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Abstract:
Drones are gaining interest in many fields and
are used to simplify advanced tasks. For this
purpose, robust control and knowledge of dis-
turbance effects have to be raised, discussed,
and analysed. This thesis investigates the im-
pacts of noise, wind, ground, ceiling and wall
effects. These disturbances are obtained from
earlier studies and will be tested with three
different control strategies to investigate the
influence of a simple controller contrary to an
advanced controller. Further, to mitigate the
influences from noise, an Extended Kalman
filter was created to avert the effect of noise.
This thesis highlights how important robust
control is when using drones for industrial
purposes. PD, SMC and ISMC controllers are
used to demonstrate how a quadcopter reacts
to the disturbances and how it influences
the control. Different tests showed that
sliding control behaves more robust against
disturbances and validated linear control to
be unusable in several cases. This thesis
concludes that advanced control must be used
when challenging environments are met, and
excellent performance is of interest.
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Summary

Droner florerer verden rundt og bliver brugt til mange professionelle opgaver, der kræver avanceret
kontrol og mobilitet. I 2018 eksisterede der 10.000 kommercielle droner registreret i Europa ifølge
SESARS senest publicerede rapport, og dette tal forventes at stige til 200.000 i 2025 og yderligere til
395.000 i 2035. Forøgelsen af droner skaber en god baggrund for at øge den viden som findes indenfor
dette felt. Denne rapport udforsker nogle af de effekter som en drone oplever, når den er tæt på jorden,
et loft, en væg, eller bliver udsat for vind. Dertil bliver der tilføjet støj til outputtene for at studere, om
støj har en påvirkning.

En model af en quadcopter drone er blevet kreeret med det formål at teste hvordan den vil reagere på
disse vigtige effekter. Modellen er blevet udarbejdet med viden fra tidligere studier for at efterligne
en anerkendt drone, så simuleringerne kommer så tæt på virkeligheden som muligt. Med en udarbejdet
model klar til test, skal kontrol opbygges for dronen. Her er der taget udgangspunkt i at forstå forskellene
mellem simpel lineær kontrol og ikke lineær kontrol, og hvordan de reagere forskelligt. Til dette formål
er der udarbejdet tre forskellige kontrolteorier. Alle kontrolteorier er blevet udsat for samme effekter
og sammenlignet i et resultatafsnit, hvor forskellene på kontrolteorierne bliver synliggjort. De tre
kontrolteorier er: PD, SMC og ISMC. Teorien bag kontrolteorierne bliver beskrevet i sektion 5 hvorefter
en tuning af disse er ønsket. Her bliver en Hyperparameter Optimisation metode brugt for at opnå
optimale resultater for alle kontrollerer. Denne metode går ind og udforsker forskellige værdier for alle
kontrolteorierne hvorefter den finder de mest optimale værdier. Med udarbejdelsen af denne metode blev
de tre kontrollere færdiggjort og klar til test.

Først blev et Extented Kalman filter brugt for at mindske støjen i system, hvilket resulterede i minimering
af støjen i en sådan grad, at den ingen betydning havde. Med denne forstyrrelse udfaset, lå fokus på jord,
loft, væg og vind effekterne. Disse effekter er blevet fremstillet ved hjælp af en sammenlægning af
mange tidligere studiers efterforskning indenfor dette område.

Med kontrol og forstyrrelserne på plads kunne resultaterne blive lavet. Resultaterne viste hvordan
sliding-mode kontrollen opnår større robusthed imod de valgte forstyrrelser, men også at lineær kontrol
forbliver stabil med store fejlmarginer. Den lineære kontrol bliver kategoriseret ubrugelig i denne rapport,
med udgangspunktet at kompensere for de valgte effekter, hvor i stedet SMC og ISMC bliver erklæret
brugbare i forhold til jord, loft og væg effekter. Ud fra denne rapport kan det konkluderes, at ikke lineær
kontrol er nødvendigt, hvis optimal performance er ønsket ved brug i vanskelige processer.

Aalborg University, November 15, 2021
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Nomenclature

Symbol Description Unit

A Area [m2]
A Frictional coefficient [−]
α Tuning gain [−]
c Tuning gain [−]
CD Dimensionless constant [−]
D Drag coefficient [−]
e Error [−]
FD Frictional force / drag force [N ]
G Gravity [m/s2]
i Contains several parameters [−]
I Current in ampere [A]
I0 No-load current [A]
I Moment of inertia [kg ·m2]
k Thrust coefficient [−]
k Covariance function (Kernel) [−]
Kk Kalman gain [−]
KT Back-emf constant [V s/rad]
Kv Back electromotive force [V/m/s]
L Bound [−]
l, L Length [m]
m,M Mass [kg]
n Number of elements [−]
Ni Measurement noise [−]
P Power [W ]
ρ Air density [kg/m3]
r Radius [m]
r Reference [−]
Rm Motor resistance [Ω]
s, S Sliding surface [−]
τ Torque [Nm]
T Thrust [N ]
T Sampling time [s]
Tf Thrust factor [%]
ν Control term [−]
v, V Velocity [m/s]
V Lyapunov candidate [−]
vh Induced velocity [m/s−1]
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Nomenclature

Symbol Description Unit

µ Mean vector [−]
ω Angular velocity [RPM ]
ωi Process noise [RPM ]
z Altitude command [m]
φ Roll command [°]
θ Pitch command [°]
ψ Yaw command [°]
σ Standard deviation [−]
σ Variance [−]

Abbreviation Description

AWGN Additive white Gaussian noise
BLDC Brushless DC motor
BO Bayesian optimisation
CASA Civil Aviation Safety Authority
CFD Computational fluid dynamics
DC Direct current
EI Expected improvement
EIP Expected improvement plus
EKF Extended Kalman Filter
FFA Federal Aviation Administration
GP Gaussian process
GPR Gaussian process regression
ISMC Integral Sliding mode control
LQG Linear-Quadratic-Guassian
LQI Linear-Quadratic-Integral
LQR Linear-Quadratic-Regulator
MMA Motor Mixing Algorithm
MPC Model Predictive Control
PD Proportional Derivative
PID Proportional integral derivative
PMSM Permanent Magnet Synchronous Motor
SESAR Single European Sky ATM Research
SMC Sliding mode control
UAV Unmanned aerial vehicle
VTOL Vertical take-off and landing
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Aalborg University

Subscripts Description

Bsf Sigmoid function
sgn sign function
C(η, η̇) Coriolis term
ξ Denotes linear states
η Denotes angular states
q Denotes linear and angular states
f Prediction function
G Transfer function
f Translational forces
τ Rotational forces
J Cost function
K Kinetic energy
K Covariance function
L Lagrangian
P Potential energy
R Rotational matrices
sgn Sign function
u Inputs or nonlinear controller
VB Linear velocity vector
ν Rotational velocity vector
Wη Transformation matrix
µ Mean vector
Φ Cumulative distribution
φ Probability distribution
φ, θ and ψ Roll, Pitch and Yaw
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Introduction 1
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1.1.1 What is a drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Types of drones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

The motivation and background for investigating this thesis will be explained in this chapter. Here state
of the art will be created, setting a baseline for research in this field. The state of the art will lead to the
objectives for this thesis and problem statement.

1.1 Overview

The flying vehicle drone or unmanned aerial vehicle(UAV) has gained interest from countless users
worldwide. The earned interest comes from hobbyists, industries and ordinary citizens, who have learned
to use this technical component for straightforward tasks, complicated tasks, competitions and fun.

The drone can be traced back to 1935, where the first comparable vehicle flying by a low-cost radio
controller was invented. This plane was called Havilland DH82B "Queen Bee" and was used in the
military to create realistic gunnery training [1]. Since then, the development of "drones" has existed
primarily in the military sector until the 21st century. Now the interest has expanded to several other
branches. Because of this raised interest in drones, additional scientific research is built to support the
mathematics behind such vehicles to expand the knowledge further. Due to the expanded knowledge
in this field, drones appear in several industries such as transport, surveillance, photographing, high
demanding military operations and several other cases. The thesis will investigate how drones are
affected by the disturbances called: ground effect, partial ground effect, ceiling effect, wall effect, wind
gusts and noise. The general theory is used to build a model with information from earlier studies
and actual drones. The model will contain a linear and nonlinear part enabling the possibility of linear
and nonlinear control. The thesis will investigate disturbance methods researched in several papers to
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1. Introduction

simulate actual disturbances and visualise the effects. The focus concentrates on how a quadcopter reacts
to disturbances and how different control laws steer the drone when exposed to these effects. From this
study, the know-how of the disturbance rejection will be heightened.

To obtain these simulations and theories, an investigation of the types of drones already existing and
their aptitude for different tasks will be presented in a state of the art section, where natural disturbance
estimations will be investigated. The state of the art will lead to the objectives of this thesis and the
problem statement.

1.1.1 What is a drone

The name "drone" can be traced back to old English, referencing a male honeybee whose only goal is to
mate with the queen bee. This reference is from the 16th century, where it also was used to describe lazy
humans. The reference can be compared to the present time where drones are used in tasks leaving the
human with a joystick that does the job.

This technical phenomenon is associated with an aircraft and is a flying machine controlled through a
joystick or autonomously by having implemented a pre-programmed system, followed by a fixed set of
rules, or controlled through implemented self-learning algorithms. A standard electric drone is primarily
made of these elements: Frame, propellers, motor, electronic speed controller, flight controller, battery,
antenna, receiver and sensors as illustrated in figure 1.1.

When the drone is built with all rigid and electrical components, the next step will be to fly it. The
user will need information about the drone to predict where it is and which commands to perform.
This information is gathered from sensors chosen by the user, and the outputs will interact with the
controller’s performance. From the choosing of sensors, different control strategies can be investigated
or purchased from open-source controller companies. If the user implements video cameras, the drone
could be controlled in the first person with pictures as feedback. If instead a GPS module is implemented,
the possibilities of navigating the drone through global coordinates are achievable.

Electronic speed 
controller

Flight controller

Power
distribution
board

Receiver

Battery
(under cover)

Propeller

Motor

Gps

Figure 1.1: Representation of primary parts in an ordinary electric drone
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1.2. Scope Aalborg University

1.2 Scope

In 2018 existed around 10.000 commercial drone units in Europe, according to SESAR’s latest published
report [2]. The number of drones is predicted to increase to 200.000 commercial drones in 2025 and
further on to 395.000 in the year 2035. The rapid increase of this market provides a basis to advance the
technology in this area tremendously, and to build upon this knowledge, the basic structure for drones
need to be described and reviewed. As commercial drones multiply, the know-how and optimisation
possibilities should be studied, where much research has already been performed. Here, the market has
to be examined to know where knowledge can be expanded, and sufficient research exists. The state of
the art will describe what a drone is, divide the subject into categories and further explain several ways
to boost knowledge within the profession.

1.2.1 Types of drones

Multi Rotor Drone

Single Rotor Helicopter 

Fixed Wing Drone

Fixed Wing Hybrid VTOL

Figure 1.2: Illustration of the four major groups of

drones

The industry, the branches of drones and
what categorises them will be explained in
this section. As a standard four major groups
exist, named: Multi Rotor Drones, Fixed
Wing Drones, Single Rotor Helicopter and
Fixed Wing Hybrid VTOL [3]. Figure 1.2
illustrates these four types.

Multi Rotor Drone

The multi rotor drone is the most common
used drone and is classified by the number
of rotors. Meaning if having three rotors,
the name is "Tricopter", having four, it is
a "Quadcopter", eight an "Octocopter", etc.
Out of these classifications, the quadcopter
is the most popular choice, but it is also
one of the less safe choices. If one of
the four propellers fail, the quadcopter will
crash. Either six or eight propellers can
compensate for this. If using an octocopter,
three propellers could fail, and the drone
would still be capable of continuing, depending on the task and load applied. The downside of using
several propellers occurs in the efficiency and flight time as a slower rotation, and larger propeller has
increased efficiency compared to faster spinning and smaller ones. Using more propellers uses more
electricity, and the flight time is compromised so that longer distance tasks can not be accomplished.

This drone is the cheapest choice and is the easiest to manufacture [3]. The multi rotor drone has the
advantages of its accessibility, manoeuvrability and ease of use whilst vertical take-off and land(VTOL)
and hover are achievable. Furthermore, it is capable of obtaining stability in hover mode, even at relative
wind disturbances with simple control theory [4]. Unlike its benefits, this drone has a reduced range
depending on the number of propellers and the tasks it fulfils, while it also has a low lifting capacity
compared to single rotor drones.

3



1. Introduction

Fixed Wing Drone

The fixed-wing drone is, as its name suggests, a drone with a set of fixed wings. This is illustrated in
figure 1.2. This drone is primarily used to cover larger land areas while flying up to 10 times longer
than multi-rotor drones, depending on its tasks. The structure of this type of drone makes it reject
weather conditions more desirable than multi rotor drones, as wind and rain do not have the largest
influence on battery drainage. Also, the structure prevents failure, as this type of drone is equipped with
a natural gliding capability in the event of technical failure. This drone is by means great for mapping,
surveying and firefighting over larger areas. The downside of this type of drone is that it cannot hover
or VTOL, meaning it can not drop objects with high precision if it carries a payload. Also, this drone
needs equipment to launch, either a catapult, runway or other technology which requires space or could
damage the drone for each take-off. It also needs landing gear to avoid damages when landing and, in
most cases, a runway. This drone can move forward with high speed, but it can not move backwards or
stop in the air[5].

Single Rotor Helicopter

If gas-powered, the single rotor helicopter is referred to as just a "helicopter" in public and is a drone
with one rotor. It has some of the same advantages as the multi rotor drone, such as VTOL, hover and
gaining stability in the air, but diverges as it has this large rotor operating with an increased danger but
raised efficiency. Because of the raised efficiency, the helicopter has an increased flight time and heavy
payload capability, as it is built to be solid and durable. An electric type has lowered flight time, requires
time to recharge, and is heavy compared to gas but is still ahead on efficiency, contrary to multi-rotor
drones. The gas-powered helicopter has no charging time, increased endurance and lowered weight.
Instead, the electrical is silent, has a little more power for its weight, is environmentally friendly and
safer if crashing. The significant drawbacks for helicopters are their danger, making it difficult to legalise
their use in many workplaces, their complexity when trying to create disturbance rejecting control, their
vibrations and their price.

Fixed Wing Hybrid VTOL

This type of drone combines the multi rotor- and fixed-wing drone advantages, making it capable of
VTOL and hover while also having great endurance and a long floating time. The research on this drone
is deficient, as most articles are about the structure of this type and not its use. The advantages of this
drone could benefit tasks of carrying a payload over more considerable distances while still dropping
it with precision, but the disadvantages will then be its size and efficiency as it will decrease with its
multi-functions. Implementing wings on multi-rotor drones will make the structure more receptive to
disturbances as wind gusts, increasing the complexity of obtaining stability and disturbance rejecting.
Also, an increased weight will lower the battery time if used as a multi-rotor for simple tasks, where the
improved endurance is linked to its floating as a fixed-wing drone.

1.2.2 Summary

The multi rotor drone is a general drone used by ordinary citizens and found in many homes. If looking at
the United States, the Federal Aviation Administration(FFA) had 1.782.479 drones registered in January
2021, and more than 81% of these were multi-rotor drones. Also, FFA has awarded 208.010 remote
pilot certificates [6]. In Denmark exists 484 active companies working with drones, where most of them
use multi rotor drones as well, meaning that a multi rotor drone is the most commonly used one [7].
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1.3. State of the art Aalborg University

Some of the projects are about visualising defects in either wind turbines, solar panels or high voltage
cables. If looking at inspecting the high voltages cables, which follows a 4900 kilometres distance, the
electricity companies have previously used helicopters or manually controlled drones [8]. The multi rotor
drone did not include long endurance, and lots of time was lost during recharge. While the helicopters
were costly and dangerous, the multi rotor was still preferred. New technology will use high voltage
cables to keep the drones charged for flying the distance in one stretch. The drones investigated here
are multi rotor drones as most companies prefer that drone, and because of that, this type is chosen to
study further. Moreover, they are looking at making these drones intelligent so that the task can be done
with no human interference[8]. As many tasks include payloads added to the drone, the focus will point
towards a drone capable of implementing this skill. The theory will be linearly scaled from smaller
drones theory, neglecting the forces neglected for smaller drones.

1.3 State of the art

Multirotor drones have been thoroughly studied in several fields, from assembling the drone to studying
control theories and disturbance effects. This state of the art will investigate the topics analysed in
this thesis giving the reader background knowledge in the fields further analysed. The thesis will look
into disturbance estimation in ground effects and wind gust, and it will study control methods and their
robustness to compare them.

Ground, Ceiling and Wall Effects

For quadcopters, ground, ceiling and wall effects do affect the motion when near an object. As illustrated
in figure 1.3, a quadcopter reacts in different manners while close to an object visualised with the
moments and forces presented along with pressure changes.

τ
τ

Pa

Pc < Pa

Pg > Pa

fe

fe

Pa

Figure 1.3: Representation of ground, partial ground, ceiling and wall effects

The two top pictures show how the drone will react if close to a floor or ceiling. While the drone gets
closer to the ground, less force is needed to gain height as the ground effects counteract the gravitational
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1. Introduction

force with a factor calculated in [9], [10] and several other studies for helicopters and drones. A study
[9] has investigated and proven how quadcopters will gain an increased upward force when close to the
floor, as the pressure beneath the quadcopter increases while the wind cannot escape, and circulation of
airflow will be created under the central body as seen in figure 1.4. This upward force is gained when
close to the ceiling, resulting from lowered air pressure above the drone when approaching. As the wind
is let away through the rotors, the Reynolds number increases along with the thrust coefficient as stated
in [11] and [12]. Also, the ceiling effect can be factorised with a gaining thrust coefficient.

Figure 1.4: Representation of ground effects close to the floor in a CFD [9]

The two bottom pictures in figure 1.3 illustrate how the quadcopter will rotate if giving equal thrust to
all rotors and affected by wall effects or partial ground effects from a structure underneath the half of the
drone or one rotor. A study of wall effects [13] has tested the effects where the test frame completely
immobilised the UAV. This test setup did prove that forces dragging the quadcopter towards the wall
and rotating the quadcopter simultaneously had no coupling. Earlier studies have hypothesised that the
quadcopter was being pulled towards the wall because it was rotated. This research [13] proves that
two forces exist when a drone is close to the wall, both a force pointing into the wall and another one
decreasing the thrust coefficient for the rotor/rotors closest to the wall, depending on how the drone is
turned.

When a drone only has some part over an object, it will experience this partial ground effect seen in the
bottom picture to the right in figure 1.3. The article [9] has studied this effect when hovering with only
one rotor over an obstacle and then compared different control strategies to compensate for this type of
ground effect. Their study showed that standard PID control did not cover for this effect, and further
compensation is needed to counteract the ground effect happening near the ground. Their results can be
seen in figure 1.5 where the green box is the time when hovering over an obstacle.
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1.3. State of the art Aalborg University

PID controller without compensation PID controller with compensation

Figure 1.5: Ground effects with one rotor over an obstacle and with standard PID control and PID
control with compensation for ground effects [9]

In this study [9], PID with ground effect compensation added was used to control the drone in situations
of this effect. However, the review in [10], and [14] has studied many different control strategies and their
pros and cons related to their purpose. Table 1.1 elaborates the different strategies and their suitability.
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1. Introduction

Control methods
Control strategy Remarks Pros and Cons
PID Provides an average response

when using simple mathematics,
which is good to get started. It
lacks disturbance rejection and
parameter uncertainty

Pros: simplicity, easily adjusted, good
robustness, fast response. Cons: Lim-
ited performance, disturbance rejec-
tion, mass changes, unmodeled param-
eter handling

LQR Has the potential for distur-
bance rejection and accurate
path tracking but lacks in avoid-
ing obstacles

Pros: Simplicity, disturbance rejection,
adaptive and fast convergence. Cons:
Robustness, precision, parameter un-
certainty

LQG Handles Gaussian noise and
incomplete state information
while providing stability

Pros: Handles Gaussian noise, incom-
plete state information, adaptive, dis-
turbance rejection. Cons: Robustness,
precision, simplicity, parameter uncer-
tainty

Sliding mode Provides stability, robustness
and precision as it rejects distur-
bances, but it increases energy
loss with a chattering function

Pros: Robust, adaptive, fast conver-
gence, precision, tracking ability, dis-
turbance rejection. Cons: Simplicity,
intelligence, chattering(energy loss)

Adaptive control Adapts to parameter changes
and can self-configure in real-
time to centre gravity changes

Adaptive, fast convergence, precision,
self-configuration, disturbance rejec-
tion. Cons: Robustness, simplicity, pa-
rameter uncertainty

MPC Is a predictive model controller,
which can predict the following
sequence of the control signals
based on current states of the
system

Pros: Stability, robustness, disturbance
rejection, optimal. Cons: Time con-
suming, high computing power needed

Integrator Back-
stepping

Performs great in terms of ro-
bustness, fast response, stability,
steady-state error and overshoot
but is a recursive algorithm

Pros: Adaptive, tracking ability, distur-
bance rejection, robustness against pa-
rameter uncertainty. Cons Robustness,
fast convergence, simplicity

Fuzzy logic Recursive algorithm and diffi-
cult tuning approach but pro-
vides intelligent control with av-
erage results

Pros: Robust, adaptive, intelligent,
precision, disturbance rejection. Cons:
Parameter uncertainty

Table 1.1: Control strategies for at quadrotor studied in [10] and [14]

Table 1.1 shows a great selection of control methods capable of managing the drone while diverging
concerning applications. The study in [14] discussed the advantages of control through the use of several
methods gaining hybrid control as no single control law has it all. Several ways of combining these
methods could be interesting to investigate towards gaining advantageous control.
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1.4. Objectives Aalborg University

1.4 Objectives

This thesis aims to further expand knowledge on quadcopters. The thesis includes a quadcopter model
with ground, ceiling, wall effects and wind gusts implemented. Furthermore, different control theories
enabling robust control towards these varying effects will be studied. The purpose is to obtain desirable
control based on the criteria in the objective, while simulation results from all control laws will be
compared to distinguish the desired control. The desired objectives will be categorised as:

• Primary goals

– Stability at heights where ground and ceiling effects occur
– Stability when affected by partial ground effects
– Stability when close to a wall
– Stability when affected by a sinusoidal wind disturbance

• Secondary goal

– Control the drone to be able to take off and land
– Control the drone to be robust against the disturbances
– Settling at maximum 0.03m steady state error

1.5 Problem Statement

Can a quadcopter be controlled to withstand ground, wall and ceiling effects without colliding with either
object and can it further behave stable when exposed to wind disturbances? How will different control
laws affect the results, and can they achieve the objectives?

9



Quadcopter Template 2
Contents

2.1 Quadcopter Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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This chapter outlines the design of a chosen quadcopter with additional content and flying manoeuvres.
A short enumeration of the vital knowledge about the chosen quadcopter examined in this thesis is listed
in this section.

2.1 Quadcopter Frame

The frame used in this thesis should replicate an AscTec Hummingbird drone, while also the
specifications of this drone will be used to gain natural drone dynamics, and both disturbances and
control can be related to actual drone parameters. The drone specified can be seen in figure 2.1 where
the sizes are visualised, and also in the table where they are presented.

0.2m

0.54m

0.133m

0.54m

Figure 2.1: Drone illustration with length marked
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2.2. Brushless DC Motor Aalborg University

Parameter Value
Mass (M) 0.71 Kg
Arm length (l) 0.37 m
Height (h) 0.085 m

Table 2.1

2.2 Brushless DC Motor

A BLDC motor will be chosen to generate power in this thesis, making the propellers create force. This
motor is more efficient than brushed motors, and no mechanical wear decreases the life expectancy. It
is proportionate to a PMSM using permanent magnets to produce a rotation, where the difference is
based on the control structure. PMSM used sinusoidal phase voltages, and BLDC used trapezoidal phase
voltages.

This thesis will be based on using an "REB 30" motor invented by MGM Compro. This BLDC can
deliver 25-40kW using 63-800 V creating a rotation between 1500-4500rpm[15]. The mathematics of
the BLDC motor will be derived in this section with an equation for torque, voltages and power [16].
The torque equation can be obtained from a proportional constant for back-emf and current as expressed
in equation 2.1.

τ = kT (I − I0) (2.1)

τ is the torque, kT is the proportional constant, while I and I0 is input current and no-load current. The
voltage can then be calculated from the back-emf and resistor losses as seen in equation 2.2.

V = IRm +Kvω (2.2)

Here V is the voltage drop over the motor, ω is the angular velocity, Rm is motor resistance, and Kv will
be used to determine the back-emf from angular velocity. These two equations 2.1 and 2.2 can then be
used to derive the power and can be seen in equation 2.3.

P = IV =
(τ + kT I0)(kT I0Rm + τRm + kTKvω)

k2T
(2.3)

Estimating that resistor losses are small, this part can be neglected, and equation 2.3 can be further
simplified in equation 2.4.

P ≈ (τ + kT I0)Kvω

kT
(2.4)

Also, the current in no-load condition can be estimated small, which then also can be discarded, and the
final simplified equation can be seen in equation 2.5.

P ≈ Kv

kT
τω (2.5)
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2. Quadcopter Template

HBC brushless controller (MGM Compro)

To control the motor MGM Compro provides a high-end motor controller called HBC MEDIUM
VOLTAGES series brushless DC motor controller. This controller is fitted to the motor chosen to focus on
and delivers high efficiency and peak current capability along with a complex data monitoring algorithm.
It allows the user to observe all currents, in and out power and several more parameters. While this could
control the motor and provide a high-end result, the focus on this part is ignored throughout this thesis.

2.3 Basic Drone Movements

The quadcopter will react like a typical drone, with x, y and z movements and roll, pitch and yaw
rotations. To illustrate these rotations and movements, figure 2.2 is made, where x, y and z follow a
normal coordinate system. The rotations are performed by lowering or increasing the motor’s thrust and
is illustrated as an increased upward arrow or a decreased arrow. The given motors is titled ωi where
i = 1, 2, 3, 4, these announcements set ground for the mathematics in section 3.

ω2 ω1

ω3 ω4

ϕ

θ
ψ

Th1 Th2

Th3 Th4

Figure 2.2: Rotations, directions and drone actions

2.4 Sensor Noise Model

While sensor noise, in general, exists in all systems, accurately defining the noise for quadcopter sensors
optimises the overall performance of the control. Noise can cause drift of control, offset or instability if
too aggressive control is chosen. This section calculates the noise used in the model of this thesis.

Noise

Noise is classified as non-deterministic and shows unpredictable gains in the output result of a sensor.
It generally occurs as a Gaussian signal with a mean zero around the actual output. The signal will
be modelled as an additive white Gaussian noise(AWGN) through this section, which can be compared
with actual noise and often is used to categorise it. The output signal will be described as in equation 2.6

12



2.4. Sensor Noise Model Aalborg University

where xmeasured is the measured signal from sensor output, x(t) is the calculated signal, and w(t) is the
added AWGN.

xmeasured = x(t) + w(t) (2.6)

To estimate an accurate noise signal, article [17] is used, where experiments have been created, and
the variance is found. The variance for roll, pitch and yaw is found to be 0.0015[°], for acceleration
it is 0.0130[m

s2
] and for altitude 2.5815e-05[m]. Compared to other noise models, these variances are

relatively low, which relates to an implemented filter. The variation is described as the squared standard
deviation σ, which is Gaussian distributed as seen in figure 2.3.

Probability P(n)

0.1

0.2

0.3

0.4

0- 2 3-2-3

 = 1

n

Figure 2.3: White Gaussian noise distribution with a standard deviation of 1

The variance is summarised in table 2.2

Sensor σ

Roll, Pitch and Yaw 0.0015 [°]
Acceleration 0.013 m

s2

Altitude 2.5815e-5

Table 2.2: Table of variance for sensor output [17]
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Quadcopter 3
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The coordinate systems and mathematics behind a quadcopter is established through this chapter using
the methods invented by Leonhard Euler and Joseph-Louis Lagrange called "Euler angles" and "Euler
Lagrange". The methods will lead to translational and rotational accelerations, which contains the main
factors for the model. Further, the mathematics will be linearised to complete with a linear and nonlinear
model.

3.1 Coordinate systems

A quadcopter drone’s position can be illustrated using two coordinate frames, which can be mapped
directly into each other. The frames are called body frame, the frame following the quadcopter’s body,
and the initial frame, a stationed frame initiated in the body frame when the drone launches. These two
frames are used to obtain a model of the quadcopter.
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3.2. Inertia Aalborg University

z

y

x

z

Initial frame

Body frame

x

y

Figure 3.1: Body frame and initial frame

3.2 Inertia

The inertias for such a drone will interact with all calculations throughout all the mathematics. This
momentum is increased with the size and weight of the drone and will make use of its form illustrated
in figure 2.1. These increased inertias reduce the reactions of the drone while also damping increases as
the size and weight rise. The formulas used in this case is based upon a square prism, and the inertia’s
for x, y, and z can be seen in equation 3.1 [18].

Ixx =
1

12
m(l2y + l2z) =

1

12
0.71(0.542 + 0.0852) = 0.0177[kg ·m2]

Iyy =
1

12
m(l2z + l2x) =

1

12
0.71(0.0852 + 0.542) = 0.0177[kg ·m2] (3.1)

Izz =
1

12
m(l2x + l2y) =

1

12
0.71(0.542 + 0.542) = 0.0345[kg ·m2]

In these equations, m is the mass of the quadcopter, and li is the length, wide and height of the drone.
To use these inertias through this section, they will be interpreted into a matrix, where the general inertia
matrix can be expressed as in equation 3.2 [18].

Iξ =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


While the drone design is chosen to be symmetric, it will simplify this inertia matrix, as the principal
axes of inertia can be used to create a diagonalised matrix shown in equation 3.2 [18].

Iξ =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.2)

This principal diagonal matrix of inertias will be used when calculating the accelerations of the rotations
for the quadcopter.
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3. Mathematics Behind a Quadcopter

3.3 Euler Angles

The angles invented by Leonhard Euler represent a rigid body in a 3D Euclidean space and denote the
drone’s body frame and initial frame locations and rotations. These frames will be established in matrices
for linear and rotational positions and combined in a q vector shown in equation 3.3. The rotations will
be titled roll(φ), pitch(θ) and yaw(ψ), where x, y and z are positions.

ξ =

xy
z

 , η =

φθ
ψ

 , q =

ñ
ξ

η

ô
(3.3)

With the positions established, velocity vectors for both linear and rotational frames can also be shown
in vectors with VB expressing the linear velocities for the body and ν expressing the rotational velocities
in a rotated vector derived in equation 3.13 and 3.14. These velocity vectors can be seen in equation 3.4.

VB =

vx,Bvy,B
vz,B

 , ν =

pq
r

 (3.4)

With vectors for both positions and velocities settled, a description of rotations in the reference frames
described in subsection 3.1 will be presented and illustrated. To illustrate one rotation, a z-axis rotation
is presented in figure 3.2, and the mathematics behind it will be shown in three simple equations. The
figure shows a rotation of x and y around the z coordinate. The original and the rotated(1) one have two
frames. To represent a vector concerning the rotated frame a1, b1 and c1 will be used rotated onto the 1
frame. To calculate the frames, the Pythagoras theorem is used to find the x, y and z components for the
vectors of a1, b1 and c1. This can be seen in equation 3.5.

x
x1

y

y1

z
z

� sin(�)

� sin(�)
 cos(

)

co
s(

)

b1

a1

c1

Figure 3.2: z axis rotation of a quadcopter

a1 =

 αcos(ψ)

−αsin(ψ)

0

 , b1 =

βsin(ψ)

βcos(ψ)

0

 , c1 =

0

0

γ

 (3.5)
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3.3. Euler Angles Aalborg University

As shown in equation 3.5 the three vectors are calculated, and these three equations will then be
multiplied together to obtain one rotation matrix. This can be seen in equation 3.6.

=

 αcos(ψ) + βsin(ψ)

−αsin(ψ) + βcos(ψ)

γ

 (3.6)

With the vectors gathered in equation 3.6 the rotation matrix is derived by extracting the length as shown
in equation 3.7.

=

 cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1


αβ
γ

 (3.7)

The matrix shown in equation 3.7 is then the rotation matrix around the z-axis with length α, β and γ
extracted. This matrix will be used for z-axis rotations, and two more rotation matrices are derived in the
same way for rotations around x and y. These matrices can be seen in equation 3.8 to 3.10.

Rx(φ) =

1 0 0

0 c(φ) s(φ)

0 −s(φ) c(φ)

 (3.8)

Ry(θ) =

c(θ) 0 −s(θ)
0 1 0

s(θ) 0 c(θ)

 (3.9)

Rz(ψ) =

 c(ψ) s(ψ) 0

−s(ψ) c(ψ) 0

0 0 1

 (3.10)

To compress the matrices, c and s will represent cosine and sine waves. With these rotation matrices
stated, a relation between the initial frame and the body frame is obtained, and a complete rotation
matrix for all positions can be established as Rxyz(φ, θ, ψ) and is shown in 3.12.

Rxyz(φ, θ, ψ) = Rx(φ) ·Ry(θ) ·Rz(ψ) (3.11)

Rxyz(φ, θ, ψ) =

 c(θ)s(ψ) c(θ)s(ψ) −s(θ)
s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) s(φ)c(θ)

s(φ)s(ψ) + c(φ)s(θ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ) c(φ)c(θ)

 (3.12)

Equation 3.12 is an orthogonal rotation matrix, meaning that the transposed is equal to the inverse. The
rotation matrices will also be used to derive the time derivatives of ν and η. To obtain the derivative of ν
the equations in 3.13 will be used.
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3. Mathematics Behind a Quadcopter

ν =

pq
r

 = Rx(φ)Ry(θ)

0

0

ψ̇

+Rx(φ)

0

θ̇

0

+

φ̇0
0


ν =

1 0 −s(θ)
0 c(φ) s(φ)c(θ)

0 −s(φ) c(φ)c(θ)


φ̇θ̇
ψ̇

 (3.13)

ν−1 =

1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)


To express the transformation from the initial frame to the body frame, Wη is used, and opposite W−1η

will transform the velocities back from the body to the initial frame. This is shown in equation 3.14.

η̇ = W−1η ν,

φ̇θ̇
ψ̇

 =

1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)


pq
r

 (3.14)

ν = Wηη̇,

pq
r

 =

1 0 −s(θ)
0 c(φ) c(θ)s(φ)

0 −s(φ) c(θ)c(φ)


φ̇θ̇
ψ̇


As s and c denoted sine and cosine waves, twill denote the tangent. The quadcopter position calculations
are settled and can now be represented in both its initial and body frames. Next, the forces and torques
will be expressed.

3.4 Forces

To obtain the forces, the equations stated in section 2.2 will be used, and then the power can be written
to depend on thrust and air velocity as seen in equation 3.15.

P = Tvh (3.15)

As the thrust is the one to be found, the two terms of power and air velocity must be calculated. The air
velocity can then be estimated to depend on thrust, air density ρ and rotor area A if speed is assumed to
be in hover mode, and the equation for vh can then be found from momentum theory as seen in equation
3.16.

vh =

 
T

2ρA
(3.16)

Using the equations in section 2.2 these equations can be rewritten as seen in 3.17

P =
Kv

Kt
τω =

Ktkτ
kT

Tω =
T

3
2

√
2ρA

(3.17)
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Thrust is to be found and can from equation 3.17 be utilised as an expression proportional to angular
velocity squared shown in equation 3.18.

T = (
Kvkτ

√
2ρA

kT
ω)2 = kω2 (3.18)

As thrust depends on angular velocity, a constant k will be used to dimension its value. This constant
will be based upon earlier studies comparable to the AscTec drone chosen to replicate.

With the equations derived in this section, the force is established as thrust and will determine each motor
force. The thrust coefficient k is simulated and tested experimentally on the AscTec Hummingbird in
[19], where an averaging over several tests resulted in a constant k = 5.68 · 10−8[ N

ω2 ]. The total thrust is
expressed in equation 3.19.

TB =
4∑
i=1

Ti = k
î
0 0

∑
ω2
i

óT
(3.19)

Thrust is a positive force working in the quadcopters z-direction, while the drone also will experience
a force in the opposite direction. Frictional forces acting according to the velocity will counteract the
thrust in x, y and z-direction. These forces are illustrated in equation 3.20.

Frictional forces can be modelled proportional to the linear velocity in ξ and can be made as seen in
equation 3.20 [20].

FD =
1

m

Ax 0 0

0 Ay 0

0 0 Az


ẋẏ
ż

 (3.20)

This force depends on velocity and drag according to acceleration acting opposite to the thrust. The drag
force will have implemented effects aerodynamically and is stated from equation 3.21 to 3.24.

The drag forces can also be calculated through a linear equation by considering the aerodynamically
effects as seen in equation 3.21 to 3.24.

Dx = (cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))T − ẍm (3.21)

Dy = (cos(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ))T − ÿm (3.22)

Dz = (cos(θ)cos(φ))T − z̈m− gm (3.23)

FDa =

Dx

Dy

Dz

 (3.24)

3.5 Torques

Torque is produced when the propellers generate different forces in the z-axis, as the propellers are fixed
in a housing with equal size to the centre of gravity. Having a propeller in each corner enables the drone
to manoeuvre in all directions. To calculate the torques, the derivation is based upon the drag equation
from fluid dynamics shown in equation 3.25.
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FD =
1

2
ρCDAv

2 (3.25)

In equation 3.25 the air density is ρ, again the rotor area is A, v is velocity and CD is a dimensionless
constant. When knowing the drag equation, the torque can be found in equation 3.26, where r is the
radius of each rotor and b a constant used to express the torque from the angular velocity.

τD =
1

2
rρCDAv

2 =
1

2
RρCDA(ωR)2 = dω2 (3.26)

While the torques are derived only from the drag, inertias are added to the torque equation to realise its
mode of action. The inertias will be added and connected to the acceleration shown in equation 3.27.

τz = dω2 + IM ω̇ (3.27)

As the quadcopter can be estimated to fly mainly with a constant velocity or hover with zero acceleration,
an assumption of ω ≈ 0 is guessed and thereby, the inertias can be neglected again. While the propellers
are spinning counterclockwise in pairs, the yaw equation will be set to using equation 3.28 with the term
(−1)i+1 gathering the right sign. With that settled the equation for yaw is shown in equation 3.29, where
the constant d is gathered from [21] and equals 1.5 · 10−9[ N

ω2 ].

τz = (−1)i+1dω2
i (3.28)

τψ = d(−ω2
1 + ω2

2 − ω2
3 + ω2

4) (3.29)

With the torque utilised for yaw, it needs to be gathered for roll and pitch with the positive direction
shown in section 2.3. The torques for roll and pitch is calculated in equation 3.30 from standard
mechanics, where L is the distance between each propeller and the centre of the quadcopter and k is
again the thrust coefficient stated above in equation 3.19.

τθ,φ =
∑

RxT = Lk((ω2
2 − ω2

4)) (3.30)

With the torque equations stated, the three equations can be summed up in equation 3.31 to 3.33 and can
also be mapped, with equation 3.14, from body to initial frame in equation 3.34.

τφ = Lk((ω2
2 − ω2

4)) (3.31)

τθ = Lk((ω2
3 − ω2

1)) (3.32)

τψ = d(−ω2
1 + ω2

2 − ω2
3 + ω2

4) (3.33)

τB =
î
τφ τθ τψ

óT
= W T

η τB (3.34)

3.6 Euler-Lagrange

With the torques and forces obtained, a dynamical model of the quadcopter can be derived using Euler
Lagrange. This method will point out the kinetic and potential energies in a Lagrangian and use it to
obtain the double derivatives of the ξ and η. The Lagrangian is shown in equation 3.35.
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L(q, q̇) = Ktrans +Krot − P (3.35)

=
1

2
mξ̇T ξ̇ +

1

2
νT Iν −mgz (3.36)

From the Lagrangian, the rotational and translational forces can be obtained as seen in equation 3.37.ñ
f

τ

ô
=

d

dt

∂L
∂q̇
− ∂L
∂q

(3.37)

q represents the initial frame, and these terms will be treated separately, starting with the translational
motion.

3.6.1 Translational Motion

The translational term is described as in equation 3.38.

Ktrans =
1

2
mξ̇T ξ̇ −mgξz (3.38)

To find its Lagrangian from equation 3.37, equation 3.39 is derived and the expression for f utilised.

f =
d

dt

∂Ktrans
∂ξ̇

− ∂Ktrans
∂ξ

(3.39)

=
d

dt

∂

∂ξ̇
(
1

2
mξ̇T ξ̇ −mgξz)− ∂

∂ξ
(
1

2
mξ̇T ξ̇ −mgξz)

When looking into equation 3.39 there will be partial derivative terms, where it can be seen that taking
the partial derivative of ξ̇ in the first part will eliminate the minus term, and again in the second term, the
derivative of ξ will omit the first part, which will give equation 3.40.

f =
d

dt
(mξ̇) +mgz = mξ̈ +mgz (3.40)

With the equation shown in 3.40, acceleration can be isolated, and the friction stated in section 3.4 can
be added to fulfil the linear accelerations of the drone as shown in equation 3.41.

mξ̈ =

 0

0

−mg

+RxyzTB + FD (3.41)

ẍÿ
z̈

 = −g

0

0

1

+
T

m

 −sin(θ)

cos(θ)sin(φ)

cos(θ)cos(φ)

− 1

m

Ax 0 0

0 Ay 0

0 0 Az


ẋẏ
ż

 (3.42)

With the accelerations for translational motion stated, it can be seen that friction only affects the
quadcopter while in motion, and when starting to gain height, only the gravitational forces must be
overcome.

21



3. Mathematics Behind a Quadcopter

3.6.2 Rotational Motion

This rotational part is the torques generated to rotate the quadcopter and is also gathered from the
Lagrangian implemented in equation 3.37. The rotational energy is shown in equation 3.43 where it
is converted into the initial frame by using equation 3.14.

Krot =
1

2
νT Iξν (3.43)

=
1

2
Wηη̇

T IξWηη̇ (3.44)

=
1

2
η̇TJ η̇ (3.45)

To reduce equation 3.43 J is used to represent W T
η IξWη and is shown in equation 3.46.

 Ixx 0 −Ixxs(θ)
0 Iyyc(φ)2 + Izzs(φ)2 (Iyy − Izz)c(φ)s(φ)c(θ)

−Ixxs(θ) (Iyy − Izz)c(φ)s(φ)c(θ) Ixxs(θ)
2 + Iyys(φ)2c(θ)2 + Izzc(φ)2c(θ)2

 (3.46)

With the rotational energy stated, equation 3.37 can be used to utilise τ as seen in equation 3.47.

τ =
d

dt

∂Krot
∂η̇

− ∂Krot
∂η

(3.47)

Then deriving this term is done through equation 3.48 to 3.51, where a Coriolis term is obtained to satisfy
gyroscopic and centrifugal effects in the rotation of the quadcopter.

∂Krot
∂η̇

=
1

2
(J + J T )η̇ = J η̇ (3.48)

τ = J η̈ + (J̇ − 1

2

∂Krot
∂η

(η̇TJ ))η̇ (3.49)

C(η, η̇) = J̇ − 1

2

∂

∂η
(η̇TJ ) (3.50)

τ = J η̈ + C(η, η̇)η̇ (3.51)

The Coriolis term is shown as C(η, η̇) and is further expanded in appendix A. With a derivation of τ
shown in equation 3.48 to 3.51, the rotational accelerations of η can be isolated as in equation 3.52.

η̈ = J −1(τ − C(η, η̇)η̇) (3.52)

3.6.3 Input

The input for the quadcopter will be gathered in a motor mixing algorithm(MMA) which will relate the
inputs to the thrust and torques. The inputs are described as ui and will be the giving currents assumed
to equal the rotational speed ω. The MMA is derived using the equations in subsection 3.4 and 3.5 with
the result shown in equation 3.53.
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

u1

u2

u3

u4


=



1

4k
0

1

4Lk
− 1

4d
1

4k

1

4Lk
0

1

4d
1

4k
0 − 1

4Lk
− 1

4d
1

4k
− 1

4Lk
0

1

4d





T

τφ

τθ

τψ


(3.53)

The inputs will be used to operate the drone and create desired trajectories to follow. Each input is
related to either rotating the drone or gaining constant height, which means that all four interactions can
be performed simultaneously.

With a nonlinear model for an AscTec Hummingbird replication, the next part will generate a linearized
model so that both a nonlinear and linear model can be used to control the drone.

3.7 Linearised Model

As there exists a nonlinear model which should imitate the actual performance of a quadcopter minoring
an Asctec Hummingbird, it will be used to investigate the performance of the control laws investigated in
section 5. The nonlinear model will always be used to evaluate controllers while establishing nonlinear
and linear controllers, a linear model of the system has to be created. This section will complete a linear
model which will be used to analyse linear control strategies. To create linear controllers, a linear state-
space model will be created as ẋ = Ax + Bu with a set of chosen linearisation points. The states can
be seen in equation 3.54 and the inputs is shown in equation 3.53 and again in 3.55.

x =
î
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

óT
(3.54)

u =
î
u1 u2 u3 u4

óT
(3.55)

To linearise the system, the first order Jacobian will be used, which is stated in equation 3.56

f(x) ≈ f(x∗) +
∂f(x)

∂x
|x−x∗(x− x∗) + f(x)hot (3.56)

The system is determined to be linearised in the state where the quadcopter is hovering to simplify the
translational dynamics in the system, where the last part in equation 3.42 can be omitted. This selection
makes all states zero except the inputs, which will be equal to the inputs needed to overcome gravity and
hover as seen in equation 3.57. The equation is calculated independently of the ground effects, which
may interfere with hovering at low heights.

ω2
i · 4 · b
m

= g (3.57)

ui = ωi = 5338.4241 (3.58)

More accuracy could be obtained using all decimals to get a more exact linearisation, but four decimals
are assumed usable to work further within this case. The linearisation points can then be described as in
table 3.1, and further the state-space model is described in 3.59 and 3.60.
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Variable φ θ ψ φ̇ θ̇ ψ̇ φ̈ θ̈ ψ̈ ẍ ÿ z̈ u1 u2 u3 u4
Value 0 0 0 0 0 0 0 0 0 0 0 0 5338 5338 5338 5338

Table 3.1: Table of the variables and chosen linearisation points

A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 9.464e− 11 0 0 0 0 0 0 0

0 0 0 −9.464e− 11 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



(3.59)

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.0009188 0.0009188 0.0009188 0.0009188

0 0.006266 0 −0.006266

−0.006266 0 0.006266 0

−0.0004642 0.0004642 −0.0004642 0.0004642



(3.60)

With A and B derived in the state-space model, the linear system can be described in equation 3.61 with
the output.

ẋ = Ax + Bu (3.61)

y = Cx + Du

3.8 Summary

A linear and nonlinear model is created in this chapter to control a quadcopter affected by disturbances.
The two models imitate each other when in hover condition, but they deviate when other states are
examined. The linear model will be used to form a linear control strategy, where the nonlinear model
will be used to validate linear and nonlinear controllers and create nonlinear controllers.

With the model for an AscTec Hummingbird replication, the next part will generate disturbances towards
testing different control strategies.
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This chapter will elaborate and calculate the disturbance to be used in this thesis. With knowledge
combined from other studies, ground effects and wind estimation will be mathematically obtained and
added to the model.

4.1 Ground, Ceiling and Wall Effects

This phenomenon happens when the drone is approaching obstacles that could be occurring from all
angles as described in section 1.3. When the quadcopter is affected by these effects, it either gains an
upward force for all motors helping the quadcopter rise or deviates the force of one or more rotors,
making the drone rotate. The ground effects will appear as either translational disturbances or rotational
disturbances, described separately throughout this chapter. Several studies describe these effects with
mathematics, depending on the specific event, and these calculations will be used in this thesis to test
different control strategies and compare them based on the objectives in section 1.4.

4.1.1 Translational Effects

The translational effects affecting the quadcopter is called the ground effect and the ceiling effect. These
disturbances equally interfere with each motor, creating only vertical forces.

Ground and Ceiling Effect

The translational ground effects will be based upon the research done for small-scaled quadcopters in
[22], where calculations for ground effect in hover mode and through forwarding flight is obtained for
both high speed, low speed and no speed. The obtained ground effects will be assumed equal to the
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4. Disturbances and Noise

ceiling effects, as Conyers have assumed in [23], to simplify the model, while validation of this is proven.
The research [22] is built upon several earlier studies gathering mathematical and experimental evidence
to perform valid ground effect estimation. The most common way to describe ground effects is obtained
from Cheeseman and Bennett [24], who in 1955 created a relationship between the height above ground,
rotor diameter and speed. This effect is obtained for a helicopter but is proven to work on quadcopters
as well, and the formula can be seen in equation 4.1.

FIGE
FOGE

=
1

1− ( R4z )2
if

z

R
> 0.25 (4.1)

Article [22] have tried to fit lots of experimental data from other studies with comparison to own tests
and obtained a model able to estimate ground effect concerning height, velocity, induced velocity, air
density and rotor diameter to specialise the effects further. The model is fitted such that ground effects
are neglected when the height exceeds z>4R, depending on the study. Cheesman and Bennet [24] only
allowed the force to perform up to z>1.5R where newer studies have shown that it is still measurable at
z>4R [25]. Two models are proposed in [22], and the second model will be used in this thesis to estimate
the ground effects. The equation for ground effects is seen in equation 4.2 where a second-order term is
used as a coefficient of velocity for the drone. V is the drones velocity where vh is the induced velocity

calculated vh =
√

Th
2ρπR2 wherein ρ is the air density. Equation 4.3 shows the effect when velocity

equals 0, and the quadcopter is in hover mode.

T

Th
= (0.104

R

z
− 0.0952)(

V

vh
)2 − 0.171

R

z
+ 1.02 (4.2)

T

Th
= −0.171

R

z
+ 1.02 (4.3)

In the equation, R is the radius of the rotor, and z is the height above ground. The equation does not
take uneven ground surfaces into account, which also applies to the ceiling effects. Equation 4.2 will be
used in the model for estimating ground and ceiling effects. The equation for accelerations in x, y and
z-direction will be as seen in equation 4.4.

mξ̈ =

 0

0

−mg

+RxyzTB
T

Th
+ FD (4.4)

4.1.2 Rotational Effects

Rotational disturbances are called partial ground effects and wall effects in this thesis and will both lead
to rotating the quadcopter because of not equally disturbed motors.

Partial Ground effects

The partial ground effects shown in figure 1.3 represents ground effects affecting only some of the rotors
creating a rotation in the quadcopter if not counteracted by control. This term will be utilised as equation
4.2 but only attached to some of the rotors, where it in section 4.1.1 is used equally on the thrust. As this
is partially affecting the thrust, the quadcopter would begin rotating depending on the motors disturbance.
This disturbance will be simulated, disturbing one motor and two motors in two different experiments.
These experiments will be used to understand effects and learn how to counter control them.
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4.1. Ground, Ceiling and Wall Effects Aalborg University

Wall Effects

Wall effects influence both dragging the quadcopter towards the wall and also decreasing the thrust of
the rotors closest to the wall as described in section 1.3. This means that two independent forces occur
when approaching a wall, which in this section will be simplified by using the partial ground effects as
negative disturbances to the motors closest to the wall and one constant force dragging the drone towards
the wall. The effect of this will be tested as a horizontal force applied to the drone, with different types
of strength and at the same time testing for adverse partial ground effects on the quadcopter.

4.1.3 Summary

As the equations can perform in the range of z>0.05m and z<0.85m, "if statements" will be used to
equalise the thrust factor to one when the altitude is higher than one meter. When the altitude is beneath
0.05 meters, the factor is assumed to perform as if the altitude is 0.05 meters, the most significant thrust
factor. An example of the if statement given for ground effects can be seen in equation 4.5, where the
factor now is called Tf .

if z < 0.05

Tf = 1.3298

elseif z < 0.85 (4.5)

Tf = (0.104
R

z
− 0.0952)(

√
dx2 + dy2

vh
)2 − 0.171

R

z
+ 1.02

else z > 0.8

Tf = 1

This implementation will be used on both the translational and rotational effects, and an example of this
can be seen in figure 4.1 where the ground effect is tested on the mathematical model with simple PD
controllers added.
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Figure 4.1: Visualising the effect of ground effects
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4.2 Noise Model

Noise occurs in all machinery related to the motor, turbulent flow, vibrating panels etc. Because of
noise, control has to be designed carefully so that the closed-loop system will not become unstable. The
controller must be robust towards both the noise in a system and the previously described disturbances.
In section 2.4 an assumed realistic sensor noise is created with different variances for measuring altitude,
angles and acceleration. The model contains Gaussian distributed white noise and will be implemented
onto the output sensor signals. To visualise the effects of noise implemented onto the output signals,
again the same PD controllers will be used as in section 4.1.3, and the results can be seen in figure 4.2.
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Figure 4.2: Visualising the effects of noise on outputs

As seen in figure 4.2, noise interferes with the output signal creating an oscillating signal. When this
signal settles, it oscillates around the actual value, which in the end may cause the controller to react
to these errors continually. This will drain the battery and cause limited flight time, which of course,
has to be avoided. One of the options could be to estimate the actual signal and thereby straighten out
the oscillations gaining a more settled output. Another option could be to decrease the aggression of
the controllers, which should lead to not reacting to minor errors. Also, both options could be used
simultaneously to gain decreased current consumption.

4.3 Wind Effects

Wind effects can have a significant impact while controlling a drone. Because of the drone’s low weight,
a moderate breeze can send the drone off course or collide with obstacles. To gain robustness towards
minimising these effects, a simple wind disturbance is used in this thesis to test how it can be counteracted
by control. This disturbance will be implemented as a sinusoidal force connected with some white noise
to create a chattering nonlinear disturbance, disturbing the roll and pitch moment of the quadcopter.
With the wind disturbance implemented into the model, the sensor output signal can be seen in figure
4.3, where both the noise and wind effects are implemented.
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Figure 4.3: Visualising the effect of wind on outputs

As expected, the drone would be moved out of position, which gains the interest of stabilising it in
this condition, so that it might fly more steady and collisions with objects can be avoided. Also, many
assignments cannot be performed in this condition, such as photographing or dropping cargo.
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This chapter elaborates two different control strategies to counteract the disturbances described in
section 4 and the sensor noise in section 2.4. The controllers will be created theoretically in this section.

5.1 Control Strategies

In section 1.3 different control strategies is listed in table 1.1 stating remarks and pros and cons. The
first mentioned strategy, PID, is a simple linear controller gaining average responses whilst being easily
adjusted. This type of control law is called a linear control law and will be used in this thesis as the
simplest control strategy to compare the drone’s handling against more robust, disturbance rejecting and
adaptive control strategies. Other strategies to compare the linear controller will be a Sliding mode
control strategy to gather disturbance rejection and precision of the disturbances in section 4. To further
realise the control, quadcopter limitations based upon the chosen AscTec Hummingbird will be presented
and used throughout this chapter. The limitations will be based upon [26] where tests are performed to
find these limitations and [27] where the drone can be purchased.

Limitations Min Max
Motor speed 1.100 [rpm] 8.600 [rpm]
Roll and Pitch angle -85 [°] 85 [°]
Speed 0 [m/s] 15 [m/s]

Table 5.1: Limitations for quadcopter
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5.2 Linear Control

The linear strategy will be built upon linear analysis to understand its limitations and achievabilities.
In section 3.7 a linear model of the system was created, and it will be used to obtain these controllers.
The state-space model created in equation 3.61 will be used to gain transfer functions Gi, to analyse the
system. To calculate the transfer functions of the system, equation 5.1 is used to derive the functions
from the state-space model. The C matrix determines how many transfer functions are calculated, where
four is chosen to control the altitude, roll, pitch and yaw. Two more will be added when control of the x
and y position is needed.

G = C(sI−A)−1B (5.1)

With a C matrix chosen, sixteen transfer functions will be calculated, but because the x and y-axis are
chosen as they are, the torques of roll and pitch will only contain two motor inputs seen in equations 3.31
and 3.32, which means that some of the transfer functions are zero. The system of the transfer function
can be seen in equation 5.2.


z

φ

θ

ψ

 =


G(1, 1) G(1, 2) G(1, 3) G(1, 4)

G(2, 1) 0 0 G(3, 4)

0 G(3, 2) G(3, 3) 0

G(4, 1) G(4, 2) G(4, 3) G(4, 4)



u1
u2
u3
u4

 (5.2)

The transfer functions coherent with z, φ, θ, and ψ are equal for each command but may occur in negative
and positive signs. The functions can be seen in equation 5.3 to 5.6 with their associated closed-loop
transfer function expressed only in positive sign. The functions will now be expressed in continuous time
functions but will be analysed in both continuous and discrete time.

Gz(1, i) =
0.0009188

s2
, GzCL(1, i) =

0.0009188

s2 + 0.0009188
(5.3)

Gφ(2, i) =
0.006266

s2
, GφCL(2, i) =

0.006266

s2 + 0.006266
(5.4)

Gθ(3, i) =
0.006266

s2
, GθCL(3, i) =

0.006266

s2 + 0.006266
(5.5)

Gψ(4, i) =
0.0004642

s2
, GψCL(4, i) =

0.0004642

s2 + 0.0004642
(5.6)

These functions are defined in continuous time Laplace domain but will be executed in discrete time,
and thereby the functions have to be discretised. To perform a discretisation, Backward Euler’s method
will be used, saying that s = z−1

Tz , where T is the sampling time. The sampling time contributes to the
reaction of control, which can create instability if too low and may drain the battery and computer power
if too high. A general sampling time for equipment in quadrotors lies between 50hz and 500hz. An
article has looked into differences between sampling rates [28] where they have tried 70Hz, and 100Hz
for an MPC controller and 400Hz for a PID control depending on their equipment. 70Hz seemed too low
where 100Hz could be used, and 400Hz is undoubtedly qualified. 250Hz is chosen in this thesis as this
is assumed to be qualified to perform reasonable control, meaning that T=0.0040s.
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5.2.1 Linear Analysis

With transfer functions obtained for the linear plants, controllability will be analysed, starting with the
root locus. As all transfer functions have the same structure, one root locus will create a controller. As φ
and θ equals, the analysis will be based on these transfer functions, and their closed-loop s- and z-plane
root locus can be seen in figure 5.1.

Figure 5.1: Root locus of roll and pitch transfer functions in s- and z-domain

As seen from these figures in 5.1, the poles in the s-domain can be assumed to stay on the y axis,
meaning that the system is marginally stable and oscillating, which can be increased or decreased. While
observing the z-domain plot, the roots of the closed-loop are located at 1 + 0.0003i and 1 − 0.0003i,
which is assumed to lie on the unit circle, meaning it is also marginal stable which it was supposed to be.
To create stability in this system, it is essential to create a system with poles in the left half-plane for the
continuous-time domain and make the poles in discrete-time behave inside the unit circle. If poles are
outside the unit circle or in the right half-plane for the continuous format, the system becomes unstable.

To gain stability and reach the desired goals, different linear controllers can be used. Some of these
could be PI, PD, PID, LQR or LQI, which have different advantages. Looking into the transfer functions
from 5.3 to 5.6 it is observed that an integrator occurs in the functions, and it is thereby assumed
that steady-state errors do not arise in the system, which eliminates the advantages of PI, PID, LQI
control. Neglecting the integral term in these controllers also degrades the controller’s order, and lower
accelerations from actuators are needed, meaning power would be saved. Looking through several papers
mentioned earlier, a general PD controller has been used to control drones gaining a simple system
control. The proportional-derivative (PD) controller ads a single zero into the system at location −KP

KD
in

continuous time. The PD controller structure can be seen in equation 5.7.

GPD = KP +KDs = KD(s+
KP

KD
) (5.7)

As this controller structure implements a zero, the purpose is to implement it where stability can be
obtained. Implementing it on the left half-plane in the s-domain will make the system break away
from zero and connect again on the other side of the zero implemented. In the s-domain, the system is
considered stable with every negative zero placement. Looking into the z-domain root locus, instability
occurs when the branches break out of the unit circle, which happens if the zero is placed between [-1,0].
If the zero is placed in zero, the branches follow the unit circle in its outskirts and connect in minus one,
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from where it breaks to minus infinity and 0. If instead the zero is placed somewhere between [0,1], the
branches do not break outside of the unit circle, and the system becomes stable if the gain is kept under
1.60e+5. These figures can be seen in figure 5.2 where a zero at minus one is seen to the left, zero at zero
in the middle and zero at one to the right.

Figure 5.2: Illustration of root locus differences of different zero locations by PD control

From this knowledge about instability, it is calculated that the relationship between −KP
KD

has to equal
-1000 at most to place a pole between [0,1]. Having established this boundary, the controller values can
be guessed with knowledge of the terms. The proportional gain affects the sensitivity and susceptibility
and determines how fast or slow the controller reacts. This gain increases overshoot and steady-state
error, while it might be impossible to reach stability if too low. Otherwise, it might lead to instability.
The derivative gain will counteract the proportional gains increase of overshoot and lead to low stability
while also increasing settling time if overshoot occurs, which means that the proper relationship must
be found. Controllers will not be derived in this section but are instead created in chapter 6, where a
hyperparameter optimising strategy is used to find the optimal controllers. Instead, section 6 finds and
uses the bounds to create a starting guess in the optimising tactic with suitable hyperparameters.

Next, a nonlinear control strategy will be created to respond to this linear control method and analyse the
difference in the case of the chosen disturbances.

5.3 Sliding Mode Control

A Sliding mode controller (SMC) is a nonlinear control strategy that uses a discontinuous control signal
to cause the system to slide along a cross-section of the system’s normal behaviour. It is a well-
known control law with the advantages of being robust against system uncertainties and disturbances,
achieving fast convergence, and it can be made simple as mentioned in table 1.1 in section 1.3. The main
consequence of using sliding mode as a control law is its chattering function which results in energy loss
and can, in the worst case, damage the physical parts of the quadcopter.

The SMC will be designed to be robust against disturbances and guarantee convergence in finite time.
As this is obtained, the next step will be to reduce the chattering to decrease the energy loss and possibly
other consequences. Based on the model in section 3 the system will be divided into an inner subsystem
containing z φ, θ and ψ, and an outer subsystem containing x and y. PD controllers will control the
external subsystem, as sliding controllers in cascade are challenging to use as they react simultaneously,
and a faster inner system is not reached. The sliding mode controller architecture can be seen in 5.3.
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Figure 5.3: Illustration of sliding mode control in a block diagram

5.3.1 Controller Design

The controller design is created from sliding mode control theory to ensure that the states z, φ, θ, and ψ
converge toward their references [29]. The sliding surfaces for these two DOF’s can be seen in equations
5.8 to 5.12 where the goal is to equalise these to zero in finite time.

s1 = cz(zref − z) + (żref − ż), cz > 0 (5.8)

s2 = cφ(φref − φ) + (φ̇ref − φ̇), cφ > 0 (5.9)

s3 = cθ(θref − θ) + (θ̇ref − θ̇), cθ > 0 (5.10)

s4 = cψ(ψref − ψ) + (ψ̇ref − ψ̇), cψ > 0 (5.11)

(5.12)

To make these sliding surfaces reach zero in finite time and become an invariant set, the control term u
will be used in the presence of f(t, y, ẏ). The errors for this control will be defined: e1 = y − r, which
gives the closed-loop dynamics in equation 5.13.

ṡi = ce1 + e2

ė1 = e2

ė2 = ÿ − r̈ (5.13)

In these closed loop dynamics r describes the references and ÿ = f(t, y, ẏ, u) with the control law linked
describes the actual signal. ÿ can then be divided into a disturbance term f and an input term G so that
the controlled term y can be written ÿ = f +Gu, which can be used to rewrite the closed loop dynamics:

ė2 = f +Gu− r̈ (5.14)

With the dynamics stated, u will be built to drive the error to zero in finite time and become an invariant
set. To know that this is possible, stability has to be proven. This will be done using the Lyapunov direct
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method where the Lyapunov candidate is chosen as in equation 5.15 so that the derivative becomes:

Vi =
1

2
s2i (i = 1, 2, 3, 4) (5.15)

V̇i = siṡi (5.16)

The goal of creating stability is to obtain a system that is positive definite for the candidate 5.15 and
negative definite for the derivative in equation 5.16 which establishes global stability.

• V(x) is positive definite
• V̇ (x) is negative definite
• V(x)→∞ as ||x||→∞

This will give a system with global finite-time convergence. With the Lyapunov candidate chosen as in
equation 5.15 is it obvious that the function is positive definite for all sliding surfaces si as V(0)=0 and
V(si)>0 ∀ si 6= 0. To obtain negative definiteness for the derivative term, the Lyapunov candidate will
be further expanded to achieve this goal. First, the candidate will be rewritten to equation 5.17.

V̇ (si) = siṡi = si(f +Gu− r̈ + ce2) (5.17)

To achieve negative definiteness u will be used and designed so the goal can be achieved. u is designed
so it replicates some of the dynamics, and the equation for the candidate can be simplified. The control
of u is chosen u= ĝ−1(r̈ − ce2 + ν) which then results in this candidate:

V̇ (si) = siṡi = si(f +G(ĝ−1(r̈ − ce2 + ν)− r̈ + ce2) (5.18)

For this to be usable, it is assumed that ĝ=G and that there exists a bound |f|≤ L, where L is the bound.
This can be seen in equation 5.19.

V̇ (si) = si(f + ν) = sif + siν ≤ |si|L+ siν = −αV
1
2 (5.19)

With this established ν becomes a control term which will be defined:

ν = −ρsgn(si) and sgn(si) =

{
1 for si > 0

−1 for si < 0
, sgn(0) ∈ [−1, 1] (5.20)

Now that ν is defined and u is created concerning negative definiteness for the derivative term of the
Lyapunov candidate, this Lyapunov candidate can be used to obtain ρ in equation 5.21.

V̇ (si) ≤ |si|L+ |si|ρ = (L− ρ)|si| = −αV
1
2 = −α

…
1

2
s2i = −α

si
|si| ⇒ ρ = L+

α√
2

(5.21)

From equation 5.21 it can be seen that negative definiteness is accomplished, as −α
»

1
2s

2
i can only be

a negative number or zero, meaning the goal of stability is reached. Now the next step will be to create
robustness and decrease the assumed chattering. An example to prove this stability will be made from
control of z̈ where equation 3.42 is used, and z̈ can be seen in equation 5.22.
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z̈ =
T

m
c(φ)c(θ)− g − 1

m
Az ż (5.22)

A bounded term d(t) will be added to the equation to guarantee a stable closed-loop in the presence of
boundaries. Then the equation can be reduced by letting f=-g- 1

mAz ż+d(t) and G= 1
m while T is the input,

meaning the equation can be simplified to:

z̈ = f +Gu (5.23)

This will lead to ė2 = f +Gu− r̈ which is defined in 5.14 and used through the stability proof, meaning
from here stability is obtained.

By reaching stability mathematically, the tuning gains c, and α will be found by using the same
optimisation strategy as for the linear controller, which can be found in section 6. The controller obtained
can be seen in equation 5.24.

u = ĝ−1(r̈ − ce2 − (L+
α√
2
sgn(si)) (5.24)
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This chapter explores the possibilities of using hyperparameter optimisation to tune controller values.
This type of tuning method defines some hyperparameters which values is further used to optimise the
learning algorithm. It is defined as a machine learning method used to optimise the tuning of data within
some required constraints.

6.1 Controller Tuning

When acquiring a model with a control method completed to gain control of the system, it is ideal for
tuning this method to obtain the best results from controller values. This tuning to optimise control
regarding the goals can be performed using different techniques. One option is to integrate a controller
onto the quadcopter and test its performance, then regulate the values compared to the results seen. This
will be done several times until satisfying controllers are obtained. This method could damage the drone
without a test-stand, as inadequate values lead to a crash, whereas a test-stand would be preferred. This
method could be time-saving for the experienced control tuner, as it is about guessing right with the
knowledge one has acquired. This method will, in most cases with less experienced people, be time-
consuming.

Another option requires a model of the system simulating the dynamics and behaviour with the chosen
controller values. This method is safer for the quadcopter and cheaper by not necessitating a test-stand
but in many cases less accurate due to the unmodelled dynamics. Tests could, in this case, also be running
faster, and satisfying controller values could be reached using less time. This method’s time consumption
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depends on the number of parameters and simulations required, which is a case with many controllers
that may be time-consuming, such as this drone.

A third option for optimising the controllers is a machine learning algorithm in the category of
Hyperparameter optimisation. This method uses hyperparameters to perform a learning algorithm based
on different constraints, weights or learning rates to indicate data patterns. In this case, a surrogate
model will approximate the actual system from input to output to save time. These methods used with
the surrogate model are assumed to predict the output from chosen controller values quickly and further
predict optimal controllers.

Three generally used learning algorithms are the "grid search", "the random search", and the "Bayesian
optimisation", which all have some set constraints in which they search for an optimum. To demonstrate
the search algorithms figure 6.1 illustrate how they investigate optimum differently. The optimum is
visualised as a red dot.

Grid Random Bayesian

Figure 6.1: Hyperparameter optimisation methods

The grid search is the most straightforward search algorithm used to generate candidates within a
specified search space as illustrated in figure 6.1 [30]. Here samples distributed with equal space
between them is used. It is the most widely used search algorithm because of its simplicity, but it
may be challenging to use if one does not have experience narrowing the search space or if several
hyperparameters are awaiting tuning. Article [30] describes the method to be preferable when the user
has enough experience of choosing hyperparameters, narrowing the search space sufficient. Also, it is
described that more than three hyperparameters tuned simultaneously are not intended with this method.

The random search instead chooses hyperparameters independently using a probability distribution
which comes out with these random candidates seen in figure 6.1. This search algorithm improves
the grid search as it can continue until the desired accuracy is obtained or the maximum computational
effort is reached. The most significant difference between the grid and random search is that the grid
search has a fixed set of hyperparameters uniformly distributed, where random search might be more
likely to approach the optimal point if it is not uniformly distributed. Also, grid search finishes searching
when the grid assigned is completed. Random search instead can be set to have a greater probability of
finding the optimum if more time is used. This is referred to as the Monte Carlo technique [30], which
is needed if larger amounts of multi-dimensional datasets are processed. The random search might be
more effective than grid search but at the cost of being a computationally intensive method.

The Bayesian optimisation outperforms the grid and random search as it aims to find the optimal point
from using a minimum number of trials. It can balance exploitation and exploration, which means it
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decides a current best on current information or collects more information if needed. The Bayesian
technique also has the benefits of not requiring to possess preliminary knowledge of the hyperparameter
distribution, and it is computationally efficient as it correlates each trial to become a better candidate
requiring fewer attempts.

The Bayesian optimisation method will be used through tuning controllers as it seems to perform best
and most costly. It will be described in the next section.

6.2 Bayesian Optimization

Bayesian optimisation (BO) is categorised as a black-box optimisation method as it is only possible to
observe outputs based on given inputs but not assess the equations. Instead, it deals with optimising
the functions within, based on the outputs. This learning algorithm is built upon the fundamentals of
creating a surrogate model that can determine the objective function and declare the next sampling point
it uses from an acquisition function. In this thesis, the surrogate model will be non-parametric, where a
hypothesis will create the primary objective function, and observational data from here with prior costs
will be used to fit posterior data to maximise the probability of reaching the optimum. In the acquisition
function Gaussian process (GP) will be used to create the probability function, as it is overwhelmingly the
most widely used [30]. This thesis will create a GP acquisition function, establish some hyperparameters
and a cost function and use Matlab commands to perform the Bayesian optimisation. This process will
be described in this section, and figure 6.2 visualises the progress.

new controller Ji

u(t)
Controller Plant

r(t) y(t)

i+1

Figure 6.2: Block diagram of the proposed Bayesian optimization (BO) method used to tune
controllers. Controllers are parameterised γi and evaluated by cost function J in closed loop. By

evaluating previous attempts γi, Ĵi1...i, BO proposes a new controller γi+1

closer to find the global optimum.

6.2.1 Overview of Bayesian Optimisation

The GP uses multivariate Gaussian distribution to find an infinite number of real-valued variables
x1, ..., xn ∈ χ and it can be described as in equation 6.1.

f(λ) ∼ GP (µ(λ), k(λ, λ′)) (6.1)

Here µ is a mean vector, and k is the covariance function, both described in equation 6.2.
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µ(λ) = E[x] =

µx1...
µxn

 , k(λ, λ′) = E[(x′ − µ(x′))] =

k(x1, x1) . . . k(x1, xm)
...

. . .
...

k(xm, x1) . . . k(xm, xm)

 (6.2)

These two terms determine the features of the surrogate model where µ regulates the precision and
amplitude of the samples and k(λ, λ′) the quality of the model. The covariance function is used to
establish similarity between the data and satisfy symmetry given as k(λ, λ′) = k(λ′, λ). The covariance
function is also known as the kernel function in this optimization and is mainly used in a squared
exponential format ksE(x, x′) = exp(− ||(x−x

′)||2
2l2

), while a frequently used mean values is µ(λ) = 0.
Gathering a large mean value indicates a greater possibility of approaching optimum, while a larger
kernel value refers to a worthy exploration. l in the kernel is used as a length scale parameter which
can be used to determine if the correlation between x and x′ is strong. If the value of l is large, the
correlation between the points becomes strong even for points far from each other, where a small value
of l means that only points in the near vicinity have a strong correlation. GP is conceptually difficult to
understand and has a drawback for large dimensions or datasets, and determining the hyperparameters
highly influences its efficiency. To get the knowledge and understanding behind GP and further on
Bayesian optimisation, please refer to the reviews in [31], [30] and [32].

Next, the Acquisition function has to be designed so that its trade-off between exploration over search
space and exploitation in current areas culminate into a good result. Here a common choice is called
the expected improvement (EI), which establishes the next point based on the hyperparameters in the
surrogate model. The acquisition function creates the goal of the BO, which is to maximise the EI by
decreasing the mean. In this optimisation, the improvement will be further expanded to an expected
improvement plus, which is an expansion trying to avoid the possibility of ending in a local minimum.
By adding an exploration ratio, tσ is added so that an acceptable exploration ratio is reached. Adding
this ratio the next guess of x must fulfill the condition σf (x) < tσσ(x), with σf (x) being the standard
deviation of the posterior costs and σ being the standard deviation of the additional noise added in
section 4. Adding this expansion increased the possibility of reaching a global minimum by controlling
the trade-off between exploring new points or concentrating on near points. Maximising the expected
improvement plus acquisition function can be seen in equation 6.3.

EIP (x) =

{
(f(x+)− µ(x))Φ(Z) + σ(x)φ(Z), if σ(x) > 0

0, if σ(x) = 0
(6.3)

f(x+) is the value of the best cost function so far, where Φ is the cumulative distribution and φ the
probability distribution, where Z is described in equation 6.4

Z =

{
f(x+)−µ(x)

σ(x) if σ(x) > 0

0 if σ(x) = 0
(6.4)

From these equations, the goal is to approach zero for the mean µ, which is done by increasing the first
term in equation 6.3. Also, it is a goal to not end in a local minimum by using the exploration ratio so that
exploration is increased if ending in a local minimum, and further unexplored points will be searched to
find a global minimum.

To use this optimisation strategy, the tool MATLAB uses implemented code to generate the optimisation.
For both linear and nonlinear controllers, there are two variables to be optimised. KP and KD are used
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for linear controllers, and c and α are used in the nonlinear. To achieve optimised controller parameters,
the BO created will be used and described here.

A cost function is designed with the chosen parameters acquired as costs. This function will be calculated
through all simulations and based upon the desired variable’s reference and actual values. This can be
described in equation 6.5.

J =
N∑
i=1

(|refφ − xφ|+ |refθ − yθ|+ ...) (6.5)

Here N is the number of samples, where the reference minus variable represents the controllers
optimised. For simplification, all controllers will not be tuned simultaneously as the Gaussian process
regression(GPR) would have difficulty performing, and if one parameter creates instability for one
controlled value, the cost will go towards infinity. For the GPR a MATLAB command fitrpg(X,y,’option’)
will be used. This function creates the GPR with the option of choosing the desired kernel function as
represented in equation 6.6, where a linear controller is chosen as an example.

gprMdl = fitrgp([KP KD], Costi,
′KernelFunction′,′ squaredexponential′) (6.6)

Next, the hyperparameters are chosen within the desired values, where a MATLAB command is again
used. Here, the data type must be chosen, and the respective span has to be set. These optimisable
variables can be seen in equation 6.7 in the respective MATLAB command.

Kp = optimizableV ariable(Kp, [0, 10],′ Type′,′ real′) (6.7)

KD = optimizableV ariable(KD, [0, 10],′ Type′,′ real′) (6.8)

(6.9)

Now all the parameters are set, and so the Bayesian Optimisation can be created. The BO should use
the expected improvement plus acquisition function, and the MATLAB command also commands the
prediction function with all handles. This command can be seen in equation 6.10.

bayesObject =bayesOpt(@(tbl)mdlfun(tbl, gprMdl), vars,′ V erbose′, 1, ...
′AcquisitionFunctionName′,′ expected− improvement− plus′) (6.10)

Within this MATLAB command, the prediction function is called mdlfun(tbl,gprMdl) and will be used
to find the next point from the acquisition function. Bayesopt will use this prediction function to create
a cost function value based on the new parameters collected as the optimisable variables. These new
variables are used in the GPR to predict the cost function value. The prediction function is called in
equation 6.11.

f = predict(gprMdl, vars) (6.11)

Then equation 6.10 minimises the prediction function and optimised controllers parameters will be
investigated through these equations in this section 6.2. The MATLAB code used for the Bayesian
optimisation can be seen in Appendix B.

The following sections will present the controller parameter defining and tuning for linear and nonlinear
control with disturbances attached.
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6.3 Tuning of Controllers

With Bayesian optimisation, tuning of both linear and nonlinear controllers will be achieved through the
following subsections.

6.3.1 Linear Control

For linear control, PD controllers are selected in section 5.2 to control the drone simply and still be able
to reject the proposed disturbances. A representation of controllers combined with the model can be seen
in figure 6.3 with the different disturbances implemented as well.
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Figure 6.3: A presentation of the system with linear controllers, wind disturbance, noise model and
ground, ceiling or wall effects attached

With the model accomplished and controllers connected, tuning of the six PD controllers will be done
using Bayesian optimisation. Only the angle and altitude controller will be found as a start to narrow
the span of controller values investigated. When these can be used to control the angles of the drone,
position controllers are to be optimised.

As a linear control theory is made in section 5.2, some large boundaries of controller values are found and
used in the Bayesian script. With the large boundary of Kp

KD
= 1000, the hyperparameter boundary will

be set to [0,1000] for both Kp and KD. Creating a stable starting guess with this boundary is difficult,
so the costs will not go towards infinity. Because of that, another Bayesian optimisation strategy will
be used to find some stable points which can be used as starting guesses for the proposed BO. The new
strategy will narrow the boundary spectrum. This strategy is shown in appendix B where the model will
be given a set of random numbers within the boundary. These simulations with random numbers for the
controllers will be used in the BO to look through a large space towards stable controllers. The BO with
random numbers will be run 150 times to visualise usable boundaries for optimal controllers.

As stable controllers are found, the script in appendix B will be used with the starting guess of the found
stable controllers from the code in appendix C.

As these scripts have been run, a set of optimal PD controllers is found from the model with disturbances.
The controller values can be seen in table 6.1.
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Controllers KP KD

x 4.63 5.28
y 5.04 4.72
z 218.36 173.97
φ 5.36 5.08
θ 9.12 7.14
ψ 8.7229 2.7491

Table 6.1: PD controller values found by using Bayesian optimisation

First, the control of the angles is tested with both a roll and pitch change while moving up in altitude.
This is presented in figure 6.4.
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Figure 6.4: Angle control with PD controllers and a changing thrust factor

The noise can easily be seen from the output signals, while also the thrust factor seems to be overcome
when near the ground as a smooth sine wave can be maintained. Figure 6.5 shows how the thrust
increases when near ground, but while it also chatters, which disturb the control, meaning it has increased
robustness towards a changing thrust factor.
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Figure 6.5: Thrust factor for PD control
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Further, the control will be omitted to wind disturbances to visualise the robustness of angle control. The
effect from wind effects can be seen in figure 6.6.
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Figure 6.6: Angle control with PD controllers and a sinusoidal wind disturbance

From figure 6.6 it can be seen how the control does not counteract the wind, and the angles are pushed
back and forth as the wind interacts with the quadcopter.

While control of angles and altitude is established for linear controllers, also position control is to be
made. The results of position control with linear controllers can be seen in figure 6.7. The same strategy
will be used here, whereas the controllers shown in table 6.1 provide the tuned controllers from BO.

5 10 15

Time [s]

0

1

2

3

4

5

6

P
o
s
it
io

n
 [
m

]

Position and altitude control

x position

y position

z altitude

Figure 6.7: Position and altitude control with PD control

Stability in position control has been achieved, but the performance can be further optimised, which will
be looked further into in section 7.3.

6.3.2 Nonlinear Control

The structure of the nonlinear control theory can be seen in figure 6.8. The nonlinear control strategy
looks like the PD control structure in figure 6.3, but with some minor corrections in the representation
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of the system. Also, when attaching the nonlinear control structure, the references become threefold as
they cover position, velocity and acceleration.
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Figure 6.8: A presentation of the system with nonlinear controllers, wind disturbance, noise model and
ground, ceiling or wall effects attached

As assumed in section 5.3, the controller applies a chattering performance with the sgn function. The
purpose is to smooth the output of the control law. In figure 6.9, the sgn function changes the output
instantaneously. The goal is to create a continuous curved change between minus one and one, and
because of that, the discontinuous sgn function will be replaced with a continuous approximation to
avoid this effect and attain a more smooth control signal. To avoid this discontinuous change, a sigmoid
function presented in equation 6.12 will replace the sgn function in further tuning, and the parameter ε
will be included as a tuning parameter.

Bsf =
si

|si|+ εsf
(6.12)
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Figure 6.9: Illustration of output signal going from -0.1 si to 0.1 si with respectively a sgn function and
a sigmoid function
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By implementing the sigmoid function, the SMC controllers can be found with the same technique as
linear controllers. Again the inner loop is tuned first, after which the outer loop controllers are optimised.
The coefficients optimised can be seen in table 6.2 with the respective optimised values.

Controllers c α L ε

x 0.43 3.7 5.59 4.87
y 0.39 0.26 0.37 0.96
φ 4.17 0.52 4.44 40.00
θ 8.49 3.07 1.98 42.10
ψ 5.48 4.97 4.42 47.92

Table 6.2: SMC controller values found using Bayesian optimisation

With the tuned controller values for the sliding mode controllers, the same tests have been created to find
optimised controllers for the SMC and compare them with linear control performance. First, the inner
loop controllers are found, where control of angles and altitude can be seen in figure 6.10, and compared
to the same test in section 6.3.1.
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Figure 6.10: Angle and altitude control with changing thrust factor for SMC

The response looks more or less the same, but a faster response time and settling time on angle control
is achieved with the SMC control. Further, the tests with the same wind disturbance are created with the
optimised SMC control and can be seen in figure 6.11.
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Figure 6.11: Angle and altitude control with a wind disturbance acting on SMC

Comparing figure 6.6 and figure 6.11 a clear difference can be found in rejecting the disturbance from
wind. The SMC is more robust against wind disturbance as the sinusoidal curve is smaller in amplitude
than from PD control. With the angle and altitude control established for nonlinear control, the position
control is further created and can be seen in figure 6.12.
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Figure 6.12: Position and altitude control for SMC

Here, the position control is slightly slower than the PD control, which is not desired, and will be further
tuned in section 7.3.

6.4 Summary

Position and angle control is achieved both by the linear and nonlinear controller in section 6.3. Some
results are visualised in plots through the section where the stability of controllers is proven. With this
achieved, gaining robustness will be further studied in the next section, where some additional initiatives
will be included in the model.
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This chapter establishes some further initiatives towards gaining better performance and faster response.
The initiatives will be described and created in this chapter. Tests will be shown in the next chapter with
the elected initiatives implemented.

7.1 Initiatives

With the disturbances created in section 4 and integrated into the model, some issues occur in the results
of the optimal controllers found in section 6.2. Stability is proven, but the angle control is chattering
because of the implemented sensor noise. This negatively affects the controllers, and better results are
assumed if a filter reduces noise before using control. A typical filter used to estimate the actual outputs
without noise is the Kalman Filter, which creates an estimate between the modelled output and the
observed output. Correct implementation of this would lead to diminished chattering from sensor noise
and increased control performance.

When looking into the angle control and position control of respectively linear and nonlinear control,
the ground effects disturbance did not seem to impact significantly. In angle control, the sinusoidal
effects from wind did influence the angle position with the disturbance seen in figure 4.3. This effect was
illustrated in section 6.3. This means that disturbance rejection was not completed, and further initiatives
could be added for this rejection. For obtaining more desired results, the sliding mode control created
will be expanded to an integral sliding mode control(ISMC). This method is assumed to derive the sliding
mode towards zero from time zero.

These two initiatives are presented in this section and further used in the results in section 8.
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7.2 Extended Kalman Filter

The Kalman filter generally tries to estimate the states from already known linear dynamics combined
with a series of noisy measurements. This filter can be used when trying to eliminate the chattering
outputs achieved from the model, but the filter can also be used for many more tasks. If requested, this
filter type can achieve sensor fusion, where some sensors can be combined to obtain the most precise
results. It can also estimate disturbances as wind or obstacles to prepare the drone before closing in on
a disturbance. In this thesis, the filter will estimate the actual output from the noisy output seen in the
control, as the other disturbances seem to be diminished by control.

The classic Kalman filter operates with linear systems and cannot be used on a quadcopter model as it is
nonlinear. Because of that, it is expanded to a so-called Extended Kalman filter (EKF), where knowledge
will be gathered from [33]. The classic filter will use Gaussian distribution to estimate the signal from
a linear function, but while the function becomes nonlinear, the Gaussian distribution will become not
Gaussian. When using the extension to the linear filter, it instead tries to locally linearise the system
around a current mean, using the linear model created in section 3. The EKF is used to find an optimal
state estimated from two Gaussian distributions of predicted and measured states. The control of the filter
determines which measurement input is trusted most, and the optimal state estimate would by the tuning
be placed close to the most trusted output. This can be visualised in figure 7.1 where the measurement is
trusted more than the predicted states, and in between them, the optimal state estimate is placed closest
to the measurement.

Measurement

Predicted state 

estimate

Optimal state estimate
xk

Probability
density
functon

state position xxk yk

Figure 7.1: Illustration of the optimal state estimate in the EKF

As described, the linear and nonlinear model will be used to estimate an optimal sensor output in this
thesis, and from there, the predicted states is shown in equation 7.1.

xk = f(xk−1, uk) + ωk

yk = g(xk) + υk (7.1)

From equation 7.1 two external terms ωk and υk are implemented to describe process noise and
measurement noise in a stochastic variable which is to be comparable with the ones in 2.4. Both these
variables are implemented as Additive white Gaussian Noise (AWGN) with a normal distribution with
mean zero and the variance created in section 7.1. These terms for process noise and measurement noise
is implemented as ωi ∼ (N(0, σi) and υi ∼ N(0, σi). Further, the linear model has to be corrected in
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every step, meaning it uses varying parameters. The linear model will obtain an initial prediction of state
error covariance and find a correction matrix. These matrices are shown in equation 7.2.

Gk =
∂f(x̂k, uk)

∂x

∣∣∣∣
x̂k−1,uk

Hk =
∂g(x̂k)

∂x

∣∣∣∣
x̂

(7.2)

The EKF uses a prediction state and a correction state to find the optimal estimate. These states can be
seen in equation 7.4 where the predicted value x̂−k is calculated through the nonlinear model using the
initial corrected state. Then in the prediction, P−k is the error covariance of the prior estimate using Q to
represent the uncertainty coming from noise to correlate with the actual noise.

The correction step uses a Kalman gainKk to determine how the observation should be trusted compared
to the motion. A matrix R is implemented and used to determine whether the measurement should be
trusted more or the prediction or something in between by controlling the Kalman gain. This matrix
is also further used to tune the filter. To prove how the R matrix can be used, only the measurement
equation 7.3 is created with R=0, meaning that the measurement should be trusted entirely. If instead R
goes towards infinity, the prediction should be trusted.

R = 0⇒ Kk = P−k H
T
k (HkP

−
k H

T
k + 0)−1 = P−k H

T
k (H−1k P−1k HT−1

k ) = H−1k ⇒ Kk = H−1k

x̂k = x̂−k +H−1k (yk+1 −Hkx̂
−
k )⇒ x̂k = yk+1 (7.3)

The two matrices which determine the purpose of the filter is then the Q matrix and the R matrix, with
the R matrix’s use proven in equation 7.3 and the Q matrix variance described in section 2.4. With
these controllable matrices, the Kalman gain can be calculated and used to find the correction of the
state estimate x̂k. These calculations in equation 7.4 will then repeat over time and are the mathematics
behind the Extended Kalman Filter.

Prediction:

x̂−k = f(x̂k−1, uk)

P−k = GkPkG
T
k +Q

Correction: (7.4)

Kk = P−k H
T
k (HkP

−
k H

T
k +R)−1

x̂k = x̂−k +Kk(yk+1 −Hkx̂
−
k )

Pk = (I −KkHk)P
−
k

The equations stated for the filter have to be made usable for the model, which proceeds in discrete
time. To achieve this, the equations will be discretised by the use of Forward Euler’s method, and the
discretised nonlinear part can be seen in equation 7.5.

x̂−k = x̂−k−1 + Tsf(xk, uk) (7.5)

This means that the sampling time Ts is taken into account, and the EKF’s equations will be as in equation
7.6.
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ẋ ≈ xk−1 − xk
Ts

= Gxk +Buk

xk+1 − xk = TsGk + TsBuk

xk+1 = (I + TsG)xk + TsBuk

Gd,k = I + TsG (7.6)

The Filter is created, and its use has to be fitted to eliminate the noise of output sensor signals. Here the
matrices Q and R again are in focus. As described earlier, the Q matrix describes the noise variances
and includes those found where the R matrix determines which signal to trust. These matrices to control
are described in equation 7.7 where a gain g is added to the R matrix to adjust which state to trust.
These equations will be fitted to create the optimal estimate between the measured noisy signals and the
predicted calculated outputs.

Q =

σ
2

. . .

σ2

 , R =

σ
2g1

. . .

σ2g12

 (7.7)

7.3 Sliding Mode Tuning

The sliding mode control proposed in section 5 is a classical Quasi-Sliding mode controller eliminating
the chattering and with convergence in infinite time. Further tuning of this control can be added towards
being more robust and fast [29].

To optimise the robustness of this control law an integral term can be added so the control becomes and
integral sliding mode controller ISMC while also the reaching phase is eliminated. In this format the
desired loop dynamics are from t=0, where the same sliding variable is used:

si = e2 + ce1 = 0 ∀t ≥ 0 (7.8)

Now instead, the control law will be recreated as equation 7.9 which leads to the derivative of the sliding
variable in equation 7.10. Again ĝ is assumed to equal g.

u = ĝ−1(r̈ + u1 + u2 − ce2) (7.9)

ṡi = ė2 + ce2 = f(t, y, ẏ) + gu− r̈ + ce2 = f(t, y, ẏ) + gĝ−1(r̈ + u1 + u2 − ce2)− r̈ce2
ṡi = f(t, y, ẏ) + u1 + u2 (7.10)

Now in the ISMC the design task is to design u1 and u2 so that u1 compensates the disturbances f(t, y, ẏ)

enforcing the sliding from t=0 and u2 forces the sliding variable to equal zero as time goes towards
infinity. Design task u1 will be done first, and next design task u2 will be created.

7.3.1 Design of u1

First, an auxiliary sliding variable S will be created with the original sliding variable s implemented as
seen in equation 7.11

S = s− z with ż = u2 (7.11)
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As in the SMC |f(t, y, ẏ)| ≤ L and the auxiliary sliding variables, dynamics can be calculated:

Ṡ = ṡ− ż = ṡ− u2 = f(t, y, ẏ) + u1 + u2 − u2 = f(t, y, ẏ) + u1 ≤ L+ u1 (7.12)

Choosing u1 = −ρBsf (S) with Bsf being the sigmoid function used in section 6.3.2 then:

Ṡ = f(t, y, ẏ) + u1 = f(t, y, ẏ)− ρBsf (S) ≤ L− ρBsf (S) (7.13)

With this determined the stability of Lyapunov should be guaranteed again with (V = S2/2 and
V̇ = −αV 1/2) while also equivalent control is obtained if Ṡ = 0 ⇒ u1,eq = −f(t, y, ẏ). With u1
created to compensate the disturbances, u2 will be designed.

7.3.2 Design of u2

For the design of control parameter two the equivalent control mentioned above will be used and
substituted into equation 7.10 so the sliding variable will become:

ṡi = f(t, y, ẏ) + u1 + u2 = f(t, y, ẏ) + u1,eq + u2 = f(t, y, ẏ)− f(t, y, ẏ) + u2 = u2 (7.14)

This means that the sliding dynamics do not depend on the disturbances and can be driven towards zero.
The control law for u2 is then described in equation 7.15.

u2 = −ksi (7.15)

With these additions to the control, sliding control is obtained from initial time, proven by equation
refeq:sProve with the initial condition b = s(0) then the auxiliary sliding is achieved ∀t ≥ 0.

S = s− z, ż = u2 ⇒ S = s−
∫ t

0
u2(t)dt+ b = s+ k

∫ t

0
s(t)dt+ b (7.16)

7.3.3 Summarised Equations for ISMC

ISMC is created in this section to obtain better robustness and faster response. The equations and control
law for this control method is summarised in equations 7.17 to 7.21.

ė1 = e2 (7.17)

ė2 = f(t, y, ẏ) + gu− r̈ (7.18)

g =
1

m
(7.19)

f(t, y, ẏ) = −g − 1

m
Az ż + d(t) (7.20)

u = ĝ−1(r̈ − ce2 − ksi − ρBsf (S)) (7.21)
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This chapter presents the results obtained from the optimisation strategy with the use of linear and
nonlinear controllers.

8.1 Overview

This chapter will present the results essential to compare the different control strategies (PD, SMC,
ISMC) and their performance. The different results will include disturbance rejection against gusts of
wind and the thrust factor in separate cases. The signals created in this chapter have been through the
created EKF calculated in section 7.2 wherefrom more smooth lines will appear. This can be seen in
figure 7.1 where the signals before and after an EKF is presented.
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Figure 8.1: Noisy signals vs signals filtered by the EKF in section 7.2

The results created in this section will be analysed and discussed after each result. The EKF counteracts
the noise created in the system and will not be tested further. All results are affected by the EKF.

8.2 Comparison of Control with Ground, Wall, Ceiling and Wind Effects

In section 6 results affected by ground effects is presented, where both linear and nonlinear controllers
were stable. This section will create several further tests to visualise the rejection of ground, wall and
ceiling effects on a quadcopter. The tests created will be:

• Test with ground and ceiling effects
• Test with partial ground effects on two rotors
• Test with wall effects on two rotors
• Test with ground effects and wind disturbance

Ground effects are shown for PD and SMC angular control in section 6, where the angular and vertical
position has no greater reaction to this. In this chapter, tests will only be performed for position control
in z, x and y, and the positions will be the reference. To further visualise the differences, a figure
with the responding errors will be shown beside the positions. To demonstrate the effects acting on
the quadcopter, figure 8.2 is made, where z position along with ground and ceiling effect is shown in
figure (a) and the zoomed effects in figure (b). This figure presents how the factor changes along with
the altitude representing the action counteracted by control. A change in equation 4.2 is made to obtain
usable ceiling effects for the drone. Here equation 4.2 is changed to equation 8.1 where a ceiling is
placed at 1.5 meters.

T

Th
= (0.104

R

(1.5− z)
− 0.0952)(

V

vh
)2 − 0.171

R

(1.5− z)
+ 1.02 (8.1)

(8.2)
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Figure 8.2: Ground and ceiling effects on a quadcopter with PD control

As expected, the thrust factor changes along with altitude represented in figure (a). The ceiling is placed
at 1.5 meters and the ground at 0 meters. It can be seen from figure 8.2 (b) that the thrust factor for the
ceiling effect goes up along with time as the ground effect goes down, meaning that the PD control used
to visualise these effects does not keep the desired position. With this change in thrust summarised, the
results can be created.

8.2.1 Test with Ground and Ceiling Effects

With the knowledge of the ground and ceiling effects and a representation of them in figure 8.2, a
comparison between the three control theories will be simulated and shown for ground and ceiling effects
here. The goal is to follow the altitude reference so that a collision with the ground or ceiling can be
avoided, but the positions in x and y coordinates will also be represented. The reference for altitude
will be a sine wave with amplitude 0.7m and mean 0.775m which is shifted 2π radians to begin in 0.
This means it should reach a distance of 0.025m to the ceiling and 0.075m to the ground to follow the
reference. Both x and y will be set to 4 meters, so the drone will be moved a distance to determine how
prominent position control is along with these effects. The results can be seen in figure 8.3.
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Figure 8.3: Ground and ceiling effects on quadcopter, with a change in position. Ground is placed at 0
meters and ceiling is placed at 1.5 meters.

Review of Ground and Ceiling Results

The results show a clear difference between the sliding and linear controllers when following the
sinusoidal reference in altitude. The linear control law does not reach the desired reference, but it will
neither collide with the ground or ceiling. The linear control lags the reference and never catches up,
showing a significant error in the z position. Comparing the SMC and ISMC, the difference can be
seen in steady-state error, where SMC does generate a slight error of 0.02m while also oscillating higher
when affected by ground or ceiling effects. Both nonlinear control laws keep the drone from reaching
the ground and ceiling and will be categorised as usable for tests.

While observing the x and y positions, the linear PD control law acts acceptable along with the nonlinear
controllers, where it gains the lowest overshoot but highest settling time. All control laws can be used to

56



8.2. Comparison of Control with Ground, Wall, Ceiling and Wind Effects Aalborg University

reach a desired position along the horizontal axis, with approximately zero meters in steady-state error
and under ten seconds in settling time. Overshoot, settling time, and steady-state errors for all controllers
can be seen in table 8.1, where the z position for PD control is categorised as too weak to be shown.

Overshoot Settling time Steady state error
PD z x x x
PD x 1.3% 9.2s 0.12%
PD y 1.8% 10s 0.1%
SMC z 0% 0.2s 0.02m
SMC x 2% 4.7s 0.3%
SMC y 5.1% 6.2s 0.15%
ISMC z 0% 0.15s 0m
ISMC x 6.25% 6.1s 0%
ISMC y 5.5% 6.3s 0%

Table 8.1

8.2.2 Test with Partial Ground Effects

In this test, the quadcopter is exposed to partial ground effects affecting two of its rotors to have an
increased thrust, meaning that the quadcopter would try to rotate in x and y-direction as shown in figure
1.3. The results will be shown for all positions, where the crucial results will be how the x and y
positions behave. Every time the drone approaches the ground, the drone will rotate, and control has to
try to counteract this rotation. The results for partial ground effects can be seen in figure 8.4.
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Figure 8.4: Partial ground effects affecting two rotors positively as illustrated in figure 8.2

Review of Partial Ground Results

For the partial ground results, the z position equals the previous case with the ground and ceiling effect
results, meaning that the nonlinear controllers perform best and reach the position while PD control does
not keep up.

The essential results for partial ground effect are the x and y position affected every time ground effects
occur. The consequence of partial ground effects is observed for the horizontal position, which gets
pushed off the zero references and tries to get back on track. While comparing the altitude with the x and
y position, it is observed that the drone keeps its position when approaching the ground but first gets off
course when elevating from the ground. As it elevates, the horizontal position gets a boost of thrust that
is not controlled, thereby pushing the drone away from its reference as two rotors experience a greater
thrust.
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All controllers keep the drone oscillating around its references for x and y, where the linear control
law achieves the most significant error followed by SMC and with ISMC performing best regarding
counteracting the effects. As the signals do not settle, overshoot, settling time, and steady-state error
will not be described for these signals. Instead, the oscillation error and most significant error will be
presented in table 8.2. PD control drifts 0.64m away from the reference at the first meeting with the
ground effects followed by an oscillating error of 0.18m when affected further. This error is large and
requires ample space to test on a drone, where the nonlinear controllers keep the errors under 0.06m,
gaining certain robustness. Only ISMC control law is categorised as usable for professional use in this
test, as its highest error reaches 0.01m and the goal is below 0.03m

Oscillation Largest error
PD x 0.08m 0.22m
PD y 0.18m 0.64m
SMC x 0.06m 0.06m
SMC y 0.05m 0.05m
ISMC x 0.008m 0.01m
ISMC y 0.005m 0.009m

Table 8.2

8.2.3 Tests with Wall Effects

This test is performed to affect two rotors in the opposite direction of the partial ground effects. The
drone should reach a certain height and move a distance in the x position while staying at zero in the y
position. A wall is, in this case, placed at 1.5m in x position, and the drone will be moved 1.4m. The
goal here is to observe whether the drone can perform close to the wall without colliding. Control in all
directions is of interest in this test to visualise performance.

The equation for ground effects is changed so that it affects the x position and is implemented so that it
has a negative effect on the thrust dragging the drone towards the wall, which can be seen in equation
8.3, and the results are shown in figure 8.5.

1
T
Th

= (0.104
R

(1.5− x)
− 0.0952)(

V

vh
)2 − 0.171

R

(1.5− x)
+ 1.02 (8.3)

(8.4)
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Figure 8.5: Wall effects affecting two rotors negatively with the opposite effect of the factor shown in
figure 8.2

Review of Wall Effects

The wall effects should only affect the x and y position, where the altitude seems to have no challenge
reaching a distance of 0.775m. This test can observe how fast the drone reaches a certain height and
categorise the test with step information. This test shows again that the linear control law is slower than
the sliding controls but performs acceptable in z and x position, only with a small, steady-state error in
both coordinates. Instead, in the y position, the PD control is highly affected by the wall, and the drone
is dragged off course to reach a sizeable steady-state error of 0.25m. This will be an inoperable outcome
of controller performance. Instead, the nonlinear controllers will perform great in this test where settling
time and steady-state error is almost equal, as seen in table 8.3. The challenge for these controllers will
be the overshoot when nearing the wall, as a closer distance than 0.15m can result in a collision with the
wall, where the reference is placed at 1.35m for SMC and ISMC. On the upper hand, the PD controller
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has a reference of 1.4m which means it can try closing in on the wall, but the steady-state error sets it to
perform equally with the nonlinear controllers. When looking at the error for x position, the PD control
law does not overshoot the reference, meaning that collision with the wall is avoided using PD control.
The ISMC control law performs best in this test when comparing steady-state error, and also it keeps the
drone steady in y position when nearing the wall, where SMC has a small oscillation. Overshoot, settling
time, and steady-state errors will be compared in table 8.3.

Overshoot Settling time Steady state error
PD z 0% 3.5s 0.04m
PD x 0% 9.2s 0.9m
PD y 0.37m 20s 0.25m
SMC z 0% 0.13s 0.015m
SMC x 8.8% 6.1s 0.004m
SMC y 0m 6.2s 0.003m
ISMC z 1.2% 0.15s 0m
ISMC x 8.7% 6s 0m
ISMC y 0m 6.3s 0m

Table 8.3

8.2.4 Comparison of Control with Wind Disturbances

This section features the effects of a sinusoidal wind disturbance. Section 6 shows results of PD and
SMC controllers simulated with a sinusoidal wind disturbance and reacting to it. The results showed
significant impacts on both control laws but with more stability using SMC. The case here will include a
four-meter movement in the x and y position while trying to reach the sinusoidal reference for altitude.
While choosing these references, ground effects are turned on for all propellers, while the drone now is
exposed to a sinusoidal wind disturbance. This test should illustrate how difficult it can be when exposed
to several disturbances. The tests can be seen in figure 8.6.
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Figure 8.6: Wind effects affecting the quadcopter, while exposed to ground effect and trying to follow a
sinusoidal reference in altitude

This test is the most requiring performance test, which results in oscillations from all controllers. This
test diverges from the previous tests as the linear PD control performs similar to the nonlinear controllers.
Every control method has its advantages in this test, as the PD controller generates the best largest error
but worst oscillation and slowest rise time, while SMC performs faster with a little larger error but smaller
settled oscillations. Last, the ISMC performs worst regarding largest errors but settles with the lowest
oscillations and has the fastest rise time. Again, the z position behaves as in the previous test with a
sinusoidal altitude reference and will not be further discussed. All controllers are categorised unusable
in this case, where the performances can be seen in table 8.4.
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Settled oscillations Largest error Rise time
PD x 0.3m 0.3m 9.6s
PD y 0.83m 0.83m 10.2s
SMC x 0.27m 0.41m 4.7s
SMC y 0.16m 1.12m 3.2s
ISMC x 0.24m 1.37m 3.1s
ISMC y 0.17m 1.43m 3.2s

Table 8.4
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Discussion 9
Contents

This chapter discusses the results simulated in chapter 8 and elaborates on the strengths and weaknesses
of each control theory. Every test will be discussed in separate sections throughout this chapter.

This thesis illustrates how a quadcopter reacts when exposed to ground, ceiling, wall, wind disturbances
and noise and how different control laws affect the results. The report is created with knowledge from
earlier studies merging the manufacturers’ data with studied data to create a realistic drone model.
Further data is gathered from several papers and studies to create natural disturbances.

To test the controller reactions when the drone is exposed to the analysed disturbances, three control
strategies have been created to exhibit their actions on the drone, while an extended Kalman filter is
used to diminish the noise in the system. The controllers are illustrated theoretically and further tuned
through a Bayesian optimisation algorithm that provides a global minimum. This tuning method may
provide overshoot as it finds the global minimum within a specific period, where overshoot is generated.
This section will then debate the results shown in section 8 and the respective controllers handling of the
drone.

Ground and Ceiling Effects

From the results in section 8.2.1, SMC and ISMC showed minor errors when following the altitude
reference, where also robustness against ground and ceiling effects occurs. The controllers will only
oscillate below one centimetre when affected by these effects. The PD controller showed a slow response
and could not keep up with the reference resulting in significant errors in position as it both lags in time
and amplitude. This result displays how standard linear control may be easy to implement and work but
may lead to unwanted results, which occurs multiple times in the results section. ISMC provides the best
altitude tracking with zero steady-state error and the most negligible oscillations when the ground and
ceiling are affecting the drone.

All controllers provide stable control with a difference in overshoot, steady-state error and settling time
when looking at the horizontal positions. The SMC controller performed best for the position control,
providing the fastest settling time while also achieving relative low overshoot and steady-state errors.
Only SMC and ISMC are chosen acceptable regarding this test as they achieve the goals in section 1.4,
where PD control displays a too large error in altitude control.
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Partial Ground Effects

The partial ground effects shown in section 8.2.2 illustrated a reaction to the x and y position when
exposed to a disturbance. In this test, the controllers performed identical to previous results in altitude
and only x and y position control is further discussed.

When exposing a quadcopter to an uneven disturbance, a position reaction occurs, showcased in this test.
All control laws generate stable performance, where the drone always gets back on track after the partial
ground effect is affected. The essential outcome from this test concerns how robust the x and y positions
are to the exposure effect. The linear controller reacts with the most considerable oscillation from this
effect, with an error of 0.64m. This indicates that PD control is the worst in this test and is considered
incompetent. However, also the SMC controllers do not keep the drone within a desired distance from
the reference, as it oscillates up to 0.06 meters from the reference, and the goal stated in section 1.4 is a
maximum of 0.03m from the reference. So as all controllers oscillate when exposed to this disturbance,
only the ISMC controller is chosen acceptable with a maximum of 0.01m error in total. Also, the ISMC
demonstrate great robustness against this effect.

Wall Effects

This test should affect the quadcopter reversed of partial ground effects, meaning it should lower the
thrust from two rotors instead of raising it. This test is performed to see if the drone could close in
on a wall where the effect further drags the drone towards the wall without colliding. This test is only
interesting considering the x and y coordinates as these are the only affected parts.

All controllers provide stable control in this test, while the linear control has the least resilience to the
exposure effect. The x position has a steady-state error of 0.09m, where it in the y position goes up to
0.25m, meaning it again does not meet the requirements. The SMC and ISMC perform almost equal
where a small change exists in overshoot for ISMC in z position, but ISMC provides zero steady-state
error through all positions. Also, a minor oscillation occurs for SMC control in y position when reaching
the wall, giving the ISMC the advantages in this test. For wall effects, SMC and ISMC are acceptable
for a quadcopter as they stay within the objectives.

Wind Disturbance

This test included ground effects along with a sinusoidal wind disturbance to expose the controller for
extreme disturbances. As described in section 8.2.4, the z position behaves as in earlier results and will
not further be discussed.

All controllers did experience difficulties when counteracting the effects from these disturbances, which
resulted in significant and fast oscillations. Settled oscillations, largest errors and rise time can be found
in table 8.4 for the three controllers, which could determine which one performs best. The results show
that no controlling law can manage to achieve the goals from 1.4, categorising all theories unacceptable
concerning the objectives. The SMC controller did react best comparing the results in table 8.4, where
it has average errors while still behaving fast and with few oscillations. In the case of these effects,
either a more robust control algorithm has to be made to behave acceptably, or some estimations of the
disturbances could help the drone react before being exposed to these disturbances.
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Conclusion 10
Can a quadcopter be controlled to withstand ground, ceiling and wall effects without colliding with
either object and can it further behave stable when exposed to wind disturbances? How will different
control laws affect the results, and can they achieve the objectives?

While the number of commercial drones expands every year, the understanding and knowledge need to
be intensified. Drones seem to be used in numerous fields, accomplishing countless various tasks. To
achieve the user’s goals for every assignment, a great understanding of the subject and its contents must
be studied. Further, how the drone reacts to the challenges it is exposed to should be examined.

This thesis investigates a drone exposed to ground, ceiling, wall, and wind effects, following references
desired and affected by noise. These effects seem crucial to counteract if drones should advance their
interest in business. The drone used to model in this thesis is an AscTec Hummingbird, where reliable
results should be achieved because the model is built based on a real drone. Sensor noise is achieved from
earlier studies investigating the noise occurring in a drone approximately the same size. All effects were
also accomplished with knowledge from several earlier studies investigating and testing the responses
of these effects. All this theory from earlier studies culminates in a model demonstrating the exposed
effects while presumed to act realistic and usable if tried on a quadcopter with minor changes.

The noise implemented in the system is almost eliminated by an implementation of an Extended Kalman
filter represented in figure 8.1, which smooths out the signal by comparing a predicted state with the
measured, finding an optimal state estimation.

Three control theories are investigated and used to control the drone in a test, where the effects are acting
on the quadcopter. In this thesis, the three different control strategies are PD, SMC and ISMC. These
have been created and compared to visualise the differences between standard linear control and more
advanced nonlinear control. These control theories are theoretically explained in sections 5 and 7.3, from
where tuning is needed. To obtain optimal performance regarding control, a hyperparameter optimisation
algorithm called Bayesian optimisation is created in section 6 and used to find global minimums for all
controllers. This algorithm delivered usable controllers ready for tests.

In section 8 four tests are simulated comparing these controller responses to the respective effects. From
the tests simulated, it can be concluded that the nonlinear controllers perform best regarding ground,
ceiling and wall effects. Here ISCM obtains the lowest steady-state error for all tests while including
the quickest responses. It also performed most robust against the effects. However, using the Bayesian
strategy for tuning controllers creates a fast rise time while simultaneously generating overshoot for the
ISMC. This overshoot could be minimised by choosing a different tuning strategy or self-tuning after
the optimisation strategy, as the lowest error over time may be achieved with the algorithm. However,
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overshoot comes with being optimal in the Bayesian Optimisation strategy.

The PD controller is categorised as unsatisfactory, as it fails to fulfil the requirements set in the objectives
in section 1.4. All controllers failed to behave satisfactorily regarding the wind disturbance presented in
figure 8.6, as significant errors are achieved, and oscillations occur through the test span. Instead, the
ISMC showed promising results for ground, partial ground, ceiling and wall effects strongly followed
by the SMC. The performance could be further optimised by self-tuning the control so overshoot can
be minimised. Otherwise, stability could be achieved when exposed to wind by combining the control
methods or expanding to a more advanced strategy. Otherwise, an estimation of the wind disturbance
could help the quadcopter counteract the disturbance.

All controllers were capable of take-off and land. SMC and ISMC did reach stability for ground, ceiling,
partial ground, and wall effects, while PD control oscillated when affected to partial ground effects but
did also reach stability for ground, ceiling and wall effects. No control law achieved stability when
exposed to wind disturbances.

This thesis can conclude how crucial robust control is when using drones exposed to different
disturbances. The thesis tests several objective effects, while further could be tested with more advanced
and robust control theories. It is concluded that nonlinear control is more robust than linear control and
that linear control did not live up to the objectives in this thesis, making nonlinear control the only usable
method case with these objectives and goals.
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Coriolis term A
Coriolis term can be represented as a matrix of 3x3. This term exists when an object is in motion within
a reference frame and with respect to an inertial frame. Then it is about Newton’s laws of motion for an
object in a non-accelerating frame. When this object is transformed into a rotating frame, the laws of
Coriolis and centrifugal accelerations appear.

Coriolis matrix can be seen in equation A.1.

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (A.1)

From here, the different terms can be derived in the following equations:

C11 = 0

C12 = (Iyy − Izz)(θ̇c(φ)s(φ) + ψ̇s(φ)2c(θ)) + (Izz − Iyy)ψ̇c(φ)2c(θ)− Ixxψ̇c(θ)
C13 = (Izz − Iyy)ψ̇c(φ)s(φ)c(θ)2

C21 = (Izz − Iyy)(θ̇c(φ)s(φ) + ψ̇s(φ)2c(θ) + (Iyy − Izz)ψ̇c(φ)2c(θ) + Ixxψ̇c(θ)

C22 = (Izz − Iyy)φ̇c(φ)s(φ)

C23 = −Ixxψ̇s(θ)c(θ) + Iyyψ̇s(φ)2c(θ)s(θ) + Izzψ̇c(φ)2s(θ)c(θ)

C31 = (Iyy − Izz)ψ̇c(φ)s(φ)c(θ)2 − Ixxθ̇c(θ)
C32 = (Izz − Iyy)(θ̇c(φ)s(φ)s(θ) + φ̇s(φ)2c(θ)) + (Iyy − Izz)φ̇c(φ)2c(θ)

+ Ixxψ̇c(θ)s(θ)− Iyyψ̇s(φ)2c(θ)s(θ)− Izzψ̇c(φ)2c(θ)s(θ)

C33 = (Iyy − Izz)φ̇c(φ)s(φ)c(θ)2 − Iyy θ̇s(φ)2c(θ)s(θ)− Izz θ̇c(φ)2c(θ)s(θ) + Ixxθ̇c(θ)s(θ)
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Bayesian Optimisation 1 B
The code used to generate optimised controllers using a Bayesian optimisation algorithm is presented in
this appendix. The example shown in figure B.1 illustrates how the code is built with Matlab commands
and used to obtain usable results. In this example, two linear PD controllers are tested with a P and D
constant for the given four parameters. This example can be rewritten for the nonlinear controllers by
replacing the four PD parameters with the nonlinear parameters. This algorithm finds a global minimum
for every time it runs a test, which it then continuously uses in the next run, meaning that few tests can
be run with this algorithm if a good starting guess is chosen.
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B. Bayesian Optimisation 1

Figure B.1: Matlab code for running Bayesian optimisation on linear PD controllers
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Bayesian Optimisation 2 C
Here the Bayesian optimisation algorithm searches a considerable span of value to look for global
minimums throughout the chosen range. This algorithm can provide stable values to use as start guesses
for the BO in appendix B. There will be no starting guesses in this example, and the algorithm will not
use the last test run to look for a more prominent next run. Instead, rand is used to generate random
values for the controllers, which is run several times until a satisfying starting guess is provided. The
rand command gives a value between [0-1] for every run, multiplied by the range set. This algorithm can
be seen in C.1 again with the build-in Matlab commands.
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C. Bayesian Optimisation 2

Figure C.1: Matlab code for running Bayesian optimisation on linear PD controllers
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