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Chapter 1

Introduction

Machine learning has emerged as a promising new tool in the field of agriculture.
As the paper by Liakos et al. [1] explores, machine learning has been used in
many different fields of agriculture, especially in crop management, where it has
for example been used for yield prediction, disease detection, crop quality, weed
detection and more.
In Mishra et al. [2] and their work on spectral imaging of plants, they mention
how different forms of machine learning, such as CNN based methods are good
approaches for utilizing the sensor data they gather.
The work done by Osorio et al. [3] is an example where such image data was
processed with the use of machine learning. They implemented three different
deep learning based approaches for estimating the amount of weed in a field.

Another use of machine learning in agriculture was suggested by Christiansen
et al. [4]. They developed a deep neural network for detecting anomalies in the
context of robotic farming, allowing automated farming equipment to reliably de-
tect and avoid unexpected obstacles.

As seen machine learning in agriculture is an active field and for good reason.
The agricultural industry is vital for our way of life, providing the food we need to
survive. The more efficient the the field of agriculture can operate, the more food
we can produce for the same impact on our environment. This project focuses on
the task of using machine learning in weed detection, as weeds are a major threat
to crop production, and being able to selectively/mechanically remove them saves
on expensive and environmentally problematic herbicides [5].

Training a network to distinguish between crops and weeds is a difficult task
as they often are very similar, and for a model to be successful a large good quality
dataset to train on is necessary.
Creating such datasets is a large and expensive task, as several thousand examples
have to be manually annotated. Depending on the task the model needs to solve,
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this annotation can vary from simply labeling each sample, for example with im-
age classification, or can be as complex as annotating all pixels in an image in the
case of image segmentation. The larger the dataset, and the more complex the
required annotation, the more time and money has to be spent on creating a good
dataset to train a model on.

With the current method, a representative dataset has to be collected. A dataset
that has as many variations of the desired classes such that the chosen model can
learn as many variations of the different classes as possible. This collection task is
itself a sizeable task, however this data then has to be further annotated.

One method to reduce this task of annotation is to attempt to automate the
annotation task. Saripalli et al. [6] developed an AI assisted annotation tool, that
would attempt to automatically annotate new data based on previous expert an-
notated data through reinforcement learning, and with further expert input would
continously improve. Maninis et al. [7] developed a method (DEXTR) that would
generate detailed polygon annotations given just the extreme points of an object. A
system like This reduces the amount of work an annotator has to put in per image,
and produced high quality annotations.

A different strategy used to reduce or eliminate the need for manual image
annotation, is the synthetic generation of a dataset. Generating a dataset entirely
allows the annotation to be perfectly generated along with the samples. Henriksen
et al. [8] developed a system to generate point-cloud data for a virtual ToF sensor
in a virtual sewer system. This system allowed entirely automated generation of a
point-cloud dataset for sewer inspection. Their work was based off of the work by
Prakash et al. [9] on Structured Domain Randomization (SDR), which showed that
a fully synthetic dataset could be generated and used to train a network which
performed competitively with conventional datasets without having to generate
photo realistic images.

While SDR showed that photo-real data isn’t always necessary, there are times
where the task at hand doesn’t fit the approach. In these cases photo-real datasets
are of interest, and different methods for generating these have also been explored.
One such method was proposed by Ghorbani et al. in their DermGAN paper [10]
where they used a U-net based GAN to transfer rare skin conditions to a variety
of skin types with the goal of augment otherwise sparse datasets.

Similarly Dwibedi et al. [11] proposed a method of copy pasting objects into
background scenes and blending them into the image, to quickly create a large
dataset of images for training object detection models. By copy pasting the images
they achieve photo-realistic objects by default. Instead the work was in blending
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these objects into the background in a way that wasn’t visible to a machine learning
model.

Our project aims to investigate how synthetically generated datasets could help
in the field of agriculture. If synthetically generated datasets could help speed up
the training or re-training of models used to detect and control weed on farm land.

1.1 Initial problem statement

What possibilities are there for easing the process of acquiring datasets in agri-
culture by synthetically generating it?



Chapter 2

Problem Analysis

2.1 Methods for generating synthetic datasets

As discussed in the introduction, there are several different ways to produce syn-
thetic datasets. This section discusses three different approaches. Photo realistic
renderings, style transfer using generative networks and the simple Cut, Paste and
Learn method by Dwibedi et al. [11]

2.1.1 3D Rendering for synthetic datasets

One method of generating a synthetic dataset is to model the scene in enough detail
to generate photo-realistic renders. Cicco et al. [12] developed such a method for
full 3D rendering of a sugar-beet and weed dataset with physics modeling of the
leaves as well. While this method, if implemented with a sufficient level of detail,
can perform very well, it requires a lot of work in modelling the desired classes,
as not just the shape, but also the material properties and light interactions have to
be properly modeled.

2.1.2 Synthetic images using Generative networks

Lin et al. [13] developed a network, (SYN-MTGAN), for generating a more bal-
anced dataset of street signs. Their project aimed to generate more samples of
under represented classes, as the frequency of difference classes were very differ-
ent. Their approach for generating samples uses their network to transfer the style
of real images to fake images, and in this way generate more samples for use in
training. Using their method they managed to improve model performance on an
object detector model compared to using purely conventional datasets.

4
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2.1.3 Cut, Paste and Learn

In the paper by Dwibedi et al. [11] a method of dataset generation is proposed
that avoids the complexities of computer rendering, or the training of generative
networks. Instead they achieve photo-realistic images by using real images and
inserting them onto real backgrounds. This simple approach allows them to gen-
erate large datasets from a collection of background images, and a collection of
images of their desired classes. Simply pasting the images onto the backgrounds
however isn’t sufficient, and their work focuses on the process of blending these
objects into the background in such a way that a neural network trained on these
images would correctly learn the different classes and not pasting artifacts.

Their testing showed that while their synthetic datasets didn’t outperform a
conventional dataset on it’s own, it did outperform a conventional dataset if they
mixed 10% of the conventional dataset into their synthetic dataset.

2.2 Datasets in agriculture

In order to evaluate the use of generated synthetic datasets in agriculture, a con-
vectional dataset to compare against has to be selected. In the field of agriculture
multiple public dataset have been made to use in computer vision tasks, where
available datasets have been compiled in a survey by Lu and Young [14] and more
datasets have been listed in the survey by Kamilaris and Prenafeta-Boldú [15].

Some other dataset available in agriculture is the Weed-AI platform from Preci-
sion Weed Control Group and Sydney Informatics Hub [16]. The dataset available
there is all bounding box notations of weed, the downside of this type of anno-
tations is the additional work need to segment the weed if extraction of only the
weed and not the ground i needed. Additionally only the weed is annotated so
to get crop extracted from the dataset these also need to to be annotated. These
dataset were therefor not suitable for our use case.

The survey [14] divided the datasets up into 3 different categories, weed con-
trol, fruit detection and other. In addition to these categories the survey also pro-
vides the size of the dataset, type of annotation, how the data it acquired and
what type of data is given for each dataset. This make it easier to identify relevant
datasets for our use case. As the focus of the project is mechanical weed control as
stated earlier in the introduction chapter 1, datasets suitable for this will be looked
into. This means image segmentation datasets, as the provide very accurate local-
ization of the different objects. From this survey two datasets with a large amount
of segmentation annotated images was found. The dataset by Chebrolu et al. [17]
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with 12,340 images and by Sa et al. [18] with 10,196 title images.

(a) RGB image (b) Corespondent color mask

Figure 2.1: Example of image from [17].

The dataset from [17] was chosen, as it has a higher resolution of the crops and
weeds as each image has a resolution of 1296× 966 pixels over a area of 24 cm × 31
cm which will give a resolution of approximately 3 pixel/mm as it can be seen on
figure 2.1, where [18] highest resolution of 8.2 cm/pixel which is 0.01 pixel/mm.

2.3 Distribution of crops and weed in data-set

As the data-set is a series of images of sugar beets, there’s a large class imbalance.
The largest class is the background dirt, especially on images in the early stages of
the crops growth. Similarly, as weeds aren’t intentionally planted, the weed class
has very few samples compared to either the crop or the dirt class. Because of this
large class imbalance, a model trained with no class weighing would reach close
to 100% accuracy by just predicting all pixels as dirt.

The distribution of classes on the data-set can be seen in table 2.1

Background Weed Crop

98.5% 0.2% 1.3%

Table 2.1: The distribution of the different classes in the data-set

In order to train a model on this data-set, a method for dealing with the class
imbalance is necessary. While over-sampling under-represented classes or under-
sampling over-represented classes is a common approach in other learning tasks, it
doesn’t apply well to our data-set as context around the pixels is important. Instead
the loss is weighed for each pixel depending on its class, giving more importance
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to under-represented samples. To find these class weights, several approaches can
be used. The first and simplest idea is to weigh each class inversely related to it’s
frequency in the data-set as shown in equation (2.1).

WCi =
N

C ∗ NCi

(2.1)

where:

• WCi is the weight of class Ci

• N is the total number of samples

• C is the total number of classes

• NCi is the total number of samples in class Ci

However using this lead to very unstable behaviour and caused the model train-
ing to fail. This is likely due to the very large weights for the under-represented
classes.
Another method of weight balancing was chosen, median frequency weighing as de-
scribed in the paper by Eigen et al. [19]. This was chosen as recent studies have
found that inverse frequency weighing isn’t optimal, and instead a smoothed ver-
sion performs better [20]. To calculate this weight equation (2.2) and equation (2.3)
is used.

WCi =
median_ f req

f req(Ci)
(2.2)

f req(Ci) =
NCi

NPCi

(2.3)

where:

• WCi is the weight of class Ci

• NCi is the total number of samples in class Ci

• NPCi
is the total number of pixels in images where class Ci is present

• median_ f req is the median of the frequencies for all classes

Additionally, as described in the paper by Cui et al. [21], we re-scale the weights
such that the sum of the weights come out to the number of classes C.
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2.4 Choice of detection model

In order to evaluate how the different datasets compare to each other, they have
to be used to train a machine learning model. As the dataset is annotated for seg-
mentation the model has to be capable of image segmentation.

While there are a lot of networks available for image segmentation, the absolute
performance isn’t the important metric. The main goal is to compare how well the
different datasets used to train the model impacts the performance of the model.

As such the choice of model was made after looking at options such as Mask
R-CNN [22], Deeplab V3 [23] and U-net [24] and the U-net network was chosen.

U-net was chosen, as it is a popular network having been cited over 25000 times
according to google scholar as of 2021-07-01. Compared to the other networks, its
structure is fairly simple, and as such is quicker to implement. As the focus isn’t
on the absolute model performance, this is an important benefit. Additionally it is
a single network that has to be trained compared to Mask R-CNN which consists
of two networks, a Region Proposal Network (RPN) that finds regions of interest in
the image, and then a second network that then performs the image segmentation.

2.5 Success criteria

In order to know if the synthetic generated data would be a viable alternative to
the real data, some kind of criteria is needed. These success criteria will be based
on the result from [17] as it is the method for generating synthetic images that
the solution in this report will be based on. As [17] was able to get results of 5
% lower than the real dataset, this same limit will be considered sufficient model
performance in our implementation.

2.6 Problem statement

Can the use of a simple cut and paste method for generating synthetic data for
machine learning perform close to or better than conventionally collected and
annotated datasets in crop/weed image segmentation?



Chapter 3

Design and implementation

As stated from the problem statement in section 2.6 our project will implement
the cut and paste method, the first step of the design and implementation is the
extraction of weed and crops from the dataset [17] as illustrated in figure 3.1a,
where a synthetic dataset then will be made from these extracted weeds and crops,
as it can be seen on illustration in figure 3.1b, Lastly U-net in which the synthetic
dataset needs to be tested on need to be designed. Each of these step will be
described in detail trough out this chapter.

Exstract

Real image
Crops

Weeds

(a) Illustration of extraction of weed and crop.

Generate

Synthetic image
Crops

Weeds

Background

(b) The concept of generation synthetic image from background and cut
out crops and weeds

Figure 3.1: Illustration of the process of generating synthetic data.

9
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3.1 Synthetic image generation

In order to generate a synthetic dataset using the copy paste method described
in section 2.1.3 a source of the class images and backgrounds have to be chosen.
As our project aims to investigate the use of synthetically generated datasets for
detection of weeds and crops, the source for our synthetic dataset, and the dataset
we’ll be comparing to, is the "SugarBeets2016" [17] dataset. This dataset has a large
collection of RGB images of crops and weeds with annotation masks.

3.1.1 Background images

In order to get some clear backgrounds for pasting in crops and weeds, the dataset
was parsed for images where no crop or weed was present. 13 such images were
found and could be used as the background images for pasting instances of the
crop and weed classes onto.

3.1.2 Crops and weeds

The original paper used simple one object images of the objects they wanted to
place in the scene, and then used a machine learning model to segment and extract
the objects, however as the dataset we use already has full class segmentation
masks these can instead be used to segment the objects from the images. To do
this, the two color segmentation maps were first split into binary masks for each
class as shown on figure 3.2.

Crop

Weed

Figure 3.2: Illustration of how a color map is divided into a weed and crop mask

With the crop and weed masks split into their own masks, these could be used
to extract the crops and weeds. A diagram of the method used for extracting these
can be seen on figure 3.3.
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Dilate masks Find contour remove interior
contour

Create masksextract plants
from image

Crop and save
plant image
and mask

Mask image Image Contours

Contours
Plant mask
and images

Mask
Images

RGB image

Figure 3.3: Diagram of the extraction of plant and corresponding mask.

As the masks for the plants can have some leaves show up as separate closed
contours while they still belong to the same plant, the masks are dilated slightly
to ensure that one continuous mask is found for a single plant. The smaller non-
dilated masks are still retained, as these are what will be used to segment the
crops later, however the larger continuous mask is used to represent the plant for
positioning and distance measurements. This larger plant contour can have voids
in it, as the contours of the individual leaves are only dilated enough to slightly
over-lap. These voids are smaller contours fully contained within the larger plant
contour, and are removed, as they represent soil around the stem of the plant.

Once the plants have been localized with this outer contour, the original leaf
contours are used to make a new mask for each plant. This way the algorithm can
segment individual plants made up of separate leaves.

The end result is a collection of crops and weeds exported to individual files to
later be used to generate a synthetic dataset.

Each step of the extraction process from figure 3.3 is shown in figure 3.4 for the
crops part of the annotation from figure 3.2.

Contour

In order to find the contour of a plant, the function findContour() from OpenCV is
used, which takes a binary image and finds all the contours in it. The algorithm
used by OpenCV to find the contours is proposed by Satoshi Suzuki and Keiichi
Abe in "Topological structural analysis of digitized binary images by border following
[25]".

Dilate mask

As the mask image is a binary image, dilation can be used. Dilating is part of
mathematical morphology, which is a method where a kernel is used on each pixel
of the mask/image [26]. Morphology have multiple operations that can me used
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(a) The crop mask ex-
tracted in figure 3.3 is
dilated

(b) The contour of the
dilated mask is found
and as there is no con-
tours inside, none are
removed.

(c) The masks inside
the dilated contour
are all considered one
plant, and used to ex-
tract it.

Image Mask

(d) The extracted crops image and mask

Figure 3.4: Here is an example of the process of extracting crops from the original dataset.

on the mask, but as only dilation is used, only this will be explained.

Each pixel in a binary image is represented by ether ’0’ or ’1’, where ’1’ is the
masking bit. By applying a kernel on all pixel a dilated mask will be created. This
kernel is denoted as structuring element (SE) and equation (3.1) show how it is
applied.

g(x, y) = f (x, y)
⊕

SE (3.1)

figure 3.5 shows an example where the structuring element is 3× 3.

11 1
1 1 1
1 1 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0

00 0 1 0 1 1 0 0 00

00 0 0 0 0

1 1 0 0 00 0 1 1 1
0 0 0 0 00 0 1 1 1
1 0 0 0 00 0 1 1 0
1 0 0 0 00 0 0 0 1
0 0 0 0 00 0 0 0 0
0 0 0 0 00 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0

00 0 1 0 1 1 0 0 00

00 0 0 0 0

1 1 0 0 00 0 1 1 1
0 0 0 0 00 0 1 1 1
1 1 0 0 00 0 1 1 1
1 1 0 0 00 0 0 1 1
1 1 0 0 00 0 0 1 1
0 0 0 0 00 0 0 0 0

1 1 1 1 1
11 1 1 1

111 1
1 1

1111
1
1 1

Mask

SE

Dilated mask

Figure 3.5: Illustration of a mask being dilated by a 3× 3 SE.
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3.1.3 Annotation quality

After extracting crops and weeds from the dataset, it was noted that several ex-
tracted crops or weeds were flawed, which lead to finding out that several annota-
tions in the dataset were inaccurate. The errors that were found can be divided into
two different types. One error has weed annotated as part of a crop (figure 3.6a)
another annotated soil as weed (figure 3.6b). In order to ensure high quality anno-
tations in the synthetic dataset, all extracted crops and plants were inspected and
faulty annotations were removed. Depending on how many such flawed annota-
tions are present in the real dataset, it could impact the model performance when
trained on it.

(a) Weed and crop notated as one crop. (b) Ground notated as weed.

Figure 3.6: Examples of two different bad notations. Green notation as crops and Red notating
as weeds
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3.2 Generation of synthetic dataset

The method used to generate synthetic images is based on the cut and paste
method described in section 2.1.3. Before one or more of the extracted objects
are placed on a background image the location to place them have to be found.
Where the original paper [11] placed the objects randomly, we aim to more closely
mimic the parent dataset. In order to do that the placement of plants and crops
have to be determined.

3.2.1 Analyse real dataset

When creating a synthetic dataset, the position of the weed and crops are necessary
to place the plants in a realistic manner. Crops are usually planted in a row with
a fixed interval and a fixed space between rows as it can be seen on 3.7. Weeds on
the other hand aren’t intentionally planted, and could appear anywhere, however
their distance to the crops is a metric that can be used to characterize their position-
ing. Lastly the amount of crops and weeds in an image is also an important metric.

a
b

c

c

Crop

Crop

Crop

d
Weed

Weed

Figure 3.7: Illustration of crops and weeds positions and relevant metrics used to characterize
the dataset. (a) is the x-axis position of the crop centroids. (b) is the crops distance from the
top of the image. (c) is the distance between crops along the rows and (d) is the distance from
a weed to the nearest crop.

To analyse the crops, the dilated mask contours from section 3.1.2 representing
the plants are used. First the centroids for each contour is found and represents the
centroid of the plant. All plant horizontal positions are then collected and plotted
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in a histogram as seen on figure 3.8. The distribution can be approximated by a
normal distribution, so the median and standard deviation is found.

Figure 3.8: Histogram of all the crops position in the x-axis.

To calculate the standard deviation (σ), equation (3.2) is used, and the mean is
calculated with equation (3.3) [27].

σ =

√
1
n

n

∑
i=1

(xi − µ)2 (3.2)

µ =
1
n

n

∑
i=1

xi (3.3)

where:

• µ is the mean value of the dataset

• n is the size of the

• xi is the x value of crop i

With equation (3.2) and equation (3.3) the mean and standard deviation of the
crops position in the x axis is calculated to be 586.971 and 128.016 respectively.

Next the distance between the crops is characterized.
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To find the distance between the the crops, a distance between all the crops in
each image is calculated and the the n− 1 smallest distances is taken, where n is
the number of crops in an image. This is because a distance further away than the
n− 1 closest is not distance to the closest crop but the crops further away.

From this method the distribution of the distance to the next crop is found and
a histogram can be seen on figure 3.9.

Figure 3.9: Histogram showing the distribution of the distance between two crops in a image

As the distribution of the distance between the crops looks like a normal dis-
tribution equation (3.3) and equation (3.2) can be used again to find the mean and
standard deviation. With these equations the mean is found to be 509.512 and the
standard deviation to be 72.082.

With the distance between the crops and the crops horizontal position charac-
terized, the amount of crops in an image, and how far from the edge they typically
appear needs to be characterized.

As there will be no crops on a generated image, another metric than distance to
crops is needed to place the first crop. For this the distance to the top of the image
is used. This distance to the top of the image is measured perpendicular to the top
and the distribution of distance can be seen on figure 3.10

Figure 3.9 shows a histogram of the crops distance to the top of the image.
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Figure 3.10: Histogram showing the distribution of closet crops distance to the top of the image.

As this distribution does not look like a symmetric normal distribution but
more like half of a normal distribution, the normal distribution parameters will be
found with equation (3.2) but where µ is the smallest value.

For the position of the weed compared to the crops, the distance between the
weed and the crop is used. To get this distance the centroid of the crop and the
centroid of the weed is used as the points to measure between. By getting the dis-
tance of all the weed to all the crops in a image the distribution on the histogram
in figure 3.11 can be found.
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Figure 3.11: Histogram showing the distribution of weed distance to the crops.

Lastly the number of weeds and crops in the image will be analysed by count-
ing the number of contours in the weed masks and the crop masks respectively.
The distribution of the dataset can me sen on figure 3.12, where equation (3.2) and
equation (3.3) will be used on 3.12a and equation (3.2) with µ set to the smallest
value, will be used on figure 3.12b.

(a) Histogram showing crops. (b) Histogram showing weed.

Figure 3.12: Distributions of crops and weed per image.

All the results from analysing of the real dataset can be seen on table 3.1.
With a description of the crop and weed placements, construction of the syn-

thetic datasets can begin.
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Mean Standard deviation
crops horizontal position 586.971 128.016
Crops distance between
each other

509.512 72.082

Crops distance to top of
image

14.000 319.126

Weed distance from crops 535.795 229.102
Weed count distribution 0.000 4.852
Crop count distribution 1.842 0.577

Table 3.1: Mean and standard deviation of crops and weed position from real dataset

3.2.2 Placement of plant on image

After finding a general description of the distribution of crops and weeds in the
dataset, construction of a synthetic dataset can begin. First, the amount of crops
and weed to place in the image is randomly chosen to be within the range found
in the original dataset. After this the location of the first crop is randomly picked
based on the normal distributions found in the original dataset. The X position
of each crop is always sampled like this, however the Y position is based on the
distance from the top for the first crop placed, and on the distance to the previous
crop for any further crops. The process of finding the position of the crops is
illustrated in figure 3.13 where the position of the crops can be seen on figure 3.7.

The placement of the weeds are randomly placed based on the distance from
crops as observed in the dataset, as they are not intentionally planted.

First crop on
imageposition x-axis dist to top in y-

axis

dist to last
crop in y-axis

no

yes
crops position

Figure 3.13: Diagram showing how the crops position is found

After the location of the plants and weeds have been determined, the image has
to be constructed. The previously extracted weed and crop images are randomly
picked and placed on the coordinates. The weeds are placed first, as they are
smaller and can be partially or fully occluded by large crops.

To achieve more variation in output images, the background images are ran-
domly flipped, effectively augmenting the amount of backgrounds the network
sees. Additionally, as the dataset entirely consists of images taken from directly
above the plants, the plants can also be randomly rotated to augment the selection
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of plants.
After placing the weeds and crops there will be heavy artifacts around the

edge of the placed objects, requiring blending to properly merge them with the
background.

3.2.3 Blending

As can be seen on figure 3.14 an object that is pasted into an image will generate
artifacts at the border between the object and background. To remove these arti-
facts blending is used. To reduce the sharp tranasition along the edge of the plat,
Gaussian blur is used to blend the border with the background. Furthermore Pois-
son local illumination is used to better blend the object into the scene. the effect of
both Gaussian blur and Poisson local illumination can be seen on figure 3.15.

Figure 3.14: Example of crop pasted on a background without blending.

(a) Gaussian blur applied to the edge.
(no Poisson)

(b) Poisson local illumination change
applied. (No Gaussian)

Figure 3.15: Examples of the the types of blending used on the pasted plant.
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Gaussian blur

Blurring also called smoothing is done by applying a kernel on the image. To apply
this blurring equation (3.4) is used [28].

g(x, y) =
R

∑
i=−R

R

∑
j=−R

h(i, j) · f (x− i, y− j) (3.4)

Where:

• g is the blurred image

• x and y is the ordinate where the filter is applied

• h represent the applied kernel

• f represent the image

• R is the radius of the kernel

The kernel used in the blurring is a Gaussian kernel. The reason for this choice
is the closer a pixel is to the center pixel the higher importance it has. To get this
kernel equation (3.5) is used [28].

h(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (3.5)

where:

• σ is the variance

• x and y is the distance from the center

As it is only the edge that needs to be blurred, the contours of all the masks
are drawn on a binary image which will be used as a mask to indicate the part of
the image that will need to be blurred. The contour width was decided to be 5 by
trying different sizes and found this to be optimal visually.

The edge is then blurred by creating an image where the kernel has been ap-
plied and then using the created mask to paste the blurred part onto the original
image. The optimal kernel size used to blur the image was found to be 5× 5, which
was again decided by visually inspection a blurred edge on a generated image. The
final result of the Gaussian blur can be seen on figure 3.15a
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Poisson local illumination

To make the pasted plant better blend in to the scene Poisson local illumination
changes was used, as proposed in the paper "Poisson Image Editing" [29]. The
advantage of using local illumination is to lessen specular reflections and also in
case of under-exposure correct it by change the dynamic range over the designated
area evenly. To do this equation (3.6) is used to get the gradient field over the area
of the mask object.

v = αβ|∇ f ∗|−β∇ f ∗ (3.6)

Where:

• v is the transform vector field

• α is 0.2

• β is 0.2

• f ∗ represent the area of the original/background image

By solving the Poisson equation in equation (3.7) with the boundary conditions
defined in equation (3.8), the illumination will be changed within the boundary
area.

∆ f = div v (3.7)

f |δΩ = f ∗|δΩ (3.8)

Where:

• f ∗ and v is the same a previous

• f represent the mask region of the image

• δΩ is the boundary around the mask

The end result of using this local illumination change can be seen on fig-
ure 3.15b where it can be seen the illumination of the crop is more even over
the hole image.
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Get position of
weed and crop

Paste crops and
weed on image

Blending of the
image

Create mask
image

Save image and
mask

Chose number of
weed and crops

Select weed and
crops

Figure 3.16: Diagram of the steps involved in placing the plants in a image

3.2.4 output of synthetic image generator

On figure 3.16 a diagram of the full process of generating a synthetic image can be
seen.

The end result of the generated images can be seen on 3.17, where the same
example image is shown with all the different combinations of blending or no
blending is used. A larger version of the images can also be seen in appendix A
with the corresponding mask. 6 other examples of generated image can also be
seen in appendix B

(a) No blending. (b) Gaussian blending.

(c) Poisson blending. (d) Poisson and Gaussian blending

Figure 3.17: Examples of the generated images with different types of blending.
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3.3 Neural network theory

Before discussing the architecture of the chosen model for testing the data, this
section will cover some of the basic theory in neural networks.

3.3.1 Neurons

An Artificial Neural Network (ANN) is computer model meant to simulate the hu-
man brains ability to learn behaviour that it wasn’t explicitly programmed for. The
base unit of a neural network is called a neuron. A neuron is a basic component,
consisting of an arbitrary amount of weighted inputs, an activation function that
processes these inputs, a bias and an output from the neuron [30]. An illustration
of the neuron can be seen on figure 3.18 and it is described by equation (3.9)

Figure 3.18: A model of a single artificial neuron [31]

y = φ((
n

∑
1

xi ∗ωi) + b) (3.9)

3.3.2 Constructing a network

While a single neuron is the simplest possible network, it can’t do much work
on its own. As such a neural network is constructed. This is done by arranging
multiple neurons next to each other forming a layer, and having several layers one
after another as seen on figure 3.19

This example network has an input layer with three inputs, and an output layer
with a single neuron. In between are two so-called hidden layers with 4 neurons
each. These are called hidden layers, as they don’t directly interact with the users
info. Input data is passed to the input layer, passed through the layers of the
model, and a result is then presented on the output layer. The hidden layers, their
type size and connectivity, affects how complex behaviour the model can learn.
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Figure 3.19: An illustration of a simple neural network[31]

In the example all layers are fully connected. Every neuron output is connected
to all neurons in the next layer. This isn’t the only way to construct a network.
Layer types such as convolutional layers for example rely on a particular way of
connecting between layers.

Examples of common activation functions are Sigmoid, Tanh and Rectified Lin-
ear Unit (ReLU), where ReLU currently is the most common, as it is quicker to
train. The different activation functions can be seen on figure 3.20
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Figure 3.20: Sigmoid Tanh and ReLU activation functions

3.3.3 Initializing the network

In order to train the network, optimal connection weights have to be found. This
is done through the training process.

First the network is initialized. This means all weights in the network are given
an initial value that can later be improved. While an initial thought might be to
simply initialize all the weights randomly following normal distribution this will
cause issues as you propagate deeper through the network, as the standard de-
viation would grow through the layer, causing very large activations that could
cause issues while training. Either by causing large values that round to infinity,
or by causing very negative values that would get clamped in the activation func-
tion. Instead an initialization method called Xavier initialization or Glorot uniform
initialization is used. [32]
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With the network initialized, training is then done by an optimizer using a
form of gradient decent to efficiently find and optimal combination of weights that
minimize the loss function used while training.

3.3.4 Loss function

A loss function for a network is any function that evaluates the output of the
network, compares it to a desired state, and then produces a loss value describing
how far off the network is from the desired result. During training the goal is to
minimize the loss function [27].

Examples of loss functions could be the mean square error (MSE) loss function
which is a typical loss function for regression problems, that is where the goal is
to predict a value like the price of a house. MSE is simply the mean of the squared
errors in the training samples (equation (3.10)).

loss =
1
n ∑

i
(yi − ŷi)

2 (3.10)

where:

• yi is the true value for sample i

• ŷi is the predicted value for sample i

• n is the amount of samples

Another kind of tasks, classification, benefits from using a different loss func-
tion like cross entropy loss, seen in equation (3.11)

loss = −∑
i

yi ∗ ln(ŷi) (3.11)

Assuming that a prediction will only ever correspond to one class, this simpli-
fies to simplifies to equation (3.12) as yi will be 0 for all other classes.

loss = − ln(ŷi) (3.12)

The reason categorical cross entropy is preferred, is that it grows really quickly
when the model prediction far from the desired output, which would be a 1.0,
or 100% confidence in the desired class. This means the derivative of the loss for
bad predictions is really large, which is important for the method used to train the
network, gradient decent.
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3.3.5 Gradient Decent

In order to train the network, the weights of the network have to be adjusted. As
mentioned, the goal while training is to reduce the loss function, however the only
way this can be changed is by adjusting the weights in the network. Gradient
decent is the method used to efficiently calculate which adjustments to make to
the different weights of the network, based on their current state and the loss
function [27]. In fact, gradient decent calculates the gradient of the loss function,
with respect to weights in the in the network, and uses this gradient to adjust the
weight, and this is where the name is from. The algorithm uses the gradient of
the loss function to descend towards a minima of the loss function, hopefully the
global minima.

An illustration of gradient decent can be seen on figure 3.21

Figure 3.21: Illustration of Gradient Decent[33]

In order to control how fast the model learns, and avoid making too large
changes, the algorithm works by calculating the gradient for the loss function with
respect to a weight, it then multiplies the weight, the gradient, and a learning rate.
The learning rate is a tune-able parameter, global to the model and is typically
in the range of 0.1 to 0.001, and this learning rate is what moderates the size of
change that can be made.

With this explained, it’s now clear why a loss function that has a large gradient
when the model performs poorly is desired, as this will speed up the initial steps
of learning, and slow down when approaching a minima.

3.3.6 Backpropagation

As mentioned, gradient decent uses the gradient of the loss function with respect
to the weights of the network, however it is not immediately obvious how this is
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calculated. In order to calculate this gradient, backpropagation is used [27].
Backpropagation is the process of feeding back the error through the network

after a forward pass of the network. It solves the complicated issue of calculating
the gradient of the loss function with respect to any weight in the network, such
that the weights can be updated in an efficient manner. This is also where the name
stems from. As the error of the network is observed at the last layer in the network,
this error has to be propagated backwards by recursively applying the chain rule.

3.3.7 Optimizers

While gradient decent offers a method for adjusting the weights in a neural net-
work in an efficient manner, it suffers from the fact that it only updates the weights
of the networks after having found the true gradient. The gradient calculated with
all data. This is memory in-efficient, and while providing better changes to the
weights, it does so less frequently than other optimizers.

A variation of gradient decent, Stochastic Gradient Decent (SGD), instead cal-
culates the weight changes based on only a few samples. In fact, following the
strict definition of SGD it only uses one sample, however using a batch of samples
is more common, and are known as mini-batches [27]. Using only a subset of the
data both means it scales better for larger models and results in a lot more model
updates over the same amount of training compared to gradient decent. While
the updates aren’t as optimal as they’d be using pure gradient decent, the higher
frequency of adjustments mean the model trains faster than with gradient decent.

SGD works well and provides good results for finding a minima without over-
shooting, however it learns very slowly if there’s areas with low gradient like
saddle-points or plateaus. It can also produce noisy changes as it only samples
a subset of the data, however a method known as momentum can help smooth this
out. The general idea is to also consider the direction of previous updates, and
weight changes that don’t follow this direction less. Like a ball rolling down a hill
increasing momentum and becoming less sensitive to changes in direction.

Adam [34] is a modern and popular optimizer that improves on previous opti-
mizers by combining the benefits of SGD with momentum, and another optimizer
called RMSProp [35] which uses the moving average of the squares of the gradient,
and normalizes this to work well on gradients with large differences in magnitude.

Adam, like a lot of optimizers after SGD is an adaptive learning rate optimizer.
This means it calculates and maintains separate learning rates for each parameter,
allowing the update to take larger steps for weights that are far from an optimal
value, while also making smaller adjustments for weights that are close to a desired
value.
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3.4 U-net segmentation model

As mentioned in section 2.4 the chosen netowrk to train on our data is U-net. The
network expands on the work done by Ciresan et al. [36] where a sliding window
of large patches were fed into a network to accurately predict pixel class and loca-
tion.
U-net instead uses a mostly symmetrical Convolutional Neural Network (CNN)
network, consisting of a contractive path (feature extractor) and a expanding path
(predictive path).
The contractive path consists of two 3x3 convolutional layers, each with a ReLU ac-
tivation layer, followed by a 2x2 max-pooling layer. These blocks are then repeated
with decreasing resolution and increasing filters.
The expansive path is similar, however instead of the max pooling layers it uses the
transpose convolution to upscale the layers, while reducing the amount of filters. It
is also after this up-scaling that the center portion of the corresponding layer from
the contractive path is copied and concatenated with the result of the up-scaling.
This is then followed by two 3x3 convolutional layers again with ReLU activation.
This is repeated until the output layer is reached, where a final convolutional layer
is used to produce c channels where each channel represents a prediction for each
class, and c is the number of classes.

Moving away from a sliding window approach avoids the redundancy of train-
ing over a lot of the same pixels due to overlapping patches as in the sliding-
window approach, as well as speeds up the class prediction. It still only predicts
classes for pixels where it has full context, as in it uses un-padded convolutions
and relies on the input images to be prepared with padding to allow predictions
over the entire image. The network also incorporates features from multiple layers,
allowing both high resolution filters and higher complexity filters to work together
to achieve high localization accuracy and accurate predictions.

Due to this structure, the resulting network is shaped like the letter U, hence
the name.
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Figure 3.22: The U-net model as described in the paper[24]

3.4.1 Input image tiling

As seen on figure 3.22, the model has an input size of 572x572, and produces
predictions on the center 388x388 pixels in the image. This is because the network
uses unpadded convolutions to only predict on pixels with full context. To provide
predictions over an arbitrarily large image, a tiling approach is used as seen on
figure 3.23.

To find the required amount of reflection padding the missing amount of pixels
required to fit an integer amount of tiles is calculated. Then the difference in
input and output size is added all around the image. This is done using reflection
padding as described in the paper. After padding the image with this padding,
the image can be tiled. Because we are interested in predicting for all of the input
image, the padded image tiled into overlapping tiles with a step-size equal to the
output size, or 388x388px. This causes the tiles to be overlapping, as the tile size is
the input size of the network, or 572x572. And example of this tiling can be seen
on figure 3.24

The U-net model is implemented as described in the original paper[24], except
that the input layer is 3 channels to accept color images, and the output is three
channels to predict our three classes.
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Figure 3.23: The tiling strategy used in U-net. Reflecting the edges of the input image and tiling
the image to fit through u-net(fig2 from u-net paper[24])

Figure 3.24: Example of calculating padding to tile an image. The white area is the padding
required to have an integer amount of tiles. Grey area is the padding required to account for
the discrepancy in input and output size. The image is tiled in step sizes of 388, producing
overlapping input tiles of 572x572 (blue) and tiled output tiles of 388x388 (red)



Chapter 4

Testing and results

In order to test how the different methods of blending the plants into the images
performed, a selection of datasets were generated as described in section 3.2.

ID Dataset Description

1 Real A conventionally annotated dataset

2 Synthetic no blending
Synthetic dataset with no blending operations
applied to the plants

3 Synthetic Gaussian blending
Synthetic dataset with Gaussian blending
operations applied to the plant edges

4 Synthetic Poisson blending
Synthetic dataset with Poisson blending
operations applied to the plants

5 Synthetic combined blending
Synthetic dataset with both Poisson blending
and Gaussian blending operations applied
to the plant and plant edges.

6 Test set A conventionally annotated dataset

Table 4.1: Table of the different datasets used

The different datasets generated can be seen on table 4.1. All datasets, except
the test set, consist of 1250 images. This was chosen to have 1000 images to train on,
and 250 images for an 80/20 train/validation split. As suggested by roboflow [37].
The two conventionally annotated datasets, the real dataset and the test dataset,
are both subsets of the sugar beats dataset, and do not share any images.

While the chosen dataset has plenty more images than 1000 images, and while
generating several thousand images for the synthetic datasets wasn’t an issue, the
lower amount of images was chosen due to the training time of the model. With
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1000 images with a resolution of 1296 x 966px and the tiling method described in
section 3.4.1, the model ends up training on 12000 572 x 572px tiles which takes
9-10h training on a Google Colaboratory instance with either a Tesla P100 or V100.

The U-net model was trained on each dataset for 40 epochs with sample weigh-
ing as described in section 2.3, and then evaluated on the test set. The metric used
to evaluate the performance on the models was weighted mean Intersection over Union

4.1 Weighted mean Intersection over Union

Figure 4.1: Geometric illustration of how IoU calculates a score

Mean intersection over union (mIoU) is a commonly used metric for both object
detectors and image segmentation models. It produces a score between 0 and 1
where 1 is perfect. The score is fairly intuitive too as a perfect prediction will
overlap the ground truth perfectly. Only when the two areas perfectly cover each
other will the intersection equal the union. An illustration of IoU can be seen on
figure 4.1. MIoU is the mean of the IoUs calculated for each class.

Lastly, as the dataset is highly imbalanced, we use weighted mIoU, which ap-
plies the class weighing when calculating the score. This metric is then used to
evaluate the performance of the different datasets.

4.2 Results

The resulting weighted mIoU score of the different data-sets can be seen in table 4.2
As expected, the synthetic dataset utilizing both blending methods performed

the best out of the synthetic data. What wasn’t expected was that all synthetic
datasets performed better than the manually annotated source data-set, as can be
seen on table 4.2. Additionally looking at the the predictions on a test image
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Dataset wmIoU

Real 0.634
No Blending 0.662
Gaussian 0.694
Poisson 0.701
Gaussian + Poisson 0.767

Table 4.2: Results of evaluating the models trained on the different datasets

for each model, it was clear that models trained on real data couldn’t find the
difference between weeds and crops. Two examples can be seen on figure 4.2 and
4.3. Examples for all models can be found in appendix C.

Figure 4.2: Prediction with model trained on dataset 1 (real)

Figure 4.3: Prediction with model trained on dataset 5 (Poisson + Gaussian)

After seeing the models inability to tell the difference between weed and crops
when trained on the real dataset further tests were run to see what effect the use
of the real dataset had on the training results. Datasets were prepared based on
dataset 5 (see table 4.1 with 10, 30 and 50% of the data replaced with samples from
dataset 1. After training the model on these datasets, it was clear that adding data
from the conventionally annotated dataset made the model unable to distinguish
weed and crops, with the effect becoming worse the more that was added. The
results of the mixed datasets can be seen on table 4.3
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Dataset wmIoU

Mix 10% 0.735
Mix 30% 0.729
Mix 50% 0.701

Table 4.3: Results of evaluating the models trained on the different mixed datasets

Figure 4.4: With just 10% of the dataset being from dataset 1 already shows poor weed predic-
tion

These results suggest that the problem found in section 3.1.3 is sufficiently
widespread that it impacts the model performance to such a degree that it can’t
distinguish weeds from crops. If too many examples of weed are annotated as
crops, it makes sense that the model will predict weeds as crops.

While the results are better than the model trained purely on real data, they are
still worse than the model trained on the purely synthetic data-set. Furthermore,
while the models trained on mixed data have a fairly high mIoU, they still fail to
predict any weeds just like the model trained purely on the real data, as shown on
figure 4.5 and 4.6

Figure 4.5: Prediction with model trained on mixed data-set with 10% from the real data-set
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Figure 4.6: Prediction with model trained on mixed data-set with 50% from the real data-set



Chapter 5

Discussion

The results found in section 4.2 shows that the simple Cut, paste and learn method
can be used to generate high quality datasets for machine learning in agriculture.
One particular benefit of this approach that was discovered is the much smaller
need for hand annotated data allowing for more in depth inspection of the annota-
tions. While the general idea is to greatly reduce the need for manual annotations,
this also turned out to be a benefit in the quality of the annotations that could be
achieved with much less effort. This increased quality turned out to be vital for
the model to perform properly and predict correct classes.

While the results suggest that the hand annotated data has too many flaws as
described in section 3.1.3, this hasn’t been specifically checked, as it would involve
a detailed inspection of the entire dataset, or at least a large portion of it.

Other explanations for the improved performance of the synthetic dataset could
be that sampling from the normal distribution fitted to the histograms produce bet-
ter images for training. Selection of crops for pasting onto the images also didn’t
account for the size or growth-stage of the crops. This more random distribution
of small and large crops could also make the models generalize better.

In general, it was also found that the datasets had a very imbalanced class
representation, necessitating very different class weights while training. While this
worked to generate results, this does mean the datasets had much fewer examples
of the smallest class, weeds, making it hard to learn.
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Chapter 6

Conclusion

In looking to reduce the amount of work required to train a neural network in agri-
culture, a modified Cut, paste and learn [11] method was implemented to generate
synthetic datasets. In order to test these, a 3-class U-net network was implemented,
and different datasets with different blending techniques were generated.

When the different datasets were used to train the U-net network, it was found
that the synthetic datasets all outperformed the conventionally annotated real
dataset, and as such is considered a success.
The results showed that using this method for generating new datasets could sig-
nificantly reduce the need for manual annotation of the dataset. This much smaller
need for manual annotation also meant that the quality of the annotations could
be higher.
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Chapter 7

Future work

With the synthetic datasets performing as well as they did, new types of synthetic
datasets could be tested. Of particular interest could be the generation of datasets
that don’t follow the structure found in the normal datasets. A dataset could be
generated that drastically over-represented weeds for example, to help counter the
large class imbalance in the dataset.

It’d also be interesting to compare the performance of synthetic dataset gener-
ated with some of the other mentioned synthetic methods (section 3.2) on the same
model, as well as testing our datasets on different segmentation models.

Looking in to the suspicious around poor annotation quality in the source
dataset from section 3.1.3 would also be interesting, to confirm or deny the suspi-
cion of poor annotation quality.
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Acronyms

ANN Artificial Neural Network. 24, Glossary: Artificial Neural Network

CNN Convolutional Neural Network. 29, Glossary: Convolutional Neural Net-
work

FCN Fully Convolutional Network. Glossary: Fully Convolutional Network

mIoU mean Intersection over Union. 33, 35, Glossary: mean Intersection over
Union

ReLU Rectified Linear Unit. 25, 29, Glossary: Rectified Linear Unit

SDR Structured Domain Randomization. 2, Glossary: Structured Domain Ran-
domization

SGD Stochastic Gradient Decent. 28, Glossary: Stochastic Gradient Decent

SYN-MTGAN SYNthetic Multi-Task Generative Adversarial Networks. 4, Glos-
sary: Synthetic Multi-Task Generative Adversarial Networks
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Glossary

Artificial Neural Network is computer model meant to simulate the human brains
ability to learn behaviour that it wasn’t explicitly programmed. 24

Convolutional Neural Network is neural network that utilizes convolution layers
in their design, implementing image convolution for feature extraction. 29

mean Intersection over Union Is a metric used to evaluate how well a method
predicts an object based on how well they overlap. It is the intersection of the
ground truth and the prediction over the union of these same areas.. 33

Rectified Linear Unit is a popular activation function in machine learning as it’s
been found fast to train while giving good results.. 25

Stochastic Gradient Decent is an optimizer for weight updates that approximates
gradient decent. 28

Structured Domain Randomization is a method for generating synthetic datasets
that generalize well when used to train deep learning models, without having
to achieve photo realism. 2

Synthetic Multi-Task Generative Adversarial Networks is a neural network de-
veloped to generate annotated test data for training object detectors. 4
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Appendix A

Synthetic generated dataset.

Figure A.1: Synthetic image with no blending
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Figure A.2: Synthetic image with Gaussian blur blending.
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Figure A.3: Synthetic image with Poisson local illumination blending
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Figure A.4: Synthetic images with Poisson and Gaussian blending
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Figure A.5: Mask of the synthetic images.



Appendix B

Examples of generated images.
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Six examples of synthetic generated images.



Appendix C

Model predictions

C.1 Initial datasets

Figure C.1: Prediction with model trained on real data-set

Figure C.2: Prediction with model trained on synthetic data-set with no blending
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C.1. Initial datasets 54

Figure C.3: Prediction with model trained on synthetic data-set with Gaussian blending

Figure C.4: Prediction with model trained on synthetic data-set with Poisson blending

Figure C.5: Prediction with model trained on synthetic data-set with Poisson and Gaussian
blending
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C.2 Mixed datasets

Figure C.6: Prediction with model trained on synthetic data-set with Poisson and Gaussian
blending with 10% if the dataset being replaced with samples from the real dataset

Figure C.7: Prediction with model trained on synthetic data-set with Poisson and Gaussian
blending with 30% if the dataset being replaced with samples from the real dataset

Figure C.8: Prediction with model trained on synthetic data-set with Poisson and Gaussian
blending with 50% if the dataset being replaced with samples from the real dataset
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