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Abstract

In this project, an attempt is made to use
model based optimal control for CERN’s
AWAKE electron beam line trajectory correc-
tion problem. CERN is constantly searching
for advanced control methods for the new ac-
celerators and this model based approach us-
ing an Linear Quadratic Regulator (LQR) in
this manner has not been attempted before.
The report therefore, begins with a descrip-
tion of CERN and the main accelerators and
its experiments. The AWAKE experiment is
described in detail, with focus on the elec-
tron beam line. Then, a thorough charged
particle modelling chapter is presented with
derivations through magnetic effects on the
system all the way to linear equations of mo-
tion. Based on this, extensive state of the art
research was done to analyse the control meth-
ods currently applied at CERN. Afterwards,
the requirements and the control objective is
defined. The system is then modelled in a sim-
ple approach to prove that model based con-
trol approaches can work on ultra-relativistic
time-like systems. The model is then put
into state space form and discretized. This
yielded a bilinear system which is then con-
trolled with an LQR controller. Simulations
are then created which are based on a Rein-
forcement Learning simulation environment,
which is modified to use the encoded physi-
cal properties of the system elements for the
LQR simulation. In the end, the results show
that the LQR feedback controller managed to
drive the beam trajectory towards the refer-
ence. However, due to lack of access to physi-
cal hardware, it is difficult to assess real world
performance.

The content of the report is freely available, but publication (with source reference) may only take place in

agreement with the authors.
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Abbreviations

Abbreviation Meaning

LHC Large Hadron Collider
SPS Super Proton Synchrotron
PS Proton Synchrotron
PSB Proton Synchrotron Booster
AD Anti-Proton Decelerator
CLIC Compact Linear Collider
FCC Future Circular Collider
LINAC Linear Accelerator
LEIR Low Energy Ion Ring
LIC LHC Injection Chain
AWAKE Advanced Proton Driven Plasma Wakefield Acceleration Experiment
RF Radiofrequency
CGSN CERN Neutrinos to Gran Sasso
CCC CERN Control Center
LS2 Long Shutdown 2
BPMs Beam Position Monitors
LQR Linear Quadratic Regulator
iLQR iterative Linear Quadratic Regulator
RL Reinforcement Learning
ANN Artificial Neural Network
SVD Singular Value Decomposition
LWFA Laser Driven Plasma Wakefields
PWFA Proton Driven Plasma Wakefields
ORM Orbit Response Matrix
MAD Methodical Accelerator Design
DARE Discrete Algebraic Riccati Equation

Mathematical Notation

Vector notation is in bold, smaller case v
Upper case vector notation sometime utilized, and explicitly stated R
Matrices are in capital M
Time iterations are noted in parenthesis x(t)
Derivatives relative to time are noted with dot ẋ(t)
Derivatives relative to displacement are noted with prime x′(s)
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Chapter 1

Introduction to the CERN complex

The European Organization for Nuclear Research (CERN) was established in 1954 with
the goal of returning high-end physics nuclear research to Europe after the 2nd World
War. It is based in Meyrin, Switzerland in the Greater Geneva Area. Over the previous
decades, CERN has grown to be one of the largest nuclear research institutions in the
world. Today, there are approximately 16 000 members of the personnel on site every day.
It has 12 accelerators, among them the Large Hadron Collider (LHC) and the Super Proton
Synchrotron (SPS), a decelerator, and a very wide variety of experiments which probe the
fundamental structure of both matter and anti-matter. CERN also researches possible
new particle acceleration techniques and paradigms, and it is currently in the exploratory
phase of the construction of the Future Circular Collider (FCC) and the Compact Linear
Collider (CLIC), both of which are planned to substantially increase the energy of particle
beam acceleration and collision. [1]

Figure 1.1: Map of CERN and its sites in France and Switzerland (in orange) and the
major accelerators (in blue) [2].
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1. Introduction to the CERN complex

1.1 The Accelerator Complex

The entire accelerator complex of CERN can be seen on Figure 1.2. This image shows all
12 accelerators, as well as all their corresponding experiments.

Figure 1.2: CERN Accelerator Complex [3]

As the main focus of CERN is the LHC and its experiments, the major accelerators are
coupled into a chain to help the acceleration of particles to higher energies. This chain
is called the LHC injection chain (LIC). It includes the brand new Linear Accelerator 4
(LINAC4), the LINAC3, the Low Energy Ion Ring (LEIR), Proton Synchrotron Booster
(PSB), Proton Synchrotron (PS) the SPS and then finally the LHC. LINAC3 and LINAC4
linear accelerators are the first steps in the acceleration processes. There are two sources of
particles, one for negative hydrogen ions from LINAC3, and one for protons from LINAC4.
LIC is capable of accelerating both particle beams. [3]

Figure 1.3: LHC Injection Chain (LIC) with LINACs in red and circular accelerators in
yellow

4



1.1. The Accelerator Complex AAU

1.1.1 Energy and Method of Acceleration

The energy of an acceleration is usually represented in terms of electron volts (eV). An
electron volt is defined as the kinetic energy of a single electron particle being accelerated
from standstill through vacuum with a potential difference of one volt. The concept of
electron volts was originally developed for particle accelerators, and it is still widely used
today. As an example, the LHC accelerates protons from 400 Giga eV (GeV) to 6.8 Tera
eV (TeV), which results in collisions above 12 TeV, enough to detect the Higgs-boson. [4]

Currently at the CERN the acceleration of particles is done with Radiofrequency Cavities
(RF cavities). They are present in most accelerators. Superconducting radiofrequency
cavities are metallic chambers designed to accelerate or decelerate particle bunches in
particle accelerators. The chambers contain an electromagnetic field, where the oscillations
are known as radiofrequency, see Figure 1.4. In the LHC, these are designed to have a
frequency of 400 MHz.

Due to this field, charged particles entering the chamber from one end get an electrical
impulse and in turn get accelerated (or decelerated depending on the current energy of
the particle). The timing of the injection for a particle into the chamber is extremely
important, since if the particle enters with a non-target energy, either too early or too late,
it will get decelerated or accelerated. Particles with the correct energy are not affected.
With this process, the particles are eventually "broken" up into particle bunches as they
traverse the various RF cavities around the accelerator.

As an example, in the LHC tunnels there are 16 RF cavities, each of them placed into
cryomodules to enable superconducting. With these 16 RF cavities, the LHC can accelerate
the particle bunches up to 1.6 TeV from 450 GeV injection energy. This is almost a 15x
increase in energy. This process takes approximately 20 minutes.

RF cavities has been widely utilized around the world. This includes CERN too, where
almost all the accelerators, including the LHC, SPS, PS and PSB, as well as the LINACs,
use RF cavities.

However, there are several major drawbacks. One of them is the hard limit on the maximum
attainable acceleration gradient. This limit essentially means that the acceleration process
cannot achieve more than 100MV/m. Above this, the materials in the cavities break down

Figure 1.4: Side profile of RF cavities [5]
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1. Introduction to the CERN complex

and stop being superconductive (quench).

Consequently, to increase the energy of the accelerator, a bigger machine is needed which
can contain more RF cavities (such as the FCC or CLIC). It is of course possible to
instead create circular accelerators where the particles orbit multiple times as they gain
energy before entering the experiments. However, bending particles to keep to a target
orbit creates a phenomenon called synchrotron radiation. This radiation occurs when
relativistic particles are bent with magnetic fields, and it causes a significant energy loss,
whilst also increasing the complexity of the understanding of the beam trajectory.

The acceleration energy of the RF cavities over a unit distance is called the acceleration
gradient. It is defined as the energy added to the particles in a beam over a set distance.
Where, the higher the gradient, the higher the acceleration is per fixed unit of distance.
In the CERN context it is often written as 100MV/m, which is 100 MegaVolt/meter.

1.1.2 Large Hadron Collider (LHC)

The Large Hadron Collider is the flagship accelerator of the CERN complex. It is a 27 km

long synchrotron. It has several major experiments like ATLAS, ALICE, CMS and LHCb.
The LHC receives the particle bunches from the SPS at an energy of 400 GeV and then
accelerates them up to 6.5 TeV. It was built between 1998 and 2008. First beam circulated
in 2008. In 2012, the ATLAS experiment confirmed the existence of the Higgs-boson and
with that fulfilling the original design purpose of the accelerator. Nowadays, the LHC is
being prepared to increase the luminosity by a factor of 10 and to allow collision energies
up to 14 TeV. These upgrades are part of the High Luminosity LHC upgrades (HL-LHC).

1.1.3 Super Proton Synchrotron (SPS)

The SPS is the 2nd largest accelerator at CERN. It was commissioned in 1979 and it has
a 6.9 km ring. During its history it accelerated several particle types, such as: protons,
electrons, antiprotons and positrons. Currently, it is part of the LIC and accelerates ions
and protons. These particles arrive to the SPS from the Proton Synchrotron (PS) and

Figure 1.5: LHC vacuum tube in the tunnels [6]
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1.1. The Accelerator Complex AAU

are accelerated to 400 GeV from 26 GeV. Just like the LHC, it also has experiments, such
as the AWAKE, North Area and HiRadMat. In the context of this project, the most
important experiment is AWAKE. It is described in detail in the next chapter, Chapter 2
The AWAKE Collaboration.

1.1.4 LINACs

There are multiple linear accelerators at CERN; LINAC3 LINAC4 and AWAKE. The
LINAC3 and LINAC4 are part of the LIC and AWAKE is an experimental accelerator. As
mentioned above, LINAC3 and LINAC4 are designed to be the sources for the particles
in the entire complex. LINACs have a strong history at CERN, as one of the very first
accelerators ever built in 1959 was a linear accelerator. As the name suggests, there were
already two other LINACs, LINAC2 and LINAC1. LINAC1 was decommissioned when
LINAC3 came online for the first time, and LINAC2 was decommissioned the most recently,
on 2020. LINAC4 took its place and today it is integrated into the LIC. During the writing
of the thesis the first beams in LINAC4 took place. [7]

Another LINAC at CERN is the AWAKE experiment. It is built around a completely
different accelerator paradigm, which instead of the above mentioned RF cavities, it uses
plasma wakefields to accelerate particles. AWAKE is introduced in following chapter.
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Chapter 2

The AWAKE Collaboration

This chapter is about the AWAKE collaboration at CERN. In the first sections, the
experiment’s history and its goals are presented. Afterwards, the method of plasma
wakefield acceleration is explained. The experiment structure is then presented, with
focus on the electron beam line. This contains the physical description of the system as
well.

2.1 AWAKE History

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is
a research platform for new linear particle acceleration techniques. It was approved
for construction by the CERN Council in 2013 and the first beam passed through the
accelerator in 2016. [8]

The goal of this collaboration is to build an experiment that could accelerate particles
using plasma wakefields as the main driver, instead of the conventional radiofrequency
cavities (see Subsection 1.1.1 Energy and Method of Acceleration). Since the discovery

Figure 2.1: AWAKE Experiment beam line in the underground tunnels of the old CGSN
experiment, close to the SPS transfer lines. [9]

9



2. The AWAKE Collaboration

of this technique in 1979 by scientists at Berkeley, many research institutions around the
world are actively developing plasma wakefield based accelerators. As an example, consider
the FACET-II at Stanford’s SLAC laboratory [10], or Berkeley’s BELLA [11].

The novelty of plasma wakefields comes from the the potential to allow acceleration of
particles, other than protons, to very high energies to more easily study collisions. As
mentioned in 1.1.1, with RF cavities, it is very difficult to accelerate electrons without
losing a substantial amount of the input energy to synchrotron radiation. However, by
using plasma wakefields in linear accelerators, one could theoretically achieve energies
comparable to current circular accelerators in much shorter distances. This is important
because often with heavier particles like protons the collisions create very complicated
outcomes which are extremely difficult to decipher. Lighter particles like electrons would
be ideal for collisions as their outcome is much easier to model. However, due to
synchrotron radiation, electrons at this point cannot reach such high energies. Therefore,
new accelerator techniques like proton-driven plasma wakefields are crucial for particle
acceleration of the future. [12] [13]

In addition to the uniqueness of a plasma wakefield driver accelerator design, the AWAKE
collaboration has decided to use proton-driven plasma wakefields for the acceleration
mechanism. This is a world first at the time of construction. Therefore, besides the
plasma wakefields, this CERN experiment also investigates the viability of using proton
bunches as the plasma wakefield drivers. [13]

The specific goals of the experiment can be summarized in four points:

1. Development of a long, scalable and uniform proton driven plasma cell for future
applications in accelerators.

2. Development and understanding of plasma wakefields with externally injected
electrons.

3. Research of injection dynamics and the possible production of high GeV electron
bunches in the accelerator.

4. Research the physics behind self-modulation of long proton bunches in plasma.

Since its first beam in 2016, AWAKE has successfully managed to accelerate externally
injected electrons from 19 MeV up tp 2 GeV in only 10 m. After the success of 2018, the
entire CERN complex went into the Long Shutdown 2 (LS2) period for major upgrades
to all of its systems. This included AWAKE, where it is being upgraded to increase the
acceleration energy of the electrons from the initial 19 MeV to 10 GeV. The LS2 period is
expected to end in the second half of 2021 and first beams are already being injected into
the complex at the time of writing of this report. [14] [9] [13]

2.2 Principles of Plasma Wakefield Acceleration

Plasma wakefield acceleration is a novel particle acceleration technique from 1979. It
was discovered at UCLA by Toshiki Tajima and John M. Dawson [15]. Subsequently, a
prototype accelerator was built by Chandrashekhar J. Joshi, also at UCLA. [16] The key
principle in plasma wakefield acceleration is that the particles are accelerated in a wave in
a wakefield created by an outside energy source. This could either be a strong laser or a

10



2.2. Principles of Plasma Wakefield Acceleration AAU

high energy particle bunch. By definition, a wake is a wave-pattern that is produced by
an object moving through a fluid. This phenomenon can be well illustrated with boats
travelling through water, see Figure 2.2a.

The wave created by the boat is called the driver wave. The particles which are to be
accelerated are effectively analogous to surfers on the wave, where they travel faster than
the wave as they gain the energy, see Figure 2.2b. Subsequently, the higher the energy of the
driver, the higher the energy of the acceleration. The particles which are to be accelerated
are called witness particles. The underlying formula of the acceleration gradient for a
plasma wave is:

E = c ·
√
me · ne
ε0

(2.1)

where, E is the electric field, c the speed of light, me the mass of an electron, ε0 the
permittivity of free space and ne is the plasma electron density. The energy of the gradient
increases if the energy of the plasma electron density increases, where the permittivity ε0
is a constant.

There are two mainstream implementations of wakefield generation. Laser driven and the
above mentioned proton driven wakefields. The main difference lies in where the energy
for the driver wave comes from. In the laser driven wakefields, the energy into the system
is input with very high energy lasers (up to petawatt strength), whereas in proton driven
wakefields the driver wave is created by high energy proton waves. In the AWAKE case
these protons arrive from the SPS. [18] [13]

(a) Wakefield produced by a boat on the
surface of a body of water.

(b) Particles are acting as a surfer on the
wakefield. The surfer who missed the wave,

represents the issue that the electrons needs to
be accelerated enough to be precisely placed

(injected) onto the wave for further
acceleration.

Figure 2.2: Analogous representation of the wakefield and witness particles. [17]
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2. The AWAKE Collaboration

2.3 Layout and Structure of the Experiment

The AWAKE experiment is built in the old CERN Neutrinos to Gran Sasso (CNGS)
facility approximately 120 m underground, see Figure 2.3. This site was chosen since there
is an already established transfer connection to the SPS, and the since the CNGS facility
has reached its end of life, this space was available for new experiments with high energy
proton beams. Additionally, sufficient radiation protection was also already integrated to
the tunnels in this area. [18]

The main elements of the experiment are:

• Proton transfer line from the SPS.
• RF gun electron source.
• Electron transfer line from the source to the;
• Electron-proton merging point.
• Accelerating plasma vapor cell.

The accelerating plasma vapor cell is approximately 10 m long. The electrons arrive
through the 15 m long electron beam line, which transfers the particles from an RF gun to
the vapor source to be injected for acceleration. The driver proton bunches arrive from the
SPS through the 800 m transfer line. Since no sufficient access was available to the LHC
for the proton beams, the SPS was chosen instead. The particles arrive at 400 GeV, which
makes the AWAKE experiment the highest energy particle driven plasma accelerator. This
enables the acceleration from the 18.8 MeV of the electron gun to the 2 GeV mentioned
above. The layout of the experiment is shown in Figure 2.4. [18]

Figure 2.3: AWAKE Experiment placement in the old CNGS facility close to the SPS
beamline. There is sufficiently easy access to the 400 GeV proton beams from the SPS.

[19]
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2.3. Layout and Structure of the Experiment AAU

Figure 2.4: AWAKE Experiment Overview. This image shows that the electron beam
line is connected to the experiment via the electron merging point, where the witness

electrons are injected into the plasma driver wave. [19]

2.3.1 Electron RF gun and beam line

The witness electron bunches are created independently by a 5 MeV RF gun before
injection into the plasma cell. The model of this beam line is shown in Figure 2.5. The
current design of the plasma chamber expects the electrons to be injected with 18.8 MeV

and then to be accelerated to 2 GeV over the 10 m long plasma cell. [18]

Parameter Dipole Quad Corr
Number of units 4 11 11

Min. field [Tm] 0.0096 0

Max. field [Tm] 0.0456 4.34 · 10−4

Min. gradient [T] 0.01

Max. gradient [T] 0.18

Magn. length [mm] 177.5 70.8 110−
Total length [mm] 290 114 34

Free aperture [mm] = 70 = 70 = 70

radius (x/y)[mm] ±30/20 20 13

(2.2)

The RF gun’s first 1.5 m is designed to be a short booster LINAC which accelerates the
particles to the target energy (10-19 MeV). The rest of the beam line is composed of five
dipoles and nine quadrupoles (the description and dynamics of dipoles and quadrupoles
can be found in Section 3.1 Transverse Dynamics) and the technical specifics of the devices
can be seen in Table 2.2. Additionally, in the beam line there are three bends, a 1 m vertical
step, a 60° bend to position the beam parallel to the plasma chamber and a final bend
to inject the electrons orthogonal. In total there are 11 dipoles available for trajectory
correcting control. There are also 11 Beam Position Monitors (BPMs), which measure the
position of the beam.

There are various approaches to controlling AWAKE’s electron beam line trajectory. They
are described in Chapter 4 Current Trajectory Control Methods for the Electron Beam Line.
Due to the low energy, and low chance of damage to the surrounding system, the electron
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2. The AWAKE Collaboration

Figure 2.5: AWAKE Electron Beam Line top down overview. [20]

beam line had become a sort of test platform for orbit correction controller algorithms.
This thesis builds on top of the work done previously. State of the art controllers for
the beam line are described later in the report, see Chapter 4 Current Trajectory Control
Methods for the Electron Beam Line.
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Chapter 3

Modeling of Particle Motion

This chapter introduces the modelling of charged particle motion. This is first done with
a derivation of the forces affecting the particle. Then, using multipole expansion of a
magnetic field, dipole and quadrupole magnets are introduced. Based on the magnet and
charged particle interactions, the transverse equations of motions are then derived. In the
end the system is then put into a linear form.

3.1 Transverse Dynamics

To model a beam or particle bunch travelling through an accelerator beam transfer pipe,
first the movement of a single particle has to be considered. This is done with transverse
beam dynamics or beam optics. Transverse dynamics describe the movement and dynamics
of a single charged particle travelling through a static magnetic field. The term beam
optics also applies, because similar effects are applied to particle movement as to optical
bending and optical focusing. Furthermore, very similar phenomena occurs when magnetic
fields are used to affect charged particles, such as dispersion, luminosity or chromaticity.
[21, p.17]

3.1.1 Transverse Reference Frame

Particle modeling is usually done in the six dimensional phase space with transverse local
coordinates (x, y), their derivatives, also called angular displacement, (x′, y′), the energy
of the particle (E) and the longitudinal displacement (s) [21, p.6] [22, p.213]:

x = (x, x′, y, y′, E, s)T (3.1)

Phase space describes all possible states of a system, where each parameter is represented
as a separate axis. This setup describes a single unique point for each and every state
of the system. The movement of the system along the phase space is called phase space
trajectory, see Figure 3.1.

Derivative representation in particle accelerator context

Note that generally in the accelerator particle modeling context, the convention for the
derivatives representation of (x, y) are in terms of the longitudinal displacement along the
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3. Modeling of Particle Motion

Figure 3.1: Phase space representation of the particle movement along s. The phase is
represented as φ and the displacement along the x and y axis is shown as well.

accelerator, s, not in terms of time. When the time derivative is used it is represented
with a dot instead of a mark [23, p.16]:

x′ :=
dx

ds
, ẋ =

dx

dt
(3.2)

In the rest of the chapter the above convention is used unless otherwise explicitly stated.

Orthogonal right handed frame

Within the phase space of the particle movement, the transverse equations of motion are
derived in an orthogonal right handed frame (x, y, s). This frame is "attached" to the
particle along the orbit as it moves. In accelerating and co-moving frames this approach
would require complex Lorentz transformations. Therefore, the frame is fixed to the
laboratory instead. It follows the reference orbit to model the local displacement of the
particle in the longitudinal position, s, see Figure 3.2 and Figure 3.1. [23, p.16]

Figure 3.2: Particle orbit local reference frame in an accelerator beam tube. The unit
vectors are evaluated at longitudinal coordinate s1 and s2. [23, p.16]
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3.1. Transverse Dynamics AAU

Additionally, a set of (êx,y,s) unit vectors are also defined, where the ês is tangential to the
reference orbit and points in the direction of the particle’s velocity v. Furthermore, êy is a
perpendicular unit vector to the transverse plane, where it points upwards in the vertical
plane. Lastly, êx is defined as the cross product of ês × êy, being perpendicular to both.
[23, p.16]

3.1.2 Lorentz Force and Magnetic rigidity

In a particle accelerator, bending and focusing forces acting on charged particles are used
to control the trajectory of the beam. The forces are applied with electromagnetic fields.
This force is called the Lorentz force [23, p.2]:

F = q(E + v ×B) (3.3)

where q is the charge of the particle moving with velocity v, E is the electric field and
B is the magnetic field. The forces acting longitudinally (E||) increase the energy of
the travelling particle, whereas the perpendicular (transverse) forces (B⊥) only bend the
particles. In this project the problem of particle acceleration is not considered. Thus
assuming only transverse bending (B⊥), the Lorentz force equals to the centripetal force
(this is in the case of circular accelerators where the circular orbit bending radius is ρ):

m
v2

ρ
= q (E⊥ + vB⊥) (3.4)

where, m is the ultra-relativistic mass of the particle (meaning the velocity v can be
approximated to be equal to the speed of light, c [23, p.2]). It is defined as m = γrm0 with
the rest mass m0 and Lorentz factor γr . The Lorentz factor defines how the properties
of objects such as length or measurement of time change as they are moving. It is most
often used in special relativity and in Lorentz transformations. In this case, it describes
the effect on the mass of the particle as it reaches relativistic speeds [24]:

γr =
1√

1− v2

c2

. (3.5)

From 3.5 it is possible to see that the γr rapidly reaches infinity as the particle
reaches the speed of light. In practice this means that as the speed of the particle
increases, the resistance against acceleration increases as well, and it represents itself
as an increase is mass. However, since the rest mass m0 for a particle like the proton
is 1.672 621 9× 10−27 kg, the computation for the mass keeps to relatively manageable
values, even as v approaches c.

With m defined, the momentum of the particle is introduced as:

p = mv (3.6)

17



3. Modeling of Particle Motion

which can be substituted into Equation (3.4) by first factoring out v. To simplify notation,
from now on the ⊥ sign is neglected, therefore: B = B⊥ and E = E⊥:

mv
v

ρ
= q(E + vB) (3.7)

and then substituting in the momentum for mv:

p
v

ρ
= q(E + vB) (3.8)

then, neglecting E since only transverse magnetic fields are considered gives:

p
v

ρ
= qvB. (3.9)

Afterwards, multiplying by ρ on both sides yields:

pv = qvBρ (3.10)

and finally, dividing both sides by v gives:

p = qBρ. (3.11)

Where Bρ is the magnetic rigidity, or magnetic stiffness. If a charged particle is travelling
through a bending magnet on a circular orbit with a bending radius of ρ, then the magnetic
rigidity defines the rigidity against bending, that is: the higher the particle momentum
the higher the resistance against the deflection generated by the magnetic field. [23, p.2]

3.1.3 Multipole expansion of a magnetic field

Multipole expansion is a mathematical method that is used to decompose functions
dependent on angles, as a series. This applies to the particle movement context as well,
since the displacement generated by the above mentioned B field are angular. Therefore, it
is possible to apply multipole expansion to magnetic fields. This can give an understanding
to how magnetic fields generated by magnets in the accelerator affect the particle and beam
trajectory. [23, p.3]

It is important to note here that there are two main assumptions regarding the B field:

1. only transverse displacement is considered in the (x, y) planes (horizontal and
vertical) from the reference orbit and;

2. B does not have a dependence on the longitudinal coordinate s. This is in terms of a
single magnetic field generated by a magnet, not when multiple magnets are present
in a beamline.
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3.1. Transverse Dynamics AAU

Figure 3.3: The Cartesian coordinates of the transverse components of B, represented as
Bx and By. [25, p.2]

Therefore, the transverse vector components of B are denoted as Bx(x, y) and By(x, y),
see Figure 3.3.

Furthermore, since the magnets which are placed in an accelerator are further away than
the potential transverse displacement, x, y then Maxwell’s equations reduce to:

∇ ·B = 0,

∇×B = 0.
(3.12)

which means that the divergence and the curl will equal to zero. This allows B to be
defined in terms of a scalar potential Φ. Also, the magnetic fields can be generally derived
from a vector potential A and since both A and Φ only depends on transverse coordinates
(as established above) one can write [23, p.3], [21, p.65]:

B(x, y) = −∇Φ(x, y) = ∇×A(x, y) (3.13)

Then Equation (3.13) can be evaluated at each of the transverse components, Bx and By,
which will give:

Bx(x, y) = −∂Φ
∂x = +∂Az

∂y

By(x, y) = −∂Φ
∂y = −∂Az

∂x

(3.14)

where, Az is the z component of the vector field A. Note that here, the above derivations
are a huge simplification of the mathematics because they lie out of the scope of this
project. Further reading can be found at[23, p.3] and [21, p.65], [25] or at [22, p.125].

Based on this, one can then find the Cartesian multipole strengths for the first two orders
of the magnetic decomposition:
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3. Modeling of Particle Motion

Order Name Magnetic field Multipole strength

n = 1 upright dipole B1 =
p

q
κêy (3.15) κ =

qB0

p
b1 (3.16)

n = 1 skew dipole B1 = −p
q
κêx (3.17) κ =

qB0

p
a1 (3.18)

n = 2 upright quadrupole B2 = −p
q
k
(
yêx + xêy

)
(3.19)

k = −qB0

pr0
b2 (3.20)

n = 2 skew quadrupole B2 =
p

q
k
(
xêx − yêy

)
(3.21) k = −qB0

pr0
a2 (3.22)

Table 3.1: The first two magnetic multipoles for a given B field. n represents the order of
the decomposition. Skew means that the magnet is rotated by 45° relative to the upright

position. B0 is related to Ampere’s law and it is derived in the subsequent section
Section 3.2 Magnets [23, p.6]. Furthermore, b1, a1, b2 and a2 are dimensionless expansion
coefficients used in guiding the derivations, and are not considered later in the project

More can be found in [23, p.4]. Similarly to the expansion coefficients r0 represents a free
variable called reference radius [23, p.4].

As shown in Table (3.1), the first two (B1,B2) multipole expansions of the B field represent
the effects of an upright or a skew dipole magnet, whereas the second represents the effects
of an upright and a skew quadrupole. As mentioned above there are additional effects
which represents higher orders like quadratic and beyond. However, since the AWAKE
electron beam line does not have magnets corresponding to those effects, they are not
shown here (see Subsection 2.3.1 Electron RF gun and beam line). Additional material on
sextupoles and octopules can be found in [21, p.76] and in [23, p.14].

To state again, the above representation is a considerable simplification of the physics and
mathematics, but due to the scope of this project it was not included.

3.2 Magnets

Based on the multipole expansion of the magnetic field, (see Table (3.1)) one can see that
there are also multiple higher order components to the magnetic field. At n = 3 the
magnetic field corresponds to sextupoles and at n = 4 it corresponds to octupoles, and at
n = 5 it is called decapoles. Other than the dipole and quadrupole magnets, these higher
order fields correct highly non-linear phenomena, such as chromaticity or dispersion, in
the beam. They are often utilized in larger, circular accelerators where the beam passes
through the magnets many times, which induces these non-linear effects. However, since in
the AWAKE electron beam line there are only dipoles and quadrupoles (Subsection 2.3.1
Electron RF gun and beam line), the higher order corrector magnets (sextupoles, octopules
and decapoles) are not discussed in this project. So, in the following two sections the
models for an upright dipole and quadrupole are considered. [23, p.6] Figure 3.4 shows
the generated field of the different magnets, including higher orders and skew (rotated by
45°) configurations.
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3.2. Magnets AAU

Figure 3.4: Generated fields from dipoles, quadrupoles, sextupoles, octupoles and
decapoles. Skew means that the orientation of the magnet is rotated relative to the

vertical plane of the moving frame.[23, p. 7]

3.2.1 Dipole magnets

Dipole magnets are two poled bending magnets that are primarily used to deflect the
particle beam towards the design orbit. There are two major implementations of dipoles:
sector dipoles used in large circular accelerators and corrector dipoles which are meant to
correct small transverse displacement in the trajectory of the beam. Both are often used in
circular accelerators. However generally, in LINACs only correctors are applied. Effectively
for modeling purposes, the only real difference between the sector and the corrector dipoles
are: the winding numbers and the maximum current flowing through the coils.

In flat accelerators, the dipole magnetic field is pointing perpendicular to the design orbit
(see assumptions in Subsection 3.1.3 Multipole expansion of a magnetic field). This is the
case for the first multipole strength of a B field, presented in Table (3.1) [23, p.9]:

B =
p

q
κêy (3.23)

where, κ is:

κ =
qB0

p
b1. (3.24)

Variable b1 as mentioned in Table (3.1) is a dimensionless expansion coefficient that was
used to guide the derivations. It is essentially a free-variable and from now on can be
neglected. p stays to be the particle momentum with q charge.

Performing the κ substitution into 3.23, q and p cancel out, yielding:

B(x, y) = B0 · êy (3.25)

To generate a uniform and flat magnetic field, there needs to be two equipotential, Φ,
surfaces opposite to each other (see left imagine of Figure 3.8). Then using Ampere’s law,
it is possible to approximate the generated dipole field [23, p.10]:

21



3. Modeling of Particle Motion

B0 = µ0
nI

h
(3.26)

where, µ0 is the free-space permeability, I the current running through, n the number of
turns in the coils and h the distance between the coils. This is also shown on Figure 3.8.
Note here, that even though I is a single variable for the current, which has no dependence
on s, for multiple dipoles in a system, I will produce a dependence on s for the locations
of the magnets.

Figure 3.5: Pole-profile (left) and a C-shaped cross section (right) of a bending dipole
magnet. The distance between the poles of the magnet is denoted as h, with n number of
coils, I current flowing through it. By denotes the magnetic field vector component in
the y transverse direction and H0 the magnetic field strength. Φ denotes the material
surface potentials, µr the material permeability and µ0 the free-space permeability

between the magnet surfaces. [23, p.9]

Dipole bending curvature

The bending curvature of a magnet defines whether the particles is deflected "inwards" or
"outwards" relative to the accelerator. It is related the dipole strength, κ (see Table (3.1))
by an inverse relation [23, p.9]:

κ =
q

p
B0 =

1

ρ
(3.27)

where, ρ is the bending radius. Substituting 3.26 for B0 gives:

κ =
q

p
B0 =

qµ0

p

nI

h
(3.28)

henceforth, the sign of the magnetic field will dictate whether the bending is "inwards" or
"outwards". Figure 3.6 shows that bending dictates the angle of the particle ϕ and the
magnitude of the displacement after the bending, y.

Furthermore, as mentioned above, there are two types of dipoles: sector dipoles and
corrector dipoles. In implementation, the sector dipoles have the bending curvature ρ
of a circular accelerator, and their purpose is to bend the beam into a circle over the entire
period of acceleration. Therefore, the sector dipoles are generally configured up with a
constant I, whereas in corrector dipoles the current is variable. The variable current
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3.2. Magnets AAU

Figure 3.6: Dipole curvature and bending with deflection angle ϕ and with displacement
y. In circular accelerators ρ and ϕ are equal since the dipole is meant to bend the beam

in a circle. These type of magnets are called sector magnets.

is required to corrector for transverse displacement. Additionally, corrector dipoles are
thinner, with fewer number of coils. An example of a thin corrector dipole is shown in
Figure 3.7. [22, p.190]

3.2.2 Quadrupole magnets

Quadrupoles are similar to dipoles, but instead of two magnets they are built using four
magnets. In particle accelerators they are used to focus the trajectory of the particle, or
particle beam, and they do not bend the beam. This focusing is analogous to the optical
focusing. Therefore optics is generally used to model the effect of a quadrupole on a beam
[23, p.11].

To achieve beam focusing, one must focus in both the vertical and horizontal plane. This
means that a magnetic field is required in both the x and y planes with corresponding fields,
By and Bx. As established above, to have a transverse magnetic effect, the field must be
perpendicular to the current axes to have the desired effect. Thus, the By corresponds to
the x axis and Bx to the y axis. This is provided by the second order magnetic multipole
decomposition (see Table (3.1)):

By = g · x, Bx = −g · y (3.29)

where g is the magnetic field gradient along the axes:

Figure 3.7: An example thin horizontal and vertical steering dipole. Thin correctors are
meant to be employed to fix small perturbations in design orbit by quickly changing the

current running through. [26, p. 7]
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3. Modeling of Particle Motion

g =
δBy
δx

= −δBy
δy

(3.30)

Similar to dipoles, using Ampere’s law, it is possible to approximate the required ampere-
turns to generate the magnetic gradient g:

nI =
1

µ0

∫ a

0
grdr → g =

2µ0nI

a2
(3.31)

where, I is the current, µ0 is the free-space permeability, a is the aperture and n is the
number of turns in the coils. The aperture is defined as the radius of a circle around the
beam center in the magnet towards the iron yoke (housing), see Figure 3.8.

Figure 3.8: Side profiles of a focusing quadrupole magnet. Φ represents the surface
potential and a is the aperture. F(x, y) are the restoring forces acting on the particle.
Notice how Fy points outwards, meaning it is defocusing, while Fx is pointing inwards,

thus focusing. [23, p.11]

Subsequently, using the Lorentz force and Equation (3.29) it is possible to compute the
restoring forces acting on the particle:

F = q · (v ×B) = qvg ·
(
xêx − yêy

)
(3.32)

By the varying the sign of the gradient g, it is possible to see that the quadrupole
simultaneously focuses in one of the axes while it defocuses in the other. Practically,
this means that if the particle beam is focused in the horizontal plane, it is defocused
in the vertical plane. In accelerators, it is often corrected by using another quadrupole
downstream which is rotated (skewed) to focus in the vertical plane and defocus in the
horizontal.

It is therefore now possible to evaluate the upright quadrupole strength k from Table (3.1)
(n = 2), which yields:

k =
q

p
g =

qµ0

p

nI

a2
(3.33)

Just as in Equation (3.32) for the gradient g, varying the sign of the k indicates whether the
particle beam is focused or defocused. For the case where k < 0, the magnet is horizontally
focusing and vertically defocusing and for the case k > 0, it is the opposite. [23, p.11]
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3.2. Magnets AAU

Thin lens approximation

The angle of the quadrupole beam deflection can be computed using a thin lens
approximation, where the thickness of the magnet L is assumed to be much smaller than
the focal length f , see Figure 3.9.

From the figure, one can deduct the following approximation for the deflection angle α:

tanα =
x

f
(3.34)

Due to the thin lens approximation it can be said that:

tanα =
x

f
=
L

R
(3.35)

where, L is the thickness of the magnet and R is the radius of the bending. In thin lens
approximation, L approaches the bending curve, since the bend is assumed to be so small,
thus 3.35 holds. Furthermore, substituting the bending radius with (q/p)By, yields:

L
q

p
By = −q

p
gxL = −xkL (3.36)

where, k is the same quadrupole strength as in 3.33 with g being the magnetic gradient, p
the particle momentum and q the particle charge. Equation (3.34) can be rearranged and
solved for the vertical (fy) and horizontal (fx) focusing lengths:

1

fx
= −kL, 1

fy
= kL (3.37)

which represents the quadrupole acting as an ideal lens in the thin lens approximation.

Figure 3.9: Thin lens approximation of a quadrupole. L is the thickness or length of the
quadrupole, R the radius of the deflection, x is the displacement before focusing and f is

the focal length.
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3.3 Transverse equations of motion

To begin with the derivations of the equations of motion, the notion of the reference frame
and derivatives definition needs to be expanded first (see Subsection 3.1.1 Transverse
Reference Frame). Using the definitions of the derivatives in Equation (3.2), it is now
possible to define the first derivative of the transverse displacement of the particle from
the reference orbit at a longitudinal position, s in both the horizontal and vertical plane
[23, p.17]:

x′ =
dx

ds
, y′ =

dy

ds
(3.38)

The reference orbit, or design orbit, represent an ideal path of the particle along the
accelerator. Due to disturbances and misalignments and inter particle interactions in a
beam, this reference orbit is never followed precisely, see Figure 3.10.

Figure 3.10: Transverse displacement along the reference orbit, at position s along the
direction of unit vector êx by a magnitude x. [23, p.17]

The first derivative of the transverse displacement from the reference orbit, x′, y′, is often
also called angular displacement due to their relation to the angles of the particle trajectory
displacement, αx, αy, in the horizontal and vertical planes, see Figure 3.11 [23, p.17].

Figure 3.11: Angular displacements x′, y′, represented as a projection to the horizontal
and vertical planes along the reference orbit, at position s. [23, p.17]

When the transverse displacement x, y are smaller than the bending curvature ρ (x, y � ρ

and x′, y′ � 1), α can be safely approximated to be αx,y ≈ tanαx,y. This is called paraxial
optics, which is a type of small angle approximation [27], also see Figure 3.12. With this
approximation, it is now possible to represent each particle by its horizontal and vertical
s-dependent transverse and angular displacement:
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3.3. Transverse equations of motion AAU

Figure 3.12: If the bending radius ρ is allowed to grow substantially, the transverse
displacement x becomes much smaller. Thus it can be assumed that in large, or flat
accelerators x, y � ρ and the angular displacement to be x′, y′ � 1. Only if x′, y′ are

much smaller than 1 can the angle αx,y for the angular displacement can be assumed to
be αx,y ≈ tanαx,y.

x =

[
x

x′

]
, y =

[
y

y′

]
(3.39)

where, vectors x,y are called trace space vectors, and they are defined in the transverse
trace spaces of the phase space planes created by (x, x′) and (y, y′), see left image of
Figure 3.13. [23, p.17]

Figure 3.13: Representation of particle motion in a phase space diagram (left) and real
space (right). The particle moves from the location 0 to L, while the transverse
displacement x increases by ∆X, but the angular displacement x′ is constant.

3.3.1 Transformations induced by drift spaces, dipoles and
quadrupoles

A drift space is a section of the accelerator where no magnetic fields are applied to the
moving particle, on Figure 3.10, where a drift space is present between each quadrupole
and dipole. Consequently, this implies that momentum of the particle (p =⇒ const)
and the angular displacement (x′ =⇒ const) is constant, which means that the angular
displacement at the entry point of the drift space, x′0, stays the same during the entirety
of the drift space until it exits with x′ [23, p.18]:

x′ = x′0, y′ = y′0 (3.40)
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However, as the particle travels, the transverse displacement x and y does change by the
distance traveled in the drift space length Ld and by the angular displacement, see right
image of Figure 3.15:

x = x0 + Ldx
′, y = y0 + Ldy

′, (3.41)

where, ∆x can be approximated by Ldx′ due to the paraxial optics discussed above in the
section.

Dipole magnets deflect each particle regardless of its angular or transverse displacement
(see Subsection 3.2.1 Dipole magnets) thus, its effect can be approximated to a drift space
and similar approximations can be made as in Equation (3.41) and Figure 3.14.

Figure 3.14: Sector dipole magnet bending without effect on the x and x′.

On the other hand, quadrupoles (in a thin lens approximation where Lquad << f), only the
angular displacement is affected, see left image of Figure 3.15. The angular effect is denoted
with ∆α = ∆x′ and it depends on the focal length fx,y and the position displacement:

x′ = x′0 −
x′0
fx
, y′ = y′0 −

y′0
fy
, fx = −fy (3.42)

where, fx is the horizontal focal length and fy is the vertical focal length. Consequently,
in quadrupoles the transverse displacement stays unchanged:

x = x0 y = y0. (3.43)

3.3.2 Matrix formalism

Based on the above, it can be assumed that the first two magnetic multipoles can be
described by a linear map, as the transverse and angular displacements are only affected
linearly [23, p.18]. Therefore, the effect on the trace space vectors, 3.39, can be represented
with a matrix multiplication for each plane:

x = Mxx0 y = Myy0 (3.44)

28



3.3. Transverse equations of motion AAU

Figure 3.15: Effects of a quadrupole and drift space on the angular and transverse
displacements [23, p.18]

This formalism is called the horizontal and vertical transfer matrix (Mx,y) of two beam
line elements. Which in turn means that it is now possible to represent a transfer matrix
for a drift space or a dipole:

Mdrift,x = Mdrift,y = Mdipole,x = Mdipole,y =

[
1 L

0 1

]
(3.45)

Subsequently, using Equation (3.42) matrix formalism can be constructed for a quadrupole
too (again, assuming thin lens approximation):

Mquad x =

[
1 0

n− 1
fx

1

]
, Mquad y =

[
1 0

− 1
fy

1

]
. (3.46)

With the matrix formalism of a drift space, dipole and quadrupole magnet, it is now
possible to describe the effects of a sequence of elements in any arbitrary accelerator. This
gives the transfer function of the incoming trace space vector x0 to any outgoing x in a
beamline. For Figure 3.10 where there are three quadrupoles, two dipoles and six drift
spaces, the matrix formalism is as follows:

x = Mdrift,6 ·Mquad,3 ·Mdrift,5 ·Mdip,2 ·Mdrift,4 ·Mquad,2 ·Mdrift,3 ·Mdip,1

·Mdrift,2 ·Mquad,2 ·Mdrift,1 · x0

(3.47)

this can be further reduced to:

Macc =
∏
i

Mi (3.48)

where the index i represents the individual elements, like drift or quad. [23, p.18]

3.3.3 Equations of motion

To be able to derive the final equations of motion, first, a transverse position vector of the
moving particle at coordinate s has to be defined:
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R(s) = [ρ+ x(s)] · êx(s) + y(s) · êy(s) (3.49)

where, the (x, y) are the transverse local coordinates, ρ the bending curvature and (êx,y(s))
are the transverse local coordinate unit vectors (see Figure 3.16). The position of the local
coordinate frame is also presented in Figure 3.2. Recall that, this frame traverses with the
particle, thus its orientation depends on the current location, s, around the accelerator.
[23, p.19]

Based on Figure 3.16 it is possible to define the unit vectors êx and ês using polar
coordinates in the horizontal plane:

êx =

(
cosϕ

sinϕ

)
, êϕ = −ês =

(
− sinϕ

cosϕ

)
(3.50)

Subsequently, if there’s in a change in s along the orbit, the local reference frame will
rotate by an angle ϕ as it moves with the particle on the orbit:

dϕ = −1

ρ
ds (3.51)

thus, the derivative of the unit vectors with bending radius ρ, in terms of longitudinal
displacement êx,y(s), can also be defined:

d

ds
êx = ê′x = +

1

ρ
ês,

d

ds
ês = ê′s = −1

ρ
êx (3.52)

Recall from Equation (3.2), that there are two derivative definition in this context, x′ for
the longitudinal coordinate and ẋ for the time derivative. It is possible to represent one
from the other:

d

dt
=

d

ds

ds

dt
= vs ·

d

ds
(3.53)

where vs represents the velocity of the particle along the reference orbit (which is
approximated to be the speed of light c). In words, this implies that as the particles
goes along the orbit with vs velocity, the longitudinal coordinate s changes with it. Since

Figure 3.16: Local Coordinates of the transverse movement of a charged particle. With
positive curvature: κ = 1

ρ > 0, and with negative curvature: κ = 1
ρ < 0. [23, p.19]
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it takes times to travel along the orbit with constant velocity vs, the displacement along
s changes in relation to time elapsed. This effectively implies that that s is a time-like
property as it has a strong relation to the distance travelled at speed vs.

Assumptions to reduce complexity for the derivation

The above derivations so far concerned a generic approach to circular accelerators.
However, it is possible to reduce to complexity in linear accelerators (or very large circular
accelerators) with the following assumptions [23, p.20]:

• The change orbit curvature is slow, thus it is possible to neglect ρ′ and ρ′′.
• The accelerator is "flat" and the orbit lies within the (x, s) plane only.
• Particles in the accelerator have individual velocities, but the longitudinal velocity

are constant ṡ = v => const

• The longitudinal velocity is much faster than the transverse velocity of the particles,
vs >> vx,z

• Paraxial optics takes effect, meaning the transverse displacement x, y is much
smaller than the bending radius ρ. Furthermore, transverse motion does not affect
longitudinal motion and vise-versa, which means all longitudinal components can be
neglected and assume: Rs = R′s = R′′s = 0.

Final derivation of the equations of motion

Based on the above listed assumptions the transverse position, Equation (3.49), vector can
be reduced to:

R = r · êx + y · êy (3.54)

where, r =⇒ r(s) = ρ+x(s) (see Figure 3.17). From here on, the s dependence is always
assumed, thus it is not explicitly stated anymore. The first derivative of 3.54 can now be
defined:

R′ = x′ · êx +
r

ρ
· ês + y′ · êy (3.55)

as well as the second derivative:

R′′ = (x′′ − r

ρ2
) · êx + y′′êy + 2

x′

ρ2
· ês (3.56)

Now, using the assumption that design orbit is flat, the ês term can be safely ignored,
since there is no transverse displacement along s if the orbit is flat.

To change the transverse position of a particle, R, it needs to be affected by the Lorentz
force, Equation (3.3):

dp

dt
= γrm0

d2R

dt2
= q(v ×B) (3.57)
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Figure 3.17: Orbit arc with radius r = ρ+ x, where a particle is moving with constant vs
velocity along the offset-orbit with a horizontal offset x. [23, p.20]

Notice, that the second derivative of the position vector shows up with respect to time.
Taking 3.53 and generalizing it based on geometric assumptions about the orbit, see
Figure 3.17, it is possible to redefine ds for a single particle:

ds = vs dt

(
ρ

ρ+ x

)
=

(
ρ

r

)
vs dt =⇒ d

dt
= vs

(
ρ

r

)
d

ds
(3.58)

which can be plugged into 3.56, to obtain:

R̈ = vs

(
ρ

r

)2

·R′′ (3.59)

where:

R′′ =

(
x′′ − r

ρ2

)
· êx + y′′ · êy (3.60)

Again, based on the above assumptions where vx � vs and vy � vs, the Lorentz force can
be expanded by solving the cross product v ×B:

q(v ×B) = q
[
−vsBy êx + vsBxêy +

(
Byvx −Bxvy

)
ês

]
(3.61)

which can be further simplified because of the assumption that ês = 0 and by factoring vs
out, into:

q(v ×B) ≈ qvs(−By êx +Bxêy). (3.62)

Now, substituting 3.59 into 3.57 one gets:

γrm0R̈ = q(v ×B) (3.63)

then, expanding on the right side, by plugging 3.62 in:

γrm0R̈ = qvs(−By êx +Bxêy) (3.64)
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Substituting, 3.59 into the above on the left side gives:

γrm0vs

(
ρ

r

)2

·R′′ = qvs(−By êx +Bxêy) (3.65)

Now the R′′ shows up, which was defined in 3.60, so further substituting yields:

γrm0vs

(
ρ

r

)2

·
(
x′′ − r

ρ2

)
· êx + y′′ · êy = qvs(−By êx +Bxêy) (3.66)

At this stage assuming that p = γrmvs (see Subsection 3.1.2 Lorentz Force and Magnetic
rigidity) yields:

p

(
ρ

r

)2

·
(
x′′ − r

ρ2

)
· êx + y′′ · êy = qvs(−By êx +Bxêy), (3.67)

and using Figure 3.17, where r = ρ+ x the left hand side denominator r becomes:

p

(
ρ

ρ+ x

)2

·
(
x′′ − r

ρ2

)
· êx + y′′ · êy = qvs(−By êx +Bxêy), (3.68)

Then, dividing both sides by p:

(
ρ

ρ+ x

)2

·
(
x′′ − r

ρ2

)
· êx + y′′ · êy =

q

p
vs(−By êx +Bxêy), (3.69)

and again dividing both sides by
(

ρ
ρ+x

)2
gives the equation:

(
x′′ − x+ ρ

ρ2

)
· êx + y′′ · êy =

q

p

(
x+ ρ

ρ

)2 (
−By êx +Bxêy

)
. (3.70)

Subsequently, using only the first two magnetic multipoles:

Bx = −p0

q
ky, By =

p0

q

(
1

ρ
− kx

)
(3.71)

where, 1/ρ and k are normalized to the reference momentum of the reference particle, p0.
Inserting 3.71 into 3.70 then yields:

(
x′′ − x+ ρ

ρ2

)
· êx + y′′ · êy =

q

p

(
x+ ρ

ρ

)2
−(p0

q

(
1

ρ
− kx

))
êx +

(
−p0

q
ky

)
êy

 .
(3.72)
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3. Modeling of Particle Motion

However, since in 3.70, p actually represents a non-reference particle, it is needed to
approximate the difference between the reference and non-reference particle: p0

p . This can
only be done if the momentum difference is assumed to be smaller, such as ∆p = p − p0.
This momentum difference is explained in relation to the focusing angle of a quadrupole,
see Subsection 3.2.2 Quadrupole magnets. [23, p.20]

Furthermore, it is needed to also approximate the difference in the reciprocal value 1
p as

well. This can be done with a first order Taylor-polynomial approximation evaluated at
p = p0:

1

p
≈ 1

p0
+ ∆p

∂(1/p)

∂p

∣∣∣∣
p=p0

=
1

p0

(
1− ∆p

p0

)
(3.73)

Plugging the above into 3.72 and solving for x′′ and y′′ then gives:

x′′ = x
ρ2

+ 1
ρ −

(
1− ∆p

p0

)(
1 + x

ρ

)2 (
1
ρ − kx

)
y′′ = −

(
1− ∆p

p0

)(
1 + x

ρ

)2
ky

(3.74)

Then, eliminating all non-linear terms, only using the lowest order elements and reordering,
gives the linearized equations of motion along the longitudinal coordinate s:

x′′(s) +

(
1

ρ2(s)
− k(s)

)
· x(s) =

1

ρ

∆p

p0

y′′(s) + k(s) · y(s) = 0

(3.75)

To reiterate the meaning of the terms, they are listed here once again:

1. x and y: Transverse displacement along the unit vectors êx, êy. These were defined
in Subsection 3.2.2 Quadrupole magnets.

2. x′′ and y′′: Second derivative of the transverse displacement. These terms
are first introduced when the transverse position vector R is differentiated, see
Subsection 3.3.3 Equations of motion.

3. ρ: Bending radius of a dipole magnet. This was first mentioned in Subsection 3.2.1
Dipole bending curvature. The bending radius ρ for a circular accelerator is the same
as the bending radius for a dipole magnet.

4. k: Quadrupole multipole strength. This variable defines the effect of a generated
magnetic field in a magnet onto the moving particle. This was first introduced in
Subsection 3.1.3 Multipole expansion of a magnetic field.

k = −qB0

p
(3.76)

5. p: Momentum of the particle. This first showed up in Subsection 3.1.2 Lorentz Force
and Magnetic rigidity.

p = mv (3.77)
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Chapter 4

Current Trajectory Control Methods
for the Electron Beam Line

The AWAKE electron line has been built to be a robust and configurable transfer line.
It allows for the testing of new controller designs and is often used as a testbed for new
control algorithms which are ultimately destined to be used at different accelerators at
the CERN complex. To provide a foundation for a new controller design, in this chapter,
four different state of the art controllers are going to be explained. First, a method which
uses Singular Value Decomposition (SVD) is introduced, then, a hidden cost function
minimization approach, a more recent deep reinforcement learning (deep-RL) controller,
and finally the newest concept, an iterative version of the Linear Quadratic Regulator
(LQR). But before that, the chapter begins with a description of the control problem and
how the performance of the systems can be measured and compared.

4.1 Trajectory Correction Control Problem

The control problem being tackled in this project is to control the trajectory of a particle
beam inside the AWAKE electron beamline. Physical description of the beamline was
introduced in Subsection 2.3.1 Electron RF gun and beam line and now the corresponding
control problem is introduced. In particle accelerators the trajectory control can be
represented as a multi-objective minimization problem (in order of importance):

1. Minimization of the transverse beam size.
2. Minimization of the beam emittance.
3. Minimization of the strength of the corrector magnets.

Note, that transverse dynamics was derived in Chapter 3 Modeling of Particle Motion and
from this point on, the concepts introduced in that chapter are going to be required for
understanding.

In the following paragraph, each of the objectives is described in more detail.

1) Minimization of the transverse electron beam size: The reduction of the
transverse beam size can be represented as a minimization of the transverse displacement
x and y. This minimization can be broken down into two sub-objectives:
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4. Current Trajectory Control Methods for the Electron Beam Line

1. Steer the beam towards the desired orbit and;
2. Focus the beam to minimize the beam spread.

Sub-objective 1) can be achieved by using corrector dipoles, wheres the beam spread is
reduced with quadrupole magnets instead. An example of beam size minimization is shown
in Figure 4.1.

Figure 4.1: Beam size reduction over subsequent minimization steps. The x− y axis
represents the transverse x− y displacement. [28]

2) Minimization of the beam emittance: Beam emittance is, in a sense, a function
of the transverse displacement. It describes the distribution of the particles inside the
beam in the phase space. The higher the beam emittance, the higher the displacement of
either x or y or both. It is a collection of parameters which form an ellipse in phase space.
An example is presented in Figure 4.2.

Figure 4.2: Phase space emittance. It is a collection of parameters that form an ellipse
with area A = πε. [22, p.219]

3) Minimization of the strength of the corrector magnets: Albeit not as
important as the other two minimization goals, reducing the required energy to correct
the beam is always needed. Generally, this is required to create a system where the beam
size and emittance is minimized with magnets which do not "compete" against each other
with higher and higher currents.
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4.2. Multi-objective Hidden Cost Function Minimization AAU

4.1.1 Orbit displacement comparison

If sufficient measurement devices are accessible in an accelerator, the x and y transverse
displacement against a reference orbit can be measured directly. This is done by:

xerror = xmeasured − xreference (4.1)

where, the goal is to minimize the xerror as fast as possible.

In the AWAKE electron beam line this does in fact provide a sufficient comparisons basis
between controller performances.

4.1.2 Root-Mean-Square-Error (RMSE) value of trajectory following
performance

Another common way of measuring the performance of control algorithms is to define the
RMSE difference between the design trajectory and the measured deviation. This can
apply for both of the planes, horizontal (X) and vertical (Y ), respectively:

XRMSE(n) =

√√√√ 1

m

m∑
i=1

(
BPMi(n)− BPMi,o

)2
or

YRMSE(n) =

√√√√ 1

m

m∑
i=1

(
BPMi(n)− BPMi,o

)2
(4.2)

where, n is the current iteration, BPMi is the Beam Position Measurement at the i − th

measurement device, and m being the number of elements to taken the average over. In
the following sections, this formalism is used to define the performance of the control
algorithms.

4.2 Multi-objective Hidden Cost Function Minimization

In [28], a multi-objective hidden cost function based feedback algorithm is introduced
to control the trajectory of the beam via BPMs while at the same time reducing beam
emittance. First, the beam trajectory minimization is done with a hidden cost function
approach, where an iterative model-independent feedback algorithm is applied. This
algorithm was designed for highly noisy systems where and analytical approach to a model
is either very difficult to derive or simply not possible achieve. The proposed algorithm is
as follows. Using a very noisy measurement Ĉ of the unknown cost function, C, one can
create a set of parameters pi which can be adjusted to minimize C:

pi(n+ 1) = pi(n) + ∆t
√
αωi cos

(
ωin∆t + kĈ(n)

)
(4.3)

where, ω is a unique dithering frequency, α is the dither size gain. k is the feedback gain.
Then by the setting the parameter ∆t, 4.3 is a difference approximation of:
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4. Current Trajectory Control Methods for the Electron Beam Line

dpi(t)

dt
=
√
αωi cos

(
ωit+ kĈ(p, t)

)
. (4.4)

This, then in turn results in a minimization of the initial cost function C. This approach
is dependent on the assumptions that the system follows an average dynamics:

dp

dt
= −kα

2
∇pC(p, t). (4.5)

The dual minimization approach is visualized on the model of the electron beam line, see
Figure 4.3. This approach showed promising results as the algorithm managed to achieve
convergence within 30 iterations. Results are shown in Figure 4.4.

Then, applying the same algorithm to three quadrupoles and two solenoids to control the
beam size as it comes out of the electron source, 4.3 was set the cost to the beam size:

σxy =
√
x2 + y2 (4.6)

Then combing the two, the authors solve the multi-objective optimization problem of:

minp∈P
{
f1(p, t), f2(p, t)

}
,

f1(p, t) = w1XRMSE(p, t), f2(p, t) = w2σxy(p, t)
(4.7)

where, p is the total 15 parameters adjusted by the algorithms.

Figure 4.3: Multi-objective optimization of the beam orbit and emittance. In this
approach there are two control loops acting on magnets. One is tasked with reducing the
beam size via the quadrupoles and solenoid magnets at the RF gun injection, whereas
the other one is tasked with keeping to the design orbit by change corrector magnet

currents. [28]
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4.3. Singular Value Decomposition (SVD) Based Approach AAU

Figure 4.4: Beam orbit deviation at the i-th BPM. In this paper, the orbit deviation is
measured in micro meters [mm]. [28]

4.3 Singular Value Decomposition (SVD) Based Approach

The SVD based approach to beam alignment proposes a very fast and efficient algorithm
in minimizing the RMS of the beam at each BPM. If an orbit response matrix (ORM) A,
is known about the accelerator one can solve the equation:

∆x = A · θ (4.8)

to compute the required m-th corrector strength, θ at the m-th BPM measurement ∆x,
and the orbit response matrix, A is defined as [21, p.87] [29]:

Ai,k =

√
βmβk

2 sin(µ/2)
cos
(
|φm − φk| − µ/2

)
. (4.9)

where, β, µ, φ are all Twiss parameters of the accelerator elements. At this stage in the
report, Twiss parameters are not described, because first particle modelling needs to be
introduced. This is done in Chapter 3 Modeling of Particle Motion and subsequently, Twiss
parameters are described in more detail in Chapter 8 Electron Beam Line Simulation and
Controller Testing. At this stage it is sufficient to understand that Twiss parameters are
properties of magnets in the accelerator and are used to define and measure the ORM.

The ORM describes the relation between the corrector currents applied and the BPMs
measurements. This matrix can be measured by individually applying currents to the
magnets and measuring their effect on the orbit displacement. At HERA, this was done
with more than 300 000 measurements [29]. In theory this method provides a deterministic
response of the accelerator to any beam with a well defined minimum and maximum
corrector currents. However, in practice, due to BPMs measurement issues and with
outside disturbances the ORM often does not give a precise representation. [29]

In cases where there are low number of correctors and BPMs devices, the ORM based
approach can be a very powerful, fast and robust way of correcting the beam orbit.
Therefore, (4.8), can be rearranged and solved for θ by inverting the ORM:

∆xA−1 = θ (4.10)
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4. Current Trajectory Control Methods for the Electron Beam Line

This matrix inversion can computed with well defined algorithms such as singular value
decomposition, where the ORM A can be decomposed into three matrices:

A = UΣV∗ (4.11)

where, U is an m×m complex unitary matrix, Σ is a m×m rectangular, diagonal matrix
and V is an n× n complex unitary matrix. The operator ∗ represent complex conjugate,
however, in this case transpose is sufficient, because the A matrix is not represented in the
complex plane. Therefore, if Σ is now shown as a diagonal matrix, one gets:

A = U ·


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .

0 0 . . . σn

 ·Vt (4.12)

where, the σ entries are the singular values. Therefore, the solution 4.10 can be expanded
to:

θ = A−1 ·∆x = V ·


1/σ1 0 . . . 0

0 1/σ2 . . . 0

0 . . . . . .

0 0 . . . 1/σn

 ·Ut ·∆x (4.13)

which is the unique solution to the required corrector currents θ for a given observation of
BPMs readings ∆x. Additionally, if in 4.12 one or more of the singular values are zero, the
decomposition might not have a solution. However, the general practice is to still solve the
SVD analytically and then to replace the corresponding 1/σ with a zero in 4.13. This way
a solution can be still found. This essentially means, that if the problem is represented
from the least-square sense, the following residual, r is minimized:

r = |A · θ −∆x| (4.14)

from which the solution to θ can be obtained. This also gives the minima for |θ2|, which
is the minima for the RMS strength of the correctors.

4.3.1 Feedforward controller

When examining 4.10 one can notice that the solution takes the form of a feedforward
controller:

y = Du (4.15)

where, y is the output of the system, which is the measurement ∆x, the feedforward matrix
D is the ORM of the accelerator A and the control input u is the corrector currents θ.
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4.4. Deep Reinforcement Learning (deep-RL) AAU

In practice, SVD is a good approach for fast and reliable computation for the corrector
currents, however, since the ORM is a deterministic approach to the model of the
accelerator, meaning the ORM always responds with the same output of the displacement
to a set current in any point of time. This implies that over longer periods of time, the
ORM based approach might not account for drift in magnets and outside disturbances
which did not exist at the time of the measurement.

Nonetheless, results show that the SVD approach can be used and on the AWAKE electron
beam line it can produce convergence without 3 iterations, see Figure 4.5.

Figure 4.5: Results of an SVD algorithm RMS correction on the AWAKE electron
beamline, where the algorithm corrects the RMS of the beamline to below 2 µm in three

iterations. [30]

4.4 Deep Reinforcement Learning (deep-RL)

Another proposed approach to the trajectory correction problem is to use Reinforcement
Learning (RL) with a deep neural network to estimate a non-linear system model. In
other words, the RL agent learns an optimal policy for the control problem. Reinforcement
Learning with an optimal control policy is analogous to classic optimal control, such as
LQR or MPC. [30]

The authors in [30], trained a sample efficient model-free RL model on the AWAKE electron
beam line to control the trajectory of the electron beam. The proposed setup of the
feedback controller is presented in Figure 4.6.

The expected reward, or Q-policy is calculated as such:

Qπ
(
s, a | θQ

)
= Eπ

N∑
k=0

γkri+k+1 | si = s, ai = a (4.16)

where, agent’s action is denoted as a assuming that it is performed in state s, the current
episode is denoted as π, N is the number of states from si = s until the very last state
γ. A discount factor is also included, r. Furthermore, θQ is the network parameters. A
corresponding value function is also defined:
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Figure 4.6: deep-RL feedback loop for the AWAKE trajectory correction problem. A
measured state is mapped to an action with an Artificial Neural Network (ANN). [30]

V π
(
s | θv

)
= Eπ

N∑
k=0

γkri+k+1 | si = s (4.17)

The value function measures the overall expected reward and it closely relates to the
Q-function.

In this paper the RL implementation uses a PER-NAF network show in Figure 4.7. It is
a neural network with the shown architecture, where the input layer on the left acquires
the state s followed by two hidden dense layers with 32 nodes, each.

The outputs of the system are:

µ
(
s, a | θµ

)
, P

(
s, a | θP

)
, V

(
s | θV

)
(4.18)

The further details of mathematics behind the RL agent is not described anymore in this
project. The paper can be found in [30].

4.4.1 Simulation Environment

The RL agent applied in this paper is ran in OpenAI Gym. [31] The simulation is written
in python and uses the OpenAI RL trainer to train the model and to test it. The AWAKE

Figure 4.7: The NAF architecture used in this paper. [30]
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parameters are parsed in from MAD-X which is a CERN specific simulation encoding where
all the accelerators are described numerically. MAD-X is further described in Section 8.1
Methodical Accelerator Design (MAD). This simulation was provided to this project as
a basis for the controller implementation. Therefore, a more in-dept explanation can be
found in Chapter 8 Electron Beam Line Simulation and Controller Testing.

4.4.2 Deployment to AWAKE and LINAC4

This RL agent in this paper was both deployed to AWAKE and to LINAC4 during the LS2
period to test out the performance of the algorithm. The results can be seen in Figure 4.8.

The model-free RL agent in the end proved to be a fast and reliable algorithm in correction
the trajectory of the beam in the AWAKE electron beamline. Further iterations of this
approach are expected to applied at CERN in the future for other accelerator control
problems.

4.5 Iterative LQR (iLQR)

The most recent state of the art controller continues the work of the deep-RL system.
In this approach the authors estimated the model of the system with an ANN from
Tensorflow2 and applied and iterative version of the LQR controller onto the ANN
produced non-linear plant. The proposed algorithm was then applied to the AWAKE
electron beamline. Unfortunately, at this point this cannot be sourced here, as the work
is still CERN internal and the material is hosted on internal networks only. It is foreseen
that in the future this research is formalized into a scientific paper.

The iterative LQR technique in this paper, is a method to apply the LQR infinite horizon
approach to a non-linear system. At each time step the algorithm would compute a new
feedback law and apply it around a linearized point. This approach is not widely document
in the control theory world, thus only source in this thesis is regarding biological movement
[32].

Figure 4.8: Results of a 35 iteration trained agent to correct the RMS of the beam to less
than 2 µm [30]

43



4. Current Trajectory Control Methods for the Electron Beam Line

4.6 Conclusion

In this chapter different controller designs have been presented. There are two approaches
which all of the controllers above follow:

1. the controllers are model-free
2. the controllers are feedforward controller without feedback.

Thus it can be concluded that a model-based feedback approach could be an option for
simpler transfer lines and LINACs.
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Chapter 5

Requirements, Limitations and
Control Objective

The state of the art analysis in Chapter 4 Current Trajectory Control Methods for the
Electron Beam Line showed that the current controller designs are either model-free, or
estimated with a deep neural network, or estimated to be using a generic system dynamic
model to minimize a hidden cost function. It has been widely stated in [30] and [28] that
model based approaches are difficult to achieve due to the complexity of the modeling.
However, at the time of the writing of this report, for the AWAKE electron beam line,
there were no clear attempts have yet been made with modern approaches, such as optimal
control.

Therefore, this project will attempt to derive a model for the AWAKE electron beam
line and design a sufficient controller which achieves bending correction for the beam
trajectory within the beam line. For this, a set of requirements are now stated along with
the limitations of this project. The specific control problem is also stated in words at the
end

5.1 Requirements

• Model a sample system of the AWAKE electron beam line.

– For a model based approach a model is going to created of the system based on
the particle modeling outlined in Chapter 3 Modeling of Particle Motion.

• Create a model based optimal controller with the objectives:

– Minimize the trajectory displacement to within less than 2 µm and;
– the beam size.

• Simulate the AWAKE electron beam line.

• Compare the controller performances to the results stated in the Chapter 4 Current
Trajectory Control Methods for the Electron Beam Line:

– SVD approach;
– deep-RL;
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5.2 Limitations

There are a variety of limitations to this project. These are now lasted in the following
subsections.

5.2.1 Lack of access to physical hardware

At the time of the writing of this thesis, the CERN complex had began emerging from
LS2, and beams are circulating in the systems again. This means that, the testing phase
has already finished and no new control system applications are implemented directly
onto accelerator hardware. Therefore, for this project only a simulation based approach is
viable.

5.2.2 Simulation was designed around the deep-RL paper

The simulation that was provided for this thesis was built specifically for the deep-RL
network, which was built inside an neural network testing framework. This means that
there is a need for a simulation rewrite. This issue is further discussed in Chapter 8 Electron
Beam Line Simulation and Controller Testing.

5.3 Control Objective

The objective of this thesis is to show that model-based control methods are capable at
controlling a simplified model of the AWAKE particle transfer line with corrector dipoles
for a given trajectory correction problem. This can be verified on the simulation provided
from the deep-RL paper, since it describes the beam optics of the transfer line. This is to
prove viability for further iterations for more complex model based approaches.
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Chapter 6

System Model and Discretization

In this chapter, a proposed system model for the electron beam line is introduced.
Assumptions about the system behaviour are also listed. Then the EOMs for the individual
components in the model are described. Afterwards, the system is setup into a state space
model which is subsequently, discretized. In the end the chapter proposes a controller
setup for the system, which is the modelled in the subsequent chapter.

6.1 Proposed AWAKE Electron Beam Line System Model

The AWAKE electron beam line was introduced in Subsection 2.3.1 Electron RF gun and
beam line. Now a simplified model is presented. As mentioned in Section 5.3 Control
Objective, the control objective is not right away control the entire AWAKE electron beam
line, but rather to prove that modern control techniques are a viable approach in the search
of advanced control paradigms for linear accelerators. Thus, a model is now proposed for
which the subsequent state space model is derived for, see Figure 6.1.

The flow of the system is approximately as follows:

1. The electrons exit from the RF gun into a vacuum tube, with initial conditions of
the displacement x(0) and x′′(0).

2. The system is corrected with the first corrector dipole at s = j.

3. BPMs measurement is performed, returning the measured state at s = j.

4. Particles then traverse a drift space where no actuation is present, that is no magnetic
fields are acting on the particle.

5. Another correction after the drift space is performed at s = j + ∆s.

6. That is subsequently measured again as the output of the particle displacement at
s = j + ∆s.

7. Steps 4-5-6 are repeated again.

Where, j is defined to be an initial location along s, and j + ∆s is the location along s at
the subsequent actuation and measurement location, see Figure 6.2.
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Figure 6.1: A simplified electron beam line, with three corrector dipoles, three BPMs and
three drift spaces. Note how the corrector and BPM are signified to be 0 m apart. This is
because the measurement is effectively performed at the actuation. This was discussed in

Subsection 2.3.1 Electron RF gun and beam line

Figure 6.2: Transverse coordinates of the transverse displacement at s1, s2 and s3. At
each location a magnet and BPM is assumed.

6.2 EOMs for Individual Drift Spaces, Dipoles and
Quadrupoles

To be able to model the system, the equations of motions defined in Equation (6.1) needs
to be simplified to individual contributing effects of the magnets. The EOMs with the
combined effect of dipoles and quadrupoles are presented here again:

x′′(s) +

(
1

ρ2(s)
− k(s)

)
· x(s) =

1

ρ

∆p

p0

y′′(s) + k(s) · y(s) = 0

(6.1)

As per the definition of the system model (see Section 6.1 Proposed AWAKE Electron Beam
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Line System Model), only corrector dipoles and drift spaces are considered, therefore, in
the following subsection only the drift space and dipole effects are derived for the EOMs.

6.2.1 EOM: Drift space

In a drift space, both the bending from the dipole 1
ρ = 0 and the k = 0 is set to zero which

yields:

x′′ = 0

y′′ = 0
(6.2)

This is the simplest case of the EOM. This is due to the fact, that the a particle passing
through drift space does not change its momentum and it is not bent or focused by
dipoles and quadrupole magnetic fields. This was further discussed in Subsection 3.3.1
Transformations induced by drift spaces, dipoles and quadrupoles.

6.2.2 EOM: Corrector dipole effects

In a system which is only affected by dipoles, the quadrupole strength to zero k = 0 must
be set to zero. By doing this in 6.1 then the equations of motion reduce to:

x′′(s) +
1

ρ2(s)
· x(s) =

1

ρ

∆p

p0

y′′(s) = 0

(6.3)

However, additionally, since there is no momentum change introduced by the dipoles, the
right hand side of the equation, ∆p

p0
, is also set to zero:

x′′(s) +
1

ρ2(s)
· x(s) = 0

y′′(s) = 0

(6.4)

Note that, 6.4 it appears that there are no possibilities for the control input. However, ρ
is not a constant, it depends on the magnetic field generated by the dipole magnet. It can
be expanded to:

1

ρ
= κ (6.5)

where, κ is the dipole strength:

κ =
q

p
B0 (6.6)

where, B0 is the magnetic field, which is excited by the current passing through a constant
number of coils:

B0 = µ0
nI

h
(6.7)
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Thus, the control input into the dipole affected EOM is the current, I. Furthermore, if
there are multiple dipoles in a system, the current depends on the longitudinal displacement
I(s). The whole derivation of the dipole strength can be found in Subsection 3.2.1 Dipole
magnets.

6.3 State Space Model

Now that the EOM for the individual magnet effects have been derived, it is now possible
to construct the state space model of a two dipole system, shown in Section 6.1 Proposed
AWAKE Electron Beam Line System Model. This means that the, the EOM has to in the
form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(6.8)

where, ẋ(t) is the next state of system based on the current state x at time t, the system
model is A and the input is defined as u(t). The B matrix maps the inputs to the correct
states. Furthermore y(t) is the output of the system, where C is the output matrix which
maps the states to y, and D is the feedforward matrix. Feedforward control was already
mentioned in Section 4.3 Singular Value Decomposition (SVD) Based Approach.

Recall the final equations of motion for a dipole are:

x′′(s) +
1

ρ2(s)
· x(s) = 0

y′′(s) = 0

(6.9)

Since 6.9, is a continuous, s dependent, second order ODE, to be able to write it up in a
state space form, it has to be converted into a first order ODE.

To being with, 6.9 can be rearranged by moving everything on the right hand side except
x(s)′′:

x′′(s) = − 1

ρ2(s)
· x(s) (6.10)

From Equation (6.6), it is known that 1/ρ is equal to κ which can be substituted into the
above, as such:

x′′(s) = −
(
qB0

p

)2

(s) · x(s) (6.11)

since, the momentum p and the charge q are constant and are independent of s, a helper

variable can be defined α =
(
q
p

)2
. Substituting α into 6.11:

x′′(s) = −αB2
0(s) · x(s) (6.12)
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6.3. State Space Model AAU

Furthermore, it also known that to control the dipole magnet and its angle of deflection,
B0 can modulated with a current input, I. Therefore, the input u(s) can now be defined
to be u(s) = B2

0(s). Plugging u(s) in gives:

x′′(s) = −αu(s) · x(s) (6.13)

At this point, two helper variables has to be defined:

z1(s) = x(s)

z2(s) = x′(s)
(6.14)

which can be represented in a column vector form with its derivative:

z(s) =

z1(s)

z2(s)

 , z′(s) =

z′1(s)

z′2(s)

 (6.15)

The helper variables z1, z2, can now be then substituted into 6.13:

z′2(s) = −αz1(s)u(s) (6.16)

However, this is not yet in the form of a state space equation because z2 does not appear on
the right hand side of the equation. This can be solved by introducing another equation:

z′1(s) = z2 (6.17)

and then placing it into a system of equation with 6.16:

z′1(s) = z2

z′2(s) = −αz1(s)u(s)
(6.18)

Then, by introducing matrices A and B in the form:

A =

[
0 1

0 0

]
, B =

[
0 0

−α 0

]
, (6.19)

it is possible to rewrite 6.18 into the state space formalism of 6.8:

[
z′1(s)

z′2(s)

]
=

[
0 1

0 0

][
z1(s)

z2(s)

]
+

[
0 0

−α 0

][
z1(s)

z2(s)

][
u1(s)

u2(s)

]
, (6.20)

which can be reduced to the compact state space form, with dependence on s:

z′(s) = Az(s) +Bz(s)u(s) (6.21)
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6.3.1 Remark on longitudinal dependence in state space formalism

By definition, state space representation is a form of first order differential equations as
a set of relations in terms of input, output and system variables. Generally, the systems
that are to be controller using state space representation are dependent on t as noted in
Equation (6.8).

However, since beam dynamics usually works with ultra-relativistic particles (see
Subsection 3.1.2 Lorentz Force and Magnetic rigidity) the time dependence is generally
replaced with a longitudinal time-like dependence on s. The relation between the change
in t and change in s, are dependent on the velocity of the particle (see Subsection 3.3.3
Equations of motion):

d

dt
=

d

ds

ds

dt
= vs ·

d

ds
(6.22)

Therefore, this allows the system to be represented in the continuous state space form.
However, as it is described in Section 6.4 Model Discretization this introduces some
problems to the system. The issues are described in that section.

6.3.2 System Linearity

It is important to note here that the system derived in 6.21 does not entirely hold the
linear state space model form, instead it takes the form of:

ẋ(t) = Ax(t) + (Bx(t) +B)u(t) (6.23)

which is the definition of a bilinear system. The bilinearity arises due to the interaction
between the state vector x and the system input matrix Bx(t) and B. This means
that to solve this control problem, linear controllers can only be used if the system is
linearized around a chosen operating point; or by non-linear controllers applied to the
bilinear problem. The choice of the controller is discussed in Chapter 7 Controller Design.

6.4 Model Discretization

Now that the continuous system state space system has been setup, it needs to be
discretized. This means that the system now needs to take the form:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(6.24)

This can be done with a variety of methods, such as the Euler method or the finite element
method. Since, the system model is a bilinear ordinary differential equation with a time-
like dependence, the Euler method suffices. There are two variations of the Euler method,
the forward and the backward, shown respectively:

yn+1 = yn + hf (yn, tn) , or yn = yn−1 + hf (yn, tn) , (6.25)
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6.4. Model Discretization AAU

In this case the forward Euler method is chosen as the discretization method. Note that,
the forward Euler method is a truncated Taylor series expansion of the first order, which
introduces an error at every step. This creates the local truncation error. However, as it was
shown before, the model is now in a first order form, therefore the choice of discretization
method holds. Then by taking the system of equations from 6.18, the Euler method can
be applied to each of the derivatives which gives:

z1(k + 1) = z2(k)h+ z1(k)

z2(k + 1) = −αz1(k)u(k)h+ z2(k)
(6.26)

Rearranging the second equation to:

z1(k + 1) = z2(k)h+ z1(k)

z2(k + 1) = z2(k)− αhz1(k)u(k),
(6.27)

then can be put into a state space form by introducing an identity matrix and the vector
h it is possible to write up:

[
z1(k + 1)

z2(k + 1)

]
=

[
0 1

0 0

][
z1(k)

z2(k)

][
h

h

]
+

[
1 0

0 1

][
z1(k)

z2(k)

]
+[

0 0

−α 0

][
h

h

][
z1(k)

z2(k)

][
u1(s)

u2(s)

]
,

(6.28)

By factoring out z on the right hand side of the equations, the above can be rewritten to:

[
z1(k + 1)

z2(k + 1)

]
=

[ 0 1

0 0

][
h

h

]
+

[
1 0

0 1

][ z1(k)

z2(k)

]
+

[
0 0

−α 0

][
h

h

][
z1(k)

z2(k)

][
u1(s)

u2(s)

]
,

(6.29)

The systems of equations can be put into a compact state space form:

z(k + 1) = (Ah + I) +Bhz(k)u(k) (6.30)

Then, by redefining A by incorporating h and I into the matrix yields:

A = (Ah + I) (6.31)

Then by plugging the redefined A into 6.30, and by taking the compact form of the matrices
the final discrete state space form is achieved for the dipole EOM:

z(k + 1) = Az(k) +Bhz(k)u(k) (6.32)
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6. System Model and Discretization

6.4.1 Issues with discretizing in space and time concurrently

So far two things has been assumed about the system for the discretization to work
mathematically:

1. The actuation and measurement devices are equally placed from each other. Meaning
that s2 = s1 + s1.

2. Furthermore, s is a time-like property that also signifies distance, therefore the
continuous state space model works, where t is substituted in with s, and the
derivative is solved with respect to s.

However, by revisiting and introducing an updated version of Figure 6.2, it is possible to
highlight the issue of the location, where prediction in discrete form k + 1 is situated, see
Figure 6.3.

Figure 6.3: Discrete transverse coordinates of the transverse displacement at s1, s2 and
s3. At each location a magnet and BPM is assumed.

The image shows that the k+ 1 estimate of the state space model is actually equal to the
measured state of the next dipole element. Recall that the physical definition of electron
beam line says that the measurement is at the exact place of actuation. In practice this
would mean, that to describe the system, z3 would need to be introduced as such:

z1(k + 1) = z2(k)h+ z1(k)

z2(k + 1) = z2(k)− αhz1(k)u(k),

z3(k + 1) = z2(k + 2)− αhz2(k)u(k)

(6.33)

This formalism does not follow the state space formalism described in Equation (6.24), as
this system would not be causal. Furthermore, by inspecting the the continuous form of
this equation one can notice that z3(k) and z3(k+ 1) would require the introduction of 3rd

order derivatives of x and in state space form, eventually a 4th order derivative too:

z1(s) = x(s)

z2(s) = x′(s)

z3(s) = x′′(s)

(6.34)
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6.5. State Measurement via BPMs AAU

Eventually this would mean numerical instability as derivatives increase due to the
truncating error of the forward Euler method. Due to these issues outlined, another
controller approach is presented in the following section.

6.4.2 Proposed new controller design

The proposed new controller design with assume that there is a controller at each magnet,
see Figure 6.4. This would mean that subsequent predicted states would actually be at
the same magnet location, effectively acting on the new particle that is going to arrive by
the next iteration. However, this approach would require a set of assumptions:

1. It is assumed that k is simply a time-like property without longitudinal displacement.
2. The subsequent particles in the beam would behave the same way for the magnet

actuation as the time ones at k.

Figure 6.4: The new proposed controller model would assume that there is a controller at
each of the magnets. This is possible since the actuation would not effect the current

particle, rather it would affect the subsequent particle coming through the vacuum tube..

Furthermore, this approach would allow for the following adjustments for optimization:

1. Different feedback gains, K, at each magnet. Since the magnets downstream of the
beamline would never see very high fluctuations and would rather be needed to make
very small corrections to the beam to maximize the steady state convergence to the
reference.

2. Individual models for the dipole error introduction. Currently, the magnets are
assumed to be uniformly the same. By using a different controller, this would allow
to introduce local adjustments against dipole bending errors.

The controller implementation is discussed in Chapter 7 Controller Design.

6.5 State Measurement via BPMs

Beam Position Monitors (BPMs) are designed to indirectly, and in a non-destructive way,
measure the location of the beam in the beam pipe. This is done by measuring the
electromagnetic fields produced by the particle passing through, see Figure 6.5.
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6. System Model and Discretization

Figure 6.5: An electrode Beam Position Monitor. Electrodes are placed at the sides of
the device, which can detect the magnetic fields produced by the magnets in the beam

pipe. [33]

The BPMs measurement for the transverse axes, x and y can be calculated in the following
way by using the delta-sigma, ∆Σ, method:

X = 1
Sx
× Vup−Vdown

Vup +Vdown
≡ 1

Sx
× ∆V2∑

V2

Y = 1
Sy
× Vright −Vleft

Vrig ht+Vleft
≡ 1

Sy
× ∆Vy∑

Vy

(6.35)

where, V is the potential, Sx,y are proportional constants called position sensitivity. This
project work is not further concerned with BPMs, since the provided simulation systems
can produce a numerical scalar and does not require an estimator. Further reading can be
found at [33].
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Chapter 7

Controller Design

In this chapter the control system design is presented. It begins with a short discussion
on the possibilities of optimal bilinear and non-linear control, which sets the basis for the
choice of controller. Afterwards, the chosen controller is described. Then, the controller
model is constructed.

7.1 Control of Bilinear Systems

Bilinear systems are a special class of nonlinear systems. The general definition of a bilinear
system takes the form:

x(k + 1) = Ax(k) +
∑(

Bx(k) +B
)
x(k). (7.1)

As stated in, Subsection 6.3.2 System Linearity, the system becomes bilinear because of the
interactions between B and x(k). There are several methods currently present to control
discrete bilinear systems. One of such is based on the Sum of Squares (SOS) and on the
quadratic Lyupanov function [34]. In this paper, the authors propose a direct optimal
controller for bilinear systems The objective is to minimize the cost function:

J(x, u) = x(k + 1)TQx(k + 1) + u(k)TRu(k) (7.2)

where, the Q and R matrices are weight on the state error and on the actuator input,
respectively. These matrices are further discussed in the chapter, below. The optimal full
state feedback law then becomes:

u(k) = −
[(
B(x) +B

)T
Q (Bx +B) +R

]−1
(Bx +B)T QAx(k) (7.3)

This controller is a promising approach, however, as the authors state in the paper, it does
not guarantee global stability. For that, a polynomial ratio of the controller is constructed
to maximize the region of convergence. [34]
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7. Controller Design

7.1.1 Non-linear Model Predictive Control

Other attempts were made to apply a non-linear Model Predictive Controller (non-linear
MPC) to the bilinear problems by guiding the non-linear parts of the bilinear system
towards the linear parts. [35] An MPC approach would also be applicable due to its
possibilities with input and output constraints. In the bilinear system of dipole magnets,
the input constraints could be characterized by the maximum and minimum current,
whereas the output constraints could create a maximum and minimum for the allowed
transverse displacement.

Non-linear MPCs have been widely used before, however, in this specific case due the
nature of the fast dynamics over this electron beam line, for the trajectory problem the
prediction finite horizon approach would not theoretically work.

7.1.2 Choice of controller

Even though solutions have been provided for the bilinear system, in this project, at first
an Linear Quadratic Regulator is attempted, this is based on the the assumptions outlined
Chapter 3 Modeling of Particle Motion, where the x(s) effect on the system is negligible
compared to the longitudinal components. As in, transverse displacement is measured in
micro-meters against longitudinal meters. Therefore, it can be assumed that the system
acts mostly linearly and a linear controller could suffice. This was briefly discussed in
Section 4.5 Iterative LQR (iLQR). This choice is also motivated by the approach of
having a different controller at each magnet.

Thus, to reduce complexity and to speed up computation a LQR is chosen as the controller.
In the following sections the LQR implementation is discussed.

7.2 Linear Quadratic Regulator (LQR)

LQR is a type of optimal control. It is concerned with finding an optimal state feedback
law through a quadratic minimization problem. Mainly, LQR works on linear differential
equations of motion in the form:

ẋ = Ax +Bu (7.4)

where, the control input u is defined as a multiplication between the feedback F and the
current state x:

u(k) = −Fx(k). (7.5)

By inputting 7.5 into 7.4 yields the whole dynamic system with full state feedback:

ẋ = (A−BF )x +BFxref (7.6)

A quadratic cost function is then setup which introduces two matrices, Q and R:
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L =
1

2
xTQx +

1

2
uTRu. (7.7)

By solving this cost function an optimal solution to the control problem can be found.
Additionally, the Q matrix allows manual input over the weight of the state errors, hence
the multiplication with x, whereas theRmatrix allows for manual input over the weights on
the actuator cost, hence the u. By tuning these matrices it is possible to find satisfactory
performance of the controller. However, there is no set mathematical model which can
automatically set the matrices, generally it is done by the current engineer.

The optimal solution can now be found by solving a discrete Algebraic Riccati equation
(DARE):

PAx+ATPx+Qx− PBR−1BTPx+ Ṗ = 0 (7.8)

which can be rewritten as:

PA+ATP +Q− PBR−1BTP = 0 (7.9)

then, this can be used to get the optimal infinite-horizon discrete LQR gain F:

F = (R+BTPB)−1(BTPA+NT ). (7.10)

The above equation then gives the full state feedback solution for u.

The LQR controller implementation can be summarized by:

1. Setup state space model and isolate A and B matrices
2. Define Q and R matrices
3. Solve for F by computing a solution to the DARE
4. Implement full state feedback for u(k)

7.3 Controller Model

As mentioned in Section 6.4 Model Discretization, the proposed controller model needs
to assume that the next state of the system appears at the exact same place, i.e: the
longitudinal displacement s is heavily assumed to be time-like. This allows for the
implementation of a controller onto each magnet. A set of further assumptions can be
defined to better specify the control problem:

1. Since the predicted states can be measured, a controller at each magnet is
appropriate.

2. Since there are no change in dynamics, as at this point only dipoles are actuated
and in the drift space the particles do not change momentum and stay at the same
velocity.

3. The horizontal and vertical states are decoupled.
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4. The bilinear x(k) has very little effect on the B matrix.

This way, the controller controls the particle displacement for the next iteration at each
magnet. This is shown in Figure 7.1.

The proposed feedback loop can be summarized in a list:

1. The trajectory reference is set as r = 0. This is always zero since thee controller goal
is to reduce deviation away from the center of the beamline as soon as possible. The
steady state error is desired to be zero.

2. The trajectory error is computed.

3. The optimal full state feedback law is applied.

4. The dipole corrector current is set.

5. The trajectory output is observed by a BPM directly after the actuation.

A single magnet controller model can now be introduced, see Figure 7.2.

Since it is assumed that the magnets are uniformly identical, the computational algorithm
of the controller would resolve to the following steps:

1. Compute full state feedback law −F .
2. Iterate magnets from 0 to n number of magnets.

• Apply feedback law at each iteration.
• Measure response at each iteration.

3. Repeat until beam in beam pipe. The algorithm must not quit if the steady state
reference is reached.

7.3.1 Initial conditions

The initial conditions for the system are the displaced particles arriving from the RF gun.
Since it is assumed that the states are decoupled only, the x(0) and x′′(0) has to be defined.
The implementation of the initial conditions are further discussed in Chapter 8 Electron
Beam Line Simulation and Controller Testing.

Figure 7.1: Controller Model for controller at magnet placed s = j.
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Figure 7.2: Controller Model for controller at magnet placed s = j.

7.3.2 Constants and final state space form

From Section 6.4 Model Discretization the constants can now be set for the controller.
Table (7.1) shows the values for each of the constants to be put into the model. Notice,
that the dipole magnet winding number is set to 1. As discussed in Subsection 3.2.1 Dipole
magnets. Furthermore, the Euler approximation time between the two states h is set to 1.
This is based on the assumptions outlined about the behaviour of k.

The constants then be substituted into α:

α =

[
q

p
µ0n

1

h

]2

≈ 2.230025e6 (7.11)

and with that the final state space form takes:

[
z1(k + 1)

z2(k + 1)

]
=

[ 0 1

0 0

][
1

1

]
+

[
1 0

0 1

][ z1(k)

z2(k)

]
+

[
0 0

−2.230025e6 0

][
1

1

][
z1(k)

z2(k)

][
u1(s)

u2(s)

]
,

(7.12)

Constant Value Unit

Charge q 1.602 176 62× 10−19 [C]
Vacuum permeability µ0 1.256 637 062 12× 10−6 [H/m]
Speed of light c 2.99× 108 [m/s]
Electron mass m 9.109 383 56× 10−31 [kg]
Dipole magnet winding number n 1 [-]
Dipole magnet distance between poles 0.05 [m]
Particle momentum p m · 0.99 · c [kg m/s]
Distance between magnets h 1 [m]

Table 7.1: Constants for the model of the system.

61





Chapter 8

Electron Beam Line Simulation and
Controller Testing

In this chapter the beam line simulation is presented. This simulation is written in
python and it heavily depends on the deep-RL simulation introduced in Section 4.4
Deep Reinforcement Learning (deep-RL). It interfaces to various CERN environments
and CERN specific software. These interfaces and dependencies are explained. Then, the
structure of the base simulation is shown. This was changed to allow for an implementation
of both the feed forward SVD, LQR and additionally a general P-controller. The specific
implementation is then presented. The controller testing is also contained in in this chapter.

8.1 Methodical Accelerator Design (MAD)

Methodical Accelerator Design (MAD) is a CERN built scripting language for accelerator
design. The current version MAD-X, is the successor of MAD-8 which was released in
2002. The new version includes specific upgrades exclusively to help the design of the
LHC. It is still currently maintained and it is the main tool for charged-particle optics
design of medium to very large accelerators. [36]

The AWAKE electron was also encoded in this language. A snippet is shown in Figure 8.4.

The file is broken up into columns. Each row in the column represents a different element

1 * NAME KEYWORD S L
2 $ %s %s %le %le
3 "TT43$START" "MARKER" 0.000000000 0.000000000
4 "BEGI.1000" "MARKER" 0.000000000 0.000000000
5 "DRIFT_0" "DRIFT" 0.179170000 0.179170000
6 "BPM.430028" "MONITOR" 0.179170000 0.000000000
7 "DRIFT_1" "DRIFT" 0.248570000 0.069400000
8 "MCAWA.430029" "KICKER" 0.289170000 0.040600000

Figure 8.1: MAD-X file scripting language example, with a DRIFT, KICKER and
MONITOR elements and their longitudinal displacement s and physical length L.

KICKER and MONITOR stands for the corrector dipole and the corresponding BPM.
An extended version of this example is utilized in the python simulation.
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in the particle accelerator. This above example models the AWAKE electron beam line
outlined Subsection 2.3.1 Electron RF gun and beam line. Each column represents a
different property of the elements. These properties are called Courant-Synder properties
of the elements such as magnets. They are often called Twiss parameters.

8.1.1 Twiss parameters

For this simulation environment, the Twiss parameters are used to compute the Orbit
Response Matrix. Recall the equation from Section 4.3 Singular Value Decomposition
(SVD) Based Approach:

Ai,k =

√
βmβk

2 sin(µ/2)
cos
(
|φm − φk| − µ/2

)
. (8.1)

The python implementation is shown in Figure 8.2. In this example the authors called the
ORM R, in other literature it is also customary to use that instead of A. Furthermore,
some of the variables are also with different symbols. This is also often the case with newer
implementations of older concepts, such as the ORM.

1 def calc_response_matrix(self, bpms: t.Sequence[TwissElement],
2 correctors: t.Sequence[TwissElement],
3 dtype: t.Optional[type] = None) -> np.ndarray:
4
5 rmatrix = np.zeros((len(bpms), len(correctors)), dtype=dtype)
6 for i, bpm in enumerate(bpms):
7 for j, corrector in enumerate(correctors):
8 beta_prod = bpm.beta * corrector.beta
9 mu_diff = bpm.mu - corrector.mu

10 rmatrix[i, j] = (
11 0.0
12 if mu_diff < 0.0
13 else (np.sqrt(beta_prod) * np.sin(2 * np.pi * mu_diff))
14 )
15 return rmatrix

Figure 8.2: Function showing the implementation of the ORM calculation in the python
simulation.

8.1.2 Twiss Reader

A Twiss reader class was originally designed to parse the MAD-X file into python. This
class provides functionality so that the ORM can be computed. Some of the main functions
provide a way to access any user desired MAD-X files, furthermore, in this class also
encodes a matrix based trajectory computation. This is the same formula outlined in
Subsection 3.3.2 Matrix formalism.

8.2 Base deep-RL Simulation Environment

The base that was used to develop the LQR simulation was based on the deep-RL python
simulation. This simulation was designed to train the RL agent to find the optimal control
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policy to correct the trajectory. The full algorithm was described in Section 4.4 Deep
Reinforcement Learning (deep-RL). It contains the Twiss reader module, which provides
access to the MAD-X file by parsing the requested Twiss Elements into the TwissElement
class.

The simulation was written in python and it is using the OpenAI.gym trainer to train the
agent and execute a test period on the parsed MAD-X simulation of the electron beam
line.

8.3 Simulation Modifications for LQR Implementation

The base simulation was strictly built around the RL agent. It had the form of an OpenAI
project, meaning that the algorithm implementation which iterates over magnets was not
present. This had to be added to the simulation so that it was possible to interface with
the. The following changes have been made:

• Introduction of a new class to handle different controllers
• Extrapolation of the ORM computation functions from the OpenAI simulation into

this class
• Introduction of a controller loop which iterates over the magnets.
• Implementation of functions which can input computed corrector currents into the

magnets
• The measurement is also computed using the ORM.

Controllers which are based on an iterative loop can now be implemented parallel to the
deep-RL algorithm, see Figure 8.3.

8.4 Controller Implementation

The LQR controller is implemented into the simulation using Scipy. It is an extensive set
of mathematical computation algorithms in a python library form. [37] Among others,
scipy provides functions to safely compute and invert matrices. This is of course required
to compute the DARE. In the simulation, a function was created to compute the feedback
gain F , the DARE X and the eigenvalues of the system. The function implementation can
be seen in Figure 8.4.

Figure 8.3: Simulation design expanding to use SVD and LQR parallel to deep-RL
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1 def dlqr(self, A, B, Q, R):
2
3 # first, try to solve the algebraic Ricatti equation
4 X = np.matrix(scipy.linalg.solve_discrete_are(A, B, Q, R))
5
6 # compute the LQR gain
7 K = np.matrix(scipy.linalg.inv(B.T * X * B + R) * (B.T * X * A))
8
9 # also compute the eigen values and vectors to inspect stability

10 eigen_values, eigen_vectors = scipy.linalg.eig(A - B * K)
11
12 return F, X, eigen_values

Figure 8.4: Python function to compute the optimal feedback gain, F

TheQ andRmatrices are also implemented using Scipy and will be manually tuned for best
performance. The control algorithm for each of the magnets can now be also implemented.
It is done using a for loop, which iterates until 10 steps. The BPM measurements are
returned as a vector containing x(k) for every magnet. Then, the error can be computed
between the reference of x = 0 and the current state x(k). The feedback gain is then
multiplied by the error. This implementation can be seen in Figure 8.5.

Effectively, this algorithm uses the feedback law to compute the control input for each of
the magnet within an iteration.

8.4.1 Initial Conditions

Since the beam is represented as an almost continuous line of particles inside the beam pipe
the initial conditions require special implementation. In this case, the initial conditions are
set as a semi-random corrector currents into the beam before the algorithm is applied to
it. This means, that before the control algorithm is applied, the beam is "disturbed" into
a random position. This random position is defined by the np.random.uniform function
from Numpy, see Figure 8.6.

1 F, X, eigVals = awake.dlqr(A, B, Q, R)
2 simul_lenght = 10
3 for iteration in range(0, simul_lenght):
4 bpms_measurements = awake.compute_observation(corrector_current=corrector_currents)
5 # z2 = z1'
6 # z2 = (z1_prev - z1_curr) / dt
7 # z[0] = z1_curr
8 # z[1] = z2
9

10 error = reference - bpms_measurements
11 corrector_currents = -F.item((1, 1)) * error

Figure 8.5: Control loop implementation
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1 def get_initial_conditions(self):
2 self.settings = np.asarray(
3 np.random.uniform(-1, 1, self.settings.shape),
4 np.float32,
5 )
6 return self.settings
7
8 # Main
9 # Setup the awake simulation class

10 plane = "H"
11 remove_singular_devices = True
12 awake = AwakeSimul(plane, remove_singular_devices)
13
14 # initial conditions which come from the "reset" function
15 corrector_currents = awake.get_initial_conditions()

Figure 8.6: Inputting the initial conditions

8.5 Controller Implementation Testing

To test whether the implementation worked, the simulation is ran was run the initial Q and
R, matrices are set to be two identity matrices. The initial conditions were also adjusted
so that the values do not fall out of the general 2 µm range.

At this stage it can be concluded that the LQR controller feedback loop has corrected
the beam within less than 2 µm in four iterations. The controller can further tuned by
changing the Q and R matrices to set a cost to the state error.

8.5.1 Controller Tuning

By iteratively tuning the Q and R matrices it can be concluded that the effects are barely
noticeable. A better tuned controller is shown in Figure 8.10.

Figure 8.7: LQR result in the vertical plane
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Figure 8.8: A better tuned Q and R matrix

The new values for the Q and R are as follows now:

Q =

[
1 0

0 0.001

]
, R =

[
1 0

0 100

]
, (8.2)

Only the bottom right values are changed since those are the ones affecting the input u
into the system, since the first state is not controllable directly. This is discussed in the
stability analysis in the next section.

8.5.2 Stability Analysis

The stability of the LQR can be measured by checking the poles of the system. In
Section 8.4 Controller Implementation it is shown that with Scipy the poles of the system
can also be acquired (in that example the values are called eigenvalues, however, the
numbers are a complex number when read). The resulting values show the following, see
Figure 8.9.

1 poles: [ 0.00000000e+00+0.j -5.34017424e-24+0.j]

Figure 8.9: Poles of the system

The first pole of the system is zero. This is understandable because the first state of the
system at each of the magnets is uncontrollable. For the second state the pole is zero,
meaning that it falls onto the left half plane and it is stable. Although, note that the
number is extremely small, it is multiplied by 10−24. The likely reason for this is very fast
response time.
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8.6 Controller Comparison

The tuned controller can now be compared against the SVD and P-controller
implementation in the same simulation, as well as recorded results for the deep-RL from
the paper [30].

8.6.1 SVD

The SVD algorithm was implemented into the simulation following the state of the art
analysis outlined in Section 4.3 Singular Value Decomposition (SVD) Based Approach.
The initial SVD results show the following; the SVD computation manages to stabilize the
beam in four iterations compared to the LQR, where with a tuned Q and R matrices, it
can do it in two to three iterations.

It is possible to conclude that SVD is a slower algorithm than the LQR, however, the
performance is worse but the implementation cost is much cheaper.

8.6.2 deep-RL

The deep-RL results come directly from the paper. This is because once the simulation was
modified it was detached from CERN’s internal networks and since strong dependencies
exist into internal packaging system, it does not work outside of the CERN network. The
results were already shown in Section 4.4 Deep Reinforcement Learning (deep-RL), but are
pasted here again, see Figure 8.11.

It can be concluded that the results are similar to the LQR implementation. It took
approximately three iterations of the algorithm to converge, which is similar to the tuned
LQR.

Figure 8.10: SVD implementation stabilizes the beam to zero steady state error in four
iterations.
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Figure 8.11: Results of a 35 iteration trained agent to correct the RMS of the beam to
less than 2 µm [30]

8.7 Conclusion on Controller Testing

Based on the simulations and the testing, it is possible to conclude that the LQR controller
managed to correct the beam trajectory towards the steady state at a similar performance
as the deep-RL algorithm. It outperformed the SVD algorithm by a slight margin too.
Thus, it is possible to also conclude that model-based algorithms are capable of correcting
beam trajectories in an environment where a sufficient model is difficult obtain.
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Chapter 9

Global Conclusion

This project dealt with model based optimal control of a CERN based experimental
particle accelerator electron transfer line. The work heavily revolved around state of the
art analysis, particle modelling and controller design.

At the beginning, the project outlines the fundamentals of CERN. Then the physical
structure of the AWAKE is described in detail with a special focus on the electron beam
line. Particle motion modeling then followed, which resulted in a set of linear second order
differential equations. The work also included modelling of magnetic fields which resulting
in the modelling of the magnet contributions to the particle motion.

State of the art analysis then revealed that, at the time of writing this report, there were
no clear model based controller attempts to solve the trajectory correction problem. The
analysis visited simple feedforward models to complex deep neural network approximated
non-linear system identification approaches utilized in the context of reinforcement
learning. Subsequently, based on this analysis, a set of requirements were defined along
with the specific control goal to guide the rest of the work.

A solution proposal is then presented and put into state space form, then discretized. A
controller proposal is then created using an LQR controller on the bilinear system. The
controller design then implemented a controller which was designed to be running on each
magnet. This allowed for the expansion of the simple model onto all corrector magnets of
the electron beam line.

The proposed controller algorithm was then simulated in a python simulation based on
the deep-RL environment. This simulation uses a parsed version of CERN’s scripting
languages which encodes the physical characteristics of the electron beam line. Using this
simulation, the LQR controller was implemented and the full state feedback was used to
compute magnet currents.

The LQR controller was successfully implemented in the simulation and results show
that the algorithm is capable at to correct the beam trajectory within three iterations
as the other state of the art controller. Finally, it can be concluded the model-based
approaches for beam trajectory correction are in-fact a viable approach and should be
further investigated in the future. A short section now follows with some ideas about
future work.
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9. Global Conclusion

9.1 Future Work

There is strong potential for future work on the model based approach. In this project,
beam focusing was not considered, only trajectory correction. Since the EOM are already
defined for the quadrupole action, it would be possible to augment the controller to
compute quadrupole magnet gains too.

Another possibility would be to simultaneously include the other axes into the
computation, as in, include the coupled y axes.

Furthermore, emittance based model based control could also be implemented, where the
state of the art approaches already include a time based approach instead of the time-like
longitudinal displacement dependence.

In the end, this thesis project proved that model based optimal control is a viable option
for control of beam trajectories in particle accelerators.
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