
Analysis of Test Result Data with non-
Random Missingness

Master’s Thesis

Mathematics, 3rd and 4th
semester

Aalborg University

Date: 31.05.2022





3rd and 4th semester at

Department of Mathematical Sciences

Skjernvej 4A

9220 Aalborg Ø

http://www.math.aau.dk

Titel:

Analysis of Test Result Data with non-

Random Missingness

Themes:

Missing Data

Item Response Theory

Generalized Linear Mixed Models

Semester:

3rd and 4th Semester

Project Period :

01.09.2021 - 31.05.2022

ECTS:

50 credits

Supervisors:

Rasmus Waagepetersen

Group Members:

Mikkel Rúnason Simonsen

Printing Number: 3

Number of Pages: 149

Number of Attachments: 0

Abstract:

The main focus of the report is statistical

inference based on test result data. In

particular, the data generating model for

the full data is assumed to be the Rasch

model and missingness is modelled using

the steps model for the dropout.

Within the framework of the Rasch model,

several parameter estimators are consid-

ered, including the joint, conditional and

marginal maximum likelihood estimators.

The asymptotic properties of the estima-

tors are derived and verified for practical

use through simulation studies.

It is concluded that modelling the dropout

is essential as there is found correlation be-

tween when a subject experiences dropout

and the ability of said subject.

By approving submission in Digital Eksamen, each group member accepts that everyone has participated

equally in the project work and that the group is collectively responsible for the contents of the report.





AAU

Preface

This report is developed in the fall of 2021 and spring of 2022 as a long master’s thesis by

a MSc student who studies mathematics at the Department of Mathematical Sciences at

Aalborg university.

The main focus of the report is to conduct statistical inference and in particular parameter

estimation for the Rasch model based on a dataset referred to in the report as the test

results data. For this purpose theory regarding the Rasch model, generalized linear mixed

models and missing data is presented.

To read the report it is suggested that the reader has a basic knowledge within the fields

of probability theory and statistics.

In the report citations are denoted with [number] associated to a publication in the

bibliography and when referring to a table, figure, definition or theorem the correspond-

ing numbering is written in the text. For equations there are parentheses around the

corresponding number.

I would like to thank my supervisor Rasmus Waagepetersen for good and appreciated

supervision.
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Chapter 1. Introduction AAU

1 | Introduction

The purpose of this report is to explore the test results data which is a dataset consisting

of test responses of 663 students from the danish public school. The students range from

10 to 12 years old and originates from 19 different schools across the country. Each of the

students where given the same test consisting of 36 questions regarding fractions, and they

only had a limited time to respond to the questions, i.e. it was a speeded test. The data

were kindly provided by Associate Professor Pernille Ladegaard Pedersen, Via University

College, Aarhus.

Specifically, the test results data consists of the age, gender, class and school of each

student, as well as a binary response pattern yi indicating which questions were solved

correctly. The data is structured such that yij = 1 implies that the ith subject correctly

solved the jth item.

As the analysis of this dataset will be conducted using item response theory (IRT) models,

in particular the Rasch model, the students will be referred to as subjects and the questions

will be referred to as items for the rest of the report, in accordance with the IRT litterature.

Another important feature of the test results data is the fact that some of the data is

missing. This is due to the subjects not responding to certain items for various reasons,

for instance if a subject decided to skip a question deemed too difficult or if the subject

ran out of time.

The number of missing responses for each item can be found in Figure 1.1.
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Figure 1.1: Figure showing the number of missing responses for each item.

It is clear from the figure that there is a tendency for more missingness to occur at higher

item numbers.

It will be a working assumption throughout the report that the subjects solve the items

in enumerated order and hence the large amount of missing responses among the last

items is due to the time constraint, i.e. the last items where not answered because the

subject ran out of time. This phenomenon is known as dropout and will be the central

focus point of the modelling of the missing data mechanism in the report.
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One could argue that, usually when a teacher grades a student, a missing response would

simply be considered as an incorrect response, and hence the analysis could be conducted

by changing all missing responses to incorrect responses and then conduct analysis on an

augmented dataset with no missingness.

The problem with this is that if e.g. a subject runs out of time before answering the last

items, then it is unknown whether or not the subject could answer them correctly. Simply

assuming that the subject wouldn’t have been able to answer them correctly would result

in perceiving the subject as worse than he is.

On the other hand, ignoring the missing data and only consider analysis based on the

observed responses is clearly also problematic, since one would throw away the information

regarding the ability of the subject contained in the missing responses. It might for

instance be the case that there is correlation between an early dropout and a low level of

subject ability.

Hence it is clear that the test results data contains an interesting missing data problem

which somehow needs to be modelled in order to conduct a data analysis.

In Chapter 2 item response theory will be presented with a particular focus on the Rasch

model considered as a generalized linear model. Furthermore, theory regarding parameter

estimation in the Rasch model when considered as a generalized linear model will be

presented in Chapter 3. In Chapter 4, theory regarding generalized linear mixed models

in general, and in particular methods for computing the likelihood of said models are

presented. This framework is then used to reformulate the Rasch model as a generalized

linear mixed model by introducing random effects. In Chapter 5, the general framework

of missing data is presented and maximum likelihood estimation under the assumption

of an ignorable missingness mechanism is considered with a focus on the EM algorithm.

The chapter is concluded by considering several models for the missing data mechanism

present in the test results dataset. Analysis of the test results data is then conducted in

Chapter 6 first by ignoring the missingness mechanism using a complete cases approach

and then by modelling the missing data mechanism using one of the models described in

Chapter 5 .
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2 | The Rasch Model

In this chapter the Rasch model is presented based on the general framework of item

response theory. Futhermore, the Rasch model is also considered as a generalized linear

model (GLM) as it is a special case of logstic regression. Therefore, for readers unfamiliar

with GLM’s it is advised to read Appendix A which is a supplement to the chapter

presenting relevant definitions of the topic and introduces the logistic regression as a

GLM.

2.1 Presentation of the Rasch Model

In this section the Rasch model will be presented and important properties of the model

will be discussed. The section on based on [10][Chapter 1 & 2] and [13]. The Rasch

model was first introduced in 1960 by the Danish mathematician Georg Rasch in his book

”Probabilistic Models for Some Intelligence and Attainment Tests” and is an item response

theory (IRT) model. In IRT subjects respond to a series of items all meant to measure one

or more latent traits of said subject, where it is observed whether the subject solves the

item or not. Usually unidimensionality is assumed, such that only one latent trait, often

referred to as the ability of the subject, is measured. In the report this will be referred to

as the subject parameter. Furthermore, local stochastic independence is assumed, such that

the subjects answer the items independently of each other, often referred to as no cheating,

and answer each item independently from the other items given the latent trait(s) of said

subject, often referred to as no learning. The central idea of IRT is that the probability of

a subject with certain latent trait(s) solves a given item can be modelled through a simple

function depending on the latent trait(s) and one or more parameters characterizing the

item. Therefore, associated to each item is an item characteristic curve (ICC) which gives

the probability of solving the item as a function of the latent trait(s).
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Let n ∈ N denote the number of subjects and p ∈ N denote the number of items.

The Rasch model is a unidimensional IRT model where the ICC of the jth item is given

by

fj(θ) = exp(θ − βj)
1 + exp(θ − βj)

, (2.1)

such that βj is the only parameter characterizing the jth item and will be referred to

as the difficulty of the item or the item parameter for j = 1, . . . , p. Note in particular

that the ICC is strictly increasing, which is intuitively clear, since a subject with greater

abilities should have a higher probability of solving a given item.

Furthermore, it should be noted that the Rasch model is also a logistic regression model

with linear predictor ηij = θi − βj since, by (2.1), it follows that

pij = P (Yij = 1) = exp(θi − βj)
1 + exp(θi − βj)

(2.2)

where the response Yij = 1 is interpreted as the ith subject solving the jth item for

i = 1, . . . , n, j = 1, . . . , p.

Therefore, for yij ∈ {0, 1},

p(yij; θi, βj) := P (Yij = yij)

=
(

exp(θi − βj)
1 + exp(θi − βj)

)yij (
1− exp(θi − βj)

1 + exp(θi − βj)

)1−yij

=
(

exp(θi − βj)
1 + exp(θi − βj)

)yij ( 1
1 + exp(θi − βj)

)1−yij

= exp(yij(θi − βj))
1 + exp(θi − βj)

. (2.3)

Furthermore, as the Rasch model is a logistic regression it is natural to consider the odds.

In particular, the odds that the ith subject solves the jth item is by Equation (A.3) given

as

oij = exp(θi − βj)

and the odds ratio between the ith and i′th subject to solve the jth item is by Equation

(A.4) given as
oij
oi′j

= exp(θi − θi′)

for i, i′ = 1 . . . , n, j = 1, . . . , p.
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Let Yi+ =
p∑
j=1

Yij and Y+j =
n∑
i=1

Yij for i = 1, . . . , n, j = 1, . . . , p. For the ith subject,

Yi+ is the random number of solved items and will be referred to as the score of the ith

subject. Similarly Y+j is the random number of subjects that solved the jth item and is

called the score of the jth item. These scores will be of great importance in what will

follow, primarily because they are sufficient statistics of their respective subject and item

parameters. In other words, all the information contained in a given dataset regarding

e.g. the ability of a subject is contained in the score of that subject. It does not matter

which items or the difficulty of said items the subject solved, only the number of items.

When the score of a subject is either 0, meaning that the subject did not solve any items,

or p, meaning that the subject solved all items, the score will be called an extreme score.

Similarly, item scores of 0 or n will be called extreme scores. These extreme scores will

later be seen to be problematic which is intuitively clear: how could e.g. the ability of a

subject be estimated if said subject has not solved any items and thus not demonstrated

any abilities at all?

It will now be shown that the sufficiency of the subject score is somewhat unique to the

Rasch model.

Theorem 2.1.1. Sufficient Statistics and the Rasch Model

Consider a unidimensional IRT model such that

• For the jth item the corresponding ICC gj : R→ (0, 1) is continuous and strictly

increasing and satisfies that lim
ξ→−∞

gj(ξ) = 0, lim
ξ→∞

gj(ξ) = 1 for j = 1, . . . , p,

• Local stochastic independence is satisfied, that is, for the ith subject

P (Yi1 = yi1, · · · , Yip = yip) =
p∏
j=1

P (Yij = yij) =
p∏
j=1

gj(ξi)yij(1− gj(ξi)yij)1−yij

for i = 1, . . . , n.

If the subject score Yi+ is a sufficient statistic for the corresponding subject parameter

ξi then the item response model is equivalent to the Rasch model.
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Proof. It follows by the assumption of sufficiency that the conditional probability of

obtaining response pattern y ∈ Γ(p) = {0, 1}p, where Γ(p) is the set of possible response

patterns, given subject score r does not depend on the subject parameter ξ, i.e.

p(y | r) = p(y; ξ)
p(r; ξ) = cr(y)

where cr(y) denotes a constant given r and y and does in particular not depend on ξ .

Here, it should be noted that the conditional density of the response pattern given the

subject score, the density of the response pattern and the density of the subject score are

all denoted by p without the use of subscripts. This is done in order to simplify notation

and it should be clear from the input which density is in question.

Let y be a response pattern with corresponding subject score r =
p∑
j=1

yj such that y1 = 1

and yj = 0 for some j ∈ {2, . . . , p}.

Furthermore, define y′ such that y′1 = 0, y′j = 1 and y′j′ = yj′ for j′ = 2, . . . j−1, j+1, . . . , p

and hence ∑p
j′=1 y

′
j′ = ∑p

j′=1 yj′ = r.

Let y−(1,j) = (y2, . . . yj−1, yj+1, . . . , yp) such that y−(1,j) = y′−(1,j).

Since local stochastic independence implies that

p(y−(1,j); ξ)g1(ξ)(1− gj(ξ))
p(r; ξ) = p(y | r) = cr(y), p(y′−(1,j); ξ)(1− g1(ξ))gj(ξ)

p(r; ξ) = p(y′ | r) = cr(y′)

it follows that

cr(y)
cr(y′)

= p(y−(1,j); ξ)g1(ξ)(1− gj(ξ))
p(y′−(1,j); ξ)(1− g1(ξ))gj(ξ)

= g1(ξ)(1− gj(ξ))
(1− g1(ξ))gj(ξ)

. (2.4)

Since g1(ξ) is assumed to be strictly increasing there exists a strictly monotone function

φ : R→ R given by φ(ξ) = logit(g1(ξ)) such that

g1(ξ) = exp(φ(ξ))
1 + exp(φ(ξ)) =: f1(φ(ξ)).
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Furthermore, consider fj : R → R such that fj(φ(ξ)) = gj(ξ). Then, by insertion into

Equation (2.4) it follows that

cr(y)
cr(y′)

= f1(φ(ξ))(1− fj(φ(ξ)))
(1− f1(φ(ξ)))fj(φ(ξ))

=
exp(φ(ξ))

1+exp(φ(ξ))(1− fj(φ(ξ)))
(1− exp(φ(ξ))

1+exp(φ(ξ)))fj(φ(ξ))

which implies that

fj(φ(ξ)) cr(y)
cr(y′)

=
exp(φ(ξ))

1+exp(φ(ξ))(1− fj(φ(ξ)))
1

1+exp(φ(ξ))
= exp(φ(ξ))− exp(φ(ξ))fj(φ(ξ)))

and hence

fj(φ(ξ)) = exp(φ(ξ))
cr(y)
cr(y′) + exp(φ(ξ))

=
exp

(
φ(ξ)− log

(
cr(y)
cr(y′)

))
1 + exp

(
φ(ξ)− log

(
cr(y)
cr(y′)

)) .
Since ξ ∈ R was entirely unspecified it follows that φ(ξ) ∈ R is also unspecified and will

now be denoted θ. Furthermore, from Equation (2.4) it is known that both cr(y) and

cr(y′) are positive but otherwise unspecified and hence log
(
cr(y)
cr(y′)

)
is a well defined real

number which will now be denoted by βj. In conclusion,

f1(θ) = exp(θ)
1 + exp(θ) , fj(θ) = exp(θ − βj)

1 + exp(θ − βj)
, for j = 2, . . . , p,

such that the IRT model is equivalent to the Rasch model with item parameters β1 = 0

and βj for j = 2, . . . , p.

Theorem 2.1.1 shows, under appropriate conditions, that sufficiency of the subject score

implies that the IRT model is equivalent to the Rasch model. The reverse implication,

that the subject score is a sufficient statistic for the subject parameter in the Rasch model,

will be shown in the derivation of the conditional maximum likelihood in the following

chapter where parameter estimation for the Rasch model will be considered.
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3 | Parameter Estimation in the

Rasch Model

In this chapter methods to conduct parameter estimation for the Rasch model presented

in Chapter 2 will be explored. Specifically, the joint maximum likelihood (JML) and con-

ditional maximum likelihood (CML) will be presented for the Rasch model in respectively

Section 3.1 and Section 3.2. Furthermore, a goodness of fit (GOF) test based directly

on asymptotic results of the conditional maximum likelihood is derived in Section 3.3.

The Chapter is then concluded in Section 3.4 where a simulation study is conducted to

illustrate some of the asymptotic properties of the estimators and test statistics presented

in the Chapter.

Remark 3.0.1. Uniqueness of Parameter Estimates Consider a Rasch model with

subject parameters θ = (θ1, . . . , θn)> and item parameters β = (β1, . . . , βp)>. By Equation

(2.2), an equivalent model would be obtained by translating the parameters by some c ∈ R.

To ensure uniqueness of the parameter estimates in the following, it will be assumed that

β1 = 0.

Consider in the following binary response data y = {yij}i=1,...,n
j=1,...p

which is assumed to be

generated from a Rasch model with item parameter β0 ∈ Rp−1.
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3.1 Joint maximum likelihood

This section regarding joint maximum likelihood estimation is based on [11].

It follows by local stochastic independence and Equation (2.3) that the joint likelihood is

given by

LJ(θ, β | y) =
n∏
i=1

p∏
j=1

p(yij; θi, βj)

=
n∏
i=1

p∏
j=1

(
exp(yij(θi − βj))
1 + exp(θi − βj)

)

=
exp (∑n

i=1 θiyi+) exp
(
−∑p

j=1 βjy+j
)

n∏
i=1

p∏
j=1

(1 + exp(θi − βj))
, (3.1)

and hence the joint log-likelihood is given by

lJ(θ, β | y) =
n∑
i=1

θiyi+ −
p∑
j=1

βjy+j −
n∑
i=1

p∑
j=1

log(1 + exp(θi − βj)).

By taking the partial derivatives wrt. each of the n + p − 1 parameters, recalling that

β1 = 0, the joint score is obtained as

sJ(θ, β | y) =



y1+ −
p∑
j=1

exp(θ1−βj)
1+exp(θ1−βj)

...

yn+ −
p∑
j=1

exp(θn−βj)
1+exp(θn−βj)

−y+2 +
n∑
i=1

exp(θi−β2)
1+exp(θi−β2)

...

−y+p +
n∑
i=1

exp(θi−βp)
1+exp(θi−βp)



. (3.2)

By setting the score function equal zero the joint solution equations are obtained as

yi+ =
p∑
j=1

exp(θi − βj)
1 + exp(θi − βj)

=
p∑
j=1

pij, i = 1, . . . , n, (3.3)

y+j =
n∑
i=1

exp(θi − βj)
1 + exp(θi − βj)

=
n∑
i=1

pij, j = 2, . . . , p. (3.4)
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Solving the joint solution equations, assuming a solution exists, yields the unique joint

maximum likelihood estimates θ̂J = (θ̂1,J , . . . , θ̂n,J)> and β̂J = (β̂2,J , . . . , β̂p,J)>.

It should be noted that the JML estimates does not necessarily exist, which is for instance

the case if yi+ = p, yi+ = 0, y+j = n or y+j = 0 for some i = 1, . . . , n or j = 1, . . . , p, i.e.

if there are any extreme scores in the data. This follows directly from the joint solution

equations and fact that 0 < pij < 1 for i = 1, . . . , n, j = 1, . . . , p.

The joint solution equations also illustrates the sufficiency of the subject and item scores

since it is clear that e.g. yi+ = yi′+ implies θ̂i,J = θ̂i′,J for i, i′ = 1, . . . , n, i 6= i′, and

similarly for the item parameter estimates.

It will now be shown that the parameter estimates obtained by solving Equations (3.3) and

(3.4) are unique and maximizes the joint likelihood function, which will be done by showing

that the joint observed information matrix is positive definit. Let kij = exp(θi−βj)
(1+exp(θi−βj))2 ,

then it follows from Equation (3.2) that

∂2

∂θ2
i

l(θ, β | y) = −
p∑
j=1

exp(θi − βj)
(1 + exp(θi − βj))2 = −

p∑
j=1

kij, i = 1, . . . , n,

∂2

∂β2
j

l(θ, β | y) = −
n∑
i=1

exp(θi − βj)
(1 + exp(θi − βj))2 = −

n∑
i=1

kij, j = 2, . . . , p,

∂2

∂θi∂βj
l(θ, β | y) = exp(θi − βj)

(1 + exp(θi − βj))2 = kij, i = 1, . . . , n j = 2, . . . , p,

∂2

∂θi∂θi′
l(θ, β | y) = 0, i, i′ = 1, . . . , n, i 6= i′,

∂2

∂βj∂βj′
l(θ, β | y) = 0, j, j′ = 2, . . . , p, j 6= j′.
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From the above the joint observed information can be constructed as

JJ(θ, β | y) =



p∑
j=1

k1j 0 · · · 0 −k12 · · · · · · −k1p

0 . . . ... ... . . . ...

... . . . 0 ... . . . ...

0 · · · · · ·
p∑
j=1

knj −kn2 · · · · · · −knp

−k12 · · · · · · −kn2
n∑
i=1

ki2 0 · · · 0

... . . . ... 0 . . . ...

... . . . ... ... . . . 0

−k1p . . . . . . −knp 0 · · · 0
n∑
i=1

kip



.

The joint observed information matrix is positive definite, which follows from the fact

that for any z ∈ Rn+p−1 \ {0}

z>Jj(θ, β | y)z =
n∑
i=1

z2
i

p∑
j=1

kij +
p∑
j=2

z2
n+j−1

n∑
i=1

kij −
n∑
i=1

zi

p∑
j=2

zn+j−1kij −
p∑
j=2

zn+j−1

n∑
i=1

zikij

=
n∑
i=1

p∑
j=1

(z2
i + z2

n+j−1 − zizn+j−1 − zn+j−1zi)kij + z2
i ki1

=
n∑
i=1

p∑
j=1

(zi − zn+j−1)2 kij + z2
i ki1 > 0.

Remark 3.1.1. If the assumption β1 = 0 was removed and the joint score and joint

observed information matrix also included partial derivatives wrt. β1, then the joint

observed information matrix would be positive semidefinite, i.e. the found maximum

would not necessarily be unique. This is in agreement with our considerations in

Remark 3.0.1 regarding uniqueness.

Theorem 3.1.2. Existence of JML estimates

Fix the number of items p. Then the probability that the joint maximum likelihood

estimates exists approaches zero as the number of subjects n approaches infinite.
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Proof. Let Pis = P (yi+ = s) denote the probability that the ith subject has score s. Since

Pis is strictly positive for all i = 1, . . . , n and s = 0, . . . , p the probability that the ith

subject has an extreme score is strictly positive, i.e. Pi0 + Pip > 0. If atleast one subject

has an extreme score then the JML estimates does not exist and hence the probability

that JML estimates exists is bounded above by
n∏
i=1

(1− (Pi0 + Pip)), the probability that

none of the subjects have an extreme score. The theorem now follows from the fact that
n∏
i=1

(1− (Pi0 + Pip))→ 0 as n→∞.

The following Theorem regarding the bias of the JML estimator is stated in [6][Page 36]

and the proof is beyond the scope of this report.

Theorem 3.1.3. Bias of JML Estimator

The joint maximum likelihood estimates for both the subject and item parameters

are biased. Futhermore, the bias is of order p
1−p .

It should be noted that Theorem 3.1.3 is a special case of a more general result derived in

[16] regarding bias when conducting joint estimation of parameters.

Theorem 3.1.3 shows that the bias of the parameter estimates does not converge towards

zero asymptotically and therefore it is clear that the estimators would also be inconsistent

as the following theorem based on [4][Page 66-69] states.

Theorem 3.1.4. Inconcistency of JML Estimates

Fix the number of items p and keep the item parameters βj, j = 1, . . . , p constant.

Then the joint maximum likelihood estimates θ̂i,J and β̂j,J of respectively θi and βj
for i = 1, . . . , n, j = 1, . . . , p are inconsistent as n approaches infinity.

Intuituvely, the asymptotic problems with the JML come from the fact that the number

of parameters in the model increases as the number of subjects increases.

Another approach to parameter estimation which avoids this problem will now be presented.
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3.2 Conditional maximum likelihood

This section regarding the conditional maximum likelihood is based on [6] and [2]. The

basic idea of the CML is to condition on the subject score, which is a sufficient statistic

for the subject parameter as will be shown in the following, such that the CML only

depends on the item parameters. Consider the conditional probability that a subject with

parameter θ̃ obtains result pattern ỹ ∈ Γ(p) given the score of the subject s = ỹ+:

p(ỹ | s; θ̃, β) = p(ỹ; θ̃, β)
p(s; θ̃, β)

. (3.5)

By local stochastic independence and Equation (2.3), the probability of a subject to obtain

result pattern ỹ is given by

p(ỹ; θ̃, β) =
exp

(
p∑
j=1

ỹj
(
θ̃ − βj

))
p∏
j=1

(
1 + exp(θ̃ − βj)

) =
exp(sθ̃) exp

(
p∑
j=1
−ỹjβj

)
p∏
j=1

(
1 + exp(θ̃ − βj)

) . (3.6)

Furthermore, the probability that the subject would have obtained a result pattern with

score s is given as the following sum over result patterns with score s:

p(s; θ̃, β) =
∑

y∈Γ(p):
y+=s

p(y; θ̃, β) =
∑

y∈Γ(p):
y+=s

exp(sθ̃) exp
(

p∑
j=1
−yjβj

)
p∏
j=1

(
1 + exp(θ̃ − βj)

) (3.7)

where Equation (3.6) is used in the second equality.

Inserting Equations (3.6) and (3.7) in Equation (3.5) yields

p(ỹ | s; β) =
exp

(
p∑
j=1
−ỹjβj

)
∑

y∈Γ(p):
y+=s

exp
(

p∑
j=1
−yjβj

)

which does not depend on the subject parameter θ̃ thus showing that the subject score is

a sufficient statistic for the subject parameter.
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By defining the symmetric functions

γs(β) =
∑

y∈Γ(p):
y+=s

exp
 p∑
j=1
−yjβj


for s = 1, . . . , p, it follows that

p(ỹ | s; β) =
exp

(
p∑
j=1
−ỹjβj

)
γs(β) . (3.8)

Remark 3.2.1. The symmetric functions inherit their names from the well known

elementary symmetric polynomials given by

Sk(x) =
∑

1≤j1<···<jk≤n

k∏
i=1

xji

for x ∈ Rn, k, n ∈ N since

γs(β) = Ss(exp(−β1), . . . , exp(−βp)).

The following lemma regarding the symmetric functions is important for the derivations

in the rest of the section.

Lemma 3.2.2. Symmetric functions

For any j = 2, . . . , p and s = 1, . . . , p− 1 it follows that the symmetric functions can

be expressed recursively as

γs(β) = exp(−βj)γ(j)
s−1(β) + γ(j)

s (β), (3.9)

where γ(j)
s (β) denotes the symmetric function with the jth item omitted. Furthermore,

the partial derivative of γs(β) wrt. βj can be expressed as
∂

∂βj
γs(β) = − exp(−βj)γ(j)

s−1(β) (3.10)

and the partial derivative of γ(j)
s (β) wrt. βj′ , where j′ = 2, . . . , p, j′ 6= j, is given by

∂

∂βj′
γ(j)
s (β) = − exp(−βj′)γ(j,j′)

s−1 (β) (3.11)

where γ(j,j′)
s−1 (β) denotes the symmetric function with both the jth and the j′th item

omitted.

Mikkel Rúnason Simonsen Page 23 of 149



Chapter 3. Parameter Estimation in the Rasch Model AAU

Proof. Since the omission of the jth item is equivalent to letting yj = 0, y ∈ Γ(p), it

follows that

γ(j)
s (β) =

∑
y∈Γ(p):
y+=s
yj=0

exp
 p∑
j′=1
−yj′βj′

 , (3.12)

and hence

exp(−βj)γ(j)
s−1(β) =

∑
y∈Γ(p):
y+=s−1
yj=0

exp
 p∑
j′=1
−yj′βj′ − βj



=
∑

y∈Γ(p):
y+=s
yj=1

exp
 p∑
j′=1
−yj′βj′

 . (3.13)

Combining Equations (3.12) and (3.13) immediately yields (3.9).

Equation (3.10) follows directly from Equation (3.9) by noting that γ(j)
s (β) does not

depend on βj.

Equation (3.11) follows since

∂

∂βj′
γ(j)
s (β) =

∑
y∈γ(p)
y+=s
yj=0

−yj′ exp
(
−

p∑
k=1

ykβk

)

= − exp(−βj′)
∑

y∈γ(p)
y+=s−1

yj=0,yj′=0

exp
(
−

p∑
k=1

ykβk

)

= − exp(−βj′)γj,j
′

s−1(β).

Define the conditional likelihood as

LC(β | y) =
n∏
i=1

p(yi | yi+; β) =
n∏
i=1

exp
(

p∑
j=1
−yijβj

)
γyi+(β)

where the second equality follows from Equation (3.8). Let y(1:p−1) denote the vector

composed of yi such that yi+ = 1, . . . , p− 1, i.e. the dataset restricted to subjects with

non-extreme scores.
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Furthermore, let ns denote the number of subjects with score s for s = 0, . . . , p. Then the

conditional likelihood can be written as

LC(β | y) =
exp

(
−

p∑
j=1

y+jβj

)
p∏
s=0

γs(β)ns
=

exp
(
−

p∑
j=1

y
(1:p−1)
+j βj

)
p−1∏
s=1

γs(β)ns
(3.14)

and where in the last equality it is used that γ0(β) = 1, γp(β) = exp
(
−

p∑
j=1

βj

)
and that

p∑
j=1

y+jβj =
p∑
j=1

y
(1:p−1)
+j βj + np

p∑
j=1

βj.

Hence the conditional log-likelihood is given as

lC(β | y) = −
p−1∑
s=1

ns log(γs(β))−
p∑
j=1

y
(1:p−1)
+j βj.

It should be noted that subjects with extreme scores contain no information regarding

the difficulty of the items, which intuitively explains why they are not part of the CML

function.

The partial derivative wrt. the jth item parameter is given by

∂

∂βj
lC(β | y) = −

p−1∑
s=1

ns
∂ log(γs(β))

∂βj
− y(1:p−1)

+j

=
p−1∑
s=1

ns
exp(−βj)γ(j)

s−1(β)
γs(β) − y(1:p−1)

+j

=
p−1∑
s=1

ns
γs(β)− γ(j)

s (β)
γs(β) − y(1:p−1)

+j (3.15)

where the second and third equality follows from respectively Equation (3.10) and Equation

(3.9). Therefore, the conditional score is given as

sC(β | y) =



p−1∑
s=1

ns
γs(β)−γ(2)

s (β)
γs(β) − y(1:p−1)

+2

...

p−1∑
s=1

ns
γs(β)−γ(p)

s (β)
γs(β) − y(1:p−1)

+p


. (3.16)

Setting the conditional score equal to zero yields the conditional solution equations

y
(1:p−1)
+j =

p−1∑
s=1

ns
γs(β)− γ(j)

s (β)
γs(β) , for j = 2, . . . , p. (3.17)
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Solving the conditional solution equations wrt. β, assuming a solution exist, yields the

conditional maximimum likelihood estimates β̂C = (β̂2,C , . . . , β̂p,C)>, which is a unique

solution cf. [9][Theorem 3 and 4]. Note that a solution does not exist in the case of an

extreme item score since 0 < γs(β)−γ(j)
s (β)

γs(β) < 1. However, the probability of an extreme

item score goes to zero as the number of subjects increases.

From Equation (3.15) it follows that for j, j′ = 2, . . . p, the second order partial derivatives

of the conditional log-likelihood are given by

∂2

∂βj∂βj′
`C(β | y) =

p−1∑
s=1

ns
∂

∂βj′

γs(β)− γ(j)
s (β)

γs(β)

=
p−1∑
s=1

ns

(
∂

∂βj′
γs(β)− ∂

∂βj′
γ(j)
s (β)

)
γs(β)−

(
γs(β)− γ(j)

s (β)
)

∂
∂βj′

γs(β)

γs(β)2

=
p−1∑
s=1

ns

(
γs(β)− γ(j)

s (β)
) (
γs(β)− γ(j′)

s (β)
)
− (γs(β)− γ(j′)

s (β))γs(β)
γs(β)2

− ns
∂

∂βj′
γ(j)
s (β))γs(β)
γs(β)2

=
p−1∑
s=1

ns
−γ(j)

s (β)(γs(β)− γ(j′)
s (β))− ∂

∂βj′
γ(j)
s (β)γs(β)

γs(β)2 . (3.18)

For j = j′ Equation (3.18) yields

∂2

∂β2
j

`C(β | y) =
p−1∑
s=1

ns
−γ(j)

s (β)(γs(β)− γ(j)
s (β))

γs(β)2 (3.19)

since γ(j)
s (β) does not depend on βj.

Furthermore, for j 6= j′ Equation (3.18) yields

∂2

∂βj∂βj′
`C(β | y) =

p−1∑
s=1

ns
exp(−βj′)γ(j,j′)

s−1 (β)γs(β)− γ(j)
s (β)(γs(β)− γ(j′)

s (β))
γs(β)2 (3.20)

where Equation (3.11) have been applied.
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Thus a closed form expression have been obtained of every entry in the conditional observed

information given by

JC(β|y) = − ∂2

∂β>∂β
`C(β, y) (3.21)

which in particular only depends on y through ns for s = 1, . . . , p− 1. The conditional

score and conditional observed information can be used to obtain the CML estimates

using e.g. the Newtons-Raphson algorithm assuming that a solution exists.

Once the conditional maximum likelihood item parameter estimates have been obtained,

these can be used to estimate the subject parameters by insertion into the joint solution

equations for the JML estimates.

The following Theorem is stated in [12] and the proof is beyond the scope of this report.

Theorem 3.2.3. Bias of CML estimators

The CML estimators of the item parameters are unbiased, i.e.

E
[
β̂C
]

= β0.

Consider the restricted conditional likelihoods which are the conditional likelihood where

the subjects with score yi+ different from s is omitted for s = 1, . . . , p− 1, i = 1, . . . , n, i.e.

L
(s)
C (β | y) =

n∏
i=1

p(yi | s, β)1[yi+=s] =
exp

(
−

p∑
j=1

y
(s)
+jβj

)
γs(β)ns

where y(s) denotes the vector composed of yi such that yi+ = s for i = 1, . . . , n i.e. the

data restricted to subjects with score s.
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By defining the restricted conditional log-likelihood, restricted conditional score and re-

stricted conditional observed information in the obvious way, it follows by the above

derivation of the quantities of the CML that

`
(s)
C (β | y) = −

p∑
j=1

y
(s)
+jβj − nsγs(β)

s
(s)
C (β | y) =



−ns γs(β)−γ(2)
s (β)

γs(β) − y(s)
+2

...

−ns γs(β)−γ(p)
s (β)

γs(β) − y(s)
+p


J

(s)
C (β | y) = − ∂2

∂β∂β>
`

(s)
C (β | y)

with elements

∂2

∂β2
j

`(s)(β | y) = ns
−γ(j)

s (β)(γs(β)− γ(j)
s (β))

γs(β)2 , for j = 2, . . . , p

and

∂2

∂βj∂βj′
`(s)(β | y) = ns

exp(−βj′)γ(j,j′)
s−1 (β)γs(β)− γ(j)

s (β)(γs(β)− γ(j′)
s (β))

γs(β)2 ,

for j, j′ = 2, . . . , p, j 6= j′.

Define the restricted conditional maximum likelihood estimate β̂(s)
C =

(
β̂

(s)
2,C , . . . , β̂

(s)
p,C

)>
as

the solution to the restricted conditional solution equations given by

ns
γs(β)− γ(j)

s (β)
γs(β) = y

(s)
+j , for j = 2, . . . , p, s = 1 . . . , p− 1.

Furthermore, it follows immediately that the relation between the CML and restricted

CML is given by

LC(β | y) =
p−1∏
s=1

L
(s)
C (β | y) (3.22)

and similarly it follows that

sC(β | y) =
p−1∑
s=1

s
(s)
C (β | y) (3.23)

and

JC(β | y) =
p−1∑
s=1

J
(s)
C (β | y). (3.24)
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Theorem 3.2.4. Asymptotic Normality of Restricted CML Estimator

The restricted CML estimate is asymptotically normally distributed with mean β0

and variance J (s)
C (β0)−1 for s = 1, . . . , p− 1, i.e.

√
ns
(
β̂

(s)
C − β0

)
d−→

n→∞
Np−1

(
0, I(s)

C (β0)−1
)

where I(s)
C (β0) = 1

ns
J

(s)
C (β0 | y).

Proof. Recall that Y1, Y2, . . . , Yns are i.i.d given that they share the same subject score,

i.e. Yi+ = s for i = 1, . . . , ns.

It follows immediately by standard results, see e.g. [8][Theorem 18], that

√
ns(β̂(s)

C − β0)| (Yi+)i=1,...,n
d−→

ns→∞
Np−1

(
0p−1, I

(s)
C (β0)−1

)
since I(s)

C (β0) is the observed information and hence also the Fisher information for a

single observation as it does not depend on y.

In order to extend this result from the conditional distribution to the marginal distribution,

consider a bounded and continuous function f : Rp−1 → R. Note that

E
[
f
(√

ns(β̂(s)
C − β0)

)]
= E

[
E
[
f
(√

ns(β̂(s)
C − β0)

)
| (Yi+)i=1,...,n

]]
−→
n→∞

E [E [f(z)]] , for z ∼ Np−1
(
0p−1, I

(s)
C (β0)−1

)
where it is used that n→∞ =⇒ ns →∞. Thus it follows that

E
[
f
(√

ns(β̂(s)
C − β0)

)]
→ E [f(z)]

and as f was an arbitrarily chosen bounded and continous function the result follows.

Theorem 3.2.4 will be used to show a similar result regarding the CML estimator.

In [2][Theorem 2] it is stated that the following result regarding consistency of the CML

estimator is obtained from Theorem 3.2.4, Equation (3.23) and some elementary continuity

arguments. However, as this is not clear to the author of this report, the proof has been

omitted.
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Theorem 3.2.5. Consistency of CML Estimator

The CML estimator is consistent, i.e.

β̂C
p−→

n→∞
β0.

Theorems 3.2.4 and 3.2.5 can now be used to show asymptotic normality of the CML

estimator.

Theorem 3.2.6. Asymptotic Normality of CML Estimator

The CML estimates is asymptotically normally distributed with mean β0 and variance

JC(β0 | y)−1, i.e.

JC(β0 | y)1/2
(
β̂C − β0

)
d−→

n→∞
Np−1 (0p−1, Ip−1)

Proof. A zero’th order multivariate Taylor expansion of ∂
∂βj
`C(β | y) around β̂C yields

∂

∂βj
`C(β0 | y) = ∂

∂βj
`C(β̂C | y) +

p∑
j′=2

(β̂j′,C − βj′,0) ∂2

∂βj∂βj′
`C(β∗ | y)

=
p∑

j′=2
(β̂j′,C − βj′,0) ∂2

∂βj∂βj′
`C(β∗ | y)

for some β∗ such that |β∗j − βj,0| ≤ |β̂j,C − βj,0| for j = 2, . . . , p. Theorem 3.2.5 implies

that β̂j′,C
p−→

n→∞
βj,0 and hence β∗j′

p−→
n→∞

βj,0.

Therefore, it follows that ∂
∂βj
`C(β0 | y) has the same limiting distribution as

p∑
j′=2

(β̂j′,C −

βj′,0) ∂2

∂βj∂βj′
`C(β0 | y).

Applying this for j = 2, . . . p, it is obtained that sC(β0 | y) has the same limiting

distribution as
(
β̂C − β0

)
JC(β0 | y).
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The standard results referenced in the proof of Theorem 3.2.4 also yields that

s
(s)
C (β0 | y) d−→

n→∞
Np−1

(
0p−1, J

(s)
C (β0 | y)

)
.

Combining this with Equation (3.23) and Equation (3.24) implies that

sC(β0 | y) d−→
n→∞

Np−1 (0p−1, JC(β0 | y))

such that

JC(β0 | y)
(
β̂C − β0

)
d−→

n→∞
Np−1 (0p−1, JC(β0 |y))

and hence

JC(β0 | y)1/2
(
β̂C − β0

)
d−→

n→∞
Np−1 (0p−1, Ip−1)

When comparing Theorems 3.2.3 and 3.2.6 to Theorems 3.1.3 and 3.1.4 it is evident why

the CML estimator is usually preferred in application.

Informally, there are three main problems with the JML estimator which results in

the non-existence of JML estimates, bias and inconsistency. The first problem is that

the occurrence of extreme scores implies that the JML estimates do not exists. This

is particularly problematic as the number of subjects increases since this increases the

probability of an extreme subject score. The extreme subject scores do not occur in the

CML function and are therefore not problematic. Furthermore, as the number of subjects

increases, the probability of extreme item scores decreases since 0 < pij < 1.

The second problem is the joint estimation of subject and item parameters which leads

to bias. Since CML estimation conditions on the subject score, a sufficient statistic for

the subject parameter, CML estimates the item parameters independently of the subject

parameters, thus resulting in an unbiased estimate.

The third problem is that when the number of subjects increases then the number of

parameters to be estimated in JML increases likewise. Furthermore, an increased number

of subjects brings no additional information regarding the other subjects parameters, only

further information regarding the item parameters. This is not an issue for the CML since

only item parameters are to be estimated. Therefore, as the number of subjects increases,

the number of parameters to be estimated remains the same, and additional information

regarding these parameters are obtained, which results in consistent estimates.
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Another approach to parameter estimation in the Rasch model is the maximum marginal

likelihood which will be discussed in Section 4.3.

The asymptotic results regarding the CML will be utilized in the following section to

formulate a goodness of fit test for the Rasch model.

3.3 Goodness of Fit Test

In this section a goodness of fit test for the Rasch model will be presented based on the

framework of the CML and restricted CML from Section 3.2. The section is based on

[2]. Consider the conditional likelihood-ratio between the Rasch model fitted to each score

group and the Rasch model fitted to the full data given by

λ = LC(β̂C | y)
p−1∏
s=1

L
(s)
C (β̂(s)

C | y)
. (3.25)

Clearly λ ≤ 1 with λ = 1 if β̂C,s = β̂C for all s = 1, . . . , p− 1 by Equation (3.22).

The null hypothesis for this test is that the data is generated by the Rasch model and this

is rejected for small values of λ, i.e. small values of the test statistic are critical. This is

intuitively clear because no matter which score group is considered, all the subjects took

the same test and hence answered the same items with fixed item parameters. Therefore,

no matter which score group is considered, the item estimates ought to be approximately

the same, such the test statistic λ would be close to one. This phenomenon where the

difficulty of the items can be measured based on a sample not drawn at random from

the total subject population, i.e. that the estimates of the item parameters is somehow

independent of the ability of the students constituting the sample, is often referred to as

specific objectivity.

As per usual when working with likelihood-ratio tests, the test statistic

Z = −2 log(λ) = 2
p−1∑
s=1

`
(s)
C (β̂C,s | y)− 2`(β̂C | y) (3.26)

is considered where large values of Z are critical.
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Asymptotic properties of Z will be described shortly and for this purpose the following

result is needed. The result is a corollary of Fisher-Cochran’s theorem presented in

[21][Page 188] and the proof is beyond the scope of this report.

Corollary 3.3.1. Let Q = Q1 +Q2 where Q ∼ χ2(a), Q1 ∼ χ2(b), Q2 ≥ 0 and a > b.

Then Q2 ∼ χ2(a− b).

Using Corollary 3.3.1 is can now be shown that Z is asymtotically chi-squared distributed.

Theorem 3.3.2. Asymptotic Distribution of Test Statistic

The test statistic Z given by Equation 3.26 is asymptotically chi-squared distributed

with (p− 1)(p− 2) degrees of freedom, i.e.

Z
d−→

n→∞
χ2((p− 1)(p− 2)).

Proof. Equation (3.22) implies that

LC(β | y)−
p−1∑
s=1

L
(s)
C (β | y) = 0

for any β ∈ Rp and hence it follows that Z can be written as

Z = −2`C(β̂C | y) + 2`C(β0 | y) + 2
p−1∑
s=1

`
(s)
C (β̂(s)

C | y)− 2
p−1∑
s=1

`
(s)
C (β0 | y). (3.27)

A first order multivariate Taylor expansion of `C(β0 | y) around β̂C yields

`C(β0 | y) = `C(β̂C | y) +
p∑
j=2

∂

∂βj
`(β̂C | y)(βj,0 − β̂j,C)

+
p∑
j=2

p∑
j′=2

∂

∂βj∂β′j

`C(β∗ | y)
2 (βj,0 − β̂j,C)(βj′,0 − β̂j′C)

= `C(β̂C | y) +
p∑
j=2

p∑
j′=2

∂

∂βj∂β′j

`C(β∗ | y)
2 (βj,0 − β̂j,C)(βj′,0 − β̂j′,C)

for some β∗ such that |β∗j − βj,0| ≤ |β̂j,C − βj,0| for j = 2, . . . , p, where it in the second

equality is used that ∂
∂βj
`C(β̂C | y) is zero for j = 2, . . . , p by the definition of β̂C .
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Hence it follows that

− 2`(β̂C | y) + 2`(β0 | y) =
p∑
j=2

p∑
j′=2

∂

∂βj∂βj′
`(β∗ | y)(βj,0 − β̂j,C)(βj′,0 − β̂j′,C). (3.28)

Similarly, for s = 1, . . . , p a first order multivariate Taylor expansion of `(s)
C (β0 | y) around

β̂
(s)
C yields

`
(s)
C (β0 | y) = `

(s)
C (β̂(s)

C | y) +
p∑
j=2

p∑
j′=2

∂

∂βj∂β′j

`
(s)
C (β∗(s) | y)

2 (βj,0 − β̂(s)
j,C)(βj′,0 − β̂(s)

j′,C)

for some β∗(s) such that |β∗(s)j − βj,0| ≤ |β̂(s)
j,C − βj,0| for j = 2, . . . , p and hence

2
p−1∑
s=1

`
(s)
C (β̂(s)

C | y)−2
p−1∑
s=1

`
(s)
C (β0 | y) = −

p−1∑
s=1

p∑
j=2

p∑
j′=2

∂

∂βj∂β′j

`
(s)
C (β∗(s) | y)

2 (βj,0−β̂(s)
j,C)(βj′,0−β̂(s)

j′,C).

(3.29)

Insertion of Equations (3.28) and (3.29) in Equation (3.27) yields

Z =
p∑
j=2

p∑
j′=2

∂

∂βj∂β′j
`C(β∗ | y)(βj,0−β̂j)(βj′,0−β̂j′)−

p−1∑
s=1

p∑
j=2

p∑
j′=2

∂

∂βj∂β′j
`

(s)
C (β∗(s) | y)(βj,0−β̂(s)

j,C)(βj′,0−β̂(s)
j′,C).

Theorems 3.2.6 and 3.2.4 imply that β̂C and β̂(s)
C for s = 1, . . . , p−1 converges in probability

to β0 for n→∞ and therefore so does β∗ and β∗(s).

It follows that Z has the same limiting distribution as

− (β0 − β̂C)>JC(β0 | y)(β0 − β̂C) +
p−1∑
s=1

(
β0 − β̂(s)

C

)>
J

(s)
C (β0 | y)

(
β0 − β̂(s)

C

)
. (3.30)

By Theorem 3.2.6 it follows that

(β0−β̂C)>JC(β0 | y)(β0−β̂C) =
(√

JC(β0 | y)(β0 − β̂C)
)>√

JC(β0 | y)(β0−β̂C) ∼ χ2(p−1)

since
√
JC(β0 | y)(β0 − β̂C) ∼ Np−1(0, Ip−1). Similarly, by Theorem 3.2.4 it follows that

p−1∑
s=1

(
β0 − β̂(s)

C

)>
J

(s)
C (β0 | y)

(
β0 − β̂(s)

C

)
∼ χ2((p− 1)(p− 1)).

Insertion into Equation (3.30) yields that Z has limiting distribution as the difference

between two chi-squared distributions with degrees of freedom (p− 1)(p− 1) and (p− 1)

respectively.

Therefore, it follows by Corollary 3.3.1, since Z is strictly positive, that Z is asymptotically

chi-squared distributed with (p− 1)(p− 1)− (p− 1) = (p− 1)(p− 2) degrees of freedom.
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3.4 Simulation Study

In this section a simulation study will be conducted in order to illustrate the practical

implications of Theorems 3.1.2, 3.2.6 and 3.3.2. The implementations and code discussed

in this section can be found in Appendix B.

In this simulation study, 1.000 datasets are generated from a Rasch model with n =

500, p = 10, β0 = (β2,0, . . . , βp,0)> where βj,0 = 0.2(j − 1) for j = 2, . . . , p and θ0 =

(θ1,0, . . . , θn,0)> where each θi,0 is a realization of a normal distribution with mean and

standard deviation equal to one and are fixed across the 1.000 simulated datasets.

Note that n is chosen as 500 as it is similar in size to the 663 subjects in the test result

data. This choice of n also have the implication that JML estimation cannot be conducted

on any of the 1.000 simulated datasets, since each of them contains extreme subject scores.

Considering the size of n this is also to be expected based on Theorem 3.1.2. The Monte

Carlo estimate, and corresponding Monte Carlo error, of the expected number of subjects

in each score group can be found in Table 3.1.

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

µMC 8 25 41 56 66 72 71 64 51 33 13

σMC 0.12 0.19 0.26 0.31 0.34 0.35 0.34 0.32 0.28 0.22 0.15

Table 3.1: Monte Carlo estimates µMC of the expected number of subjects in each score group rounded

to integer values, and Monte Carlo error σMC rounded to two decimal places, based on the

subject scores of the 1.000 simulated datasets.

The CML estimates are obtained in R for each dataset using the clogistic function from

the Epi package, which is a function for maximizing conditional likelihoods in logistic

regression models.

From Theorem 3.2.6 it follows that if the CML estimates β̂C = (β̂2,C , . . . , β̂p,C)> are

normalized as JC(β0|y)1/2(β̂C − β0) then the normalized CML estimates should follow a

multivariate normal distribution with mean 0p−1 and covariance Ip−1.
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Therefore, in order to obtain the normalized CML estimates the conditional observed

information JC(β0 | y) is implemented in R. Recalling Section 3.2, the entries JC(β0 | y)

are given by Equations (3.19) and (3.20) and hence the symmemtric functions must be

implemented in R. This is done based on Remark 3.2.1 which states that

γs(β) = Ss(exp(−β1), . . . , exp(−βp))

for s = 1, . . . , p − 1 since elementary symmetric polynomials are easily computed in R

using the sum, combn and prod functions.

Furthermore, this approach also immediately yields all other terms in Equations (3.19)

and (3.20) as e.g.

γ(j)
s (β) = Ss(exp(−β1), . . . , exp(−βj−1), exp(−βj+1), . . . , exp(−βp))

for s = 1, . . . , p− 1, j = 2, . . . , p.

Based on the above, the conditional joint observation and hence the normalized CML

estimates are computed for each dataset.

In Figure 3.1 it is clearly seen that the marginal distribution of the normalized CML

estimates seems to follow a standard normal distribution for each item.

Figure 3.1: Histograms of the normalized CML estimates for each item parameter plotted with the

standard normal density for reference and comparison.
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This is also supported by applying the Andersen-Darling test for univariate normality

using the mvn from the package MVN in R. Here it is found that the test statistic for

each item yields a p-value above the corrected significance level when using an overall

significance level of 5% and when using the Bonferroni correction since this a multiple

hypothesis testing setup.

Furthermore, the mvn function also conducts the Henze-Zirkler test for multivariate

normality which is accepted with a p-value of 0.64.

Regarding correlation between the items, the covarariance matrix based on the sample of

normalized CML estimates is computed in R and the diagonal values are contained in

(0.95, 1.06) while the off-diagonal values belongs to (−0.08, 0.05).

The covariance matrix suggests that there is little to no correlation between the normalized

CML item estimates.

Thus all of the above illustrates the asymptotic normality of the normalized CML estimator

given by Theorem 3.2.6.

Furthermore, in order to consider the asymptotic distribution of the test statistic of the

goodness of fit test described in Section 3.3, the test statistic Z is computed for each

simulated dataset.

In Figure 3.2 the GOF test statistics are shown in a histogram together with the density of

the χ2-distribution with (p− 1)(p− 2) degrees of freedom for comparison as per Theorem

3.3.2.
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Figure 3.2: Histogram of the GOF test statistic for each simulated dataset compared to the density of

the χ2-distribution with (p− 1)(p− 2) degrees of freedom.

Furthermore, Figure 3.3 shows a QQ-plot of the GOF test statistics against the χ2-

distribution.

Figure 3.3: QQ-plot of the GOF test statistics against the χ2-distribution with (p− 1)(p− 2) degrees

of freedom.
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While both Figures 3.2 and 3.3 clearly illustrates Theorem 3.3.2, it should be noted

that in an application, the most important aspect is the probability of rejecting the null

hypothesis.

Therefore, for each dataset it is controlled whether the GOF test statistic is larger than

the critical value, or equivalently, whether the p-value is smaller than the significance level.

A significance level of 5% yields a critical value of approximately 93, corresponding to the

rejection of 54 out of 1000 null hypotheses, i.e. a rejection rate of approximately 5%.

In conclusion, the above analysis supports Theorem 3.3.2 and illustrates that the estimator

already exhibits its asymptotic behavior for n = 500.
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4 | The Rasch Model as a Gener-

alized Linear Mixed Model

The Rasch model was presented in Chapter 2 as a GLM, and within this framework

parameter estimation was considered in Chapter 3. Here two estimators were considered,

namely the JML estimator which is biased and inconsistent cf. Theorems 3.1.3 and 3.1.4,

and the CML estimator which is unbiased and consistent cf. Theorems 3.2.3 and 3.2.5 yet

only provides estimates for the item parameters. Hence it is clear that if one is interested

in not only the items but also the subjects, another approach is needed.

Furthermore, in many situations the interest is not in individual subjects but rather in

the entire subject population. This could for instance be the case when considering the

test results data, where a researcher might not be interested in the particular ability level

of a specific subject, but rather wish to make conclusions regarding all students of the

danish public school similar to those represented in the data.

This is done by imposing a distribution over the subject parameters and hence considering

them as random effects rather than fixed effects. Then the parameters of interest are the

parameters of the distribution rather than the individual subject ability.

In Section 4.1 generalized linear mixed models (GLMM) are presented in general and

the Rasch model is presented within this framework. The Laplace approximation and

Gauss-Hermite quadrature is then presented as methods for computing the likelihood

function for GLMMs in Section 4.2. Appendix D is a supplement to Section 4.2 regarding

Monte Carlo methods for computing the likelihood of a GLMM and simulation from the

conditional distribution of random effects given the data using rejection sampling. Then

marginal maximum likelihood for the Rasch model is considered in Section 4.3 which is

how parameter estimation is conducted when the Rasch model is considered as a GLMM.

Then finally in Section 4.4 a simulation study is conducted to illustrate the asymptotic

properties of the MML estimator.
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4.1 Generalized Linear Mixed Models

This section is based on [25]. In the following a definition of a GLMM is presented which

is a direct modification of the definition of a GLM, see A.0.2, to include random effects in

the linear predictor.

Definition 4.1.1. Generalized Linear Mixed Model

Let Y = (Y1, . . . , Yk) and U = (U1, . . . , Um) for k,m ∈ N be random vectors, and let

X ∈ Rk×p, Z ∈ Rk×m and β ∈ Rp. Furthermore, let g : M → R be an intervertible

function for M ⊆ R.

Then Y is said to follow a generalized linear mixed model with fixed effects design

matrix X, fixed effects parameter β, random effects design matrix Z, random effects

U and link function g if the following holds:

• U ∼ Nm(0,Σ) for some covariance matrix Σ ∈ Rm×m.

• Conditional on U = u, the Yi’s for i = 1, . . . , k are independent, their distribu-

tions belongs to the exponential dispersion familiy and E[Yi | u] = g−1(ηi) ∈M

where η = Xβ + Zu is the linear predictor.

Essentially Definition 4.1.1 states that Y follows a GLMM if conditioned on the random

effects U , Y follows a GLM.

Example 4.1.2. The Rasch Model as a GLMM Consider the Rasch model and

assume that the ability parameter of a random subject follows a normal distribution

with mean zero and variance σ2, i.e.

θ ∼ N(0, σ2).

This assumption appears rather reasonable as the closely related attribute of IQ is

known to follow a normal distribution see e.g. [14]. However, it is not easy to test

for this assumption as the random effects are only observed indirectly through binary

response patterns.
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Conditioned on a realization from the ability distribution, it follows that the probability

of solving the jth item is given by

P (Yj = 1 | θ; βj) = exp(θ − βj)
1 + exp(θ − βj)

, for j = 1, . . . , p.

Assuming independence between the ability of the subjects, it follows that the ability

parameter vector for all subjects follows a multivariate normal distribution with mean

giving by the n-dimensional zero vector and variance σ2In, i.e. θ = (θ1, . . . , θn) ∼

N(0n, σ2In) such that θ constitutes the random effects of the model. Furthermore, the

vector consisting of the item difficulties β = (β1, . . . , βp) is the fixed effects parameter.

The fixed effects design matrix X is given such that the row corresponding to ηij,

say xij, is given by zeroes in all entries except for −1 in the jth entry. Similarly the

random effects design matrix Z is given such that zij, the row corresponding to the

ith subject and jth item, is given by zeroes except for the ith entry which is 1.

The marginal density of Y can be determined as

fY (y; β,Σ) =
∫
Rm

fY,U(y, u; β,Σ)du =
∫
Rm

fY |U(y | u; β)fU(u; Σ)du. (4.1)

In the following the densities will not be written with subscript to indicate which distribu-

tion the density belongs to. Although this is abuse of notation it will be clear from the

context which densities are meant.

Since f(y;u, β) is given as a product of densities on the form of Equation (A.1) since

Yi|(U = u) has distribution belonging to the exponential dispersion family and f(u; Σ)

is the density of a multivariate normal distribution, it follows that f(y | u; β)f(u; Σ) is

a fairly complicated function and hence the integral in Equation (4.1) does not have a

closed form solution in general.

In Section 4.2 different methods for computing the marginal likelihood will be discussed.

In some situations interest could be at predicting the value of the random effects which

led to the observation. This could e.g. be to predict the ability of a subject given the

observed response pattern. The following proposition regarding the minimum mean square

error predictor is presented in [25] and will not be proven.
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Proposition 4.1.3. Conditional Mean as Predictor

The conditional mean

E[U | Y = y]

is the minimum mean square error predictor of the random effects U .

For applications of 4.1.3 it should be noted that the conditional denisty of the random

effects U given the data Y = y is not explicitly given in the model specification of the

GLMMs and it follows that the conditional mean would generally be determined as

E[U | Y = y] =
∫
Rm

uf(u | y; β,Σ)du

=
∫
Rm

u
f(y | u; β)f(u; Σ)

f(y; β,Σ) du (4.2)

which, like the density of Y , is problematic to evaluate.

Proposition 4.1.4. Score and Observed Information

Let ψ denote the covariance parameter vector, θ = (β, ψ)> and let s̃(θ | y, u) =
d
dθ log(f(y, u; β,Σ)) denote the score of the joint likelihood Y and U . Then under

regularity conditions it follows that the marginal score is given as

s(θ | y) = Eθ [s̃(θ | y, U) | Y = y] (4.3)

and the marginal observed information as

j(θ | y) =− Eθ
[(

d
dθ s̃(θ | y, U)

)
| Y = y

]
(4.4)

− Varθ [s̃(θ | y, U) | Y = y] .
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Proof. Equation (4.3) follows since

s(θ | y) = d
dθ log(f(y; β,Σ))

= 1
f(y; β,Σ)

d
dθ

∫
Rm

f(y, u; β,Σ)du

=
∫
Rm

d
dθf(y, u; β,Σ)
f(y; β,Σ) du

=
∫
Rm

d
dθf(y, u; β,Σ)
f(y, u; β,Σ) f(u | y; β,Σ)du

= Eθ
[

d
dθ log(f(y, U ; β,Σ)) | Y = y

]

= Eθ [s̃(θ | y, U) | Y = y]

where the regularity conditions are used in the third equality to interchange the differenti-

ation and the integration.

In order to prove Equation (4.4), first note that

j(θ | y) = − d2

dθ>dθ log(f(y; β,Σ))

= − d
dθ>Eθ [s̃(θ | y, U) | Y = y]

= −
∫
Rm

d
dθ> s̃(θ | y, u)f(u | y; β,Σ)du

= −
∫
Rm

(
d

dθ> s̃(θ | y, u)
)
f(u | y; β,Σ)du

−
∫
Rm

s̃(θ | y, u)
(

d
dθ>f(u | y; β,Σ)

)
du

= −Eθ
[(

d
dθ> s̃(θ | y, U)

)
| Y = y

]

−
∫
Rm

s̃(θ | y, u)
(

d
dθ>

f(u, y; β,Σ)
f(y; β,Σ)

)
du (4.5)

where Equation (4.3) is used in the second equality and the regularity conditions are used

in the third equality to interchange the differentiation and the integration.
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Since ∫
Rm

s̃(θ | y, u)
(

d
dθ>

f(u, y; β,Σ
f(y; β,Σ)

)
du

=
∫
Rm

s̃(θ | y, u) 1
f(y; β,Σ)

d
dθ>f(u, y; β,Σ)du

+
∫
Rm

s̃(θ | y, u)f(u, y; β,Σ) d
dθ>

1
f(y; β,Σ)du,

where the first term can be written as∫
Rm

s̃(θ | y, u) 1
f(y; β,Σ)

d
dθ>f(u, y; β,Σ)du

=
∫
Rm

s̃(θ | y, u)f(u | y; β,Σ)
f(y, u; β,Σ)

d
dθ>f(u, y; β,Σ)du

=
∫
Rm

s̃(θ | y, u)s̃(θ | y, U)>f(u | y; β,Σ)du

= Eθ
[
s̃(θ | y, U)s̃(θ | y, U)> | Y = y

]
and the second term as∫

Rm
s̃(θ | y, u)f(u, y; β,Σ) d

dθ>
1

f(y; β,Σ)du

=
∫
Rm

s̃(θ | y, u)f(u, y; β,Σ)
(
− 1
f(y; β,Σ)2

)
d

dθ>f(y; β,Σ)du

= −
∫
Rm

s̃(θ | y, u)f(u | y; β,Σ)s(θ | y)>du

= −Eθ [s̃(θ | y, U) | Y = y]Eθ [s̃(θ | y, U) | Y = y]>

it follows that∫
Rm

s̃(θ | y, u)
(

d
dθ>

f(u, y; β,Σ
f(y; β,Σ)

)
du = Varθ [s̃(θ | y, U) | Y = y] . (4.6)

Inserting Equation (4.6) in Equation (4.5) yields (4.4).

This section will now be concluded by noting that in order to evaluate the likelihood in

Equation (4.1), the conditional mean in Equation (4.2) as well as the expectations and

variances in Proposition 4.1.4 some methods are needed.

The following section, which in particular focuses on computation of the likelihood, will

present methods that can be utilized for these purposes.
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4.2 Computation of Likelihood for GLMMs

This section is based on [25]. In some situtations Equation (4.1) can be simplified

by factorizing such that the m-dimensional integral can be replaced by a product of

one-dimensional integrals. Consider for instance the case where the random effects

are mutually independent and the data can be written on the form Y = (Yij)ij for

i = 1, . . . ,m, j = 1, . . . , pi where pi ∈ N such that Yi = (Yij)j only depends on U through

Ui. This is exactly the case for the Rasch model where the random effects θ = (θ1, . . . , θn)

are mutually independent and the response pattern for the ith subject yi ∈ Γ(p) only

depends on θ through θi, the ability parameter for that subject, see Example 4.1.2.

Then the marginal likelihood of Y can be written on the form

f(y; β,Σ) =
m∏
i=1

∫
R

f(yi | ui; β)f(ui;σ2
i )dui (4.7)

where σ2
i denotes the ith diagonal entry of Σ, i.e. σ2

i is the variance of Ui.

In conclusion, methods are needed for computing integral of the form
∫
R

f(y | u; β)f(u;σ2)du. (4.8)

In the following the Laplace approximation and Gauss-Hermite quadrature is presented as

methods to approximate the integral. Futhermore, in Appendix D Monte Carlo methods

for computing the likelihood of a GLMM is discussed along with a technique to simulate

from the conditional distribution U |(Y = y) using rejection sampling.
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Laplace Approximation

This subsection regarding the Laplace approximation is based on [27] and [26].

Let g(u) = log (f(y | u; β)f(u;σ2)) and assume there exists û = argmax
u∈R

g(u) such that

g′(û) = 0.

A second order taylor expansion yields

g(u) ≈ g(û) + (u− û)g′(û) + 1
2(u− û)2g′′(û) = g(û)− 1

2(u− û)2(−g′′(û)) (4.9)

where it is seen that exp(g(u)) is approximately proportional to a normal density with

mean µLP = û and variance σ2
LP = −1

g′′(û) . Thus the integral in Equation (4.8) can be

approximated as
∫
R

f(y | u; β)f(u;σ2)du =
∫
R

exp(g(u))du

≈ exp(g(û))
∫
R

exp
(
−1

2(u− û)2(−g′′(û))
)

du

= exp(g(µLP))
√

2πσ2
LP. (4.10)

Equation (4.10) is called the Laplace approximation of the integral given in Equation

(4.8).

Furthermore, since

f(u | y; β, σ2) = f(y | u; β)f(u;σ2)
f(y; β, σ2) ∝ exp(g(u))

it follows that

U |(Y = y) d≈ N(µLP, σ
2
LP)

yielding that µLP is an estimate of the conditional mean given in Proposition 4.1.3.

Remark 4.2.1. Even though the attention of the report has been directed towards the

one-dimensional integrals thus far, the Laplace approximation can easily be modified

to the higher dimensional case simply by utilizing a multivariate Taylor expansion in

Equation (4.9).
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From the motivation of Equation (4.7) it is clear that

f(y | u; β) =
p∏
j=1

f(yj | u; β)

such that the integrand of Equation (4.8) can be written as

exp
 p∑
j=1

log(f(yj | u; β))
 f(u;σ2). (4.11)

In the following, results regarding asymptotic convergence of the Laplace approximation

and the order of the convergence will be discussed under certain conditions. The proofs of

the results are rather technical and can be found in Appendix C.

Ideally, the results should be presented and proven for integrands on the form

exp(php(u))g(u), because this would include the integrands in Equation (4.11), which is

seen by choosing

hp(u) = 1
p

p∑
j=1

log(f(yj | u)), g(u) = f(u;σ2).

However, if the h depends on p this would imply that the associated maximizer uLP also

depends on p, making the proof even more complicated and technical.

For simplicity, the results will be presented and proven for integrands of the form

exp(ph(u))g(u) in order to illustrate the asymptotic properties of the Laplace approxima-

tion.

With this integrand, clearly the Laplace parameter is given as

µLP,p = ûp = arg max
u∈R

(ph(u) + log(g(u)) .

In particular it should be noted that µLP,p depends on p. However, it is clear that the

term ph(x) is asymptotically dominant in the sense that

µLP,p −→
p→∞

arg max
u∈R

h(u) =: û.

For simplicity µLP = û is therefore chosen, which is asymptotically equivalent.
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Similarly

σ2
LP,p = −1

g′′(u) = −1
ph′′(u) + g′′(u)g(u)−g′(u)2

g(u)2

is replaced by the asymptotically equivalent

σ2
LP,p = −1

ph′′(u) .

Theorem 4.2.2. Convergence of Laplace Approximation

Let g, h : R→ R be functions, assume that h is three times differentiable and that

there exists some û ∈ R such that the following conditions are satisfied:

1. û is a local maximum for h, i.e. H = −h′′(û) > 0 and h′(û) = 0,

2. û is a global maximum of h in the sense that

∀∆ > 0∃ε > 0 : |u− û| ≤ ∆ =⇒ h(û)− h(u) ≥ ε,

3. h(3) and g is bounded near û, i.e.

∃δ > 0 : |u− û| ≤ δ =⇒ |h(3)(u)| ≤ K, |g(u)| ≤ C for some K,C > 0,

4. either
∫
R
|g(u)|du ≤ Ka or

∫
R

exp(h(u))|g(u)|du ≤ Kb for some Ka, Kb > 0.

Then the Laplace approximation of

Ip =
∫
R

exp(ph(u))g(u)dx

converges to Ip, i.e.
Ip

exp(ph(û))g(û)
√

2πp−1H−1
p→∞−→ 1.

Proof. See Appendix C.

Theorem 4.2.2 shows not only asymptotic convergence of the Laplace approximation but

also that the relative error goes to zero asymptotically.

The following Theorem regarding the order of the relative error expands on this result.
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Theorem 4.2.3. Order of the Relative Error of Laplace Approximation

Consider the assumptions of Theorem 4.2.2 and assume further that h is four times

differentiable, and extend condition 3 by assuming that |û−u| ≤ δ =⇒ |h(4)(u)| < C ′

for some C ′ > 0.

Then the relative error is of order (p−1), i.e.

Ip − exp(ph(û))g(û)
√

2πp−1H−1

Ip
= O(p−1).

Proof. See Appendix C.

Assume that Theorems 4.2.2 and 4.2.3 can be extended to integrands of the form

exp(php(u))g(u). Then it is clear that when the Laplace approximation is applied in the

context of the Rasch model later in the report, see e.g. Section 4.4, then the number of

items p will be the determining factor regarding the accuracy of the approximation.

Gauss-Hermite Quadrature

This subsection regarding Guass-Hermite quadrature is based on [25].

The idea of Gauss-Hermite quadrature is to approximate the integral of f(x)φ(x) as

∫
R

f(x)φ(x)dx ≈
M∑
i=1

wif(xi). (4.12)

where φ(·) denotes the density of the standard normal distribution, f : R→ R is some real

function and wi, xi ∈ R for i = 1, . . . ,M , where M ∈ N \ {0} is the number of quadrature

points.

For any M ∈ N \ {0}, wi and xi can be found in an appropiate table, and they are

determined as follows. Equation (4.12) should be exact for polynomials of degree less

than 2M . Thus by the linearity of the integral it is enough to solve the following system

of equations ∫
R

xkφ(x)dx =
M∑
i=1

wix
k
i , k = 0, . . . , 2M − 1. (4.13)
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Since the left-hand side of Equation (4.13) is simply the kth moment of the standard

normal distribution, which is known to equal zero for odd k and equal (k − 1)!! for even

k, it follows that the system of equations given by (4.13) can be written as

1[k even](k − 1)!! =
M∑
i=1

wix
k
i , k = 0, . . . , 2M − 1 (4.14)

which has a unique solution cf. [25][Page 10].

Recall that the density of the random effect f(u;σ2) is the density of a normal distribution

with mean zero and variance σ2 such that U
σ
∼ N(0, 1) and hence Equation (4.8) can be

written as ∫
R

f(y | u; β)f(u;σ2)du
x=u

σ=
∫
R

f(y | σx; β)φ(x)dx. (4.15)

Directly applying Guass-Hermite quadrature on Equation (4.15) yields

∫
R

f(y | u; β)f(u;σ2)du ≈
M∑
i=1

wif(y | σxi; β) (4.16)

and is called naive Gauss-Hermite quadrature. The problem with this is that f(y | σx; β)

might be very different from a polynomial and there are therefore no guarantee regarding

the quality of the approximation.

Therefore, another approach to Gauss-Hermite quadrature is needed. Consider the Laplace

approximation of Equation (4.8) and let φLP denote the density of the normal distribution

with mean µLP and variance σ2
LP. Then∫

R

f(y | u; β)f(u;σ2)du =
∫
R

f(y | u; β)f(u;σ2)
φLP(u) φLP(u)du

x=u−µLP
σLP=

∫
R

f(y | σLPx+ µLP; β)f(σLPx+ µLP;σ2)
φ(x) σLPφ(x)dx

(4.17)

and the application of Gauss-Hermite quadrature to Equation (4.17) yields

∫
R

f(y | u; β)f(u;σ2)du ≈
M∑
i=1

wi
f(y | σLPxi + µLP; β)f(σLPxi + µLP;σ2)

φ(xi)
σLP (4.18)

which is called adaptive Guass-Hermite quadrature.
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Adaptive Guass-Hermite quadrature is generally considered to be more precice than naive

Gauss-Hermite. This results from Equation (4.9) which showed that f(y | u; β)f(u;σ2)

was approximately proportional to a normal density with mean µLP and variance σ2
LP,

such that f(y | u;β)f(u;σ2)
φLP(x) is approximately equal the normalizing constant f(y; β, σ2).

Example 4.2.4. Adaptive Gauss-Hermite for Conditional Mean Recall that

in order to assume that the likelihood can be factorized as have been done in this

section, it must hold that the random effects are mutually independent.

This would however also imply that the condition mean giving by Equation (4.2) can

be factorized into one-dimensional integrals on the form

∫
R

u
f(y | u; β)f(u; Σ)

f(y; β,Σ) du.

Adaptiv Gauss-Hermite quadrature is for particularly useful when computing the

conditional mean. This is seen by considering
∫
R

u
f(y | u; β)f(u; Σ)

f(y; β,Σ) du = 1
f(y)

∫
R

(σLPx+ µLP)f(y | σLPx+ µLP; β)f(σLPx+ µLP;σ2)
φ(x) σLPφ(x)dx

where

(σLPx+ µLP)f(y | σLPx+ µLP)f(σLPx+ µLP)
φ(x) σLP

is approximately a first order polynomial by the same arguments as above, and hence

is in particular a polynomial of degree below 2M for any M ∈ N \ {0}.
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The following proposition shows that the Laplace approximation is essentially just a

special case of adaptive Gauss-Hermite quadrature.

Proposition 4.2.5. Equivalence Between Adaptive Gauss-Hermite and

Laplace Approximation

The Laplace approximation given by Equation (4.10) and adaptive Gauss-Hermite

quadrature given by Equation (4.18) of the integral
∫
R

f(y | u; β)f(u;σ2)du

coincides when there is one quadrature point.

Proof. For M = 1 it follows from Equation (4.13) that x1 and w1 is determined as the

solution to

1 =
∫
R

x0φ(x)dx = wix
0
i (4.19)

0 =
∫
R

x1φ(x)dx = wix
1
i (4.20)

such that x1 = 0 and w1 = 1.

Adaptive Gauss-Hermite quadrature with M = 1 of the integral
∫
R
f(y | u; β)f(u;σ2)du is

given as

∫
R

f(y | u; β)f(u;σ2)du ≈ w1
f(y | σLPx1 + µLP; β)f(σLPx1 + µLP;σ2)

φ(x1) σLP

= f(y | µLP; β)f(µLP;σ2)
1√
2π exp (0) σLP

= exp
(
log(f(y | µLP; β)f(µLP;σ2))

)√
2πσ2

LP

which is exactly the Laplace approximation as given in Equation (4.10).
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Remark 4.2.6. Gauss-Hermite quadrature suffers heavily from the curse of dimen-

sionality since evaluations in a grid in a high dimensional space can be computationally

heavy. Guass-Hermite quadrature is therefore most reasonably used for small values

of M in high dimensional spaces.

However a large number of quadrature points might be needed in order to obtain a

certain precision, and in a high dimensional space this is simply not feasible.

In this situation other methods are needed such as the Monte Carlo methods described

in Appendix D.

4.3 Marginal Maximum Likelihood for the Rasch

Model

This section is based on [22].

In this section response data on the form y = (yij)i=1,...,n
j=1,...,p

is considered and the Rasch

model will be interpreted as an GLMM as in Example 4.1.2 such that

θ = (θ1, . . . , θn) ∼ Nn(0n, σ2In) (4.21)

and

P (yij = 1 | θi; βj) = exp(θi − βj)
1 + exp(θi − βj)

, for i = 1, . . . , n, j = 1, . . . , p. (4.22)

The purpose of the section is to present a commonly used method for conducting parameter

estimation in the Rasch model using marginal maximum likelihood.

Remark 4.3.1. In Remark 3.0.1 it was argued that in order to ensure uniqueness

of the parameter estimates it was needed to somehow fix a parameter to the real

line. This was done by assuming that β1 = 0. However, if the parameter estimates is

fixated to the real line in such a way that β1 = 0, it would not necessarily be the case

that E[θ] = 0n. Therefore, the parameter estimates will be shifted relative to Chapter

3 by assuming that E[θ] = 0n instead of β1 = 0.
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It follows by local stochastic independence and Equation (2.3) that the conditional

probability of result pattern yi given ability parameter θi is

p(yi | θi; β) =
p∏
j=1

p(yij | θi; βj)

=
p∏
j=1

(
exp(yij(θi − βj))
1 + exp(θi − βj)

)

=
exp (θiyi+) exp

(
−∑p

j=1 βjyij
)

p∏
j=1

(1 + exp(θi − βj))
. (4.23)

Since the abilities of the subjects are independent it follows by Equation 4.7 that the

marginal likelihood is given by

LM(β, σ2 | y) :=
∫
Rn
f(y, θ; β, σ2)dθ

=
n∏
i=1

∫
R
p(yi | θi; β)f(θi;σ2)dθi

=
n∏
i=1

∫
R

exp (θiyi+) exp
(
−∑p

j=1 βjyij
)

p∏
j=1

(1 + exp(θi − βj))
f(θi;σ2)dθi.

The choice (β̂M , σ̂2
M) of (β, σ2) which maximizes the marginal likelihood will be referred

to as the marginal maximum likelihood estimate (MML estimate) of (β, σ2).

As discussed in Section 4.2, there are numerous approaches to do parameter estimation

for GLMMs in general. Later in the report, when conducting data analysis in Chapter 6,

the Laplace approximation and Gauss-Hermite is going to be used as they are standard

methods implemented in R. However, for IRT models in particular, the EM-algorithm

approach suggested in [22] has seen great use in applications and will now be presented.

Consider the posterior density of θ, that is, the conditional density of θ given the data

f(θ | y, β, σ2) = p(y | θ; β)f(θ;σ2)
p(y; β, σ2)

=

n∏
i=1

f(θi;σ2)
p∏
j=1

p(yij | θi; βj)

p(y; β, σ2) (4.24)

where the second equality follows from local stochastic independence.

Choose an initial estimate (β(0), σ2(0)) for (β, σ2). Often β(0) is chosen as the negative of

the item scores, which makes sense as e.g. the more difficult items would tend to have a

lower item score and hence a greater initial difficulty estimate.
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Then iteratively the parameter estimates are updated by maximizing the conditional

expectation of log(f(y, θ; β, σ2)) given y and the current parameter estimates. Hence at

the kth iteration for some k ∈ N, (β(k+1), σ2(k+1)) is obtained as

(β(k+1), σ2(k+1)) = max
(β,σ2)∈Rp×R+

E(β(k),σ2(k))

[
log

(
f(y, θ; β, σ2)

)
| y
]
. (4.25)

The procedure will then be terminated once some convergence criteria has been reached,

e.g. at the dth iteration for some d ∈ N, and the MML estimate (β̂M , σ̂2
M) = (β(d), σ2(d))

is obtained.

Remark 4.3.2. The method defined by Equation (4.25) is known as the EM-algorithm

and is a standard method for maximization for missing data problems. The EM-

algorithm will be presented and discussed in more detail in Chapter 5 regarding

missing data. Intuitively it makes sense to apply the EM-algorithm as an maximization

technique for models with random effects since the realizations of the random effects

θi for i = 1, . . . , n can be viewed as missing data.

Insertion of Equation (4.24) in the right-hand side of Equation (4.25) yields that

E(β(k),σ2(k))

[
log

(
f(y, θ; β, σ2)

)
| y
]

= E(β(k),σ2(k))

[
log

(
f(θ | y; β, σ2)p(y; β, σ2)

)
| y
]

= E(β(k),σ2(k))

log
 n∏
i=1

f(θi;σ2)
p∏
j=1

p(yij | θi; βj)
 | y


=

n∑
i=1

∫
R

log
(
f(θi;σ2)

)
f(θi | y; β(k), σ(2(k)))dθi (4.26)

+
n∑
i=1

p∑
j=1

∫
R

log (p(yij | θi; βj)) f(θi | y; β(k), σ(2(k)))dθi

should be maximized. It is clear from Equation 4.26 that maximation wrt. σ2 only

involves the first sum and maximization wrt. βj only involves the summation over i in

the double sum with j fixed.
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Insertion of the known density of the random effects and Equation (2.3) into Equation

4.26 yields
n∑
i=1

∫
R

log
(

1√
2πσ2

exp
(
− θ2

i

2σ2

))
f(θi | y; β(k), σ(2(k)))dθi (4.27)

+
n∑
i=1

p∑
j=1

∫
R

log
(

exp(yij(θi − βj))
1 + exp(θi − βj)

)
f(θi | y; β(k), σ(2(k)))dθi

Therefore, each iteration consists of computing

σ2(k+1) = 1
n

n∑
i=1

∫
R

θ2
i f
(
θi | y; β(k), σ2(k)

)
dθi (4.28)

and solving for βj in

y+j =
n∑
i=1

∫
R

1
1 + exp(βj − θi)

f
(
θi | y; β(k), σ2(k)

)
dθi. (4.29)

Notice that
∫
R

1
1+exp(βj−θi)f

(
θi | y; β(k), σ2(k)

)
dθi = E(β(k),σ2(k))

[
1

1+exp(βj−θi) | y
]
which is

strictly between zero and one. Therefore, it follows that a solution to Equation (4.29) for

each j only exists if the jth item does not have an extreme score. In other words, in order

to obtain the MML estimate it is needed that 0 < y+j < n for j = 1, . . . , p. In this case it

is suggested in [22] to approxmiate the solution to Equation (4.29) by use of the secant

method.

Remark 4.3.3. The MML method described in this section can be used in a more

general setting with a broader class of models, e.g. IRT models with two (2PL) and

three (3PL) item parameters. This is because unlike CML, MML does not utilize the

conditional framework presented Section 3.2 which can only be used for the Rasch

model cf. Theorem 2.1.1.

Alternatively, other approaches have been presented specifically for the Rasch model

where it is still considered as a mixed model, but where the item parameters and

the parameters of the ability distribution are estimated separately. In particular,

CML is used to estimate the item parameters and then with the estimates inserted

into the likelihood function either the EM algorithm, see [3], or the Newton-Raphson

procedure applied to the so called population likelihood, see [1], is utilized to estimate

the distribution parameters.
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4.4 Simulation Study

In this section a simulation study will be conducted in order to investigate the properties

of the MML estimator when parameter estimation is conducted in R using the glmer

function from the lme4 package, which is a function for fitting GLMM’s. The code used

in this section has been omitted as it is very similiar to the code in Appendix B and is

explained in detail throughout the section.

The glmer function approximates the marginal likelihood using Gauss-Hermite approx-

imation with the default number of quadrature point as one, yielding the Laplace-

approximation. Furthermore, the approximated marginal likelihood is then maximized

using Nelder-Mead.

If the marginal likelihood could be evaluated exactly then maximizing it would simply

yield a maximum likelihood estimator which is known to be unbiased and asymptotically

normally distributed under regularity conditions. However, as the marginal likelihood has

to be estimated, the goal of this section is to study whether the approximation of the

marginal likelihood has influence on the bias and asymptotic distribution of the estimator.

For this purpose, 1.000 datasets are generated from a Rasch model with n = 500, p = 10,

β0 = (β1,0, . . . , βp,0)> where βj,0 = 0.2(j − 1) − 1 for j = 1, . . . , p and σ0 = 1. That is,

for each dataset the abilities of the students θ = (θ1, . . . , θn)> are first generated, and

then the response patterns are generated based on the item parameters β and the subject

parameters θ.

Table 4.1 shows that the MML estimator is approximately unbiased, as the Monte Carlo

estimates of the expected value of the MML estimator almost agrees perfectly with the

actual parameter values.
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β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 σ

(β0,σ0) -1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1

µMC -1.00 -0.80 -0.61 -0.40 -0.20 0.00 0.20 0.41 0.61 0.80 0.98

σMC 0.004 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.002

Table 4.1: Table containing the true parameter values (β0, σ0), the Monte Carlo estimates µMC of

the expected values of the MML estimators rounded off to two decimal places, and Monte

Carlo errors σMC rounded to three decimal places, based on the MML estimates of the 1.000

simulated datasets.

Furthermore, Figure 4.1 suggests that the marginal distribution of the MML estimator

agrees with a normal distribution for each parameter.

Figure 4.1: Histograms of the MML estimates for each parameter plottet with the normal density with

mean and standard deviation estimated from the sample.

This is also supported by applying the Andersen-Darling test for univariate normality

using the mvn from the package MVN in R. Here it is found that the test statistic for

each item yields a p-value above the corrected significance level when using an overall

significance level of 5% and when using the Bonferroni correction since this a multiple

hypothesis testing setup.
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Furthermore, the mvn function also conducts the Henze-Zirkler test for multivariate

normality which is accepted with a p-value of 0.25.

To summarize the results obtained in this section, the fact that the marginal likelihood

cannot be evaluated exactly and hence is approximated using the Laplace approximation

does not seem to interfere with the unbiasedness nor the asymptotic properties of the

ML estimator. This is despite the fact that p = 10 was chosen relatively small, which as

discussed in Section 4.2 is important regarding the accuracy of the Laplace approximation.

Therefore, reasonable approximations can be expected when the Laplace approximation is

used on the test result data with p = 36 in Chapter 6.

This chapter will be concluded by comparing the accuracy of the conditional and marginal

ML estimators using the root mean squared error (RMSE).

For n = 10, 100, 1.000, 1000 datasets is simulated from the Rasch model using the

parameters already specified in this section. Then, for each dataset the conditional and

marginal ML estimate of each item parameter is obtained using the functions clogistic and

glmer in R.

The RMSE for the conditional and marginal ML estimator is given as respectively

RMSEcml =
(√

E
[(
β̂2,C,n − β2,0

)2
]
, . . . ,

√
E
[(
β̂p,C,n − βp,0

)2
])>

and

RMSEmml =
(√

E
[(
β̂2,M,n − β2,0

)2
]
, . . . ,

√
E
[(
β̂p,M,n − βp,0

)2
])>

.

The RMSEs are estimated using a Monte Carlo estimate based on the 1.000 simulated

datasets for each n = 10, 100, 1.000 and can be found in Table 4.2.
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n=10 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

RMSEcml - 3.240 2.574 2.861 2.794 2.643 3.107 2.992 3.266 3.702

RMSEmml 3.123 2.726 1.331 1.801 1.042 0.918 1.472 1.944 2.093 2.864

n=100 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

RMSEcml - 0.336 0.334 0.324 0.326 0.311 0.324 0.324 0.334 0.340

RMSEmml 0.263 0.264 0.254 0.252 0.249 0.239 0.254 0.247 0.253 0.245

n = 1000 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

RMSEcml - 0.103 0.106 0.104 0.105 0.102 0.101 0.105 0.110 0.105

RMSEmml 0.082 0.079 0.080 0.077 0.078 0.075 0.077 0.074 0.081 0.078

Table 4.2: Table containing the Monte Carlo estimates of RMSE of respectively the conditional and

marginal ML estimator for each item. The estimates are rounded to three decimal places

and are based on 1.000 simulated datasets for each n ∈ {10, 100, 1000}

From Table 4.2 it is clear that the RMSE reduces as the sample size n increases, which is

to be expected as both estimators are consistent and hence the RMSE should converge to

zero for each item and estimator.

Table 4.2 also reveals that the RMSE of the marginal ML estimator for each item is

smaller than the corrosponding RMSE of the conditional ML estimator for all sample

sizes. Hence it is concluded that not only does the marginal ML estimator provide a

measure of homogeneity of the subject population, but it also yields more accurate item

parameter estimates compared to the conditional ML estimator. This is, of course, under

the assumption that the model is correctly specified. For instance, if subject ability was

not normal distributed, then this could potentially have great impact on the marginal ML

estimator in constrast to the conditional ML estimator which would be unaffected.
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5 | Missing Data

Throughout the report thus far focus has been on the Rasch model, i.e. the proposed

data generating model for the test result data. However, as explained in Chapter 1, the

test result data contains a lot of missing information which cannot reasonably be ignored

without careful assessment.

The purpose of this chapter is to present general theory regarding missing data and

propose a model for the missingness mechanism present in the test result data.

In Section 5.1 the general framework of missing data is presented including the different

types of missingness. Then in Section 5.2 maximum likelihood inference under the assump-

tion that the missingness mechanism is ignorable will be considered. The EM algorithm

is introduced in Section 5.3 and some of its properties are discussed. Furtheremore,

Appendix E is a supplement to Section 5.3 containing the proof of Theorem 5.3.2 and a

result regarding convergence of the EM algorithm.

Finally the Chapter is concluded by Section 5.4 where a model for missingness mechanism

for the test result data is proposed.

5.1 Framework

The section is based on [5][Chapter 1 and 2]. In this chapter it is assumed that a study is

conducted where information is supposed to be collected on n subjects. The full data

Y = (Y1, . . . , Yp)

is the random real-valued p-dimensional vector that is intended to be collected for each

subject.
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Furthermore, let

R = (R1, . . . , Rp) (5.1)

denote the random missingness pattern for Y , where Rj indicates whether or not the jth

component of Y is observed for j = 1, . . . , p, i.e.

Rj =


1 if Yj is observed,

0 otherwise

and let R̄ = (1−R1, . . . , 1−Rp).

For a given missingness pattern r ∈ Γ(p) let Y(r) and Y(r̄) denote respectively the observed

and the missing subset of Y such that the observed data is given as

(R, Y(R)).

It should be noted that the observed data for a subject depends on two random vectors,

namely the full data Y and the random missingness pattern R. The following definition

describes different plausible situations regarding the dependence between R and Y .

Definition 5.1.1. Missingness Mechanisms

Let Y denote the full data and R the missingness pattern. Then the missingness

mechanism is said to be

• missing completely at random (MCAR) if

P (R = r | Y ) = P (R = r),

• missing at random (MAR) if

P (R = r | Y ) = P (R = r | Y(r)), (5.2)

• and missing not at random (MNAR) if

P (R = r | Y ) 6= P (R = r | Y(r)).
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Remark 5.1.2. Unlike MCAR, which has the simple interpretation that Y and R are

indepedent, the meaning of MAR is relatively unclear. Often MAR is interpreted as

conditional independence between R and Y(R̄) given Y(R) which is incorrect. Note that

r appears on both sides of the conditioning symbol in the right-hand side of Equation

(5.2) making the statement rather unclear. The correct intepreration of MAR is that

the function y 7→ P (R = r | Y = y) takes on the same value for all y ∈ Γ(p) which

agrees on all coordinates i where ri = 1 for i = 1, . . . , p. It is however the case that

conditional independence implies MAR, and that is exactly the special case of MAR

which is usually considered.

While the plausible dependence structures between Y and R described in Definition 5.1.1

are important in the following theoretical derivations, it should be noted that there are

obvious practical limitations. For instance, as only the observed data is available, it is not

possible to determine whether the data is MAR or MNAR. Assuming MAR, it is however

possible to test for MCAR cf. [5][Page 20].

Therefore, when handling missing data, the data analyst must make assumptions regarding

the missingness mechanism without use of the data. The analyst must do this based on

other information available regarding the study itself such as the methodology of data

collection.

Before considering systematic approaches to handle missing data using maximum likelihood

estimation and the EM algorithm, the section will be concluded by considering some

naive methods commonly used when dealing with missing data. In particular, it will be

illustrated why these methods are not advisable to use, dependent on the nature of the

missingness mechanism, in particular whether the data is missing at random or not.

Naive Methods

There are a great number of naive methods for handling missing data. In this subsection

two such methods will be considered, namely the complete cases approach and last

observation carried forward (LOCF).
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In the complete cases approach one simply ignores all the subjects for which some of the

data is missing, or equivalenty only considers the complete cases, i.e. the subjects for

which the full data has been observed. Intuitively, there is an underlying assumption

that the complete cases are somehow representative for the whole dataset and hence it is

sufficient to only consider the complete cases, i.e. it is assumed that Y |(R = 1p) has the

same distribution as Y .

This need not be the case and the following example demonstrates that the effectiveness

of this method greatly depends on this assumption.

Example 5.1.3. Complete Cases for Estimation of Mean

Suppose that Yi for i = 1, . . . , n are i.i.d real-valued random variables with expected

value µ such that Ri indicates whether Yi has been observed or not.

Then the expected value µ can be estimated by taking the sample mean of the complete

cases, i.e.

µ̂ =

n∑
i=1

RiYi

n∑
i=1

Ri

. (5.3)

In the case of MCAR it is easily seen that the estimator is unbiased since

E[µ̂] =
1
n

n∑
i=1

E[RiYi]

1
n

n∑
i=1

E[Ri]

= E[R1Y1]
E[R1]

= E[R1]E[Y1]
E[R1]

= µ

where the third equality follows from independence between Y1 and R1.
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By similar arguments it follows from the weak law of large numbers that

µ̂
p−→

n→∞

E[R1Y1]
E[R1] = µ

showing that the complete cases sample mean is consistent. It is readily seen that the

complete data sample mean under the assumption of MCAR have the same properties

as the usual sample mean for the full data. The main difference is essentially just that

the complete data sample mean utilizes a smaller sample of size
n∑
i=1

Ri but from the

same distribution.

However, in the case of MNAR it follows that E[R1Y1] 6= E[R1]E[Y1] in general, and

thus µ̂ is not necessarily unbiased nor consistent. If e.g. it is more likely to observe

larger values of Y , i.e. P (Ri = 1 | Y = y) is increasing as a function of y then clearly

the complete cases sample mean would be positively biased.

LOCF is an approach used in a more specific framework. Consider a longitudinal study

where the full data Y = (Y1, . . . , Yp) are to be collected at prespecified times t1, . . . , tp.

Now suppose that there is missing data due to dropout, i.e. a subjects drops out of the

study at time tj for some j ∈ {2, . . . , p} such that Y1, . . . , Yj−1 is observed and Yj, . . . , Yp
is missing. Then the LOCF approach is to replace the missing values in the dataset with

the last observed value for each subject. This would imply that a new dataset on the form

YLOCF = (Y1, . . . , Yj−1, . . . , Yj−1) for a subject with dropoup at time tj will be constructed,

which will then be treated as if it is the full data.

Again, as in the complete case approach, it is evident that the succes of the method

depends greatly on the missingniss mechanism. Say for instance that the subject is a

patient participating in a study regarding his condition, and then the patients condition

takes a drastic turn for the worse causing the patient to drop out of the study. Using

LOCF the missing data is simply replaced by the last observation such that the new

dataset treated as the full data will consist solely of observation before the worsening of

the patients condition, which clearly is problematic.
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Remark 5.1.4. It should be noted that while dropout is assumed to take place in

the test result data as the subjects run out of time, LOCF would clearly not be

reasonable approach no matter the type of missingness mechanism due to the Rasch

model property of local stochastic independence.

It is clear from the above that other approaches are needed, which will be presented in

the following section.

5.2 Maximum Likelihood Estimation under MAR

This section regarding maximum likelihood inference on datasets with missing data is

based on [5][Chapter 3].

Consider the ideal full data (R, Y ) consisting of both the missingness pattern and the full

data. While the ideal full data is unattainable in practice, it still relevant to consider its

density pR,Y . In particular, consider the selection model factorization given by

pR,Y (r, y) = pR|Y (r | y)pY (y).

Assuming parametric models for both the full data with parameter θ ∈ Θ ⊆ Rd and the

missingness mechanism with parameter ψ ∈ Ψ ⊆ Rk yields the selection model framework,

with models on the form

pR,Y (r, y; θ, ψ) = pR|Y (r | y;ψ)pY (y; θ).

Consider i.i.d observed data (ri, yi(ri)) for i = 1, . . . , n, let r = (r1, . . . , rn),y(r) =

(y1(r1), . . . , yn(rn)) and define the observed data likelihood as

Lobs(θ | r,y(r)) =
n∏
i=1

pR,Y(R)(ri, yi(ri); θ, ψ).

The following definition of the separability condition is a technical prerequisite for most

of the theory in the section.
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Definition 5.2.1. Separability Condition

Consider the parameters θ ∈ Θ for the full data Y and ψ ∈ Ψ for the missingness

mechanism. Then the separability condition is satisfied if the parameter space of

(θ>, ψ>)> is Θ×Ψ.

The separability condition implies that the range of θ does not depend on ψ and vice verca,

and thus intuitively information regarding one of the parameters contains no information

regarding the other.

The separability condition together with the MAR assumption implies ignorability of the

missingness mechanism, meaning that the missingness mechanism can be ignored when

considering the observed data likelihood wrt. θ, as the following theorem shows.

Theorem 5.2.2. Ignorability for the Observed Data Likelihood

Assume MAR and the separability condition. Then the observed data likelihood wrt.

θ is given by

Lobs(θ | r,y(r)) =
n∏
i=1

pY(ri)
(yi(ri); θ)

and does in particular not depend on the missingness mechanism.

Proof. The joint density of (R, Y(R)) evaluated at r and y(r) is given as

pR,Y(R)(r, y(r); θ, ψ) =
∫
pR|Y (r | y;ψ)pY (y; θ)dν(y(r̄))

= pR|Y(r)(r | y(r);ψ)
∫
pY (y; θ)dν(y(r̄))

= pR|Y(r)(r | y(r);ψ)pY(r)(y(r); θ)

where the second equality follows from the MAR assumption and ν denotes the Lebesgue

measure if Y is continous and the counting measure if Y is discrete.

Thus clearly the observed data likelihood is given as

Lobs(θ | r,y(r)) =
n∏
i=1

pR|Y(ri)
(ri | yi(ri);ψ)pY(ri)

(yi(ri); θ)

where the first factor regarding the missingness mechanism only depends on ψ and can

therefore be ignored by the separability condition, thus yielding the result.
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It follows immediately from Theorem 5.2.2, assumming MAR and the separability condition,

that the observed data log-likelihood and the observed data observed information is given

by respectively

`obs(θ | r,y(r)) =
n∑
i=1

log
(
pY(ri)

(yi(ri); θ)
)

(5.4)

and

Jobs(θ | r,y(r)) = −
n∑
i=1

∂2

∂θ∂θ>
log(pY(ri)

(yi(ri); θ)). (5.5)

Define the observed data score for the ith subject as

sobs(θ | ri, yi(ri)) = ∂

∂θ
log

(
pY(ri)

(yi(ri); θ)
)

(5.6)

and define the observed data maximum likelihood estimate θ̂obs as the maximizer of the

observed data likelihood, which under regularity conditions can be found as the solution

to
n∑
i=1

sobs(θ | ri, yi(ri)) = 0.

Furthermore, define the observed data Fisher information as

iobs(θ) = Eθ
[
sobs(θ | R, Y(R))sobs(θ | R, Y(R))>

]
. (5.7)

In the following it will be shown that observed data maximum likelihood inference is

essentially equivalent to usual maximum likelihood inference, where the random variable

of interest is simply (R, Y(R)) rather than Y . Firstly it will be shown that the observed

data likelihood satisfies the two Bartlett identities. Next a result regarding the asymptotic

normality of the observed data ML estimate will be presented.

Proposition 5.2.3. Barlett identities

Assume the separability condition and MAR. Then under regularity conditions the

observed data maximum likelihood function satisfies the Bartlett identities, i.e.

E[sobs(θ | R, Y(R))] = 0d

and

iobs(θ) = Eθ[Jobs(θ | R, Y(R))].
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Proof. Recall from Theorem 5.2.2 that pR,Y(R)(r, y(r); θ, ψ) ∝ pY(r)(y(r); θ) such that

Eθ[sobs(θ | R, Y(R))] =
∑

r∈Γ(p)

∫ ∂

∂θ

(
`obs(θ | r, y(r))

)
pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

=
∑

r∈Γ(p)

∫ ∂

∂θ
pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

= ∂

∂θ

∑
r∈Γ(p)

∫
pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

= ∂

∂θ
1

= 0d

where the third equality follows by interchanging the differentiation and the integral,

proving the first Bartlett identity.

The second Bartlett identity follows by

0d×d = ∂2

∂θ∂θ>
∑

r∈Γ(p)

∫
pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

=
∑

r∈Γ(p)

∫ ∂2

∂θ∂θ>
pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

=
∑

r∈Γ(p)

∫ ∂

∂θ

(
∂

∂θ>
log(pR,Y(R)(r, y(r); θ, ψ))pR,Y(R)(r, y(r); θ, ψ)

)
dν(y(r))

=
∑

r∈Γ(p)

∫ ∂2

∂θ∂θ>
log(pR,Y(R)(r, y(r); θ, ψ))pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

+
∑

r∈Γ(p)

∫ ∂

∂θ>
log(pR,Y(R)(r, y(r); θ, ψ)) ∂

∂θ
log(pR,Y(R)(r, y(r); θ, ψ))

× pR,Y(R)(r, y(r); θ, ψ)dν(y(r))

= Eθ
[
sobs(θ | R, Y(R))sobs(θ | R, Y(R))>

]
− Eθ

[
Jobs(θ | R, Y(R))

]
where the third equality follows by interchanging the differentiation and the integral.
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Remark 5.2.4. The observed data score and Fisher information is defined based on

the likelihood for a single subject, unlike the observed data likelihood, log-likelihood

and observed information which is defined wrt. the joint density for all n subjects.

This has the implication that e.g.

Eθ
[
Jobs(θ | R,Y(R))

]
= niobs(θ)

by Proposition 5.2.3.

While this may seem confusing, it will simplify notation in the following.

The following Theorem regarding the asymptotic normal distribution of the observed data

MLE is based on [5][Page 60] and will not be proven.

Theorem 5.2.5. Asymptotic Normality of Observed Data MLE

Assume the separability condition and MAR. Furthermore, assume that the full data

model is correctly specified with true parameter θ0. Then under regularity conditions

√
n(θ̂obs − θ0) d−→

n→∞
Nd(0d, iobs(θ0)−1).

The following lemma will be used in the proof of Proposition 5.2.7 and Theorem 5.3.1.

Lemma 5.2.6. Assume MAR, then for a realization (r, y(r)) of (R, Y(R)) it holds that

pY |R,Y(R)(y | r, y(r); θ, ψ)) = pY |Y(r)(y | y(r); θ).

Proof. The result follows since

pY |R,Y(R)(y | r, y(r); θ, ψ) = pR,Y (r, y; θ, ψ)∫
pR,Y (r, y; θ, ψ)dν(y(r̄))

=
pR|Y(r)(r | y(r);ψ)pY (y; θ)

pR|Y(r)(r | y(r);ψ)
∫
pY (y; θ)dν(y(r̄))

= pY |Y(r)(y | y(r); θ) (5.8)

where MAR is used in the second equality.
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Using Lemma 5.2.6 an important relation between the full data and observed data score

can now be derived.

Proposition 5.2.7. Assume the separability condition and MAR. Then under regu-

larity conditions the observed data score is the conditional expection of the full data

score given the observed data, i.e.

sobs(θ | r, y(r)) = Eθ[sfull(θ | Y ) | R = r, Y(R) = y(r)]

where

sfull(θ | y) = ∂

∂θ
log (pY (y; θ))

denotes the full data score.

Proof. Because of the separability condition and MAR, the missingness mechanism is

ignorable and hence the observed data score is given as

sobs(θ | r, y(r)) = ∂

∂θ
log(pY(r)(y(r); θ))

=
∂
∂θ
pY(r)(y(r); θ)
pY(r)(y(r); θ)

=
∫ ∂
∂θ
pY (y(r), y(r̄); θ)dν(y(r̄))

pY(r)(y(r); θ)

=
∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄))

pY(r)(y(r); θ)

=
∫
sfull(θ | y(r), y(r̄))pY |Y(r)(y(r), y(r̄) | y(r); θ)dν(y(r̄)) (5.9)

where the third equality follows from interchanging the order of integration and differenti-

ation.

Applying Lemma 5.2.6 on (5.9) yields

sobs(θ | r, y(r)) =
∫
sfull(θ | y(r), y(r̄))pY |R,Y(R)(y(r), y(r̄) | r, y(r); θ)dν(y(r̄))

= Eθ
[
sfull(θ | Y ) | R = r, Y(R) = y(r)

]
.

It should be noted that Proposition 5.2.7 is essentially a missing data result equivalent to

Equation (4.3) for GLMMs.
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Furthermore, the Proposition can now be used to show the famous missing information

principle.

Theorem 5.2.8. Missing Information Principle

Assume the separability condition and MAR. Then under regularity conditions

it follows that the full data Fisher information equals the observed data Fisher

information plus a term representing the lost information, i.e.

ifull(θ) = iobs(θ) + imiss(θ)

where

imiss(θ) = Eθ
[
Varθ[sfull(θ | Y ) | R, Y(R)]

]
.

Proof. It is a well known result following from the first Bartlett identity that the full data

Fisher information equals the variance of the full data score under regularity conditions.

Thus it follows by the law of total variation that

ifull(θ) = Varθ[sfull(θ | Y )]

= Varθ
[
Eθ[sfull(θ | Y ) | R, Y(R)]

]
+ Eθ

[
Varθ[sfull(θ | Y ) | R, Y(R)]

]
= iobs(θ) + imiss(θ)

where Proposition 5.2.7 and Proposition 5.2.3 are applied in the third equality.

It is clear that the observed data ML estimate θ̂obs can be obtained using the usual

numerical optimization algorithms such as the Newton-Raphson algorithm. However,

in practice this have proven to be computationally challenging as pY(r)(y(r); θ) for any

realization (r, y(r)) of (R, Y(R)) is not known directly but can be obtained by integrating

out the missing subset of the full data density which is assumed to be known, i.e.

pY(r)(y(r); θ) =
∫
pY (y(r), y(r̄); θ)dν(y(r̄)).

Therefore other techniques have been developed such as the Expectation-Maximization

(EM) algorithm presented in the following section.
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5.3 Expectation-Maximization Algorithm

This section regarding the EM algorithm is based on [5][Chapter 3].

The section will be started by rewriting the observed data log-likelihood in a way which is

convenient for the rest of the section.

Theorem 5.3.1. Observed Data Log Likelihood for EM Algorithm

Assume the separability condition and MAR. Then

`obs(θ | r,y(r)) = Q(θ; θ′)−H(θ; θ′)

for any fixed value θ′ ∈ Θ where

Q(θ; θ′) = Eθ′
[
`full(θ | Y) | R = r,Y(R) = y(r)

]
,

H(θ; θ′) = Eθ′
[
log

(
pY|R,Y(R)(Y | R,Y(R); θ)

)
| R = r,Y(R) = y(r)

]

and `full(θ | Y) denotes the full data log-likelihood.

Proof. Since

pY(y; θ) = pY(r)(y(r); θ)pY|Y(r)(y | y(r); θ)

it follows that

`obs(θ | r,y(r)) = `full(θ | y)− log(pY|Y(r)(y | y(r); θ))

and hence

`obs(θ | r,y(r)) =
∫
`obs(θ | r,y(r))pY|Y(r)(y | y(r); θ′)dν(y)

=
∫
`full(θ | y)pY|Y(r)(y | y(r); θ′)dν(y)

−
∫

log
(
PY|Y(r)(y | y(r); θ′)

)
pY|Y(r)(y | y(r); θ′)dν(y)

= Eθ′
[
`full(θ | Y) | R = r,Y(R) = y(r)

]
− Eθ′

[
log

(
pY|R,Y(R)(Y | R,Y(R); θ)

)
| R = r,Y(R) = y(r)

]
= Q(θ; θ′)−H(θ; θ′)

where Lemma 5.2.6 is applied in the third equality, proving the result.
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Theorem 5.3.1 motivates the EM algorithm presented in the following, because it is clear

that a potential strategy to maximize the observed data likelihood is simply to maximize

Q(θ | θ′) wrt. θ iteratively, assuming that the H(θ | θ′) term can be controlled.

Expectation-Maximization Algorithm

Given initial value θ(0) ∈ Θ the kth iteration of the EM algorithm for k ∈ N0 is performed

by first evaluating Q(θ | θ(k)) and then maximazing it wrt. θ, referred to as respectively

the expectation-step (E-step) and the maximization-step (M-step), i.e.

• E-Step:

Q(θ; θ(k)) = Eθ(k)

[
`full(θ | Y) | R = r,Y(R) = y(r)

]
• M-step:

θ(k+1) = argmax
θ∈Θ

Q(θ; θ(k)).

The algorithm is then terminated when some convergence criteria have been satisfied e.g.

if ‖θ(l+1) − θ(l)‖ for some l ∈ N gets below a prespecified tolerance for some norm ‖ · ‖.

Evidently the goal is that the output of the EM algorithm θ(l+1) is a reasonable estimate

of the observed data MLE θ̂obs, which will be shown later. Before that, however, standard

errors will be considered. Since the EM algorithm only returns an approximation of the

observed data MLE, standard errors for the estimates must be computed separately. Thus

a method for determining the observed data observed information is needed, which is

given by the following theorem.

Theorem 5.3.2. Observed Data Observed Information

Assume the separability condition and MAR. Then the observed data observed

information is given as

Jobs(θ | r,y(r)) =
n∑
i=1

Eθ
[
Jfull(θ | Yi) | Ri = ri, Yi(Ri) = yi(ri)

]
− Eθ

[
sfull(θ | Yi)sfull(θ | Yi)> | Ri = ri, Yi(Ri) = yi(ri)

]
+ Eθ

[
sfull(θ | Yi) | Ri = ri, Yi(Ri) = yi(ri)

]
Eθ
[
sfull(θ | Yi)> | Ri = ri, Yi(Ri) = yi(ri)

]
where Jfull(θ | Yi) denotes the full data observed information for the ith subject.

Proof. See Appendix E.
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Remark 5.3.3. The expression for the observed data observed information in Theorem

5.3.2 demonstrates a conditional version of the missing information principle described

in Theorem 5.2.8. In particular, the first term is given by
n∑
i=1

E
[
Jfull(θ | Yi) | Ri = ri, Yi(Ri) = yi(ri)

]
and the second and third term together can be written as

−
n∑
i=1

Var
[
sfull(θ | Yi) | Ri = ri, Yi(Ri) = yi(ri)

]

which when combined yields
n∑
i=1

E
[
Jfull(θ | Yi) | Ri = ri, Yi(Ri) = yi(ri)

]
=Jobs(θ | r,y(r))

+
n∑
i=1

Var
[
sfull(θ | Yi) | Ri = ri, Yi(Ri) = yi(ri)

]
.

Taking expectations on both sides of the equality yields Theorem 5.2.8.

Convergence of the EM algorithm will now be considered in the following subsection.

Convergence of the EM Algorithm

This subsection regarding the convergence of the EM algorithm is based on [5][Chapter 3]

and [7].

While the EM algorithm is very simple in its formulation, it is not immediately clear why

it would result in a reasonable approximation of the observed data MLE since neither

the E-step nor the M-step controls the H(θ | θ′) term in Theorem 5.3.1. However, the

following theorem shows that each iteration increases the observed data log-likelihood.

Theorem 5.3.4. EM Iteration Increases Log-Likelihood

Assume the separability condition and MAR. Then the observed data log-likelihood

increases for each iteration of the EM algorithm, i.e. for k ∈ N0 then

`obs(θ(k+1) | r,y(r)) ≥ `obs(θ(k) | r,y(r)).
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Proof. It follows by Theorem 5.3.1 by choosing θ′ = θ(k) and θ′ = θ(k+1) respectively, that

`obs(θ(k+1) | r,y(r))− `obs(θ(k) | r,y(r))

= Q
(
θ(k+1; θ(k)

)
−Q

(
θ(k); θ(k)

)
−
(
H
(
θ(k+1); θ(k)

)
−H

(
θk; θ(k)

))
.

Clearly

Q(θ(k+1; θ(k))−Q(θ(k); θ(k)) ≥ 0

since θ(k+1) = argmax
θ∈Θ

Q(θ; θ(k)) by the M-step.

Thus to prove the result it is sufficient to show that

H(θ(k+1); θ(k))−H(θk; θ(k)) ≤ 0.

By the definition of H(· | ·) it follows that

H(θ; θ(k+1))−H(θ; θ(k)) = Eθ(k)

[
log

(
pY|R,Y(R)(Y | R,Y(R); θ(k+1))

)
| R = r,Y(R) = y(r)

]
− Eθ(k)

[
log

(
pY|R,Y(R)(Y | R,Y(R); θ(k))

)
| R = r,Y(R) = y(r)

]
= Eθ(k)

log
pY|R,Y(R)(Y | R,Y(R); θ(k+1))

pY|R,Y(R)(Y | R,Y(R); θ(k))

 | R = r,Y(R) = y(r)


≤ log

Eθ(k)

pY|R,Y(R)(Y | R,Y(R); θ(k+1))
pY|R,Y(R)(Y | R,Y(R); θ(k)) | R = r,Y(R) = y(r)


= log

(∫
pY|Y(r)(y(r),y(r̄) | y(r); θ(k+1))dν(y(r̄))

)
= 0

where the inequality follows from Jensen’s inequality for conditional expectations since

log(·) is a concave function, proving the result.

As Theorem 5.3.4 shows that each iteration of the EM algorithm increases the log-

likelihood, conditions can now be presented under which the EM algorithm converges

which is proven in Appendix E.

In [7] it is suggested to consider the mapping M : Θ→ Θ implicitly defined by the EM

algorithm as

M(θ(k)) = θ(k+1), for k = 0, 1, . . . .

In particular, Theorem 5.3.4 implies that if θ∗ ∈ Θ satisfies that `(θ∗ | r,y(r)) ≥ `(θ | r,y(r))

for all θ ∈ Θ then

`(M(θ∗) | r,y(r)) = `(θ∗ | r,y(r)).
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Therefore, if the observed data MLE θ̂obs exists, which is an unique maximizer wrt. θ,

then

M(θ̂obs) = θ̂obs,

i.e. the maximum likelihood estimate is a fixpoint for the EM algorithm.

Furthermore, given a fixed point θ∗ ∈ Θ, it follows by a first order Taylor expansion that

M(θ(k)) ≈M(θ∗) +
(
θ(k) − θ∗

) ∂

∂θ
M(θ∗)

which yields

θ(k+1) − θ∗ ≈
(
θ(k) − θ∗

) ∂

∂θ
M(θ∗) (5.10)

suggesting that near the fixed point θ∗ the EM algorithm have approximately linear

convergence. In particular, it is shown in [7][Page 10] that the rate of convergence is

directly related to the proportion of missing information.

It has been shown that an EM step increases the likelihood function, see Theorem 5.3.4,

that under appropriate conditions the EM algorithm converges, see Theorem E.0.1, that

the MLE is a fixed point for the EM algorithm and that the EM algorithm converges

approximately linearly near its fixed points. However, results regarding convergence of

the EM algorithm towards the MLE can be found in [7] and is beyond the scope of this

report.

A special familiy of models for which the EM algorithm is particularly convenient will

now be considered.

EM Algorithm for Exponential Familiy Models

A major challenge in writing this subsection was modifying derivations and results from

[17][Page 2-4 ] and [15][Page 4,7] in order to generalize the results to natural parameters.

This was done in order to prove the results regarding the EM algorithm in the exponential

familily case presented in [5][Page 68-69] given by Equations (5.11) and (5.12).

and then modify these results to the case of missing data.

It is evident that the EM algorithm is more convient in situtation where the full data

log-likelihood has a simple form and in particular where the E-step and the M-step are

easily performed.
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As it will be shown in this subsection, the exponential familiy is a class of models where

to EM algorithm in particularily simple and convenient.

Consider the case where the distribution of Y belongs to the exponential familiy, that is,

the density is given by

pY (y; θ) = c(y) exp
(

d∑
l=1

ηl(θ)tl(y)− b(θ)
)

for functions c : Rp → R, b : Θ → R, natural parameters ηl(θ) for l = 1, . . . , d, where

ηl : Θ → R, and sufficient statistics tl(y) where tl : Rp → R. Note that the natural

exponential familiy defined in Definition A.0.1 is a subfamily of the exponential family.

It follows that the joint density for all n i.i.d observations is given by

pY(y; θ) :=
n∏
i=1

pY (yi; θ) = c̃(y) exp
(
η(θ)>t̃(y)− b̃(θ)

)
where

c̃(y) =
n∏
i=1

c(yi) b̃(θ) = nb(θ), t̃(y) = (t̃1(y), . . . , t̃p(y))> =
(

n∑
i=1

t1(yi), . . . ,
n∑
i=1

tp(yi)
)>

and η(θ) = (η1(θ), . . . , ηd(θ))>.

The following result is needed for further study of how the EM algorithm can be simplified

when applying to a model beloning the exponential family.

Lemma 5.3.5. Suppose that the distribution of Y belongs to the exponential family

such that

pY(y; θ) = c̃(y) exp
(
η(θ)>t̃(y)− b̃(θ)

)
Under regularity conditions it follows that

∂

∂θ
b̃(θ) = ∂

∂θ

(
η(θ)>

)
Eθ
[
t̃(Y)

]
.
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Proof. Since pY(y; θ) is a density, it follows that

1 =
∫
c̃(y) exp

(
η(θ)>t̃(y)− b̃(θ)

)
dν(y) =⇒ b̃(θ) = log

(∫
c̃(y) exp

(
η(θ)>t̃(y)

)
dν(y)

)

and hence

∂

∂θ
b̃(θ) = ∂

∂θ
log

(∫
c̃(y) exp

(
η(θ)>t̃(y)

)
dν(y)

)

=
∂
∂θ

∫
c̃(y) exp

(
η(θ)>t̃(y)

)
dν(y)

exp(b̃(θ))

=
∫ ∂

∂θ

(
η(θ)>

)
t̃(y)c̃(y) exp

(
η(θ)>t̃(y)− b̃(θ)

)
dν(y)

=
∫ ∂

∂θ

(
η(θ)>

)
t̃(y)py(y; θ)dν(y)

= ∂

∂θ

(
η(θ)>

)
Eθ
[
t̃(Y)

]
where the differentiation and the integral was interchanged in the third equality.

The following proposition regarding maximum likelihood estimation for exponential family

models is a well known result for exponential families.

Proposition 5.3.6. ML Solution Equation for Exponential Family Models

Suppose that the distribution of Y belongs to the exponential family. Then under

regularity conditions it follows that the maximum likelihood solution equation is given

by

t̃(y) = Eθ
[
t̃(Y)

]

Proof. As the full data log-likelihood is given by

`full(θ | y) = log(c̃(y)) + η(θ)>t̃(y)− b̃(θ)

it follows differentiation wrt. θ and setting equal zero yields

∂

∂θ
η(θ)>t̃(y) = ∂

∂θ
b̃(θ).
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By applying Lemma 5.3.5 it follows that the maximum likelihood solution equation is

given by
∂

∂θ
η(θ)>t̃(y) = ∂

∂θ

(
η(θ)>

)
Eθ
[
t̃(Y)

]
=⇒ t̃(y) = Eθ

[
t̃(Y)

]
where it is assumed that ∂

∂θ
η(θ)> is invertible.

Utilizing the above, it is clear that the EM algorithm becomes particularly simple when

considering exponential family models.

Consider the proof of Proposition 5.3.6 but replace the full data log-likelihood with the

expected full data log-likelihood given the observed data, i.e.

Q(θ; θ(k)) = Eθ(k)

[
log(c̃(Y)) + η(θ)>t̃(Y)− b̃(θ) | R = r,Y(R) = y(r)

]
= η(θ)>Eθ(k)

[
t̃(Y) | R = r,Y(R) = y(r)

]
− b̃(θ) + Eθ(k)

[
log(c̃(Y)) | R = r,Y(R) = y(r)

]
which, by differentiating wrt. θ and setting equal zero yields

∂

∂θ
η(θ)>Eθ(k) [t̃(Y) | R = r,Y(R) = y(r)] = ∂

∂θ
η(θ)>Eθ[t̃(Y)]

=⇒ Eθ(k) [t̃(Y) | R = r,Y(R) = y(r)] = Eθ[t̃(Y)]

where it is assumed that ∂
∂θ
η(θ)> is invertible and Lemma 5.3.5 is applied. Intuitively

this result is the natural extension of Proposition 5.3.6 in the case of missing data, where

the sufficient statistic of the full data is replaced by the conditional expectation of the

sufficient statistic given the observed data.

In conclusion, if the distribution of Y belongs to the exponential family then the EM

algorithm can be simplified to

• Given θ(k), compute

Eθ(k) [t̃(Y) | R = r,Y(R) = y(r)] (5.11)

• Determine θ(k+1) as the solution to the system of d equations given by

Eθ(k) [t̃(Y) | R = r,Y(R) = y(r)] = Eθ[t̃(Y)]. (5.12)

The following example regarding the use of the EM algorithm in the case of a univariate

normal sample demonstrates the simplified version of the EM algorithm for exponential

family models.
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Example 5.3.7. EM Algorithm for Univariate Normal Sample

Suppose that Yi ∼ N(µ, σ2) for i = 1, . . . , n, Y = (Y1, . . . , Yn) and that Y1, . . . , Ym are

observed and that Ym+1, . . . , Yn are missing, i.e. R1 = · · · = Rm = 1, Rm+1 = · · · =

Rn = 0 and let R = (R1, . . . , Rn) such that Y(R) = (Y1, . . . , Ym). Furthermore, let

(r,y(r)) be a realization of (R,YR). The normal density is given by

fY (y;µ, σ2) = 1√
2πσ2

exp
(
−1

2
(y − µ)2

σ2

)

= exp
(
− 1

2σ2y
2 + µ

σ2y −
nµ2

2σ2 − log(
√

2πσ2)
)

= c(y) exp
(
η(µ, σ2)>t(Y )− b(µ, σ2)

)
where

η(θ) =
(
µ

σ2 , − 1
2σ2

)
, t(y) = (y, y2), b(µ, σ2) = nµ2

2σ2 + log(
√

2πσ2)

and c(y) = 1, showing that the univariate normal distribution belongs to the exponen-

tial family. Therefore, by Equation (5.11) when considering the EM algorithm, taking

the conditional expectation of the full data log-likelihood can be replaced by simply

taking the conditional expectation of the sufficient statistics, i.e. the computation of

Q(µ, σ2;µ(k), σ2(k)) = E
µ(k),σ2(k)

[
`obs(θ | Y) | R = r,Y(R) = y(r)

]
is replaced by computing

E
µ(k),σ2(k)

[
t̃(Y) | R = r,Y(R) = y(r)

]
= E

µ(k),σ2(k)

[(
n∑
i=1

Yi,
n∑
i=1

Y 2
i

)
| R = r,Y(R) = y(r)

]

=
 m∑
i=1

yi +
n∑

i=m+1
E
µ(k),σ2(k) [Yi],

m∑
i=1

y2
i +

n∑
i=m+1

E
µ(k),σ2(k) [Y 2

i ]


=
(

m∑
i=1

yi + (n−m)µ(k),
m∑
i=1

y2
i + (n−m)(σ2(k) + µ2(k))

)

=: (t(k)
1 , t

(k)
2 ).
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Furthermore, by Equation (5.12) the (k + 1)th M-step simply consists of solving

(
t
(k)
1 , t

(k)
2

)
= E

µ(k),σ2(k) [t̃(Y) | R = r,Y(R) = y(r)] = Eµ,σ2 [t̃(Y)] =
(
nµ, n(σ2 − µ2)

)
wrt. µ and σ2, with solution

µ(k+1) = t
(k)
1
n
, σ2(k+1) = t2(k)

n
− µ(k+1)2

.

Note that this example is mainly for illustrative purposes as the observed data

maximum likelihood estimates for (µ, σ2) is simply given by

µ̂obs =
m∑
i=1

yi
m
, σ̂2

obs =
m∑
i=1

y2
i

m
− µ̂2.

Remark 5.3.8. Monte Carlo EM Algorithm While this subsection focuses on a

special case where to EM algorithm is particularly simple and hence more attractive

to use, it should be noted that the EM algorithm can be used on a far wider range of

models.

In particular, for models where there is a complex model for the full data the E-step

might not even be carried out on closed form.

In such situtations it natural to use a Monte Carlo approach as in Section 4.2.

For the ith individual use Monte Carlo approximation to obtain

Eθ(k)

[
log(pY (Yi; θ)) | Ri = ri, Yi(Ri) = yi(ri)

]
≈ 1
M

M∑
l=1

log
(
pY ((yi(ri), yli(r̄i))); θ

)
where yli(r̄) are i.i.d with density pY(r̄)|Y(r)(y(r̄) | yi(ri); θ(k)) for l = 1, . . . ,M ∈ N. At the

(k + 1)th E-step the Monte Carlo EM algorithm consists of computing the numerical

approximation given by

Q(θ; θ(k)) =
n∑
i=1

Eθ(k)

[
log(pY (Yi; θ)) | Ri = ri, Yi(Ri) = yi(ri)

]

≈
n∑
i=1

1
M

M∑
l=1

log
(
pY ((yi(ri), yli(r̄i))); θ

)

and the (k + 1)th M-step is done by maximizing this numerical approximation.
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It should be noted that the result given in Theorem 5.3.4 regarding each iteration of

the EM algorithm increases the log-likelihood is not necessarily true for the Monte

Carlo EM algorithm and therefore there are no garentees regarding convergence.

Furthermore, if the Monte Carlo EM algorithm does convergence, it does so approxi-

mately linearly by Equation (5.10). This combined with the computationally heavy

E-step yields a method which might be rather unwieldy and thus care must taken

when using this approach.

5.4 Modelling the Dropout Effect

In this section inspired by [20][Chapter 3] the dropout effect for the test result data will

be modelled. Recall Chapter 1 where the idea of dropout in the test result data was

first introduced. Here it was vaguely argued that the dropout could potentially contain

information relevant to the ability of the subjects and would have to be modelled. With

the terminology presented in this chapter these considerations can be reformulated as the

dropout might not be ignorable.

In this section several situations are considered for which the missingness is either MNAR

or the seperability condition is not satisfied, such that the dropout is not ignorable.

For simplicity it will be assumed in this section that all other missingness than the dropout

effect due to the time constraint is ignorable.

Furthermore, the (sequential) steps model as presented in [23] will be used to model the

missing data mechanism. Modelling the missing data mechanism in IRT speeded test

by the steps model has been investigated in [20][Chapter 3] where it was found using

extensive simulation studies that this method could in fact negate the bias which would

otherwise occour by ignoring the missing data mechanism.

The steps model specifies the probability of the ith subject to dropout at some item di,

where di ∈ {1, . . . , p+ 1}, recalling that dropout at item di implies that

ri1 = 1, . . . , ri(di−1) = 1, ridi = 0, . . . , rip = 0,

where di = p+ 1 is interpreted as no dropout, i.e. ri1 = 1, . . . , rip = 1.
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The steps model is given by

P (ri1 = 1, . . . , ri(di−1) = 1, ridi = 0, . . . , rip = 0) = p(di; ξi, δ) =
di−1∏
j=1

p̃ij

 (1− p̃idi)

where

p̃ij = exp(ξi − δj)
1 + exp(ξi − δj)

, p̃i(p+1) = 0, for i = 1, . . . , n, j = 1, . . . , p (5.13)

and δ = (δ1, . . . , δn)>.

It should be noted that while Equation (5.13) agrees with Equation (2.2) in the specification

of the Rasch model, of course with different parameters, there is still a fundamental

distinction between the steps model and the Rasch model.

Under the Rasch model, local stochastic independence is assumed such that given the

parameters, a given subject answers each item independently. However for the steps

model rij = 1 implies that rij̃ = 1 for j̃ = 1, . . . , j and similarly rij = 0 implies rij̃ = 0 for

j̃ = j, . . . , p.

Furthermore it should be noted that the parameters of the steps model have a different

interpretation as well.

The subject parameter ξi is interpreted as the speed of the ith subject, such that a large

ξi would imply a high probability that the ith subject can respond to each item without

running out of time.

Similarly, the item parameter δj represents the total workload needed to respond to all

items before and including the jth item.

The joint model for the ideal full data will now be specified in the case where all the

parameters are considered as fixed effects. Note that the model specification when

considering random effects are equivalent to the fixed effects case when conditioning on

the random effects.

Let ri(−di) denote all missingness other than the dropout s.t. ri and (ri(−di), di) are

equivalent for i = 1, . . . , n, and let ψ = (ξ>, δ>, ψ̃>)> denote the missingness parameters,

were ψ̃ denotes the missingness parameters not associated to the dropout.
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It is assumed that the dropout occurs as specified by the steps model independently of

the full data generated from the Rasch model, and that given the dropout and full data

ignorable missingness occurs, i.e.

p(ri, yi; θ, β, ψ) = p(ri(−di)), di, yi; θi, β, ψ)

= p(ri(−di)) | di, yi; ψ̃)p(di; ξi, δ)p(yi; θi, β).

The definition of ignorability is slightly different when it is only assumed for part of

the missingness mechanism compared to when ignorability is assumed for the whole

missingness mechanism.

Specifically, in this context the assumption of MAR is replaced with

p(ri(−di) | di, yi; ψ̃) = p(ri(−di) | di, yi(ri); ψ̃).

Furthermore, the assumption of separability between the missingness parameters ψ and

parameters for the full data model θ, β is replaced with separability between the parameter

for the ignorable part of the missingness mechanism ψ̃ and the parameters for the dropout

as well as the parameters for the full data model θ, ξ, β, δ. It is clear that these assumptions

implies that the missingness not due to dropout is ignorable, since

p(ri, yi(ri); θi, β, ψ) =
∫
p(ri, yi; θi, β, ψ)dν(yi(r̄i))

=
∫
p(ri(−di) | di, yi; ψ̃)p(di; ξi, δ)p(yi; θi, β)dν(yi(r̄i))

= p(ri(−di) | di, yi(ri); ψ̃)
∫
p(di; ξi, δ)p(yi; θi, β)dν(yi(r̄i))

= p(ri(−di) | di, yi(ri); ψ̃)p(di, yi(ri); θi, ξi, β, δ)

∝ p(di, yi(ri); θi, ξi, β, δ), (5.14)

where the proportionality is wrt. the parameters of interest θ, ξ, β, δ. However, considera-

tions has to made regarding p(di, yi(ri); θi, ξi, β, δ).
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Clearly Di and Yi(Ri) are not independent, but since Di and Yi are, it follows that

p(di, yi(ri); θi, ξi, β, δ) =
∫
p(di, yi; θi, ξi, β, δ)dν(yir̄i)

= p(di; ξi, δ)
∫
p(yi; θi, β)dν(yir̄i)

= p(di; ξi, δ)p(yi(ri); θi, β) (5.15)

where it should be noted that the above argument is a MCAR version of the proof of

Theorem 5.2.2.

Equations (5.14) and (5.15) yields that

p(ri, yi(ri); θi, β, ψ) ∝ p(yi(ri); θi, β)p(di; ξi, δ), for i = 1, . . . , n (5.16)

which is of great importance in the rest of the section.

In the following possible forms of δ and ξ will be proposed.

It is clear that δj should be monotonically increasing as a function of j. Since the subjects

does not run out of time at the first few items, it is not be possible to estimate δj for

small values of j unless some restrictions are made on the form of the item parameters.

For simplicity it will be assumed that

δj = τ + jη (5.17)

where τ is a baseline level and η represents the monotone increasing log odds of dropout

with increasing item number.

Remark 5.4.1. The assumption of a monotonically increasing δj as a function of j as

seen in Equation (5.17) is an explicit usage of the assumption that all subjects try to

solve the items in order of the item enumeration.

If the subject speed parameters ξ = (ξ1, . . . , ξn)> along with τ and η are simply assumed

to be fixed parameters unrelated to the subject speed θ or item difficulty β, then clearly

the separability condition is satisfied. This, in combination with Equation (5.16) implies

ignorability of the entire missingness mechanism, yielding the case considered in Section

6.1. While this would be particularly simple, the modelling of the dropout using the steps

model would contribute with no new information regarding the data.
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Furthermore, one issue is that intuitively there ought to be correlation between the ability

and speed of a subject.

Another option is to model the speed deterministically given the ability as

ξi = αθi, for α ∈ R, i = 1, . . . , n. (5.18)

In this case the distribution of the dropout depends explicitly on the ability of the subject,

implying that the separabililty conditions is not satisfied.

Let ψ = (θ>, α, τ, η, ψ̃>)> denote the parameter vector of all missingness where ψ̃ is the

parameter vector for the missingness not due to dropout, which is assumed to be ignorable.

The joint likelihood is then on the form

LJ,obs(θ, α, β, τ, η | r, y(r)) = p(r, y(r); θ, β, ψ)

=
n∏
i=1

p(ri, yi(ri); θi, β, ψ)

∝
n∏
i=1

p(yi(ri); θi, β)p(di; θi, α, τ, η),

where the proportionality follows by Equation (5.16).

By similar arguments it follows that

p(r, y(r); θ, β, ψ) ∝
n∏
i=1

p(yi(ri); θi, β)p(di; θi, α, τ, η)

=
n∏
i=1

p(yi(ri) | yi(ri)+; β)p(yi(ri)+; θi, β)p(di; θi, α, τ, η)

and hence the conditional likelihood is given as

LC,obs(β | r, y(r)) =
n∏
i=1

p(yi(ri) | yi(ri)+; β)

which is simply a complete cases version of the conditional likelihood, which is also

considered in Section 6.1.
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Furthermore, by considering the GLMM framework, and letting ψ = (α, τ, η, ψ̃>)>, the

marginal likelihood is given by

LM,obs(α, β, τ, η, σ2 | r, y(r)) :=
∫
Rn
f(r, y(r), θ; β, σ2, ψ)dθ

=
∫
Rn
p(r, y(r) | θ; β, ψ)f(θ;σ2)dθ

=
n∏
i=1

∫
R

p(ri, yi(ri) | θi; β, ψ)f(θi;σ2)dθi

∝
n∏
i=1

∫
R

p(yi(ri) | θi; β)p(di | θi;α, τ, η)f(θi;σ2)dθi.

Parameter estimation can be conducted from either the observed data joint, conditional

or marginal likelihood presented above.

However, this has been omitted since the assumption of the deterministic relationship

between the ability and speed of subjects given by Equation (5.18) is too restrictive.

Intuitively, it is quite clear that there is a distinction between the ability of a subject and

the speed of said subject. One could easily imagine a diligent subject who has a high

θ, yet is slow and rigorous in his work and hence has a low ξ. On the other hand, it

is also intuitively clear that there ought to be a dependence structure between the two

since a high level of ability in general would imply that the subject can solve the items

quicker. Here it is also worth noting that ξ measures the speed of a subject in regards to

responding to items but not necessarily solving them correctly, and hence a student with

low θ could potentially also have a high ξ.

Therefore, by considering the GLMM framework, it will be assumed that

(θ, ξ) ∼ N2(02,Σ), Σ =


σ2
θ ρσθσξ

ρσθσξ σ2
ξ

 . (5.19)

Mikkel Rúnason Simonsen Page 89 of 149



Chapter 5. Missing Data AAU

Remark 5.4.2. Consider the interpretation of MAR presented in Remark 5.1.2 and

suppose ρ 6= 0. Then clearly, if y(r̄) is a vector of ones then the conditional distribution

of θ given Y = y is skewed such that higher values of θ are more likely than if

e.g. y(r̄) is a vector of zeroes. But as ρ 6= 0, this implies that the value of y(r̄)

influences the conditional distribution of ξ given Y = y, which again influences the

conditional distribution of R given Y = y. In conclusion it is evident that the mapping

y 7→ P (R = r | Y = y) does not coincide for all y ∈ Γ(p) with the same y(r) but

potentially different y(r̄).

On the other hand if ρ = 0 then clearly the missingness mechanism is MCAR.

Let λ = (σθ, σξ, ρ)> denote the covariance parameter vector for Σ, ψ = (τ, η, ψ̃>)> denote

the missingness parameters and v = (β>, τ, η, λ>)> denote the parameters of interest.

Since the abilities and the speeds between the subjects are independent it follows by

Equation (4.7) that the marginal likelihood is given by

LM(v | r, y(r)) =
∫

R2n

f(r, y(r), θ, ξ; β, ψ, λ)dξdθ

=
n∏
i=1

∫
R2
p(ri, yi(ri) | θi, ξi; β, ψ)f(θi, ξi;λ)dξidθi

∝
n∏
i=1

∫
R2
p(yi(ri) | θi; β)p(di | ξi; τ, η)f(θi, ξi;λ)dξidθi. (5.20)

In Section 6.2 focus will be on the implementation and maximization of this marginal

likelihood.

Furthermore, the marginal score and observed information can be obtained using Proposi-

tion 4.1.4. The proposition yields that the score is given by

sM(v | y(r), r) =
n∑
i=1

Ev
[
s̃iM(v | yi(ri), ri, θi, ξi) | ri, yi(ri)

]
(5.21)

where

s̃iM(v | yi(ri), ri, θi, ξi) = ∂

∂v
log(f(yi, ri, θi, ξi; β, ψ, λ))

= ∂

∂v
log

(
p(yi(ri); θi | β)p(di; ξi | τ, η)f(θi, ξi | λ)

)
=: ∂

∂v
gi(θi, ξi). (5.22)
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The components of s̃iM(v | yi(ri), ri, θi, ξi) will now be derived.

Since

∂

∂βj
p(yij | θi; βj) = ∂

∂βj

exp(yij(θi − βj))
1 + exp(θi − βj)

= y −ij exp(yij(θi − βj))(1 + exp(θi − βj)) + exp(θi − βj) exp(yij(θi − βj))
(1 + exp(θi − βj))2

such that

∂

∂βj
log(p(yij | θi; βj)) = pij − yij

and hence

∂

∂βj
gi(θi, ξi) = ∂

∂βj
log

(
p(yi(ri) | θi; β)

)
= rij(pij − yij), for j = 1, . . . , p. (5.23)

Similarly, since

∂

∂τ
p̃ij = ∂

∂τ

exp(ξi − (τ + jη))
1 + exp(ξi − (τ + jη))

= − exp(ξi − (τ + jη))(1 + exp(ξi − (τ + jη))) + exp(ξi − (τ + jη)) exp(ξi − (τ + jη))
(1 + exp(ξi − (τ + jη)))2

it follows that
∂
∂τ
p̃ij
p̃ij

= p̃ij − 1

and
∂
∂τ
p̃idi

1− p̃idi
= −p̃idi

such that

∂

∂τ
gi(θi, ξi) = ∂

∂τ
log (p(di | ξi; τ, η))

=
di−1∑
j=1

∂

∂τ
log(p̃ij)

+ ∂

∂τ
log(1− p̃idi)

=
di−1∑
j=1

p̃ij − 1
+ p̃idi

=
 di∑
j=1

p̃ij

− (di − 1) (5.24)

and similarly

∂

∂η
gi(θi, ξi) =

 di∑
j=1

jp̃ij)
−

di−1∑
j=1

j

 . (5.25)
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Furthermore,

∂

∂σθ
gi(θi, ξi) = ∂

∂σθ
log (f(θi, ξi;λ))

= − ∂

∂σθ
log(2πσθσξ(1− ρ2)) + ∂

∂σθ

(
− 1

2(1− ρ2)

(
θ2
i

σ2
θ

+ ξ2
i

σ2
ξ

− 2ρ θξ

σθσξ

))

= − 1
σθ

+ θ2
i

(1− ρ2)σ3
θ

− ρθξ

(1− ρ2)σ2
θσξ

(5.26)

which by symmetry also implies that

∂

∂ξ
gi(θi, ξi) = ∂

∂σξ
log (f(θi, ξi;λ))

= − 1
σξ

+ ξ2
i

(1− ρ2)σ3
ξ

− ρθξ

(1− ρ2)σ2
ξσθ

. (5.27)

Lastly, since

∂

∂ρ
gi(θi, ξi) = ∂

∂ρ
log (f(θi, ξi;λ))

= ρ

1− ρ2 −
ρ

(1− ρ2)2

(
θ2
i

σ2
θ

+ ξ2
i

σ2
ξ

)
+ 1 + ρ2

(1− ρ2)2
θξ

σθσξ
(5.28)

it follows that the components of s̃iM(v | yi(ri), ri, θi, ξi) are given by Equations (5.23),

(5.24), (5.25), (5.26), (5.27) and (5.28).

Thus the marginal score sM(v | y(r), r) can be determined by summing the conditional

expectation of s̃iM(v | yi(ri), ri, θi, ξi) over all n subjects.

Furthermore, Proposition 4.1.4 also yields the observed information

jM(v | r, y(r)) = −
n∑
i=1

Ev
[(

d
dv s̃iM(v | ri, yi(ri), θi, ξi)

)
| ri, yi(ri)

]

+ Varv
[
s̃iM(v | ri, yi(ri), θi, ξi) | ri, yi(ri)

]
.
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Here
(

d
dv s̃iM(v | ri, yi(ri), θi, ξi)

)
is a sparse matrix with nonzero components given by

∂2

∂β2
j

gi(θi, ξi) = rij(p2
ij − pij)

∂2

∂τ 2 gi(θi, ξi) =
di∑
j=1

p̃2
ij − p̃ij

∂2

∂τ∂η
gi(θi, ξi) =

di∑
j=1

jp̃2
ij − p̃ij

∂2

∂η2 gi(θi, ξi) =
di∑
j=1

j2p̃2
ij − p̃ij

∂2

∂σ2
θ

gi(θi, ξi) = 1
σ2
θ

− 3θ2

(1− ρ2)σ4
θ

+ 2ρθξ
(1− ρ2)σ3

θσξ

∂2

∂σθ∂σξ
gi(θi, ξi) = ρθξ

(1− ρ2)σ2
θσ

2
ξ

∂2

∂σθ∂ρ
gi(θi, ξi) = 2ρθ2

i

(1− ρ2)2σ3
θ

− (ρ2 + 1)θξ
(1− ρ2)2σ2

θσξ

∂2

∂σ2
ξ

gi(θi, ξi) = 1
σ2
ξ

− 3ξ2

(1− ρ2)σ4
ξ

+ 2ρθξ
(1− ρ2)σ3

ξσθ

∂2

∂σξ∂ρ
gi(θi, ξi) = 2ρξ2

(1− ρ2)2σ3
ξ

− (ρ2 + 1)θξ
(1− ρ2)2σ2

ξσθ

∂2

∂ρ2 gi(θi, ξi) = ρ2 + 1
(1− ρ2)2 −

3ρ2 + 1
(1− ρ2)3

(
θ2
i

σ2
θ

+ ξ2
i

σξ

)
+ 2ρ(ρ2 + 3)θξ

(1− ρ2)3σθσξ
.

The score and observed information cannot be specified any further before the data

analysis in the following chapter because the expected values and variance is taken wrt.

the conditional distribution of the random effects given the data.
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6 | Data Analysis

The purpose of this chapter is to conduct a data analysis and make statistical inference,

in particular parameter estimation, based on the test result data presented in Chapter 1

and the theory presented in Chapters 2, 3, 4 and 5. Throughtout the report thus far the

Rasch model has been proposed as the data generating model for the full data and the

steps model for the dropout.

For simplicity the parameter estimation will first be conducted under the assumption of

ignorability of the missingness mechanism in Section 6.1. Then in Section 6.2 parameter

estimation will be conducted where dropout mechanism is modelled by the steps model.

For the rest of the chapter let y = {yij}i=1,...,n
j=1,...p

denote the test result data and let

r = {rij}i=1,...,n
j=1,...p

denote the missing data indicators of y, such that rij = 1 implies that yij
has been observed and rij = 0 implies that yij is missing.

6.1 Assuming Ignorable Missingness Mechanism

In this section parameter estimation in the Rasch model will be conducted under the

assumption that the missingness mechanism is ignorable. The R code described in this

section can be found in Appendix F. In particular, MAR and the separability condition is

assumed such that the proof of Theorem 5.2.2 implies that

pR,Y(R)(r, y(r); θ, β, ψ) ∝ pY(r)(y(r); θ, β) (6.1)

where ψ denotes the parameter vector for the missingness mechanism. Densities will in

the following be denoted without the use of subscripts to ease notation.
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Joint Likelihood Estimation

In order to conduct joint likelihood estimation, the observed data joint likelihood, from

now on simply referred to as the joint likelihood, given by

LJ,obs(θ, β | r, y(r)) = p(r, y(r); θ, β, ψ) ∝
n∏
i=1

p(yi(ri); θi, β)

will be considered. By noting that

p(yi(ri); θi, β) =
∫
p(yi(ri), yi(r̄i); θi, β)dν(yi(r̄i))

=
∫ p∏

j=1
p(yij; θi, βj)dν(yi(r̄i))

=
p∏
j=1

p(yij; θi, βj)rij

it is immediately clear that when the missing data mechanism is ignorable, the joint

likelihood is simply the full data joint likelihood where each factor containing missing

values is removed, i.e. a complete cases version of the full data joint likelihood. It is

also clear that the observed data joint likelihood inherits the problems of the full data

joint likelihood. For instance, joint maximum likelihood estimation cannot be conducted

if there are extreme scores present in the data, i.e. if yi(ri)+ = ri+ or yi(ri)+ = 0 for any

i = 1, . . . n.

Furthermore, since an increased number of subjects implies an equivalent increment in

the number of parameters in the model, inconsistency is still to be expected.

The JML estimates are computed in R using the glm function which is a function used to

fit generalized linear models.

The item parameter estimates β̂J can be found in Table 6.1.

While the 663 subject parameter estimates have not been included in the report, the

sample variance of the subjet parameter estimates is σ̂J = 1.98.
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Conditional Likelihood Estimation

Recall how the full data conditional likelihood was obtained in Chapter 3 by factorizing

the density as

p(y; θ, β) =
n∏
i=1

p(yi; θi, β) =
n∏
i=1

p(yi | yi+; β)p(yi+; θi, β)

and then simply disregarding the second factor such that

LC(β | y) =
n∏
i=1

p(yi | yi+; β).

Similarly, since

p(r, y(r);ψ, θ, β) ∝ p(y(r); θ, β)

=
n∏
i=1

p(yi(ri) | yi(ri)+; β)p(yi(ri)+; θ, β)

the observed data conditional likelihood, from now on simply referred to as the conditional

likelihood, is given as

LC,obs(β | r, y(r)) =
n∏
i=1

p(yi(ri) | yi(ri)+; β).

While a rigorous study of the observed data conditional likelihoods properties will be

omitted in this report, it should be noted the observed data conditional score

sC,obs(β|r, y(r)) = ∂

∂β
log(LC,obs(β | r, y(r)))

satisfies the first Bartlett identity, thus giving it merit as a reasonable estimating function.

This follows since

E
[
∂

∂β
log(p(yi(ri) | yi(ri)+; β)) | yi(ri)+

]
=
∫ ∂

∂β
p(yi(ri) | yi(ri)+; β)
p(yi(ri) | yi(ri)+; β) p(yi(ri) | yi(ri)+; β)dyi(ri)

= ∂

∂β

∫
p(yi(ri) | yi(ri)+; β)dyi(ri)

= 0p

and hence it follows by the law of total expectation that

E
[
sC,obs(β | r, y(r))

]
= 0.
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The CML estimates are obtained in R using the clogistic function from the Epi package,

which is a function for maximizing conditional likelihoods in logistic regression models.

Parameter estimates β̂J can be found in Table 6.1.

Furthermore, a goodness of fit test as described in Section 3.3 is also conducted in yielding

a test statistic of Z = 1267.00. Comparing this test statistic to a χ2-distribution with

(p− 1)(p− 2) = 1190 degrees of freedom as per Theorem 3.3.2 yields a p-vaue of 0.059.

That is, with a significance level of 5% the Rasch model is accepted as the data-generating

model.

Marginal Maximum Likelihood

The observed data marginal likelihood, from now on simply referred to as the marginal

likelihood, is given as

LM,obs(β, σ2 | r, y(r)) :=
∫
Rn
f(r, y(r), θ;ψ, β, σ2)dθ

=
∫
Rn
p(r, y(r) | θ;ψ, β)f(θ;σ2)dθ

∝
∫
Rn
p(y(r) | θ; β)f(θ;σ2)dθ

=
n∏
i=1

∫
R

p(yi(ri) | θi; β)f(θi;σ2)dθi

Asymptotic results regarding parameter estimates using the marginal likelihood is obtained

from Theorem 5.2.5.

The MML estimates are obtained in R using the glmer function from the lme4 package,

which is a function for fitting GLMMS.

The glmer function approximates the marginal likelihood using Gauss-Hermite approx-

imation with the default number of quadrature point as one, yielding the Laplace-

approximation. Furthermore, the marginal likelihood is then maximized using Nelder-Mead

and convergence is verified by controlling that max|grad| is below some prespecified toler-

ance, where max|grad| denotes the numerically largest entry of the score approximated

using finite-difference methods.
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When using the Laplace-approximation, the tolerance was not met as the greatest numeric

value of entries in the score was

max|grad| = 0.0938797.

Therefore, the number of quadrature point is increased to 5, yielding

max|grad| = 0.0117677

which is a considerable improvement from the Laplace-approximation case. Using Gauss-

Hermite quadrature with 5 quadrature points, the estimated variance of subject ability

is given by σ̂M = 1.36 and the item difficulty parameter estimates β̂M as well as the

associated standard errors SEM can be found in Table 6.1. It should be noted that

parameter estimation has been made assuming E[θ] = 0 such that β̂1 6= 0. Therefore, β̂M
has been translated such that β̂1 = 0 in order to make comparisons between the item

difficulty parameter estimates simpler.

Discussion and Comparison

When deriving the observed data version of the joint, conditional and marginal likelihood

under the assumption of ignorable missingness mechanism, it was seen that these were

simply the complete cases equivalents of the full data versions.

The default handling of NA values in glm, clogistic and glmer is na.omit which directly

removes all records with NA values from the dataset, thus yielding exactly the complete

cases analysis.
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β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12

β̂J 0 -1.27 -0.84 2.13 -0.83 -1.20 1.08 2.22 1.74 -0.41 3.07 1.68

β̂C 0 -1.20 -0.79 2.01 -0.78 -1.13 1.02 2.10 1.65 -0.39 2.90 1.60

β̂M 0 -1.21 -0.81 2.01 -0.79 -1.15 1.02 2.09 1.64 -0.42 2.87 1.56

SEM 0.11 0.14 0.13 0.11 0.13 0.14 0.11 0.11 0.11 0.13 0.13 0.12

β13 β14 β15 β16 β17 β18 β19 β20 β21 β22 β23 β24

β̂J 3.33 0.82 1.54 0.55 -0.69 2.18 5.87 5.24 7.49 -0.53 -1.26 0.86

β̂C 3.15 0.77 1.46 0.52 -0.66 2.07 5.54 4.95 7.03 -0.51 -1.19 0.81

β̂M 3.10 0.77 1.45 0.52 -0.67 2.04 5.40 4.91 6.93 -0.53 -1.22 0.81

SEM 0.14 0.11 0.11 0.11 0.13 0.12 0.27 0.23 0.52 0.13 0.15 0.11

β25 β26 β27 β28 β29 β30 β31 β32 β33 β34 β35 β36

β̂J 0.24 0.80 2.36 0.26 3.09 4.08 3.70 5.05 1.89 1.25 1.07 2.46

β̂C 0.22 0.76 2.24 0.24 2.94 3.89 3.53 4.79 1.79 1.18 1.01 2.34

β̂M 0.15 0.68 2.14 0.22 2.87 3.78 3.42 4.62 1.79 1.10 0.92 2.23

SEM 0.17 0.16 0.16 0.13 0.21 0.26 0.26 0.34 0.13 0.19 0.19 0.19

Table 6.1: Table containing item parameter estimates rounded to two decimal places obtained from

the test result data using respectively joint, conditional and marginal maximum likelihood

assuming ignorability of the missing mechanism. The table also includes the standard error

associated to each marginal ML parameter estimate.

Considering Table 6.1 it is seen that there are no statistically significant difference in

the parameter estimates obtained from the different estimators, as all three estimates

associated to each item parameter is contained within two standard errors of the marginal

ML estimate.
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In particular, the estimated orderings of item difficulty are in agreement. Furthermore,

using the L2 norm it follows that

‖β̂J − β̂C‖ = 0.87 ‖β̂J − β̂M‖ = 1.19 ‖β̂C − β̂M‖ = 0.38

showing that the estimates are similar but that the conditional and marginal maximum

likelihood estimates are closer to each other than to the JML estimates.

However, although the item parameter estimates are somewhat in agreement, there is quite

big difference between the estimated standard deviation in subject ability when considering

the sample standard deviation of the JML subject ability estimates σ̂J = 1.98 and the

MML estimate σ̂M = 1.36. Intuitively, it is reasonable that the MML variance estimate is

smaller since the GLMM framework imposes a distribution on the subject abilities whereas

the subject ability parameters can be chosen "freely" in the joint maximum likelihood

estimation.

6.2 Assumming the Steps Model for Dropout

In this section parameter estimation will be conducted in the Rasch model when modelling

the dropout effect using the steps model within the GLMM framework as presented

in Section 5.4. In particular, the marginal likelihood given by Equation (5.20) will be

maximized. The R code described in this section can be found in Appendix G.

In order to maximize the marginal likelihood, it is first implemented in R and then

maximized using R’s default optimization function optim.

Implementation of the Marginal Likelihood in R

In order to evaluate the marginal likelihood given by Equation (5.20) for a given set of

parameters v = (β>, τ, η, λ>)>, the subject specific integral must be computed for each

subject.
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This is done using the two-dimensional Laplace approximation, which recalling Section

4.2 is given by
∫
R2
p(yi(ri) | θi; β)p(di | ξi; τ, η)f(θi, ξi;λ)dξidθi ≈ exp(gi(θLP, ξLP))

√
2π|ΣLP|

where

gi(θ, ξ) = log
(
p(yi(ri) | θi; β)p(di | ξi; τ, η)f(θi, ξi;λ)

)
, for i = 1, . . . , n

is the logarithm of the ith integrand, (θiLP, ξiLP) is a maximizer of gi, |ΣiLP| denotes the

determinant of ΣiLP and ΣiLP is the negative of the inverse Hessian of g evaluated at

(θiLP, ξiLP).

In order to obtain (θiLP, ξiLP), gi must be maximized for i = 1, . . . , n, which is done using

R’s default optimization function optim. In particular, the BFGS algorithm is chosen for

optimization as it is known for quick convergence and efficiency.

In the BFGS algorithm the gradient of the objective function is used, which if not supplied,

will be replaced by a finite difference method to approximate the gradient. In order to

obtain fast convergence and avoid unnecessary computations, the exact gradient of gi is

supplied, which is derived in the following.

First gi(θi, ξi) is written out as

gi(θi, ξi) = log
(
p(yi(ri) | θi; β)p(di | ξi; τ, η)f(θi, ξi;λ)

)
= log

di−1∏
j=1

(p(yij | θi; βj)rij p̃ij) (1− p̃idi))f(θi, ξi;λ)


=
di−1∑
j=1

rij log(p(yij | θi; βj)) + log(p̃ij)
+ log(1− p̃idi) + log(f(θi, ξi;λ)).
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By Equation (2.3) it follows for j = 1, . . . , p that

∂

∂θi
p(yij | θi; βj) = ∂

∂θi

exp(yij(θi − βj))
1 + exp(θi − βj)

= yij exp(yij(θi − βj))(1 + exp(θi − βj))− exp(θi − βj) exp(yij(θi − βj))
(1 + exp(θi − βj))2

such that

∂

∂θi
log(p(yij | θi; βj)) =

∂
∂θi
p(yij | θi; βj)
p(yij | θi; βj)

= yij exp(yij(θi − βj))(1 + exp(θi − βj))− exp(θi − βj) exp(yij(θi − βj))
(1 + exp(θi − βj)) exp(yij(θi − βj))

= yij − pij. (6.2)

Furthermore,

∂

∂θi
log(p̃ij) = 0 (6.3)

and

∂

∂θi
log(f(θi, ξi;λ)) = ∂

∂θi

− 1
2(1− ρ2)

( θi
σθ

)2

+
(
ξi
σξ

)2

− 2ρ θ
σθ

ξ

σξ


= − 1

2(1− ρ2)

(
2 θi
σ2
θ

− 2 ρξ

σθσξ

)

= ρξ

(1− ρ2)σθσξ
− θi

(1− ρ2)σ2
θ

. (6.4)

Combining equations (6.2), (6.3) and (6.4) yields

∂

∂θi
gi(θi, ξi) =

di−1∑
j=1

rij (yij − pij) + ρξi
(1− ρ2)σθσξ

− θi
(1− ρ2)σ2

θ

. (6.5)

Through similar arguments it follows that

∂

∂ξi
gi(θi, ξi) = di − 1−

 di∑
j=1

p̃ij

+ ρθi
(1− ρ2)σθσξ

− ξi
(1− ρ2)σ2

ξ

. (6.6)

Equations (6.5) and (6.6) specify the exact gradient utilized in the BFGS algorithm.

Considering

|ΣiLP| = | −
∂2

∂(θi, ξi)2 gi(θiLP, ξiLP)−1|,

it should be noted that the negative sign can be omitted since it is a 2× 2 matrix.
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Furthermore, since the determinant of the inverse is the inverse of the determinant and

the determinant of a 2 × 2 matrix can be efficiently computed exactly, it follows that

the only challenge remaining in determining |ΣiLP| is to determine an expression for the

Hessian of g as

|ΣiLP| =
1

| ∂2

∂(θi,ξi)2 gi(θiLP, ξiLP)|
.

While the optim function provides the option to return a numeric approximation of the

Hessian evaluated at the optimum, this would result in less precise Laplace approximation

and would increase the computational demands of the R implementation drastically.

Therefore, the exact Hessian is used which is derived in the following.

It follows immediately from Equation (6.5) that

∂2

∂θ2
i

gi(θi, ξi) = −
di−1∑
j=1

rij
∂

∂θi
pij −

1
(1− ρ2)σ2

θ

= −
di−1∑
j=1

rij
exp(θi − βj)(1 + exp(θi − βj))− exp(θi − βj)2

(1 + exp(θi − βj))2 − 1
(1− ρ2)σ2

θ

= −
di−1∑
j=1

rij
pij

1 + exp(θi − βj)
− 1

(1− ρ2)σ2
θ

.

Similarly it follows by Equation (6.6) that

∂2

∂ξ2
i

gi(θi, ξi) = −
di−1∑
j=1

p̃ij
1 + exp(ξi − (τ + jη)) −

1
(1− ρ2)σ2

θ

and

∂2

∂θi∂ξi
gi(θi, ξi) = ρ

(1− ρ2)σθσξ
.

In conclusion, once (θiLP, ξiLP) has been determined using optim they are then inserted in

the expressions above yielding the Hessian and hence also the determinant of ΣiLP. This

in turn yields the Laplace approximation of the two-dimensional integral corresponding to

the ith subject for i = 1, . . . , n.

Once all n integrals have been approximated, the marginal likelihood can simply be

estimated as the product of the Laplace approximations.

Remark 6.2.1. Since each of the integrals usually is a very small number, this product

of integrals would be indistinguishable from zero due to the limited precision of floating

point numbers. Therefore, the marginal log likelihood is estimated instead.

Mikkel Rúnason Simonsen Page 103 of 149



Chapter 6. Data Analysis AAU

A major challenge in this implementation is computational efficiency and numeric insta-

bility.

In particular, efficient vectorized computations in R have been utilized whenever possible

and the function parLapply from the parallel package has been used in order to utilize

multiple cores when computing the Laplace approximations. The code was run on a

computer with i7-7700HQ processor and 8GB RAM, where all 8 virtual cores where

utilized using parallelized computations, resulting in an average time of approximately 10

seconds per likelihood evaluation, of which thousand are needed for maximization.

Regarding numerical instability, functions such as exp are used multiple times throughout

the implementation, which due to the limited precision of floating point numbers yields Inf

whenever the input becomes somewhat large (above 710 when using IEEE 64-Bit floating

point numbers). Therefore, one have to be careful when choosing parameters in order to

ensure that e.g. the exponential function does not return Inf.

Another example is when considering the density for the dropout, where

1− exp(ξi − (τ + diη))
1 + exp(ξi − (τ + diη))

is replaced with
1

1 + exp(ξi − (τ + diη))
as the former simply returns 0 and the latter returns small positive values for reasonably

large ξi − (τ + diη).

Maximization of the Marginal Likelihood

With the marginal likelihood implemented in R, such that the marginal likelihood can

be evaluated given parameters v = (β>, τ, η, λ>)>, the marginal likelihood can also be

maximized.

This is also done using optim, but unlike the implementation of the marginal likelihood the

BFGS method could not be used. This is due to the numerical instability discussed earlier,

since the BFGS method with optim had a tendency to choose parameter values which are

numerically much larger than the current iterate, resulting in e.g. the exponential of large

numbers.

Mikkel Rúnason Simonsen Page 104 of 149



Chapter 6. Data Analysis AAU

In contrast, the Nelder-Mead method with optim generally v parameters not too dissimilar

from the current iterate, avoiding these numerical problems.

Furthermore, some parameters have a parameter space which is not the whole real line, in

particular σθ and σξ which are strictly positive and ρ which is between −1 and 1.

These bounds have to be modelled implicitly as optim does not support the use of bounds

when using the Nelder-Mead method.

Therefore, instead of maximizing wrt. σθ, σξ and ρ, the maximization is done wrt.

log(σθ), log(σξ) and tan(π2ρ) as exp : R→ R+ and 2
π

arctan : R→ (−1, 1).

The MML estimate β̂M obtained in Section 6.1 under the assumption of ignorability is

used as the initial value for the item difficulty parameters β = (β1, . . . , βp)>. In particular,

these are the item parameter estimates when E[θ] = 0, i.e. before the parameter estimates

where translated by −β̂1M to make β̂1M = 0.

Furthermore, τ = −3, η = 0.1, σθ = σξ = 1 and ρ = 0.1 were chosen as initial values.

Evaluating the marginal log likelihood in the initial values yields −29076.24.

After approximately 63.500 iterations and one week of computations the optim function

converged with parameter estimates v̂D given in Table 6.2. The table also includes

standard errors of the parameter estimates which where obtained using Proposition 4.1.4

which states that

jM(v | r, y(r)) = −
n∑
i=1

Ev
[(

d
dv s̃iM(v | ri, yi(ri), θi, ξi)

)
| ri, yi(ri)

]

+ Varv
[
s̃iM(v | ri, yi(ri), θi, ξi) | ri, yi(ri)

]
where s̃iM(v | ri, yi(ri), θi, ξi) and d

dv s̃iM(v | ri, yi(ri), θi, ξi) were derived in Section 5.4 and

the conditional expectations were obtained using Monte Carlo estimation by simulating

random effects θi, ξi from their conditional distribution given ri, yi(ri). In particular, the

result

(θi, ξi)|(ri, yi(ri)
d≈ N(µi,LP,Σi,LP)

from Section 4.2 where utilized as the Laplace parameters were already obtained for

each subject due to the Laplace approximations in the implementation of the likelihood.

Another possible approach would be to simulate from the exact conditional distribution

using rejection sampling as discussed in Proposition D.0.1.
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Note that the item difficulty parameter estimates presented in Table 6.2 have been

translated by −0.9 such that β̂1,D = 0.

Estimate Standard Error Estimate Standard Error

β̂1,D 0 0.01 β̂22,D -0.40 0.01

β̂2,D -0.93 0.01 β̂23,D -0.89 0.01

β̂3,D -0.65 0.01 β̂24,D 0.62 0.01

β̂4,D 1.55 0.01 β̂25,D -0.06 0.02

β̂5,D -0.62 0.01 β̂26,D 0.37 0.02

β̂6,D -0.88 0.01 β̂27,D 1.49 0.02

β̂7,D 0.75 0.01 β̂28,D 0.16 0.01

β̂8,D 1.61 0.01 β̂29,D 2.16 0.03

β̂9,D 1.26 0.01 β̂30,D 2.94 0.06

β̂10,D -0.33 0.01 β̂31,D 2.60 0.05

β̂11,D 2.18 0.01 β̂32,D 3.55 0.10

β̂12,D 1.16 0.01 β̂32,D 1.39 0.01

β̂13,D 2.31 0.01 β̂34,D 0.74 0.02

β̂14,D 0.60 0.01 β̂35,D 0.60 0.02

β̂15,D 1.14 0.01 β̂36,D 1.57 0.03

β̂16,D 0.40 0.01 τ̂D -7.84 0.02

β̂17,D -0.50 0.01 η̂D 0.19 0.00

β̂18,D 1.52 0.01 σ̂θ,D 0.31 0.00

β̂19D 4.41 0.07 σ̂ξ,D 1.38 0.00

β̂20D 3.99 0.05 ρ̂D 0.54 0.01

β̂21D 6.03 0.34

Table 6.2: Parameter estimates and standard errors rounded to two decimal places.

Evaluating the marginal log likelihood in v̂D yields −10672.05.
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Code Validation

In order to validate the R implementation and maximization of Equation (5.20) a sim-

ulation study is conducted. Here 100 datasets are simulated from a Rasch model

with dropout based on the steps model using n = 100, p = 5 and the parameters

β0 = (β1,0, . . . , βp,0) with βj = 0.5j − 1.5, τ0 = −6, η0 = 1, σθ,0 = 0.5, σξ,0 = 1.5, ρ0 = 0.5

and v0 = (β>0 , τ0, η0, σθ,0, σξ,0, ρ0)>.

It should be noted that the number of datasets, n and p have been chosen relatively small

in order to make the simulation study computationally feasible.

For each dataset maximization of the marginal likelihood is conducted using the method

described previously.

β1 β2 β3 β4 β5 τ η σθ σξ ρ

v0 -1.0 -0.5 0.0 0.5 1.0 -6.0 1.0 0.5 1.5 0.5

µMC -0.94 -0.49 0.03 0.47 1.04 -6.01 0.99 0.48 1.60 0.51

σMC 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.01

Table 6.3: Table containing the true parameter values v0, the Monte Carlo estimates µMC of the expected

values of the MML estimators rounded off to two decimal places, and Monte Carlo errors

σMC rounded to three decimal places, based on the MML estimates of the 100 simulated

datasets.

Table 6.3 shows that the R implementation obtains reasonable parameter estimates in

regards to the bias of the estimator, since the Monte Carlo estimate for each parameter

deviates less than 2 times the Monte Carlo error from the true parameter value, except for

th Monte Carlo estimate for σξ which is still reasonably close to the true parameter value.

In conclusion, this simulation study shows that the R implementation and maximization

of the likelihood works as intended.
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Discussion

A rather important parameter to consider is the correlation between ability and speed,

ρ. Clearly, if ρ = 0 then the ability and speed of a subject would be uncorrelated and

hence independent, such that the missingness mechanism would be ignorable. This would

be the same situation as studied in section 6.1 and hence β̂D = β̂M , σ̂θD = σ̂θM . That

is, modelling the dropout effect would have contributed with no additional information

regarding the distribution of subject ability parameters or item difficulty parameters.

However, as ρ̂D = 0.54 with an associated standard error 0.01, this is not the case. In

particular, the ability and speed of a subject is positively correlated, such that a high

speed of a subject increases the probability of the subject to also have high ability and

vice versa. This also means that an early dropout indicates low ability.

Consider e.g. the case of a subject who drops out early but has a high correct rate before

dropout. In the case of ignorable missingness this subject would have a large ability

estimate, as an early dropout is assumed to be unrelated to the ability of the subject.

However, in the case of a positive correlation between the ability and speed of a subject,

the student would have a lower ability estimate as the early dropout indicates lower ability.

It is seen that σ̂D is different from both σ̂M and σ̂J , and in particular significantly lower.

Furthermore, when comparing β̂D with β̂J , β̂C and β̂M in Table 6.1 it is seen that numerical

values of the β̂D estimates are significantly smaller than β̂J , β̂C and β̂M for every item.

However, the ordering of the items are almost unchanged, such that e.g. item 21 is the

most difficult item, item 19 is the second most difficult item and so on no matter which of

the estimates are considered.

Thus the dropout mechanism is MNAR by Remark 5.4.2 and therefore in particular

non-ignorable, and choosing to ignore it results in numerically larger parameter estimates

for both β and σθ compared to when the dropout is modelled.
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7 | Conclusion

The test result data was presented in Chapter 1 where it was apparent that both a model

for the full data and the missingenss mechanism would be needed, as the missingness was

potentially MNAR. Specifically, as motivated by Figure 1.1, it was decided to model the

dropout.

Regarding the full data model, IRT was presented in Chapter 2 in a general setting, and

the Rasch model was proposed as the full data model. Therefore, estimators for the Rasch

model was presented and asymptotic properties derived. Furthermore, the derivation of

the asymptotic properties of the CML estimator was also used to derive a GOF test based

on the Rasch property of specific objectivity.

The Rasch model as a data generating model was accepted by the GOF test when assuming

ignorability of the missingness mechanism in 6.1.

In Section 6.1 the joint, conditional and marginal ML estimates where obtained from

the test result data under the assumption of ignorable missingness. Here it was found

that there where no statistically significant differences between the different types of item

difficulty estimates for each item. A measure of subject homogeneity was obtained from

the MML with σ̂M = 1.37.

Regarding the modelling of the dropout, the steps model was introduced in Section 5.4

where the subject speed ξ and the correlation between subject ability and speed ρ was

introduced.

A marginal likelihood was then derived including models for the full data, the dropout

and the ability and speed of subject modelled as bivariate normally distributed random

effects.

This marginal likelihood was then implemented in R and maximized in Section 6.2.

Here, a 95% confidence interval of ρ was obtained as (0.52, 0.56), confirming that the

dropout does in fact yield MNAR missingness cf. Remark 5.4.2 under the proposed model.
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Furthermore, the standard deviation in subject ability was estimated to σ̂D = 0.31,

considerably smaller than the estimate σ̂M = 1.37 obtained in Section 6.1.

Similarly it was found that estimates based on ignorable missingness yielded the same

ordering of item difficulty as when modelling the dropout, but were however significantly

larger in numeric values. That is, the difficulty of the items was seen to be significantly

more similar when modelling the dropout.

In conlusion, under the stated assuptions the dropout effect was found to be MNAR and

hence non-ignorable. Choosing to treat the missingness mechanism as ignorable regardless

would result in severly skewed result in significant changes to the obtained parameter

estimates, implying that modelling the missingness mechanism is essential to conduct

statistical inference on the test result data.
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8 | Final Remarks

This chapter contains the final remarks of the report including reflection of how the

content of the report have been prioritized, and how the analysis could be continued if

time was not a limitation.

The EM Aglorithm

The EM algorithm was introduced in Chapter 5 as an approach to conduct optimization

in situations where e.g. pY(r)(y(r); θ) is difficult to compute, and hence the usual methods

for maximizing the observed data likelihood are computationally infeasible.

However, this is clearly not the case for the Rasch model making the EM algorithm a

less appealing choice of optimization approach. Furthermore, as seen in Section 4.3 the

E-step is not explicitly given but instead has to be numerically approximated by e.g. a

Laplace approximation. Furthermore, the EM algorithm only has linear convergence near

to optimum and does not return standard errors as opposed to e.g. a Newton-Raphson

approach with quadratic convergence which also computes the observed information at

each iteration.

Based on the above, the EM algorithm have not been used to maximize the marginal

likelihood in this report.

Nevertheless, this begs the question as to why the EM algorithm was considered in Sections

4.3 and 5.3 if it was not going to be used in the data analysis.

One of the reasons that the EM algorithm was been considered in this report is due to its

prominent role in the missing data litterature, see e.g. [7], [5] and in the IRT litteature

see e.g. [22], [20] and [3].
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Furtheremore, as mentioned in Remark 4.3.2, the EM algorithm is applicable for GLMM’s

since the random effects can be considered as missing data which was the original purpose

of the EM algorithm. Hence the EM algorithm somehow overlaps the topics of GLMM’s

and missing data making it especially relevant in this report.

Other IRT models

Within IRT there are numerous models which could have beeng used, for example the 2PL

model where each item has two associated parameters, namely difficulty and discrimination,

i.e.

P (Yij = 1) = exp (αjθi − βj)
1 + exp (αjθi − βj)

.

Intuitively this is a natural extension of the Rasch model since not all questions requires

the same utilization of ability. For instance, one could design a "coinflip"-type question

where the subject has a 50% chance of answering correctly regardless of ability. This

situation could not be explained within the Rasch model but in the 2PL model this is

easily found by setting the item difficulty and discrimination to zero, hence yielding

P (Yij = 1) = exp (0 · θi − 0)
1 + exp (0 · θi − 0) = 1

2 , for i = 1, . . . , n.

Clearly the Rasch model is a special case of the 2PL model where all discrimination

parameters equals 1.

The reason this has not been prioritized in the report is because it would fundamentally

not add anything new. The joint likelihood estimation in the 2PL model would obviously

suffer from the same issues as in the Rasch model and since sufficiency of the subject score

is unique to the Rasch model c.f. Theorem 2.1.1 it follows that the conditional approach

is not viable. Hence the parameter estimation would simply be done using a marginal

maximum likelihood approach by considering the subject ability as a random effect and

where the likelihood would be estimated using the methods described in Section 4.2, see

Remark 4.3.3

To summarize, applying other IRT models than the Rasch model to the test result data

might add new insight to understand the data, but not new methods for the report and

has therefore not been prioritized.
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Utilizing all the Test Result Data

Recall Chapter 1 where the test result data is presented. Here it is mentioned that the

dataset actually contains more information regarding the subjects than just the response

pattern, includig age, gender and school. Although this additional information has not

been utilized in the report, it is interresting to consider if it could have been.

Obviously as the Rasch model is a logistic regression additional covariates could have

easily been added to the linear predictor yielding a modified Rasch model.

Another approach as to how this additional information could have been used is the

following.

Recall Section 3.3 where the Rasch model property specific objectivity is presented, which

intuitively means that the estimators of the item parameters is consistent no matter the

sample of subjects. As explained then, the GOF test presented in Theorem 3.3.2 is a

special case of specific objectivity where the test is based on consistent estimators for

each score group.

However, one could also have constructed a similar GOF test by e.g. grouping the subjects

by age, gender or school rather than subject score.

This has however been omitted from the report as one GOF test ought to be sufficient.

Modelling the Missingness Mechanism

When modelling the missingness mechanism in Section 5.4 it is assumed that all missingness

other than dropout is ignorable such that

p(ri, yi(ri) | θ;ψ, β) ∝ p(di, yi(ri) | θ, ξ; β, τ, η).

However this assumption it most likely wrong. Intuitively, especially since it’s a speeded

test, it is quite possible that subjects simply skip items deemed too difficult. Hence

missing responses before dropout might indicate lower ability just like early dropout.

Therefore, it might contribute to the understanding of the dataset to model more of the

missing data mechanism than just the dropout, and this could for instance be done using

a Rasch model.
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Expanding the modelling of the missingness mechanism would be my focus if more time

was available.

Improving the Maximization Approach

The implementation and maximization of the marginal likelihood in Equation (5.20) as

discussed in Section 6.2 was quite inefficient as the Nelder-mead algorithm converged

63.500 iterations. This implies that the implemented approach will most likely not be

utilized in other applications or by other reasearchers.

As the marginal score and observed information have already been implemented it seems

reasonable to maximize the marginal likelihood using the Newton-Raphson algorithm

rather than the Nelder-Mead algorithm. However, attempts at this have so far not been

successful as problems occur similar to those described in Section 6.2 regarding the use of

the BFGS algorithm.

In conclusion, if more time were available, improving the maximization approach would

be a priority along with expanding the modelling of the missingness mechanism.
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A | Generalized Linear Models

This appendix is based on [19][Chapter 2] and [18][Chapter 4], and is meant as a supplement

to Chapter 2 with the purpose of introducing the reader to generalized linear models and

logistic regression.

First, the exponential dispersion family is defined as follows.

Definition A.0.1. Exponential Dispersion Family

A distribution is said to be in the exponential dispersion family if its density can be

written as

f(y; θ, λ) = exp(λ(θ>y − b(θ)) + c(y, λ)) (A.1)

for canonical parameter θ ∈ Ω ⊆ Rk, k ∈ N, dispersion parameter λ > 0 and functions

b : Ω→ R, c : Rk × R→ R.

The subfamily where λ = 1 is called the natural exponential family.

Definition A.0.1 can now be used to define GLMs.

Definition A.0.2. Generalized Linear Models

Let Y = (Y1, . . . Yn) be a random vector with expected values E[Yi] = µi for i =

1, . . . , n and let X ∈ Rn×p for n, p ∈ N. Suppose that µi ∈M ⊆ R and let ηi = x>i β

for i = 1, . . . , n and some β ∈ Rp. Furthermore, let g : M → R be an invertible

function.

Then Y is said to follow a generalized linear model with design matrix X, link function

g and linear predictors η1, . . . , ηn if Yi follows a distribution from the exponential

dispersion family, Yi ⊥⊥ Yj and ηi = g(µi) for i, j = 1, . . . , n, i 6= j.

Logistic regression will now be presented and in particular it will be shown that is a

GLM.
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Example A.0.3. Logistic Regression as a GLM

Let Xi
⊥⊥∼ Bin(ni, pi) and ηi denote the number of successes and the linear predictor

for the ith subject for i = 1, . . . , n.

For a logistic regression, pi is modelled using the relation

ηi = logit(pi) = log
(

pi
1− pi

)
(A.2)

which is well defined since logit : ]0, 1[→ R.

By Equation (A.2) it follows that

pi = pi
1− pi

(1− pi) = pi
1− pi

1
pi

1−pi + 1 = exp(ηi)
exp(ηi) + 1 ,

that is, the probability for succes for the ith subject is modelled as the standard

logistic function of the linear predictor for that subject.

While odds are not a concept usually utilized in most of statistics, they are often

considered when dealing with logistic regression because of their simple form. The

odds for succes for the ith subject is given by

oi = pi
1− pi

= exp(ηi) (A.3)

such that the odds ratio between the ith and jth subject is given by

oi
oj

= exp(ηi − ηj). (A.4)

It will be now shown that the logistic regression is a GLM.
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Let Yi = Xi
ni

such that

E[Yi] = pi, Yi ⊥⊥ Yj for i 6= j

and

fYi(y) = d

dy
FYi(y) = d

dy
FXi(niy) = nifXi(niy) = ni

(
ni
niy

)
pniyi (1− pi)ni−niy

= ni

(
ni
niy

)
exp (niy log(pi) + (ni − niy) log(1− pi))

= ni

(
ni
niy

)
exp

(
ni

(
y log

(
pi

1− pi

)
+ log(1− pi)

))

showing that the distribution of Yi belongs to the exponential dispersion family with

θi = logit(pi), b(θ) = log(1 + exp(θ)) and λ = ni.
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B | R Code for Simulation Study

of CML Estimator

This appendix contains the R code for the simulation study regarding the conditional

likelihood discussed in Section 3.4. In particular, the R code was converted to latex code

using RMarkdown and the knit function.

Data generation

K=1000

n= 500

p = 10

beta = (1:p-1)*0.2

theta_sim = rnorm(n,mean = 1)

#save(theta_sim, file = "theta_sim.RData")

load("theta_sim.RData")

response = rep(NA,0,n*p)

item = factor(rep(1:p,n))

subject = factor(rep(1:n, each=p))

dat = data.frame(subject,item,response)

simdata = vector(mode = "list", length = K)

prob = vector(mode = "list", length = p)
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for(j in 1:p){

prob[[j]] = exp(theta_sim-beta[j])/(1+exp(theta_sim-beta[j]))

}

for(k in 1:K){

for (j in 1:p){

dat$response[dat$item == j] =rbinom(n,1,prob[[j]])

}

simdata[[k]]=dat

}

#save(simdata, file = "simdata.RData")

load("simdata.RData")

Subject scores including MC estimates and error

#Computing subject scores

n_s = data.frame(matrix(nrow = K, ncol = p+1))

for(k in 1:K){

data = simdata[[k]]

data_wide =data.frame(matrix(nrow=n, ncol = p))

for(i in 1:n){

data_wide[i,]=data$response[data$subject==i]

}

subjectscore = rowSums(data_wide)

n_s[k,]=table(subjectscore)

}

#save(n_s, file = "simstudy_n_s.RData")

load("simstudy_n_s.RData")
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#No datasets without extreme scores, hence JML estimation not possible

min(n_s[1])

min(n_s[11])

#Monte Carlo estimates

colMeans(n_s)

#Monte Carlo error

sapply(n_s, sd)/sqrt(1000)

Conditional maximum likelihood estimation

library(Epi)

beta_cml = data.frame(matrix(nrow = K, ncol = p-1))

for(k in 1:K){

cml <- clogistic(response ~ item, strata = subject, data = simdata[[k]])

beta_cml[k,] =-coef(cml)

}

names(beta_cml) = c("item2","item3","item4","item5","item6", "item7",

"item8","item9", "item10")

#save(beta_cml, file = "simstudy_beta_cml.RData")

load("simstudy_beta_cml.RData")

#Evaluation of conditional observed information

sympoly <- function(s,X) sum(combn(X, s, prod))

gamma = sapply(1:(p-1),sympoly,exp(-beta))

gamma_j = data.frame(matrix(nrow = p-1, ncol = p-1))

gamma_ji = data.frame(matrix(nrow = (p-1)ˆ2, ncol = p-1))

for(j in 2:(p)){
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gamma_j[j-1,] = sapply(1:(p-1),sympoly,exp(-beta[-j]))

for(i in 2:(p)){

gamma_ji[(j-2)*(p-1)+(i-1),]=sapply(0:(p-2),sympoly,exp(-beta[-c(j,i)]))

}

}

J = function(n_s_k){

J_C = matrix(nrow = p-1, ncol = p-1)

for(j in 2:(p)){

for(i in 2:(p)){

if(i==j){

factor1 = (-gamma_j[j-1,]*(gamma-gamma_j[j-1,]))/(gammaˆ2)

J_C[j-1,j-1]=sum(n_s_k*factor1)

} else {

factor2 = (exp(-beta[i])*gamma_ji[(j-2)*(p-1)+(i-1),]*gamma

-gamma_j[j-1,]*(gamma-gamma_j[i-1,]))/gammaˆ2

J_C[j-1,i-1]=sum(n_s_k*factor2)

}

}

}

return(-J_C)

}

#Computing normalized CML estimates

beta_cml_norm = data.frame(matrix(nrow=K, ncol=p-1))

for(k in 1:K){

beta_cml_norm[k,] = sqrtm(J(n_s[k,][-c(1,11)]))

%*%as.vector(t(beta_cml[k,]-beta[-1]))

}

names(beta_cml_norm) = c("item2","item3","item4","item5","item6", "item7",

"item8","item9", "item10")

Mikkel Rúnason Simonsen Page 124 of 149



Appendix B. R Code for Simulation Study of CML Estimator AAU

#save(beta_cml_norm, file = "simstudy_beta_cml_norm.RData")

load("simstudy_beta_cml_norm.RData")

#Histograms for normalized estimates associated to each item

x <- seq(min(beta_cml_norm$item3), max(beta_cml_norm$item3), length = 1000)

fun = dnorm(x)

par(mfrow=c(3,3))

for(j in 1:(p-1)){

hist(prob=TRUE,beta_cml_norm[,j], breaks=15, main = NULL,ylim = c(0,0.43),

xlim = c(-3,3), xlab = paste("Normalized CML for Item", j+1))

lines(x, fun, col = 2, lwd = 2)

}

library(MVN)

mvn(beta_cml_norm)

cov(beta_cml_norm)

Goodness of fit tests

Z = rep(0,1000)

for(k in 1:K){

vec = rep(0,p-1)

data = simdata[[k]]

cml = clogistic(response ~ item, strata = subject, data)

data_wide =data.frame(matrix(nrow=n, ncol = p))

for(i in 1:n){

#data_wide[i,]=data$response[data$subject==i]

}

subjectscore = rowSums(data_wide)

table(subjectscore)

for(s in c(1:(p-1))){

cml_s<- clogistic(response ~ item, strata = subject,
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data[data$subject %in% which(subjectscore == s), ])

vec[s] = cml_s$loglik[2]

}

Z[[k]] =2*(sum(vec) - cml$loglik[2])

}

#save(Z, file = "simstudy_Z.RData")

load("simstudy_Z.RData")

df = (p-1)*(p-2)

x <- seq(min(Z), max(Z), length = 1000)

chisq <- dchisq(x, df)

hist(Z, prob = TRUE,ylim = c(0,0.035), xlim = c(30, max(Z)),

main = "Histogram of GOF Test Statistics")

lines(x, chisq, col = 2, lwd = 2)

qqplot(Z,rchisq(1000,df), xlab = "Z", ylab = "Theoretical",

main = "QQ-Plot of GOF test statistics against ")

qqline(Z,distribution = function(p) qchisq(p,df=df), col = "steelblue", lwd = 2)

sum(1-pchisq(Z, df)<0.05)
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C | Proof of Asymptotic Results

of the Laplace Approximation

This Appendix is meant as a supplement to Section 4.2 containing proofs of the asymptotic

results of the Laplace Approximation.

Proof of Theorem 4.2.2

Proof. Let δ > 0 be the constant that exists according to condition 3 and define Aδ =

[x̂− δ, x̂+ δ] and Acδ = R \ Aδ. Since

In

exp(nh(x̂))g(x̂)
√

2πn−1H−1
= In exp(−nh(x̂))
g(x̂)
√

2πn−1H−1

=

∫
Aδ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1
+

∫
Ac
δ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1
(C.1)

it is sufficient to show that the first term of Equation (C.1) converges to 1 and the second

term converges to 0.

To show that the second term in Equation (C.1) converges to 0 in the case
∫
R
|g(x)|dx ≤ Ka

(condition 4a), note that
∫
Ac
δ

exp(nh(x)− nh(x̂))g(x)dx ≤ exp(−nε)
∫
Ac
δ

g(x)dx

≤ exp(−nε)
∫
R

|g(x)|dx

≤ exp(−nε)Ka

where condition 2 is applied in the first inequality choosing ∆ = δ and condition 4a is

applied in the final inequality. This implies that∣∣∣∣∣∣∣∣
∫
Ac
δ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1

∣∣∣∣∣∣∣∣ ≤
exp(−nε)Ka

g(x̂)
√

2πn−1H−1
n→∞−→ 0.
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Similarly, in the case
∫
R

exp(h(x))|g(x)|dx ≤ Kb (condition 4b),

∫
Ac
δ

exp(nh(x)− nh(x̂))g(x)dx =
∫
Ac
δ

exp((n− 1)(h(x)− h(x̂)) + h(x)− h(x̂))g(x)dx

≤ exp(−(n− 1)ε) exp(−h(x̂))
∫
Ac
δ

exp(h(x))|g(x)|dx

≤ exp(−(n− 1)ε) exp(−h(x̂))Kb

where condition 2 is applied in the first inequality choosing ∆ = δ and condition 4b is

applied in the final inequality. Thus∣∣∣∣∣∣∣∣
∫
Ac
δ

exp(nh(x)− nh(x̂))g(x)dx

g(x̂)
√

2πn−1H−1

∣∣∣∣∣∣∣∣ ≤
exp(−(n− 1)ε) exp(−h(x̂))Kb

g(x̂)
√

2πn−1H−1
n→∞−→ 0.

In order to see that the first term in Equation (C.1) converges to 1, define

Jn =
∫
Aδ

exp(nh(x)− nh(x̂))g(x)dx

u=
√
n(x−x̂)= n−1/2

∫
Bn,δ

exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)du

where Bn,δ = [−
√
nδ,
√
nδ], so that it has to be shown that

Jn

g(x̂)
√

2πn−1H−1
=

√
nJn

g(x̂)
√

2πH−1
→ 1.
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Note that

g(x̂)
√

2πH−1 =
∫
R

exp
(
−H2 u

2
)
g(x̂)dx

and let

fn(u) = exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)− exp
(
−H2 u

2
)
g(x̂)

such that∣∣∣∣∣∣√nJn −
∫
R

exp
(
−H2 u

2
)
g(x̂)dx

∣∣∣∣∣∣
= |

∫
Bn,δ

exp(nh(n−1/2u+ x̂)− nh(x̂))g(n−1/2u+ x̂)du−
∫

Bn,δ

exp
(
−H2 u

2
)
g(x̂)dx

−
∫

Bc
n,δ

exp
(
−H2 u

2
)
g(x̂)dx|

≤

∣∣∣∣∣∣∣
∫

Bn,δ

fn(u)du

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
∫

Bc
n,δ

exp
(
−H2 u

2
)
g(x̂)dx

∣∣∣∣∣∣∣∣ .

Since

lim
n→∞

∣∣∣∣∣∣∣∣
∫

Bc
n,δ

exp
(
−H2 u

2
)
g(x̂)dx

∣∣∣∣∣∣∣∣ = 0

it is sufficient to show that ∣∣∣∣∣∣∣
∫

Bn,δ

fn(u)du

∣∣∣∣∣∣∣ n→∞−→ 0.

Consider the function p(u) = nh(n−1/2u+ x̂) such that

p(0) = nh(x̂),

p′(0) =
√
nh′(x̂) = 0,

p′′(0) = h′′(x̂) = −H.
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A second order taylor expansion of p(u) around zero, utilizing that h is three times

differentiable and that linear combinations of differentiable functions are differentiable,

yields

nh(n−1/2u+ x̂)− nh(x̂) = −H2 u
2 +Rn(u)

where

Rn(u) = nn−3/2h
(3)(n−1/2c′ + x̂)

6 u3 = n−1/2h
(3)(c)
6 u3

where c′ is between zero and u and c = n−1/2c′ + x̂ is between x̂ and n−1/2u+ x̂.

Since u ∈ Bn,δ implies that |x̂− c| < δ such that condition 3 implies that |h(3)(c)| ≤ K

and hence Rn(u)→ 0 for n→∞, it follows for any u ∈ R that

1[u ∈ Bn,δ]
(

exp
(
nh(n−1/2u+ x̂)− nh(x̂)

)
g(n−1/2u+ x̂)− exp

(
−H2 u

2
)
g(x̂)

)
n→∞−→ 0.

Since

1[u ∈ Bn,δ] exp
(
−H2 u

2
)
g(x̂) n→∞−→ exp

(
−H2 u

2
)
g(x̂)

it follows that

1[u ∈ Bn,δ] exp
(
nh(n−1/2u+ x̂)− nh(x̂)

)
g(n−1/2u+ x̂) n→∞−→ exp

(
−H2 u

2
)
g(x̂).

Furthermore, for u ∈ Bn,δ then |u| ≤
√
nδ such that

|Rn(u)| ≤ K

6 δu
2, |(n−1/2u+ x̂)− x̂| ≤ δ

and hence, by applying condition 3,

1[u ∈ Bn,δ] exp
(
nh(n−1/2u+ x̂)− nh(x̂)

)
|g(n−1/2u+ x̂)| ≤ exp

(
−H2 u

2 + K

6 δu
2
)
C

is obtained, where the righthand side is integrable for sufficiently small δ.

It follows by two applications of Lebesgue’s dominated convergence theorem that∫
Bn,δ

fn(u)du =
∫

Bn,δ

exp
(
nh(n−1/2u+ x̂)− nh(x̂)

)
g(n−1/2u+ x̂)du−

∫
Bn,δ

exp
(
−H2 u

2
)
g(x̂)du

n→∞−→
∫
R

exp
(
−H2 u

2
)
g(x̂)du−

∫
R

exp
(
−H2 u

2
)
g(x̂)du = 0

and hence ∣∣∣∣∣∣∣
∫

Bn,δ

fn(u)du

∣∣∣∣∣∣∣ n→∞−→ 0.
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Proof of Theorem 4.2.3

Proof. Assume for simplicity that g(x) = 1. Note that this implies that condition 4b is

satisfied since 4a is not.

From Equation (C.1) in the proof of Theorem 4.2.2 it is known that

In

exp(nh(x̂))
√

2πn−1H−1
=
√
nJn√

2πH−1
+

∫
Ac
δ

exp(nh(x)− nh(x̂))dx
√

2πn−1H−1
.

Therefore, as it was shown that the second term has an upper bound of order O(exp(−n)),

it is sufficient to show that √
nJn√

2πH−1
= 1 +O(n−1).

As in the proof of Theorem 4.2.2, consider at taylor expansion of nh(n−1/2u + x̂), this

time of order three, around zero:

nh(n−1/2u+ x̂)− nh(x̂) = −H2 u
2 + n−1/2h

3(x̂)
6 u3 +Rn(u) (C.2)

where Rn(u) = n−1 h(4)(c)
24 u4 for c between x̂ and n−1/2u + x̂. Furthermore, a first order

taylor expansion of exp(·) around zero yields

exp
(
n−1/2h

3(x̂)
6 u3 +Rn(u)

)
= 1+n−1/2h

3(x̂)
6 u3+Rn(u)+exp(c′n)

24

(
n−1/2h

3(x̂)
6 u3 +Rn(u)

)2

(C.3)

for c′n between zero and n−1/2 h3(x̂)
6 u3 +Rn(u).

Inserting Equation (C.2) and then Equation (C.3) into
√
nJn yields

√
nJn =

∫
Bn,δ

exp
(
nh(n−1/2u+ x̂)− nh(x̂))

)
du

=
∫

Bn,δ

exp
(
−H2 u

2 + n−1/2h
3(x̂)
6 u3 +Rn(u)

)
du

=
∫

Bn,δ

exp
(
−H2 u

2
)1 + n−1/2h

3(x̂)
6 u3 +Rn(u) + exp(c′n)

24

(
n−1/2h

3(x̂)
6 u3 +Rn(u)

)2
 du.

By splitting the integral into four terms, each of the terms can be assessed seperatly.
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It follows by Lebesgue’s dominated convergence theorem, utilizing that
∣∣∣∣1[u ∈ B,δ] exp

(
−H2 u

2
)∣∣∣∣ ≤ exp

(
−H2 u

2
)

for all n ∈ N, that the limit of the first term is given by

lim
n→∞

∫
Bn,δ

exp
(
−H2 u

2
)

du =
∫
R

exp
(
−H2 u

2
)

du =
√

2πH−1.

Furthermore, by the symmetry of the second term it follows that
∫

Bn,δ

exp
(
−H2 u

2
)
h3(x̂)

6 u3du

=

 0∫
−
√
nδ

exp
(
−H2 u

2
)
h3(x̂)

6 u3du+

√
nδ∫

0

exp
(
−H2 u

2
)
h3(x̂)

6 u3du



=

−
√
nδ∫

0

exp
(
−H2 u

2
)
h3(x̂)

6 (−u)3(−1)du+

√
nδ∫

0

exp
(
−H2 u

2
)
h3(x̂)

6 u3du


= 0.

Multiplying the third term by n yields

lim
n→∞

∫
Bn,δ

exp
(
−H2 u

2
)
nRn(u)du

= lim
n→∞

∫
Bn,δ

exp
(
−H2 u

2
)
h(4)(c)

24 u4du

≤ lim
n→∞

∫
Bn,δ

∣∣∣∣∣exp
(
−H2 u

2
)
h(4)(c)

24 u4
∣∣∣∣∣ du

≤ lim
n→∞

∫
Bn,δ

exp
(
−H2 u

2
)
C ′

24u
4du

=
∫
R

exp
(
−H2 u

2
)
C ′

24u
4du <∞

where condition 3 is used in the second inequality and Lebesgue’s dominated convergence

theorem is used in the second equality. Since the third term muliplied by n is O(1) the

third term itself must be O(n−1).

For the fourth term, recall that c′n is between zero and n−1/2 h3(x̂)
6 u3 +Rn(u).
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Furthermore, for u ∈ Bn,δ∣∣∣∣∣n−1/2h
(3)(x̂)

6 u3
∣∣∣∣∣ ≤ h(3)(x̂)

6 δu2, |Rn(u)| =
∣∣∣∣∣n−1h

(4)(c)
24 u4

∣∣∣∣∣ ≤ h(4)(c)
24 δ2u2

such that

c′n ≤
∣∣∣∣∣n−1/2h

3(x̂)
6 u3

∣∣∣∣∣+ |Rn(u)| ≤ h(3)(x̂)
6 δu2 + h(4)(c)

24 δ2u2

and hence exp(−H
2 u

2 + c′n) is dominated by an unnormalized normal density, say φ(u),

on Bn,δ for sufficiently small δ.

Therefore, since(
n−1/2h

(3)(x̂)
6 u3 +Rn(u)

)2

≤ n−1h
(3)(x̂)2

36 u6 + n−2C
′2

576u
8 + n−3/2h

(3)(x̂)2C ′

144 u7

it follows that
∫

Bn,δ

exp
(
−H2 u

2
) exp(c′n)

24

(
n−1/2h

3(x̂)
6 u3 +Rn(u)

)2

du

≤
∫

Bn,δ

φ(u))
24

(
n−1/2h

3(x̂)
6 u3 +Rn(u)

)2

du

≤ n−1h
(3)(x̂)2

36
1
24

∫
Bn,δ

φ(u)u6du+ n−2C
′2

576
1
24

∫
Bn,δ

φ(u)u8du+ n−3/2h
(3)(x̂)2C ′

144

∫
Bn,δ

φ(u)u7du

and hence the fourth term is O(n−1) since any order moments of a normal distribution is

finite.

In conclusion, it is clear that
√
nJn√

2πH−1
= 1 +O(n−1).
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D | Monte Carlo Methods

This appendix regarding computations of the likelihood function for GLMMs using Monte

Carlo methods is based on [24] and is meant as a supplement to Section 4.2.

The integral given by Equation (4.8) can be written as the expectation
∫
R

f(y | u; β)f(u;σ2)du = Eσ2 [f(y | U ; β)],

and hence it follows that integral can be approximated using monte carlo methods. First

simple Monte Carlo is considered, which estimates the expectation as

Eσ2 [f(y | U ; β)] ≈ 1
M

M∑
k=1

f(y | Uk; β)

where Uk ∼ N(0, σ2) for k = 1, . . . ,M . The variance of the simple Monte Carlo estimate

is given as

Var
[

1
M

M∑
k=1

f(y | Uk; β)
]

= 1
M

Var [f(y | U ; β)]

and hence it follows that the Monte Carlo error, which is the standard deviation of the

Monte carlo estimate, is of order 1√
M
.

In application Var [f(y | U ; β)] can be estimated using the usual emperical variance

estimate

Var [f(y | U ; β)] ≈ 1
M − 1

M∑
k=1

(
f(y | Uk; β)− 1

M

M∑
k=1

f(y | Uk; β)
)2

.

It should be noted that for a particular dataset y based on a specific realization, say u0,

of U ∼ N(0, σ2), the density f(y | U ; β) would usually be heavily concentrated around u0

such that f(y | U ; β) will have a large variance. This problem is particularly impactfull in

higher dimensions because of the curse of dimensionality, effectively making the approach

unusable in such settings.

Clearly if f(y | U ; β) has a high variance then M should be chosen very large which can

be computational infesible.

Mikkel Rúnason Simonsen Page 134 of 149



Appendix D. Monte Carlo Methods AAU

Therefore, other approaches such as importance sampling is needed. Importance sampling

can be used in a more general setup but will now be introduced for our context for

GLMMs.

Suppose there exists a denisty g such that

f(y | u; β)f(u;σ2)
g(u) ≈ constant, f(y | u; β)f(u;σ2) > 0 =⇒ g(u) > 0.

Then
∫
R

f(y | u; β)f(u;σ2)du =
∫
R

f(y | u; β)f(u;σ2)
g(u) g(u)du

= E
[
f(y | V ; β)f(V ;σ2)

g(V )

]
(D.1)

where V denotes a random variable with denisty g. Furthermore, it follows that applying

the simple Monte Carlo approximation on Equation (D.1) yields

∫
R

f(y | u; β)f(u;σ2)du ≈ 1
M

M∑
k=1

f(y | Vk; β)f(Vk;σ2)
g(Vk)

where Vk for k = 1, . . . ,M has density g. It follows by the choice of g that f(y | u;β)f(u;σ2)
g(u)

has low variance and hence the Monte Carlo error is small even though f(y | U ; β) might

have a high variance.

The question at hand of course becomes how g should be chosen. In order to ensure a finite

Monte Carlo error it is evident that f(y | u;β)f(u;σ2)
g(u) ought to be bounded and therefore g

should have heavy tails.

Similar to the justification for adaptive Gauss-Hermite quadrature, recall that Equation

(4.9) implies that f(y | u; β)f(u;σ2) is approximately proportional to a normal density

with mean µLP and variance σ2
LP. Therefore if g is chosen to be said normal density, then

f(y | u;β)f(u;σ2)
g(u) is approximately constantly equal to the normalizing constant f(y; β, σ2).

Alternatively, in order to obtain heavy tails g could be chosen as the density for the

t-distribution with the same parameters. Care needs to be taken when choosing the

degrees of freedom, because if it is chosen too small then the approximation might not

work well and reversely if the degrees of freedom is chosen too big then the tails dont

become significantly heavier than the tailes of the normal distribution.
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An another option also utilizing that

f(y | u; β)f(u;σ2)
f(u | y; β, σ2) = f(y; β, σ2)

would be as follows: Fix β0 ∈ Rp and σ2
0 ∈ R+ and define

g(u) = f(u | y; β0, σ
2
0) = f(y | u; β0)f(u;σ2

0)
f(y; β0, σ2

0)

such that∫
R

f(y | u; β)f(u;σ2)du =
∫
R

f(y | u; β)f(u;σ2)
g(u) g(u)du

= f(y; β0, σ
2
0)
∫
R

f(y | u; β)f(u;σ2)
f(y | u; β0)f(u;σ2

0)f(u | y; β0, σ
2
0)du

= f(y; β0, σ
2
0)E(β0,σ2

0)

[
f(y | U ; β)f(U ;σ2)
f(y | U ; β0)f(U ;σ2

0) | Y = y

]
.

Since

f(y; β, σ2) =
∫
R

f(y | u; β)f(u;σ2)du

it follows that

f(y; β, σ2)
f(y; β0, σ2

0) = E(β0,σ2
0)

[
f(y | U ; β)f(U ;σ2)
f(y | U ; β0)f(U ;σ2

0) | Y = y

]
. (D.2)

Since f(y; β0, σ
2
0) is constant wrt. β and σ2 it follows that the maximum likelihood

estimate can be found as

(β̂, σ̂2) = arg max
(β,σ2)∈Rp×R+

f(y; β, σ2)
f(y; β0, σ2

0)

≈ arg max
(β,σ2)∈Rp×R+

1
M

M∑
k=1

f(y | Uk; β)f(Uk;σ2)
f(y | Uk; β0)f(Uk;σ2

0)

where the approximation follows from the Monte Carlo estimate of Equation (D.2) and

U1, . . . UM are i.i.d. with density f(u | y; β0, σ
2
0).

However, considerations have to be made regarding how to simulate from U |(Y = y).

Although f(u | y; β, σ2) is a non-standard density

f(u | y; β, σ2) = f(y | u; β0)f(u;σ2)
f(y; β, σ2)

since f(y | u; β)f(u;σ2) is well known by the definition of a GLMM, it follows that

f(u | y; β, σ2) is known up to proportionality. Therefore, rejection sampling can be

utilized.
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Proposition D.0.1. Rejection Sampling

Let f(x) ∝ h(x) be a density and assume there exists a density g and K ∈ R such

that

h(x) ≤ Kg(x).

Generate X with density g, W ∼ unif[0, 1] and accept X if W ≤ h(X)
Kg(X) . Then the

conditional density of X given that it has been accepted is f and the probability of

accept is given by
∫
R
h(x)dx/K.

Proof. The probability of accept is given by

P
(
W ≤ h(X)

Kg(X)

)
=
∫
R

h(x)
Kg(x)∫
0

g(x)dwdx

=
∫
R

h(x)
Kg(x)g(x)dx

=

∫
R
h(x)dx

K

Furthermore, the conditional distribution function of X given accept is given by

P
(
X ≤ y | W ≤ h(X)

Kg(X)

)
=

P
(
X ≤ y,W ≤ h(X)

Kg(X)

)
P
(
W ≤ h(X)

Kg(X)

)

= K

y∫
−∞

h(x)
kg(x)∫

0
g(x)dwdx∫

R
h(x)dx

=

y∫
−∞

h(x)dx∫
R
h(x)dx

=
y∫

−∞

f(x)dx

Simply recognizing f(u | y; β, σ2), f(y | u; β)f(u;σ2) and e.g. td(u;µLP, σ
2
LP) for d ∈ N\{0}

as respectively f(z), h(z) and g(z) in Proposition D.0.1 immediately yields a method to

simulate from the conditional distribution of U given y.
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It should be noted that the density for any t-distribution would work for this purpose,

but by choosing it such that it is centered at the Laplace mean µLP and scaled by the σ2
LP

the K is kept as small as possible so that the probability of accept is as large is possible.

Being able to simulate from the conditional distribution of U given y has other usages

than just the one mentioned above.

For instance, the conditional mean described in Proposition (4.1.3) and Example 4.2.4

can be estimated using Monto Carlo approximation simply by

E [U | Y = y] ≈ 1
M

M∑
k=1

Uk

where U1, . . . , UM are i.i.d with density f(u | y; β, σ2).

Furthermore, in Section 6.2 simulations are made from U | Y = y in order to estimate the

marginal score and observed information.
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E | The EM Algorithm

This appendix containing the proof of Theorem 5.3.2 and a result regarding the convergence

of the EM algorithm is meant a supplement to Section 5.3.

Proof of Theorem 5.3.2

Proof. In the proof of Proposition 5.2.7 it was shown that

sobs(θ | r, y(r)) =
∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄))

pY(r)(y(r); θ)
.

Taking the partial derivative wrt. θ> yields

∂

∂θ>
sobs(θ | r, y(r))

=
∂
∂θ>

(∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄))

)
pY(r)(y(r); θ)

pY(r)(y(r); θ)2 (E.1)

−
∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄)) ∂

∂θ>

(∫
pY (y(r), y(r̄); θ)dν(y(r̄))

)
pY(r)(y(r); θ)2 . (E.2)
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Equation (E.1) is given by

∂
∂θ>

(∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄))

)
pY(r)(y(r); θ)

=
∫
−Jfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ) + sfull(θ | y(r), y(r̄)) ∂

∂θ>
pY (y(r), y(r̄); θ)dν(y(r̄))

pY(r)(y(r); θ)

=
∫ −Jfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)

pY(r)(y(r); θ)
+ sfull(θ | y(r), y(r̄))sfull(θ | y(r), y(r̄))>pY (y(r), y(r̄); θ)

pY(r)(y(r); θ)
dν(y(r̄))

=
∫
−Jfull(θ | y(r), y(r̄))pY |Y(r)(y(r), y(r̄) | y(r); θ)dν(y(r̄))

+
∫
sfull(θ | y(r), y(r̄))sfull(θ | y(r), y(r̄))>pY |Y(r)(y(r), y(r̄) | y(r); θ)dν(y(r̄))

= −E
[
Jfull(θ | Y ) | R = r, Y(R) = y(r)

]
+ E

[
sfull(θ | Y )sfull(θ | Y )> | R = r, Y(R) = y(r)

]
(E.3)

where the first equality follows by interchanging the integral and differentiation, the second

equality follows since ∂
∂θ>

pY (y; θ) = sfull(θ | y)>pY (y; θ) and the fourth equality follows by

Lemma 5.2.6. By similar arguments it follows that Equation (E.2) is given by

−
∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄)) ∂

∂θ>

(∫
pY (y(r), y(r̄); θ)dν(y(r̄))

)
pY(r)(y(r); θ)2

= −
∫
sfull(θ | y(r), y(r̄))pY (y(r), y(r̄); θ)dν(y(r̄))

pY(r)(y(r); θ)

∫
sfull(θ | y(r), y(r̄))>pY (y(r), y(r̄); θ)dν(y(r̄))

pY(r)(y(r); θ)

= −E
[
sfull(θ | Y ) | R = r, Y(R) = y(r)

]
E
[
sfull(θ | Y )> | R = r, Y(R) = y(r)

]
. (E.4)

The result follows by summing over the n subjects.

Convergence of the EM Algorithm

Theorem E.0.1. Convergence of the EM Aglorithm

Suppose that {`obs(θ(k) | r,y(r))}k∈N0 is a bounded sequence and that

Q(θ(k+1); θ(k))−Q(θ(k); θ(k)) ≥ K‖θ(k+1) − θ(k)‖2
2 for k = 0, 1, . . . (E.5)

where ‖ · ‖2 denotes the L2-norm. Then for some θ∗ in the closure of the Θ it follows

that

θ(k) −→
k→∞

θ∗.
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Proof. It follows immdiatly from Theorem 5.3.4 that boundedness of `obs(θ(k) | r,y(r))

implies that the sequence converges to some C < ∞. In particular, it follows that(
`obs(θ(k) | r,y(r))

)
k∈N0

is a Cauchy sequence such that for any ε > 0 there exists k(ε) s.t.

k ≥ k(ε), r ≥ 1 implies that
r∑
j=1

(
`obs(θ(k+j) | r,y(r))− `obs(θ(k+j−1) | r,y(r))

)
= `obs(θ(k+r) | r,y(r))− `obs(θ(k) | r,y(r))

< ε. (E.6)

Furthermore, in the proof of Theorem 5.3.4 it is shown that

0 ≤ Q(θ(k+j); θ(k))−Q(θ(k+j−1); θ(k)) ≤ `obs(θ(k+j) | r,y(r))− `obs(θ(k+j−1) | r,y(r))

for j = 1, . . . , r such that Equation (E.5) and (E.6) implies that

K
r∑
j=1
‖θ(k+j) − θ(k+j−1)‖2

2 ≤
r∑
j=1

(
Q(θ(k+j); θ(k))−Q(θ(k+j−1); θ(k))

)
< ε.

Applying the triangle inequality implies that

K‖
r∑
j=1

θ(k+j) − θ(k+j−1)‖2
2 < ε

such that

‖θ(k+r) − θ(k)‖2 <

√
ε

K

showing that
(
θ(k)

)
k∈N0

is a Cauchy sequence. Hence it follows by the completeness of

the closure of Θ that the sequence converges to some θ∗ in the closure of Θ.
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F | R Code Assuming Ignorable

Missing Data Mechanism

This appendix contains the R code for the maximization of respectively the joint, con-

ditional and marginal likelihood discussed in Section 6.1. In particular, the R code was

converted to latex code using RMarkdown and the knit function.

Formatting the data

cfa=read.csv("cfa.csv")

response = rep(0,0,663*36)

for (i in 1:663){

for(j in 6:41){

response[(i-1)*36+(j-5)] = cfa[i,j]

}

}

item = factor(rep(1:36,663))

subject = factor(rep(1:663, each=36))

data = data.frame(subject,item,response)

#save(data, file = "data.RData")

#load("data.RData")

Joint maximum likelihood

jml <- glm( response ~ -1 + subject + item, data = data, family = binomial)

summary(jml)

beta_jml=c("item1"=0, -coef(jml)[(698-34):698])

theta_sd_jml=sqrt(var(coef(jml)[1:(698-35)]))
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Conditional maximum likelihood

library(Epi)

cml <- clogistic(response ~ item, strata = subject, data)

beta_cml=c("item1"=0,-coef(cml))

Marginal maximum likelihood

library(lme4)

mml = glmer(response ~-1+(1|subject)+item, family = binomial, data = data)

mmlGH5 = glmer(response ~-1+(1|subject)+item, family = binomial, data = data,

nAGQ = 5)

summary(mml)

summary(mmlGH5)

beta_mml = -(as.numeric(coef(mmlGH5)[[1]][2,][-1])

- as.numeric(coef(mmlGH5)[[1]][2,][2]))

Comparison

round(rbind("jml"=beta_jml, "cml2"=beta_cml, "mml"=beta_mml),digits=2)

norm(beta_jml - beta_cml, type = "2")

norm(beta_mml - beta_cml, type = "2")

norm(beta_mml - beta_jml, type = "2")

order(beta_jml)

order(beta_cml)

order(beta_mml)

Goodness of fit test

subjectscore = rowSums(cfa[6:41], na.rm = TRUE )

table(subjectscore)

vec = rep(0,35)

for(s in c(1:33,35)){

cml_s<- clogistic(response ~ item, strata = subject,
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NormalTokdata[data$subject %in% which(subjectscore == s), ])

vec[s] = cml_s$loglik[2]

}

Z =2*(sum(vec) - cml$loglik[2])

df = 35*34

1-pchisq(Z, df)
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G | R Code for Parameter Es-

timation When Modelling

Dropout Effect

This appendix contains the R code for the implementation and maximization of the

marginal likelihood discussed in Section 5.4. In particular, the R code was converted to

latex code using RMarkdown and the knit function.

Loading relevant data and packages needed in the following, and defining the initial value.

load("data.RData")

load("beta_mml.rda")

library(mvtnorm)

library(parallel)

init = c("beta"=-beta_mml, "tau"=-3, "eta"=0.1, "sigma_theta_log"=0,

"sigma_xi_log"=0,"rho_tan"=pi/2*tan(0.1))

Defining the logarithm of the integrand, aka the g function, which is to be maximized in

order to obtain Laplace approximation of integral.

g = function(par1, par2,i){

y = data[data$subject == i,]$response

diff_y = par1["theta"]-par2[1:36]

diff_r = par1["xi"]-(par2["tau"]+(1:36)*par2["eta"])

p_y_vec = exp(y*(diff_y))/(1+exp(diff_y))
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p_r_vec = exp(diff_r)/(1+exp(diff_r))

p_y_log = sum(log(p_y_vec), na.rm = TRUE)

k = max(which(!is.na(y)))+1

if(k==37){

p_r_log = sum(log(p_r_vec))

} else{

p_r_log = sum(log(p_r_vec[1:(k-1)]))

+ unname(log(1/(1+exp(par1["xi"]-(par2["tau"]+k*par2["eta"])))))

}

p_y_log + p_r_log + log(dmvnorm(c(par1["theta"],par1["xi"]), mean = rep(0, 2),

sigma = matrix(nrow= 2, ncol = 2, c( exp(par2["sigma_theta_log"])ˆ2,

2/pi*atan(par2["rho_tan"])* exp(par2["sigma_theta_log"]) *exp(par2["sigma_xi_log"]),

2/pi*atan(par2["rho_tan"])* exp(par2["sigma_theta_log"]) *exp(par2["sigma_xi_log"]),

exp(par2["sigma_xi_log"])ˆ2)), log = FALSE))

}

Defining the gradient of the g function wrt. θ and ξ, known in this code as “par1”. This

function will be supplied to the BFGS method in optim in order to maximize g.

score_g = function(par1, par2, i){

diff_y = par1["theta"]-par2[1:36]

diff_r = par1["xi"]-(par2["tau"]+(1:36)*par2["eta"])

y = data[data$subject == i,]$response

k = max(which(!is.na(y)))+1
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p_vec = exp((diff_y))/(1+exp(diff_y))

p_r_vec =c (exp((diff_r))/(1+exp(diff_r),0)

g_dtheta = sum((y-p_vec)[-which(is.na(y))]) + (2/pi*atan(par2["rho_tan"]))

*par1["xi"]/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)

*exp(par2["sigma_theta_log"])*exp(par2["sigma_xi_log"]))- par1["theta"]

/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)*exp(par2["sigma_theta_log"])ˆ2)

g_dxi = sum((rep(1,k-1)-p_r_vec)[1:(k-1)]) -p_r_vec)[k]

+ (2/pi*atan(par2["rho_tan"]))*par1["theta"]/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)

*exp(par2["sigma_theta_log"])*exp(par2["sigma_xi_log"]))

- par1["xi"]/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)*exp(par2["sigma_xi_log"])ˆ2)

c(g_dtheta,g_dxi)

}

Defining the Laplace function which estimates the Laplace approximation of the integral of

exp(g) for a given subject given parameters β, δ, ψ or equivalently β, τ, η, σθ, σξ, ρ, known

in this code as “par2”.

Laplace = function(i, par2){

#Optimize g function

fit = optim(par =c("theta"=0,"xi"=0), fn = g, gr = score_g, par2=par2, i=i,

control = list(fnscale = -1), method = "BFGS")

#Calculate derivatives for hessian

diff_y = fit$par[1]-par2[1:36]

diff_r = fit$par[2]-(par2["tau"]+(1:36)*par2["eta"])

y = data[data$subject == i,]$response

k = max(which(!is.na(y)))+1
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c1 = - sum((exp((diff_y))/(1+exp(diff_y))ˆ2)[1:(k-1)])

- 1/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)*exp(par2["sigma_theta_log"])ˆ2)

c23 = (2/pi*atan(par2["rho_tan"]))/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)

*exp(par2["sigma_theta_log"])*exp(par2["sigma_xi_log"]))

c4 = - sum((exp((diff_r))/(1+exp(diff_r))ˆ2)[1:(k-1)])

- 1/((1-(2/pi*atan(par2["rho_tan"]))ˆ2)*exp(par2["sigma_xi_log"])ˆ2)

hessian = matrix(nrow= 2, ncol = 2, unname(c(c1, c23, c23, c4)))

exp(g(fit$par, par2,i))*2*pi*sqrt(1/det(hessian))

}

Setting up parallelised computations and calculating the loglikelihood given parameters

“par2”.

cl = makeCluster(8)

clusterExport(cl, c("g","dmvnorm", "score_g", "data"))

loglikelihood = function(par2){

sum(log(unlist(parLapply(cl = cl, 1:663, Laplace, par2=par2))))

}

Using the optim function to maximize the loglikelihood wrt. “par2”.

fit = optim(par = init, fn =loglikelihood, control = list(maxit = 100000,

fnscale = -1))

par = fit$par

# save(par, file="parameters.Rda")

#load("parameters.Rda")
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beta = par[1:36]-par[1]

loglikelihood(init)

loglikelihood(fit$par)
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