
High Concurrent R-tree Operations when Tracking Continuous
Movement in Main Memory

Cezar Chitac1, Robertas Kerpys1, Raluca Marcuta1, Simonas Šaltenis2

Department of Computer Science, Aalborg University

Denmark
1{cchita09, rkerpy10, rmarcu09}@student.aau.dk

2simas@cs.aau.dk

Abstract
There is a growing need to accurately track moving ob-
jects in a given area. In order to support efficient queries
on positions of tracked objects, a customized spatial data
structure is used. The application domain requires effi-
cient updates to be performed in order to maintain the re-
ported position of objects as fresh as possible. With the
evolution of main memory databases this goal becomes
easier to achieve. However, in order to take full advan-
tage of highly parallel modern CPUs, one must take into
consideration the issue of concurrency in such a system.
Being a fact that locking and, or latching greatly affect
the behavior of the system with regards to concurrency
between operations, the goal of the present paper is to in-
troduce a concurrency algorithm that avoids locking and
latching as much as possible. Based on this, two new
approaches are presented that ensure high concurrency
when structural modifications due to underfull and over-
full nodes are taken into account.

1 Introduction
Many applications and users today need to track ob-

jects subject to continuous movement. In order to achieve
this, objects need to send information about their where-
abouts on a regular basis. As more objects are tracked,
the system managing the update processes faces important
concurrency issues, since two or more objects may want
to access the same resource given by where their informa-
tion is stored. The direct logical solution is to use locking
and, or latching in order to ensure that updates maintain
the consistency of the structure that stores the positions
of the tracked objects [8, 9]. However, such an approach
is naive at best, as in many real life scenarios the system
must face a high rate of updates. Even in the case where
locking is not applied on the whole structure, a high up-
date rate introduces serious delays that translate in loss of

accuracy [1]. In addition, from a hardware point of view
ensuring concurrency is vital. Current trends show that
the speed of single-core CPUs is only marginally improv-
ing, while the focus is concentrated on adding more cores.
This leads to multiple threads that can execute at the same
time if concurrency is considered, increasing parallelism
and by extension the speed of the overall system.

For example let us consider the classic R-tree structure
[2], that this paper uses as a starting point. Locking and
latching would be performed either on the entire tree or on
subtrees. While the first case allows updates to perform
one by one, thus representing a serious bottleneck perfor-
mance wise, the second case allows to some degree two or
more updates to run at the same time. However this works
only for updates that do not perform on the same subtree
structure. To complicate matters even more, the system
must be able to answer queries as well. Conflicts that may
arise from queries and updates accessing the same infor-
mation, are generally solved in the same manner, further
decreasing the performance in real time.

It is in this context that we introduce a concurrency
algorithm that aims at minimizing locking and latching as
much as possible, since completely avoiding them is im-
possible. Two approaches are proposed in order to deal
with the problems that underfull and overfull nodes intro-
duce, without affecting performance. Both approaches are
theoretically described in detail, starting from the com-
mon semantics and ranging to in depth pseudo-code ex-
planations of each operation. In order to increase concur-
rency we formulate a series of assumptions drawn from
the application domain. We consider a minimum time be-
tween updates, as well as a maximum distance an object
can move between updates. This leads to the update pro-
cess being performed efficiently, in the sense that an ob-
ject that is not moving will not update as long as a cho-
sen distance is covered by its movement trajectory. The

first approach is based on an enhanced version of the R-
tree structure and improves the way splits and merges are
treated in a concurrent environment. A thorough anal-
ysis sustains the correctness of the approach, but in the
same time highlights the increased algorithmic complex-
ity that results from the low degree of locking/latching. A
totally new view is offered in the second approach, distin-
guishing it, to the best of our knowledge, from all other
related work. Elaborate heuristics are introduced to de-
crease complexity, by eliminating splits and merges, while
preserving the main focus of this research, that of concur-
rency.

The remaining part of the paper is structured as fol-
lows. Section 2 introduces the settings that the paper ad-
dresses and presents the semantics of the target domain.
Next an overview of the related work is given in Section 3.
Section 4 presents in detail the index structure used. Con-
currency of updates and queries is discussed in depth in
Section 5. Sections 6 and 7 contain the two proposed ap-
proaches. Finally we conclude and consider future work
in Section 8.

2 Preliminaries
We consider a set of moving objects in a two-

dimensional space. The rough goal is to make knowledge
about their positions accessible to different users and keep
the information up-to-date. The objects are uniquely iden-
tified through a field called oid and their positions are rep-
resented in the form of a pair of coordinates (x, y). The in-
formation gathered from the moving objects is organized
in an index structure, which is build in order to facilitate
concurrent read queries and updates of objects’ positions.

One of the assumptions is that the objects send updates
of their positions to a central server, on a regular basis.
The maximum speed in the system is known, vmax, and an
update timestamp, tu, signifying the last update time for
an object is retained in the index structure. The frequency
of the updates differs from one object to another and is
dependent on the object’s speed and a threshold, named
δ. A shared-prediction update policy is used, that guaran-
tees that at any time the reported object’s position is not
further away from the current real position of the object
by more than the threshold δ. In other words, whenever
an object moves away from the last reported position by δ
space units, it needs to send information about its current
position to the server.

As it results from the argument above, we can state
that the actual position of an object at the time of a query
is in an area given by a circle of maximum radius δ. A
range query returns all objects which are, at a chosen time,
in the range area given by the two opposite corner points
of a rectangle, lower left and upper right: (xlow, ylow) and
(xhigh, yhigh).

In order to ensure that no objects are overlooked be-
cause their last reported positions are not in the range but
the real ones are, the query range is enlarged by δ in all
directions. The query rectangle is approximately given by
the corner points: (xlow − δ, ylow − δ) and (xhigh + δ,
yhigh + δ). This way, the query range encloses objects
that may be in the original range. The following assump-
tion ensures that an enlargement by δ is sufficient:

Query execution time is shorter than the shortest in-
terval between two consecutive updates of an object (te−
ts < δ/vmax).

Updates of positions are allowed to take place during
a processing of a query which starts at ts and ends at te.
A query is based on the updates as of time ts plus some
of the fresh updates after ts that are encountered by the
query during the tree traversal. The retrieved positions are
then processed in order to construct an unified view of the
system’s state at a time of reference. We chose the time of
reference to be the moment the query starts, ts. The goal
is to return all objects that may have been in the original
query range at time ts.

A query encounters an object during its tree traversal
at a time t ≥ ts, and is able to construct based on the last
reported position of the object, the possible area where the
object may have been at ts. The intention is to roll back or
forward time to ts, depending on whether the last reported
position is as of a time following or preceding ts.

This is done using the information about the maxi-
mum speed of an object (which is the maximum speed
of the system) and the time of the last update, tu. The
possible area is a circle of radius min(vmax|ts − tu|, δ),
centered in the last reported position seen by the query. In
order to follow the may have been desired semantics, only
objects for which the intersection between their possible
position area and the query’s initial range without enlarge-
ment is not null are retrieved by the query. The semantics
can be easily changed to must have been by requiring the
possible area to be totally included into the original query
range.

Two cases are distinguished depending on whether the
query reads a position which was updated before a query
started or after. In Figure 1 the object’s last update hap-
pens before the query starts and reads the object. The last
reported position seen at time t is not in the original range
but the object moved since its last update and at time ts it
is covered by the range. The range enlargement allows us
to return and consider this object for the may have been
set. Since we are interested in the position at time ts, the
possible area where the object might have been is con-
structed, as explained above and it is marked by the gray
circle in the figure. From the not null intersection between
the circle and the initial range, we conclude that the object
belongs to the resulting set.

2

Figure 1: The positions of an object relative to the query
range during the running time of the query. Result is con-
structed by rolling time forward from last position report
(tu) to ts

The case in which the update of an object happens af-
ter the query starts and it is seen by the query during its
traversal, is illustrated in Figure 2. The object was in the
range at time ts but moved and reported its new position
which is not covered any more by the range. The new
position is enclosed in the enlargement since the object
could not have moved more than δ. As in the first case,
the possible area where the object might have been at ts
is constructed. The not null intersection with the unex-
panded range enables us to conclude that the object may
have been in the range at ts.

Figure 2: The positions of an object relative to the query
range during the running time of the query. Result is con-
structed by rolling time back from last position report (tu)
to ts

3 Related Work
A significant amount of research on concurrency in

R-trees accumulated during the past two decades. In this
section we review the most relevant work to which our
proposed methods relate.

Ng and Kameda [8] propose three traditional locking
algorithms on the R-tree index structure. The simplest
algorithm they consider is locking the entire tree which
during updates reduces the concurrency because exclusive
lock is acquired on the root of the tree. The second algo-
rithm Ng and Kameda introduce locks the whole tree only
during splits or merges, thus allowing to execute multiple
insert and delete operations as long as they do not rise any
underfulls or overfulls of the node. The third algorithm
uses lock-coupling protocol which locks individual nodes
instead of locking the entire tree. The lock is acquired on
a node by a search or an update operation and can only be

released when a lock on a child node is granted.
One of the first works which tries to reduce locking

is the paper of Kornacker and Banks [4]. Their approach
uses right-link pointers which connect sibling nodes in or-
der to compensate for structure modifications. A R-link
tree allows multiple update operations to execute concur-
rently and unfinished splits are caught by following the
right-link pointers. This proposed solution locks only one
node at a time in the case of search operations. However,
this method employs lock-coupling when splits are per-
formed.

A paper by Kornacker et al. [5] improves the R-link
tree approach by minimizing the required additional infor-
mation stored in the node and in each entry. They present
concurrency algorithms for a generalized tree structure
(GiST), which employs right-link pointers as the R-link
tree does. The algorithms can be applied on particular
tree structures as well.

Rastogi et al. [9] presents a different approach on
concurrent R-trees by employing logical and physical ver-
sioning. When update transactions update a data item, a
new version of that item is created. Thus multiple versions
of data items are retained in logical versioning and part
of the tree structure is copied and items are updated on
that structure in physical versioning. By using the afore-
mentioned methods, updates can traverse the tree with no
latching and searchers can perform lookups also without
obtaining latches. Since the method implies copying parts
of the tree structure involved in the modifications, these
parts are not minimal and cause significant overhead of
the algorithms. In contrast, our first method only copies
the necessary parts for modification i.e. a node.

Song et al. [10] summarizes research on concurrency
in R-trees and presents yet another approach on how to
boost performance in the multidimensional index struc-
tures. Authors propose the partial lock coupling tech-
nique, which employs lock coupling during updates of
MBRs (minimum bounding rectangles) only when the
MBR of a node is shrunk. Their algorithm tries to re-
duce locking during splits and holds exclusive locks only
during the physical node split time interval.

All the previously mentioned methods try to reduce
locking as much as possible, because such a technique
represents a bottleneck for concurrency in R-trees. Elim-
inating locking all together is not a realistic goal but it
is possible to further minimize it by making use of se-
mantics of the application domain. We investigate two
algorithms which employ minimal locking and take ad-
vantage of assumptions related to a system of moving ob-
jects. Partial locking is common for both proposed ap-
proaches in the case of shrinking a node’s MBR, as done
in [10]. The first algorithm permits execution of search
and update operations concurrently and without holding

3

additional locks during tree traversal. However, in the
case of split or merge of a node, latches are necessary to
ensure consistency of the data. Based on the outcome of
the first algorithm, another R-tree structure variant is pro-
posed, which does not employ the regular approaches of
splits or merges. The second method enhances concur-
rency further more, by eliminating the need of latching.
Both our algorithms are build upon the u-R-tree index
structure which was proposed by Šidlauskas et al. [11].
The u-R-tree is a modification of the R-tree which em-
ploys bottom-up update strategy proposed by Lee et al.
[7].

4 Index Structure
4.1 R-tree

During the past two decades the R-tree [2] index struc-
ture was a focus of research in spatial databases. The R-
tree index structure is a height-balanced data partitioning
tree similar to a B-tree. It has two type of nodes: internal
and leaf nodes. Internal nodes consist in the collection of
entries. Each entry stores the pointer to the child node and
the minimum bounding rectangle that spatially bounds the
child’s entries, called MBR, see Figure 3. Moving objects
are stored by oid and their coordinates, thus the index key
is formed using the coordinates. Every node has in addi-
tion metadata (number of entries, leaf flag). The R-tree
node structure is illustrated in Figure 3 (ignore the gray
elements for now).

Searching in the R-tree starts at the root level and per-
forms in a top-down manner. Due to overlapping MBRs,
several paths are possible. Update operations on the regu-
lar R-tree are separate delete and insert operations. During
the delete operation, the search function is issued to lo-
cate an object. The object is deleted and its corresponding
MBR in the ancestor node is adjusted to ensure its mini-
mality. Then, changes are propagated up the tree if nec-
essary. If the node becomes underfull an expensive rein-
sertion has to be performed. The insert operation searches
for the most suitable subtree where a new object should be
inserted. When a leaf node is found, the new object is in-
serted in the node. The changes involving the enlargement
of the MBR are propagated as well. A node can become
overfull, in which case the node is split in two new nodes.

4.2 Update Efficient R-tree

Since the ordinary R-tree index structure is not suit-
able for update intensive systems, our study uses the up-
date efficient R-tree (u-R-tree) [11]. Additional modifica-
tions are made to the u-R-tree in order to facilitate con-
currency between updates and updates on one hand, and
on the other hand, between updates and queries. As men-
tioned in Subsection 4.1 the R-tree index is formed of spa-
tial information i.e. coordinates of the objects. In order to

get information of the object, the top-down tree traversal,
starting from the root level, is performed. Since all the in-
formation is stored at the leaf level of the tree, this kind of
traversal is not efficient for update operations. To increase
update performance, the bottom-up approach of the R-tree
employs a secondary index on oid, see Table 1. It stores
a pointer to the node where object identified by oid, Pnew

reside and an offset idxnew. Using this secondary index,
an object on the leaf level is found without an expensive
top-down search.

This paper proposes extending the secondary index ta-
ble by adding two additional columns for pointer to the old
node, Pold, and offset in the old node, idxold, of the ob-
ject in the tree structure. The underlined fields in the sec-
ondary index table reflects our changes. Pnew is a pointer
to the node where most recent version of the object re-
sides, while Pold is a pointer to the node where slightly
outdated version of the object is. Offsets idxnew and idxold
determine at which place in the node objects reside. The
newly introduced Pold pointer and offset idxold in the sec-
ondary index structure is due to duplicate instances of the
object in the tree. As it is presented in Subsection 6.3,
these duplicates are due to the versioning of an object.

oid Pnew idxnew Pold idxold

Table 1: Secondary index

The regular u-R-tree structure differs from the R-tree
structure by the elements depicted in gray color in Figure
3. The underlined element, update stamp (tu), is added on
top of the u-R-tree structure, that indicates when the item
was modified. The backward pointer (parent ptr) together
with parent idx allows us to access the parent of the cor-
responding entry when the MBR changes need to be prop-
agated. A copy of the node’s MBR is added, which lets
us know if the MBR was invalidated without accessing the
parent node.
The update tuple for the u-R-tree consists in the object id
and new coordinates for that object (oid, xnew, ynew).

4

Figure 3: Structure of a u-R-tree node

5 Update and Query Algorithms
In the following we consider the interleaving between

queries and update operation without the complications
resulting from dealing with underfull and overfull nodes.
These structural modifications will be discussed later on,
as they make the object of the two approaches.

Common for both approaches is the distinction be-
tween two types of updates: local and non-local, and the
way concurrent queries interpret them. Local updates only
change value information regarding the position of the ob-
ject, without affecting the tree structure itself. A non-local
update on the other hand performs changes to the index
structure also, due to moving the object from one node to
another node. The decision to move an object to another
node in the tree is based on the desire to minimize the
penalty of MBR enlargement in order to decrease overlap-
ping between rectangles.

Local updates do not cause queries concurrent with
them to miss objects, a query can either see the consistent
old position or the consistent new position of an object,
depending on when the update occurs. This implies that
the local update is performed atomically either by latching
the corresponding entry for a small period of time or as a
hardware-facilitated atomic operation.

The problem is more complex in the case of non-local
updates. The main issue consists on how this move from
one node to the other is performed. Information regard-
ing an object must exist in the structure at all times, so the
insertion of the new position has to be performed before
the deletion of the old one. At the same time, we have to
make sure that the object is not missed by a query that al-
ready visited the node where the new position is inserted.
This is done at the cost of sometimes retrieving the old
position.

A non-local update proceeds first by inserting the new

position of the object that updated in a selected node.
Then its former position, from the old node, is marked
to indicate that the object has performed a non-local up-
date. This version becomes logically deleted and it must
be dealt with after ensuring that no query needs this infor-
mation. Returning to the previously mentioned assump-
tion, at most one update can occur between the start (ts)
and end time (te) of a query. Therefore these logically
deleted positions can be dealt with at the beginning of the
next update of each object. The process that handles this is
called garbage collection, and its purpose is to make avail-
able the space in memory that is no longer needed. Once
an object’s position is garbage collected, the position be-
comes physically deleted, meaning that the information
contained is no longer available.

Figure 4 presents the two types of updates, following
the movement of object p1 in its bounding rectangle R1

for the local case, and the relocation to another bound-
ing rectangle, R2, for the non-local update. In this latter
case, the reader can observe that in the interval after the
first non-local update of p1 and its second update, the po-
sitional information of the object exists in both rectangles.

Figure 4: Local and non-local updates of p1

In the following we show that it is safe to delete an
old position on the next update and that a query cannot
miss an object due to its movement to another node. A
query scans the leaf node entries in the index from left to
right. Let us consider the worse case, in which the new
position is inserted into a node to the left, already scanned
by the query. That implies that the non-local update hap-
pens during the running interval of the query, see Figure
5. A query will retrieve the old position. As stated before,
query running time is shorter than the interval between
two consecutive updates of an object. This assumption en-
sures that the old position cannot be physically removed
before the query ends, since another update cannot come
before te. If the insertion takes place into a node to the
right not yet scanned by the query, then the freshest posi-
tion is retrieved.

If a non-local update happens before ts, then it is pos-
sible that another update of the same object comes before

5

Figure 5: Available positions of an object that performs a
non-local update during a query

te and physically removes the marked old position. In this
case the new position is available for reading during the
entire running time of the query, as it can be seen in Fig-
ure 6.

Figure 6: Available positions of an object that performs a
non-local update before a query starts

A more accurate assumption takes into consideration
the update execution time, in order to show the impossibil-
ity of the following case. A query starts just before a non-
local update finishes its execution, leaving two copies of
the object in the system. The query passes the node where
the new version is inserted before the update finishes. If
the update execution time lasts long enough, another up-
date for the same object deletes the logically marked old
version. To ensure the impossibility for the query to miss
both versions of an object, an extension is introduced to
the previous assumption:

Query execution time plus update execution time is
shorter than the interval between two consecutive updates
of an object.

Since an object may exist twice in the structure, for
a short interval of time between two updates, the algo-
rithms must ensure that the freshest position of the object
is considered, if it is possible. A query can identify if the
position it reads is new or old based on the time of update
(tu). An object has a negative tu if its position is old, and
positive otherwise. An update sets tu, and whenever it is
non-local it generates two instances of the same object,
but with tus having different signs.

At this point the distinction between the two types of
updates, local or non-local, and the mechanism of ensur-
ing that queries do not miss an object because of its migra-

tion to another node are established. The next subsection
describes the common steps that are followed during an
update of on object.

5.1 Overview of Update Process

When an object sends information on its new position,
a bottom-up update process starts, presented in Figure 7.
A look-up is performed in the hash-table using the oid
of the object, which returns the two pointers Pnew and
Pold. If the object exists in two leaf nodes of the index
structure, Pold 6= Nil, it means that the last update of
the object was of type non-local and that the old location
should be physically deleted. At this point, changes may
have to be performed to theMBR of the node, which may
propagate upwards through the parent pointers. Structural
modifications need to take place in case the node becomes
underfull. In the first approach, the MergeNode function
is called on the leaf-node in order to merge it with a cho-
sen sibling, process explained in more detail in subsection
6.5. The second approach deals with an underfull node
differently, by avoiding movement of the objects in the
time between their updates. Forced non-local updates are
used to repopulate the node or to eliminate it, as it is pre-
sented in subsection 7.4.

The next step is to identify the type of update, local or
non-local, using heuristics. In order to process the update,
three parameters are passed to the update functions: the
object identifier, oid, and the new position coordinates,
xnew and ynew. A local update in the first approach sim-
ply modifies the position of the object and the MBRs if
necessary. This is done also in the second approach, ex-
cept in the case of leaf overfull with simulation of split in
process. Then the update must undergo special treatment,
because the node is evacuating objects in order to repair
its state. This is done by treating the local update as a non-
local one, placing the object in another node, previously
created when the evacuating process was initiated. The
object’s position is updated in the new node and logically
deleted in the old one. The MBR changes are performed
and propagated for the new location.

The non-local update process is more complex, be-
cause it has to ensure that no readers miss an object due
to its change of location in the index structure. This is
accomplished by keeping the old position in the struc-
ture, along with the new one until a new update of the
object. However, concurrency control between reads and
updates when no overfull nodes are encountered, does not
suffice. A non-local update may cause a node split, which
implies the need to manage concurrent updates and reads
that work on the node in question. This is particular to
each approach and will be presented in the dedicated fol-
lowing sections.

A candidate node in which to insert the new position

6

is found through a top-down traversal of the index, using
different heuristics corresponding to each approach. If the
insertion causes the split of the node, then the function
SplitNode deals with this case for approach 1, by creating
a separate working copy for a part of the index structure,
details explained in subsection 6.4. The second approach
simulates the split by starting an evacuation process for
the node. The ”split” process proceeds by causing other
objects to be placed in the new node on their upcoming
updates, until the node reaches a non-overfull state, see
subsection 7.3.

If the candidate node has enough space, then the up-
date can proceed with the insertion of a new entry, corre-
sponding to the new position, xnew and ynew. Pointers in
the hash-table,MBRs and the update timestamps need to
be actualized when the update is finalized in order to mark
the old location of the object logically deleted and make
the new one visible to other operations. This step is also
included in the split phases of each approach.

Figure 7: Overview of the update process

5.2 Queries

The search algorithm, proposed by Guttman [2], was
modified in order to ensure that no objects get overlooked
by a reader, due to the structural modifications that may
take place in the interval a query scans the index tree.

The search remains a top-down traversal, starting from the
root of the tree and visiting the nodes for which the MBR
overlaps with the query’s range rectangle. Algorithm 1
presents the main steps that can be distinguished during
the traversal. As a parameter set it accepts a node where
to start the search, N , and an expanded by δ query range,
Rec.

When at leaf level, the algorithm scans the entries
of a node one by one, line 6 to 14. As argued in Sec-
tion 2, a filtering of the results has to be done because
the enlarged query range may return additional objects
that could not have been in the query range at the time
ts. Results are filtered by constructing a circle of radius
min(vmax|ts − tu|, δ), which is centered at the last re-
ported position of the object. This possible area were the
object may have been at ts is intersected with the query’s
unexpanded range and the object is considered only if the
intersection is not null, line 8 and 9.

A non-local update, leaves the tree structure with two
variants of the object: the new version and the slightly out-
dated version. So, in order to distinguish between these
two, a check for logical deletion is performed. An object
is logically deleted when its tu < 0 and it is retrieved
by the query only if its update stamp is greater than the
query start time, |tu| > ts. This means that the object
suffered an update during the query running interval and
it is preferable for the query to consider this slightly out-
dated version, and not risk missing the object all together
by searching for the newer version.

Algorithm 1: Search(node:N, rectangle:Rec)

1 if N is not a leaf then // internal node
2 foreach entry:e in the internal node do
3 if e.MBR ∩ Rec 6= ∅ then
4 invoke Search on the child node pointed

by e.child ptr;

5 else// leaf node
6 foreach entry:e in the leaf node do
7 if e.MBR ∩ Rec 6= ∅ then
8 construct a circle of radius min(vmax|ts -

e.tu|, δ), centered at (e.x, e.y);
9 if circle ∩ (Rec− δ) 6= ∅ then

10 if e.tu < 0 then
11 if |e.tu| > query.ts then
12 consider the e;

13 else
14 consider the e;

15 consider the freshest entries in the result set if
they are duplicated;

7

5.3 MBR Updates

A very frequent operation that is important, in the
sense that it can become a bottleneck as we get to higher
levels in the tree, is that of MBR update. In order to not
affect performance drastically the update can be done ei-
ther atomically or by minimal latching for the time of the
update. While the first option requires that the MBR is
no bigger than one word, the second one gives more free-
dom to the data types but introduces a small delay. An
informed decision can be taken by experiment results, so
that concurrency is least affected.

A more complex issue is that of propagating the
change of an MBR up the tree. Eliminating latches and
locking totally can lead to lack of integrity of the structure,
as shown in [10]. The authors present an example to show
how concurrent shrinking and enlargement of the MBRs
of two children can translate in loss of the integrity of the
parent MBR. For this reason, we chose to employ the par-
tial lock coupling method, proposed in [10]. The method
consists in acquiring shared-latches in case of MBR en-
largements and using lock coupling in case of shrinking.
This means that the exclusive-lock on the child is not re-
leased until an exclusive-lock on the parent is obtained.
In case a node is full an exclusive-latch is used instead of
the shared-latch in order to preserve consistency and not
allow a split to occur.

Thus, the update of the MBR itself is done atomically
or by minimal latching while the propagation is dealt with
by using partial lock coupling. The locking and latching is
minimal and cannot be further minimized, without losing
consistency, as argued above. Concurrency is therefore
minimally affected, only to the extent needed to ensure
integrity of data.

Next Sections 6 and 7 focus on maintaining consis-
tency when queries and updates are concurrent with node
splits and merges, following two distinct approaches.

6 First Approach: Split-Supporting Index
In the following section we present our first algorithm

for high-concurrent R-tree operations. In comparison with
the R-link [4] tree our approach differs in various ways.
The biggest difference is the locking mechanism. The R-
link tree allows concurrent search and update operations
as well as the presented method but the locking involved
in these operations is different. While R-link tree employs
shared locks on nodes when a search operation is exe-
cuted, our approach executes a search operation without
locking or latching. This can be done because we make
use of the moving objects domain knowledge. Since R-
link tree uses lock-coupling during insert operations and
applies exclusive locks on a parent and a child, search op-
erations cannot acquire shared locks on these nodes. In
our case during update operations we do not acquire any

locks or latches as long as the nodes are not split. Fur-
thermore the exclusive latch on a node, in our aproach, is
between updates only, because search operations do not
acquire a shared latch.

6.1 Main Idea

Structural inconsistencies can result from a node being
overfull or underfull. The first case can appear when a
non-local update tries to insert an object in a node that
is full. In this case the algorithm performs a node split,
creating on the side the minimal substructure that reflects
the structural modifications caused by the insertion. Upon
completion, the substructure is integrated in the structure
using atomic operations [3].

The second case can appear once an object is physi-
cally deleted and the number of remaining objects in the
node is less than the selected minimum number of objects
in a node. The algorithm performs in this case a merge,
copying entries to one of the neighbouring nodes.

Updates can perform concurrently as long as two dis-
tinct non-local updates do not try to split the same node,
in which case, one update is blocked and retried later. The
latching is minimal and only used in node splitting and
merging.

The u-R-tree leaf level node structure is augmented
with an additional element - a latch which is used for con-
currency control. Modifications can be seen in Figure 8.

Figure 8: Structure modifications of a u-R-tree node

6.2 Local Update

A local update only requires to overwrite the old po-
sition of the object, given by x and y, with the newly
acquired coordinates and then propagate the changes to
MBRs upwards. The position of the object in the tree is
not modified, therefore local updates can run concurrently
without causing any problems. Local updates differ from
non-local ones in the sense that they involve just altering
information related to the object itself, while non-local up-
dates alter the way objects are stored as well.

6.3 Non-local Update

When an object updates and its new position would re-
quire the minimum bounding rectangle (MBR) to increase
by more than ε, the update is considered to be a non-local
update, as done in [6, 7]. The algorithm then performs

8

a top-down traversal in a breadth-first-search approach to
find the best MBR where to insert the object, line 1 in Al-
gorithm 2. This is done by reading nodes starting with
the root and selecting on each level the MBR that would
require the least enlargement in order to bound the object.

When the object with minimal penalty of the MBR is
found, a check is performed to see if the node is involved
in a split, line 3. If this is the case, then the update is put
in a priority queue and retried later. Algorithm 2 inserts
the object if the node is not full. After inserting, it logi-
cally deletes the old version of the object. This is done by
setting the time of update tu of the old position to the time
the update started, with negative sign and setting Pold to
point to the old node and Pnew to point to the node where
the object was inserted and recomputing object’s offset
values idxnew and idxold respectively, lines 8 to 10. A
query cannot miss an object since at any moment of time
at least one position of the object is available. It will see
either both copies of the object or at least one. The logical
deletion of an object means that the object is marked for
garbage collection. If the node where to insert is full, then
the NodeSplit function is called (see Subsection 6.4).

Algorithm 2: NonLocalUpdate(entry:enew)

1 find leaf node, LN , where to insert a new entry with
object’s updated position;

2 obj := object with id enew.oid;
3 if LN.latch = ON then
4 enqueue update in Qpriority ;
5 return;
6 if LN 6= full then
7 add enew in node LN ;
8 set old-entry.tu to −currentTime, using obj.Pnew

and obj.idxnew;
9 set obj.Pold in hash-table to obj.Pnew and offsets

respectively;
10 set obj.Pnew to point to LN and obj.idxnew to

location of enew in LN ;
11 propagateChangesMBR();
12 return;
13 if LN == full then
14 NodeSplit(LN, Nil, Nil, enew);

6.4 Node Split

6.4.1 Overview

A node becomes full when it stores the maximum
number of objects that it can store. When an update wants
to insert a new object in a full node, the NodeSplit func-
tion is called. The function’s purpose is to produce two
nodes, each with at least the minimum number of objects,

and considering the R-tree heuristics for minimizing the
resulting rectangles’ areas. Figure 9 illustrates the split of
rectangle N1 determined by the non-local update of point
p1.

Figure 9: Split of R2 due to the non-local update of p1

Structural modifications of the index in aforemen-
tioned case are reflected in Figure 10. First of all the
algorithm ensures that no other update of type non-local
can come for objects which are involved in the split by
latching the node (node is greyed in Figure 10 (a)). When
this preliminary step is finished the two new nodes (N1′

and N3) are constructed on the side of the index. Objects
from node being split are copied and distributed between
the two new nodes and object that caused the split (p1) is
inserted into N3. When nodes N1′ and N3 are ready they
are introduced into main index in two atomic operations.
This is done by first inserting node containing the object
that caused the split, N3. Then a swap is performed to
change the pointer from R1 that was full, to point to N1′

as seen in Figure 10 (b).
A more detailed explanatory walk-through of a node

split is given bellow, taking into consideration the cases
that can appear and the way the algorithm handles them.

6.4.2 Split

Function NodeSplit takes as parameters the node being
split, two nodes that were constructed in previous iteration
(Nil if NodeSplit is called for the first time), and the object
that caused the split. First of all Algorithm 3 blocks other
updates of objects from the node being split in order to
avoid conflicts with other updates of objects from the node
in question. This is done by setting the bit appointed for
latching for all of the leaf level nodes involved in the split.
This is reflected in pseudo-code in lines 2 and 5. If latches
on the leaf level nodes could not be acquired the update is
enqueued in Qpriority and retried later.

After this preliminary step is finished function Node-
Split creates two substructures by dividing the full node in
two nodes of minimal area, line 10. The two substructures
are created separately. Sub-trees from the splitting node
are copied into the two new nodes, line 11. If NodeSplit
function is called not for the first time the two nodes from
the previous iteration are inserted into the newly created
substructures, lines 13 to 15.

9

(a) before insertion of p1 (b) after insertion of p1

Figure 10: Split of the node N1

When the new substructures are completed the algo-
rithm introduces them in the tree structure by performing
two atomic operations. This is done by first inserting the
group containing the object that caused the split, line 29.
Then a swap is performed to change the pointer from the
MBR that was full to point to the second group of ob-
jects, line 30. But before this step could be completed
Algorithm 3 checks in the hash table if any of the objects
involved in the split are logically deleted, in order to deal
with intermediate positions. An object is logically deleted
if its old pointer is not Nil (Pold 6=Nil), line 19. Two cases
are distinguished here: an object that is logically deleted
can have its old position in the node (lines 24 to 25), or its
new position in the node (lines 21 to 22). A node split cre-
ates a new position for each object involved, therefore in
the case of objects that are logically deleted the algorithm
stores the pointer to the position involved in the split in
an auxiliary variable. The purpose of this, is to be able to
perform the physical deletion for these intermediate posi-
tions, once the node split is over, since at that point these
objects have three copies and the auxiliary information is
redundant. Physical deletion for the objects that were not
logically deleted before the split is not performed right
away, but on the next update of each object, thus the al-
gorithm marks these objects as logically deleted, line 26.
This is safe to do due to the assumption that query exe-
cution time plus update execution time is shorter than the
shortest interval between two consecutive updates of an
object. Performing physical deletion right away can cause
an object miss for a concurrent query, since it acts simi-
lar to a new non-local update of the object. The old node
dies slowly with the physical deletion of each entry and
it deletes itself with the last entry. Note that the objects
involved in the split are available to new local updates as
soon as the node split creates their new positions in the
tree structures and modifies their new pointers and offset
values. Physical deletion is performed for each of these
objects at the beginning of their next update.

A query is able to see at least one copy of each object.
This is because the algorithm inserts the new substructures
using atomic operations, starting with the one containing

the object that caused the split, in order to make available
the freshest position of that object to queries. A query has
a top-down breadth-first-search, and satisfies the assump-
tion that it finishes between two consecutive updates of
the same object. Therefore it will see the objects involved
in the split either in their old position, if it reaches the
node while the NodeSplit is running, or the new position,
in case it reaches the node after the node split finished.

Local updates are allowed to happen during node
splits. An object involved in a split is locally updated
once in the full node, when the update comes, and one
more time in the node resulting from the split. This is
done by the object’s own update that sees that the object
is involved in a split, by reading the node latch. The old
version of the object, the one before the split, is updated
right away. After, the update waits until Pnew is updated
to P ′

new, and then performs the local update, for the sec-
ond time, on the new version of the object, thus maintain-
ing informational integrity.

6.4.3 Propagating Split

When performing the two atomic operations to in-
clude the newly created substructure one particular case
scenario distinguishes itself. The algorithm first tries to
insert in the parent node the group of objects containing
the object that caused the split. The situation in which the
parent node is also full can appear, line 16. In this case
there is no space for new item in the parent node. The
algorithm will perform recursively, line 17. First it will
block in the same manner all objects involved in the new
node split by calling TraverseAndSet function which re-
cursively traverses an internal node and sets latches to all
leaf level children. The substructure grows on the side,
and will be included in the tree structure by two atomic
operation performed at the highest level to where the prop-
agating split takes it. The way the algorithm handles a
node split is similar to creating a copy of the substruc-
ture involved and performing the update operations on this
substructure [1, 9]. However the present algorithm creates
a step by step minimal substructure, at each step block-
ing only the minimal number of updates that would create

10

Algorithm 3: NodeSplit(node:N, node:L, node:R,
entry:enew)

1 if N == leaf node then
2 if TestAndSet(N) == false then
3 enqueue update into Qpriority;

4 else
5 TraverseAndSet(N,list,latched);
6 if latched == false then
7 RemoveLatches(list);
8 enqueue update into Qpriority;
9 return;

10 create two new nodes: NL and NR;
11 copy entries from N to NL and NR without L and R ;
12 add entry enew to NR;
13 if L 6= Nil AND R 6= Nil then
14 install entry for L into NL;
15 install entry for R into NR;

16 if N.parent == full then
17 NodeSplit(N.parent, NL, NR, enew);
18 else
19 foreach entry: e in leaves of subtrees rooted in

NR and NL where Pold 6= Nil do
20 if e.tu > 0 then
21 garbage collect entry in e.Pnew at

e.idxnew;
22 e.Pnew:=e.P ′

new; e.idxnew:=e.idx′new ;
23 else
24 garbage collect entry in e.Pold at

e.idxold;
25 e.Pold := e.P ′

new; e.idxold := e.idx′new ;

26 mark each leaf level entry in NL and NR as
logically deleted;

27 compute MBRs of NL and NR;
28 update tu for both versions of the object;
29 construct and atomically add entry to N.parent to

point to NR;
30 replace pointer to N in N.parent with pointer to

NL;
31 propagateChangesMBR();

conflicts.

Algorithm 4: TraverseAndSet(node:N, list:lst,
bool:latched)

1 if N == leaf node then
2 latchSet := TestAndSet(N);
3 latched := latched AND latchSet;
4 if latchSet then lst.add(N);
5 return;

6 foreach entry: e in node N do
7 TraverseAndSet(N, lst, latched);

8 return;

6.5 Merge

As argued before, in the regular R-tree, update oper-
ations are not efficient due to the reinsertion of deleted
objects. The same logic applies for the merge of under-
full nodes. To avoid the case in which the entries of an
underfull node are simply deleted and reinserted one by
one in the index structure, Algorithm 5 follows another
approach. The underfull node is merged with a chosen
sibling node that is found using heuristics.

Two cases are distinguished in the merge procedure:
(i) the sibling node has free positions for all the entries
of the underfull node, (ii) the sibling node would become
overfull with the insertion of entries from the underfull
node. The first case is reflected by lines 4 to 22 of Algo-
rithm 5. First of all, latches on the underfull and the sib-
ling nodes are acquired. Next, a new node is constructed
on the side of the index structure. The entries of the two
nodes are copied into the new node. Intermediate values
resulting from objects which are already logically deleted
are handled in the same way as in the split Algorithm 3.
Lines 18 to 19 scan all entries of the newly constructed
node and updates pointers Pnew and Pold together with
corresponding offsets in the hash-table, in order to reflect
the new locations of the objects. When the new node is
ready to be introduced in the index structure, the connec-
tions between the parent of the underfull node and the new
node are created, by atomic swap operations of child and
parent pointers, line 20. After the merging is performed,
the number of entries of the parent decreases by one and
the node can become underfull. In this case, the process
propagates upwards by calling procedure Merge on the
parent.

In the second case (ii), a procedure similar to Node-
Split, described in Section 6.4, is called. The main differ-
ence between the regular split and the MergeSplit proce-
dure is that, instead of taking one entry as argument, all
entries from the underfull node are considered, in order to
perform a redistribution of entries between the resulting

11

two nodes.

Algorithm 5: Merge(node:N)

1 S := FindSiblingtoMerge(N);
2 let M = maximum number of entries in a node;
3 if N.# of entries + S.# of entries < M then
4 if N is a leaf then
5 if TestAndSet(N) == false OR TestAndSet(S)

== false then
6 enqueue merge into Qpriority;

7 else
8 TraverseAndSet(N,list,latched);
9 TraverseAndSet(S,list,latched);

10 if latched == false then
11 RemoveLatches(list);
12 enqueue merge into Qpriority;
13 return;

14 construct new node on the side, Nnew;
15 copy entries of N into Nnew;
16 copy entries of S into Nnew;
17 logically delete items in N and S;
18 foreach object in each entry of Nnew do
19 update pointers and offsets in the hash-table

for each leaf node;

20 atomically swap pointers from N.parent to S with
N.parent to Nnew;

21 if parent(Nnew) = underfull then
22 Merge(parent(Nnew));

23 else
24 call MergeSplit(S, N.entries);

7 Second Approach: Split-Free Index
The development of the second approach is driven by

the goal of further enhancing concurrency in the system.
The splits and merges that previously needed latching of
nodes are now reduced to non-local updates. This im-
plies only the use of short term latches for implementing
atomic operations and the partial locking needed in MBR
updates. The advantages brought by this approach are the
decrease in latching and the algorithmic simplicity. These
are achieved at the cost of needing to adjust heuristic pa-
rameters and no longer ensuring a minimal number of en-
tries in a node.

7.1 Motivation

The main disadvantages of existing R-tree structure
variants and also of our first considered approach, are the
high complexity and performance decrease determined by
node splits and merges. The complexity of the first ap-

proach derives from the so called artificial updates, which
happen when an object is moved to another node of the in-
dex structure even though it did not report a new position.
During the process of splits of merges, the objects arti-
ficially update. Additional space and concurrency control
are needed when having to store three versions of the same
object: a logically deleted one, a new one and a copied
one involved in a split or merge. Also, the garbage collec-
tion of old entries is complicated, since the cause of the
logically deletion can be twofold: an artificial update or a
non-local update.

In an attempt to avoid these drawbacks we propose a
second approach, where the splits and merges are emu-
lated by forced non-local updates of objects. Forced up-
dates differ from the artificial ones in the sense that they
correspond to the time when the object locally updates and
do not imply moving an object in the interval between its
updates. Queries are able to deal with the movement of
objects in the index structure due to concurrent non-local
updates, as it has been described in the previous Section 5.
In the next subsections we discuss how the new approach
works and the new index structure that it requires.

7.2 Main Idea

The second approach simulates node splits and deals
with underfull nodes by determining objects to perform
non-local updates to another node. The index structure re-
arranges gradually without the necessity of copying sub-
parts of the tree or locking.The purpose of rearranging the
objects between the nodes is to maintain the number of
entries in a node in an optimal interval. The state of a
node which corresponds to this latter case, will be from
now on referred to as the normal state.

Four heuristic parameters are used to decide in which
state a node finds itself. By modifying these parameters
it is possible to control the dynamics of the structure. As
is can be observed in Figure 11, a node has four states,
depending on its number of entries in relation to the four
parameters, plus the normal state. A node is considered
physically underfull if its number of entries is under a
limit called PU. The state logically underfull corresponds
to the number of entries being in the interval (PU, LU].
If the number of entries is greater than the limit LO, the
node is considered logically overfull and if it is equal to
parameter PO, the node is physically overfull. The gray
area in the figured node denotes the preferred interval for
the number of entries, for which the node is in the normal
state.

The distinction between logical and physical states of
underfull or overfull is required in order to maintain a
node in the normal state for as long as possible. The
goal is to recognize an impending overfull or underfull
node early enough and take action. In addition these four

12

parameters ensure that the distribution of objects across
the tree structure is balanced. Basically, once a node
loses many objects, due to non-local updates, and LU is
reached, the node will have a greater probability to attract
objects, in order to regain its normal state. If the process
continues despite the effort of attracting objects, the node
will reach the PU limit, moment from which the node can-
not be saved anymore. In this latter case all updates of ob-
jects from such a node are directly considered non-local.
This way the time that a node spends with a very small
number of objects is minimal. Similar LO is used to indi-
cate that a node is about to reach its limit, moment when
a new node is created in order to compensate splits, and
some objects of the old node are moved to the newly cre-
ated one, by performing non-local updates on their next
update.

Thus, LU and LO are used to signal that a node is
heading towards states that are not desired, and for some
time actions can be performed to prevent this from hap-
pening.

Figure 11: Node fill factor in relation to four parameters

Figure 12: Diagram of node states

In order to better illustrate a node’s states with regard

to the actions that can be performed, from now on we re-
fer to the naming convention presented in Figure 12. The
state diagram illustrates all the states of a node during its
lifetime and the conditions that determine the transition
from one state to another. All nodes start with a state
called Creation that coincides with the physical creation
of the node. This is a short-lived state that ends as soon as
the object that caused the creation of the node is inserted.
Once this happens, the New state is reached. The node
will stay in this state, until enough objects are inserted in
the node. The idea is to bring a newly created node to
the Normal state. When the node holds LU objects and
an insert operation comes, the number of objects will be
LU+1, causing the node to reach its Normal state. From
this moment on this state becomes an intermediate posi-
tion between the Populating and the Evacuating states.

The Normal state symbolizes the interval in which we
want the number of objects to evolve. When LO, the
higher limit of the interval is reached, the state becomes
Evacuating. In order to return to the normal state the ob-
ject that causes the number to reach LO+1 will create a
new node and symbolize this node for evacuation. A part
of the objects will be forced through non-local updates to
the new node, thus decreasing the number of objects and
returning the node in the normal state.

Similar when LU is reached, the node’s state becomes
Populating. The node needs objects to be inserted in or-
der to return to the Normal state, therefore the node sig-
nals this using a value called iNeed. The higher this value
is, the more objects a node needs. In the case the num-
ber of objects keeps decreasing while in Populating, the
node can reach the Total Evacuation state. In this situa-
tion the only next possible state is Deletion. The reason
for this is based on the fact that as long as the node has
lost objects, even if it was flagged to attract, PU indicates
the limit from which we consider that a node cannot be
saved anymore. In this state, insertion is not permitted
and all objects from the node that update, are forced into
non-local updates. The node loses all objects step by step
and is deleted after it loses the last object.

7.3 Dealing with Node Splits

Several actions have to be performed in order to en-
sure that the mechanism of virtual split emulates a real
structural modification split:
• an overfull node needs to be flagged for evacuation;
• a new node has to be created and flagged for popula-

tion;
• a part of the objects of the overfull node need to per-

form forced non-local updates;
• forced non-local updates are directed to the new node;
• a part of the insertions in the flagged for evacuation

13

node need to be redirected to other nodes;
• the old node keeps a pointer to the new one for fast

access;
• the old node has to be unflagged when a fixed number

of entries have been evacuated;
The creation of a new node is performed by the first

object that wants to insert in a node that has reached LO
number of objects. At the same time the node that is log-
ically overfull begins to be evacuated, in the sense that a
number of objects will move through non-local updates to
the new node.

One design decision refers to the MBR of the newly
created node. Considering that the objects that are forced
to move in the new node affect its MBR, it suffices to
choose as the initial bounding rectangle, the area covering
the first object in the node. This way, the bounding rectan-
gle will be enlarged step by step. Choosing a fixed part of
the old node’s MBR or the MBR entirely as the MBR of the
new node, would cause an increase in the overlapping be-
tween rectangles and affect the query performance. Hav-
ing a prefixed new area is unnecessary because the forced
updates redirected to the new node are directly inserted
without checking the bounding rectangle penalty.

The next question that needs to be answered is: how
many and which objects from the old node should be
forced to move into the new one? To minimize the overlap
area, the objects located in the neighborhood of the one
that caused the ”split” are the ones redirected to the new
node. The original rectangle is virtually split in two parts:
the persistent part and the evacuating part. Local and non-
local updates of objects from the persistent part require
no special treatment. In contrast, on each update (local
or non-local) of an object from the evacuating part, the
link to the new node is used to locate the destination leaf
where to insert. The neighbor-area that needs evacuating
is determined by an algorithm, PickCut, which considers
the distribution of the objects in the bounding rectangle
and computes the axis (X or Y) and an exact coordinate
value of the split. The number of objects from the evacu-
ating area has to be at least LU + 1, in order to ensure that
the new node does not remain logically underfull. From
this and the fact that is not preferable for the old node to
remain logically underfull, it results that LO > 2LU .

The information about which part of the rectangle is
the evacuating one has to be stored in order for the objects
in the node to determine to which half they belong. The
information has to be non-relative to the rectangle area be-
cause the MBR suffers modifications due to objects leav-
ing and entering the node. Three fields are needed: one
bit to store the axis choice (X or Y), a variable for the
value of the coordinate, and one bit to store which part of
the bounding rectangle is the evacuating one. These are

stored directly in the node for fast access.
The redirection from the old node to the new node

must stop before the old node reaches the limit of logically
underfull, nr of entries = LU and the evacuation flag re-
moved. The new node attracts objects not only from the
old node but also other non-local updates. While a newly
created node is populating, the node is not considered log-
ically underfull. The process also runs within a limit, and
it stops when the new node reaches a normal state, when
its number of entries is between LU and LO. Then the new
node has to be unflagged and treated as a regular node.
Non-local updates are attracted to a flagged new node in
the sense that the new node has priority over other equally
suited nodes, (same penalty of area enlargement), when
searching for an optimal leaf where to insert.

The case of non-local updates that find as the optimal
leaf a node that is logically overfull and evacuating has
to be considered. The insertion process checks the split
information and finds out in which half the object belongs
to. If the persistent part is the appropriate one, the insert
is permitted. Otherwise, the insertion is redirected, using
the sibling link, to the new node that needs populating.

Before a new node is created, the parent is checked
to see if it is not full. In case the parent is full also the
insertion propagates up the tree structure and will insert
in the lowest level where it finds space. In this case the
object is still inserted on a leaf level, the difference being
that one or more internal nodes have to be created as well,
depending on what level the insert found free space to in-
sert. After insertion the old leaf node, that was logically
full, will hold a pointer to the newly created leaf node, but
the parameter that expresses the desire of a node to attract
or repel objects, has to be modified accordingly. Since the
insertion propagated to a higher level in the structure and
more nodes have been created, more objects will have to
be inserted in the newly created substructure in order to
ensure the population of both the newly created leaf node
and all its ancestors up to the level where the insertion
took place. The above mentioned parameter will decrease
over time as the substructure gets populated with objects
as a result of non-local updates or forced non-local up-
dates.

7.4 Dealing with Underfull Nodes

A logically underfull node (nr of entries≤ LU) needs
either to be repopulated or eliminated all together. If its
number of entries reaches the limit PU, then the node
starts evacuating and no insertions are permitted into it.
The evacuation process is similar to the node split one in
the sense that objects are forced out of the node by forcing
their local updates to be non-local. The node is emptied
one object at a time. The node will finally be removed
when it has no entries and the space reused for introduc-

14

ing new nodes.
Otherwise, if PU < nr of entries ≤ LU, the node can

still recover from the underfull state if non-local updates
choose it as the optimal leaf where to insert. This is en-
couraged by signaling the node with a flag and making it
a priority over other candidates with a close area enlarge-
ment insert penalty.

7.5 No-Split Index Structure

In order to facilitate the changes for concurrency and
be able to have an index structure without splits, we intro-
duce additional variables in the node. Figure 13 represents
the structure for internal and leaf level nodes, needed by
the algorithm with no splits.

Figure 13: Modified structure of the u-R-tree node

The space required for each additional flag in the node
is provided in Table 2. As we can see from Table 2, flag
state can hold four states thus it represents four states node
can be in: Normal, Evacuating, Populating and New state.
Normal state denotes that node has the number of ele-
ments between LU and LO. The Evacuating state denotes
that the node has reached the LO or PU limit and needs to
push away some or all of its entries. The Populating state
denotes that the node has reached LU limit and needs to
get some elements. The New state characterizes a newly
created node which tends to achieve the Normal state. The
node’s state diagram can be seen in Figure 12.

The variable cut is used for storing the value accord-
ing to which axis the node was divided, it stores 1 for
y and 0 for x axis. In cutval is stored the actual value
of the divided coordinate axis. In order to know which
part of the node is evacuating we have one bit flag, called
ev part. The iNeed flag is used for determining if the sub-
tree, rooted in the node, is in need for the additional en-
tries. It can contain negative and positive values signify-
ing that the subtree wants to push away or attract some
entries respectively. If iNeed is 0 then the subtree is bal-
anced. An evacuating node has also a pointer, split ptr, to
another node where updates are redirected.

name state cut cutval iNeed split ptr ev part
required
space

2 bits 1 bit 8 bits 8 bits 1 word 1 bit

Table 2: Space required for each field

7.6 Basic Example

An abstract view of the main idea of this approach is
presented in Figure 14. Let us consider we have a leaf
node, N1, that contains three elements p1, p2 and p3. In
addition the LO limit is three. In this moment the node
in question is still in Normal state. One level above the
tree we have the MBR of this leaf node, that is R1. For
reasons of simplicity in understanding, the children of R2
and R3 are not shown in the figure. Also the higher lev-
els of the tree structure do not appear. Each node has an
iNeed value, that shows a node’s desire to attract or repel
objects. For leaf nodes this value is established based on
the state the node is in, while for internal nodes the value
is computed based on the values of the children. Since
the node is in Normal state, the iNeed value associated is
zero, 14(a).

When a non-local update will try to insert p4 in this
leaf node, it will see that the node has reached the LO
limit. Therefore, instead of inserting, a new node is cre-
ated and p4 inserted as the first element, 14(b). The state
of the first leaf node becomes Evacuating, symbolizing
that the node must get rid of some elements, as it is ap-
proaching the PO limit. In case of the newly created node,
its state will be set to New, state in which it will remain
until it will reach LU+1 objects for the first time. A tem-
porary pointer is created from the Evacuating node to the
New node. In the end the new iNeed values are com-
puted. The node that is evacuating objects has iNeed =
-1, while the new node has iNeed = +3. The positive or
negative amount is given by how much the node must at-
tract or repel objects. A node that was just created needs
many objects and as a consequence it will have a high
positive value. A node that just entered Evacuating state
must repel objects but to a different extent. In case more
objects are inserted while in Evacuating, the iNeed value
will change accordingly to symbolize an increased desire
to repel objects. The internal node’s iNeed value is given
by the values of its children, symbolizing whether objects
are needed or not at that level in the tree.

7.7 Algorithm

The update process depicted by Algorithm 6 receives
a parameter of type entry, composed of the oid of the ob-
ject that needs to update and the new position coordinates.
Two main checks have to be performed to see: (i) if a log-
ically marked old entry of the object exists in the structure
and (ii) the type of update. In case (i) happens, the old
entry, found by following the Pold pointer to the corre-
sponding node, is physically removed from the node. At
this moment the iNeed value needs to be updated, since
the node might have changed its state. The second de-
cision, (ii), takes into consideration the state of the node
and MBR enlargement penalty. The function Determine-

15

(a) before insertion of p4 (b) after insertion of p4

Figure 14: Split emulation of node N1

TypeUpdate(LN, enew) returns the choice local for a small
penalty of inserting enew in node LN. The same is returned
if the node’s state is New, since the node needs to be pop-
ulated and a non-local update would decrease even more
the number of objects in the node. The MBRs of new
nodes are permitted to unconditionally expand, a limita-
tion is considered only when deciding which updates are
suitable for redirecting to the new one.

Algorithm 6: Update(entry: enew)

1 get Pnew and Pold from hash-table using enew.oid;
2 if Pold 6= Nil then
3 Nold := leaf node pointed by Pold;
4 PhysicalDelete(Nold, enew);
5 ModifyiNeed(Nold);

6 LN := leaf node pointed by Pnew;
7 type := DetermineTypeUpdate(LN, enew);
8 if type == local then
9 LocalUpdate(LN, enew);

10 else
11 N := FindNodeHeuristics(enew);
12 NonLocalUpdate(N, enew);

13 return;

When an update is cataloged as non-local, the func-
tion FindNodeHeuristics(enew) is called. The function’s
purpose is to find and return the best node where the entry
enew is to be inserted. This is done by first checking the
siblings to see if any is a possible candidate. Candidates
are prioritized by MBR enlargement and need of objects,
given by iNeed. If two or more nodes are suitable for in-
sert, meaning that the MBR enlargement is approximately
the same, the iNeed values are compared. In this case the
node with the highest iNeed value would be the best can-
didate, since a high value translates into the node having
less than LU objects. The algorithm therefore performs a
check one level up the tree and if no candidate is found
performs a top-down tree traversal. On each level of the
tree, the above steps are repeated ensuring that the object
will be inserted in a node that requires a small or no MBR
enlargement and in addition needs objects more than the

other candidate nodes.
A node’s need for objects reflects up the tree since a

node’s iNeed value takes into account the iNeed values of
all the children of that node. However, the function’s re-
turn node cannot be a physical overfull or underfull node.
Once the node is found, it is returned as input for the func-
tion NonLocalUpdate.

Algorithm 7 sketches the situations that may appear
after a logically deleted entry is removed. The node con-
taining the old entry is passed as a parameter to the func-
tion PhysicalDelete along with necessary information in
order to locate the entry inside the node. Removing an
object from a node can change the state of the node, in the
way presented earlier in the state diagram in Figure 12,
when Delete(Obj) transitions occur at the moments when
the number of entries in the node represents a state-border.

Algorithm 7: PhysicalDelete(node:Nold, entry:enew)

1 obj := object with id enew.oid;
2 garbage collect old entry in Nold;
3 propagateChangesMBR();
4 obj.Pold := Nil;
5 if Nold.state == ”populating” AND
6 Nold.# of entries == PU then
7 Nold.state := ”evacuating”;

8 else if Nold.state == ”normal” AND
9 Nold.# of entries == LU then

10 Nold.state := ”populating”;

11 else if Nold.state == ”evacuating” AND
12 Nold.# of entries == LO/2-1 then
13 Nold.state := ”normal”;
14 split ptr := Nil;

15 else if Nold.state == ”evacuating” AND
16 Nold.# of entries == 0 then
17 garbage collect node Nold;
18 propagateChangesMBR();

19 return;

Algorithm 8 deals with the regular local updates that

16

just update an object’s position in a node (lines 16 to
19), but also with the situations in which the local up-
date must be forced to perform non-locally (lines 2 to 14).
The first case in which this happens is when the node’s
state is Evacuating and the number of entries is below the
PU limit. This means that the node is in the process of
being eliminated. A suitable node is found by the Find-
NodeHeuristics function and passed as a parameter to the
NonLocalUpdate function, which deals with inserting the
entry with the updated object position in the node.

If the node’s state is Evacuating because it was over-
full, only some of the local updates need to be forced out.
As discussed before in Section 7.2, the objects belonging
to the ”evacuating” area of the rectangle have their updates
redirected to the newly created node, located with the help
of the split ptr pointer of the current node. If the object
is located in the other part of the rectangle, its update is
treated as a regular local one.

Algorithm 8: LocalUpdate(node: LN, entry: enew)

1 old-entry := entry in LN corresponding to enew.oid;
2 if LN.state == ”evacuating” then
3 if LN.# of entries ≤ PU then
4 N := FindNodeHeuristics(enew);
5 NonLocalUpdate(N, enew);
6 else
7 if InEvacArea(LN, enew) == true then
8 N := node pointed by LN.split ptr;
9 NonLocalUpdate(N, enew);

10 else
11 old-entry.x := enew.x;
12 old-entry.y := enew.y;
13 compute LN.MBR;
14 propagateChangesMBR();

15 else
16 old-entry.x := enew.x;
17 old-entry.y := enew.y;
18 compute LN.MBR;
19 propagateChangesMBR();

20 return;

The function InEvacArea, illustrated in Algorithm 9,
computes the position of the object relative to the cut of
the rectangle that was performed when the ”split” process
began. The cut information is kept in the node fields: cut,
ev part and cutval. Depending on which axis the cut was
executed, the x or y coordinate of the new position is com-
pared with the value separating the two parts, cutval. The
comparison also must take into account which part of the
rectangle is the evacuating one, the one with values of the
cut coordinate higher or lower than the cutval, informa-

tion kept in the ev part field. The function returns true if
the object is in the evacuating part and false otherwise.

Algorithm 9: InEvacArea(node: LN, entry: enew)

1 if LN.cut == ”X” then
2 if LN.ev part == ”higher” AND
3 enew.x > LN.cutval then
4 return true;
5 else if LN.ev part == ”lower” AND
6 enew.x < LN.cutval then
7 return true;

8 else if LN.cut == ”Y” then
9 if LN.ev part == ”higher” AND

10 enew.y > LN.cutval then
11 return true;
12 else if LN.ev part == ”lower” AND
13 enew.y < LN.cutval then
14 return true;

15 return false;

Algorithm 10 performs the non-local update, which
receives as an input the node in which the new entry must
be integrated. This node could have been previously found
using the FindNodeHeuristics function, or in the case of
forced local updates, the node is a newly created one
which needs populating. First of all, a check to see if the
node is in the Evacuating state is performed. At this point
in the algorithm, the node can be in this state because it
was overfull. The situation when it was evacuating be-
cause of the physical underfull condition is treated inside
the FindNodeHeuristics and LocalUpdate functions, be-
fore calling the function NonLocalUpdate. Therefore, an
evacuating node must redirect updates of the objects in the
evacuating part to the newly created node (lines 3 to 8).

A non-local update implies an insertion into the se-
lected node. As it was depicted by the node states diagram
in Figure 12, an Insert(Obj) transition can modify the state
of the node when the number of entries in the node rep-
resents a state-border. Therefore, if the node is in Normal
state but its number of entries has reached the limit LO,
the node changes its state to Evacuating. The update pro-
cess proceeds with the creation and integration of a new
node, having the state New, and with the insertion of the
new entry in this node (lines 9 to 22).

If the insertion of the new entry is permitted in the
node received as a parameter by the NonLocalUpdate
function, then the process must check if the node changes
its state from Populating or New to Normal, due to the
increasing of its number of entries (lines 29 to 32).

After an object was inserted or deleted from a node

17

Algorithm 10: NonLocalUpdate(node:LN,
entry:enew)

1 obj := object with id enew.oid;
2 old-entry := entry in old node pointed by obj.Pold;
3 if LN.state == ”evacuating” AND
4 InEvacArea(LN, enew) == true then
5 N := node pointed by LN.split ptr;
6 NonLocalUpdate(N, enew);
7 ModifyiNeed(N);
8 return;
9 if LN.state == ”normal” AND

10 LN.# of entries == LO then
11 LN.state := ”evacuating”;
12 (LN.cut, LN.cutval) := PickCut(LN);
13 create and add new node, Nsplit;
14 Nsplit.state := ”new”;
15 ModifyiNeed(Nsplit);
16 LN.split ptr := pointer to Nsplit;
17 insert enew into Nsplit;
18 old-entry.tu := −currentT ime using obj.Pnew;
19 obj.Pold := obj.Pnew;
20 obj.Pnew := location of Nsplit;
21 propagateChangesMBR();
22 return;
23 insert enew into LN;
24 ModifyiNeed(LN);
25 old-entry.tu := −currentT ime using obj.Pnew;
26 obj.Pold := obj.Pnew;
27 obj.Pnew := location of LN;
28 propagateChangesMBR();
29 if (LN.state == ”populating”
30 OR LN.state == ”new”)
31 AND LN.# of entries == LU+1 then
32 LN.state := ”normal”;

33 return;

the iNeed values of the node and its parents may have to
be updated. In order to do this the ModifyiNeed and Mod-
ifyiNeedInternal functions are used, as described in Algo-
rithms 11 and 12. The iNeed can take four values to indi-
cate whether the node needs objects or evacuates, and one
additional value to suggests the lack of relevance towards
a new insert or delete. A leaf node needs objects while
its state is populating. The median of this interval is com-
puted and compared to the number of objects in the node.
Depending on the outcome the value of tempiNeed can be
two or one, indicating the node needs many objects or not
that many objects. Similar if the node is in the evacuating
state same principle applies and values are attributed with
negative sign. If the node is not in one of the above states,
the value zero is assigned to tempiNeed. Once the variable
tempiNeed is computed, it is compared with the old iNeed
value. If the values differ, iNeed takes the new value and
the process continues on the parent level. Otherwise no
change is needed.

On internal node levels, the iNeed value is computed
using Algorithm 12. The value is based on the iNeed val-
ues of all the children nodes of the node in question. The
values are added in order to give a general idea whether
objects are needed or being evacuated in the substructure
for which that node is root. The process for internal nodes
is recursive and changes to iNeed values propagate up to
root level of the entire tree structure. If a node’s computed
value of iNeed is the same with its old value, the process
stops immediately as no more changes have to be made.

Algorithm 11: ModifyiNeed(node: N)

1 if N.state == ”populating” then
2 lim := (LU + PU)/2;
3 if N.# of entries > lim then
4 tempiNeed := 1;
5 else
6 tempiNeed := 2;

7 if N.state == ”evacuating” AND
8 N.# of entries > PU then
9 lim := (LO/2 + PO)/2;

10 if N.# of entries > lim then
11 tempiNeed := -2;
12 else
13 tempiNeed := -1;

14 else
15 tempiNeed := 0;

16 if N.iNeed 6= tempiNeed then
17 N.iNeed := tempiNeed;
18 ModifyiNeedInternal(parent(N));

19 return;

18

Algorithm 12: ModifyiNeedInternal(node: N)

1 foreach child of N: child do
2 tempiNeed += child.iNeed;

3 if N.iNeed 6= tempiNeed then
4 N.iNeed := tempiNeed;
5 ModifyiNeedInternal(parent(N));

6 return;

8 Conclusions and Future Work
The paper proposes two new approaches that make use

of the semantics of the application domain in order to en-
hance concurrency while minimizing locking and latch-
ing. The novelty of the second approach is reflected in the
lack of splits and merges while maintaining the integrity
of the tree structure. Both methods are presented in detail
and pseudo-code algorithms are offered for each opera-
tion. We conclude that the main focus, that of concur-
rency performance improvement, is achieved by both ap-
proaches with the advantage of algorithmic simplicity for
the later one. Concurrency issues are considered for up-
dates, queries and the interleaving of the two. The meth-
ods base their correctness on the assumption presented
and discussed in detail in Sections 2 and 5.

The next goal on the agenda is implementing the sec-
ond approach in order to make a comparative study with
other approaches (e.g. CGiST proposed in [5]). Another
goal consists in implementing the first approach as well,
in order to conduct experiments with regards to the per-
formance of both methods proposed in this paper.

References
[1] Jens Dittrich, Lukas Blunschi, and Marcos Antonio

Vaz Salles. Indexing moving objects using short-
lived throwaway indexes. In Proceedings of the
11th International Symposium on Advances in Spa-
tial and Temporal Databases, SSTD ’09, pages 189–
207, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] Antonin Guttman. R-trees: a dynamic index struc-
ture for spatial searching. In Proceedings of the 1984
ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’84, pages 47–57, New
York, NY, USA, 1984. ACM.

[3] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A
practical multi-word compare-and-swap operation.
In Proceedings of the 16th International Conference
on Distributed Computing, pages 265–279, London,
UK, 2002. Springer-Verlag.

[4] Marcel Kornacker and Douglas Banks. High-
concurrency locking in r-trees. In Proceedings of the

21th International Conference on Very Large Data
Bases, VLDB ’95, pages 134–145, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[5] Marcel Kornacker, C. Mohan, and Joseph M. Heller-
stein. Concurrency and recovery in generalized
search trees. In Proceedings of the 1997 ACM SIG-
MOD international conference on Management of
data, SIGMOD ’97, pages 62–72, New York, NY,
USA, 1997. ACM.

[6] Dongseop Kwon, Sangjun Lee, and Sukho Lee. In-
dexing the current positions of moving objects us-
ing the lazy update r-tree. In MDM ’02: Proceed-
ings of the Third International Conference on Mo-
bile Data Management, pages 113–120, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[7] Mong Li Lee, Wynne Hsu, Christian S. Jensen, Bin
Cui, and Keng Lik Teo. Supporting frequent updates
in r-trees: a bottom-up approach. In Proceedings of
the 29th international conference on Very large data
bases - Volume 29, VLDB ’2003, pages 608–619.
VLDB Endowment, 2003.

[8] Vincent Ng and Tiko Kameda. Concurrent access
to r-trees. In Proceedings of the Third International
Symposium on Advances in Spatial Databases, SSD
’93, pages 142–161, London, UK, 1993. Springer-
Verlag.

[9] Rajeev Rastogi, S. Seshadri, Philip Bohannon, Den-
nis W. Leinbaugh, Abraham Silberschatz, and S. Su-
darshan. Logical and physical versioning in main
memory databases. In VLDB ’97: Proceedings of the
23rd International Conference on Very Large Data
Bases, pages 86–95, San Francisco, CA, USA, 1997.
Morgan Kaufmann Publishers Inc.

[10] Seok Il Song, Young Ho Kim, and Jae Soo Yoo. An
enhanced concurrency control scheme for multidi-
mensional index structures. IEEE Trans. on Knowl.
and Data Eng., 16:97–111, January 2004.

[11] Darius Šidlauskas, Simonas Šaltenis, Christian W.
Christiansen, Jan M. Johansen, and Donatas Šaulys.
Trees or grids?: indexing moving objects in main
memory. In Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Ge-
ographic Information Systems, GIS ’09, pages 236–
245, New York, NY, USA, 2009. ACM.

19

	Introduction
	Preliminaries
	Related Work
	Index Structure
	Update and Query Algorithms
	First Approach: Split-Supporting Index
	Second Approach: Split-Free Index
	Conclusions and Future Work

