alleviate the issue of limited data. However, as was shown in section 2.2,
the use of synthetic data has been investigated only briefly, and with nearly no research
into a synthetic dataset using the domain randomization method. Therefore, this report
implements affordance segmentation trained on a synthetic dataset generated using the
domain randomization method which, to the best of the authors’ knowledge, has not been
investigated yet.

As argued in section 2, the object’s orientation during the handover affects both the effi-
ciency and the perceived safety of the handover [9, 42]. Therefore, proper object handover
orientation can improve collaboration during the handover.

As presented in section 2.3, related work in the field of the object handover orientation
is rather limited and consists mostly of object-based methods. Object-based methods do
not generalize to novel object categories. Only considering the object affordances and
disregarding the object categories could alleviate the issue of generalizability.

A rule-based method using affordances was proposed by Ardon et al. [7]. Nevertheless,
orientations calculated via the object-based or rule-based methods might not be as suitable
as orientations learned from human-human handover observations [13].

However, as Cakmak et al. [13] argue, the reason why object handover orientations
should be learned from human-to-human observations is that such handover orientations



28 Chapter 2. Problem Analysis

would implicitly encode the affordances of the objects. Therefore, two methods will be
implemented - an observation-based method, where the handover orientations are learned
from human-to-human observations, and an affordance-aware rule-based method. Later,
the observation-based and rule-based method will be compared against each other in order
to see if it is indeed necessary to learn from human-to-human handover observations or if
the affordances-aware rule-based method can perform similarly well.

Reflecting on the aforementioned findings, the problem formulation for this report is
as follows:

How can robot-to-human handovers be performed using object affordance segmentation in a
collaborative robot setup?

To consider affordance segmentation and handover orientation, the problem formula-
tion stated above is expanded with the following sub-problem formulations:

• How can affordance segmentation methods trained on synthetic data enhance the performance
of robot-to-human handovers?

• How can object affordance theory improve upon handover orientation in robot-to-human han-
dovers?

2.4.1 Custom object set

The object set used in this report consists of items that can be found in the UMD dataset
plus a bottle from the ITT-AFF. Therefore, the object set consists of a bottle, a bowl, a cup,
a hammer, a knife, a ladle, a mallet, a mug, scissors, three scoops, a spatula, and two
spoons. The object set can be seen in Figure 2.15.This object set is used as the object set for
a human-to-human handover dataset and real-world robotic manipulation.

Figure 2.15: The object set used in this project.



29 Chapter 2. Problem Analysis

2.5 Requirements

In order to evaluate the quality of the proposed solution, requirements to pass must be
met. The selection of these requirements is discussed in this section.

2.5.1 Task-oriented handover

While the main focus of this report is the computation of the handover object orientation
and affordance segmentation using synthetic data, both of these are investigated in an
effort to improve the handover experience. Therefore, the success rate for the task of the
task-oriented handover must be set. In our previous work [32], the success rate of the
task-oriented handover was set to be 65 %. During the testing, we managed to achieve a
success rate of 72.22 %. As this report aims to advance our previous work, the desired
success rate of task-oriented handover should be higher, thus, we set the requirement to
75 %.

Requirement

• Success rate of handover of 75 %

Finally, because this report aims to provide a pipeline for task-oriented handover with
proper object handover orientations, it would be natural to set up a success rate require-
ment of how often the desired object orientations are reached. However, such a require-
ment would be arbitrary as, to the best of the authors’ knowledge, no other researchers
have provided a number to compare against. Nevertheless, the success rate of how often
the desired object handover orientation is reached will be provided along with the full
system test results.

2.5.2 Affordance segmentation

As mentioned in section 2.2, Hämäläinen et al. [30] synthesized a dataset using the domain
randomization method, and as such, at first glance it appears as the most similar work to
the work of this report. However, Hämäläinen et al. did not report any evaluation metric
on the IIT-AFF or UMD dataset. Furthermore, it was limited to a single object category.

Nevertheless, Chu et al. [29] also synthesized a dataset, but applied the domain adapta-
tion method instead. While domain adaptation differs from domain randomization, both
methods are used to overcome the sim2real gap. Furthermore, Chu et al. also reported a
Fw

β score of 0.546 their method achieved on the real world UMD dataset after exclusively
training on the synthetic data. Therefore, the aforementioned Fw

β score reported by Chu et
al. [29] is set as the benchmark for our affordance segmentation method.



30 Chapter 2. Problem Analysis

Requirement

• Fw
β > 0.546

2.5.3 Handover orientation

Unlike affordance segmentation, no widely agreed-upon evaluation method, qualitative
or quantitative, exist for handover orientations. Furthermore, quantitative methods suffer
from the problem of orientation equivariance and multi-polarity. Due to these problems,
our handover orientation solution will be evaluated using a human-robot user study.

The purpose of this study will be to identify a method of handover orientation that
produces object handover orientations that the users find the most comfortable, legible,
and appropriate. As such, these three metrics will be the focus of the user study. Three
investigated methods will be:

• random-based method, when the handover orientation is a pre-defined pose with
randomly sampled orientation,

• rule-based method, when the handover orientation is selected based on the pre-
defined rules,

• observation-based method, when the handover orientation is selected based on the
human-to-human handover observations.

Hypotheses of the user study

• We expect the user to perceive:

– Higher comfort, legibility, and appropriateness of the object handover orien-
tations for the rule-based and observation-based methods compared to the
random-based method.

– Comparable comfort, legibility, and appropriateness of the object handover ori-
entations between the rule-based and observation-based methods.



3 - Implementation

A system capable of performing a robot-to-human handover, that at the same time aims
to fulfill the requirements from Section 2.5, was designed and implemented. To improve
upon the system designed previously [32], the system must have the following capabilities.

• To enable the task-oriented handover, a method for affordance segmentation must
be implemented. The affordance segmentation method can utilize synthetic data to
alleviate the data limitations and scalability issues of the past affordance datasets.

• The system must be capable of task-oriented grasping and designing a trajectory that
considers the handover orientation of different objects. Since object affordances has
shown to affect the object handover orientation [11], the method for computing han-
dover object orientations should compute orientations based on object affordances.

• The handover object orientation is defined in relation to the receiver, therefore, the
system must also consider the handover location as well as the location of the re-
ceiver.

This section covers the design and implementation of the task-oriented handover sys-
tem proposed in this report.

3.1 System overview

The hardware setup used for this project is depicted in Figure 3.1. The setup consists of a
KUKA LBR iiwa 7 R800 collaborative robot with 7-DOF, an Intel RealSense D435i RGB-D
sensor, a Hokuyo URG-04LX-UG01 2D laser scanner, and a Robotiq 3-finger gripper. The
system is mounted on a custom modular table provided by Technicon. Interfacing with
KUKA was achieved using the iiwa_stack ROS package [74]

31



32 Chapter 3. Implementation

Figure 3.1: The hardware setup used in this project. An Intel RealSense camera is highlighted by the red box.
A Hokuyo laser scanner is highlighted by the yellow box.

A system was designed to perform task-oriented handovers. The system should be
capable of performing task-oriented grasping, where the object is grasped in a way that
leaves the handle free for the receiver to grasp. A handover location must be chosen
such that the handover happens at the midpoint between the robotic giver and the human
receiver. Finally, the handover object must be oriented in such a manner that it considers
the comfort of the receiver as well as the object affordances. Such a system is visualized in
Figure 3.2



33 Chapter 3. Implementation

Camera service Affordance analysis Grasp
generator

Trajectory
generation

Handover
orientation

Handover location

Handover

location

Main

RGB

Point cloud

Affordance point cloud

Current object pose,
Goal object orientation


Point cloud,
Grasp candidates


Task-oriented grasps

Trajectory waypoints

Handover

Class id

Affordance masks,
Detected objects
RGB

Figure 3.2: A block diagram of the implemented system. Blue boxes indicates that the module has been
implemented as a ROS service node. Orange modules are tasks carried out by the KUKA sunrise controller.
Best viewed in colors.

The system was implemented in the ROS Melodic framework, which facilitates stan-
dardized interprocess communication as well as providing standardized methods for com-
municating with sensors. The system was designed with an object-oriented design phi-
losophy in mind. Each module solves a single task related to the task-oriented handover
or solves auxiliary tasks such as generating trajectories or providing sensory information.
The main module collects and combines all of the output of the sub-modules in order to
compute a task-oriented handover that also considers handover position and orientation.
The only module not made by the authors is the trajectory generation module. The trajectory
generation is done via KUKA’s proprietary point-to-point trajectory algorithm.

The section starts by covering the main module in order to describe the overall system.
Afterwards, the various submodules are described. The camera service, handover position,
and grasp generator modules are covered briefly, while the affordance analysis and handover
orientation modules are explained more in depth, as they are the main focus of this project.

3.1.1 The main module

Given an object to handover, the main module, depicted in Figure 3.3, computes a trajectory
that enables a task-oriented handover. To do this, it utilizes the outputs of all the other
modules. The main module acts as the binding link between the other modules, and it is



34 Chapter 3. Implementation

in charge of receiving and sending information between the modules. Using the sensory
information received from the camera service module and the Hokuyo URG-04LX-UG01
2D laser scanner, a set of waypoints consisting of the pre-grasp pose, the grasp-pose and
the end-effector handover pose. The waypoints are computed using information from the
grasp generator, handover orientation and handover position modules. The grasp-pose itself
is computed by the grasp generator module. The set of trajectory waypoints computed by
the main module consists of the pre-grasp pose and the end-effector handover pose. The
robot avoids unintended collisions with the objects, by moving to the pre-grasp before
performing the grasp. The pre-grasp pose shares the orientation of the grasp, but it is
placed -10 cm along the z-axis of the grasp. The end-effector handover pose describes an
end-effector’s pose that positions and orients the handover object as desired.

Grasp generator

Task-oriented
grasps

Affordance point cloud
Handover orientation

Handover location
Laser scan data

Grasp region,

Point cloud (environment)

Compute end effector
pose at handover

Object pose
Goal orientation

Validate the feasibility
of all waypoints

Handover
location

Main module
Trajectory
waypoints

Figure 3.3: An overview view of the main module. The blue boxes represents external modules, while red
boxes are computations done within the main module.

In order to compute the end-effector handover pose, the main module requires the
task-oriented grasp, the current pose of an object, and the desired handover location and
orientations as the inputs. To describe the computation of the end-effector handover pose
mathematically, let us first declare the four transformations of interest:

• transformation from the world frame to the end-effector frame World
EeT,

– This transformation can at any point be requested from the ROS tf tree.

• transformation from the world frame to the current pose of the object World
OT,

– This transformation describes the estimated pose of the object as computed by
the handover orientation module.

• transformation from the world frame to the object’s desired pose World
GoalT,

– This transformation describes the goal handover location, as computed by the
handover location module, and the goal handover orientation, as computed by
the handover orientation module.

• transformation from the world frame to the end-effector frame in which the grasped
object achieves its desired object pose World

Ee_goalT.



35 Chapter 3. Implementation

– This transformation is the one that needs to be computed. This transformation
is relevant because the robot’s planning and trajectory execution is defined as
the robot’s end-effector pose in relation to the world frame.

In order to visualize what these transformations represent and where they are placed on
the robotic system, the aforementioned transformations are visualised in Figure 3.4.

World
Ee

YZ

X
World

T

Robot

WorldTO

World
Ee_goal

YZ

X
World

T

Robot World
Goal T

Figure 3.4: Visualisation of the transformations from which it is possible to calculate a goal end-effector pose
that achieves the goal object handover location and orientation.

In order to compute World
Ee_goalT, following equation must be solved:

World
Ee_goalT = World

GoalT
O
EeT (3.1)

where O
EeT is the transformation from the object’s pose to the end-effector. After the object

is grasped, this transformation remains constant as the object no longer moves in relation
to the end-effector.

Transformation O
EeT can be computed using the grasp pose found by the grasp generator

module, denoted as transformation World
GT, and transformation World

OT. Moreover, at the
moment of grasp, World

GT equals World
EeT. Therefore, O

EeT can be computed as follows:

Ee
OT = World

GT−1 World
OT = World

EeT
−1 World

OT (3.2)
O
EeT = Ee

OT−1

To reiterate, after grasping the object, transformation O
EeT remains constant, which means

it is now possible to compute equation 3.1.



36 Chapter 3. Implementation

All of the waypoints describing a handover trajectory are at this stage computed. The
waypoints, grasp pose, and handover pose describe the pre-handover trajectory as was
visualized in Figure 2.2 on page 7.

3.1.2 The camera service module

The functionality of camera service module is identical to its counterpart in the previous
project [32], but it is explained here for the benefit of the reader. The camera service captures
information about the workspace from the Intel RealSense D435i RGB-D sensor. It captures
and provides RGB images as well as colored point clouds. The RGB images are captured
at a resolution of 1280 by 720 pixels. The point clouds are post-processed with a hole filter
and decimation filter using the librealsense2 library. The point clouds are thresholded such
that all points closer than 0.1 meter and further away than 1.0 meter are discarded. The
module was implemented in C++ for this project as opposed to Python 3 in the previous
project.

3.1.3 Grasp generator module

Computing the pose of the end-effector, that results in the system grasping an object, is the
task of the grasp generator. A method for computing task-oriented grasps was proposed
in our previous project [32]. However, the hardware setup has since changed dramatically.
The previously used grasp sampler [37] produces grasps that are often not reachable for
the KUKA robot. It was, therefore, chosen to replace the task-oriented grasp generator
method with a method where the individual parameters can be tuned according to the
needs of this project.

The grasp generator takes as input a point cloud of the environment and a region
where a grasp is desired, see the pipeline in Figure 3.5.

Compute grasp
candidates

For each grasp candidate:

Compute the most
robust gripper

orientation

Compute gripper
depth

Grasp generator pipeline

Task-oriented
grasps

Input: Environment point
cloud

Input: Grasp region

Figure 3.5: The grasp generator pipeline. Note that the grasp region is marked in red, while the rest of the
point cloud is the environment point cloud.



37 Chapter 3. Implementation

When performing handovers, the giver should grasp the object in such a way that
leaves the handle free for the receiver. Therefore, the grasp generator always generates
grasps for the functional affordance e.g., pound, cut, support, etc., making it suitable
for the task of handover. The grasp region is, therefore, found as the point cloud of the
functional affordance of an object. It is found by performing affordance segmentation in an
RGB image, which is then projected into a point cloud using the calibrated RGB and depth
sensors of the Intel RealSense D435i sensor. The grasp region is, therefore, represented as
a point cloud.

Grasp candidates are positions in 3D space which the system should investigate. Grasp
candidates are found by downsampling the grasp region using a voxelization strategy with
a distance between each voxel of 2 cm. Each point in the downsampled point cloud acts
as a grasp candidate, where it is the task of the grasp generator to evaluate the feasibility
of grasping of each grasp candidate.

Using the point cloud of the environment, each grasp candidate is investigated by
checking if the gripper would be in collision with the environment at various rotations. A
simplistic geometric model of the Robotiq gripper was modeled as three boxes, one box
for the chassis and two boxes for the gripper’s fingers, see Figure 3.6.

(a) (b)

Figure 3.6: (a) The simplistic geometric model of the gripper used for collision checking. (b) A visualization
of the gripper in RVIZ, note how the coordinate frames are aligned alike.

For each grasp candidate, collision checking is performed with a set of discrete rota-
tions for the gripper. The gripper is rotated around its z-axis such that the gripper always
approaches the object from above. As noted by Fang et al. [37], humans tend to choose the
grasp pose that allows for the biggest error. The grasp generator of this report, therefore,
identifies the rotation around the z-axis which maximizes the distance of the gripper’s
fingers to the grasp region. This ensures that the grasp is perpendicular to the surface it
will attempt to grasp.

The depth, at which the gripper should grasp the grasp candidate, is found once the
orientation of the gripper has been determined. The depth is computed by evaluating the
grasp candidate along with its orientation at various depths until a collision is found. The
depth value is taken as the median of the depth values for which there is no collision. The



38 Chapter 3. Implementation

output of the system is a selection of grasp poses capable of grasping the desired part of
an object.

3.1.4 Handover location module

The system must be capable of locating the receiver and computing a handover location,
and this is the task of the handover location module. Hansen et al. [38] demonstrated that
the handover location happens at the mid-point between the giver and the receiver. The
system should, therefore, locate the receiver and compute the handover location as the
mid-point between the giver and receiver. The handover location module also computes
what is known as the giver’s frame as proposed by Chan et al. [10]. In the giver’s frame,
the x-axis always points from the giver to the receiver, and the z-axis is the same as the
world z-axis, which is orthogonal to the ground plane. The y-axis is the axis that completes
the right-handed coordinate system. The giver’s frame serves as the frame for which the
orientation is ultimately defined, see Section 3.3.1. The overall pipeline can be seen in
Figure 3.7.

Compute receiver
location

Compute giver's
frame

Compute handover
location

Handover location pipeline

Laser scan

line

Giver's frame

Handover
location

Figure 3.7: The pipeline for the computation of the handover orientation and the giver’s frame.

The handover location module makes use of sensor readings from a Hokuyo URG-04LX-
UG01 2D laser scanner. The laser scanner provides a line scan of its surroundings in the
format of orientation θ and distance to detections, referred to as range. The line scan is
filtered using a simple range threshold filter, that only allows points that are more than
0.5 m and less than 1.5 m away from the laser scanner. Afterwards, a median value of the
remaining points is calculated. The median value represents the position of the receiver
in 2D polar coordinates. The polar coordinates are turned into 3D coordinates using the
following equations:

x = rangemedian ∗ cos(θmedian) (3.3)

y = rangemedian ∗ sin(θmedian)

z = 0.4

where the value of a z coordinate was manually chosen. As the last step, the receiver pose
is transformed from the laser scanner frame into the world frame.

Using the position of the receiver, expressed in the world coordinate frame, a yaw angle
by which the giver’s frame should be rotated to point towards the receiver can be com-



39 Chapter 3. Implementation

puted using the Pythagorean theorem and trigonometric ratios of right-angled triangle,
see Figure 3.8. The equation is described in (3.4).

yaw = sin−1(
y√

x2 + y2
) (3.4)

Figure 3.8: The world frame is rotated around the z-axis with yaw value, thereby producing the giver’s frame.

The handover location can now be found in the giver’s frame. As Hansen et al. [38]
argues, the ideal handover location is at the midpoint between the giver and the receiver.
The handover location is expressed in the giver’s frame and relies upon the location of the
receiver, which is also expressed in the giver’s frame, where the x-axis always points from
the giver to the receiver. As such, the handover location can be computed as follows:

x = xreceiver/2 (3.5)

y = 0

z = 1.2

3.2 Affordance analysis with synthetic data

While extensive research has gone into improving the performance of deep learning mod-
els on existing affordance datasets, only limited work has been done on solving the lim-
itations of the current affordance datasets. This section describes and explains how we
propose to overcome the scalability issues of current affordance datasets, with synthetic
data. In order to overcome the sim2real gap, we make use of synthetic data generated
using domain randomization principles.



40 Chapter 3. Implementation

3.2.1 Creating the synthetic dataset

In order to detect affordances, a modified Mask-RCNN network was trained. However, to
train the network, a dataset with ground truth pixel-wise segmentation masks, bounding
boxes, and object class labels was required. For this purpose, a synthetic data generator
was developed using the Unity game engine as the framework.

In order to generate data, the generator requires a set of 3D models to render. For this
reason, a synthetic variant of the UMD [19] and IIT-AFF dataset [20] was assembled, as
the UMD and IIT-AFF datasets are amongst, if not the most, widely used object affordance
datasets. The dataset consists of 84 annotated objects, covering 19 object classes and 8
affordance classes present in both the UMD and IIT-AFF datasets. The affordance classes
present are: Grasp, wide-grasp, cut, scoop, contain, pound, support, and engine.

The objects were collected as 3D meshes sourced from the YCB dataset [75], the website
Sketchfab 1, and some were modelled by the authors. The objects were imported into the
Unity engine as a mesh and a texture. Each object has two types of textures - a photo-
realistic texture and an annotation texture. The photo-realistic texture is an unmodified
model texture. This texture imitates the real-life texture of a given object. The annotation
texture encodes the affordances of an object with an RGB value. The RGB values are
constant for the same affordance e.g., any occurrence of the grasp affordance, whether it
is a handle of a hammer or a knife, is encoded with the RGB value (0,0,255) which is the
color blue. An example of an object with a photo-realistic and an annotation texture can
be seen in Figure 3.9.

Figure 3.9: An object with a photo-realistic texture on the left, and the same object with an annotated texture
on the right. Blue: Grasp affordance. Lime green: Scoop affordance. Black: No affordance.

In order to bridge the sim2real gap, the domain randomization technique was applied.
The assumption of domain randomization is that a network trained on a dataset with a
great variance will be able to also work on real-world data as the real-world data could
be perceived by the network as yet another variation of the simulation. Inspired by work
in [28] and [76], we vary the parameters listed in Table 3.1. Each parameter was sampled
using a uniform distribution.

Geometric shapes of random dimensions and textures were rendered along with the 3D
models. These geometric shapes were used as distractors. The role of distractors in a scene
is to train a network for situations when not all foreground objects are classifiable [28]. In
Figure 3.10, distractors can be seen in the bottom left figure. As can be seen from the
corresponding ground truth on the right, distractors are labelled as background.

1https://sketchfab.com/feed



41 Chapter 3. Implementation

Randomized paremeter Values
No. of objects in a scene 3 to 25
No. of distractors in a scene 5 to 10
Pose of objects and distractors Random position and random orientation within camera view
Scale of objects and distractors 1 to 5 times

Object distortion
Each axis of an object is scaled independently of the other axes

from 0.75 to 1.25 times

Textures
Sinusoid noise, checkerboard pattern, perlin noise,

and photo-realistic textures
Light sources 1 to 3 with random poses
Light color 0 to 255 in all RGB channels
Light intensity 1 to 4 Unity game engine units
Screen res. width 400 to 600 pixels
Screen res. height 400 to 600 pixels

Table 3.1: Randomized parameters and their range.

Lastly, our generator only produces images where all objects are fully within the cam-
era’s field of view and are not occluded. Objects are always spawned within the camera’s
field of view, but after randomizing their shapes, some of the objects may exceed the
boundaries of the camera’s field of view. Such objects are removed from a scene. A similar
approach is taken towards occlusions. If a previously spawned object is occluded by either
a newly spawned object or a distractor, the previously spawned object remains and the
occlusion-causing object is removed. Two examples of images produced by our generator
can be seen in Figure 3.10.

Figure 3.10: An example of images produced by our generator with their corresponding ground truth affor-
dance masks. A bottom row shows a scene with distractors. As can be seen from the corresponding ground
truth on the right, distractors are assigned a background label.



42 Chapter 3. Implementation

3.2.2 AffNet-DR

Once a synthetic dataset has been generated as described in Section 3.2.1, it can be used
to train a deep learning method for affordance segmentation. It was decided to train a
variant of AffordanceNet [22] since AffordanceNet often acts as the benchmark against
which other affordance segmentation methods are compared. It also has the network
architecture that most closely resembles the work of Chu et al. [29], who applied domain
adaptation when training their affordance segmentation method named AffNet-DA on
synthetic data. Furthermore, AffordanceNet performs both affordance segmentation and
object detection, which allows a handover system to handover specific objects.

Overview of the AffNet-DR architecture

The proposed method named AffNet-DR (AffordanceNet - Domain Randomization) per-
forms object detection and affordance segmentation with RGB images as input. Where
Chu et al. [29] made use of images with a red channel, a green channel, and a depth
channel (RG-D images), AffNet-DR does not. Simulated depth images often vary substan-
tially from real-world depth images as real-world depth images contain significantly more
noise [77, 78]. AffNet-DR, therefore, only uses RGB images as an input to the network, as
the noise of current RGB sensors is negligible when compared to depth sensors.

The architecture of AffNet-DR is based on AffordanceNet [22] which in turn was based
on Mask-RCNN [79]. The network, therefore, has a CNN backbone combined with a
feature pyramid network that acts as the feature extractor for the whole network. Region
proposals are generated and then fed into three task branches. The regression branch
predicts a bounding box for each object in the input image, and the classification branch
predicts the class of the object. Finally, the affordance mask branch predicts the affordance
class of each pixel in the bounding box predicted by the regression branch.

As mentioned, AffNet-DR is a slightly modified version of AffordanceNet. These al-
terations are described here and can also be reviewed in Table 3.2. The VGG16 backbone
present in AffordanceNet has been replaced with a ResNet-50 backbone, since ResNet
based backbones has shown to result in higher quality extracted features which in turn
results in better affordance segmentation [58, 59]. The mask branch has been reduced com-
pared to AffordanceNet due to limited computational resources. The upsampling layers
in AffordanceNet has 512 channels, this has been reduced in AffNet-DR to 128 channels.
The kernel size of the first upsampling layers has also been reduced from 8 to 4 and the
stride from 4 to 2. The network was implemented by the authors in the Pytorch framework
and is available on the report’s GitHub repository [31]. For a visualization of the network
architecture, see Figure 3.11.



43 Chapter 3. Implementation

AffordanceNet [22] AffNet-DR
Backbone VGG16 ResNet-50
No. of channels in the upsampling layers 512 128
Kernel size of the first upsampling layer 8 4
Stride of the first upsampling layer 4 2

Table 3.2: Differences between the proposed AffNet-DR and AffordanceNet [22]

Figure 3.11: The architecture of AffNet-DR. The structure is identical to AffordanceNet [22], only some pa-
rameters of a few layers has changed and the backbone has been replaced with a ResNet-50 backbone. The
image is adapted from [22].

Loss functions

The whole network is trained end-to-end with a multi loss function, which means that
each task branch has a specific loss function. The system was trained on 30,245 synthetic
images.

The classification task branch outputs C + 1 object categories, the categories are back-
ground and C is the number of object categories present in the dataset that the network is
trained on. The loss function of the classification task branch Lcls is the cross entropy loss,
calculated on the output, which is normalized with a softmax function, see equation (3.6).

Lcls = −
C

∑
c=1

log
exp(xn,c)

exp(∑C
i=1 xn,i)

yn,c (3.6)

where x is the prediction and y is the binary target.
Cross-entropy loss also serves as the loss function for the affordance mask task branch

La f f , but instead the cross-entropy is calculated for each pixel.
The regression task branch predicts four bounding box coordinates for each object.

Therefore, the output is N × 4, where N is the number of predicted objects in the RGB
input image. The smooth L1 loss function was chosen as the function for the the regression



44 Chapter 3. Implementation

loss Lloc as is commonly done for bounding box regression. The regression task branch
loss is computed as in equation (3.7):

Lloc = ∑
i∈x,y,w,h

SmoothL1(tu
i − vi) (3.7)

where

SmoothL1(x) =

{
0.5x2, if |x| < 1.

|x − 0, 5|, otherwise.
(3.8)

The overall loss is computed as the sum of all branch specific losses, see equation (3.9).

L = Lloc + Lcls + La f f (3.9)

Post-processing

The segmented affordance masks and object detection, as computed by AffNet-DR, some-
times require post-processing to work with the rest of the system. One of the most com-
mon occurring issues is that a part of an object gets segmented with several different
affordances. A post-processing procedure to alleviate this issue has, therefore, been pro-
grammed, see Figure 3.12.

Post processing
algorithm

Figure 3.12: Left: Faulty affordance segmentation of a ladle as predicted by AffNet-DR. Note how there are too
many affordances present in the object. According to the ground truth, only the grasp and contain affordances
should be present. Right: Result after the post-processing algorithm. Red denotes contain affordance, blue
denotes grasp affordance.

At first, the mask is treated with an erode operation with a kernel of size 3x3 to remove
small patches of affordance predictions. From there, blob analysis is performed for each
affordance mask separately. The largest blob is identified and stored, while the rest are
discarded. Blobs are found for each affordance mask using the OpenCV library. Blobs are
thresholded based on their size in relation to the bounding box of the object. All blobs less
than 5% of the total bounding box size are discarded. Small blobs are essentially treated as
uncertain predictions. A convex shape is found for each blob using the OpenCV contours
function. Due to the post-processing operations, some blobs in the various affordances
might overlap. All places where affordance masks overlap are discarded.

The complete pipeline of the affordance analyzer module is visualized in Figure 3.13



45 Chapter 3. Implementation

Predict affordances
with AffNet-DR Post-processing

Affordance analyzer pipeline

RGB image
Affordance

masks

Detected
objects

Figure 3.13: The pipeline of the affordance analyzer module.

3.3 The object handover orientation pipeline

As noted by Cakmak et al. [42], pre-defined object handover orientations are not appropri-
ate since they fail to consider the object affordances. Instead, they should be learned from
observing human-to-human handovers. Recently, however, a rule-based method that did
consider object affordances was proposed by Ardon et al. [7]. Their method would always
point the handle of an object towards the receiver. This harmonizes well with observations
from human-to-human handovers, where it was observed that humans handover objects
with the handle oriented towards the receiver [43, 44].

With this report, two methods for solving the problem of object handover orientation
are proposed. Both methods are object independent and only consider object affordances
in order to generate an object handover orientation. The first method learns handover
orientations from human-to-human handover observations, while the second method uses
pre-defined rules for orienting the affordances of an object.

3.3.1 A dataset of handover orientations

To learn object handover orientations from observing human-to-human handovers, an an-
notated dataset of observations is needed. However, the available datasets of human-to-
human handovers by Chan et al. [10] or Ye et al. [80] either overlap poorly with the objects
that can be detected by AffNet-DR or the dataset is not available to download. Therefore,
an object handover orientation dataset was collected and annotated by the authors. The
dataset consists of twelve object categories transferred from the giver to the receiver in
human-to-human handovers while being recorded.

Data collection

A dataset with eight participants was collected. The participants had the role of the giver,
while one of the authors acted as the receiver. The participants were asked to handover
12 different object categories, which are all present in the UMD dataset as well as in the
synthetic dataset used to train AffNet-DR, see Section 3.2.1. Since humans might handover



46 Chapter 3. Implementation

objects in a configuration which does not consider the comfort of the receiver, as noted
by Chan et al. [10], participants were asked to perform the handover with the perceived
comfort of the receiver in mind. The giver is also asked to hand over the object with their
right arm as not to introduce unwanted bias and variation between the observations.

The handovers were recorded with a Kinect V2 sensor, which provides RGB, depth,
and skeleton tracking data, see Figure 3.14. A single-camera setup is used, with both the
giver and receiver in the camera’s field of view.

Figure 3.14: Relevant information such as RGB images (left), pose estimation and tracking of people (middle)
and colored point clouds (right) can be captured using the Kinect V2 sensor.

Annotating the human-to-human handover dataset

For each observation recorded in the dataset, an object orientation must be annotated. At
first, a coordinate frame for each of the 12 objects was manually defined, see Figure 3.15.

During the data collection, each handover was recorded as a single clip, consisting of
a set of frames with RGB, depth, point cloud, and human tracking information present
for each frame. Only one object orientation was annotated for each clip. To identify the
handover frame, this report makes use of the method presented by Chan et al. [10], where
the handover frame is found as the point in time when the distance between the humans
as tracked by the Kinect V2 sensor is minimized, see Figure 3.16.



47 Chapter 3. Implementation

Figure 3.15: Objects from the synthetic dataset with their assigned frames, rendered in the Unity engine. The
x-axis is red, the y-axis is green, and the z-axis is blue.

0 10 20 30 40 50
Time (AU)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Eu
cli

de
an

 d
ist

an
ce

 (m
)

Euclidean dist. between giver
and receiver during handover

Figure 3.16: The handover frame is identified as the frame where the Euclidean distance between the tracked
joints of the giver and receiver is minimized, marked in red.



48 Chapter 3. Implementation

The handover orientation was manually annotated using the software named label-
Cloud 2, which allows the user to annotate a 9-DOF transformation consisting of a posi-
tion, orientation and scale. The annotation process is done by fitting a bounding box to
the object being handed over. The labelCloud software was slightly modified to show the
orientation of the three axes in 3D space, see Figure 3.17.

Figure 3.17: The position, orientation, and scale of a bounding box are fitted to the handover object at the
moment of handover. An object is represented by a 9-DOF bounding box in 3D.

The orientation as annotated with labelCloud is defined in the coordinate system of the
Kinect sensor. The annotated orientation needs to be transformed into a coordinate system
that is easily transferred to a robotic system. The annotated orientation is, therefore, rede-
fined in the coordinate system of the giver. The giver’s coordinate frame was computed
similarly to Chan et al. [10]. The center of the giver’s coordinate frame is located in the
torso of the giver, with the x-axis defined as the unit vector pointing from the torso of the
giver to the torso of the receiver. The z-axis is found as the unit vector pointing from the
torso to the head of the giver, the y-axis is the unit vector that completes a right-handed
3D coordinate system, see Figure 3.18. In some cases, the skeleton tracker of the Kinect V2
sensor might fail. In those cases, coordinates of the giver’s head and torso as well as the
receiver’s torso coordinate can be manually defined.

2https://github.com/ch-sa/labelCloud

https://github.com/ch-sa/labelCloud


49 Chapter 3. Implementation

Figure 3.18: A reference frame for the handover orientation is computed by making the x-axis (in red) point
from the giver’s torso towards the receiver. The z-axis (in blue) points from the torso to the head of the giver.
The y-axis (in green) is found as the axis that completes the right-handed coordinate system.

At this point, the dataset consists of a set of observed handover orientations for each
of the 12 object categories, but a single goal orientation is needed for each item. Finding
the goal orientation associated with each object is done by computing the mean handover
object orientation for each object respectively.

There exist a plethora of methods for computing the mean orientation, but no single
best method for doing so [81, 11]. Intuitively, one might compute the mean of rotation
matrices, but the result is no longer a valid rotation matrix [82]. Computing the arithmetic
mean of either quaternions or rotations vectors is another solution that has shown to work
well when differences in observed orientations are small [83]. However, this performs
poorly if the orientation differences are large. Furthermore, these methods also suffer
from issues of discontinuities [11].

Chan et al. [11] argue that the mean x̄ of a set, considered from a statistical point of
view, is the value that minimizes the sum of distances from x̄ to all observations xi in the
set. Therefore, Chan et al. suggest that the task of finding the mean orientation can be cast
as a minimization problem, see equation (3.10).

x̄ = arg min
x′

∑
i

dist(x′ − xi) (3.10)

where dist(x′ − xi) is a distance function that needs to be defined.
Chan et al. found that their method DistMinRPY, where the orientations are repre-

sented as roll, pitch, and yaw values, is suitable for computing the mean object handover
orientations. Unfortunately, the distance function used for computing the mean orien-
tations was left ambiguous, which renders their method DistMinRPY unimplementable.
Therefore, this report will instead implement a similar method but based on quaternions
called DistMinQuat. The method for computing the mean handover orientation, repre-
sented in quaternions, from a set of observations can therefore be computed as follows:



50 Chapter 3. Implementation

q̄ = arg min
q′

∑
i

dist(q′ − qi) (3.11)

where

dist(q′ − qi) = min{||q′ − qi||2, ||q′ + qi||2}

The distance function was selected as suggested by Hartley et al. [81]. The distance
function by Hartley et al. considers the fact that the positive quaternion q is equal to the
negative quaternion −q.

The MinDistQuat method was implemented in Python. The algorithm is initialized
with the initial solution q0 = [x, y, z, w], where values {x, y, z, w} are randomly generated
and lie within the range from -1 to 1. In order to solve the minimization problem, the
scipy library is used3. To optimize for q̄ in R4, the function is restarted 50 times, each time
with a new initial solution q0. After 50 iterations, the q̄ that provides the minimum sum of
distances is considered to be the mean handover orientation.

The computed mean object handover orientation for all 12 objects can be seen in Ta-
ble 3.3 and Figure 3.19.

Object Quaternion RPY
Bottle -0.66 -0.05 -0.68 0.30 -100.62 -6.89 -103.73
Bowl 0.67 0.16 0.71 -0.12 -112.53 -27.01 -118.87
Cup -0.10 0.70 -0.19 -0.68 12.69 -90.57 24.05
Hammer 0.05 0.60 -0.32 -0.73 -5.69 -75.74 40.83
Knife 0.05 -0.73 0.16 0.66 6.81 -94.47 20.60
Ladle -0.04 0.72 -0.08 -0.68 4.71 -93.03 10.81
Mallet -0.73 -0.05 0.68 -0.07 125.22 9.36 -116.73
Mug 0.25 0.70 0.32 -0.59 -33.63 -93.44 -43.25
Scissors 0.00 -0.83 0.26 0.50 0.48 -114.49 35.93
Scoop 0.09 -0.72 0.15 0.67 11.80 -92.79 19.73
Spatula 0.18 -0.72 0.14 0.65 23.23 -94.10 18.86
Spoon 0.14 -0.73 0.23 0.63 18.40 -95.37 29.80

Table 3.3: Computed mean handover orientations.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html



51 Chapter 3. Implementation

X
Y

Z

bottle

X
Y

Z

bowl

X
Y

Z

cup

X
Y

Z

hammer

X
Y

Z

knife

X
Y

Z

ladle

X
Y

Z

mallet

X
Y

Z

mug

X
Y

Z

scissors

X
Y

Z

scoop

X
Y

Z

spatula

X
Y

Z

spoon

Figure 3.19: Computed mean handover orientations. The dotted axes are observations. The solid thick axes
are the computed means.



52 Chapter 3. Implementation

3.3.2 Handover object orientation pipeline

As mentioned in section 2.4, this report presents two methods for computing object han-
dover orientations. One method relies on the human-to-human handover dataset to gen-
erate handover orientations, the other is a rule-based method with pre-defined handover
orientations. Both methods for computing proper object handover orientations presented
in this report rely solely on object affordances without a need for considering the object
class. Both the rule-based and the observation-based method should, therefore, be able to
generalize to all objects that share the same affordances. Several of the steps in the algo-
rithm are the same in both methods. At first the observation-based method is presented,
followed by the rule-based method.

The observation-based method

The observation-based method learns proper handover orientations from the dataset of
mean handover orientations as computed in section 3.3.1, Table 3.3. The handover orienta-
tion pipeline produces both a goal object handover orientation as well as a pose estimate
of the object in the world. The overall pipeline is depicted in Figure 3.20

Estimate current
object pose with

ICP

Classification

Classify goal
orientation

Feature extraction

Handover orientation pipeline

Input: Affordance

point cloud


Current object
pose

Goal object
orientation

Figure 3.20: Implemented pipeline for the observation-based object handover orientation.

The input to the system is a point cloud where each point has a predicted affordance,
which will be referred to as affordance point clouds hereinafter. Affordance point clouds
are found by first performing affordance segmentation with AffNet-DR in the RGB image,
captured by the Intel RealSense D435i sensor, and then projecting the affordance masks
found in the RGB image into a point cloud. Projection into a point cloud is straight forward
as the RGB and depth sensors of the Intel RealSense D435i are calibrated.

Feature extraction and classification

The pose estimation is found using a modified iterative closest point (ICP) algorithm,
therefore, a source point cloud is needed. The source point cloud is selected based solely
on the affordances present in the affordance point cloud as segmented by AffNet-DR.
The identification of the correct source point cloud is treated as a classification problem.



53 Chapter 3. Implementation

A feature vector is extracted and used for the classification task. The feature vector is
computed as the one-hot-encoded vector that represents the affordances present in the
affordance point cloud. Since AffNet-DR can segment 7 different affordance classes, the
one-hot-encoded vector is a row vector with 7 binary values, where 0 means that the
given affordance is not present, and 1 means that the given affordance is present in the
affordance point cloud. A k-nearest algorithm is then used for classification.

Since the method does not rely on object classes but solely on the object affordances, the
different objects are grouped together based on their affordances. As such, the k-nearest
algorithm will only output a single goal object handover orientation and source point
cloud based on the object affordances, see Table 3.4 where members of the same group
are color-coded together. The k-nearest algorithm outputs 1 of 7 different predictions. The
novelty is that the learned orientations from a knife handover can be applied to all objects
that share the combination of grasp and cut affordances.

Grasp Cut Scoop Contain Pound Support Wide-grasp
Spatula ✓ ✓
Knife ✓ ✓
Scissors ✓ ✓
Hammer ✓ ✓
Mallet ✓ ✓
Spoon ✓ ✓
Scoop ✓ ✓
Bottle ✓
Ladle ✓ ✓
Bowl ✓ ✓
Cup ✓ ✓
Mug ✓ ✓

Table 3.4: The 12 objects present in handover orientation dataset. The colors indicate how they have been
grouped together based on their object affordances. Best viewed in color.

Since one object from each of the 7 groups should be able to represent the other objects
in the same group, only one source point cloud and one goal object handover orientation
is needed per group. The authors chose to use the source point clouds for the following
objects: Spatula, hammer, scoop, bottle, ladle and cup.

The associated goal orientation can be read in Table 3.3 on page 50. The associated
source point clouds can be seen in Figure 3.21.

Estimation of current pose

The goal object handover orientation for the robot is known, once the registered affordance
point cloud has been classified with the k-nearest neighbour classifier. The next step is to



54 Chapter 3. Implementation

Figure 3.21: Source point clouds used for the ICP algorithm with their respective affordances. All point clouds
are sampled from the object meshes used to train AffNet-DR. The point clouds has also been rotated with the
goal object handover orientation. All orientations are shown in the giver’s frame.

estimate the current pose of the object in the world coordinate frame, such that the goal
end-effector pose can be computed as described in section 3.1.1 . To this end, a modified
ICP alorithm is used.

The approach is most similar to the work done by Akizuki et al. [84], who proposed
to perform pose-estimation using affordance cues. In a point cloud where each point is
labelled with an affordance, a source point cloud is aligned using a particle swam opti-
mization method.

For this report, the particle swam optimization method is replaced with a modified
ICP algorithm. Traditionally, the ICP algorithm aligns a source point cloud to a target
point cloud using x, y and z information only. This method extends the traditional ICP
algorithm to also consider affordance information. The affordance information is available
in the affordance point cloud, which is an input to the object handover orientation pipeline.
The method makes use of the ICP algorithm outlined below.

while i < maxIterations || meanError < convergenceCriteria do
Compute nearest neighbour for all points
Compute rotation and translation
Compute mean error

end while



55 Chapter 3. Implementation

In the base ICP algorithm [85], the nearest neighbour is computed for each point in
the source point cloud as the closest point in the target point cloud measured with the
Euclidean distance. This is changed in this implementation in order to take advantage
of the object affordances found during the affordance segmentation. Instead, the nearest
neighbours can only be identified for points which share the same affordance. The nearest
neighbour algorithm was implemented using the scikit-learn library 4.

The transformation is found computing the least-squares fit of the source point cloud
to the target point cloud. First, the source and target point clouds are centered on their
respective centroids. Then, the rotation is found by using singular value decomposition,
see equation (3.12).

H = sourceT
centered · targetcentered (3.12)

U, S, V = SVD(H)

R = VT · UT

where R is the rotation. Finally, the translation is found as the dot product of the source
and target centroids.

Using the semantic understanding of the objects allows the ICP algorithm to provide
robust pose estimations, but it requires a sound strategy for choosing a source point cloud
to align the target point cloud with. An output example of the modified ICP algorithm
can be seen in Figure 3.22

Figure 3.22: An overview of the ICP algorithm performing pose estimation on the affordances of a knife. (a)
The affordance point cloud is marked in green and blue. (b) The transformation as computed by the ICP
algorithm applied to the predicted source point cloud. (c) Estimated object pose.

The rule-based method

Rule-based methods that consider the affordances of objects might, as previously argued,
be suitable for assigning goal object handover orientations. Therefore, this section proposes
an affordance-aware rule-based method. The overall pipeline can be seen in Figure 3.23.

4https://scikit-learn.org/stable/modules/neighbors.html

https://scikit-learn.org/stable/modules/neighbors.html


56 Chapter 3. Implementation

Estimate current
object pose with

ICP
ClassificationFeature extraction

Handover orientation pipelineInput: Affordance

point cloud


Current object
pose

Goal object
orientation

Figure 3.23: Implemented pipeline for the rule-based object handover orientation.

The overall pipeline is similar to the observation-based method but heavily simplified.
The rule-based method needs to produce orientations based on affordances. As such, a set
of rules must be defined. Similar to Ardon et al. [7], one of the rules is to orient the handle
of a tool towards the receiver. This rule alone covers 14 out of the 19 objects that AffNet-
DR can detect, where they all share the grasp affordance. The last five object classes are a
cup, a bowl, a mug, a bottle, and a pot. Common to these five object classes is that they
have the wide-grasp as well as contain affordances. It is, therefore, decided that the cup,
bowl, mug, bottle and pot object classes should always be oriented vertically in a manner
that does not spill or empty the content of the objects.

In order to confirm that these two rules indeed simulates the manner in which humans
handover the above mentioned objects, an analysis of the collected handover orientation
dataset was conducted. The point of this analysis was to confirm that items with the
handle are usually oriented with the handle pointed towards the receiver, and the items
with contain affordance are oriented such that a spillage is prevented or minimized. To
achieve this, a visual analysis of the observations in the collected dataset was conducted.

As was discussed in section 2.3, identifying the way people tend to orient various
objects is not straightforward. For some objects, different axes of rotations have varying
degrees of importance. Certain axes of rotations might be equivariant, which means that
rotations around those axes are of little importance. Other axes might be bi-polar or epi-
polar, which means that people tend to agree on one or two orientations for those axes. It
is, therefore, important to identify which axes matter.

The important axes were found by visualizing the x-, y-, and z-axes at the moment of
handover for each object. If an axis appeared to be oriented similarly between the collected
observations for the object, the axis was appointed the axis of importance. For example,
see Figure 3.24. This is an example of visual analysis of a cup. From this figure, it can
be seen that x-axes seem to be in agreement compared to z- and y-axes, for which there
is a little consensus on their orientations. From this, it can be concluded that for a cup,
the x-axis is the axis of importance. It should be noted here, that if an axis of importance
appears to be bipolar, it does not disregard its relevancy.



57 Chapter 3. Implementation

cup
Oriented x axes

cup
Oriented y axes

cup
Oriented z axes

Figure 3.24: Observed orientations of individual axes for a cup. Note how there is a strong agreement on the
orientations of the x-axes but none for the y- and z-axes.

After each object has been investigated following the visual analysis described above,
which result can be reviewed in appendix A, it has been found that there are three cate-
gories. These are:

• Group A - People tend to agree on the orientation of the z-axis, but the z-axis may
be bi-polar

– Here belongs a spatula, a knife, a hammer, and a mallet.

• Group B - People tend to agree on the orientation of all three axes, with a strong
agreement on the x-axis pointing upwards and the y- and z-axes being bi-polar.

– Here belongs scissors, a scoop, a ladle, and a spoon.

• Group C - People tend to agree on the orientation of the x-axis, with the x-axis
pointing upwards.

– Here belongs a cup, a mug, a bowl, and a bottle.

From the categories listed above, it can be seen that groups A and B share the z-axis
as the axis of importance. To remind the reader, the z-axis was set to point from the grasp
affordance towards the functional affordance of the the object i.e, from the handle towards
the utility part of the object. This means that objects of groups A and B can be collected
under a single group AB. For objects of group C, which all share the contain affordance,
people agree that the orientation of the x-axis is of importance. For objects of group C,
the x-axis was defined as the vector that is orthogonal to the bottom of the inside of the
contain affordance, thereby, pointing straight out of the cup, mug, and etc.

However, grouping object based on their axes of importance is not enough to confirm
that the two proposed rules described the handover orientations of these objects. In order



58 Chapter 3. Implementation

to do that, it must be shown that the axes of importance for groups AB and C also point
in the overall same direction. This was done by taking the computed mean handover ori-
entations for each object of the corresponding group, rotating a unit frame by it, and then
computing the Euclidean distance between the rotated axes of importance. To visualise
this better, see Figure 3.25. In here, rotated z-axes for objects of group AB are visualised.
It can be observed that while each z-axis points towards slightly different point, they do
generally agree on the orientation. This is further confirmed by computing the Euclidean
distances between the axes, see Table 3.5.

Group AB
Oriented z axes

Figure 3.25: The oriented z-axes of the group AB objects.

Group AB spatula knife hammer scissors scoop mallet ladle spoon
spatula 0.00 0.16 0.40 0.26 0.13 0.28 0.29 0.08
knife 0.16 0.00 0.35 0.35 0.05 0.12 0.14 0.23
hammer 0.40 0.35 0.00 0.65 0.33 0.38 0.37 0.42
scissors 0.26 0.35 0.65 0.00 0.35 0.42 0.44 0.28
scoop 0.13 0.05 0.33 0.35 0.00 0.17 0.18 0.19
mallet 0.28 0.12 0.38 0.42 0.17 0.00 0.02 0.35
ladle 0.29 0.14 0.37 0.44 0.18 0.02 0.00 0.36
spoon 0.08 0.23 0.42 0.28 0.19 0.35 0.36 0.00

Table 3.5: Computed distances of the oriented z-axes for group AB. Distance is given as the Euclidean distance
in the unit sphere. Each number represents the distance between the object written in the corresponding row
and the object written in corresponding column. Hence, the matrix is diagonally symmetric.



59 Chapter 3. Implementation

Similarly, Figure 3.26 visualizes the rotated x-axes for objects of group C. Table 3.6
shows computed distances.

Group C
Oriented x axes

Figure 3.26: The oriented x-axes of the group C objects.

Group C cup mug bowl bottle
cup 0.00 0.19 0.07 0.49
mug 0.19 0.00 0.14 0.41
bowl 0.07 0.14 0.00 0.42
bottle 0.49 0.41 0.42 0.00

Table 3.6: Computed distances of the oriented x-axes for group C. Distance is given as the Euclidean distance
in the unit sphere. Each number represents the distance between the object written in the corresponding row
and the object written in corresponding column. Hence, the matrix is diagonally symmetric.

From Tables 3.5 and 3.6, it can be concluded that objects not only share the same
axis of importance, but they also agree on the orientation of this axis. Therefore, it is
confirmed that the two proposed rules, orient a handle towards a receiver if an object
has the grasp affordance and orient an object vertically if an object has the wide-grasp
affordance, sufficiently describe the way people orient the objects of our dataset. The
system, therefore, only needs to distinguish between whether an object has the grasp or
wide-grasp affordance. A simple if/else statement, therefore, covers all the objects.

The pose estimation uses the same modified ICP algorithm explained in the observation-
based method, see Section 3.3.2, a source point cloud is, therefore, needed. Two source



60 Chapter 3. Implementation

point clouds are manually constructed, one for the grasp class and one for the wide-grasp
class. The grasp source point cloud is constructed such that the handle is oriented along
the x-axis in the giver’s frame i.e., towards the receiver, and the wide-grasp source point
cloud is constructed such that the cup, mug, etc. does not spill the content, see Figure 3.27.

Figure 3.27: The two constructed source point clouds for the rule-based method. Both point clouds are
visualized in the givers frame, where the x-axis is pointing towards the receiver. Blue indicates the grasp
affordance, pink is the wide-grasp affordance and green represents all other affordances.



4 - Testing

This section describes tests and test procedures carried out to verify the performance of
the proposed system.

4.1 Affordance segmentation

The test described in this section evaluates the performance of the AffNet-DR network,
described in section 3.2, in order to confirm that the requirement of a Fw

β score of more
than 0.546 has been achieved. For this test, the post-processing step is omitted. This is
done in order to evaluate unmodified output of the AffNet-DR network.

4.1.1 Information flow

AffNet-DR is evaluated on the real-world UMD dataset to confirm that the network,
trained on synthetic data only, generalizes to real world data. The test uses the validation
set of the UMD dataset category split. Each RGB image in the validation set is processed
with AffNet-DR in order to perform affordance segmentation. The affordance segmenta-
tion prediction is then evaluated against the ground truth of the UMD dataset with the Fw

β

score. The overall information flow can be seen in Figure 4.1

UMD validation
dataset Predict object

affordances
Compute weighted F

measure score

For each image

Compute overall
score

UMD validation
dataset

RGB
images

Ground
truth

Figure 4.1: The flow of information during the testing of the AffNet-DR method.

61



62 Chapter 4. Testing

4.1.2 Metrics

The affordance segmentation capabilities of AffNet-DR is evaluated with the following
metric.

• Fw
β as defined by Margolin et al. [50], described in section 2.2.

4.1.3 Procedure

AffNet-DR was evaluated on the category split validation set of the UMD dataset [19].

1. For all images in the UMD validation set:

(a) Predict affordances with AffNet-DR.

(b) Compute a Fw
β score for each affordance mask ground truth.

2. Compute average Fw
β score on a per affordance class basis.

3. Compute the overall Fw
β score as the average of the averages of each affordance class.

In order to evaluate how well AffNet-DR overcomes the sim2real gap, the same proce-
dure is perfomed with a baseline network which has the same architecture as AffNet-DR,
but it is trained on the real UMD dataset. In addition to the baseline, results of AffNet-
DR will also be compared to the reported results of AffordanceNet [22] and the reported
AffNet-DA results [16]. The results can be found in section 5.1.

4.2 Object handover orientation

The effectiveness of the two proposed object handover orientations methods, the rule-
based and the observation-based, are evaluated with the user study described in this sec-
tion. A random-based method, with randomly sampled orientations, will server as the
baseline.

4.2.1 Information flow

Both the rule-based and observation-based methods make use of object affordances as
segmented by the affordance analyzer module. Object affordances found in RGB images are
used as the input to the handover orientation module. The handover orientation module then
outputs an orientation for the object based solely on the segmented object affordances. As
described in section 3.1.1, information such as the current pose of the object and the grasp
pose is needed. The information flow is visualized in Figure 4.2.

An object set used in this user study consists of five objects - a cup, a bowl, a mallet, a
spoon, and a spatula. During an experiment, the objects are placed into their pre-defined
pose on the worktable.



63 Chapter 4. Testing

Point cloud

RGB
Camera service

Detected objects,

Affordance masksAffordance analyzer

Task-oriented graspsGrasp generator

Current obj. pose,

Goal obj. orientation

Handover
orientation

Goal obj. locationHandover location

Grasp region
Compute grasp

region

Affordance 

point cloud

Compute affordance
point cloud

Trajectory waypoints

Compute end-
effector handover

pose

Handover
Trajectory
generation

Main module

Figure 4.2: The information flow between the various sub-modules during the handover object orientation
test.

In order to facilitate a smooth human study, grasp poses, affordance segmentation,
and object pose estimations are performed offline and prestored, which is possible as the
objects are always located at their pre-defined poses at the beginning of the test. Using
pre-computed information effectively eliminates any errors that might occur from faulty
affordance segmentation, grasp generation, or pose estimation, which allows the user to
fully concentrate on the orientation aspect of the study.

4.2.2 Metrics

After experiencing each method, users will be asked to fill out a questionnaire, which
consists of five questions evaluated on 5-point Likert scale. As suggested by Mangold
et al. [86] and Hankinson et al. [87], a 5-point format was chosen in order to reduce the
frustration levels of the users while answering the questionnaire, which could increase the
response rate and the quality of the responses. The questions of the questionnaire are:

• How safe did you feel during the handover?

• The objects were oriented in a way that was comfortable for me when grasping.



64 Chapter 4. Testing

• I would orient the objects similarly when performing handovers.

• I agree with the way the objects were oriented.

• How well would you say you understood the handover process?

• How natural did you find the object orientations when you grasped the items?

• How appropriate did you find the object orientations when you grasped the items?

After experiencing all three methods, the user will be given a final questionnaire in
which the user will indicate their preferred method.

4.2.3 Procedure

Each participant will experience all three handover orientation methods. The order in
which these methods are presented to the participant is randomized between the partici-
pants. The participant does not know which method is applied. One trial for each method
consist of receiving all objects of the object set. The procedure for a trial is as follows:

1. The receiver is asked to stand at a pre-defined spot.

2. For each of the five items:

(a) One of the authors executes the handover program with pre-computed infor-
mation.

(b) The robot grasps the object by its functional affordance.

(c) The system hands over the object with the computed orientation.

3. The user is asked to evaluate the handover experience by answering the aforemen-
tioned questionnaire.

The questionnaires used for the user study can be found at the link in the footnote1. The
results of the test can be found in section 5.2

4.3 Full system test

This section describes the full system test with all of the modules working together. The
test is conducted to evaluate the performance of the whole system. As mentioned in the
requirements section 2.5, the minimum required success rate is set to be 75 %.

1https://docs.google.com/forms/d/1WKT7d5Ixx4REIlR6rnA_LYZn9pRlOXT4g4KX_hxU9SU/edit

https://docs.google.com/forms/d/1WKT7d5Ixx4REIlR6rnA_LYZn9pRlOXT4g4KX_hxU9SU/edit


65 Chapter 4. Testing

4.3.1 Information flow

For the full system test, information flow between the various modules of the system is
visualized in Figure 3.2. Both the rule-based and observation-based methods are tested.

4.3.2 Metrics

The full handover pipeline is evaluated with the the following metrics:

• Success: Binary, the robot is able to grasp the object by its functional affordance and
transport it to the computed end-effector handover pose, where it is handed over to
the receiver without any failures.

• Failure to generate grasp: Binary, the grasp generator module could not produce any
task-oriented grasps.

• Failure to grasp: Binary, the robot failed to grasp the functional affordance or failed
to hold the object.

• Failure to generate trajectory: Binary, grasps were generated, but no feasible trajec-
tory could be generated for the best-scoring grasp of the grasp generator module.

• Failure to handover: Binary, any failure after the robot has moved the object from the
initial position to the handover location resulting in the object not being transferred
from the giver to the receiver.

A test run is considered successful even if the object is not oriented correctly at the han-
dover location. However, such occurrences will be noted down nonetheless and reported
as part of the results. The reason why test runs with inappropriate orientations are still
considered a success is that inappropriate orientations should not decrease the success rate
of handover, only their perceived quality.

While affordance detection is part of the full system, and as such it should be tested
along with it, AffNet-DR is evaluated separately on the UMD dataset. Still, even if AffNet-
DR manages to achieve impressive performance on the UMD dataset, the network may
not able to generalize to real-world manipulation task. For this reason, failure to detect or
segment is not considered sufficient to declare a test run as failed. Instead, if the system
fails to segment an object, the object is moved to a different position until the position at
which the object can be sufficiently segmented is found. Nevertheless, the number of test
runs when AffNet-DR failed to classify or segment will be provided along with the other
full system results.

4.3.3 Procedure

The object set for this test consists of a mallet, a ladle, a spatula, a knife, a bowl, and a
mug. The authors of this report will play the role of the receivers during the testing.



66 Chapter 4. Testing

The following procedure was repeated for each test run and for both handover orien-
tation methods:

1. A test object is placed fully in the view of the camera.

2. Start the program.

3. If AffNet-DR fails to produce a usable segmentation, move the object, and restart a
current test run. If AffNet-DR correctly classifies and segments the test object, or it
fails to classify the test object but provides sufficient segmentation, continue with the
test run.

4. If the robot manages to deliver the test object from the worktable to the receiver, the
test run is considered successful. If it fails to do so, note down the failure case.

5. Repeat the test procedure 10 times for each object of the testing object set.

For both the rule-based and observation-based methods, slight pertubations around
goal end-effector pose are allowed. This is done as it may happen that the computed
end-effector pose that achieves object handover pose as computed by the handover loca-
tion and handover orientation modules is not feasible. However, slight pertubation of this
pose may be feasible, which allows the robot to move there. For the rule-based method,
the perturbation of the end-effector orientation around the axis of importance is allowed
along with the perturbation of the end-effector position. For the end-effector pose of the
observation-based method, only the position is allowed to be perturbated.

Following pertubations are allowed:

• Rule-based method

– Pertubations of the x coordinate of the handover position in the range from -20
cm to 20 cm discretized into 5 bins.

– Pertubations of the the handover orientation around the axis of importance,
which means around the handle for objects with grasp affordance and around
the vertical axis for objects with wide-grasp and contain affordances, discretized
into 7 bins.

– No pertubations were allowed for the z and y coordinates.

– All together, 35 pertubations of the handover pose are allowed.

• Observation-based method

– Pertubations of the x coordinate of the handover position in the range from -20
cm to 20 cm discretized into 6 bins.

– Pertubations of the y coordinate of the handover pose position in 0 cm to 10 cm
discretized into 6 bins.



67 Chapter 4. Testing

– No pertubations were allowed for the z coordinate and the orientation.

– All together, 36 pertubations of the handover pose are allowed.

Overall, 120 test runs are performed, 60 test runs per method, with 10 test run for each
object of the testing object. The results can be found in section 5.3.



5 - Results

This section presents the results of the tests as described in section 4.

5.1 Affordance segmentation

Real-world data Synthetic data
AffordanceNet [22] Baseline AffNet-DA [29] AffNet-DR (Ours)

Grasp 0.731 0.482 0.473 0.611
Cut 0.762 0.575 0.599 0.604
Scoop 0.793 0.647 0.332 0.639
Contain 0.833 0.859 0.83 0.710
Pound 0.836 0.655 0.224 0.804
Support 0.821 0.519 0.541 0.578
W-grasp 0.814 0.848 0.821 0.785
Average 0.799 0.655 0.546 0.676

Table 5.1: Performance on the UMD dataset. Results in bold indicates best performance. Methods trained on
real-world data and synthetic data are compared seperately.

68



69 Chapter 5. Results

5.2 Object handover orientation

Question Random-based Rule-based Observations-based
How safe did you feel during the handover? 2 1.83 2.67
The objects were oriented in a way that
was comfortable for me when grasping.

2.5 2 2

I would orient the objects similarly when
performing handovers.

3.33 2 2

I agree with the way the objects were oriented. 3.5 1.83 1.83
How well would you say you understood
the handover process?

1.5 1.33 1.67

How natural did you find the object
orientations when you grasped the objects?

3.17 1.83 1.83

How appropriate did you find the object
orientations when you grasped the objects?

3.5 1.83 1.83

Table 5.2: Results of the user study. Questions were evaluated on a 5-point Likert scale, with 1 corresponding
to "Strong agree" and 5 corresponding to "Strong disagree". Bold indicate preference.

Rule-based

66.7%

Observation-based

33.3%

Indicated method preference

Figure 5.1: Method preferences as indicated by the participants after experiencing each method.



70 Chapter 5. Results

5.3 Full system test

5.3.1 Rule-based method

Success
Failure to generate

grasps
Failure to grasp

Failure to generate
trajectory

Failure to handover

Mallet 90.00 % 0.00 % 10.00 % 0.00 % 0.00 %
Ladle 100.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Spatula 80.00 % 0.00 % 20.00 % 0.00 % 0.00 %
Knife 100.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Bowl 100.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Mug 80.00 % 0.00 % 20.00 % 0.00 % 0.00 %
Average 91.67 % 0.00 % 8.33 % 0.00 % 0.00 %

Table 5.3: Results of the full system test for the rule-based method.

5.3.2 Observation-based method

Success
Failure to generate

grasps
Failure to grasp

Failure to generate
trajectory

Failure to handover

Mallet 90.00 % 0.00 % 10.00 % 0.00 % 0.00 %
Ladle 100.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Spatula 60.00 % 0.00 % 30.00 % 10.00 % 0.00 %
Knife 100.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Bowl 40.00 % 0.00 % 0.00 % 60.00 % 0.00 %
Mug 80.00 % 0.00 % 0.00 % 20.00 % 0.00 %
Average 78.33 % 0.00 % 6.67 % 15.00 % 0.00 %

Table 5.4: Results of the full system test for the observation-based method.

5.3.3 Failure to classify or segment

No. of test runs with failure to classify No. of test runs with failure to segment
Mallet 1 3
Ladle 0 3
Spatula 6 3
Knife 0 6
Bowl 1 2
Mug 1 0
Sum 9/137 17/137

Table 5.5: Number of test runs when AffNet-DR either failed to classify or segment the object correctly. The
number is computed across both methods. The overall number of test runs across both methods, including
successfull and restarted test runs, is 134.



71 Chapter 5. Results

5.3.4 Object handover orientations

Rule-based method

Overall
Object Mallet Ladle Spatula Knife Bowl Mug Average
Success rate 90.00 % 100.00 % 80.00 % 100.00 % 100.00 % 80.00 % 91.67 %

Handover
orientation

Correct 90.00 % 50.00 % 80.00 % 100.00 % 90.00 % 40.00 % 75.00 %
Incorrect 0.00 % 50.00 % 0.00 % 0.00 % 10.00 % 40.00 % 16.67 %
Pose est. error 0.00 % 40.00 % 0.00 % 0.00 % 10.00 % 30.00 % 13.33 %
Error from grasp 0.00 % 10.00 % 0.00 % 0.00 % 0.00 % 10.00 % 3.33 %

Table 5.6: Occurrences and causes for incorrect handover object orientations observed during the testing of
the rule-based method.

Observation-based method

Overall
Object Mallet Ladle Spatula Knife Bowl Mug Average
Success rate 90.00 % 100.00 % 60.00 % 100.00 % 40.00 % 80.00 % 78.33 %

Handover
orientation

Correct 70.00 % 70.00 % 30.00 % 90.00 % 0.00 % 40.00 % 50.00 %
Incorrect 20.00 % 30.00 % 30.00 % 10.00 % 40.00 % 40.00 % 28.33 %
Pose est. error 10.00 % 20.00 % 10.00 % 10.00 % 40.00 % 40.00 % 21.67 %
Error from grasp 10.00 % 10.00 % 20.00 % 0.00 % 0.00 % 0.00 % 6.67 %

Table 5.7: Occurrences and causes for incorrect handover object orientations observed during the testing of
the observation-based method.

5.3.5 Comparative results between the methods

Rule-based
method

Observation-based
method

Success rate 91.67 % 78.33 %
Failure to grasp 8.33 % 6.67 %
Failure to generate trajectory 0.00 % 15.00 %
Correct handover orientation 75.00 % 50.00 %
Incorrect handover orientation 16.67 % 28.33 %

Table 5.8: Comparative results between the two proposed methods for object handover orientations. Bold
indicate best performance.



6 - Discussion

6.1 Affordance segmentation

Table 5.1 shows that our AffNet-DR outperforms AffNet-DA, the current state-of-the-art
method for affordance detection using synthetic data, by a meaningful margin. The re-
quirement of a Fw

β score higher than 0.546, set up for the performance of the affordance
detection network, is, therefore, exceeded.

This result shows that domain randomization is a promising approach to generating
synthetic data for affordance segmentation tasks. Unlike AffNet-DA, our method does not
require the neural network to train or adapt to real-world data. AffNet-DR generalizes
to the real UMD dataset despite being trained on solely synthetic data. This is advanta-
geous as synthetic data is considerably cheaper to obtain than annotated real-world data.
Synthetic data generated with domain randomization can, therefore, alleviate some of the
issues with current object affordance datasets, such as the limited size and scope.

AffNet-DR has succeeded in narrowing, if not closing, the sim2real gap, as AffNet-DR
slightly outperforms the baseline trained solely on the real-world UMD dataset. Neverthe-
less, AffordanceNet [22] by Do et al. still outperforms both the baseline and AffNet-DR.
All three neural networks are very similar architecture-wise, but both the baseline network
and AffNet-DR have fewer parameters which might explain the performance drop com-
pared to AffordanceNet. Future work should examine if better results can be obtained
with synthetic data by experimenting with different network architectures.

6.2 User study of the object handover orientation

The user study confirmed the hypotheses presented in section 2.5. Firstly, the pie chart
in Figure 5.1 shows that users, after experiencing all three methods of object handover
orientations, prefer the rule-based and observation-based methods over the random-based
method, with the majority being inclined towards the rule-based method. While some
very unfavourable orientations were produced by the random-based method, it has also
been observed that the random-based method would occasionally provide the user with
the properly oriented object. Despite that, none of the participants preferred the random-
based method.

72



73 Chapter 6. Discussion

Based on the collected results of the user study, presented in Table 5.2, users seem to
find orientations produced by both the rule-based and observation-based methods to be
equally comfortable, natural appropriate, and human-like. This confirms the second hy-
pothesis of the user study i.e., both the rule-based and observation-based methods provide
the user with appropriate object handover orientations.

This indicates that it is not necessary to learn object handover orientations from ob-
serving human-to-human handovers. Instead, proper object orientations can be achieved
by considering the object affordances. This was further supported by the cluster analysis
done in section 3.3.2, which found that the object handover orientations could be grouped
into two groups, based on the object affordance and recorded object handover orientation.
The first group consists of objects with a handle and, therefore, the grasp affordance. For
this group, the handle should always be oriented towards the receiver. The second group
of objects is the group with both the wide-grasp and contain affordances. The object of
this group should be oriented such that they do not empty their contents, that is, normal
to the ground plane.

Our results, which are in line with findings by Chan et al [11], indicate that one only
needs to consider object affordances in order to compute proper handover orientations. To
the best of the authors knowledge, this is the first work to compute handover orientations
based on object affordances, obtained with affordance segmentation.

Finally, future work should concentrate more in depth on the handover location and the
robot configuration during the handovers. Several of the user study participants reported
that the object was handed over at an uncomfortable height. For this work, the handover
location only considered the midpoint between the giver and the receiver with a fixed
handover location height of 1.2 meter. It was also noted that in order to achieve the desired
object handover orientations, the robot would occasionally reach awkward configurations,
which lessened the perceived quality of the handover and reduced the receiver’s perceived
safety.

6.3 Full system test

The results of the full system test, presented in section 5.3, show the validity of the pro-
posed robot-to-human handover system. The full system test done with the rule-based
handover orientation method achieved an overall success rate of 91.67 % calculated on 60
trials, 10 trials per object, thereby, exceeding the requirement of a success rate of 75 %.
The success rate was only negatively affected by the grasp generator module, which in 11.67
% of the cases generated a grasp that failed to obtain the item. Out of the 55 successful
trials, a correct handover orientation was achieved in 45 of the cases. This means that
a correct handover orientation was achieved by the system in 81.81 % of the successful
handovers. The pose estimation method, which failed 8 times, was the main reason for
the incorrect handover orientations. It mainly failed on the ladle object with 4 failed pose
estimations. While the modified ICP pose estimation method performs well on most of



74 Chapter 6. Discussion

the objects, it fails on the ladle. This is most likely because the source point cloud is too
dissimilar from the target point cloud. Choosing the correct source point cloud might be
a challenging problem for a diverse set of objects. Instead, more reliable pose estimation
techniques could be applied to this problem. Future work could take advantage of the
synthetic affordance dataset to train a pose estimator.

The full system with the observation-based handover orientation method also met the
requirement of a success rate of 75 %, albeit this method achieved a success rate of only
78.33 %. Unlike the rule-based method, the failure cases do not only originate from a
failure to grasp the object but also to plan a trajectory that would orient the object cor-
rectly. The authors argue that this is due to harsher constraints on the object handover
orientation for the observation-based method as compared to the rule-based method. The
observation-based method only allows for a single handover orientation, whereas the rule-
based method is allowed to rotate around the axis of importance, which makes it harder
to plan a trajectory for the observation-based method.

Both the system with the rule-based and observation-based methods are capable of
surpassing the requirement, however, based on the results, the grasp generator module
could be improved, as it is the main cause of failures. Furthermore, the grasps generated
by the grasp generator module also affects the ability to plan trajectories that would obtain
a correct object handover orientation, as described in section 3.1.1. Future work could,
therefore, investigate how to better grasp an object in such a way that it would make it
more likely that the handover orientation is achieved.

While both methods meet the requirement, the rule-based method seems the most
promising as it achieves a better performance than the observation-based method, as can
be seen in Table 5.8. The observation-based method only outperforms the rule-based
method in terms of the ability to grasp the object, but this is likely because the observation-
based method did not try to perform the same number of grasps as the rule-based method.
The system does not attempt a grasp unless a trajectory that would achieve the object
handover orientation can be generated.

Full system testing shows that real-world robotic manipulation is achievable using
the proposed AffNet-DR trained solely on synthetic data. The system relies on affor-
dance segmentation, as from the segmented affordances, object orientation, position, and
task-oriented grasps are computed. However, the affordance segmentation performed by
AffNet-DR sometimes fails as seen in Table 5.5. AffNet-DR was successful in segmenting
affordances in 120 cases out of 137, which is promising, but further improvement is still
required.

6.4 Future work

The rule-based system showed itself capable of performing task-oriented handovers while
also considering the appropriate object handover orientations. Here, the authors provide
a list of possible future improvements for the proposed robot-to-human handover system.



75 Chapter 6. Discussion

• AffNet-DR achieves state-of-the-art performance for methods trained on synthetic
data, but it still lacks behind systems that are trained on real-world data. The system
could be improved by improving the synthetic data generator such that the system
can also tackle object occlusions or object only in partial view. The architecture could
also be experimented with in order to obtain better results on the dataset that is
already generated.

• Handover orientations can not be considered in a vacuum. The user study showed
that the perceived quality of the handover experience also depends on a handover
location, a robot trajectory and a robot configuration. Future work should improve
upon these aspects.

• In order to achieve better robot configurations and legible trajectories, a more ad-
vanced trajectory control could be implemented.

• Most of the failure cases stems from the physical system trying to grasp the object
and failing. Another approach to grasping could, therefore, be investigated.

• The system does not consider the physical handover phase, where both the giver
and the receiver is in contact with the object. The system goes to the handover pose
and then waits for a pre-defined amount of time before realising the gripper. More
sophisticated methods could be implemented.



7 - Conclusion

This report presents a robotic system capable of performing robot-to-human handovers.
The system utilizes object affordance detection to compute task-oriented grasps as well as
object handover orientations. The two main contributions of this report are in the field of
object affordance detection and the computation of object handover orientations.

The neural network AffNet-DR is proposed as a novel method for applying syn-
thetic data generated with domain randomization principles to object affordance detection.
AffNet-DR is capable of performing affordance segmentation on real-world data despite
being trained solely on synthetic data. This was confirmed by achieving a Fw

β score of 0.676
on the UMD affordance dataset, which consist of real-world data. The ability to perform
real-world manipulation using the output of AffNet-DR was validated by the full system
test which achieved a handover success rate of 91.67 %.

We show that object handover orientations can be computed solely from pixel-wise
segmentation of affordances in RGB-D images, which, to the best of the authors’ knowl-
edge, we are the first to do. Furthermore, a conducted user study suggests that a set of
rules based on object affordances is sufficient for generating appropriate object handover
orientations.

The system was developed within the ROS framework and integrated on a robotic
system consisting of a KUKA LBR iiwa 7 R800 collaborative robot, with an Intel RealSense
D435i RGB-D sensor, a Hokuyo URG-04LX-UG01 laser scanner, and a Robotiq 3-finger
gripper.

The developed system satisfies the problem statement and is capable of performing
task-oriented robot-to-human handovers with proper object handover orientation using
object affordance detection.

76



Bibliography

[1] Sebastian Hjorth and Dimitrios Chrysostomou. “Human–robot collaboration in in-
dustrial environments: A literature review on non-destructive disassembly”. In:
Robotics and Computer-Integrated Manufacturing 73 (2022), p. 102208. doi: 10.1016/j.
rcim.2021.102208.

[2] Albert Wilcox, Justin Kerr, Brijen Thananjeyan, Jeffrey Ichnowski, Minho Hwang,
Samuel Paradis, Danyal Fer, and Ken Goldberg. “Learning to Localize, Grasp, and
Hand Over Unmodified Surgical Needles”. In: arXiv preprint arXiv:2112.04071 (2021).

[3] Jonathan Bohren, Radu Bogdan Rusu, E Gil Jones, Eitan Marder-Eppstein, Caroline
Pantofaru, Melonee Wise, Lorenz Mösenlechner, Wim Meeussen, and Stefan Holzer.
“Towards autonomous robotic butlers: Lessons learned with the PR2”. In: 2011 IEEE
International Conference on Robotics and Automation. IEEE. 2011, pp. 5568–5575.

[4] Natalie Sebanz, Harold Bekkering, and Günther Knoblich. “Joint action: bodies and
minds moving together”. In: Trends in Cognitive Sciences 10.2 (2006), pp. 70–76. issn:
1364-6613. doi: https://doi.org/10.1016/j.tics.2005.12.009. url: https:
//www.sciencedirect.com/science/article/pii/S1364661305003566.

[5] Patrick Rosenberger, Akansel Cosgun, Rhys Newbury, Jun Kwan, Valerio Ortenzi,
Peter Corke, and Manfred Grafinger. “Object-independent human-to-robot han-
dovers using real time robotic vision”. In: IEEE Robotics and Automation Letters 6.1
(2020), pp. 17–23. doi: 10.1109/LRA.2020.3026970.

[6] Wei Yang, Chris Paxton, Maya Cakmak, and Dieter Fox. “Human grasp classification
for reactive human-to-robot handovers”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 11123–11130. doi: 10.1109/
IROS45743.2020.9341004.

[7] Paola Ardón, Maria E Cabrera, Eric Pairet, Ronald PA Petrick, Subramanian Ra-
mamoorthy, Katrin S Lohan, and Maya Cakmak. “Affordance-aware handovers with
human arm mobility constraints”. In: IEEE Robotics and Automation Letters 6.2 (2021),
pp. 3136–3143. doi: 10.1109/LRA.2021.3062808.

[8] Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley Chan, Elizabeth Croft, and
Dana Kulic. Object Handovers: a Review for Robotics. 2020. arXiv: 2007.12952 [cs.RO].

77

https://doi.org/10.1016/j.rcim.2021.102208
https://doi.org/10.1016/j.rcim.2021.102208
https://doi.org/https://doi.org/10.1016/j.tics.2005.12.009
https://www.sciencedirect.com/science/article/pii/S1364661305003566
https://www.sciencedirect.com/science/article/pii/S1364661305003566
https://doi.org/10.1109/LRA.2020.3026970
https://doi.org/10.1109/IROS45743.2020.9341004
https://doi.org/10.1109/IROS45743.2020.9341004
https://doi.org/10.1109/LRA.2021.3062808
https://arxiv.org/abs/2007.12952


78 Bibliography

[9] Emrah Akin Sisbot and Rachid Alami. “A Human-Aware Manipulation Planner”.
In: IEEE Transactions on Robotics 28.5 (2012), pp. 1045–1057. doi: 10.1109/TRO.2012.
2196303.

[10] Wesley P. Chan, Matthew K.X.J. Pan, Elizabeth A. Croft, and Masayuki Inaba. “Char-
acterization of handover orientations used by humans for efficient robot to human
handovers”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2015, pp. 1–6. doi: 10.1109/IROS.2015.7353106.

[11] Wesley P. Chan, Matthew K. X. J. Pan, Elizabeth A. Croft, and Masayuki Inaba.
“An Affordance and Distance Minimization Based Method for Computing Object
Orientations for Robot Human Handovers”. In: International Journal of Social Robotics
12 (2020), pp. 143–162.

[12] Renaud Detry, Jeremie Papon, and Larry Matthies. “Task-oriented grasping with
semantic and geometric scene understanding”. In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 2017, pp. 3266–3273. doi: 10.1109/
IROS.2017.8206162.

[13] Maya Cakmak, Siddhartha S. Srinivasa, Min Kyung Lee, Jodi Forlizzi, and Sara
Kiesler. “Human preferences for robot-human hand-over configurations”. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011, pp. 1986–
1993. doi: 10.1109/IROS.2011.6094735.

[14] Jacopo Aleotti, Vincenzo Micelli, and Stefano Caselli. “Comfortable robot to human
object hand-over”. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on
Robot and Human Interactive Communication. 2012, pp. 771–776. doi: 10.1109/ROMAN.
2012.6343845.

[15] Jacopo Aleotti, Vincenzo Micelli, and Stefano Caselli. “An Affordance Sensitive Sys-
tem for Robot to Human Object Handover”. In: International Journal of Social Robotics
6 (2014), pp. 653–666.

[16] Wesley P. Chan, Yohei Kakiuchi, Kei Okada, and Masayuki Inaba. “Determining
proper grasp configurations for handovers through observation of object movement
patterns and inter-object interactions during usage”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2014, pp. 1355–1360. doi: 10.1109/IROS.
2014.6942733.

[17] SH Creem and DR Proffitt. “Grasping objects by their handles: a necessary interac-
tion between cognition and action”. In: Journal of experimental psychology. Human per-
ception and performance 27.1 (2001), 218—228. issn: 0096-1523. doi: 10.1037//0096-
1523.27.1.218. url: https://doi.org/10.1037//0096-1523.27.1.218.

[18] James J Gibson. “The theory of affordances”. In: Hilldale, USA 1.2 (1977), pp. 67–82.

https://doi.org/10.1109/TRO.2012.2196303
https://doi.org/10.1109/TRO.2012.2196303
https://doi.org/10.1109/IROS.2015.7353106
https://doi.org/10.1109/IROS.2017.8206162
https://doi.org/10.1109/IROS.2017.8206162
https://doi.org/10.1109/IROS.2011.6094735
https://doi.org/10.1109/ROMAN.2012.6343845
https://doi.org/10.1109/ROMAN.2012.6343845
https://doi.org/10.1109/IROS.2014.6942733
https://doi.org/10.1109/IROS.2014.6942733
https://doi.org/10.1037//0096-1523.27.1.218
https://doi.org/10.1037//0096-1523.27.1.218
https://doi.org/10.1037//0096-1523.27.1.218


79 Bibliography

[19] Austin Myers, Ching L. Teo, Cornelia Fermüller, and Yiannis Aloimonos. “Affor-
dance detection of tool parts from geometric features”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). 2015, pp. 1374–1381. doi: 10.1109/
ICRA.2015.7139369.

[20] Anh Nguyen, Dimitrios Kanoulas, Darwin G. Caldwell, and Nikos G. Tsagarakis.
“Detecting object affordances with Convolutional Neural Networks”. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016,
pp. 2765–2770. doi: 10.1109/IROS.2016.7759429.

[21] Anh Nguyen, Dimitrios Kanoulas, Darwin G. Caldwell, and Nikos G. Tsagarakis.
“Object-based affordances detection with Convolutional Neural Networks and dense
Conditional Random Fields”. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2017, pp. 5908–5915. doi: 10.1109/IROS.2017.8206484.

[22] Thanh-Toan Do, Anh Nguyen, and Ian Reid. “AffordanceNet: An End-to-End Deep
Learning Approach for Object Affordance Detection”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 5882–5889. doi: 10.1109/
ICRA.2018.8460902.

[23] Fu-Jen Chu, Ruinian Xu, Landan Seguin, and Patricio A. Vela. “Toward Affordance
Detection and Ranking on Novel Objects for Real-World Robotic Manipulation”. In:
IEEE Robotics and Automation Letters 4.4 (2019), pp. 4070–4077. doi: 10.1109/LRA.
2019.2930364.

[24] Lorenzo Jamone, Emre Ugur, Angelo Cangelosi, Luciano Fadiga, Alexandre Bernardino,
Justus Piater, and José Santos-Victor. “Affordances in Psychology, Neuroscience, and
Robotics: A Survey”. In: IEEE Transactions on Cognitive and Developmental Systems
10.1 (2018), pp. 4–25. doi: 10.1109/TCDS.2016.2594134.

[25] Philipp Zech, Simon Haller, Safoura Rezapour Lakani, Barry Ridge, Emre Ugur,
and Justus Piater. “Computational models of affordance in robotics: a taxonomy
and systematic classification”. In: Adaptive Behavior 25.5 (2017), pp. 235–271. doi:
10.1177/1059712317726357.

[26] Celso M de Melo, Antonio Torralba, Leonidas Guibas, James DiCarlo, Rama Chel-
lappa, and Jessica Hodgins. “Next-generation deep learning based on simulators
and synthetic data”. In: Trends in cognitive sciences (2021). doi: 10.1016/j.tics.
2021.11.008.

[27] Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. “Addressing the Sim2Real
Gap in Robotic 3-D Object Classification”. In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 407–413. doi: 10.1109/LRA.2019.2959497.

[28] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. “Domain randomization for transferring deep neural networks from simula-
tion to the real world”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2017, pp. 23–30. doi: 10.1109/IROS.2017.8202133.

https://doi.org/10.1109/ICRA.2015.7139369
https://doi.org/10.1109/ICRA.2015.7139369
https://doi.org/10.1109/IROS.2016.7759429
https://doi.org/10.1109/IROS.2017.8206484
https://doi.org/10.1109/ICRA.2018.8460902
https://doi.org/10.1109/ICRA.2018.8460902
https://doi.org/10.1109/LRA.2019.2930364
https://doi.org/10.1109/LRA.2019.2930364
https://doi.org/10.1109/TCDS.2016.2594134
https://doi.org/10.1177/1059712317726357
https://doi.org/10.1016/j.tics.2021.11.008
https://doi.org/10.1016/j.tics.2021.11.008
https://doi.org/10.1109/LRA.2019.2959497
https://doi.org/10.1109/IROS.2017.8202133


80 Bibliography

[29] Fu-Jen Chu, Ruinian Xu, and Patricio A. Vela. “Learning Affordance Segmentation
for Real-World Robotic Manipulation via Synthetic Images”. In: IEEE Robotics and
Automation Letters 4.2 (2019), pp. 1140–1147. doi: 10.1109/LRA.2019.2894439.

[30] Aleksi Hämäläinen, Karol Arndt, Ali Ghadirzadeh, and Ville Kyrki. “Affordance
Learning for End-to-End Visuomotor Robot Control”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2019), pp. 1781–1788.

[31] Albert Daugbjerg Christensen and Daniel Lehotský. Main GitHub repository of this
project. url: https://github.com/daniellehot/ROB10.

[32] Albert D. Christensen, Daniel Lehotsky, and Marius W. Jørgensen. Task-oriented han-
dover using task-agnostic grasping and affordance segmentation. 2021. url: https:/ /
drive . google . com / file / d / 1eq1AgkKP _ CL5ySzMgT30E7mqOxWRRoq - /view ? usp =
sharing.

[33] Andrea Mason and Christine MacKenzie. “Grip forces when passing an object to a
partner”. In: Experimental brain research. Experimentelle Hirnforschung. Expérimentation
cérébrale 163 (June 2005), pp. 173–87. doi: 10.1007/s00221-004-2157-x.

[34] Valerio Ortenzi, Francesca Cini, Tommaso Pardi, Naresh Marturi, Rustam Stolkin,
Peter Corke, and Marco Controzzi. “The grasp strategy of a robot passer influ-
ences performance and quality of the robot-human object handover”. In: Frontiers
in Robotics and AI (2020), p. 138. doi: 10.3389/frobt.2020.542406.

[35] Mia Kokic, Johannes A Stork, Joshua A Haustein, and Danica Kragic. “Affordance
detection for task-specific grasping using deep learning”. In: 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids). IEEE. 2017, pp. 91–98. doi:
10.1109/HUMANOIDS.2017.8239542.

[36] Weiyu Liu, Angel Andres Daruna, and S. Chernova. “CAGE: Context-Aware Grasp-
ing Engine”. In: 2020 IEEE International Conference on Robotics and Automation (ICRA)
(2020), pp. 2550–2556. doi: 10.1109/ICRA40945.2020.9197289.

[37] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. “GraspNet-1Billion: A
Large-Scale Benchmark for General Object Grasping”. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11441–11450. doi: 10.
1109/CVPR42600.2020.01146.

[38] Clint Hansen, Paula Arambel, Khalil Ben Mansour, Véronique Perdereau, and
Frédéric Marin. “Human–Human Handover Tasks and How Distance and Ob-
ject Mass Matter”. eng. In: Perceptual and motor skills 124.1 (2017), pp. 182–199. issn:
0031-5125.

[39] Patrizia Basili, Markus Huber, Thomas Brandt, Sandra Hirche, and Stefan Glasauer.
“Investigating Human-Human Approach and Hand-Over”. In: Human Centered Robot
Systems, Cognition, Interaction, Technology. 2009.

https://doi.org/10.1109/LRA.2019.2894439
https://github.com/daniellehot/ROB10
https://drive.google.com/file/d/1eq1AgkKP_CL5ySzMgT30E7mqOxWRRoq-/view?usp=sharing
https://drive.google.com/file/d/1eq1AgkKP_CL5ySzMgT30E7mqOxWRRoq-/view?usp=sharing
https://drive.google.com/file/d/1eq1AgkKP_CL5ySzMgT30E7mqOxWRRoq-/view?usp=sharing
https://doi.org/10.1007/s00221-004-2157-x
https://doi.org/10.3389/frobt.2020.542406
https://doi.org/10.1109/HUMANOIDS.2017.8239542
https://doi.org/10.1109/ICRA40945.2020.9197289
https://doi.org/10.1109/CVPR42600.2020.01146
https://doi.org/10.1109/CVPR42600.2020.01146


81 Bibliography

[40] Heramb Nemlekar, Dharini Dutia, and Zhi Li. “Object Transfer Point Estimation for
Fluent Human-Robot Handovers”. In: 2019 International Conference on Robotics and
Automation (ICRA). 2019, pp. 2627–2633. doi: 10.1109/ICRA.2019.8794008.

[41] Halit Bener Suay and Emrah Akin Sisbot. “A position generation algorithm utilizing
a biomechanical model for robot-human object handover”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). 2015, pp. 3776–3781. doi: 10.1109/
ICRA.2015.7139724.

[42] Maya Cakmak, Siddhartha S. Srinivasa, Min Kyung Lee, Sara Kiesler, and Jodi For-
lizzi. “Using spatial and temporal contrast for fluent robot-human hand-overs”. In:
2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI). 2011,
pp. 489–496. doi: 10.1145/1957656.1957823.

[43] Matthew Ray and Timothy N. Welsh. “Response Selection During a Joint Action
Task”. In: Journal of Motor Behavior 43 (2011), pp. 329 –332.

[44] F. Cini, Valerio Ortenzi, Peter Corke, and Marco Controzzi. “On the choice of grasp
type and location when handing over an object”. In: Science Robotics 4 (2019).

[45] Markus Huber, Markus Rickert, Alois Knoll, Thomas Brandt, and Stefan Glasauer.
“Human-robot interaction in handing-over tasks”. In: RO-MAN 2008 - The 17th IEEE
International Symposium on Robot and Human Interactive Communication. 2008, pp. 107–
112. doi: 10.1109/ROMAN.2008.4600651.

[46] Cordula Vesper, Stephen Butterfill, Günther Knoblich, and Natalie Sebanz. “A mini-
mal architecture for joint action”. In: Neural Networks 23.8-9 (2010), pp. 998–1003.

[47] AJung Moon, Daniel M Troniak, Brian Gleeson, Matthew KXJ Pan, Minhua Zheng,
Benjamin A Blumer, Karon MacLean, and Elizabeth A Croft. “Meet me where i’m
gazing: how shared attention gaze affects human-robot handover timing”. In: Pro-
ceedings of the 2014 ACM/IEEE international conference on Human-robot interaction. 2014,
pp. 334–341.

[48] Jean-David Boucher, Ugo Pattacini, Amelie Lelong, Gerard Bailly, Frederic Elisei,
Sascha Fagel, Peter F Dominey, and Jocelyne Ventre-Dominey. “I reach faster when
I see you look: gaze effects in human–human and human–robot face-to-face cooper-
ation”. In: Frontiers in neurorobotics 6 (2012), p. 3.

[49] Mamoun Gharbi, Pierre-Vincent Paubel, Aurélie Clodic, Ophélie Carreras, Rachid
Alami, and Jean-Marie Cellier. “Toward a better understanding of the communi-
cation cues involved in a human-robot object transfer”. In: 2015 24th IEEE interna-
tional symposium on robot and human interactive communication (RO-MAN). IEEE. 2015,
pp. 319–324.

[50] Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. “How to Evaluate Foreground
Maps”. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014,
pp. 248–255. doi: 10.1109/CVPR.2014.39.

https://doi.org/10.1109/ICRA.2019.8794008
https://doi.org/10.1109/ICRA.2015.7139724
https://doi.org/10.1109/ICRA.2015.7139724
https://doi.org/10.1145/1957656.1957823
https://doi.org/10.1109/ROMAN.2008.4600651
https://doi.org/10.1109/CVPR.2014.39


82 Bibliography

[51] Johann Sawatzky, Abhilash Srikantha, and Juergen Gall. “Weakly Supervised Affor-
dance Detection”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 5197–5206. doi: 10.1109/CVPR.2017.552.

[52] Shengheng Deng, Xun Xu, Chaozheng Wu, Ke Chen, and Kui Jia. 3D AffordanceNet:
A Benchmark for Visual Object Affordance Understanding. 2021. arXiv: 2103 . 16397
[cs.CV].

[53] Luis Montesano, Manuel Lopes, Alexandre Bernardino, and JosÉ Santos-Victor.
“Learning Object Affordances: From Sensory–Motor Coordination to Imitation”. In:
IEEE Transactions on Robotics 24.1 (2008), pp. 15–26. doi: 10.1109/TRO.2007.914848.

[54] Huaqing Min, Chang’an Yi, Ronghua Luo, Jinhui Zhu, and Sheng Bi. “Affordance
Research in Developmental Robotics: A Survey”. In: IEEE Transactions on Cognitive
and Developmental Systems 8.4 (2016), pp. 237–255. doi: 10.1109/TCDS.2016.2614992.

[55] Natsuki Yamanobe, Weiwei Wan, Ixchel G Ramirez-Alpizar, Damien Petit, Tokuo
Tsuji, Shuichi Akizuki, Manabu Hashimoto, Kazuyuki Nagata, and Kensuke Harada.
“A brief review of affordance in robotic manipulation research”. In: Advanced Robotics
31.19-20 (2017), pp. 1086–1101. doi: 10.1080/01691864.2017.1394912.

[56] Abdalwhab Abdalwhab and Huaping Liu. “Feature Fusion One-Stage Visual Affor-
dance Detector”. In: 2020 7th International Conference on Information, Cybernetics, and
Computational Social Systems (ICCSS). 2020, pp. 102–107. doi: 10.1109/ICCSS52145.
2020.9336910.

[57] Xue Zhao, Yang Cao, and Yu Kang. “Object affordance detection with relationship-
aware network”. In: Neural Computing and Applications 32.18 (2020), pp. 14321–14333.
doi: 10.1007/s00521-019-04336-0.

[58] Chau Nguyen Duc Minh, Syed Zulqarnain Gilani, Syed Mohammed Shamsul Islam,
and David Suter. “Learning Affordance Segmentation: An Investigative Study”. In:
2020 Digital Image Computing: Techniques and Applications (DICTA). 2020, pp. 1–8. doi:
10.1109/DICTA51227.2020.9363390.

[59] Kun Qian, Xingshuo Jing, Yanhui Duan, Bo Zhou, Fang Fang, Jing Xia, and Xudong
Ma. “Grasp pose detection with affordance-based task constraint learning in single-
view point clouds”. In: Journal of Intelligent & Robotic Systems 100.1 (2020), pp. 145–
163. doi: 10.1007/s10846-020-01202-3.

[60] Ruinian Xu, Fu-Jen Chu, Chao Tang, Weiyu Liu, and Patricio A. Vela. “An Affor-
dance Keypoint Detection Network for Robot Manipulation”. In: IEEE Robotics and
Automation Letters 6.2 (2021), pp. 2870–2877. doi: 10.1109/LRA.2021.3062560.

[61] Qipeng Gu, Jianhua Su, and Lei Yuan. “Visual affordance detection using an efficient
attention convolutional neural network”. In: Neurocomputing 440 (2021), pp. 36–44.
doi: 10.1016/j.neucom.2021.01.018.

https://doi.org/10.1109/CVPR.2017.552
https://arxiv.org/abs/2103.16397
https://arxiv.org/abs/2103.16397
https://doi.org/10.1109/TRO.2007.914848
https://doi.org/10.1109/TCDS.2016.2614992
https://doi.org/10.1080/01691864.2017.1394912
https://doi.org/10.1109/ICCSS52145.2020.9336910
https://doi.org/10.1109/ICCSS52145.2020.9336910
https://doi.org/10.1007/s00521-019-04336-0
https://doi.org/10.1109/DICTA51227.2020.9363390
https://doi.org/10.1007/s10846-020-01202-3
https://doi.org/10.1109/LRA.2021.3062560
https://doi.org/10.1016/j.neucom.2021.01.018


83 Bibliography

[62] Chi-Yi Tsai, Han-Po Lin, and Yu-Chen Chiu. “An ESP-Based Lightweight Model for
Joint Object Detection and Affordance Segmentation”. In: 2021 6th Asia-Pacific Confer-
ence on Intelligent Robot Systems (ACIRS). 2021, pp. 89–93. doi: 10.1109/ACIRS52449.
2021.9519343.

[63] Edoardo Ragusa, Christian Gianoglio, Strahinja Dosen, and Paolo Gastaldo. “Hardware-
Aware Affordance Detection for Application in Portable Embedded Systems”. In:
IEEE Access 9 (2021), pp. 123178–123193. doi: 10.1109/ACCESS.2021.3109733.

[64] Congcong Yin, Qiuju Zhang, and Wenqiang Ren. “A New Semantic Edge Aware
Network for Object Affordance Detection”. In: Journal of Intelligent & Robotic Systems
104.1 (2022), pp. 1–16. doi: 10.1007/s10846-021-01525-9.

[65] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common objects in
context”. In: European conference on computer vision. Springer. 2014, pp. 740–755. doi:
10.1007/978-3-319-10602-1\_48.

[66] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: 2009 IEEE conference on computer vision
and pattern recognition. Ieee. 2009, pp. 248–255.

[67] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision meets
Robotics: The KITTI Dataset”. In: International Journal of Robotics Research (IJRR)
(2013).

[68] Johann Sawatzky, Martin Garbade, and Juergen Gall. “Ex paucis plura: learning
affordance segmentation from very few examples”. In: German Conference on Pattern
Recognition. Springer. 2018, pp. 169–184. doi: 10.1007/978-3-030-12939-2_13.

[69] Juergen Gall and Johann Sawatzky. “Adaptive Binarization for Weakly Supervised
Affordance Segmentation”. In: 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW). 2017, pp. 1383–1391. doi: 10.1109/ICCVW.2017.164.

[70] Tommaso Apicella, Andrea Cavallaro, Riccardo Berta, Paolo Gastaldo, Francesco
Bellotti, and Edoardo Ragusa. “An Affordance Detection Pipeline for Resource-
Constrained Devices”. In: 2021 28th IEEE International Conference on Electronics, Cir-
cuits, and Systems (ICECS). 2021, pp. 1–6. doi: 10.1109/ICECS53924.2021.9665447.

[71] Fu-Jen Chu, Ruinian Xu, and Patricio A. Vela. “Detecting Robotic Affordances on
Novel Objects with Regional Attention and Attributes”. In: ArXiv abs/1909.05770
(2019).

[72] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Moz-
ifian, Florian Golemo, Chris Atkeson, Dieter Fox, Ken Goldberg, John Leonard, et
al. “Sim2Real in robotics and automation: Applications and challenges”. In: IEEE
transactions on automation science and engineering 18.2 (2021), pp. 398–400.

https://doi.org/10.1109/ACIRS52449.2021.9519343
https://doi.org/10.1109/ACIRS52449.2021.9519343
https://doi.org/10.1109/ACCESS.2021.3109733
https://doi.org/10.1007/s10846-021-01525-9
https://doi.org/10.1007/978-3-319-10602-1\_48
https://doi.org/10.1007/978-3-030-12939-2_13
https://doi.org/10.1109/ICCVW.2017.164
https://doi.org/10.1109/ICECS53924.2021.9665447


84 Bibliography

[73] Haziq Razali and Yiannis Demiris. “Multitask Variational Autoencoding of Human-
to-Human Object Handover”. In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2021, pp. 7315–7320. doi: 10.1109/IROS51168.2021.
9636221.

[74] Christoph Hennersperger, Bernhard Fuerst, Salvatore Virga, Oliver Zettinig, Ben-
jamin Frisch, Thomas Neff, and Nassir Navab. “Towards MRI-based autonomous
robotic US acquisitions: a first feasibility study”. In: IEEE transactions on medical imag-
ing 36.2 (2017), pp. 538–548.

[75] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M. Dollar. “The YCB object and Model set: Towards common benchmarks for
manipulation research”. In: 2015 International Conference on Advanced Robotics (ICAR).
2015, pp. 510–517. doi: 10.1109/ICAR.2015.7251504.

[76] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani,
Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. “Train-
ing Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Ran-
domization”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). 2018, pp. 1082–10828. doi: 10.1109/CVPRW.2018.00143.

[77] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. “BlenSor:
Blender sensor simulation toolbox”. In: International Symposium on Visual Computing.
Springer. 2011, pp. 199–208.

[78] Ankur Handa, Thomas Whelan, John McDonald, and Andrew J Davison. “A bench-
mark for RGB-D visual odometry, 3D reconstruction and SLAM”. In: 2014 IEEE in-
ternational conference on Robotics and automation (ICRA). IEEE. 2014, pp. 1524–1531.

[79] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. 2018.
arXiv: 1703.06870 [cs.CV].

[80] Ruolin Ye, Wenqiang Xu, Zhendong Xue, Tutian Tang, Yanfeng Wang, and Cewu Lu.
“H2O: A Benchmark for Visual Human-human Object Handover Analysis”. In: 2021
IEEE/CVF International Conference on Computer Vision (ICCV) (2021), pp. 15742–15751.

[81] Richard I. Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. “Rotation Aver-
aging”. In: International Journal of Computer Vision 103 (2012), pp. 267–305.

[82] W.D. Curtis, A.L. Janin, and K. Zikan. “A note on averaging rotations”. In: Proceed-
ings of IEEE Virtual Reality Annual International Symposium. 1993, pp. 377–385. doi:
10.1109/VRAIS.1993.380755.

[83] Inna Sharf, Alon Wolf, and M.B. Rubin. “Arithmetic and geometric solutions for av-
erage rigid-body rotation”. In: Mechanism and Machine Theory 45.9 (2010), pp. 1239–
1251. issn: 0094-114X. doi: https : / / doi . org / 10 . 1016 / j . mechmachtheory .
2010.05.002. url: https://www.sciencedirect.com/science/article/pii/
S0094114X10000790.

https://doi.org/10.1109/IROS51168.2021.9636221
https://doi.org/10.1109/IROS51168.2021.9636221
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/CVPRW.2018.00143
https://arxiv.org/abs/1703.06870
https://doi.org/10.1109/VRAIS.1993.380755
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2010.05.002
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2010.05.002
https://www.sciencedirect.com/science/article/pii/S0094114X10000790
https://www.sciencedirect.com/science/article/pii/S0094114X10000790


85 Bibliography

[84] Shuichi Akizuki and Yoshimitsu Aoki. “Pose alignment for different objects using af-
fordance cues”. In: 2018 International Workshop on Advanced Image Technology (IWAIT).
2018, pp. 1–3. doi: 10.1109/IWAIT.2018.8369759.

[85] P.J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–256. doi:
10.1109/34.121791.

[86] Emin Babakus and W. Glynn Mangold. “Adapting the SERVQUAL scale to hospital
services: an empirical investigation”. In: Health Services Research 26 (1992), pp. 767–
786. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1069855/.

[87] Seung Youn Chyung, Katherine Roberts, Ieva Swanson, and Andrea Hankinson.
“Evidence-Based Survey Design: The Use of a Midpoint on the Likert Scale”. In:
Performance Improvement 56 (2017), pp. 15–27. doi: 10.1002. url: https://doi.org/
10.1002/pfi.21727.

https://doi.org/10.1109/IWAIT.2018.8369759
https://doi.org/10.1109/34.121791
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1069855/
https://doi.org/10.1002
https://doi.org/10.1002/pfi.21727
https://doi.org/10.1002/pfi.21727


A - Analysis of the axes orientations

bottle
Oriented x axes

bottle
Oriented y axes

bottle
Oriented z axes

bowl
Oriented x axes

bowl
Oriented y axes

bowl
Oriented z axes

86



87 Appendix A. Analysis of the axes orientations

cup
Oriented x axes

cup
Oriented y axes

cup
Oriented z axes

hammer
Oriented x axes

hammer
Oriented y axes

hammer
Oriented z axes

knife
Oriented x axes

knife
Oriented y axes

knife
Oriented z axes

ladle
Oriented x axes

ladle
Oriented y axes

ladle
Oriented z axes



88 Appendix A. Analysis of the axes orientations

mallet
Oriented x axes

mallet
Oriented y axes

mallet
Oriented z axes

mug
Oriented x axes

mug
Oriented y axes

mug
Oriented z axes

scissors
Oriented x axes

scissors
Oriented y axes

scissors
Oriented z axes

scoop
Oriented x axes

scoop
Oriented y axes

scoop
Oriented z axes



89 Appendix A. Analysis of the axes orientations

spatula
Oriented x axes

spatula
Oriented y axes

spatula
Oriented z axes

spoon
Oriented x axes

spoon
Oriented y axes

spoon
Oriented z axes



B - Links of interest

The main GitHub repository https://github.com/daniellehot/ROB10
Synthetic data generator https://github.com/HuchieWuchie/affordanceSynthetic
Synthetic dataset https://github.com/HuchieWuchie/affnetDRROS
The analysis of the human-to-human handover dataset https://github.com/daniellehot/
handover_orientation_analysis
Demo video https://github.com/daniellehot/ROB10/blob/main/demo_video.mp4

90

https://github.com/daniellehot/ROB10
https://github.com/HuchieWuchie/affordanceSynthetic
https://github.com/HuchieWuchie/affnetDRROS
https://github.com/daniellehot/handover_orientation_analysis
https://github.com/daniellehot/handover_orientation_analysis
https://github.com/daniellehot/ROB10/blob/main/demo_video.mp4

	Front page
	English title page
	Contents
	1 Introduction
	2 Problem Analysis
	2.1 Defining robot-to-human handovers
	2.2 Affordance analysis and object affordance segmentation
	2.3 The problem of object orientation at handovers
	2.4 Problem formulation
	2.5 Requirements

	3 Implementation
	3.1 System overview
	3.2 Affordance analysis with synthetic data
	3.3 The object handover orientation pipeline

	4 Testing
	4.1 Affordance segmentation
	4.2 Object handover orientation
	4.3 Full system test

	5 Results
	5.1 Affordance segmentation
	5.2 Object handover orientation
	5.3 Full system test

	6 Discussion
	6.1 Affordance segmentation
	6.2 User study of the object handover orientation
	6.3 Full system test
	6.4 Future work

	7 Conclusion
	Bibliography
	A Analysis of the axes orientations
	B Links of interest



