DBLint: A Tool for Automated Analysis of
Database Design

Benjamin Krogh, Andreas Weisberg, Morten Bested
January 7, 2011

Abstract

Evaluating the quality of a database schema by manual review is time-
consuming, error-prone and requires a good overview. To accommodate
these problems, we propose DBLint, a tool for automated analysis of
database design. DBLint includes 25 design rules which encapsulate good
database design practices. The architecture in DBLint is highly extensi-
ble in that new rules can be added easily. This paper presents a num-
ber of novel components necessary to create a thorough analysis of a
schema design. This includes the use of PageRank to find central tables,
a visualization component providing a comprehensible overview of the
schema, and automatic discovering and checking of naming conventions.
Furthermore, DBLint provides a score which summarizes the quality of
the schema. DBLint has been implemented and evaluated on a large set of
widely used database schemas, and a great number of design issues were
identified. An evaluation of issues verified that the 25 implemented rules
identify relevant issues. DBLint was tested by two database design teams
that responded with positive feedback and suggestions to the tool.

1 Introduction

Maintaining the quality of an evolving database schema is a difficult challenge. If
the schema is maintained by different persons, and there are no clear agreements
on design principles, the quality of the schema design may degenerate over
time. Possible issues that arise through development are inconsistent use of
data types, foreign keys and naming conventions. As the schema grows, the
process of ensuring quality by manual review becomes both time-consuming
and error-prone.

In this work we develop a static analyzer for database designs. The main
purpose is to contribute to consistent and maintainable database designs by
identifying patterns of bad database practices. These patterns are expressed as
rules in the DBLint tool. These rules are then used to analyze the input schema,
and the tool outputs a list of design issues.

We envision DBLint to be used in development, such that developers catch
common design issues before applying them to the Version Control System
(VCS), e.g. as part of the test suite in Test Driven Development (TDD). DBLint
can be used by developers with high domain knowledge to control the quality of
changes made to a database, by verifying that the changes follow their conven-
tions. A developer which has recently entered a developer team can use DBLint

to fast and easily gain knowledge about the existing system, and verify changes
made to the database before committing to the VCS.

The main philosophies in DBLint are that it should be close to zero con-
figuration, employ domain-independent rules and be extensible. The minimal
configuration overhead is a benefit as it reduces the cost of using DBLint. An
example of a zero configuration rule is a naming convention checker that detects
the used naming convention and locates all inconsistencies. Due to DBLint’s ex-
tensible architecture, database designers can implement more specialized rules
that may only be relevant for a specific team.

The visualization component in DBLint provides an overview of how tables
are related, based on foreign keys. Existing tools are not capable of rendering
such an overview properly when the schema becomes non-trivial. We decompose
large schemas into smaller independent clusters, such that each cluster is com-
posed of a set of strongly connected tables. This makes it easier to comprehend
large schemas, compared to the approaches found in existing tools.

We introduce the notion of table centrality, used to rate the relative impor-
tance of tables based on their foreign-key relationships. This is useful in various
contexts, e.g., the impact or severity of a design issue can be estimated based
on the importance of the table in which it was found. We utilize the PageRank
algorithm [1] to calculate the centrality of tables.

DBLint’s scoring system provides a metric that summarizes the overall qual-
ity of a schema, based on design issues reported by the rules. A metric can, e.g.,
be used to compare different schema versions or design alternatives. DBLint
also assigns a score to each table, such that the most problematic parts of the
schema can be identified easily.

To summarize, the main contributions of this work are the following.

e A pluggable rule architecture, which can be extended with more rules
easily.

e A rule that automatically discovers a naming convention and detects de-
viations.

e A visualization component which decomposes a database schema into com-
prehensible pieces.

e A centrality measure based on the PageRank algorithm, used to estimate
impact and importance of tables.

e A scoring system that rates a given database between 0 and 100.

DBLint has been evaluated on eight open source schemas. The issues in two
of these schemas were examined thoroughly and it was verified that DBLint
reports real issues. The evaluation shows that our tool is able to identify a
large number of relevant design issues in existing schemas. This proves the need
for a static analyzer to help the database designer develop a consistent and
maintainable database design.

2 Related Work

Some of the problems that DBLint concerns have been addressed in existing
tools and academic papers. DBLint is a practical tool, thus it is relevant to

discuss the related tools that DBLint is inspired by. We have not found any
academic paper that thoroughly addresses automatic diagnosis of database de-
sign. However, attempts have been made to quantify what a good data model
is. These are relevant even though the approaches taken is different than ours.
Following are two sections describing the related tools and related academic
papers.

2.1 Tools

The main source of inspiration is a number of existing tools from other domains.
The original Lint program was written to detect bugs and obscurities in C pro-
grams [2]. Lint-like tools have since been made for many other programming
languages such as Python [3] and Java [4]. The idea of reporting obscurities
or inconsistencies through static analysis is very similar to ours, except that
DBLint is for a different domain. The original Lint examines source code, while
DBLint examines database schemas. The relation between Lint and DBLint be-
comes clearer when considering that a Database Management System (DBMS)
is comparable to a compiler in that it captures errors, but does not care about
inconsistencies or other bad design decisions. FindBugs [5], a Lint tool for Java,
has provided inspiration on how to build a system that supports extensible rules,
or “bug patterns” in FindBugs jargon.

SchemaSpy [6], SchemaCrawler [7], Schema Examiner [8] and SQL Audi-
tor [9] are all tools for analyzing database schemas. The first two are open
source and provide limited Lint-like functionality for schemas. However, the
core features of these are extraction and presentation of database metadata,
and does not provide a thorough analysis of a schema design. Schema Exam-
iner and SQL Auditor are commercial tools with a purpose similar to that of
DBLint, but DBLint differs in four main areas. (1) An extensible rule system
that allows quick development of additional rules. (2) Automatic consistency
checks, e.g. a naming convention rule. (3) A centrality measure of tables based
on foreign-key relationship. (4) Visualization of large schemas by decomposing
them into independent clusters. Furthermore, SQL Auditor only supports SQL
Server, and Schema Examiner supports just a few enterprise DBMSs. DBLint
supports major DBMSs such as SQL Server, Oracle, MySQL and PostgreSQL.

2.2 Academia

An effort has been put into the development of methods which quantifies the
quality of a data model or a relational schema using a set of metrics. Piattini
et al. [10], Calero et al. [11] propose and evaluate three metrics for estimating
the maintainability of relational schemas. These are simple measures such as the
number of attributes and foreign keys in the schema. Compared to our work,
we give a broader estimation of quality as we include the result of 25 design
rules.

Moody [12] has identified 25 metrics for evaluating the quality of a schema
for quality factors such as understandability, correctness and implementability.
However, they rely on manual evaluation as most of these metrics cannot be
measured automatically on a database schema. An example of such a metric is
the number of user requirements which are not represented in the data model.
To calculate this, a complete set of requirements must be available and evaluated

against the data model manually. The strength of the manual approach is that
it is possible to identify design problems that are hard to find automatically.
However, our focus has been to develop a tool that automatically evaluates a
schema within a few minutes. This reduces the cost of evaluation and makes it
affordable to apply it many times throughout development. We regard the two
approaches as complementary because they identify different design problems.

Teniente et al. [13] presents a tool for validating schemas in SQL Server.
Schemas are verified according to desirable properties such as non-redundant
integrity constraints. The properties verified are limited, but the work is inter-
esting and similar checks could be adopted in DBLint.

3 Running Example

The example introduced in this section shows instances of bad database design.
All of them have been observed in real-world schemas and it should give an idea
of the type of problems identified by DBLint. We will refer back to this example
in following sections to explain how some of our rules work.

The example schema consists of three tables: users, threads and posts. It
models a very simple Bulletin Board System (BBS), in which users can create
threads that other users can respond to. Figure 1 shows the SQL create script
for this example.

create table users (create table threads (
id varchar (10), CreatedBy varchar (32),
user _name varchar (32), id int
emaill varchar (32), subject varchar (30),
email2 varchar (32), posts int
email4 char(32) default ', primary key (id),
last _post int , index (id),
msn# varchar (0), index (id, subject),
primary key(id), foreign key (CreatedBy)
foreign key (last post) references users(id))

references posts(post_id))

create table posts (

post_id int unique,

subject varchar (32),

post text varchar (1500),

thread id int ,

user varchar (10),

foreign key (thread id)
references threads(id))

Figure 1: SQL code for the simple BBS schema.

DBLint identifies 18 design issues in just these three tables. The issues are
listed in Table 1. Many of these issues are apparent when manually examining
the SQL code, but become much more difficult and time-consuming to identify in
databases with hundreds of tables. Notice that the tool does not automatically
correct the listed design issues, but focuses on creating a diagnosis of a schema.

Issue description

Table posts is missing a primary key

Column users.msn# is a varchar with length zero

Datatype of the foreign-key column threads.CreatedBy does not

match referenced datatype

The column users.msn# contains special characters

Char column of length 32 has default value of length 0 (users.email4)

All columns are nullable in table posts

All columns except the primary key are nullable in table users

5 varchar columns have length 32, and 1 of length 30. Consider using

a common length

9 Cycle found between tables: posts, threads, users. None of the
foreign keys are deferred

10 Sequence of related columns in users do not have the same datatype

11 Missing colum in sequence: emaill, email2, email4 in table users

12 Different datatypes for columns named id

13 Column threads.CreatedBy does not follow naming convention

14 Column users.msn# does not follow naming convention

15 Index named id in table threads is redundant

16 Varchar column posts.post_text, of length 1500, is too long.

17 The primary key of table threads should be positioned first

18 The reserved word user is used as a column name in table posts

[SURINCRE

0~ O U

Table 1: Design issues discovered by DBLint for the example. The issue de-
scriptions are edited for layout purposes.

4 Database Design Rules

DBLint identifies design issues in database schemas by applying a set of design
rules. Each rule examines the database for a concrete design problem and are
based on good practices of database design. Reese [14] illustrates a number of
good practices in database design, such as: primary keys should consist of the
smallest number of columns possible, and constraints should be used to enforce
the integrity of the data in the database. Furthermore McConnell [15] states
the importance of agreeing on design conventions and practices in programming.
This ideology can be applied to database design, where a similar agreement for a
database design would enhance the quality of the final result. We have designed
the rules such that they reflect these guidelines.

4.1 Rules Overview

Table 2 shows the 25 rules implemented in DBLint. All rules are assigned a
severity, which are explained further in Section 4.2.

As shown in the table, rule 4 and 5 have two severity levels, because these
rules report two kinds of design issues. For instance, rule 5 will report a critical
issue if no foreign keys are used at all or a medium issue each time it detects a
table island, i.e. a table with no relations to other tables.

Rule Severity

1 Missing primary key critical

2 Varchar columns with zero length critical

3 Different data types between foreign-key column critical
and referenced column

4 Inconsistent naming convention critical / medium

5 Too many table islands critical / medium

6 Foreign-key cycles high

7 Use of special characters high

8 Too long column names high

9 Table with too few columns high

10 Too many nullable columns high

11 Too many columns in primary key high

12 Long char columns with empty string as default high
value

13 Inconsistent varchar lengths high

14 Redundant indices medium

15 Too many text columns in one table medium

16 Missing columns in sequence medium

17 Inconsistent data types in column groups medium

18 Wrong position of primary key low

19 Foreign keys without index low

20 Very large varchar columns low

21 Different data types for columns with same name low

22 Columns with same name but different default value low

23 Missing foreign key info

24 Use of reserved SQL words info

25 Composite primary keys consisting of columns not info
used in foreign keys

Table 2: Rules implemented and the severity level from critical to info.

4.2 Severity Levels

Design issues are categorized into five severity levels to weight issues differently.
Besides being able to arrange issues, severity ratings can be used to tell some-
thing about the quality of individual tables, as well as the overall quality of
the schema, i.e. as part of the scoring system. The five severity levels are the
following.

Info Used on issues that can be allowed if intentional, or issues that cannot be
determined accurately when only looking at metadata. For instance, use
of an SQL keyword can be accepted if it improves the understandability
of a table.

Low Used on issues indicating that the database developer did not maintain an
overview of the database, e.g. did not position the primary key as the first
column(s) in the table. These issues do not influence the overall integrity
of the data in the database.

Medium Used on issues that contradicts good design practice. For instance,
redundant indices, which is exemplified in the threads table from the
example in Section 3.

High Used on issues indicating a design that deviates significantly from good
database design practices, e.g. the use of special characters in identifiers.

Critical Used on issues potentially leading to compromised data integrity, e.g.
a table without primary key.

4.3 Naming Convention Rule

A consistent naming convention is important for archiving a maintainable data-
base schema. We have observed that many real-world schemas have uniformly
named identifiers, but often with a few deviations. However, deviations can be
hard to find manually in databases with thousands of identifiers. We are tar-
geting two database design issues: missing naming conventions and inconsistent
use of naming conventions.

Forcing a specific naming convention upon the database designers would
be against the philosophy of DBLint. Instead it should be entirely up to the
designers to decide what works best for them. Therefore, we want to check
that the naming is consistent with whatever convention the designers use most.
The usefulness of a specific naming convention can always be argued, while
inconsistencies are almost always a bad thing.

The purpose of the rule is to detect the used naming convention and then find
identifiers that do not adhere to this naming convention. The challenging part
is to automatically detect the naming convention from a set of identifiers. To
reduce the complexity of the problem we only consider: casing, word separators
and symbols. A naming convention involves other aspects such as consistent
use of domain specific terms. We omit these and focus on the syntax of the
identifiers instead. For example, consider the following set of identifiers from
the example in Section 3:

user_name, thread_id, CreatedBy, post_id

It is easy to see that CreatedBy stands out, because it uses Pascal casing
while the others do not. The naming convention rule should locate this identifier
and report it as an instance of inconsistent naming.

The first step in our approach is to tokenize each identifier, to get an ab-
straction of the name, representing the syntax. The four names in the example
above are tokenized as seen in Table 3.

Identifier Tokens

user_name | begin,word,underscore,word, end |
thread_id [begin,word,underscore,word,end |
CreatedBy [begin, WORD,word, WORD, word, end |

post_id [begin, word, underscore, word, end |

Table 3: Example identifiers and the comma separated list of tokens they are
converted into by the tokenizer.

One or more lowercase letters are represented by a word token and uppercase
letters by a WORD token. The goal of tokenization is to extract the pattern used
for a given name, such that names that follow the same pattern outputs the
similar list of token types. We can see that this is the case in the example in
Table 3 above.

The next step is to build a first-order Markov chain. A Markov chain is
a finite state automaton in which transitions represent probabilities of moving
from one state to another [16]. In our approach, states represent tokens, and
transitions represent the probability of going from one token to another. Note
that the number of states in the Markov chain is limited by the number of
different tokens, n, and that the number of edges is bound by n?. Figure 2
shows the Markov chain for the list of tokens above. There is a probability of
0.75 that a name is going to start with a lowercase word. Intuitively, a name that
do not adhere to the general convention will at some point follow a transition
with low probability.

.75

375 /\
under-
score _/'

Figure 2: A Markov chain for the identifiers in Table 3. Three identifiers use
lowercase words separated by underscores, and one deviating identifier uses
Pascal casing.

1 1

S S
~_ T score

(a) Camel case. (b) Word followed by underscore and
then word

Figure 3: Markov chains representing two known naming conventions. Note
that consistent naming yields a simple Markov chain.

Two sample Markov chains are shown for two common naming conventions
in Figure 3. The number of states and transitions can be considered a measure of

the complexity and uniformity of the naming convention. Simple and consistent
names yield a Markov chain with few states and transitions. Appendix A shows
a Markov chain that was generated by DBLint for a real-world schema without
consistent naming. In our study of that schema, we found several inconsistencies
and oddly named identifiers, and the Markov chain clearly reflects that by its
many edges.

4.4 Cycle Detection Rule

Tables and foreign keys can be interpreted as a directed graph, where tables
are vertices and foreign keys are edges. Interpreting the example in Section 3
as such a graph, it becomes apparent that a cyclic dependency exists between
the three tables. Such a cycle is not necessarily a design issue if the referential
actions and deferability have been thought through. A cycle is only considered
a design issue if one of the following two predicates hold.

No Deferred If no foreign keys in the cycle are set to deferred it will be im-
possible to insert any values into the tables.

Cascade Delete If the delete referential action of all foreign keys in the cycles
are set to cascade delete, it is possible to delete all data in the tables when
deleting a single row.

DBLint detects cycles by using Tarjan’s strongly connected components al-
gorithm [17]. Each discovered cycle is then tested against the two predicates
and if either is true, an issue is reported. In the example in Section 3, all foreign
keys are not deferred, hence a cycle issue is found.

5 Report

When the rules have been executed on a given database, DBLint generates a
document describing what it has discovered. This is the main output of DBLint.
It contains a list of all design issues, schema visualizations, the score for each
table as well as the total score, etc.

5.1 Visualization of Relations

When inspecting an issue on a table, it is helpful to illustrate the context in
which that specific table is used. Such a context is defined at the database level
by foreign keys.

Another reason for creating some means of visualization is to provide an
overview of large schemas. It is necessary to decompose a large schema into
several smaller contexts to be able to comprehend it. This problem is experi-
enced by many developers beginning to use or extend an existing schema.

Two approaches to visualize schemas are the following.

e Put everything into one big graph, which becomes impossible to compre-
hend, or print on A4 paper.

e Group tables manually into clusters and draw each cluster, which is very
labor intensive.

Simply drawing the directed graph defined by the foreign-key relationships
does not work. This approach on a large schema such as Magento [18] which
has 300 tables, results in a huge spiderweb of tables and edges, illustrated by
Figure 10 in Appendix B. As can be seen the result is incomprehensible for
schemas this large, hence it is not a good enough approach.

5.1.1 Owur Approach

To make the graph comprehensible, we cluster the tables and draw a graph for
each cluster. We have evaluated two algorithms for decomposing large graphs,
namely Edge Betweenness clustering [19] and Voltage clustering [20], with sim-
ilar results. We base our approach on Edge Betweenness clustering, because it
produces better clusters.

The Edge Betweenness of an edge refers to the number of shortest paths
between all pairs of vertices which uses the given edge, illustrated in Figure 4.
The intuition behind the Edge Betweenness clustering algorithm is that a graph
already consists of clusters, and that clusters are connected through only a few
edges. An overall sketch of the Edge Betweenness clustering algorithm is as
follows.

1. Calculate edge-betweenness for all edges
2. Remove the edge with highest betweenness
3. If not enough edges removed, go-to step 1

The algorithm takes as input a graph and the number of edges to remove. How
to determine the number of edges to remove is not immediately clear. Using a
simple heuristic such as “remove e edges per vertex in the graph” does not result
in a usable set of clusters, because the largest cluster will contain the majority
of tables.

O s (o)
9
O (D

Figure 4: Edge betweenness of an example graph. The number associated with
each edge is that edge’s betweenness score, i.e. the number of shortest paths
that use the edge. The thick edge between a and d is the next edge to be
removed by the clustering algorithm.

One explanation of the poor effectiveness of these clustering approaches is
that in the schemas examined, a few tables are referenced a lot. A reduced
example is shown in Figure 5, and one is easily convinced that such a case
cannot be clustered by some heuristic.

Instead of removing edges, removing central vertices results in a set of small
clusters, which are independent of each other. On the Magento example from
before, we find a few central tables. Removing the five most central tables,

10

Figure 5: An example graph which cannot be clustered easily by removing edges.
The graph cannot be clustered because the edge betweenness of all edges is six.

produces small-enough clusters to be printed on A4 paper. To estimate the
most central tables the degree of each table is used, i.e. the number of ingoing
foreign keys. The removed tables are collected and returned as a main cluster.

Input Parameters The algorithm as described above takes two inputs: the
number of central tables to remove v and the number of edges to remove e.
These are determined by increasing v iteratively until all vertices have been
removed. For each iteration, remove edges iteratively using edge betweenness,
thus combining the two approaches of removing edges and vertices. For each
combination of v and e, compute a score, and return the combination with the
best score.

The algorithm that computes the score uses two metrics. The best score is
0, and a higher score indicates a worse combination. The metrics are defined as
follows.

Coupling A score which estimates how self-contained all cluster are.

Coupling(C) = Z FK,c(c) - CR(c)
ceC

C' is a set of clusters, ¢ is a cluster from C, FK,.(c) counts foreign-keys in
¢ to other clusters and CR(c) counts clusters referenced by c. Intuitively,
if a cluster has many foreign keys to other clusters, it has high coupling
and scores worse.

Comprehensibility A measure of how comprehensible all clusters are.
Comprehensibility (C) = Z TableCount(c)?
ceC

C is a set of clusters, ¢ is a cluster from C, TableCount(c) returns the
number of tables in the cluster c. This function penalizes large clusters
based on their table count, as we have observed a link between the com-
prehensibility of a cluster, and its number of tables.

11

The squaring in the comprehensibility score is necessary, because the scoring
function must be non-linear with respect to the number of vertices. If a linear
function is chosen, the score of two clusters ¢ and b would always yield the
same result, independent of how the vertices are distributed. By using the
square function the total score is best when all clusters have the same number
of vertices. To be able to compare scores for two sets of clusters, coupling and
comprehensibility are combined to one score by multiplication.

When drawing the graph for a cluster, we insert a vertex for each table in
the cluster, and an edge for each foreign key to a table in the same cluster.
Whenever a foreign key to a table in another cluster is encountered an edge to
that cluster is inserted instead. Finally when a foreign-key points to a central
table from the main cluster, the specific table is inserted. This causes the tables
from the main cluster to appear in many clusters.

5.1.2 Cluster Algorithm

The cluster algorithm is divided into two functions: Remove and Cluster.
Remove, see Algorithm 1, is a function which copies the graph, and then re-
moves a number of vertices and edges. Cluster, see Algorithm 2, tries to find
the best combination of removed edges and vertices.

Remove Remove uses four functions: Copy, Delete, VertexWithHighestRank
and EdgeWithHighestBetweenness. Copy makes a copy of a graph and Delete
removes a vertex or an edge. VertexWithHighestRank returns the vertex with
the highest rank from an input graph. EdgeWithHighestBetweenness returns
the edge with the highest edge betweenness score from an input graph.

Remove can be summarized into three steps: Line 1: make a copy of the
graph. Line 2-5: remove vertices. Line 6-9 remove edges.

If the input variable e is larger than the number of edges in the graph, then
Remove only continues until it has removed all edges.

Algorithm 1 The Remove(G, v, e) algorithm.

Require: A graph G = (V, E). The number of vertices v to be removed. The
number of edges e to be removed
Ensure: The input graph G, with v vertices and e edges removed
. G' + Copy(G)
:fori=1tov do
vertex < VertexWithHighestRank(G")
Delete(G’, vertex)
end for
for i =1toedo
edge + EdgeWithHighestBetweeness(G')
Delete(G’, edge)
end for
return G’

H
@

Cluster The Cluster part is the backbone of the algorithm. It maintains
the score and configuration of the best seen configuration so far. The function

12

Subgraphs splits an input graph into a set of connected graphs, such that in
each graph it is possible to follow edges from one vertex to any other vertex
from that graph. Finally the Score function rates a given set of clusters, using
the previously described metrics Coupling and Comprehensibility.

The overall view of the algorithm is as follows.

Line 1-3 Initialize score, vertices and edges removed to zero.
Line 4-15 Try out all combinations of edges removed vs. vertices removed

Line 8-13 For each combination rate the result. If it is lower than the best
seen so far, update the best score and store vertices and edges removed.

Line 16-18 Recreate the best found combination and return the result.

Algorithm 2 The Cluster(G) algorithm
Require: A graph G = (V, E)
Ensure: The best set of clusters discovered
: score < 0
v+ 0
e+ 0
: for i =0 to VertexCount(G) do
for j =0 to EdgeCount(G) do
G’ < Remove(G, i,)
clusters < Subgraphs(G’)
s + Score(clusters)
if score < s then
score < s
V41
e+ j
end if
end for
: end for
: G’ + Remove(G, v, e)
: clusters < Subgraphs(G’)
: return clusters

e e e e e
00 N DU AW = O

To sum up, Cluster iterates over all combinations, gives a score to each
combination and returns a set of clusters.

5.2 PageRank

To make a report for a large schema easier to navigate, we emphasize central
tables such that they are easily identified. For example, the core vertex in
Figure 5, should be emphasized in some way to see that it is a central table.
Furthermore, an issue related to a central table should be considered more severe
than the same issue on a peripheral table.

A central table is a table that is integral to a system and therefore has
large impact on modifications. A table which other tables depend on becomes
a central table, because modifying it will most likely influence the depending
tables also.

13

With only metadata available we base the detection of central tables on
foreign keys. Interpreting a schema as a directed graph, makes it possible to use
the graph centrality algorithm PageRank [1], which computes a ranking of each
vertex in a given graph. Specifically PageRank calculates how many times a
given vertex is visited by randomly following edges, and sometimes jumping to
a random place in the graph. PageRank was originally developed for estimating
the relative importance of web-pages based on links.

The centrality calculated by PageRank is utilized by DBLint in the following
areas.

Visualization Tables are sized according to their ranking when drawing clus-
ters. This gives a better overview because central tables can be identified
quickly.

Naming Convention A naming convention is derived from a list of identifiers,
as described in Section 4.3. The influence that each identifier has on the
naming convention is determined by ranking, such that a central table
contributes more to the convention than peripheral tables.

Scoring The scoring system, as will be described in Section 5.3, weights design
issues such that an issue in a central table is considered more severe. This
is based on the assumption that changes or errors are likely to propagate
to other tables. For instance, a primary key with an inappropriate data
type is less severe for a peripheral table compared to a central table where
the primary key is referenced by many other tables.

5.2.1 The PageRank Algorithm

PageRank is an algorithm which assigns a numerical weight to each vertex in a
directed graph based on the weights of its neighbors. The weight of a vertex,
i.e. its PageRank, is calculated in a number of iterations. Each vertex, with m
outgoing edges, gives in each iteration % of its PageRank to each connected ver-
tex. It terminates when the difference between the weights from two iterations
is lower than some predefined constant e.

A fundamental assumption of PageRank is that a website u linking to an-
other website v corresponds roughly to u saying that v is important. In the
context of DBLint and PageRank this is also assumed to be true, such that a
table f with a foreign key to table p, corresponds to f saying that table p is
important. This is based on the fact that a foreign-key ensures an inclusion
dependency relationship, yielding a strong relation between the two tables.

For PageRank to be useful on a database, it is assumed that most foreign-
keys are specified in the schema. If many foreign-keys are not specified the
approach will degenerate, until the point where each table has a rank of %7 n
being the number of tables. We have observed a lack of foreign-keys in many
open source schemas, and thus some cases in which PageRank does not yield
useful information.

5.3 Scoring

A simple list of design issues does not tell much about whether the given schema
is good or bad in overall. A metric can solve this problem by summarizing the
quality of the schema and individual tables.

14

We give a score to each individual table. This allows us to direct the user
towards the most problematic parts of the database. A total database score is
also given, as a number between 0 and 100. A higher score indicates a better
schema design. Database designers will benefit from a score in the following
ways.

e Different schema versions or design alternatives can easily be compared
by considering the score. For instance, the database designer can see
whether a number of schema changes have improved the overall quality of
the schema or degraded it.

e The team can use the score to agree on a minimum acceptable standard for
tables. This is an easy way to assure quality of new tables when extending
or modifying the database.

e The score reveals the overall state of the schema. This information can be
used to determine whether more work needs to be put into the database
design in general.

e A score for each table reveals the most problematic areas of the data-
base design. This can be used to direct the focus onto the tables which
contribute negatively to the overall score.

e The team can use the score as a motivational factor or encourage compe-
tition between developers.

5.3.1 Table Score

We define a table score function, score(t), that returns the score of a table. We
calculate the score by considering the number and severity of design issues that
was found for the given table. The initial score of a table is 100, and for each
issue a number is subtracted depending on the severity of the issue. Therefore,
the score 100 is given to tables with no issues. The score function is defined as
follows.

score(t) = 100 — wq(t) Z p(issue)

issuect
where
80 if severity(issue) = critical
60 if severity(issue) = high
p(issue) = ¢ 40 if severity(issue) = medium
20 if severity (issue) = low
10 if severity (issue) = info

p(issue) is a penalty function that determines the negative impact of an
issue. For instance, a critical issue has a negative impact of 80 points on the
table score. These constants are estimated based on numerous trials and the best
of our judgment. Because of the policy nature of these estimates, a later version
of DBLint should allow them to be user-defined. The penalty of each issue is
multiplied a weight w1 (t) such that issues are graded differently depending on
the table where they were found. Issues in central tables are thus considered
more severe, because they are likely to propagate to other tables.

15

5.3.2 Total Score

The score of a database D is found by calculating the weighted mean of scores
from the individual tables. The function is defined as follows.

Z max (0, score(t)) - wa(t)
teD
D walt)

teD

totalScore(D) =

By using weighted mean the score of certain tables will contribute more to
the total score than others. The weighting function ws(t) reflects the PageRank
of ¢, such that central tables have the biggest influence. All negative table scores
are changed to 0, because we want to prevent one very bad table from having
too much negative influence on the score.

5.3.3 Example

Running the table score algorithm on the tables in Section 3, yields scores
that are all below 0. This is not surprising since the example has almost all
kinds of issues that DBLint checks for. The total score will therefore be 0 as a
consequence of this.

To illustrate the scoring, Table 4 shows an example with two fictitious tables,
emp and dpt.

Table wy(t) Score wsy(t) - Score

emp 3 25 75
dpt 1 100 100
4 175

Table 4: Example of two tables with different scores and weights.

The table emp has a weight that is three times bigger than the weight of
dpt. Therefore, its score contribute more to the total score than the one of dpt.
The total score is calculated as follows.

1
totalScore = % =43.75

6 System Architecture

DBLint is implemented in C#.NET and Java, in a total of 9200 lines of code
excluding blank lines and comments.

DBLint has a multi-layered architecture which divides the system’s respon-
sibilities into several layers with low coupling. The result is a flexible and main-
tainable architecture that is not tied to any concrete DBMS. DBLint supports
most common database systems, with minimal DBMS-specific code. The rule
system uses a plug-in architecture, which decouples the rules from the rest of
the system. This makes the system highly extensible and maintainable.

16

Figure 6 shows how the architecture of DBLint is composed. It is divided
into two parts, DBLint and data sources. Data sources are external databases
providing the metadata that rules are checked against. DBLint extracts the
metadata from the system tables which defines the structure of the data. The
boxes in DBLint on the figure represents separate layers. Each layer is further
divided into subcomponents (controller, model builder, etc.). As shown, the
rules are not considered a part of the DBLint core. These are loaded at run-
time, represented by an arrow on the figure. The following sections describe the
layers in more detail.

DBLint Architecture
DBLint
—
5 % ‘ Report ‘ ‘ Main GUI ‘
—
Plug-ins
05 ‘ Controller ‘ ‘ Issue Reporter ‘ Standard rules
2T
@0 ‘ Rules & Providers }
User rules
T 5 ‘ Model ‘ Providers
T >
O®
= ‘ Model builder ‘
Extractor ‘

Extraction
Layer

‘ Generic Database Interface ‘

Data sources

FRERrEr

MsSQL Oracle MySQL PostgreSQL

.

Figure 6: The multi-layered architecture of DBLint. Rules are plug-ins loaded
at run-time. Data sources are running databases containing the metadata that
DBLint examines.

6.1 Extraction Layer

The extraction layer’s main responsibility is connecting to a database and ex-
tract its metadata. A generic database interface allows us to process databases
from different DBMS vendors in a uniform way. Java Database Connectivity
(JDBC) [21] provides such a standard interface for accessing metadata, and

17

since JDBC drivers exist for most common database systems, we have decided
to use JDBC.

6.2 Model Layer

The model builder constructs an object representation of the metadata. This
metadata model is the main data structure used when expressing rules. The
model provides a fast and convenient way to access the metadata while being
completely DBMS independent. The model is limited in a few ways due to time
constraints: it does not support User Defined Types (UDT), check-constraints
and views.

6.3 Rule Layer

Rules are decoupled from DBLint and written as plug-ins, which increases the
maintainability and flexibility of the architecture. New rules can thus be added
easily, even by third-party developers. This is especially useful for companies
which have their own constraints that need to be enforced by specialized rules.

The definition of a provider is similar to a rule, but instead of reporting
design issues, a provider exposes additional information about the schema. For
instance, PageRank is implemented as a provider that exposes tables’ ranks to
other rules or even other providers.

The main task of the rule controller is to schedule rules and providers for
execution. They are scheduled such that they run in parallel if possible. The
controller solves dependencies between providers and rules, and ensures that
they are executed in the right order. The issue reporter collects and manages
issues identified by individual rules.

6.4 UI Layer

The UI layer contains components for generation of reports over the issues that
are reported during the execution of rules. Reports are the main output of
DBLint, and they provide an overview of all design issues and allow the user to
browse various metadata and figures. Besides the report generator, there is a
user interface for configurating the database connection and executing rules.

7 Evaluation

We have evaluated DBLint on eight real-world schemas. The output from ex-
amining these systems will be used to evaluate DBLint on performance and the
quality of the design issues found.

We will look at the performance of running DBLint on databases of varying
size. As we envision DBLint to be used in a TDD process, the result of examining
a database schema must be available in a short time.

To verify that the rules in DBLint find actual design issues we will review
the reports from two examined systems. These issues will be categorized as
true positives, false positives or undecidable depending on the certainty of the
issue being a real problem. We will also look into the results from the naming
convention rule.

18

As a supplement to the evaluation we have received feedback from two de-
velopment teams where DBLint has been used to examine databases which are
deployed. This feedback will be summarized into a number of key points.

7.1 Test Systems

We have examined eight open-source schemas, of which six are Content Man-
agement Systems (CMS) and two eCommerce systems. All systems are chosen
because they are widely used and have a large community engaged in an active
development effort. In Table 5 the systems are listed together with the number
of tables, columns and foreign keys.

System Version Tables Columns Foreign keys
Drupal [22] 6.20 46 305 0
Joomla [23] 1.5.22 34 299 36
Magento [18] 1.4.1.1 300 2502 387
MediaWiki [24] 1.2.0 46 306 28
Moodle [25] 1.9.9 195 1758 0
phpbb [26] 3.0.7 62 546 0
PrestaShop [27] 1.3.3 114 565 170
Typo3 [28] 44 68 806 0

Table 5: The list of examined systems and their number of tables, columns and
foreign keys. Note that four of the schemas do not use foreign keys.

7.2 Issues Found

Table 6 shows the distribution of issues found on each system. As can be seen,
Joomla has the highest score and MediaWiki the lowest. Joomla has a high
score because of the low number of critical issues and because it has foreign
keys. MediaWiki has a large number of critical issues compared to the number
of tables because of missing primary keys. If a system does not use foreign keys
reasonably, e.g. by having too many data islands, it impacts the score negatively.

System Critical High Medium Low Info ‘ Score
Drupal 0 1 1 14 89 35
Joomla 3 0 10 9 26 61
Magento 19 49 88 39 189 47
MediaWiki 29 4 11 1 25 17
Moodle 0 3 27 34 252 38
phpBB 11 2 3 15 73 25
PrestaShop 21 7 65 10 33 50
Typo3 2 1 52 18 85 24

Table 6: The issues found on each system and the systems’ scores. The issues
are shown for each severity.

After studying the reported issues for all the systems, we observed that

19

some issues occurred more often and on most of the systems. The design rule
detecting missing primary keys found issues on six of the eight systems. The
number of issues reveals that approximately 10% of all tables examined are
missing a primary key. Another rule which frequently reports an issue is “Use
of reserved SQL words”. Approximately 3% of all examined identifiers use a
reserved SQL word.

7.3 Report Examination

To verify the correctness of the issues reported by DBLint, we manually examine
two of the reports from the set of test systems: PrestaShop and phpBB. These
two schemas are chosen because they are not too large, while remaining non-
trivial. PrestaShop has a fair amount of foreign keys, while phpBB does not
have any.

We examine the issues in the report and rate them as either: true positive,
false positive or undecidable. True positive means that we found evidence sup-
porting that the issue is a real problem; false positive means that we found
evidence challenging the claim; undecidable means that we could not decide
whether the issue should be a true positive or a false positive. It should be
emphasized that our domain knowledge and application insight, is small to non-
existent.

We expect to find a correlation between severity level and the extent to
which all issues are true positives, such that critical issues have very few false
positives whereas info issues have more.

7.3.1 PrestaShop

The PrestaShop issues are summarized in Table 7. The most important infor-
mation is the bottom line which states that out of a total of 136 issues found,
122 are validated to be actual design issues in the schema, 9 are undecidable
and 5 are false positives.

It should be noted that the 21 critical issues are tables without primary keys,
the 65 medium issues are due to redundant indices, and 22 of the info issues
are due to reserved words. The rules generating these issues cannot raise false
positives, following the intuition that either you have a primary key or you do
not. As such they will not be discussed further.

The issues raised by “Too many nullable columns” and “Table with too few
columns” could not be determined to be a true positive or a false positive without
better domain and application knowledge. Rule “Inconsistent length on varchar
columns” reported 20 columns with length 255 and 3 columns of length 256.
Inspecting the columns (all of them) did not yield any evidence supporting that
this difference is justified.

Rule “Composite primary keys consisting of columns not used in foreign
keys” yielded some interesting results (five issues totally, four true positives
and one undecidable). One table had a composite primary-key consisting of
three columns, one auto-increment column and two foreign-key columns. The
primary-key is necessarily a super-key and could be reduced to only the auto-
increment column. Another table was missing the declaration of a foreign key
(which could be identified due to consistent names), and one table with a two

20

column primary key had neither column defined as a foreign-key constraint,
which again could be detected due to consistent naming.

Rule “Missing foreign key”, has one issue which we believe to be a false
positive, three issues where the foreign key has not been set, and two undecidable
issues where we found evidence supporting both conclusions.

Rule “Inconsistent data types” reported a total of nine issues of which four
are true positives, sucas the column “date upd”, which appears 12 times as
DateTime and one time as Date. Four issues has been estimated to be false
positives due to cases such as a column named “value”, which can refer to many
different types of values depending on the context. The last issue is undecidable.

True positive Undecidable False positive Total

Critical 21 0 0 21
High 2 5 0 7
Medium 65 0 0 65
Low 5 1 4 10
Info 29 3 1 33
Total 122 9 5 136

Table 7: The results of examining the issues for PrestaShop.

To sum up, 122 issues identified, 9 undecidable and 5 false positives. As can
be seen only low and info have false positives.

7.3.2 phpBB

The issues for phpBB are summarized in Table 8. The schema for phpBB is
smaller than PrestaShop, but it scores only half as much. 104 issues are reported
totally, of which 89 have been found to be true positives, 9 false positives and 6
undecidable.

In the phpBB schema there are 11 tables without primary keys, and 3 tables
with redundant indices. Because of the fact nature of these issues they will not
be discussed further.

Rule “Table with too few columns” reported one issues; a table with a single
column which is the primary key and appears to be a foreign key to the users
table. This results in a Boolean relationship and given that the users table
has 76 columns already we think that it is worth the extra byte in that table.
The extra byte could come from the 40 byte varchar column used to store IP
addresses.

Rule “Inconsistent varchar lengths” reported five columns of length 30 and
four columns of length 32, but inspection shows that the columns refer to dif-
ferent concepts and as such could be justified, hence it is rated undecidable.

Rule “Missing foreign key” accounts for 62 of the issues reported, which is
one issue for each table in the schema. Of these 52 has been identified to have
undefined foreign keys, 8 are identified to be false positives, i.e. tables should
stand alone, and 2 are undecidable.

Rule “Composite primary keys consisting of columns not used in foreign keys”
reported 11 issues, of which 9 are found to be true positives, in that foreign keys

21

have not been specified, while the column names match primary keys in other
tables. Two are found to be undecidable.

Rule “Very large varchar column” reported 15 issues of which 12 are true
positives and 3 are undecidable. We have tried to estimate the usage of the
columns and see whether it is better, from a performance perspective, to use
a CLOB instead. Cases where the entity is likely to be used without the large
varchar field has then been rated a true positive. It should be noted that of the
issues reported 13 have a maximum of 4000 characters, and 2 have a maximum
of 8000 characters.

True positive Undecidable False positive Total

Critical 11 0 0 11
High 1 1 0 2
Medium 3 0 0 3
Low 12 3 0 15
Info 62 2 9 73
Total 89 6 9 104

Table 8: The results of examining the issues for phpBB.

The result of examining the reports for PrestaShop and phpBB, is that the
rules detect relevant and real issues, with few false positives. Furthermore, false
positives occur only on issues with severity level info and low. The correctness
of some issues is undecidable because they require application knowledge to be
categorized as either a true positive or a false positive.

7.4 Naming Convention

To verify the approach used to find deviations in the naming convention we
manually examined two schemas with respect to their naming convention to
compare the result with DBLint’s result. The two systems are Typo3, in which
DBLint found 51 naming convention issues and Drupal which there are no issues
in.

When manually examining the two systems we first looked at the identi-
fiers to determine the naming convention. Afterwards, all the identifiers were
examined again to find those that deviated from the convention.

Comparing the result from the manual examination and the results from
DBLint we can see that the results agree on all the inconsistencies and the most
likely naming convention. From this we conclude that the approach taken in
discovering naming convention satisfies our intentions.

7.5 Performance

All performance tests have been run on a machine with an Intel Core i5 2.53
GHz processor, 4 GB RAM running Windows 7. When executing DBLint the
time spent analyzing a schema can be divided into two parts: extraction and
rule execution. The system first extracts metadata from the DBMS and then
executes the rules, including generating graphs for the report. In Figure 7 the
overall running time for DBLint is shown for the eight examined schemas. The

22

figure shows that the largest part of the running time is spent extracting data
from the server. We estimate that the extracting time is roughly proportional to
the size of the schema (tables, columns, keys, foreign keys), but is also dependent
on the DBMS.

Data Extraction + Rule Execution

25
= @ Rule Execution
20
" O Data Extraction
T 15
S
o 10
wv
5
o LF = N = i
AN o
2 N o A & > Q >
& & &N S &S N
Q \0 'b% N @ Q c}’b
N\ @QJ Q&

Schema

Figure 7: Running time for data extraction and rule execution.

DBLint uses JDBC to extract metadata and the performance by the extrac-
tion layer is thus limited by the implementation of the JDBC driver. Therefore,
we think that it reflects more of our work to show the execution time of rules.
Figure 8 shows the execution time of the 25 rules and generation of graphs for
the report for each examined system. As can be seen DBLint is very fast at exe-
cuting the rules, even for large schemas, with a total running time of less than
two seconds for a schema with 300 tables. This makes the rule execution part of
DBLint suitable for the envisioned work-flow, with a developer making schema
changes and then running DBLint to see if any issues have been introduced.

Rule Execution Time

1.8
15
1.2
0.9

Seconds

0.3 -
0.0 -

A
$ Q&&o S& ooe}"’ &Q& c}\o‘? /*Q&
o X >
S & Eq,b @ < Q’\é}

Schema

Figure 8: Running time for rule execution.

23

7.6 User Feedback

DBLint has been used to examine two deployed schemas. The output from
DBLint was reviewed by the developers of the schemas and they expressed their
opinions of the found design issues and the tool itself.

They like the idea of having a tool assisting the development process and
giving feedback about design quality. They found it to be less intimidating
to get feedback from a tool than from a superior/colleague. Having scores for
the individual tables and one for the overall design is a good feature, because
it introduced a competitive aspect of database development, such as finger-
pointing “You created the table that scores lowest” and show-off “My tables
only scores perfect”.

The rules implemented in DBLint identified relevant issues that are con-
sidered design errors by the database developers. Examples of such issues are
inconsistent varchar lengths, redundant indices and inappropriate use of pri-
mary keys. Overall, DBLint uncovered relevant issues in the database design,
which a developer should reconsider before deploying the database design.

Visualizing the database design based on foreign-key relations gave a differ-
ent view of the database than what the developers were used to. Normally they
visualize the database based on functionality aspects, which does not give the
same result. However, the visualization helps to give an overview of a database
schema and the relations in a fast and understandable way.

One commented that PageRank did not rate many-to-many relational tables
as central as he thought them to be. This is due to PageRank’s definition of
centrality which considers only inbound edges. Besides this, he agreed on the
ranks.

8 Limitations and Future Work

DBLint lays a foundation which can be extended in several directions. These
directions include more rules, additional features in the metadata model, and
analyzing more data sources such as: data, logs, code, stored procedures etc.

8.1 Database Model

DBLint is currently only extracting metadata from a database. In a future
version it would be interesting to also extract the actual data in the database.
Analyzing the actual data would, e.g., enable DBLint to verify that the data
types match the actual data. Furthermore, data analysis would provide addi-
tional information, enhancing the certainty of an issue.

All rules are applied on the entire model and all issues are reported each
time DBLint is executed. In a future version, DBLint could take an incremental
approach when examining databases. This would mean that only tables that
has changed since last time is reexamined. Also the reporting of issues could be
extended to highlight new issues which have emerged since the previous run.

8.2 Rules

We have a list containing 75 unimplemented rules which would look deeper into
the design and include views, temporary tables etc. If DBLint was capable of

24

extracting data and analyze on that, new possibilities for rules would arise. A
rule such as finding missing foreign keys would become much more confident
when analyzing data.

DBLint has some limitations in the analysis performed, in that it does
not consider views, temporary tables, UDTs or check constraints. Extending
DBLint with support for these would give a broader analysis of the schema in
question. For instance, some applications may have a physical model defined by
tables, and a logical model defined by views. As it is now, DBLint only analyzes
the physical model.

8.3 Conceptual Improvements

All rules are designed to run with zero configuration, because it reduces the
time required to get started. However, some rules would benefit from being
configurable, as the database design team could tailor DBLint to their project
by explicitly providing thresholds, conventions and setting severity levels of
rules. For instance, a design team could have good reasons for allowing certain
special characters in identifiers.

DBLint reports a list of potential design issues, and then the database de-
signer is required to correct the issues manually. In some cases it would be
useful if the tool suggested corrections, e.g. removing a redundant index.

9 Conclusion

In this paper we presented DBLint, a tool for automatic analysis of database
design. DBLint incorporates 25 design rules that checks for specific violations
of good database design practices. These are rules that can be applied to most
schemas without requiring configuration. Therefore, the database designer can
benefit from the tool with very little investment in time and money.

We presented a number of novel components that is not found in existing
systems. These are calculation of centrality using PageRank, visualization, scor-
ing and naming convention. We use centrality of tables in various contexts such
as visualization, scoring and naming. The visualization component renders an
overview of how tables are related based on foreign keys. Complex schemas
are handled by decomposing the schema into smaller comprehensible clusters.
The naming convention rule discovers the most common naming convention in
a database, and reports any inconsistencies it may find. The naming convention
rule is based on a Markov chain which is used to represent the syntax of all
identifiers in the database.

DBLint outputs a detailed report of all issues reported by the rules. The
report contains information such as descriptions of issues, tables, relationships
and various figures. Furthermore, DBLint provides a total score which summa-
rizes the overall quality of the schema. A score is also given to individual tables
such that the worst tables are easy to identify.

The architecture was made with two main features in focus: extensibility
and interoperability. The system is extensible in the sense that new rules can
easily be added to the system. This gives database designers the option to
develop more specialized rules that are relevant only for them. Interoperability
is archived using a DBMS independent metadata model. DBLint supports all

25

databases that provides a JDBC driver and has been tested on Oracle, SQL
Server, MySQL and PostgresSQL.

DBLint has been evaluated on eight open-source schemas. The results show
that the tool is able to find a large number of design issues in existing schemas.
For instance, approximately 10% of all tables in these schemas are missing a
primary key. The fact that DBLint is able to find issues in all schemas shows that
there is a need for such a tool. The rule execution time for each evaluated schema
is approximately one second, including generation of graphs in the visualization
component.

DBLint was used by two developer teams to examine deployed databases.
The feedback from the involved database designers was positive and it substan-
tiated our intuition of a need for a database design verification tool, to assist
developers in keeping a consistent and high quality database design.

10 Acknowledgment

We would like to thank the database design team at Aveva Denmark for eval-
uating DBLint and giving feedback. We would also like to thank Michael M.
Hansen from Aalborg University for evaluating and discussing the tool.

References

[1] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Seventh International World-Wide Web Conference (WWW
1998), 1998. URL http://ilpubs.stanford.edu:8090/361/.

[2] S. C. Johnson. Lint, a C Program Checker. In COMP. SCI. TECH. REP,
pages 781273, 1978.

[3] Pylint. http://www.logilab.org/857. Retrieved on January 7', 2011.
[4] Lint4j. http://www.jutils.com/. Retrieved on January 7%, 2011.

[5] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and
YuQian Zhou. Evaluating static analysis defect warnings on production
software. In Proceedings of the 7th ACM SIGPLAN-SIGSOF'T workshop

on Program analysis for software tools and engineering, PASTE 07, pages
1-8, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-595-3.

[6] John Currier. SchemaSpy. http://schemaspy.sourceforge.net. Re-
trieved on January 7", 2011.

[7] Sualeh Fatehi. SchemaCrawler. http://schemacrawler.sourceforge.
net. Retrieved on January 7", 2011.

[8] Embarcadero. Schema Examiner. http://www.embarcadero.com/
products/schema-examiner. Retrieved on January 7t", 2011.

[9] SSW. SQL Auditor. http://www.ssw.com.au/ssw/SQLAuditor/. Re-
trieved on January 7", 2011.

26

http://ilpubs.stanford.edu:8090/361/
http://www.logilab.org/857
http://www.jutils.com/
http://schemaspy.sourceforge.net
http://schemacrawler.sourceforge.net
http://schemacrawler.sourceforge.net
http://www.embarcadero.com/products/schema-examiner
http://www.embarcadero.com/products/schema-examiner
http://www.ssw.com.au/ssw/SQLAuditor/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

20]

21]

22]
23]
24]

Mario Piattini, Coral Calero, and Marcela Genero. Table oriented metrics
for relational databases. Software Quality Control, 9:79-97, June 2001.
ISSN 0963-9314. doi: 10.1023/A:1016670717863. URL http://portal.
acm.org/citation.cfm?id=599123.599199.

Coral Calero, Mario Piattini, and Marcela Genero. A case study with
relational database metrics. In Proceedings of the ACS/IEEE Interna-
tional Conference on Computer Systems and Applications, Washington,
DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1165-1. URL
http://portal.acm.org/citation.cfm?id=872017.872249.

Daniel L. Moody. Metrics for evaluating the quality of entity relationship
models. In Proceedings of the 17th International Conference on Concep-
tual Modeling, ER 98, pages 211-225, London, UK, 1998. Springer-Verlag.
ISBN 3-540-65189-6. URL http://portal.acm.org/citation.cfm?id=
647520.727704.

Ernest Teniente, Carles Farré, Toni Urpi, Carlos Beltran, and David Ganan.
SVT: schema validation tool for microsoft SQL-server. In Proceedings of
the Thirtieth international conference on Very large data bases - Volume 30,
VLDB ’04, pages 1349-1352. VLDB Endowment, 2004. ISBN 0-12-088469-
0. URL http://portal.acm.org/citation.cfm?id=1316689.1316831.

George Reese. Java Database Best Practices. O'Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2003. ISBN 0596005229.

Steve McConnell. Code Complete, Second Edition. Microsoft Press, Red-
mond, WA, USA, 2004. ISBN 0735619670.

Brian D. Hahn. Essential MATLAB for Scientists and Engineers.
Butterworth-Heinemann, Newton, MA, USA, 4th edition, 2009. ISBN
0123748836.

Robert Tarjan. Depth-first search and linear graph algorithms. In Switching
and Automata Theory, 1971., 12th Annual Symposium on, pages 114 —121,
1971. doi: 10.1109/SWAT.1971.10.

Magento. http://www.magentocommerce.com. Retrieved on January 7%,
2011.

Michelle Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proc. Natl. Acad. Sci. USA, 99:8271-8276, 2002.

Fang Wu and Bernardo A. Huberman. Finding communities in linear time:
A physics approach. CoRR, cond-mat /0310600, 2003. URL http://arxiv.
org/abs/cond-mat/0310600. informal publication.

JDBC 4.0 API Specification. http://www.jcp.org/en/jsr/detail?id=
221. Retrieved on January 7", 2011.

Drupal. http://drupal.org. Retrieved on January 7*" 2011.
Joomla! http://www.joomla.org. Retrieved on January 7", 2011.

Mediawiki. http://www.mediawiki.org. Retrieved on January 7", 2011.

27

http://portal.acm.org/citation.cfm?id=599123.599199
http://portal.acm.org/citation.cfm?id=599123.599199
http://portal.acm.org/citation.cfm?id=872017.872249
http://portal.acm.org/citation.cfm?id=647520.727704
http://portal.acm.org/citation.cfm?id=647520.727704
http://portal.acm.org/citation.cfm?id=1316689.1316831
http://www.magentocommerce.com
http://arxiv.org/abs/cond-mat/0310600
http://arxiv.org/abs/cond-mat/0310600
http://www.jcp.org/en/jsr/detail?id=221
http://www.jcp.org/en/jsr/detail?id=221
http://drupal.org
http://www.joomla.org
http://www.mediawiki.org

[25] Moodle. http://www.moodle.org. Retrieved on January 7%, 2011.
[26] phpBB. http://www.phpbb.com. Retrieved on January 7% 2011.

[27] Prestashop. http://www.prestashop.com. Retrieved on January 7',
2011.

[28] Typo3. http://www.typo3.org. Retrieved on January 7°%, 2011.

28

http://www.moodle.org
http://www.phpbb.com
http://www.prestashop.com
http://www.typo3.org

Appendix
A Markov Chain

1,34%

Figure 9: Markov chain representing the naming convention of a large ERP
system. The numerous states and transitions indicate a complex or non-existent
naming convention.

B Magento Graphs

29

/] b '

~7 N

RN N
k\ "“‘Q \\« \
NN \9‘ SN ‘
A 4

N~
-&“‘e‘?é%/v/ \\\%\
\

N
i
[
/29

0

O
/ AN \ nd! k{e})]/ A o /
‘ ‘\.\\“0‘“\ \?l}\\‘ ’é;i‘,f"o A 0‘7" -

Figure 10: Magento spiderweb without clustering.

30

Anueewoisnd

»e1 A1Ue BWoisno

fioBeres Boerd

Wi Ainue ™ lewosnd

%21 A1nua~ A10Bares” Bo e

[ewioep Aea xapul 1onpoid 6o eres

2INq LR ABS JOWO0ISND

Nea” xapui jonpo.d Bofereo

= F~—
s

g Aes 6o eres

9o1d xepu1bo ereo

Wi Ainus npoud Boeres

91B0PM 800

Anua 1onpoid bBoered

Figure 11: The largest cluster produced by DBLint when clustering the Magento

schema.

31

B.1 Cluster Summary

In addition to displaying the largest cluster for the Magento schema, the sum-
mary in Table 9 illustrates the quality of the approach. The table contains the
size of each cluster, how many foreign-keys are within each cluster and how
many foreign-keys that points to tables in other clusters.

A cluster is named after the tables in it, such that if a common prefix exists
between all the tables in the cluster, then that prefix is used. If a common
prefix does not exist, then the cluster is named “cluster-n”, where n is a unique
number. There are two exceptions to this rule, namely the “main-tables”, entry
which contains the most central tables, and the second-last entry named “single-
tables”, which contains all tables with no foreign keys (inbound or outbound).
We create “single-tables” to avoid creating a cluster for each table with no foreign
key, in this case 68 clusters.

The only cluster not having a perfect “Coupling” score (see Section 5.1) is
“main-tables”, which has four foreign-keys to tables in three other clusters.

The difference between the table count here, and the table count in the actual
schema is explained by how tables from the “main-tables” cluster are handled.
Whenever a table in a given cluster references a table from the “main-tables”
cluster, that table is inserted in the given cluster. This causes tables from
“main-tables” to be inserted in several clusters, which explains the difference.

32

Cluster Tables Internal External
Foreign-Keys Foreign-Keys

catalog category 12 23 0
catalog 12 25 0
catalogindex aggregation 4 3 0
cataloginventory stock 5 5 0
catalog product bundle 4 4 0
catalog product link 7 10 0
catalog product option 8 10 0
catalog product super attribute 6 5 0
cluster-11 6 5 0
cluster-16 7 8 0
cluster-26 24 49 0
cluster-27 9 15 0
cluster-28 11 16 0
cluster-29 22 22 0
cluster-30 4 3 0
cluster-31 19 13 0
cluster-32 20 17 0
cluster-33 12 12 0
cluster-9 7 7 0
customer address entity 9 16 0
dataflow 6 5 0
downloadable link 6) 0
eav entity 8 17 0
eav form 8 9 0
index 3 2 0
main-tables 11 7 4
poll 5) 0
rating 9 10 0
sales 9 11 0
sales flat creditmemo 6 6 0
sales flat invoice 6 6 0
sales flat quote 9 12 0
sales flat shipment 7 7 0
salesrule 7 7 0
single-tables 68 0 0
tax c 6 6 0

382 383 4

Table 9: Summary of the generated clusters for Magento. Note that only “main-
tables” is coupled with other clusters. Clusters have between 4 and 24 tables,
except “single-tables” which only has tables with no foreign keys.

33

	Introduction
	Related Work
	Tools
	Academia

	Running Example
	Database Design Rules
	Rules Overview
	Severity Levels
	Naming Convention Rule
	Cycle Detection Rule

	Report
	Visualization of Relations
	Our Approach
	Cluster Algorithm

	PageRank
	The PageRank Algorithm

	Scoring
	Table Score
	Total Score
	Example

	System Architecture
	Extraction Layer
	Model Layer
	Rule Layer
	UI Layer

	Evaluation
	Test Systems
	Issues Found
	Report Examination
	PrestaShop
	phpBB

	Naming Convention
	Performance
	User Feedback

	Limitations and Future Work
	Database Model
	Rules
	Conceptual Improvements

	Conclusion
	Acknowledgment
	Markov Chain
	Magento Graphs
	Cluster Summary

