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Abstract—To revolutionize computational chemistry
within simulating and analysing molecular systems. A prin-
cipled framework that captures the relative 3D information
and long-range interactions is needed.

In this work, we propose a generic framework to capture
these interactions, known as the deterministic point graph
network (DPGN). It provides a unified interface to interact
with 3D graphs on different levels of bonds, angles,
torsional and long-range effects. We then leverage this
framework to add multiple structural improvements to
propose the geometric message passing scheme (GMP) to
realize DPGN. We demonstrate the benefit of the proposed
changes in ablation studies. Finally, we validate this model
by presenting results beating the predecessor MPNet on
six properties on the QM9 data set, whereas one of them
is state-of-art. Additionally, we demonstrate the models’
ability within the field of molecular dynamics, where it
beats state of the art on 50% of the targets on in MD17
data set.

I. INTRODUCTION

Computational quantum mechanical modelling meth-
ods are of interest within physics, chemistry, and earth
sciences to investigate various quantum chemical prop-
erties. Computing the close form solution of the many-
body Schrödinger equation for quantum chemical prop-
erties are prohibitively expensive for all but the simplest
molecules.

To get insight into systems with higher complexities,
researchers have been able to approximate the chemical
properties with classical algorithms such as Density
Functional Theory (DFT) [1] by sacrificing prediction
accuracy to reduce the computational cost.

Recently, researchers have been developing machine
learning methods that are several orders of magnitude
faster than DFT without sacrificing prediction accuracy.

Among these machine learning approaches, graph
neural network (GNN) based methods have gained most
research attention due to their ability to model complex
interactions between atoms without being restricted to
predicting equilibrium structures [2, 3].

The early era GNNs developed for learning on graph
data were later unified into a general graph network

framework (GN) [4] by using a message-passing archi-
tecture. GN is developed for regular 2D graphs, rather
than 3D graphs. Therefore, its message-passing update
function only depends on the previous atom embeddings
and the pairwise distances to neighbouring atoms Ebonds.

An architecture with this restriction has to rely on
complex higher-order interactions to capture spatial in-
formation like angles between neighbours Eangles, di-
hedral angles between the plane of bonds Edihedral or
non-local, non-covalent interaction between atom pairs
Enon−local [2, 3].

Whereas a message-passing scheme for 3D graph
structures, can derive various kinds of relative 3D infor-
mation, meanwhile ensuring their invariance to rotation,
translation and inversion [5]–[7].

One way to ensure these invariances is by using
inductive biases from the insights given by the domain
of interest.

Within quantum chemistry, this has led to GNNs and
message passing schemes which are roto-translational
and permutation equivariant, also known as equivariant
graph neural networks (EGNN) [8]–[16].

3DGN extended GN’s architecture, to give it the
ability to work with relative 3D information [17].

In this work, we propose the deterministic point-cloud
graph network (DPGN). It is a generic framework for
3D graphs for deterministic point cloud systems, which
extends MPNet to fully utilize the 3D graph structures
and is integrated into the framework set by 3DGN. The
goal is to contribute to the groundwork for developing a
complete pipeline for simulating and analysing molec-
ular systems, by incorporating the energy from both
the local and non-local environment meanwhile staying
within EGNNs constraints [18].

E = Elocal + Enon−local (1)

where Elocal = Ebonds + Eangles + Edihedral.
We note that it is not ideal to use a Cartesian co-

ordinate representation as inputs for 3D graphs. The
tight coupling between the reference frame and the
physical system it presents makes it not invariant to roto-
translations of input graphs.
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To preserve the euclidean symmetries as needed for an
EGNN, we use a tensor representation that is equivariant
to the rotation group SO(3) and incorporates inductive
biases based on the rotation, translation and inversion
symmetries.

We propose a novel message passing scheme known
as the geometric message passing scheme (GMP), for
realizing the DPGN framework. The relative positional
information is encoded by taking their irreducible repre-
sentation of SO(3) and using it as a directional embed-
ding. To keep the information roto-translational and per-
mutation equivariant, its encoding is jointly represented
by the use of spherical Bessel functions and spherical
harmonics functions [9].

Additionally, for GMP to learn both atomic forces
and molecular properties and be preserving the rela-
tive positional information through the message passing
convolutions, it is constrained to be twice continuously
differentiable [9].

We apply the GMP to the data sets QM9, COLL
and MD17, where physical representations are essential
to demonstrate the performance of the new method.
Ablation study reveals the contributions of the various
3D positional information seen in Eq.(1)

II. RELATED WORK

A. Graph neural network

Graph Neural Networks (GNNs) was first proposed in
the late 90s [19, 20] and 00s [21, 22] and is being used as
a general framework to model complex graph-structured
data using neural networks [23]–[25].

Notable methods include GCN [25], GIN [26], GAT
[27], GGNN [28], NLNN [29]. Currently, the message
passing networks (MPNNs) is the most general archi-
tecture for realising a GNN [2]. Within this method,
the nodes state is updated by aggregating messages
flowing from its direct neighbours. The other variances
can mostly be realised by changing the way each node
aggregates the representations of its neighbours with
its representation. The GN framework [4] is the latest
unification within generalizing GNNs. It does so by
generalizing and extending various graph neural network
architectures by reframing the computations to their
constituent parts and performing computations over the
graph’s nodes, edges, and system-level properties by
global attributes.

GN is incapable to use a relative 3D positional data
structure, it has to capture the effect bond lengths,
angles between bonds, dihedral angles or long-range
non-covalent forces. This implicit adaptation must learn
these effects through aggregating the messages from its
neighbourhood.

3DGN extended GN to account for 3D graph net-
works [17]. It does so by encoding relative 3D spatial
information into the framework. We are reframing the
revised version of MPNet into the 3DGN architecture
while taking into account inductive biases like symmetry
groups and relative 3D spatial information and long-
range forces.

B. Machine learning for molecules

The initial works using data-driven methods within
computational chemistry had an emphasis on reducing
the set of reference calculations when developing inter-
atomic potentials or predicting chemical properties. This
was done by using descriptor-based approaches (e.g.,
Coulomb matrix, bag of bonds), shallow neural networks
with Gaussian processes designed to keep the model
invariant concerning roto-translation and permutation
to develop inter-atomic potentials or predict chemical
properties [30, 31].

Recently, rotational invariant graph neural networks
(GNN-RI) have emerged as an architecture for develop-
ing inter-atomic potentials while eliminating the need for
hand-crafted descriptors. Instead, it can learn invariant
features of geometric data by the representational form
of the molecules on the graphs. [3, 9, 32, 33] GNN-
RIs typically connects every atom to all other atoms, if
their inter-atomic distance is closer than a variable cutoff
distance rc. This restriction localizes the problem space,
to reduce the computational complexity and prevent
over-fitting. Within computational chemistry, most of the
effects can be captured through aggregating information
of the neighbours instead of creating a complete graph.

Every node is associated with a scalar feature hi ∈ Rh

which iteratively gets updated by aggregating the mes-
sages of the neighboring atoms rij and their feature
vectors hj ∈ Rh.

One unfortunate consequence of having a variable
cutoff distance is loss of expressivity since it no longer
can distinguish certain molecular structures. A way to
prevent the loss of expressivity is to enable GNN’s to
utilise angular information, DimeNet expands the mes-
sage passing scheme by adding angular information and
three-body terms to the pairwise distances [9], HMGNN
incorporates many-body interactions by using heteroge-
neous nodes and edges [1], MPNet tries to capture non-
covalent interactions by using radial basis functions for
two layers with different cutoff distances, which embed
inter-atomic distances, which get unified through a multi-
layered perception [34]. MXMNet tries to capture non-
covalent interactions through multiplexing two layers
with different cutoff distances. We use MPNets approach
to capture the non-covalent forces.
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C. Equivariant neural networks

Equivariance and invariance have become one of the
core principles within physics-informed neural networks,
for which induced biases for various symmetries to
reduce redundancy in the space of functions the models
need to take into consideration. Equivariant models for
the SO(3) were first explored in the context of spherical
convolutions, by leveraging the representational power
of the SO(3) group [8, 15, 35]. Afterwards, they were
used in the context of 3D point clouds and property
predictions of molecules [8, 12, 36]–[39].

Importantly, Dym & Maron [40] proved the universal-
ity of models for a joined group of translations, rotations,
and permutations. Which, apart from reflections, is the
group relevant for molecules.

Finally, when working with the special case of rota-
tionally invariant predictions, Klicpera et al. [41]. has
proven that any rotationally invariant function can be
approximated on S2 without losing the universality prop-
erty.

Thus, a directional representation is adequate and will
be used in this work, since it is possible to achieve
the best results without relying on a more expressive
representation while working within these constraints.

III. NOTATION AND DEFINITIONS

Since DPGN is built upon MPNet, we use the same
notation and definitions [34] We denote matrices by
bold upper-case letter (e.g., W ) and vectors by lower
case letters (e.g., x). Entries in matrices and vectors are
represented with subscripts (e.g., xij). for variables at
the t-th message passing layer (e.g., h(t)).

We denote a molecular graph as G = (V, E), where
N = |V| nodes (atoms) and M = |E| edges.

Node Ni is connected to the nearest neighbour
nodes in the molecular graph, if Ni = {i|d(i, j) <
c},where d(i, j) is the Euclidean distance between node
i and j, where j is within the cutoff threshold c > 0.
The set E stores the whole geometric structure of the
molecule, since every edge is associated with distances,
as ∀i, j ∈ E : i 6= j → d(i, j) ≤ c.

IV. A FRAMEWORK FOR DETERMINISTIC 3D GRAPHS

Within the natural sciences, deterministic point cloud
data points can naturally be represented as 3D graphs.
For instance, molecular representation learning is an
essential task for fields like biochemistry and material
science [42, 43].

A common representational form when modelling
molecules as graphs is to connect every atom/node

with an edge to all other atoms/nodes if their inter-
atomic distance is closer than the cutoff distance c.
Whereas a molecule is uniquely defined by its atomic
numbers z = {z1, ..., zN} and its Cartesian coordinates
X = {x1, .., xn}. These nodes and edges can contain
attributes, to hold relative spatial information, atom types
or other auxiliary information Θ ∈ Rn, where n is
the number of attributes. In this work, the focus is
on scalar regression targets t ∈ R, without the use of
auxiliary features, since the goal is to stay with a generic
framework with the ability to cover various domains
without modifications to the architecture.

A. Symmetries and invariances

Every physical system which is continuous and
smooth with a differentiable action has a correspondent
conservation law. When developing a neural network
to model physical systems by using pairwise distances,
yields a framework with conservation of momentum,
energy and angular momentum.

In this work the symmetries of interest are: Roto-
translational symmetry which follows from the conser-
vation of momentum, energy and angular momentum.

Parity symmetry as a consequence of the decoupling of
the representational framework and the physical system.

Permutation invariance to have the ability to in-
distinctly aggregate the messages from the neighbour
particles.

Any neural network can learn these symmetries im-
plicitly [44]. However, doing so most often leads to a
sub-optimal model with duplicate weights, which conse-
quently leads to longer training times.

To circumvent this, it is possible to constrain the
models by explicitly incorporating these symmetries by
using inductive biases. The invariant representational
form used in this paper is 3D-geometric tensors, whereas
the features are encoded into the filters of a spherical
harmonic function by using the tensor rank as the angular
frequency with a learned radial basis function.

B. Definition of a 3D graph

Within the DPGN framework, a 3D graph is defined
as a 4-tuple G = (u,V ,E, P ). It consists of the global
feature vector u ∈ Rk; for example, u might represent
the electro-magnetic field.

The V is the set of node features vi, ∀i ∈ {1, ..., Nv}
(of cardinality Nv) where vi ∈ Rd is the feature vector
for node i. For example, V might represent each atom,
with various physical properties.

TheE is the set of edges (ek, rk, sk), ∀k ∈ {1, ..., N e}
(of cardinality N e) where ek ∈ Rd is the feature vector,
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rk is the index of the receiver node, and sk is the index
of the sender node for the edge i. For example, E might
represent the bonding strength between two atoms.

The P is the set of coordinates xi, ∀i ∈ 1, ..., Np, (of
cardinality Np).

Lastly, we define Ei = (ek, rk, sk), rk = i ∀k ∈
{1, ...,m} as the set of edges pointing to node i, and
Ni = j|d(i, j) < c as the set of indices of the incoming
nodes of node i, where d(i, j) = |xi − xj |2 is the
euclidean distance between node i and j.

C. Internal structure of a DPGN block

The information flow through a DPGN block consists
of transformations through a set of three update func-
tions Ψ and a set of six aggregation functions ρ, the
computational steps can be seen in Fig. 1.

Fig. 1. Illustration of the information flow through a DPGN Block

The Ψ functions maps the information for the corre-
sponding geometry, whereas the ρ functions take a set
as input and reduce it to a single element representing
the aggregated information, as described in Eq. (2).

e
′

k = Ψe(ek, vrk , vsk ,Esk , u, ρ
p→e({rh}h=rk∪sk∪Nsk

))

v
′

i = Ψv(vi, ρ
e→v(Ei),u, ρ

p→v({rh}h=i∪Ni
))

u
′

= Ψv(ρe→u(E
′
), ρu→v(V

′
),u, ρp→u({rh}h=i:n))

(2)

where

E
′

i = (ek, rk, sk), rk = i,∀k ∈ {1, ..., N e},

V ′ = v
′

i, ∀i ∈ {1, ..., Nv},

and

E
′

=
⋃
i

E
′

i = {(e′

k, rk, sk)},∀k ∈ {1, ..., N e}.

D. Computational steps within the unified message pass-
ing scheme

When a graph, G is provided as input to a DPGN
block, the computations proceed from edges to nodes,
to the global level.

Fig. 2. Illustration of functions Ψe and Ψv

The Ψe function maps the embedding of every edge
k, ek → e

′

k. Its input parameters are the old edge vector
ek, the target node vtk , the sender node vsk , the global
feature vector u, the set of edges Esk , and the positional
information on all the nodes connected by the edge k and
edges in Esk , with the index set as tk ∪ sk ∪ Nsk . Ψe

with the indices is provided in Fig. 2
the ρp→e aggregates the embeddings from these nodes

to update edge k.
The Ψv function is mapped across all the nodes

to compute per-node updates as vi → v
′

i. The input
parameters are the old node vector vi, the set of edges
Ei pointing to node i, the global feature vector u, and
the positional information on all the nodes connected by
the edge k with the index set as i ∪Ni. As can be seen
in Fig. 2, the function Ψv is encapsulated in the white
section. By looking at the node with index i instead of
sk.

The ρe→v and ρp→v aggregate the embeddings of the
input edge features to input nodes. The Ψu is the global
update function u → u

′
applied to the whole graph

feature once, while the aggregate functions ρp→e, ρp→v

and ρp→e aggregate the information from edges, nodes
and positional information about the node features. It
is important to note, ρ functions must be invariant to
permutations of their inputs and have the ability to take
a variable amount of arguments, like the element-wise
sum. Whereas the Ψ functions are not constrained and
can be implemented in different ways.

V. GEOMETRIC MESSAGE-PASSING NEURAL

NETWORKS

GNN’s for molecules when working with a point cloud
with n points (atoms), the directional information is
typically incorporated in one of two ways:
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Via SO(3) representations, which is the double cover
from the four-dimensional S3 sphere, or by using
a directional representation associated with the three-
dimensional S2. Thus, the directional representation has
one degree of freedom less than a SO(3) representation,
making it cheaper at the price of expressivity.

Since we solely are interested in the special case of
rotationally invariant predictions, the directional embed-
ding can approximate any rotationally invariant function
on S2, which is exactly what we need. Therefore, using
the directional embeddings with one degree of freedom
less is adequate, and is what we use we use in this work.

A. Geometric message-passing

1) Geometric Representation: To get a directional
representation, the positional information contained in P
is incorporated into the aggregate functions ρp→e, ρp→v,
and ρp→v which maps the positional information on the
different geometries.

Note: the positional information in P is not roto-
translationally invariant, since its positional information
is in Cartesian coordinates. To resolve this issue, P is
converted into a representation in the spherical coordi-
nate system (SCS).

In SCS, the location of any point is specified by a
3-tuple (d, θ, φ), where d is the radial distance, θ is the
polar angle, and φ is the azimuthal angle, respectively.

Within this representation, it is possible to treat any
node i as the origin of a local representation. Thus,
the relative location of each neighbouring node of i is
specified by its tuple(d, θ, φ), denoting the edge length,
the angle between edges, and the torsional angle.

Consequently, a directional representational graph
structure in SCS is invariant to translation and rotation
of the input graph, which is exactly what we need.

However, the obtained SCS representation cannot be
used as the direct input to a neural network, due to
its lack of being a meaningful physical representation.
This can be circumvented by embedding the relative
directional information into a geometric representation
(d, θ, φ)→ ψ(d, θ, φ).

For this, we use the Spherical Fourier-Bessel basis
introduced by Klicpera et al. [9]. This basis has its
grounding in Schrödingers time-independent wave func-
tion in SCS from quantum mechanics and is defined as
following:

ψ(d, θ, φ) =

∞∑
l=0

m=l∑
m=−l

almjl(kd)Y m
l (θ, φ) (3)

where Y m
l is a spherical harmonic function of degree

m and order l, alm is a set of coefficients regarding l

and m, and jl is a spherical Bessel function, of order
l. We use the same orthogonal basis for jl with the
boundary condition k =

zln
cr

, where zln is a the n-th

root of the l-order Bessel function, cr denotes the cutoff
value, l ∈ [0, ..., NSHBF − 1], and n ∈ [1, ..., NSRBF ],
where NSHBF and NSRBF denote the highest orders for
the spherical harmonic and spherical Bessel functions,
they are given as hyper-parameters in the experimental
setting.

A geometric representation which preserves all avail-
able geometric information in 3D is obtained by splitting
this basis into the radial, circular and spherical part
between all atom pairs within the distance xca ≤ cr,
as following:

ẽRBF,n(d) =

√
a

cr

sin(
nπ

cr
d)

d
(4)

ẽCBF,ln(d, θ) =

√
2

c3intj
2
l+1(zln)

jl(
zln

cint
d)Y 0

l (θ) (5)

ẽSBF,lmn(d, θ, φ) =

√
2

c3rj
2
l+1(zln)

jl(
zln

cr
d)Y m

l (θ) (6)

The difference between the global RBF and the local
RBF is the value of cr in Eq. (5), where cglobal ≥ clocal.

Geometric message-passing Scheme. We now de-
velop the geometric message-passing scheme (GMP) for
realizing the DPGN framework. To obtain the geometric
representation, let vsk be a sender node, which serves
as the node at the origin of a local SCS. vsk sends a
message ek to the target node vtk. The message ek is
updated based on Esk from Nsk .

Lets define q ∈ Ei, as a tuple (d, θ, φ), where d is
the distance between them and θ denotes the direction
to update the message ek.

Lets denote o ∈ Nsk as the reference node needed to
compute φ.

Then the torsional angle φ, is the angle between the
reference plane formed by vsk, vtk and o, and the plane
spanned by vsk, vtk and q.
φ is needed to uniquely locate every node in 3D space

within SCS, since by only constraining d and θ there still
is a degree of freedom, moving along a perimeter around
sk.

Hence, the message-passing is based on quadruplets
of atoms - two atoms for interaction (sk, rk) and two
atoms for direction (o, q).

To work with quadruplets, we make sure all angles are
well defined and exclude overlapping atom quadruplets,
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Fig. 3. Illustration of the information flow through GMP

like a 6= b 6= c 6= d and polynomial radial envelopes are
used to ensure smooth differentiability of the represen-
tations.

For GMP, computing distance d and θ between neigh-
bouring nodes are straightforward. The torsional angles
φ is calculated by projecting the neighbouring nodes Nsk

onto plane perpendicular to ek and intersects with vsk .
It reduces the computation space to the plane with vsk
at the origin, and the torsional angles are the angles be-
tween q and o, where o is the last visited node meanwhile
sweeping 2π radians, in a predefined direction.

Furthermore, by using the geometric representation
ψ(d, θ, φ) instead of P in GMP, it is possible to retain
the positional information by only aggregating ρp→e of
the three positional aggregators, illustrated in Fig. 3.

Therefore, we can realize Eq. (3) as the following:

e
′

k = Ψe(ek, vrk , vsk ,Esk , ρ
p→e({th}h=tk∪sk∪Nsk

)),

v
′

i = Ψv(vi, ρ
e→v(Ei)),

u
′

= Ψu(u, ρv→u)(V
′
)

(7)

VI. DPGN: DETERMINISTIC POINT-CLOUD GRAPH

NEURAL NETWORK

DPGN. The deterministic point-cloud graph neural
network (DPGN) design is based upon a streamlined
version of the MPNet architecture, and the architecture
is illustrated in fig. (4).

DPGN was developed on the U0 target within the
QM9 data set but generalizes to the other properties
within QM9 and other data sets such as MD17 with-
out architectural changes. The proposed changes to the
architecture either improve the models’ performance or
reduces the models’ complexity. We show the impact
of the most relevant changes via the ablation studies in
Sec.VII-E.

Embedding. The embedding block structure used in
this paper is developed in Klicpera et al. [9]. It generates
the initial message for the edge k, where Atomic num-
bers are represented by a learnable, randomly initialized
embedding h0rk , which is shared across molecules, via.

m(1)
skrk = σ([h(0)

sk ‖h
(0)
rk ‖e

(k)
RBFl

]W + b) (8)

where ‖ denotes concatenation, the local RBF embed-
ding uses cemb = 5.0 and the weight matrix W and bias
b are learnable.

Interaction block. The embedding block is followed
by multiple stacked interaction blocks. Each interaction
block updates the message ek, based upon the geometric
message-passing as described in Sec. V-A geometric
message-passing scheme. The interaction blocks input
consists of the messages stored in the geometric em-
beddings ẽRBF,n(d), ãCBF,ln(d, θ), ẽSBF,lmn(d, θ, φ) in
Eqs. (5)(6)(7), based on edge k and its neighbouring
edges. The initial sizes for them are NSHBF , NSRBF ×
NSHBF , N

2
SRBF × NSHBF , respectivly. It also has the

message ek and the set of messages Esk that point to
node Vsk as inputs. The feature vector for the receiver
node Vrk for the edge k, is obtained by applying a permu-
tation invariant function ρe→v to aggregate the messages
from every neighbouring edge onto the receiver node.
Finally, the updated global feature vector u

′
is computed

by applying a permutation invariant function ρv→u of the
updated state of the nodes V (′)

Bilinear Layer. DPGN use a bilinear layer, to give the
network a more expressive transformation when mod-
elling the complex interaction between the embeddings
from SBF and CBF instead of a Hadamard product,
which uses NbilinearFF -dimensional weight tensor. Un-
fortunately, it is an expensive operation, but we think the
accuracy improvement outweighs the price, see the table
III to see its contribution.

Improving DPGNs expressivity. DPGNs expressivity
is improved by using a power-sum multi-symmetric
polynomial representation within the interaction block
after the residual skip connections. This is done by
adding a simple 3-WL discrimination power block (P-
block) based upon Maron et als findings [45].

The expressivity is measured based on the Weisfeiler
Lehman tests (k-WL), which is a hierarchy of increas-
ingly powerful graph isomorphism tests, and a message-
passing GNN cannot distinguish between graphs that are
indistinguishable by the 1-WL test [26, 46].

The input tensor to the P-block is the message ek

after the residual blocks. Three multi layer perceptrons
(MLPs) m1,m2 : Ra → Rb,m3 : Ra → Rb′ to the
input tensor, ml(ek), l ∈ [3]. A matrix multiplication is
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Fig. 4. Architecture of DPGN. On the left is a bird-eye view of the model. Where P gets transformed into a geometric representation,
then gets fed into the interaction layers. The grey block shows the inner workings of the blocks. As for the symbolic meanings: || denotes
concatenation, � denotes element-wise multiplication. σ(LB) denotes a linear layer with a activation function. LB2 and LB3 denote a linear
block of two and three linear layers. To reduce the effect of bottlenecks, every LB2 block gets down-projected, followed by up-projection.

performed between m1 and m2, then the output tensor
gets concatenated with m3

Continuous Differentiability. To retain the ability
to use the architecture across various domains with-
out modifications. The model has to be twice con-
tinuously differentiable to satisfy the conservation of
energy. This is needed for molecular dynamics (MD)
simulations since the force field is a conservative vector
field. Therefore, DPGN like Klicpera et al. [9] uses
the Swish activation function σ(x) = x, instead of a
regular ReLU activation function. Additionally, the radial
basis functions ẽRBF (d) is multiplied with a envelope
function u(d) that has a multiplicity of 3 at the cutoff c.
Finally, this restriction limits the models to only use the
atomic types and positional information and not use any
auxiliary data.

Limitations. During the development of DPGN, it has
solely focused on regression against QM9 property U(0)
the atomization energy at 0 kelvin (K). Experimentally,
it has been shown to perform on par with state of the art
models for various other properties within the same data
set. It is also on par with state of the art models within
molecular simulation based on the MD17 data set. We
do not make any statement regarding its performance
beyond this scope.

The addition of torsional forces to the message-
passing scheme and the bilinear layer introduces sig-
nificant computational overhead. This effect is partially
mitigated by down-projecting the embeddings before
entering these expensive operations. This model has not
been able to beat MPNet on all the metrics, whereas
MPNet is an ablated version of DPGN. This suggests that
the expressivity of a model without torsional information

and P-blocks is enough for some practical use cases.
Whereas this more complex message-passing scheme
evidently, gives an advantage when the task at hand is
more challenging. This can be seen in the molecular dy-
namics (MD17) results, compared against DimeNet and
SphereNet, which also are ablated versions of DPGN.

VII. EXPERIMENTS

In our experiments, we evaluate the proposed modifi-
cation on the MD17 data set for force fields and the 12
commonly used properties in the QM9 data set.

This experimental setting is chosen since there already
exists a well-tuned baseline for reliable comparisons. 7
state-of-the-art baseline models are included for compar-
ison. We assume that the results presented in the baseline
models are reliable since we have not trained the models
to validate their findings.

A. QM9 Data set

QM9 is a collection of electronic, energetic, geometric
and thermodynamic properties of 134k stable small or-
ganic molecules made up of carbon, hydrogen, oxygen,
nitrogen, fluorine (CHONF) calculated at the B3LYP/6-
31G (2df,p) level of quantum chemistry. These molecules
correspond to the subset of all 133,885 species with up to
nine heavy atoms (CONF) out of the GDB-17 chemical
universe of 166 billion organic molecules [47]. The
property values were calculated using density functional
theory (DFT) which takes in {ra, Za} to estimate the
geometries minimal in energy, corresponding harmonic
frequencies, dipole moments, polarizabilities, along with
energies, enthalpies, and free energies of atomization.
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Within the field of quantum chemistry, it is known
as QM9 and has been a common benchmark data set,
especially for data-driven methods which operate on
graphs and point geometries [2, 3, 8]–[10, 46, 48, 49].
The data set was developed with the intent to serve
the benchmarking of existing methods, development of
new methods within the domain of quantum mechanics
and machine learning, and systematic identification of
structure-property relationships [47]. For a more detailed
description of these properties, see appendix IX-A. The
data set was obtained from https://bit.ly/3DT0IqU.

B. MD17 Data set

MD17 is a data set of configurations a molecular
dynamics simulation of eight small thermalized or-
ganic molecules at T = 500K and is computed at
the PBE+vdW-TS level of electronic structure theory,
whereas the goal of the benchmark is to predict both the
energy and atomic forces considering one molecule at
the time. The data set was obtained from http://quantum-
machine.org/gdml/datasets.

C. Experimental Setup

The model architecture has been developed up against
the QM9 validation set. We use 4 stacked interaction
blocks with an embedding size of F = 128, embedding
size of F = 256 for the output block, embedding size
of F = 64 for the interaction block, embedding size
of F = 8 while calculating the Bessel and spherical
harmonic bases. For the basis functions we choose
NSHBF = NCHBF = 7 and NSRBF = NCRBF =
NRBF = 6, for the weight tensor of the bilinear layer
in the interaction block we use Nbilinear,SBF = 32. For
the cutoff radiuses were c = 5Å for the interactions,
c = 7Å for the global cutoff and c = 10Å for the other
embeddings and the learning rate was 5x10−4.

D. Results.

QM9. We apply DPGN to the QM9 data set. The data
set is split following the baselines, 110000 molecules for
training, 10000 for validation and 13885 for testing. A
new model was trained for all twelve target attributes
separately, using mini-batches of 32 molecules at the
time.

The experimental setups were optimized by minimiz-
ing the mean absolute error (MAE) loss using the Adam
optimizer, and were tuned on their validation sets and
then applied to the test sets. We compare our results with
the results reported by several state-of-the-art models:
SchNet [3], MGCN [50], DimeNet++ [51], SphereNet

[17], MPNet [34], reported in Table I. As can be seen,
DPGN is the best performing model on the property
µ and is overall able to improve the results of the
predecessor MPNet on six targets.

TABLE I
COMPARISON BETWEEN DPGN AND OTHER MODELS IN TERMS
OF MAE ON QM9. ADDITIONAL DETAILS FOR THE PROPERTIES

CAN BE FOUND IN APPENDIX IX-A. THE STATE OF THE ART
RESULTS ARE HIGHLIGHTED IN BOLD WHILE SECOND-BEST

RESULTS ARE UNDERLINED.

Target SchNet MGCN DimeNet++ SphereNet MPNet DPGN
µ 0.033 0.0560 0.0297 0.0269 0.0329 0.0267
α 0.235 0.0300 0.0435 0.0465 0.0270 0.0530
εHOMO 41 42.1 24.6 23.6 26.5 26.6
εLUMO 34 57.4 19.5 18.9 7.9 21.6
∆ε 63 64.2 32.6 32.3 25.7 52.7
<R2> 0.073 0.110 0.331 0.292 0.395 0.288
ZPVE 1.7 1.12 1.21 1.12 1.42 1.36
U0 14 12.9 6.32 6.26 9.39 8.76
U 19 14.4 6.28 7.33 8.76 8.95
H 14 14.6 6.53 6.40 9.58 8.88
G 14 16.2 7.56 8.0 10.2 9.85
Cv 0.033 0.031 0.023 0.0215 0.021 0.027

MD17. The MD17 data set is used to examine DPGNs
applicability within the domain of molecular dynamics
simulations. The data set is split following the baseline,
where it uses 1000 samples for training with a mini-
batch size of 4, 10000 for validation and 122770 for
testing with a mini-batch of 64.

The experimental setup is identical to the QM9 exper-
iment. The results are compared with the results reported
by several state-of-the-art models: SchNet [3], DimeNet
[9], SphereNet [17], as can be seen in Table II:

TABLE II
COMPARISONS BETWEEN DPGN AND OTHER STATE-OF-THE-ART

MODELS IN TERMS OF MAE OF FORCES ON MD17. THE BEST
RESULTS ARE SHOWN IN BOLD AND THE SECOND-BEST RESULTS

ARE SHOWN WITH UNDERLINES.

Molecule sGDML SchNet DimeNet SphereNet DPGN
Aspirin 0.68 1.35 0.449 0.430 0.656
Benzene 0.20 0.31 0.187 0.178 0.056
Ethanol 0.33 0.39 0.230 0.208 0.148
Malonaldehyde 0.41 0.66 0.383 0.340 0.245
Naphthalene 0.11 0.58 0.215 0.178 0.178
Salicylic acid 0.28 0.85 0.374 0.360 0.500
Toluene 0.14 0.57 0.216 0.155 0.166
Uracil 0.24 0.56 0.301 0.267 0.220

Compared to the baselines, we can observe that DPGN
can be used on molecular dynamics simulations without
modifications to the architecture. It outperforms the
other models by a large margin on Benzene, Ethanol,
and Malonaldehyde. DPGN is the only model in this
comparison, which has been able to beat sGDML on
Uracil.

sGDML is the model within the original work that
created the MD17 data set, it uses carefully designed
auxiliary features to achieve its results. Whereas, the
SchNet, DimeNet, SphereNet, and DPGN do not use
any auxiliary information for their experiments. Hence,
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sGDML has poorer generalization power compared to
the other baselines when it comes to molecular dynamics
data set without hand-engineered features.

All the experiments are done on either a NVIDIA
Tesla V100 GPU (32 GB) or an Titan RTX (24 GB).

E. Ablation Study.

The proposed UMP considers distance, angle and
torsional angles and long-range forces within its repre-
sentation. It leads to a complete representation of 3D
information in addition to a sense of long-range force
interactions to increase the models’ expressivity.

In this section, we investigate the proposed architec-
tural improvements on the target U0. The effect of the
proposed changes can be seen in Table III.

TABLE III
ABLATION STUDIES ON U0. FORCE MAE IN MEV AFTER 300

EPOCHS ON 30000 TRAINING SAMPLES, VALIDATED ON 1000 AND
TESTED AGAINST 1000. ALL PROPOSED COMPONENTS YIELD

IMPROVEMENTS.

Model MAE
MPNet without modifications 0.122
Remove global effect when init embeddings 0.117
Adding torsional information (quadruplets) 0.113
Using bilinear layer instead of hadamard product
when computing the effect of torsional forces 0.112

Adding P-block after residual layers 0.109

These results demonstrate the effectiveness of the
proposed changes for realising the DPGN framework.

VIII. CONCLUSION

In this work, we have introduced DPGN which is
a redefined architecture based on MPNet and 3DGN
framework. To achieve this, a generic framework based
on 3DGN is presented to provide a clear interface for
3D point cloud data sets. To realize the DPGN, the
message-passing architecture UMP is presented which
takes account of local and non-local energies by taking
torsional forces into account.

By incorporating these modifications in the DPGN
architecture, which can improve the errors on various
targets within the QM9 data set.

Additionally, we have shown that the various modi-
fications to the architecture, leads to significant perfor-
mance within molecular dynamics simulations, without
modifying the architecture.

Hence, the proposed modifications can contribute to
the groundwork for developing a complete pipeline for
analysing molecular systems.
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IX. APPENDICES

In this supplementary material we provide more de-
tails about the quantum properties in the QM9 data set.
The quantum property descriptions are taken from [34]

A. Description of the Quantum Properties

U0 (eV): is the atomization energy at 0 kelvin (K).
This is the energy required to break up a molecule
to its constituent atoms at a temperature of 0K. The
calculation assumes that the molecule is held at a fixed
volume.
U (eV): is the atomization energy at room tempera-

ture.
H (eV): is the enthalpy of atomization at room

temperature. It is in similar spirit to the spirit of U ,
without depending on the assumption that the volume
is fixed.
G (eV): is the free energy of atomization. It also is in

similar spirit to G and U , but with the assumption that
the system is held in a fixed temperature and pressure.
ω1 (cm−1): is the molecules highest fundamental

frequency. Every molecule has fundamental vibrational
modes. ω is the mode that requires the most energy.
ZPEV (eV): is the zero point vibrational energy,

which is the vibrational mode of the molecule at 0K.
εHOMO (eV): is the energy of the highest occcupied

electronic state.
εLUMO (eV)): is the energy of the lowest electronic

state that is unoccupied.
∆ε (eV)): is the difference between LUMO and

HOMO. It is the energy transition that can occur when
an electron is excited from an occupied state to an
unoccupied state.

〈R2〉 (Bohr2): is the second moment of the charge
distribution. Also known as the electronic spatial extent.
µ (Debye): is the norm of the dipole moment. It is

related to how anisotropically the charge is distributed.
It says something about the strength of the field far from
the molecule.
α (Bohr3): is the static polarizability. It measures the

extent to which a molecule can spontaneously incure a
dipole moment in response to an external field [2].


