
6)%0�8-1)�-140)1)28%8-32�3*�'3940)(�6331�
*))(&%'/�()0%=�2)8;36/7�

13(-*-%&0)�8,639+,�34)2�7392(�'328630

&=
3((96�-2+-�/6-78.ʀ27732

%%0&36+�92-:)67-8=�'34)2,%+)2

()')1&)6�����

7392(�
�197-'�'31498-2+�1%78)6�8,)7-7

Aalborg University Copenhagen

Semester: 9th Semester

Title: Real-9me Implementa9on of Coupled-room Feedback Delay Networks
Modifiable Through Open Sound Control

Project period: Fall 2021

Semester theme: Master Thesis

Supervisor(s):
Stefania Serafin
Sebas9an J. Schlecht
Karolina Prawda

Copyright © 2015. This report and/or appended material may not be partly or completely published or copied without prior
wriRen approval from the authors. Neither may the contents be used for commercial purposes without this wriRen approval.

Members:
Oddur Ingi Kristjánsson

Abstract:

Digital methods for creating artificial reverberation have
been investigated for more than 50 years, starting with
digital all-pass filters. Later development led to the
Feedback Delay Network approach which is considered as a
state-of-the-art artificial reverberation. However, research
has mostly focused on simulating a single room’s impulse
response while coupled room acoustics have lacked
investigation. This project focuses on designing a real-time
implemented plugin for simulating coupled room acoustics
through Feedback Delay Networks. Furthermore, the plugin
allows for remote control of parameters with the Open
Sound Control protocol. Different evaluation methods for
subjective and objective evaluation are proposed for the
plugin. Although technical limitations resulted in the
implementation of only single Feedback Delay Network, the
plugin can be used for research purposes by comparing
offline rendered reverberation to its real-time implemented
counterpart.

Aalborg University Copenhagen
A.C. Meyers Vænge 15, 2450
Copenhagen SV, Denmark

Secretary: Judi Stærk Poulsen
Phone: 9940 2468
judi@create.aau.dk

Contents

0.1 Abbreviations . iii

List of Figures iv

1 Introduction 1

2 Analysis 2
2.1 Reverberation . 2

2.1.1 Direct Path . 2
2.1.2 Early Reflections . 3
2.1.3 Late Reverberation . 3

2.2 Artificial Reverberation . 3
2.2.1 Analog Methods . 3
2.2.2 Digital Methods . 4

2.2.2.1 Schroeder and Moorer Reverb 4
2.2.2.2 Convolution . 5
2.2.2.3 Feedback Delay Networks 6

2.2.3 Coupled Rooms Modelling . 8
2.3 Absorption Filters . 11

2.3.1 FIR and IIR Filters . 11
2.3.2 Pole-Zero Analysis . 12
2.3.3 Shelving Filters . 14

2.4 Problem Statement . 16

3 Design 18
3.1 Design Requirements . 18
3.2 Specifying Functionality . 18

3.2.1 Real-Time Implementation . 19
3.2.1.1 Interpolation . 19

3.2.2 Modifiable Parameters . 21
3.3 Final Design . 22

4 Implementation 23
4.1 FDN Class . 23

4.1.1 Delay Lines . 23
4.1.2 Feedback Matrix . 24

4.2 Absorption Filters . 25
4.3 UDP - OSC . 25

4.3.1 Receiving OSC Messages . 26

i

4.3.2 Sending OSC Messages . 27
4.4 Smoothing Variables . 29
4.5 Limitations . 29

5 Evaluation Methods 31
5.1 Objective Evaluation . 31
5.2 Subjective Evaluation . 32

6 Conclusion 34

7 Further Work 35

8 Bibliography 36

ii

0.1 Abbreviations

• Finite Impulse Response - FIR

• Infinite Impulse Response - IIR

• Digital Signal Processing - DSP

• Low-Pass Filter - LPF

• High-Pass Filter - HPF

• Band-Pass Filter - BPF

• All Pass Filter - APF

• Low Shelving Filter - LSF

• High Shelving Filter - HSF

• Feedback Comb Filter - FBCF

• Digital Waveguide Wetworks - DWN

• Feedback Delay Network - FDN

• Early Reflection - ER

• Impulse Response - IR

• Room Impulse Response - RIR

• Decibel - dB

• User Datagram Protocol - UDP

• Open Sound Control - OSC

• New Interfaces for Musical Expression - NIME

iii

List of Figures

2.1 An example of the di↵erent stages of reverberation. Figure from [47]. . . 2
2.2 Above: Schroeder Reverb. Below: Moorer Reverb. Figures from [45]. . . 5
2.3 A 3rd order FDN. Figure from [42]. 6
2.4 Proposed FDN by Jot. Figure from [42]. 7
2.5 The harmonic resonances of a FBCF, where g = filter’s feedback gain.

Figure from [41]. 8
2.6 Coupled Rooms. Figure from [7] . 9
2.7 Block diagram of a GFDN. Figure from [7]. 10
2.8 Real-time plugin of a GFDN. Figure from Github3 10
2.9 An FIR LPF block diagram. Figure from [45]. 11
2.10 Left: 2nd-order FIR LPF. Right: 2nd-order IIR LPF. 12
2.11 Unstable IIR filter. 13
2.12 A pole-zero plot and magnitude response of an unstable IIR filter. . . . 13
2.13 First-order HSF (left) and LSF (right) with gain ±5dB and fc at 2kHz. 16
2.14 Pole-zero plot of an HSF with -5dB gain and an LSF with 5dB gain. . . 16

3.1 Initial design. 19
3.2 Example of an interpolated sample. Figure from [45]. 20
3.3 Lagrange interpolation where L = filter length. Figure from [9]. 21
3.4 Modified Design. 22
3.5 Final design. Left: Default view. Right: Information section expanded . 22

4.1 Flow of OSC check. 26
4.2 The final product. Above is the default state of the plugin. Below, ex-

panded information section and matrix values are displayed. 30

iv

Chapter 1

Introduction

Along with the development of music recording and broadcasting in the early 1900s,
the need for artificially created reverberation arose. Initially, specifically designed
echo chambers were made where a loudspeaker located inside the chamber played a
dry audio signal which was then summed with the response of the space [32]. Later
development included electromechanical devices such as spring- and plate reverbera-
tion [17, 47]. In the 1960s, digital methods for artificial reverberation were proposed
by Schroeder and Logan with the use of digital allpass filters [40]. Further develop-
ment added comb filters to give a psychoacoustically appropriate fluctuation in the
frequency response [41]. Later, the Feedback Delay Network (FDN) approach was
suggested by Gerzon [11] and in 1991, Jot and Chaigne’s [14, 15] FDN methodol-
ogy allowed for adjustable reverberation time of individual frequency bands [47]. The
FDN can be seen as a vectorised feedback comb filter and is considered as a state-of-
the-art [47] artificial reverberation.

While the focus has mostly been on designing artificial reverberation to match a single
room’s impulse response (IR), there was a lack of investigation on modelling coupled
room acoustics. Successful modelling of the perceptual experience of transitioning
between two rooms has been investigated [18, 19], where IRs were recorded at regular
intervals with a spherical microphone. Although highly accurate, the approach su↵ers
from its computational load. In [7], a grouped FDN (GFDN) method was proposed
as an e�cient way to model coupled room’s acoustic with controllable aperture, where
each individual room is modelled with an FDN. This method has also been successfully
implemented as a real-time application1.

Converting o✏ine modelling into a real-time application can be a tedious process and
adjusting individual parameters may require reprogramming the source code. This
project investigates how a real-time application built on the FDN approach for coupled
room acoustics with remotely modifiable parameters at run-time can be designed and
implemented.

1
https://github.com/orchidas/GFDN

1

https://github.com/orchidas/GFDN

Chapter 2

Analysis

The following chapter describes reverberation, what it is, how it exists in the real world,
as well as the di↵erent techniques used to simulate reverberation in the abstract world.

2.1 Reverberation

Reverberation as a term refers to sound being prolonged by the environment’s reflective
surfaces. When a sound is emitted in a room, it travels around the room, reflects o↵
the di↵erent surfaces and travels back to the listener, carrying an ’imprint’ of the space
[47]. Once a sound wave reaches the ears of the listener, it has, in most cases, been
reflected by one or more surfaces or objects in the room. Furthermore, a number of
reflections are often needed before the sound waves become inaudible [10]. A room’s
acoustics can be measured as an impulse response (IR) which, along with reverberation,
can be broken down into three stages, the Direct Path, the Early Reflections, and the
Late Reverberation, as shown in figure 2.1.

Figure 2.1: An example of the di↵erent stages of reverberation. Figure from [47].

2.1.1 Direct Path

The direct path, sometimes called the direct sound, is the first sound heard by the
listener. This sound propagates straight from the sound source to the listener’s position.
As shown in figure 2.1, the direct sound arrives at the listener after a delay of T0 which
depends on the distance between the sound source and the listener [10]. As this sound

2

has not reflected o↵ of objects in the space, the direct sound carries the information
about sound source location [47].

2.1.2 Early Reflections

The early reflections reach the listener shortly after the direct sound and they consist
of sound waves that have reflected once or more o↵ of objects or surfaces in the room.
Due to the spherical distance attenuation and absorption properties of di↵erent surface
materials, the energy of early reflections is reduced compared to the direct sound [10].
Furthermore, the early reflections give a strong sense of the space, especially of its
geometry and surface materials [47], as well as the size of the space as they can still be
recognised as separate reflections [33].

2.1.3 Late Reverberation

Late reflections, or late reverberation, refer to the most di↵use part of the IR where
individual reflections are no longer distinguishable from one another. These reflections
are usually referred to as the reverberation of a space [10]. The time needed for all
sound to be attenuated by 60dB is called the reverberation time and is often denoted
T60 [47]. In the 1890s, W.C. Sabine developed a formula to calculate the reverberation
time which still to this day is named the Sabine Reverberation Formula (equation 2.1)
[3]. Here, V is the room’s volume (m3), and Sā is total area absorption (sabins) [10].

T60 =
0.161V

Sā
(2.1)

2.2 Artificial Reverberation

With the development of music recording and broadcasting, the need for artificially
created reverberation arose. Without any reverberation, the sound produced by the
studio environment resulted in a ’dry’ sound which was especially present when close
micing an audio source as the microphone failed to pick up any room acoustic [47].
This need for reverberation led to the introduction of artificial reverberation, as early
as the 1920s [47]. The following sections describe di↵erent techniques used to create
artificial reverberation with analog and digital methods.

2.2.1 Analog Methods

In order to create an artificial reverberation, a number of devices and methods were
designed. In the beginning, echo chambers, specifically designed enclosures with re-
flective walls, were built. The dry recorded signal was played through a loudspeaker
positioned inside the room and the response of the space was then recorded with a
microphone placed in an appropriate position to minimise the direct sound [32]. The
reverberated signal would then be summed with the original dry signal at a desired

3

proportion. These chambers allowed for damping materials to be added to better con-
trol the reverberation time [4, 30]. While providing a high-quality reverberation, the
echo chambers lacked flexibility [47].

Additionally, electromechanical devices such as spring reverberations and reverbera-
tion plates were developed [47]. In the late 1920s, Hammond [17] invented the spring
reverberator, an electromechanical transducer which, by applying an electrical signal,
excited vibrations in helical springs where each spring element produced a decaying
series of echoes [47]. The simplest spring reverberators used two electromagnetic coils
and two springs held under tension. In spring reverberators, the higher frequencies
are of much lower amplitude than lower frequencies [25]. In plate reverberators, a
thin steel1 plate is excited with an electrodynamic actuator, placed around the plate’s
centre while a contact microphone is used at the plate’s end to pick up its vibrations
[2]. Damping material could then be used alongside the plate to better control the
reverberation time. As the plate response is quickly dense and the higher frequencies
travel faster than the lower frequencies, plate reverberation has a characteristic sound.
[47].

2.2.2 Digital Methods

Approximately 40 years after the invention of the echo chambers (section 2.2.1), the first
digital algorithms for reverberation were proposed [47]. The following sections describe
some of the most common digital methods for creating artificial reverberation.

2.2.2.1 Schroeder and Moorer Reverb

In the 1960s, Schroeder and Ben Logan proposed the digital allpass filter (APF) [40].
By feeding an audio signal into an APF, a series of ’colourless’ decaying echoes was pro-
duced. This is due to the APF’s nature of passing all frequencies with equal gain [47].
In order to increase the echo density, Schroeder and Logan proposed at least five APFs
connected in series [40]. Schroeder and Logan further refined the reverberation and
proposed the approach of adding comb filters to give a psychoacoustically appropriate
fluctuation in the reverberator’s frequency response [41]. Here, four comb filters con-
nected in parallel were proposed along with two APFs in series for a natural-sounding
artificial reverberation, allowing for a wide choice of decay, reverberated sound and
mixing ratios [38]. This approach is known as the Schroeder Reverb [45].

Schroeder’s reverb, however, produced ’metallic’ sounding reverberation. Further im-
provements to the algorithm led to inserting a finite impulse response (FIR, section
2.3.1) filter at the start of the signal chain to simulate the early reflections [21, 39].
Furthermore, Moorer stated the importance of making all the delay lengths mutually
prime in order to reduce peaks building upon the same sample [21]. This approach of
adding the early reflections at the start of the signal chain, before being processed by

1Among other materials, such as gold foil

4

parallel feedback comb filters (FBCF) and APFs in series, is often referred to as the
Moorer Reverb [45]. Figure 2.2 displays a block diagram of both the classical Schroeder
and Moorer reverb.

Figure 2.2: Above: Schroeder Reverb. Below: Moorer Reverb. Figures from [45].

2.2.2.2 Convolution

Convolution reverbs were introduced in the late 1990s and to this date are quite popular
in music production [47]. The recorded IR of a specific is convolved with the input audio
signal as shown in equation 2.2, where h(t) is the IR.

y(t) = x(t) ⇤ h(t) (2.2)

The advantage of the convolution is that with a high-quality room IR (RIR), the
convolution will yield a very accurate representation of the room. The drawback,
however, is that it is very computationally demanding, as can be seen by equation 2.3.
For each sample index (n) increase, all overlapping samples at time n are multiplied,
added together, and set as output. Here, k is the length of the IR. As mentioned in [47],
a 1 second RIR at the sample rate of 48,000 Hz will require 48,000 multiplications and
additions per output sample. These calculations grow proportionally to the number of
channels.

y[n] =
+1X

k=�1
x[k] · h[n� k] (2.3)

5

Another drawback of the convolution method is that the room reverberation is only
accurate for the specific place in the room the RIR was recorded. Therefore, for a
realistic simulation of any receiver position in a room, multiple RIRs and interpolation
procedures may be needed. Additionally, the introduction of more RIRs will result in
more disk space usage.

2.2.2.3 Feedback Delay Networks

Building on the Moorer FBCF approach (section 2.2.2.1), an algorithm called Feedback
Delay Network (FDN) was introduced and can be regarded as a vector of FBCFs
[43, 47]. Here, each delay block is fed back into itself creating repetitions in the signal
[45]. As can be seen in figure 2.3, instead of individual gains on each delay line, a
feedback matrix is used instead.

Figure 2.3: A 3rd order FDN. Figure from [42].

The FDN method was first introduced by Gerzon [11] where he proposed the use of
an orthogonal matrix for the feedback matrix reverberation unit. A square matrix is
orthogonal if its inverse is identical to its transpose [50] as shown in equation 2.4.

A
�1 = A

T (2.4)

By cross-coupling several of the FBCF, Gerzon believed the artificial reverberation to
sound good compared to individual FBCF and that the orthogonal feedback matrix
would obtain rich cross-coupling [42]. Later, Stautner and Puckette [44] proposed a
specific gain matrix (shown below), where g controls the reverberation time [14], to be
used for FDNs which was believed to give good stability [41], that is successive powers
of the gain matrix become smaller instead of larger [44]. This matrix can be considered
a one-row sign inversion of a Hadamard Matrix [42]. A Hadamard matrix is a square
matrix where half the adjacent cells in the next rows/cells have the same sign (+/�)
and half have an inverted sign [49].

A = g
1p
2

2

664

0 1 1 0
�1 0 0 �1
1 0 0 �1
0 1 �1 0

3

775

6

At the start of the 1990s, Jot and Chaigne [14, 15] developed an FDN methodology
which allowed for adjusting the reverberation time of individual frequency bands and
this approach is the current level of application [42, 47]. Most notable additions to the
earlier shown FDN (Figure 2.3) are the input gains b, output gains c, the low-order
filter called ’tone-corrector’ by Jot [14] E(z) at the end of the signal chain, as well
as a dedicated dry path d. This is shown in Figure 2.4. In order to simulate how
higher frequencies attenuate faster than lower frequencies [21], frequency-dependent
per-sample low pass filtering can be inserted after each delay line instead of the g gains
[31]. This will be further explained in section 2.3.3.

Figure 2.4: Proposed FDN by Jot. Figure from [42].

FDNs are still considered the most e�cient method to create artificial reverberation
[47]. Through the relatively low-level approach, the FDNs can simulate how audio
behaves in the real world since apart from each delay block being fed back into itself, the
output from all the other delay blocks are fed into it as well, similar to how audio reflects
from one object to another instead of reflecting in isolation [45]. Additionally, FDNs
allow for modification of multiple di↵erent aspects such as the in- and output gains,
the feedback matrix [34] and feedback delays [12], as well as the early reflections [35].
However, a great challenge when designing FDNs is the trade-o↵ between computational
complexity, mode density, and echo density, as reduced modal density can lead to
metallic sounding artefacts, while reduced echo density can cause rough rattling sounds.
With a higher number of delays, both modal and echo density is increased, but so is
the computational complexity [35].

The feedback matrix is a crucial aspect for high-quality artificial reverb as it has a strong
impact on modal distribution as well as time-domain evolution of the reverberator.
Modal distribution is how resonant modes of the filter are spread with respect to
frequency. In digital reverberation, the modes are dependent on the length of delay
lines [46]. As an example, the FBCF used in Schroeder’s reverb (section 2.2.2.1), has
a nearly harmonic set of resonances as seen in figure 2.5, which is why the APF was
added to flatten the magnitude response. In FDNs, on the other hand, the modal
frequencies are distributed uniformly across the frequency spectrum [13, 37]. In order
to increase the perceived modal density of the FDN, time-varying some elements is a
known strategy, be it the length of the delay lines or the filter coe�cients [46]. Schlecht
et al. [36] showed that an FDN reverberation with a modulated feedback matrix was
perceived to be of higher quality than a non-modulated FDN.

7

Figure 2.5: The harmonic resonances of a FBCF, where g = filter’s feedback gain.
Figure from [41].

2.2.3 Coupled Rooms Modelling

Coupled room acoustics refers to two rooms/volumes, usually di↵ering in size and
absorption, that are linked together with an opening [6]. As FDNs have mostly been
designed to match a single measured IR, investigation on how they can be used to model
coupled rooms has lacked [7]. In [7], the focus was on simulating reverberation of two
coupled rooms with FDNs. This method, called Grouped Feedback Delay Network
(GFDN), consists of two FDNs, one for each modelled room. In a GFDN, delay lines
with the same target T60 are grouped together unlike with FDNs where all delay lines
share the same decay characteristics [7].

In coupled rooms acoustics, a sound source in one of the rooms will travel to the other
room and spill back into its original room. This can be better understood by looking
at figure 2.6, where the sound source is located in the smaller room (R1). The audio
will then decay at a di↵erent rate in R2 due to its di↵erent acoustics.

Here, a mixing matrix controls the amount coupling between the two rooms. As men-
tioned in [7] and implemented in [35]2, the mixing matrix can be written as equation
2.5, where M are orthogonal matrices, ✓ are the mixing angles of the independent
rooms and � is the coupling angle [7].

M(✓1, ✓2,�) =

M(✓1)cos� M(✓12)M(✓22)sin�

�M(✓22)M(✓12)sin� M(✓2)cos�

�
(2.5)

2example coupledRooms.m

8

Figure 2.6: Coupled Rooms. Figure from [7]

These mixing matrices can be scaled by a Householder matrix.

H = I � 2uuT

u =
⇥
cos�� sin�

⇤

H =

�cos2� sin2�
sin2� cos2�

� (2.6)

When � = 0, there is minimum coupling between the rooms while � = ⇡
4 gives maximum

coupling [7]. For an easier understanding of the term coupling, it can be imagined as a
door between the two rooms. The more the door is open, the more coupling there is.

Source placing can then be controlled by the b and c gains of the GFDN (see figure 2.7),
where the b gains can be considered the sound source and c gains can be considered
the receiver. Similar to the FDN shown in figure 2.4, these gains control the input and
output gains of each FDN. If b1, c1 = 0, the sound source and receiver are positioned
in the same room. Furthermore, if � = 0, the rooms are decoupled (imagine a fully
closed door), resulting in no output from the GFDN [7].

Das and Abel [7] proposed first-order low shelf filters for absorption with T60 values
controlled by DC and Nyquist gains, and transition frequency. These filters were im-
plemented as bi-quad filters. Each room was simulated as an FDN of 16 delay lines,
resulting in a 32 delay line GFDN with controllable T60, parameterized at DC and
Nyquist and fc for each room.

This was then further expanded by Das, where a real-time implementation in JUCE3

was created4. As can be seen in figure 2.8, the user has the option to control multiple

3
https://juce.com

4
https://github.com/orchidas/GFDN

9

https://juce.com
https://github.com/orchidas/GFDN

Figure 2.7: Block diagram of a GFDN. Figure from [7].

parameters such as in which room the source and listener is positioned, how much
coupling there is, etc.

Figure 2.8: Real-time plugin of a GFDN. Figure from Github3

The coupled room GFDN method by Das and Abel, is a clever way of modelling coupled
room acoustics. Additionally, the approach can be expanded into N number of rooms

10

[7]. The real-time implementation, furthermore, is an e�cient product that allows it
to be used in a wide variety of scenarios, be it music production, or for Virtual Reality
(VR) applications.

2.3 Absorption Filters

In order to simulate decaying sound with digital signal processing (DSP), an algorithm
that reduces energy over time is needed. As higher frequencies decay faster than lower
frequencies, frequency-dependent filtering will provide the most realistic frequency de-
cay over time.

There is a wide variety of filters used for equalisation, low/high-pass filters (LPF/HPF),
band-pass filters (BPF), comb filters, shelving filters, and more [45]. Important terms
used to describe filters are listed below [45]:

• Pass Band: The frequency range where a signal passes through unchanged

• Stop Band: The frequency range where a signal is attenuated by the system

• Transition Band: The frequency range between the pass- and stop band

• Cuto↵ Frequency (fc): The point in the spectrum when a signal is attenuated
by 3dB

• Filter Order: The number of samples of delay. First-order filters e.g., use only
a single sample of delay

These aforementioned filters are generally designed in two ways, as an FIR filter or as
an infinite impulse response (IIR) filter. The following section describes the di↵erences
between the two methods.

2.3.1 FIR and IIR Filters

FIR filters are feed-forward implementation of filters. The delay lines are not fed back
into the system but added with the unprocessed signal (figure 2.9) and are, therefore,
always stable (section 2.3.2). However, they require a much higher filter order compared
to IIR for the same level of filtering and their delay is often way longer.

Figure 2.9: An FIR LPF block diagram. Figure from [45].

11

IIR filters’ structure is recursive, that is, the output samples are fed back into the filter
for further processing [8]. In order for the filter to be considered stable, the denominator
of the transfer function has to be < 1.

The filter coe�cients of the IIR filter are described using [b0, b1, ..., bM] and [a0, a1, ..., aM],
where b0 is the gain for the signal without a delay, b1 is the gain for the one-sample
delay, etc., and M describes the number of samples. Furthermore, the bm gains relate
to the feedforward paths while the am gains relate to the feedback paths [45]. Note
that these bm filter coe�cient values are unrelated to those used when describing FDNs
(section 2.2.2.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-2.5

-2

-1.5

-1

-0.5

0

M
a

g
n

itu
d

e
 (

d
B

)

2nd-order FIR; Fc = 200; Fs = 1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-120

-100

-80

-60

-40

-20

0

M
a

g
n

itu
d

e
 (

d
B

)

2nd-order IIR; Fc = 200; Fs = 1000

Figure 2.10: Left: 2nd-order FIR LPF. Right: 2nd-order IIR LPF.

2.3.2 Pole-Zero Analysis

An IIR filter can become unstable if not carefully designed. That is, the output gain
will increase in each processing. The instability is depicted in figure 2.11. Here, a
simple 1-sample delay IIR filter (equation 2.7) is visualised with an ↵ = 1.5, where ↵

is the gain in the feedback path. Thus, the output gain increases exponentially.

y[n] = x[n] + ↵y[n� 1] (2.7)

A good way to visualise whether a system is stable or not is by pole-zero analysis, and
here Euler’s formula (equation 2.8) can be used.

e
j✓ = cos(✓) + jsin(✓) (2.8)

By knowing the system’s di↵erential equation, the frequency response can be computed
by the use of Euler’s formula as is shown in equation 2.9 and more specifically, its
magnitude is calculated by |H(ej✓)|.

H(ej✓) =

PL
m=0 bme

�j✓m

1�
PN

m=1 ame�j✓m
(2.9)

12

On a pole-zero plot, the poles (the denominator/a coe�cients) have to be < 1 for the
filter to be stable while the zeros (numerator/b coe�cients) can be either within or
outside of the unit circle [8].

In short, the zeros and poles are visualised in relation to a unit circle when plotted
with a pole-zero plot. Through a frequency sweep, if ej✓ is ’closer’ to a zero, the system
will attenuate the signal and when ’closer’ to a pole, the system will amplify the signal.
The frequency sweep starts at 0 and travels counter-clockwise on the unit circle until
⇡ [24].

The aforementioned filter is depicted on a pole-zero plot in figure 2.12, and as can
be seen, the pole is located outside of the unit circle as it is an unstable system.
Also shown is the filters magnitude response where the lower frequencies increase in
amplitude while the higher frequencies are attenuated.

0

5

10

15

20

25

30
Simple IIR Filter, a = 1.5, 1 sample delay

1 2 3 4 5 6 7 8 9 10

Figure 2.11: Unstable IIR filter.

-1 -0.5 0 0.5 1 1.5

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
in

a
ry

 P
a
rt

Simple IIR Filter, a = 1.5, 1 sample delay

10-2 10-1 100

Normalized Frequency (rad/sample)

-8

-6

-4

-2

0

2

4

6

8

M
a
g
n
itu

d
e
 (

d
B

)

Simple IIR Filter, a = 1.5, 1 sample delay

Figure 2.12: A pole-zero plot and magnitude response of an unstable IIR filter.

13

2.3.3 Shelving Filters

A very flexible and powerful type of equalisation is the parametric equaliser. A special
type of filter often used for the high and lower frequencies is the shelving filter [48].
For a smooth transition between the a↵ected and una↵ected frequency regions, a first-
order shelving filter can be designed. Equation 2.10 shows the transfer function of a
first-order low shelving filter (LSF).

H(z) =
G tan(!c/2) +

p
G+ [G tan(!c/2)�

p
G]z�1

tan(!c/2) +
p
G+ [tan(!c/2)�

p
G]z�1

(2.10)

Here, a gain value G is applied to all frequencies below or above a defined fc [48].
This gain value can be defined as

p
G in order to retain the magnitude response when

varying the gain. Here, !c = 2⇡fc/fs is the cuto↵ frequency in radians and fs is the
sampling frequency.

The simplified transfer function of the first-order LSF can then have the form of equa-
tion 2.11, where p represents the poles, q represents the zeros, and g acts as a scaling
factor [48].

H⇢(z) = g
z � q

z � p
(2.11)

This approach of shelving filter design allows for modifying the transfer function (equa-
tion 2.10) into a high-frequency shelving filter (HSF). By changing G into 1/G, and
multiplying the numerator by G, the magnitude response is shifted vertically [48]. Mul-
tiplying both numerator and denominator by

p
G cancels divisions by G resulting in

equation 2.12. This, furthermore, means that to convert an LSF to an HSF, the pole
and zero of the filter can be interchanged [48]. For a more detailed description, a
step-by-step approach to this filter is explained in [48].

H(z) =

p
G tan(!c/2) +G+ [

p
G tan(!c/2)�G]z�1

p
G tan(!c/2) + 1 + [

p
G tan(!c/2)� 1]z�1

(2.12)

If we look at equation 2.12 and compare it with a general transfer function (equation
2.13), we see that a1 consists of the term inside the square brackets, while a0 is the
rest of the numerator. The same goes for the b0 and b1 coe�cients.

H(z) =
b0 + b1z

�1

a0 + a1z
�1

(2.13)

For a more clear overview, the coe�cients of a LSF is shown in equation 2.14 and for
an HSF in equation 2.15.

14

b0 = G tan(!c/2) +
p
G

b1 = G tan(!c/2)�
p
G

a0 = tan(!c/2) +
p
G

a1 = tan(!c/2)�
p
G

(2.14)

b0 =
p
G tan(!c/2) +G

b1 =
p
G tan(!c/2)�G

a0 =
p
G tan(!c/2) + 1

a1 =
p
G tan(!c/2)� 1

(2.15)

The coe�cients are, furthermore, normalised, resulting in a0 = 1 [22], and therefore
not present in the di↵erential equation below [45].

y[n] = b0 · x[n] + b1 · x[n� 1]� a1 · y[n� 1] (2.16)

As mentioned in section 2.1.3, reverberation time is defined by the time it takes the
energy to decay by 60 dB. In order to get the desired per-sample filter gain value from
the T60 value, the following equations can be used [1].

gdB = �60
1

T60fs
(2.17)

glin = 10
gdB
20 (2.18)

gi = (glin)
mi (2.19)

In equation 2.17, a target T60 is used to get the needed attenuation value in the
decibel scale. In order to convert it from the decibel’s logarithmic scale into a linear
scale, equation 2.18 can be used. Lastly, for the gain value to become dependent on
the delay line length mi, equation 2.19 is used.

In figure 2.13, two HSFs and LSFs are shown. Here, fc is set to 2kHz, with a gain of
±5dB at a fs of 44,100 Hz. The gain value is calculated from equation 2.18 before the
coe�cients are calculated.

The pole-zero plot of the HSFs and LSFs furthermore reveals the first-order of the
filters, as well as their stability. Looking at figure 2.14, we see that the HSF only has
one pole and one zero, where the pole is within the unit circle. As mentioned above,
the pole-zero plot for the HSF with -5dB gain is identical to the LSF with a 5dB gain,
and vice versa.

15

10-2 10-1 100

Normalized Frequency (rad/sample)

-5

-4

-3

-2

-1

0

1

2

3

4

5

M
a
g
n
itu

d
e
 (

d
B

)

Gain = -5dB

Gain = 5dB

Fc = 2kHz

10-2 10-1 100

Normalized Frequency (rad/sample)

-5

-4

-3

-2

-1

0

1

2

3

4

5

M
a
g
n
itu

d
e
 (

d
B

)

Gain = -5dB

Gain = 5dB

Fc = 2kHz

Figure 2.13: First-order HSF (left) and LSF (right) with gain ±5dB and fc at 2kHz.

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g

in
a
ry

 P
a
rt

HSF -5dB & LSF 5dB

Figure 2.14: Pole-zero plot of an HSF with -5dB gain and an LSF with 5dB gain.

2.4 Problem Statement

It has been shown that artificial reverberation can be achieved with di↵erent methods,
where each use case is di↵erent. The design can either be a real-time implementation5

or o✏ine rendering for more computationally demanding methods such as convolution
[47].

The drawback of both real-time implemented and o✏ine rendered products can, how-
ever, be that in order to change or re-program one thing, the code must be modified
and the project has to be rendered again. This is especially evident in real-time virtual

5
https://github.com/orchidas/GFDN

16

https://github.com/orchidas/GFDN

studio technology (VST) plugins, where in most cases, the user has no control of the
code. If the plugin can be modified, it is also necessary that the user has access to the
code and can understand it before building the plugin again. This approach can be
tedious and time-consuming when only small adjustments are needed.

This project is done in collaboration with professor Sebastian J. Schlecht6 and doctoral
candidate Karolina Prawda7 from Aalto University in Helsinki, Finland. The initial
goal for this project was to make a real-time implementation of modelled coupled-
room acoustics. In [18] and [19], the perceptual experience of transitioning between
two rooms was investigated. There, four di↵erent transitions were measured with a
fourth-order spherical microphone array in 5cm intervals, resulting in 101 IRs for each
transition. Through time-varying convolution methods, the auralization was evaluated
in VR and was shown to be perceived as highly natural. The computational load of
this approach is, however, very high. By only looking at the Wav format IRs8, they
consist of 25 audio channels, 2 seconds in length, at a sample rate of 48kHz. By looking
back at the example in section 2.2.2.2, this would result in 48, 000 ⇤ 25 ⇤ 2 = 2, 400, 000
calculations per output sample.

As was presented in section 2.2.3, FDNs can be used for modelling coupled room acous-
tics. The initial goal for this project was to make a real-time implementation of the
GFDN method proposed in [7] (section 2.2.3). However, only shortly after the project
started, Das released their own implementation9. It is, therefore, the goal of this project
to design and implement a reverberation plugin built on the FDN approach for coupled
room acoustics where most parameters can be modified at run-time without the need to
modify the source code. This can prove important in research scenarios where design-
ers may want to compare o✏ine rendered reverberators to real-time implementation.
Another scenario could be in VR applications, where the reverberation could remotely
be tweaked as needed without having to stop the application or build the VR project
again.

The problem can therefore be described as

Design a real-time implemented VST for simulating coupled room acoustics through
FDNs which can be modified remotely at run-time.

6
https://www.sebastianjiroschlecht.com

7
https://www.aalto.fi/en/people/karolina-prawda

8
http://doi.org/10.5281/zenodo.4095493

9
https://github.com/orchidas/GFDN

17

https://www.sebastianjiroschlecht.com
https://www.aalto.fi/en/people/karolina-prawda
http://doi.org/10.5281/zenodo.4095493
https://github.com/orchidas/GFDN

Chapter 3

Design

This chapter describes the design process of the developed product. The requirements
and functionality of the final product are presented as well.

3.1 Design Requirements

The product has to fulfil the following requirements:

1. Operate in real-time

2. Su�cient number of parameters should be modifiable

3. Has to be e�cient enough to run without audible clicks

4. Stability

5. Portability

6. Visual feedback on the variables’ values

3.2 Specifying Functionality

As this product should allow modification of the FDN algorithm at run-time without
the need of adjusting the code, it is important that the user can receive visual feedback
of the variables’ values. This should ensure that the user is modifying the correct
parameters, as well as getting visual confirmation of the change. Based on this, the
initial design is depicted in figure 3.1. Here, each individual room has its own adjustable
sliders and the user can change the feedback matrix which is displayed in the bottom
left corner. In the bottom right corner the Open Sound Control (OSC) (section 4.3)
status is displayed.

18

Figure 3.1: Initial design.

3.2.1 Real-Time Implementation

For this product to be successfully implemented, it will have to be able to run in real-
time. That is, all parameters have to be modifiable and able to update without any
rendering time. This can be achieved with frameworks such as JUCE, Max/MSP1

or other software that can run and process samples at audio rate. Additionally, the
product should be portable. That is, it should be able to run on di↵erent platforms,
Windows/MacOS, mobile phones, VR devices, etc. In this work, JUCE was chosen as
it allows for multiple plugin formats such as VST3, AU, AAX, standalone and Unity.

In real-time applications, audio disturbances such as clicks and other artefacts should be
avoided. This can be achieved with interpolation of parameter values (section 3.2.1.1)
as well as with e�cient code. While some devices can handle computationally heavy
tasks, others such as VR headsets and smaller devices have less processing power. One
way the product can ensure e�ciency between devices is by making the order of the
FDN modifiable and allowing for turning delay line modulation either on or o↵ [9].

3.2.1.1 Interpolation

Varying the FDN parameters, such as delay line lengths and matrix values, by changing
them in one step leads to audible disturbances in produced sound [47]. Therefore,
the change in variables needs to be implemented in smaller sub-steps. Here, the most
computationally light method is linear interpolation, which estimates a value by linearly
combining neighbouring samples (n and n+ 1) and can be expressed by equation 3.1,
where frac is a fraction of a sample, 0 < frac < 1 [45].

(1� frac) · xn + (frac) · xn+1 (3.1)
1
https://cycling74.com/products/max

19

https://cycling74.com/products/max

This is shown in figure 3.2.

Figure 3.2: Example of an interpolated sample. Figure from [45].

There are, however, other more advanced interpolation methods with Lagrange inter-
polation specifically used in FDN reverberation [9].

In polynomial interpolation, normally referred to as Lagrange interpolation, the prob-
lem is to find the unique order sample polynomial which interpolates the samples [41].
An important property of Lagrange interpolation is that its magnitude does not exceed
unity (see figure 3.3) which ensures the stability of the feedback network [9]. Lagrange
interpolation also has a good fractional delay approximation at lower frequencies [16].
Moreover, an interpolation of order 4 or more can be used for an accurate low-frequency
delay modulation [47]. Lagrange interpolation is given by equation 3.2, where P (x) is
the polynomial that passes through n samples [51].

P (x) =
nX

j=1

Pj(x),

where

Pj(x) = yj

nY

k=1,k 6=j

x� xk

xj � xk

(3.2)

20

Figure 3.3: Lagrange interpolation where L = filter length. Figure from [9].

3.2.2 Modifiable Parameters

For the product to be usable as a sandbox product for implementation testing and
evaluation, the following parameters are modifiable.

1. Number of delay lines

2. Delay line length

3. Delay line modulation

4. Feedback matrix values

5. Input gains

6. Output gains

7. Dry/Wet mix

8. Filter coe�cients

9. Transition frequency

It is evident that, with the number of parameters needed to be adjusted and visually
represented, the design idea in figure 3.1 is insu�cient. Therefore, the design was
expanded as seen in figure 3.4.

21

Figure 3.4: Modified Design.

3.3 Final Design

Based on the described requirements, the design was again updated. For more visual
information to be visible, the user should be able to expand the information section
where the input- and output gains are shown as well as the length of individual delay
lines. The user should also have the option of changing the feedback matrix type and
seeing its values. Furthermore, the order of the FDN should be modifiable. The matrix
size grows proportionally to FDN order, that is N2, where N is the order. Therefore,
for higher-order FDNs, the displayed matrix would not fit in its space. By clicking a
’show matrix’ button, the sliders are hidden and the matrix is shown instead. Moreover,
this allows for more space for delay lengths, input- and output gains, as well as user
data protocol (UDP) (section 4.3) information. Therefore, the design was revised as
seen in figure 3.5.

Figure 3.5: Final design. Left: Default view. Right: Information section expanded

22

Chapter 4

Implementation

In this chapter, the implementation of the plugin using the JUCE framework and a ded-
icated digital signal processing (DSP) class is presented. The following sections break
down the implementation into smaller parts, where the most relevant implementation
takes place in the FDN class. Lastly, an overview of a MATLAB1 script is explained.
The source code is available online at https://github.com/Krummakot/FDN_

Thesis.

4.1 FDN Class

The FDN class is the core of the implementation. It performs the processing of the
FDN algorithm and modifies the delay lines, the feedback matrix, and the input- and
output gains.

4.1.1 Delay Lines

Delay lines were implemented using JUCE’s built-in DSP module, dsp::DelayLine.
It handles the read- and write-pointer updating, and o↵ers fractional delay calcula-
tion with Thiran, Linear, and Lagrange3rd as interpolation options2. Although the
Lagrange interpolation should be of fourth-order or higher to achieve close to a flat
frequency response [9], JUCE’s delay interpolation algorithm only supports third or-
der. However, as third-order Lagrange interpolation still gives good approximations
for lower frequencies [16] and allows for real-time modulation of the delay3, the o↵ered
third-order Lagrange interpolation has been chosen and considered su�cient in this
project.

Since the order of the FDN and, thus, the number of the delay lines should be modi-
fiable, the delay lines are initialised as an std::vector which allows for resizing as
needed4. The interpolation method as well as the sample type of the delay line must be

1
https://www.mathworks.com/products/matlab.html

2
https://docs.juce.com/master/namespacedsp_1_

1DelayLineInterpolationTypes.html

3
https://docs.juce.com/master/structdsp_1_1DelayLineInterpolationTypes_1_

1Lagrange3rd.html

4
https://en.cppreference.com/w/cpp/container/vector

23

https://github.com/Krummakot/FDN_Thesis
https://github.com/Krummakot/FDN_Thesis
https://www.mathworks.com/products/matlab.html
https://docs.juce.com/master/namespacedsp_1_1DelayLineInterpolationTypes.html
https://docs.juce.com/master/namespacedsp_1_1DelayLineInterpolationTypes.html
https://docs.juce.com/master/structdsp_1_1DelayLineInterpolationTypes_1_1Lagrange3rd.html
https://docs.juce.com/master/structdsp_1_1DelayLineInterpolationTypes_1_1Lagrange3rd.html
https://en.cppreference.com/w/cpp/container/vector

declared while initialising the vector. The delay lines’ maximum delay5 and the desired
delay length in samples must as well be initialised at this moment.

As the delay lines are instances of the DSP class, they must also be prepared with a
dsp::ProcessSpec structure which contains the program’s sample rate, the maxi-
mum block size, and the number of channels the DSP algorithm should handle6.

The delay line length implementation is heavily inspired by Das’ implementation7.
There, the delay lengths are initialised with a lower and upper range (in ms). Through
an iterative approach, prime numbers within the range are found, stored in their own
array and assigned to the dspDelayLines vector. The function used to find the prime
numbers for the delay line length estimation, findNPrime(), is adapted from Das’8

work and is left unchanged in this project’s implementation9.

Modulation can be done with a low-frequency oscillator (LFO), in this instance a sinus
wave. The dsp::Oscillator class is used to create the LFO, where it is then
initialised on each delay line. A modulation depth of 6 samples and a frequency rate f

of 0.5Hz < f < 2Hz was chosen [9]. However, both the modulation depth and frequency
may vary depending on the use case [36]. Thus, both variables have to be accessible and
modifiable by the user. Below, a pseudo code of the implemented modulation is shown.
The delay in samples for each delay line must be retrieved before being summed with
the output of the LFO. The DSP delay line is then updated with the new value, which
may be fractional. Since the delay lines are initialised with the Lagrange interpolation,
the DSP delay line handles the processing.

delay = getDelayLength()

lfoOut = lfo.process()

newDelay = delay + lfoOut

DSPdelayLine.setDelay(newDelay)

4.1.2 Feedback Matrix

The JUCE DSP module includes a class, dsp::Matrix10, to perform matrix opera-
tions. As the feedback matrix is square (section 2.2.2.3), it must be initialised at a size
of N2. The Matrix class can be constructed either with the number of rows, number
of columns, as a data pointer to an array storing its values, or by using the public
member functions identity, toeplitz, hankel, and hadamard. In the case of this project,
the matrix is initialised in two di↵erent ways, as an identity matrix and as a matrix
with a data pointer to an array of values. The reason for this will be further explained

5Its default size is 4 samples
6
https://docs.juce.com/master/structdsp_1_1ProcessSpec.html

7
https://github.com/orchidas/GFDN

8
https://github.com/orchidas/GFDN/blob/Grouped_FDN/Source/FDN.cpp

9Apart from changing variable names
10
https://docs.juce.com/master/classdsp_1_1Matrix.html

24

https://docs.juce.com/master/structdsp_1_1ProcessSpec.html
https://github.com/orchidas/GFDN
https://github.com/orchidas/GFDN/blob/Grouped_FDN/Source/FDN.cpp
https://docs.juce.com/master/classdsp_1_1Matrix.html

in section 4.3. The limitation of the Matrix class is that mathematical operations can
only be done with other Matrix instances. Therefore, the delay line input and output
vectors must be one-column instances of the Matrix class.

4.2 Absorption Filters

To simulate the frequency-dependent decay in a room, a filter is added to the signal
chain. In this instance, two first-order shelf filters (section 2.3) are used at the end of
each delay line. The filters are cascaded, which means that the signal is processed by
an LSF first, before being passed to an HSF. The filter implementation is declared in
its own class.

Below, a pseudo-code based on equations 2.15-2.19 can be seen. The filters realise
frequency-dependent decay, which is also adjusted for the length of each delay line.

gDB = -60/(decayTime*sampleRate)

gLinear = pow(10,(gDB/20))

G = pow(gLinear,delayLength)

wc = cutoff/(sampleRate * 2 * pi)

tc = std::tan(wc/2)

b0 = sqrt(G)*tc + G

b1 = sqrt(G)*tc - G

a0 = sqrt(G)*tc + 1

a1 = sqrt(G)*tc - 1

a0inv = 1/a0

b0 *= a0inv

b1 *= a0inv

a1 *= a0inv

Furthermore, an HSF at a fixed frequency of 20.2kHz is used to equalise problematic
high frequencies [28].

4.3 UDP - OSC

For real-time updating of variables, the OSC protocol, a real-time message communica-
tion among applications and hardware11 can be used. Designed for low latency, flexible,
and accurate communication for musical performance, it has been used extensively in
the New Interfaces for Musical Expression (NIME) community. It supports a variety
of data types (int32, float32, String, ...) and allows for multiple recipients of

11
https://opensoundcontrol.stanford.edu/index.html

25

https://opensoundcontrol.stanford.edu/index.html

a single message12. The messages can then be transmitted over internet connections
and/or between di↵erent programs on the same device through a UDP connection.

In relation to this project, it is not necessary to send OSC data but instead, the product
needs to receive messages. A special module for receiving and handling OSC messages
is a part of JUCE’s framework.

4.3.1 Receiving OSC Messages

The OSC implementation in JUCE requires a conditional check before handling the
received message. A pseudo-code of such an operation is shown below.

function oscMessageReceived(oscMessage) {

if oscMessage is integer {

get integer value

assign integer value

}

}

Each message can consist of multiple arguments of di↵erent data types. The OSC Type
Tag String is used to gather information on the type and order of data being sent. As
an example, when sending an OSC String, a float, integer and another OSC String, the
OSC Type Tag String would state "sfis" (where s-string, f-float, i-integer). In order
to identify which variables are being sent over OSC for this product, a String is added
as the first argument to each message describing which modifications should be done.
Figure 4.1 shows an example of how this check is performed.

Such checks are performed for all parameters that are modifiable with OSC. A complete
list is shown in table 4.1.

Figure 4.1: Flow of OSC check.

12
https://opensoundcontrol.stanford.edu/spec-1_0.html

26

https://opensoundcontrol.stanford.edu/spec-1_0.html

Parameter Options String Identifier Additional
Input gain Single/Whole bGainSingle/bGainWhole For single: Index specified
Output Gain Single/Whole cGainSingle/cGainWhole For single: Index specified
Feedback Matrix Single/Whole matrixSingle/matrixWhole For single: Index specified
Delay Line Length Single/Whole delaySingle/delayWhole For single: Index specified
Dry/Wet Mix Single dryWet
T60 LSF Single lowT60
T60 HSF Single highT60
Transitional Freq. LSF Single lowTransFreq
Transitional Freq. HSF Single highTransFreq
Modulation On/O↵ modulation Second string = ”on”/”o↵”
Modulation Depth Single/Whole modDepthSingle/modDepthWhole For single: Index specified
Modulation Rate Single/Whole modRateSingle/modRateWhole For single: Index specified

Table 4.1: OSC Values and identifiers.

4.3.2 Sending OSC Messages

The OSC messages can be sent to the JUCE plugin through every program that sup-
ports UDP and OSC. In this case, a MATLAB script was created for handling the up-
dates with the oscSend13 function. Firstly, a UDP connection has to be opened where
an IP address and port number are defined. Here, MATLAB’s built-in udp(’host’,
port function is used before the connection is opened with the fopen() function. In
this instance, the OSC Address is defined as ’/juce’, which has to match the address
defined in the JUCE plugin. Secondly, through the MATLAB script, it must be en-
sured that the defined number of delay lines matches the FDN order. New values are
assigned to the variables before sending. An example of a feedback matrix initialisation
and reshaping into a one-row vector before being sent as a whole is shown below. It is
necessary to reshape the matrix as its values are stored as a single-row vector in the
JUCE implementation. Additionally, an example of updating a single matrix index by
a value of 0.3 is shown and lastly, receiving both of those matrix updates in JUCE.

13
https://www.mathworks.com/matlabcentral/fileexchange/

31400-send-open-sound-control-osc-messages

27

https://www.mathworks.com/matlabcentral/fileexchange/31400-send-open-sound-control-osc-messages
https://www.mathworks.com/matlabcentral/fileexchange/31400-send-open-sound-control-osc-messages

// ==== MATLAB ====

N = 16 % Nr of Delay Lines

% open up the connection

u = udp(’127.0.0.1’, 6448);

fopen(u);

path = ’/juce’;

matrix = randomOrthogonal(N); % create matrix

matrix = reshape(matrix,1,[]); % reshape matrix

idx = [0,0]; % specify index

% send matrix as whole

for i = 1:length(matrix)

oscsend(u, path, ’sf’, ’matrixWhole’, matrix(i));

end

% send single matrix value

oscsend(u, path, ’siif’, ’matrixSingle’, idx(1), idx(2), 0.3);

// === JUCE ===

if (message[0].isString()) {

String messageString = message[0].getString();

if(messageString.compare("matrixWhole") == 0) {

if (message[1].isFloat32()) {

matrixCoefs[count] = message[1].getFloat32();

count++;

if (count >= nrDelayLines * nrDelayLines) {

fdn.updateMatrixCoefficientsOSC(matrixCoefs, "whole");

count = 0;

}

}

}

if(messageString.compare("matrixSingle") == 0) {

if(message[1].isInt32() && message[2].isInt32() &&

message[3].isFloat32()) {

int row = message[1].getInt32();

int col = message[2].getInt32();

float val = message[3].getFloat32();

matrixCoefs[row * nrDelayLines + col] = val;

fdn.updateMatrixCoefficientsOSC(matrixCoefs, "single");

}

}

}

28

4.4 Smoothing Variables

An additional step is taken to avoid audible disturbances in the audio. Variables that
can be updated in real-time, T60, fc, etc., are processed using JUCE’s SmoothedValue14

class. This class o↵ers linear15 smoothing between the old value and the target value at
a specified rate (in seconds) at which the values are updated. This is used for e.g., the
fc of both the HSF and LSF, decay time, and delay length. When a respective slider
value is changed, the target value is assigned to the SmoothedValue object and with
a conditional statement, the value is incremented towards its target value as long as
the current- and target value are not the same. This is shown in a pseudo-code below.

slider value is changed

smoother.setTargetValue()

while current value is not equal to target

increment value

4.5 Limitations

Although JUCE’s dedicated DSP module is a good tool for implementing audio appli-
cations and plugins, its limitations were experienced in this project, most notably with
its Matrix class. Operations with other data types are limited, as an example with
matrix multiplications. This may to some extent be countered by storing its data in an
Array/vector data pointer with which operations are performed. The matrix also lacks
the option of being resized. This can be problematic when modelling coupled room
acoustics as the mixing matrix requires the Kronecker product of the reflection matrix
[7]. Again, this may be countered with multiple instances of the Matrix, however,
combined with resizeable FDN orders, this leads to multiple di↵erent matrices for each
FDN, as well as for the GFDN.

Due to these limitations, the end product is a single FDN with modifiable parameters
through OSC, shown in figure 4.2.

14
https://docs.juce.com/master/classSmoothedValue.html

15
https://docs.juce.com/master/structValueSmoothingTypes_1_1Linear.html

29

https://docs.juce.com/master/classSmoothedValue.html
https://docs.juce.com/master/structValueSmoothingTypes_1_1Linear.html

Figure 4.2: The final product. Above is the default state of the plugin. Below, ex-
panded information section and matrix values are displayed.

30

Chapter 5

Evaluation Methods

The following chapter highlights the evaluation methods possible for this product. It
has to be made clear that no evaluation was conducted. Rather, the sections below
present how the product could be evaluated with subjective- and/or objective evalua-
tion.

5.1 Objective Evaluation

The real-time accuracy of the FDN can be measured against an o✏ine rendering. This
approach can be taken to confirm that the designed FDN is giving the correct results.
Here, an FDN can be designed in MATLAB with the help of the FDN Toolbox [35].
By providing the real-time implemented FDN with the same variable values, the two
resulting outputs may be compared by looking at output values variable-to-variable.
With this approach, filter coe�cients, per-sample gain attenuation, or even IRs of the
systems can be compared.

Depending on the use case of the product, the rate at which variables need to be updated
can vary. If used in VR, even the smallest movements may require the variables to be
updated. Humans usually do not perceive auditory latency until around 15-30 ms,
although for trained musicians it can go as low as 5-10 ms [52]. Therefore, in an ideal
situation, the latency of updating variables should be close to the lower limit.

This may be assessed by stress-testing the product by constantly updating variables to
achieve the update rate that the algorithm cannot sustain. This test may be applied to
both the rate of updates and the number of simultaneously updated variables. Related
to this is the FDNs overall CPU usage. In [29], the CPU usage of a graphical FDN
plugin was measured for di↵erent states, where increasing the FDN’s order increased
CPU usage exponentially. Additionally, fixing the IR and filter coe�cient calculations
greatly decreased CPU usage. Therefore, the CPU usage, both in relation to the FDN
order, but also with and without modulation can be evaluated.

31

5.2 Subjective Evaluation

To evaluate di↵erent perceptual aspects of the implemented reverb, listening tests have
become an essential tool to evaluate perceptual aspects such as sound quality [23].
Below, two examples are presented and proposed for subjective listening tests for this
product.

Modulating the delay line length or the feedback matrix values can be seen to enhance
the quality rating of an FDN. In [36], the MUSHRA method, where several sound
treatments are presented to the participant and must be rated on a scale from 0 to 100
in comparison to a reference sound [20], was used. Three test conditions were com-
pared through a listening test, an 8th-order FDN with modulation, an 8th-order FDN
without modulation, and a 16th-order FDN without modulation. The participants
were presented with four di↵erent test items, a solo piano, a snare drum roll, a french
speaker, and a castagnette rhythm and then asked to rate each condition on a 100
point scale ranging from ’bad’ to ’excellent’ [36]. The results show that an 8th-order
FDN with modulation was rated higher than an 8th-order FDN without modulation
in all conditions. Furthermore, improved realistic liveliness of the reverberation was
reported for the modulated FDN.

A di↵erent approach was taken in [9], where an 8th-order FDN with 4 modulated delay
lines was compared with a 12th-order FDN with no modulation. The evaluation method
was an ABX test, in which participants are asked to identify whether a randomly
chosen audio sample ’X’ is one of the known samples: ’A’ or ’B’ [5]. Firstly, the
participants were presented to four di↵erent test items, an acoustic guitar, a solo male
vocal, arpeggiating alto saxophone, and a full drum set playing a rock beat. They were
then asked to state if they could hear a di↵erence between the two algorithms, and
those who were able were asked to state which they preferred. In three out of four
cases, the participants preferred the FDN with modulated delay lines, and only for the
drum recording was the non-modulated FDN preferred.

This type of ABX test of modulated vs. non-modulated FDN can, therefore, be used
for the evaluation of this product.

In [27], a simulated auralization of the Notre Dame was compared to its measured
counterpart. The participants were presented with three di↵erent arualization config-
urations and were asked to rate the similarity between the two played samples in each
configuration. Below, some of the relevant terms used for rating are presented and
described shortly [26].

32

• Reverberance: The perception of the sound decay.

• Clarity: To which degree discrete elements stand apart from each other.

• Distance: The perceived distance to the sound source.

• Tonal Balance: Changes in timbre or frequency balance. More tonal balance
indicates more high-frequency content.

• Coloration: Modification in the sound’s timbre from its original timbre. Less
coloration indicates more natural sounding recording.

• Plausibility: How reasonable the recording sounds.

The participants were then presented with a 100 point graphic slider, with each extreme
stating either ”A is much more...” or ”B is much more...”, where the centre point (0)
indicated no perceived di↵erence [26].

By designing and matching the FDN with a recording of a real space, the FDN can be
evaluated in relation to these terms.

33

Chapter 6

Conclusion

Based on research on artificial reverberation with FDN algorithms, a real-time imple-
mentation of an FDN plugin allowing for variable updates at run-time was developed
with the JUCE framework. The goal of this project was to develop a product that
can be used for evaluating and comparing o✏ine FDN algorithms with their real-time
counterpart. Through the UDP and OSC protocols, variables can be defined in a MAT-
LAB (or other software) script and sent over to the plugin without the need to modify
its source code. The initial problem statement was to simulate coupled room acous-
tics with a GFDN architecture, however, due to technical limitations, the end product
implements a single FDN.

The product allows for controllable delay line lengths, FDN order, input and output
gains, T60, feedback matrix, as well as modulation of delay lines. Real-time require-
ments were considered to avoid audible disturbances when updating variables, such
as Lagrange interpolation for the delay lines, linear interpolation for T60 modification,
and multiplicative interpolation for fc. Furthermore, to reduce the CPU usage, cal-
culations for, e.g., filter coe�cients, were only performed once the respective slider’s
value changed.

34

Chapter 7

Further Work

It is clear that the implementation of coupled room acoustics with the GFDN archi-
tecture was not completed. Although this is due to technical limitations, this should
be achievable with JUCE’s DSP module and native c++ code. The most noticeable
limitation is present with Matrix class’ lack of operations with other data types. Even
though this may be countered with an std::vector data pointer, the DSP matri-
ces are not resizable which makes Kronecker product of the reflection matrix (section
2.2.3) challenging. Although this may be countered with multiple instances of matrices
depending on FDN order, a more e�cient approach should be investigated.

Furthermore, the lack of evaluation is a serious limitation of this product. Although an
FDN was successfully implemented, it can not be used as a research tool at this time
as its accuracy has not yet been verified. Di↵erent subjective and objective evaluation
methods are proposed and they may be adapted to the GFDN once implemented.

Acknowledgements

Special thanks go to Karolina Prawda for being a great help with implementation
and for guidance with the thesis, Sebastian J. Schlecht for the project proposal and
motivation, Silvin Willemsen for guidance and helpfulness, and Stefania Serafin for all
the help with the project.

35

Chapter 8

Bibliography

[1] Benoit Alary, Archontis Politis, Sebastian Schlecht, and Vesa Välimäki. Di-
rectional feedback delay network. Journal of the Audio Engineering Society,
67(10):752–762, 2019.

[2] Kevin Arcas and Antoine Chaigne. On the quality of plate reverberation. Applied
Acoustics, 71(2):147–156, 2010.

[3] Leo Leroy Beranek and Tim Mellow. Acoustics: sound fields and transducers.
Academic Press, 2012.

[4] Barry A Blesser. An interdisciplinary synthesis of reverberation viewpoints. Jour-
nal of the Audio Engineering Society, 49(10):867–903, 2001.

[5] Jon Boley and Michael Lester. Statistical analysis of abx results using signal
detection theory. In Audio Engineering Society Convention 127. Audio Engineering
Society, 2009.

[6] David T Bradley and Lily M Wang. Room acoustics in coupled volume spaces. In
Building Integration Solutions, pages 1–6. 2006.

[7] Orchisama Das and Jonathan S Abel. Grouped feedback delay networks for model-
ing of coupled spaces. Journal of the Audio Engineering Society, 69(7/8):486–496,
2021.

[8] Michael Francis. Infinite impulse response filter structures in xilinx fpgas. Xilinx
White Paper, 2009.

[9] Jasmin Frenette. Reducing artificial reverberation algorithm requirements using
time-variant feedback delay networks. Florida: University fo MIAMI, 2000.

[10] Anders Gade. Acoustics in halls for speech and music. In Springer Handbook of
Acoustics, Springer Handbooks, pages 301–350. Springer New York, New York,
NY.

[11] Michael A Gerzon. Synthetic stereo reverberation: Part one. Studio Sound, 13:632–
635, 1971.

[12] David Griesinger. Improving room acoustics through time-variant synthetic rever-
beration. In Audio Engineering Society Convention 90. Audio Engineering Society,
1991.

36

[13] Janis Heldmann and Sebastian J Schlecht. The role of modal excitation in colorless
reverberation. 2021.

[14] Jean-Marc Jot and Antoine Chaigne. Digital delay networks for designing artificial
reverberators. In Audio Engineering Society Convention 90. Audio Engineering
Society, 1991.

[15] Jean-Marc Jot et al. Etude et réalisation d’un spatialisateur de sons par modèles
physiques et perceptifs. PhD thesis, 1992.

[16] T.I Laakso, V Valimaki, M Karjalainen, and U.K Laine. Splitting the unit delay
[fir/all pass filters design]. IEEE signal processing magazine, 13(1):30–60, 1996.

[17] Hammond Laurens. Electrical musical instrument, February 4 1941. US Patent
2,230,836.

[18] Thomas McKenzie, Sebastian J Schlecht, and Ville Pulkki. Acoustic analysis
and dataset of transitions between coupled rooms. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 481–485. IEEE, 2021.

[19] Thomas McKenzie, Sebastian J Schlecht, and Ville Pulkki. Auralisation of the
transition between coupled rooms. In 2021 Immersive and 3D Audio: from Ar-
chitecture to Automotive (I3DA), pages 1–9. IEEE, 2021.

[20] Catarina Mendonça and Symeon Delikaris-Manias. Statistical tests with mushra
data. In Audio Engineering Society Convention 144. Audio Engineering Society,
2018.

[21] James A Moorer. About this reverberation business. Computer music journal,
pages 13–28, 1979.

[22] Sophocles J Orfanidis. Introduction to signal processing. Pearson Education, Inc,
2016.

[23] Etienne Parizet, Nacer Hamzaoui, and Guillaume Sabatie. Comparison of some lis-
tening test methods: a case study. Acta Acustica united with Acustica, 91(2):356–
364, 2005.

[24] Tae Hong Park. Introduction to digital signal processing: computer musically
speaking. World Scientific Publishing Co. Pte. Ltd, 2010.

[25] Julian Parker and Stefan Bilbao. Spring reverberation: A physical perspec-
tive. In Proceedings of the 12th International Conference on Digital Audio E↵ects
(DAFx’09), pages 416–421, 2009.

[26] Barteld NJ Postma and Brian FG Katz. Perceptive and objective evaluation of
calibrated room acoustic simulation auralizations. The Journal of the Acoustical
Society of America, 140(6):4326–4337, 2016.

37

[27] Barteld NJ Postma, David Poirier-Quinot, Julie Meyer, and Brian FG Katz. Vir-
tual reality performance auralization in a calibrated model of notre-dame cathe-
dral. EuroRegio2016, Porto, Portugal, 2016.

[28] Karolina Prawda, Sebastian J Schlecht, and Vesa Välimäki. Improved reverber-
ation time control for feedback delay networks. In Proc. Int. Conf. Digit. Audio
E↵ects, pages 1–7, 2019.

[29] Karolina Prawda, Silvin Willemsen, Stefania Serafin, and Vesa Välimäki. Flex-
ible real-time reverberation synthesis with accurate parameter control. In 23rd
International Conference on Digital Audio E↵ects, pages 16–23, 2020.

[30] Michael Rettinger. Reverberation chambers for broadcasting and recording stu-
dios. Journal of the Audio Engineering Society, 5(1):18–22, 1957.

[31] Davide Rocchesso and Julius O Smith. Circulant and elliptic feedback delay net-
works for artificial reverberation. IEEE Transactions on Speech and Audio Pro-
cessing, 5(1):51–63, 1997.

[32] Henry Joseph Round and West Arthur Gilbert Dixon. Transmission and repro-
duction of sound. U.S. Patent 1,853,286, Apr 1932.

[33] Francis. Rumsey. Spatial audio, 2001.

[34] Sebastian Schlecht and Emanuël AP Habets. Reverberation enhancement systems
with time-varying mixing matrices. In Audio Engineering Society Conference:
59th International Conference: Sound Reinforcement Engineering and Technology.
Audio Engineering Society, 2015.

[35] Sebastian J Schlecht et al. Fdntb: The feedback delay network toolbox. In Pro-
ceedings of the 23rd International Conference on Digital Audio E↵ects (DAFx-20),
2020.

[36] Sebastian J Schlecht and Emanuël AP Habets. Time-varying feedback matrices
in feedback delay networks and their application in artificial reverberation. The
Journal of the Acoustical Society of America, 138(3):1389–1398, 2015.

[37] Sebastian J Schlecht and Emanuël AP Habets. Modal decomposition of feedback
delay networks. IEEE Transactions on Signal Processing, 67(20):5340–5351, 2019.

[38] Manfred R Schroeder. Natural sounding artificial reverberation. In Audio Engi-
neering Society Convention 13. Audio Engineering Society, 1961.

[39] Manfred R Schroeder. Digital simulation of sound transmission in reverberant
spaces. The Journal of the acoustical society of america, 47(2A):424–431, 1970.

[40] Manfred R Schroeder and Benjamin F Logan. ”colorless” artificial reverberation.
IRE Transactions on Audio, (6):209–214, 1961.

38

[41] Julius O. Smith. History of fdns for artificial reverberation, 2010.

[42] Julius O. Smith. Physical Audio Signal Processing.
http://ccrma.stanford.edu/̃jos/pasp/, 2021-11-24. Online book, 2010 edition.

[43] Julius Orion Smith. Physical audio signal processing: For virtual musical instru-
ments and audio e↵ects. W3K publishing, 2010.

[44] John Stautner and Miller Puckette. Designing multi-channel reverberators. Com-
puter Music Journal, 6(1):52–65, 1982.

[45] Eric Tarr. Hack Audio: An Introduction to Computer Programming and Digital
Signal Processing in MATLAB. Routledge, 2018.

[46] V Valimaki, JD Parker, JO Smith, and JS Abel. More than fifty years of artificial
reverberation. In AES 60th Conference on Dereverberation and Reverberation of
Audio, Music, and Speech, pages 1–12, 2015.

[47] Vesa Valimaki, Julian D Parker, Lauri Savioja, Julius O Smith, and Jonathan S
Abel. Fifty years of artificial reverberation. IEEE Transactions on Audio, Speech,
and Language Processing, 20(5):1421–1448, 2012.

[48] Vesa Välimäki and Joshua D. Reiss. All about audio equalization: Solutions and
frontiers. Applied Sciences, 6(5), 2016.

[49] Eric W Weisstein. Hadamard matrix. https://mathworld.wolfram.com/, 2002.

[50] Eric W Weisstein. Orthogonal matrix. https://mathworld.wolfram.com/, 2002.

[51] Eric W Weisstein. Lagrange interpolating polynomial. https://mathworld. wol-
fram. com/, 2004.

[52] Steven Yantis and Richard A Abrams. Sensation and perception. Worth Publishers
New York (NY), 2014.

39

	Abbreviations
	List of Figures
	Introduction
	Analysis
	Reverberation
	Direct Path
	Early Reflections
	Late Reverberation

	Artificial Reverberation
	Analog Methods
	Digital Methods
	Schroeder and Moorer Reverb
	Convolution
	Feedback Delay Networks

	Coupled Rooms Modelling

	Absorption Filters
	FIR and IIR Filters
	Pole-Zero Analysis
	Shelving Filters

	Problem Statement

	Design
	Design Requirements
	Specifying Functionality
	Real-Time Implementation
	Interpolation

	Modifiable Parameters

	Final Design

	Implementation
	FDN Class
	Delay Lines
	Feedback Matrix

	Absorption Filters
	UDP - OSC
	Receiving OSC Messages
	Sending OSC Messages

	Smoothing Variables
	Limitations

	Evaluation Methods
	Objective Evaluation
	Subjective Evaluation

	Conclusion
	Further Work
	Bibliography

