
Efficient Resource Management in StarCraft:
Brood War

DAT5, Fall 2010

Group d517a

7th semester

Department of Computer Science

Aalborg University

December 20th 2010

Student Report

Title:

Efficient Resource Management in StarCraft:
Brood War

Theme:

Machine Intelligence

Period:
Fall 2010

Group:
d517a

Group members:
Dion Bak Christensen

Henrik Ossipoff Hansen

Lasse Juul-Jensen

Kasper Kastaniegaard

Supervisors:
Yifeng Zeng
Jorge Pablo Cordero Hernandez

Circulation: 7

Pages: 46

Ended: December 20th 2010

Abstract:

Resource management is a fundamental

part of real-time strategy games, since a

steady flow of resources is necessary in or-

der to build an army thus win the game.

We deal with resource management in the

video game StarCraft, by developing an al-

gorithm for predictable and efficient gath-

ering of minerals in StarCraft. We present

preliminary results on a scouting strat-

egy for chosing base expansion locations.

Our mineral gathering algorithm achieve a

higher income rate than the built-in Star-

Craft mining approach, and we conclude

that our approach is more predictable. We

have shown a correlation between proper-

ties in an area of a map in StarCraft, and

the location a human player is more likely

to utilise for base expansions.

The contents of this report are openly available, but publication (with reference to the source) is only allowed with

the consent of the authors.

PREFACE

This is the technical report made as documentation of the fall semester 2010, group d517a
at Department of Computer Science, Aalborg University. The topic of the report is resource
management within the real-time strategy game StarCraft by Blizzard Entertainment. The
report documents related works in the field and the process of developing methods for solving
problems within the topic.

Reading guide

Throughout the technical report, bases and expansions will be used interchangeably.

Code samples will be highlighted using a listing feature and referenced by numbers in the
order of which they appear. Listings will be presented like this:

1 #include <iostream>
2
3 int main(int argc, char ∗∗argv)
4 {
5 cout << "This is a code sample." << endl;
6 return 0;
7 }

Implementation specific code inlined in sections will be presented in a typwriter font.
Introductory concepts and words will be emphasised. References to figures, tables and listings
will appear in the form of a chapter number and a counter. As an example, the second table in
Chapter 3 will be referenced as Table 3.2.

The rest of the report is organised as follows:

Chapter 1 This chapter contains a general introduction to StarCraft as well as a general
motivation into the problem addressed in this report. The chapter ends with the problem
statement.

Chapter 2 This chapter contains a list of related works within the field of the problem domain.
The chapter ends with a general summary discussing the relevance of all discussed related works,
and how it may influence the problem.

i

ii

Chapter 3 This chapter contains the first part of our solution to the problem; a predictable
way to gather minerals during a game of StarCraft. The chapter will contain a formal solution
as well as experiments with comparisons to the built-in StarCraft mining approach.

Chapter 4 This chapter contains the second part of our solution to the problem; how to scan
and scout when searching for a new location to expand on the map. The chapter will first
contain a discussion on which variables one should consider regarding base expansions. The
chapter then goes on to study how to measure influence and how to design a decision model for
the problem. Lastly, the chapter analyses the data gathered and summarises the achievements
and open problems.

Chapter 5 This chapter contains the conclusion for the problem and the future works that
can be done in order to attend to open problems.

The group would like to thank the open source community for making the two StarCraft APIs,
BWAPI and BWTA, and for the support through an IRC channel. We would also like to thank
MasterofChaos for providing the tool Chaoslauncher, which enables the injection of libraries into
StarCraft. We thank Bo Hedegaard Andersen for his enthusiasm and cheerful company during
the project period. Lastly we would like to thank Michael Madsen for his inputs to the various
C++ curiosities we encountered throughout the scope of the project.

CONTENTS

Preface i

1 Introduction 3

1.1 Game mechanics of StarCraft . 3

1.2 Resource Management . 6

1.2.1 Resource Gathering . 7

1.2.2 Expanding . 7

1.2.3 Intelligence Gathering . 7

1.2.4 Build Management . 8

1.2.5 Summary . 8

1.3 StarCraft Development Frameworks . 8

1.3.1 BWAPI . 8

1.3.2 BWTA . 10

1.4 Problem statement and scope of project . 10

2 Related Works 13

2.1 SORTS: A Human-Level Approach to Real-Time Strategy AI 13

2.1.1 Grouping . 13

2.1.2 Attention . 14

2.1.3 Summary . 14

2.2 Mining Replays of Real-Time Strategy Games to Learn Player Strategies 15

2.2.1 Analysing Replays and Learning . 15

2.2.2 Results . 15

2.2.3 Summary . 16

2.3 Applying Goal-Driven Autonomy to StarCraft . 16

2.3.1 Discrepancy Detector . 16

2.3.2 Explanation Generator . 17

2.3.3 Goal Formulator . 17

2.3.4 Goal Manager . 17

2.3.5 Summary . 17

2.4 A Data Mining Approach to Strategy Prediction 18

2.4.1 Summary . 18

1

2 CONTENTS

2.5 Requirements for Resource Management Game AI 18
2.5.1 Summary . 19

2.6 Relevance of related works . 20

3 Efficient Mineral Gathering 21
3.1 Gather Minerals . 21
3.2 An Incremental Learning Method for Travel Time 25
3.3 Experiments and Efficiency of the Resource Gathering Algorithm 26

3.3.1 StarCraft AI Approach . 26
3.3.2 Mining Algorithm Implementation . 27
3.3.3 Test Setting . 27
3.3.4 Results . 27
3.3.5 Conclusion . 29

3.4 Summary . 29

4 Expanding: Scanning and Scouting Techniques 31
4.1 Variables for Choosing Expansion Bases . 31
4.2 A Decision Model for Base Expansion . 33
4.3 Using Replays to Measure Influence of Variables 33

4.3.1 Implementation of Replay Analyser . 34
4.4 Analysis of Data . 35
4.5 Summary and Open Problems . 40

5 Conclusion and Future Work 43
5.1 Future Work . 43

Bibliography 45

CHAPTER 1

INTRODUCTION

This technical report deals with resource management in the video game StarCraft: Brood War,
from this point on referred to as StarCraft. Resource management, defined in Section 1.4, deals
with the issue of collecting resources and using these resources. The remainder of this chapter
is divided into two parts. The first part will introduce the real-time strategy genre, introduce
concepts and game mechanics in StarCraft, argue for the relevance of managing resources in a
real-time strategy game, and give a brief introduction to the development tools provided in order
to achieve possible solutions to the problem of the report. The second part offers a clarification
of the problem, and defines the scope of the problem that is dealt with in this report.

1.1 Game mechanics of StarCraft

StarCraft is a classic real-time strategy game created by Blizzard Entertainment in 1998. In
a real-time strategy game, gameplay consists of rapid multiple-unit actions requiring resource
collection and control, base building, technology development, and military unit control [4].
StarCraft has a science fiction setting, in which players compete to win by controlling areas of
the map and eliminating enemy forces. To help players achieve their goals, several types of units
and structures may be constructed.

Even though a lot of time has passed since the release of StarCraft, and many real-time strat-
egy games have been released since then, StarCraft is still the best selling real-time strategy
game of all time [2]. The popularity of StarCraft in eSports may have influenced this, as Star-
Craft is very popular in those circles. In Korea, professional StarCraft players are comparable
to athletes; idolized by fans and receiving six digit pay checks [7, 8].

The game contains three different races, each with their own strengths and weaknesses. The
organic race Zerg has many small, fast building units and tends to focus on strength in numbers
while the psionic race Protoss has big slow building units and tend to focus on quality over
quantity. The human race Terran is in-between with a mix of slow and fast building units. For
all races, structures and units require an amount of one or both of the two types of resources;
minerals and vespene gas. Additionally there is a unit cap, which may be raised by creating a
structure or training a special unit, depending on the race.

The use of StarCraft as an eSports game has put a lot of pressure on balancing the game,
and though it is difficult to balance three very different races, StarCraft is arguably one of the

3

4 1.1. GAME MECHANICS OF STARCRAFT

best balanced real-time strategy games. This can be observed as there is no general preferred
race between professional StarCraft players and there is no single race dominating the top of the
StarCraft ladder1. The developers have also worked towards balancing the game when problems
have occurred. The most well-known of these cases is probably the Zerg Rush, in which a player
playing Zerg would spawn zerglings very swiftly and attack the opponent as soon as possible.
Blizzard Entertainment recognised that this strategy was too powerful and as a result this was
made more difficult by a change in patch 1.082.

Resources are gathered by worker units which are able to harvest minerals and vespene
gas, and build structures. The worker units gather minerals, by transporting them from their
location to a resource depot owned by the player, native to their particular race. Vespene gas
can be collected by first constructing a gas mine on a vespene geyser and then collecting gas
from the mine in a similar way. Worker units can construct buildings by moving to a buildable
area and starting construction. This works in three different ways, depending on race:

• Zerg buildings, with the exception of their resource depot–a Hatchery–and vespene gas
refinery, can only be constructed on a carpet of biomass called Creep. Creep is generated
by the Hatchery and expands as more structures are placed upon it. The worker unit is
morphed to a building, sacrificing the unit in the process.

• Protoss have a special type of building–a Pylon–that provides their race with the supplies
needed to construct units, while at the same time powering buildings and allowing the
construction of more buildings in a small elliptic area from their centre. All Protoss
buildings, with the exception of their resource depot, vespene gas refinery and the pylons,
may only be constructed in these areas. While the buildings are being constructed, the
worker unit can continue work elsewhere, collecting resources or starting construction of
even more buildings.

• Terran buildings can be constructed in any buildable area without any additional require-
ments. The worker unit is however needed for the construction, and cannot be used
elsewhere before the building is finished. A feat of the Terran race is that a large part of
the standard Terran structures may be moved even after they are built.

Players compete to eliminate all enemy players by destroying all of their buildings. In order
to do this, players must gather resources that can be used to construct units for gathering more
resources, buildings for creating powerful units as well as combat units that can be used to
destroy the enemy.

Resources on a level, also referred to as a map, are limited and decentralised, meaning that
in order to gain these resources, outposts or expansions should be created to assist in dominating
the resources. More resources mean the potential for a larger or more powerful army.

Unit producing buildings may produce one unit at a time (with the exception of Zerg who
have one type of unit producing building that may make up to three at a time) and creating
more unit producing buildings allows for faster unit creation, given that the player has the
required resources. Some buildings are not used for constructing units, but rather to upgrade
units. Upgrading is generally more time consuming than constructing a unit. When an upgrade
has been completed, however, the upgrade is available to all existing units of the type that
the upgrade was made for, as well as all future units of this type. Upgrades may be used for
providing new abilities, more combat strength or a defensive bonus.

1http://www.iccup.com/starcraft/ladder/1x1.html
2http://www.danielstaniforth.co.uk/StarCraft/patch.html

CHAPTER 1. INTRODUCTION 5

A special type of building exists, referred to as a defensive structure. A defensive structure
is a structure that may assist in defending a position like a base. Defensive structures will fire at
any enemy within its range and may offer great support for defending units. Defensive structures
have a good deal of damage resistance and will never count towards the unit cap. The catch is
that defensive structures cannot be moved, and have construction times during which they may
be attacked but cannot return fire.

An important distinction between units exists. Ground forces move on the ground and must
therefore walk around obstacles to reach their destination. Flying units can move anywhere,
but are more expensive or less powerful than ground units. All races have a flying unit that is
able to transport some amount of ground units to another location, meaning that no region is
completely inaccessible to ground units, though some regions are more difficult to arrive at.

The game contains several different combat units of varying strength and utility. Every unit
is specific to their particular race. At the beginning of the game only the most basic units are
available. In order to gain access to more powerful units, the player must first construct the
buildings required for a particular unit. The buildings may also have the restriction that they
cannot be constructed until another building has been constructed or upgraded. This ordering
is known as a tech-tree, as the dependencies between buildings can be viewed as a tree structure.

The tech-tree enforces an evolution of the game. A strategy that works well in the beginning
of the game, may not work well at a later point in time as the range of available units have
increased for both players. The tech-tree also means that each player have a difficult choice to
make. How should they prioritise moving through the tech-tree in comparison to constructing
units that can be used for defence and attack? Too much emphasis on moving through the
tech-tree will leave few resources available for defence and offense. This may result in being
overwhelmed by the enemies’ early game units or the enemy expanding unchallenged. Emphasis
on units may be a good strategy in the beginning of the game. However, the enemy might be
able to defend against these and construct more powerful units in the meantime. Note that this
pattern of balancing one useful aspect of the game against another useful aspect exists for more
than just unit production as it is evident in later sections.

Other than the combat and resource management, players also need to scout areas of the
map in order to gain intelligence on the enemy. The game contains an inherent uncertainty,
pertaining to the so called fog of war. Only areas of the map that are currently occupied by a
friendly unit can be viewed by the player, while all other areas are covered by a grey fog. One
of the basic strategies of the game is to remain out of sight and make surprise attacks on the
opponent, while at the same time keeping as much information on the opponent as possible.

StarCraft is rarely one unending battle, but rather a set of skirmishes that may change the
might of either player and in the end decide who have the upper hand. Resources in StarCraft
exist around the map in the form of vespene gas geysers and mineral fields. Both play a large
role in supporting the economy of a player.

Mineral Fields Minerals can be gathered by a worker unit by having the worker unit move to
a mineral field, spend some time gathering the mineral and then transporting the mined portion
back to a particular type of building called a resource deposit. Constructing a resource deposit
as close as possible to a cluster of mineral fields will minimise the transport time for the workers
and thereby yield a higher rate of minerals than a resource deposit positioned farther away. The
amount of available resources for a player is a global value that will only decrease as the result
of spending the resources on buildings or units.

A mineral field may contain any amount of minerals, usually 1, 500, and a worker may carry

6 1.2. RESOURCE MANAGEMENT

up to 8 minerals at a time. Each mineral field may have at most one worker mining minerals
from it at a given point in time. For this reason several trips back and forth is usually required
to completely deplete a mineral field.

Mineral fields are typically clustered together. The mineral fields contained within a cluster
are variable and differs greatly depending on the map.

Vespene Gas Geysers Vespene gas is gathered from vespene gas geysers which usually con-
tain around 5, 000 units of vespene gas. Vespene gas can be viewed as a slightly more sophis-
ticated resource as it is generally not required for the most standard units and buildings. As
a general rule, any unit that possess special abilities or is exceptionally strong will not only
require minerals to construct, but vespene gas as well. The buildings that are required for these
units may also require vespene gas in addition to minerals. Available vespene gas is, just like
minerals, a global value for each player that only decreases as the result of spending vespene
gas.

Vespene gas is in most cases sparser than mineral fields. On most maps, a base location will
contain several mineral fields and zero or one vespene gas geyser. In order to gather vespene
gas, a building–known as a refinery–must be constructed on top of a vespene gas geyser. Only
one refinery may be constructed on a particular vespene gas geyser and only the player that has
constructed the building may extract vespene gas from the vespene gas geyser.

When the refinery has been constructed, one worker unit at a time may enter it, spend some
time inside and exit with an amount of vespene gas that is then returned to the resource deposit.
Other workers attempting to extract vespene gas from the refinery will have to wait outside while
another worker is extracting. Due to the sparseness vespene gas geysers, gathering vespene gas
is a slow process when compared to gathering minerals. A player will often experience that the
limiting factor when constructing powerful units is vespene gas rather than minerals. For this
reason it is often advisable to use sufficient workers for extracting vespene gas such that the
refinery is always being used.

Maps with unusual high amounts of resources either grouped together in a single cluster or
scattered across the whole map are usually referred to as money maps.

1.2 Resource Management

This section will cover the subject of resource management in StarCraft. In this section, the
elements of resource management are explained as well as the reasoning for the importance of
this in regard to winning a game. The basis of the information contained within this section is
expert knowledge from human players.

Success in StarCraft depends heavily on macro and micromanagement3. The ultimate goal
is to eliminate all enemy structures, resulting in the last remaining player (or players in team
games) winning the game. In order to destroy the enemy, an army of attack units is needed as
well as a plan for destroying the enemy. Resources are required in order to construct an army,
and the speed at which the army can be constructed depends on the amount of unit producing
structures available. These structures also consume resources when constructed.

This means that given a high rate of resources, it is possible to construct a high amount of
combat units rather fast. Resource management is about getting a high rate of resources and
converting the resources into useable units and structures.

3In gaming, micromanagement describes minor, detailed gameplay elements, addressed by the player, while
macro management refers to management of the overall game

CHAPTER 1. INTRODUCTION 7

1.2.1 Resource Gathering

In this technical report, resource gathering is defined as the act of transporting resources from
the area in which they exist on the map to the resource deposit, such that the resources may be
used by the player. The act of gathering resources is a basic element of resource management.
As it have been mentioned in Chapter 1, resource gathering is performed by worker units. A
larger amount of worker units gathering resources means a higher resource income rate. The
StarCraft client allows worker units to gather resources automatically after having been given
this order once. This is likely done to help a human player, as the amount of units and orders
these units should receive, if no automation were present, is quite immense.

The automation does not promise to gather resources in the most optimal way, but it does
ease the burden of a human player, leaving room to focus on strategic and tactical decisions.

1.2.2 Expanding

Maps in StarCraft are very diverse and with the build-in editor it is very easy for fans to create
new maps. This means that maps can be very different and, in some cases, quite obscure. We
have chosen to focus on maps that are considered balanced and fair for all participants–these
are maps that are used in tournaments such as the International Cyber Cup4. These maps all
share some general properties: Each player is given one resource deposit along with four workers
and is placed at a start location near enough resources to build a base. The amount of workers
given is not sufficient for fully utilising all of the mineral fields, encouraging players to construct
more workers, but leaving room for players to decide how many additional workers should be
constructed, before changing focus to something else.

In every game but the very shortest of games, it is necessary to expand to a new position,
preferably before the resources at the old location run out. If a player focuses solely on the
base given in the beginning they are bound to become overwhelmed later by a player that
have expanded and created a much greater income rate. Controlling more resources than the
opponent means the potential of creating a larger or better army than the opponent. A player
can therefore be rather certain that the opponent have an interest in the resources and that the
opponent know of the player’s own interest in the resources.

It should be clear that expansions are something that should always be kept in mind, both
one’s own possible expansions and the opponents. Choosing a position for an expansion is not
an easy matter either, as it expansions are often weak in their most early form. Players must
decide what a good spot for an expansion is. Should it be close to an existing base or as far
away from the enemy as possible? Should they go for the area with most resources or avoid the
spots where the enemy is likely to expand? It is likely that there are a large amount of different
considerations that should be taken into account when selecting a location for a new expansion.

1.2.3 Intelligence Gathering

Gathering of intelligence is quite important in a game like StarCraft. The actions of an opponent
may reveal his strategy and make it possible for a player to create a counter-strategy. Gaining
intelligence on the activities of an enemy may reduce or increase the desirability of expanding to
a particular location as well as reduce or increase the desirability of attacking an enemy position.

Scouting for intelligence could be viewed as separate from resource management. However,
scouting is only relevant if the information is used, just like gathering resources is only useful

4http://www.iccup.com/

8 1.3. STARCRAFT DEVELOPMENT FRAMEWORKS

if the resources are used for something. As it have been suggested above; intelligence gathering
is not exclusively important for resource management, but is useful for attacking and defending
as well.

1.2.4 Build Management

Build management deals with using the gathered resources and is important because unused
resources do not contribute to winning. In StarCraft each race have several different structures
that may construct different units. There is no order of buildings that can be said to always be
the best order - it depends on strategy of the opponent, in the same way that there is no choice
that is always correct when playing rock-paper-scissors. Much like other elements of StarCraft,
optimal build management depends on adept intelligence gathering.

Build management is about what to build when and where. It is related to resource man-
agement as gathering resources makes construction possible and construction makes gathering
resources possible. Expanding to swiftly may stretch a players defences too thin, leaving them
open to an enemy attack. Expanding too late may result in the enemy taking advantage of the
opportunity and creating several expansions for themselves and gaining a much larger income
rate.

1.2.5 Summary

Resource management is an important aspect of StarCraft as it is a prerequisite for creating
armies needed to destroy the enemy and ultimately win the game. It is difficult to separate
resource management from other elements of StarCraft completely, as proper resource manage-
ment depends on information from aspects such as intelligence gathering and build management.
Conversely, build management depends heavily on resource management and it would seem like
a lot of elements in StarCraft overlap in this manner.

1.3 StarCraft Development Frameworks

This section will describe the StarCraft development frameworks used for the project, along
with some examples of their use.

1.3.1 BWAPI

The Brood War Application Programming Interface5 (BWAPI) is an open source C++ framework
allowing two-way communication with the RTS game StarCraft, meaning that an agent can
observe events in the game and react upon these. BWAPI allows communication through objects
and function calls, as opposed to input via human input devices. Blizzard Entertainment,
creators of StarCraft, are not affiliated with the developers of BWAPI and strictly speaking,
BWAPI is against the end user license agreement. That being said, The AI and Interactive
Digital Entertainment Conference (AIIDE) 2010 have hosted a StarCraft AI competition and
have been granted permission by Blizzard Entertainment to do so6, even though one of the
rules of the competition is that BWAPI must be used for all submissions7. Though there is no
indication that Blizzard Entertainment have actively supported BWAPI, they have in no way

5http://code.google.com/p/bwapi
6http://eis.ucsc.edu/StarCraftAICompetition#Legal
7http://eis.ucsc.edu/StarCraftRules/

CHAPTER 1. INTRODUCTION 9

acted against it. The framework allows the user to observe and react on virtually any observable
information in the game. Any user-available command is made available by the framework along
with some extra non-game related features, like drawing lines and figures and writing messages
that are only visible on the computer executing the code. Thus, every action a human player can
perform in the game can be done by a computer program as well. Every Unit in the game–unit
being any player selectable object in this context–have a unique pointer and ID along with a
range of methods and properties that the developer can use. There’s also a Game class containing
general information about the game, including a set of player references, game time, average fps
etc.

The framework provides several events that a program using the framework may subscribe
and respond to. As an example, the event onStart is raised once at the beginning of the game,
and can be used as the main entry point initialising anything used by an agent. onUnitCreate is
run every time a unit is being constructed, and onUnitDiscover is run when a unit is revealed.
onFrame is run once every frame and is usually where the main logic is executed. It should
be noted that the events of BWAPI are synchronous, meaning that the game cannot proceed
until the instructions of an event hook have been executed. This generally means that all heavy
calculations should be executed in a separate thread to avoid jerkiness in the game. Information
on enemy units within fog of war is not available to a player in a game of StarCraft, and
for this reason cannot be obtained through BWAPI either, under default circumstances. This
information can be enabled using the cheat flag: CompleteMapInformation.

A simple example, in which the agent iterates through its own units, identifying worker units
and ordering them to collect the nearest minerals, can be seen in Listing 1.1.

1 void ExampleAIModule::onStart()
2 {
3 for(std::set<Unit∗>::const_iterator i=Broodwar−>self()−>getUnits().begin();i!=Broodwar−>self()−>

getUnits().end();i++)
4 {
5 if ((∗i)−>getType().isWorker())
6 {
7 Unit∗ closestMineral=NULL;
8 for(std::set<Unit∗>::iterator m=Broodwar−>getMinerals().begin();m!=Broodwar−>

getMinerals().end();m++)
9 {

10 if (closestMineral==NULL || (∗i)−>getDistance(∗m)<(∗i)−>getDistance(
closestMineral))

11 closestMineral=∗m;
12 }
13 if (closestMineral!=NULL)
14 (∗i)−>rightClick(closestMineral);
15 }
16 }
17 }

Listing 1.1: C++ Example using BWAPI

Line 3 in Listing 1.1 iterates through all units belonging to the player that the code is
executed for, by using self()->getUnits) on the game object Broodwar. self() returns a
pointer to the player that BWAPI controls, and getUnits is then used to get the units the
player owns. In each iteration, the type of the unit is checked in line 5, to see if it is a worker
unit, and line 8 to 14 then goes on to finding the mineral closest to the unit and ordering the
unit to gather the mineral, by sending a right mouse button click order to it.

10 1.4. PROBLEM STATEMENT AND SCOPE OF PROJECT

1.3.2 BWTA

Broodwar Terrain Analyzer8 (BWTA) is an add-on for BWAPI that can be used to analyse a
given StarCraft map and return various static information about the terrain. When analysed,
the map is split into regions, where each region is a polygon containing no obstacles, meaning
that units can go directly from one point within the polygon to another within the same polygon.
Connections between regions are referred to as chokepoints. A chokepoint is a passable line that
separates precisely two distinct regions.

A region contains zero or more base locations, where a base location is defined as a location
with nearby resources. A base location will contain a fair amount of mineral fields and often
also a vespene gas geyser. BWTA also reveals the set of starting locations. The set of starting
locations is a subset of base locations, where a player may be positioned in the beginning of the
game. For maps used in competitions, a starting location will contain several mineral fields and
at least one vespene gas geyser. The information gained from BWTA can be considered valid
strategic information, and can greatly simplify identification of key points on the map:

• Terrain information can be used to identify isolated island locations on the map

• Expansion locations can be used to find valid locations to gather minerals or scout for
opponents

• Regions can be used to simplify information on strategic locations to a high level of ab-
straction and

• Chokepoints is especially useful when identifying places to set up a defensive parameter,
and therefore also where the opponent is likely to do so.

Figure 1.1 shows a simple example, where the drawing functionality of BWAPI have been
used to show BWTA’s representation of the terrain. The visible SCV is positioned where BWTA
have identified a chokepoint.

It should be noted that StarCraft contains a map editor that makes it easy for anyone to
create a new map. There are very few rules that must be obeyed when creating maps and the
result may therefore be unbalanced. Map creators do not need to adhere to the general rules of
base locations and may create several separated mineral fields that have no obvious relation to
a cluster. The wide range of possibilities mean that it is possible to create maps that BWTA is
unable to fully analyse. For the purpose of this report, however, we have focused on standard,
balanced maps used for competition which BWTA has no problems analysing.

1.4 Problem statement and scope of project

This technical report deals with the problems arising from managing resources in the game of
StarCraft. We define resource management as the ability to sustain a steady economy in order to
maximise throughput of military units to win the game–to balance income versus expenses [1].
To achieve this, three factors are considered: resource gathering, expanding base operations
and defending units. These three factors are derived from expert knowledge by the authors.
Spending resources is not considered. Resource gathering will be treated as the first thing to
achieve efficiently, followed by expanding base operations and defending structures. This report
deals with only the two first factors.

8http://code.google.com/p/bwta

CHAPTER 1. INTRODUCTION 11

Figure 1.1: BWTA example

Resource gathering

Resource gathering deals with the actions of sending out worker units to mineral fields, mining
the mineral fields and returning with minerals to the closest resource deposit. From observations,
the built-in AI in StarCraft for resource gathering is very unpredictable and doesn’t always seem
to choose the most logical mineral fields from a human point of view. This report addresses this
problem by developing a more efficient algorithm for gathering these resources efficiently. In
doing this, no opponents will be considered on the map, only mineral fields will be considered
as a resource, a player will only have one resource deposit at any given point, and only the map
Astral Balance will be considered. The reason only minerals are considered important is that the
amount of vespene gas geysers are comparatively small. Scheduling workers for using a refinery
is considered a relatively easy task, which we do not expect any gain from addressing.

Expanding base operations

Once a steady income is achieved for a player’s starting location, they should consider expanding
their operations to a new location, in order to satisfy an increasing demand for the production
of military unit. This means that the player needs to select an appropriate place on the map to
expand, from a known pool of possible expanding points. It is most convenient for the player
to choose a location the enemy is not currently in control of. This means the player must scout
areas of interest to find out where it is most appropriate to expand. This report will address
scouting techniques and identify important factors to consider when expanding.

12 1.4. PROBLEM STATEMENT AND SCOPE OF PROJECT

CHAPTER 2

RELATED WORKS

This chapter contains a description of related works, mainly conference papers. Related work
covered by this chapter is found relevant to be studied due to its attention to StarCraft or its
significance to the RTS genre in general. Each section will explain key concepts in depth and
finish off by summarising the overall contribution from the authors. Each section will state each
individual author’s point of view. Lastly, this chapter will try to summarise to which extend
the related works will influence the scope of the problem covered by this technical report. In
this section, the points of view will that of the authors.

2.1 SORTS: A Human-Level Approach to Real-Time Strategy

AI

Wintermute et al. [11] suggest the design and implementation of a real-time strategy agent
with focus on human-like behaviour, called SORTS. Their reasoning is that in order to create
an immersive game experience on par with a multi-player scenario, it is crucial that an agent
mimics a human player. They make an implementation using Soar1 for the AI architecture and
use the open source programming environment for RTS games, ORTS2, for the actual game
play.

RTS games differ from other types of games, in that there are multiple simultaneous inter-
acting goals and large amounts of perceptual data. Wintermute et al. goes on to tackle the
perceptual system in a way similar to how humans reason from perception, forming two percep-
tual abstractions: grouping and attention. The abstractions are formed to decrease the amount
of perceptual data from the game, and hence decrease the complexity of analysing it. At their
core, these techniques resemble that of human behaviour.

2.1.1 Grouping

According to Gestalt psychology [5], humans use grouping to perceive objects of similar size
and shape, located within close proximity. This is modelled in SORTS by grouping based on
the unit type, unit owner, and the radius to other units. With a radius of 0, all units would

1http://sitemaker.umich.edu/soar/
2http://skatgame.net/mburo/orts/

13

14 2.1. SORTS: A HUMAN-LEVEL APPROACH TO REAL-TIME STRATEGY AI

be perceived individually. Grouping is also used to handle unit information such as remaining
health for units, by summing the attributes within a group. This is common to RTS games,
where a player might control units of the same type as a group.

2.1.2 Attention

Attention is an abstraction used to simulate the human visual system, in particular, the field
of vision. In SORTS, its used to reduce the amount of information about the game world that
will be handled at a given time, much like a human player during an RTS game: a player can’t
keep focus of the whole map at a given point in time. At this point, a human player might not
know exactly which of their units are where on the map. SORTS implement this by dividing
the map into a grid. When a given part of the grid is within focus, SORTS have all information
available within the focus area. The unattended parts of the grid only expose information about
how many friendly and enemy units are within a cell. This is illustrated in Figure 2.1.

57

Figure 2.1: Using attention to obtain field of vision.

SORTS implement two other mechanisms to obtain human-like behaviour. A group order
mechanism is implemented in order to obtain a behaviour, where a group of units are able to
act and attack like a unitary whole. This is something that needs to be implemented partially
because of the minimalistic execution system of ORTS. They call this global coordinators, in the
sense that a mechanism tells a group of units what will be the best for them, and lets the units
execute their orders themselves. They implement two coordinators: one for managing resources
and one for managing attacks.

The other mechanism is implemented to mimic the human behaviour of waiting for a given
task to finish, before continuing to the next task. They argue that this is somewhat uncom-
mon compared to other AIs that are typically able to execute several subsequent commands.
According to the authors, it is one of the main complaints from human players about AIs.

SORTS is tested within three different game scenarios: resource gathering, destroying the
opponents base and a complete game. Their AI was entered in the AIIDE 2006 AI competition
in all three categories. SORTS won the resource gathering competition, lost the opponent battle
due to software bugs, and won in 60% of the games played of a complete game.

2.1.3 Summary

Wintermute el al. implemented the RTS agent SORTS, which took a human-like approach
to game AI. The result is a vastly different, yet very capable, AI compared to conventional

CHAPTER 2. RELATED WORKS 15

approaches. They conclude that the approach helps to make a single player game feel more like
it was a multi-player game, thus enhancing the game experience of the player. They achieve
human-like behaviour with the help of grouping and attention, which they would like to integrate
with learning to develop smarter agents for complete games.

2.2 Mining Replays of Real-Time Strategy Games to Learn

Player Strategies

P. Strategies [8] argue that instead of using predefined rules made by developers, to design
computer agents, emulation of human behaviours from existing game information should be
sought after. In RTS games, this information can be gathered from replays of matches, and
agents can then be trained accordingly. Their goal is to evaluate player behaviours, analyse
player strategies and train an agent to learn strategies. They claim to use replays from highly
skilled professional players collected from GosuGamers3.

2.2.1 Analysing Replays and Learning

Replay data from StarCraft is stored as a sequence of actions in a binary format. Tools like
BWChart Replay Analyser4 and Lord Martin Replay Browser5 are able to decode replays into
a textual representation of the replay data. The actions in a replay file are a very simple form
of replay representation, since the actual button presses made by the players are recorded. This
means that there isn’t actual information present in the replay files to tell exactly how many
units a player has at any given point in time, unless the replay is simulated in the game client.
This poses no problem to the authors, as their objective is to map player actions to a player
strategy.

P. Strategies represent units and resources as game states. Building new units and making
technology research are considered actions between two game states. A game state is evaluated
from a set of features that tells how many buildings are in the state, how many military units,
technology research done etc. Considering only two features in the game state, the game states
and actions can be represented as

Ba = {F a
1 , F a

2 }
α
−→ Bb = {F b

1 , F b
2}

Where Ba is the game world before taking action α (that is, performing a new strategy), Bb is
the game world after and F j

i is a feature in the corresponding game state. To be able to measure
features, the distance between features is calculated. This is normalised across all replays, in
order to compare them. This normalising ranks two game states and their corresponding action
to give a value of how good the action was.

2.2.2 Results

The data gathered is to be used in an attempt to correctly identify player strategies, in order to
counter the strategy. A strategy can be visualised as a decision tree, where each node represents
the state of the game world, and each link between nodes represents the action taken to get to
the state. An example of one such decision tree can be seen in Figure 2.2, which shows combat

3http://www.gosugamers.net/general/
4http://bwchart.teamliquid.net/
5http://lmrb.net/

16 2.3. APPLYING GOAL-DRIVEN AUTONOMY TO STARCRAFT

of a Terran player against a Zerg player. The thickness of links shows that the player is more
likely to initiate and end combat in similar ways, but the core of the combat is often executed
differently from one fight to the next.

 Building sequence representing 100 combat incidents between a “
Figure 2.2: Example of a decision tree showing the building sequence of a combat between a
Terran and Zerg player. Thicker lines shows more commonly chosen paths in the tree.

For testing, they divide their replays into two groups; one for training data and one for
testing prediction accuracy of the opponents’ player strategy. Results from their experiments
show that they are able to produce an accuracy of between 84.9% and 88.6% depending on the
race over the course of 300 rounds of gameplay. The accuracy greatly depends on the number
of possible game world states of the race in question, with Terran having 2, 234 possible states,
Zerg having 901 possible states, and Protoss only having 388 possible states, where the game
world states represents the set of possible buildings.

2.2.3 Summary

Player Strategies have shown that they are able to learn individual player strategies from replay
data. They conclude that their system needs further development and research in order to be
perfected, namely an interface for executing actual decisions based on data in the system.

2.3 Applying Goal-Driven Autonomy to StarCraft

Weber et al. [10] implemented an agent called EISBOT which is designed to respond to un-
expected events which may occur during a game, with respect to a goal. This is called Goal
Driven Autonomy. Eisbot consists of four components: A discrepancy detector, an explanation
generator, a goal formulator and a goal manager. EISBOT is implemented using the Broodwar
API. BWAPI is further explained in Section 1.3.1. As of now, the EISBOT agent only plays the
Protoss race.

2.3.1 Discrepancy Detector

The discrepancy detector is responsible for detecting any anomaly during execution of a plan.
When the Goal manager component has chosen a plan to follow, it has also provided a set of

CHAPTER 2. RELATED WORKS 17

expectations, to be encountered during this plan. When these expectations are violated, the
discrepancy detector provides a discrepancy to the explanation generator. There are 5 different
discrepancies: unit, building, expansion, attack and force. The unit, building and expansion
discrepancies are each sent when the discrepancy detector detects a construction that violates
the set of expectations. The attack discrepancy is sent when the opponent has attacked, and
the force discrepancy is sent when either player has a force advantage. Most of this information
is only available to the agent if it is allowed to look at what the opponent has produced, as the
agent does not perform active scouting. Using a cheat flag, this information can be accessed
through the BWAPI framework.

2.3.2 Explanation Generator

The explanation generator takes as input a discrepancy and uses this to produce an explana-
tion on why an expectation was violated. The explanation generator maps discrepancies to
different explanations via simple if-then-else statements. There are seven different explanations:
opponent is teching, opponent is building air units, opponent is building cloaked units, opponent
is building detector units, opponent is expanding, agent has force advantage and opponent has
force advantage. An opponent is teching if he pursues more advanced units that need specific
technologies. An explanation will only be given to the goal formulator, if it violates the current
high-level goal.

2.3.3 Goal Formulator

The goal formulation component is responsible for producing goals to pursue, based on different
explanations. Depending on the specific explanation, the goal formulator will give a specific
goal. The agent has 4 different goal types it can follow: execute strategy, expand, attack and
retreat. The execute strategy can be a result of the agent discovering a cloakable unit, so it has
to alter its strategy to also construct detector units. The goal formulator passes a goal on to
the goal manager, which now carries the responsibility of making sure the goal is reached.

2.3.4 Goal Manager

The goal manager is in charge of realising the goal provided by the goal formulator. This manager
is able to realise more than one goal at a time, but only one from each of the categories: strategy,
economic and tactics [6]. The strategy manager is in charge of the high level strategy, such as
which building to build, which units to train and what technology to research. The strategy
manager has five high level strategies. As an example, one of these is focusing on air units, while
another is concentrating on cloaked units. The income manager is in charge of new expansions,
building new resource deposits and training, as well as assigning, new workers. The tactics
manager is in charge of the attack and retreat goals, by either sending all combat units to the
opponents base, or sending all combat units to its own base.

2.3.5 Summary

EISBOT wins against the built-in StarCraft agent in 73% of the games, and against humans
on a competitive ladder in 43% of the games. It does, however, receive information from the
framework which is not visible to a human, for example when it detects force advantages and
expansions. This may be perceived as cheating, as the bot knows the entire game state.

18 2.4. A DATA MINING APPROACH TO STRATEGY PREDICTION

2.4 A Data Mining Approach to Strategy Prediction

Weber and Mateas [9] suggest the use of data mining of replays in order to observe different
strategies and use these to predict what strategy an opponent is using in a real-time strategy
game. A vast number of replays for mining were downloaded from three homepages that are
collecting such replays: GosuGamers6, TeamLiquid7 and ICCup8. The three homepages contain
replays from professional and top amateur players, and a total number of 5, 493 replays were
downloaded, focusing entirely on one versus one game.

Lord Martin Replay Browser9 was used to convert these replays into game logs, which is a
collection of actions along with information on which player the action belongs to, as well the
game time at the time of execution. The logs are then converted into feature vectors; one for
each player in a game. The feature vector contains the actions and the point in time the actions
were executed. Two different strategies can have the same initial build order, but the timing of
the actions will make them divert. Each feature vector will be labelled with a strategy type, for
example fast air. There are six strategy types, and if the strategy cannot be recognised, it is
labelled undefined.

The feature vectors were exposed to different data mining algorithms using the Weka toolkit.
Generally speaking, the Weka toolkit was used to make models that are able to predict what
an opponents’ overall strategy is, as well as predict the next action. As StarCraft is a game of
imperfect information, models with artificial noise were also constructed. The noise was added,
by increasing the time values in the feature vectors, simulating delayed information, as would
be the case in a game of imperfect information. Setting the times in a feature vector to zero
simulates a base that cannot be scouted. The more noise that was introduced, the less precise
the models were.

Some of the models showed that the opponent strategy could be calculated with a precision
of 70% just 5 minutes into the game, without any noise in the feature vectors.

2.4.1 Summary

This particular data mining approach for predicting the opponent strategy proved to be feasible.
The difference between this approach and others like it is the use of a vast number of replays
as basis for the data mining. As the data have been extracted from a vast number of replays,
it will also span a variety of different maps, player types and strategies, thereby being able to
predict many strategies in many different settings.

2.5 Requirements for Resource Management Game AI

De Jong et. al [3] states that where real-time strategy games can be used in the military to
simulate strategic movements in battle, resource management games can be used as training by
economics and managers. There is one main difference between a real-time strategy game and a
resource management game; resource management games can be infinite and they concentrate
on constructing a virtual society and maintaining this, utilizing a limited number of resources.
Real-time strategy games are usually built up around finite games concentrating on destroying
the opponent, while still utilizing a limited number of resources.

6http://www.gosugamers.net/general/
7http://www.teamliquid.net/
8http://www.iccup.com/
9http://lmrb.net/

CHAPTER 2. RELATED WORKS 19

The authors state that a player should be able to play by seven basic principles in order to
play a resource management game intelligently; cope with resource dependencies, allocate space
effectively, predict future game states, create a sound planning, handle competition, perform
multi-objective reasoning, and deal with non-determinism. They go on to mention examples
related to a simple resource management game, they have developed for their project. The goal
of the game is to build factories and housing, striving for unemployment of zero while having
earned as much money as possible within some given time:

Cope with resource dependencies Money can be turned into work places, thereby minimiz-
ing unemployment and generating taxes.

Allocate space effectively Placing factories close to the work force, but not so close that they
complain about pollution.

Predict future game states Keeping track of the build time associated with actions.

Create a sound planning Making sure that any action is made at the right time and is not
taken without being part of a higher sequence of actions to reach a goal.

Handle competition Handling opponents or other kinds of competition in the game

Perform multi-objective reasoning Often a player needs to keep more than one goal in
mind at the same time. For example making sure his finances are as they should be, while
building factories and making sure that there are workers for these.

Deal with non-determinism Dealing with the inherent non-determinism in the game stem-
ming from unknown or random variables

The authors construct a hybrid AI agent, attempting to encompass all of these principles
by combining symbolic and behaviour-based techniques. The hybrid utilises a behaviour based
approach, using a neural network (where the input is the entire game state), and a search tree
where the nodes are actions and the edges are preconditions and post conditions of that action.
The tree is used as a planner, while the neural network is used as a heuristic function for choosing
the optimal action in the tree.

Tests of the hybrid AI, performed in the custom game, shows that the hybrid approach out-
performs approaches based on symbolic and behaviour-based techniques alone. They emphasise
that when using a tree with nodes representing actions, a programmer must write their own
heuristics, requiring a great deal of insight into the game. Instead, the hybrid approach creates
its own heuristic function by updating values in the neural network by playing games.

2.5.1 Summary

The paper describes seven basic principles that any player has to be able to control, in order
to successfully reach the end goal. They design a hybrid AI which is able to obey to the seven
principles by combining two techniques, outperforming the techniques in examples where they
are used separately. Some of the rules are the same as in the real-time strategy genre, and
therefore may apply to some of the principles of resource management in these games. The
focus of the paper is the seven principles and not the AI itself.

20 2.6. RELEVANCE OF RELATED WORKS

2.6 Relevance of related works

Wintermute et al. [11] implements the concept of global coordinators which is interesting with
respect to mineral gathering. With this approach, it is worth looking into having one global
coordinator controlling the units at a higher level–telling the units where to gather resources.
A single unit would be in control of itself with respect to getting to the actual mineral.

P. Strategies [8] designs an agent trained with data gathered from a series of StarCraft
replays. Their work shows that only limited data are available directly from reading a StarCraft
replay. It works well for P. Strategies, since they only record actions taken. However, in a
replay it’s not possible to see whether or not an action was successful. This doesn’t only lead
to possible data skew, but it’s impossible to tell things such as unit count and resource count at
any given point in time during the replay, unless the replay is played in StarCraft.

Weber et al. [10] formulates several components of their agent. The most interesting part,
however, is their goal manager, which states three goals to achieve; strategy, income and tactics.
This approach acknowledges the splitting of economy–resource management–from other aspects
of the game.

Weber and Mateas [9] also use StarCraft replays to identify strategies. They state, that a
vast number of replays are needed in order to gain good results. They use the Weka toolkit to
expose their data set to different machine learning algorithms.

Steven De Jong et. al [3] notices seven basic principles present in resource management
games. Some of these seems to also apply to resource management within StarCraft, namely
coping with resource dependencies, predicting future game states and creating a sound planning.
At all times in resource management, you’re faced with the question whether or not you should
spend your resources now on more workers, or instead save to later in the game. This is
especially the case when it comes to expanding–should we expand now with our current resources,
or should we wait until we have enough resources to also put up defences? These are very
important questions, and surely important when developing an agent for resource management
in StarCraft.

CHAPTER 3

EFFICIENT MINERAL GATHERING

In StarCraft, a player usually does not take direct control of the workers that have been assigned
to gathering resources. When a worker is ordered to gather a resource, the worker will not only
mine the resources, but return to the nearest resource deposit as well and from there continue
to gather resources until given a different order.

The behaviour of the workers is relatively simple. A worker will go to the resource it was
ordered to gather, and if the resource the worker is moving to becomes occupied in the meanwhile,
the worker will move to another currently unoccupied resource in the cluster, if such a resource
exists. This may lead to the appearance of workers regretting their previous goal and choosing
a new goal, in some cases leaving a mineral field that is becoming available shortly for a mineral
field that will be occupied shortly. This behaviour can be considered suboptimal, as some travel
time is wasted on moving between resources, before the actual mining takes place. The erratic
movement may cause the mineral income rate to spike or drop every now and then, when a
worker chooses a new path, making it difficult to predict the amount of minerals available at a
later point in time. The standard behaviour negatively affects the income rate of a player as
well as its reliability.

To avoid this, direct control can be applied to the workers, where the future availability of
the resource is considered before moving.

3.1 Gather Minerals

Consider that for each mineral field, m, there exists exactly one queue Qm containing the workers
that will be mining this mineral field next. The queue is ordered such that the worker in front
of the queue is the first worker that will be mining the mineral field, the second worker from the
front will be mining the mineral when the first have completed and so on.

A mineral field queue is defined as a set Qm = {D0, D1, . . . Dn} where each element is a
worker in the queue. The first element in Qm, D0, is the worker that may mine the mineral
first. Each worker is assigned to at most one mineral field queue at a time. When a worker
have finished mining, it is removed from the queue, as it merely has to return its cargo to the
resource deposit. When the worker is ready for more work, e.g. when the worker has delivered
minerals to the resource deposit, they are again added to a mineral queue.

By using mineral field queues, it is possible to determine which mineral field a worker should

21

22 3.1. GATHER MINERALS

use in order to minimise the time it takes for the worker to return to the resource deposit with an
amount of resources. A factor in this is the time it takes for a mineral field to become available,
meaning the time until all workers in Qm have finished.

W ork (Qm) =
n

∑

i=0

W ork (Di) |Di ∈ Qm (3.1)

W ork(Qm) in Equation 3.1 is the time it takes for a mineral field, m, to become available,
meaning the amount of time before the last worker (and therefore all preceding workers) in the
queue is done using the mineral. W ork (Di) is the time that a worker, Di, will need to occupy
the mineral field. It is the time from the mineral field is available to Di to the time Di is done
using the mineral field. Therefore W ork (Q) is the sum of W ork (D) for all workers in the
mineral field queue.

W ork (Di) = max

0, T ravel→m (Di)−
i−1
∑

j=0

W ork (Dj)

 + T |Di, Dj ∈ Qm (3.2)

W ork (Di) is the time needed for a particular worker Di to finish using the mineral m, starting
at the time the mineral field is available and ending when the worker no longer occupy the
mineral field.

Equation 3.2 shows that the time it takes for a particular worker, Di, to complete its work,
depends on both the time it takes for the worker to move to the mineral field, T ravel→m(Di),
the constant time it takes to mine the mineral, T , and the time it takes for the workers in the
front of the queue, D0 . . . Di−1, to complete their work.

As the work of a worker is defined as the time from the mineral is available to the time
the mineral is no longer in use by the worker, the actual travel time of the worker should not
be considered when calculating W ork (Di). The only part of the travel time that should be
considered is the part of the travel that occurs while the mineral field is unoccupied. In other
words, if a mineral field is in use by a worker, then other workers may move closer to the mineral
field, without adding extra time to their work, as they may move at the same time as the mineral
is in use.

Consider the following part of Equation 3.2: T ravel→m (Di) −
∑i−1

j=0
W ork (Dj). Here the

work of those workers ahead of Di is subtracted from Di’s travel time, such that only the time
of the part of the travel occurring while the mineral field is available to Di is added. If the sum
of the work of those workers ahead of Di is greater than the actual travel time of Di, then Di

will be waiting for the mineral to become available and this part of Equation 3.2 will become
negative. As no time is gained from waiting in line, the function guards against this case by
enforcing a minimum value of zero.

Also note that the constant time to mine a mineral, T , is also added to the work of a worker.
W ork(Di) is recursive as the work of Di depends on the work of those workers ahead of Di.

The recursive part of the function will always terminate as the last worker, D0, will always be
reached and the sum of workers in front of D0 is always zero as that is the worker that is first
in line.

Consider an example with one mineral field, m, and two worker units, D0 and D1. Both
workers are queued for m and D1 is the worker in front of the queue, meaning that D1 is the
first that may mine the mineral field. This scenario can be viewed on 3.1.

In this example the travel time of D1 is 71 time units, the travel time of D0 is 104 time units
and the constant mining time is 80 time units. In order to calculate the time required before
the mineral field, m is available, the work of D1 and D0 is first calculated.

CHAPTER 3. EFFICIENT MINERAL GATHERING 23

Figure 3.1: Illustration of a mining scenario.

W ork (D1) = max [0, 71] + 80 = 151

W ork (D0) = max [0, 104 − 151] + 80 = 80

W ork (Qm) = 151 + 80 = 231

(3.3)

In Equation 3.3 the work of the two workers is calculated using Equation 3.2 as well as the total
work of Qm, using Equation 3.1.

The calculations state that worker D1, being the first in line, will be finished after 151 time
units. This is obviously true as moving to the mineral requires 71 time units and mining it
requires 80 time units. The worker, D0, is second in line. As it has been established that D1

requires 151 time units to be finished, D0 is able to move completely to the mineral field, as
the travel time is 71, which is less than the time until the mineral field becomes available. The
mining will not be possible until the mineral field has become available, meaning it cannot be
done in parallel with D1’s mining, and the constant mining time, T , must be added to the work
of D0.

The total time until the mineral field is available is 231, which is exactly the time before
both workers has finished mining.

By using these equations it is possible to calculate the round-trip time a worker, D, will
have if added to a particular queue, Qm, assuming the worker is not in a queue. The round-trip
time is the time is takes for a worker to move to a mineral, m, potentially wait in line, mine
the mineral and return with some of the resource. A complete round-trip causes the worker to
collect an amount of minerals and become ready for a new round-trip.

The time it takes a worker, D, to move to a mineral, m, mine the mineral and return with
the cargo (round-trip) is R(D, m) defined as can be seen in Equation 3.4.

R (D, m) = T ravel→m (D) + max [0, W ork (Q)− T ravel→m (D)] + T + T ravel←m (D) (3.4)

Just like Equation 3.2, T ravel→m (D) is the time required for the worker, D, to travel to the
mineral field, m. Assuming that a worker will always be added last in line, the time for all
preceding workers in the queue will be the sum of the work for all workers currently in the queue,
W ork (Qm). The time worker D will stand in line is the total work time of the queue W ork (Qm)

24 3.1. GATHER MINERALS

subtracted by the time that has already been spent on travelling. The constant mining time T
is also added along with the travel time to return to the resource deposit, T ravel←m (D).

Minimalizing the round-trip time for a worker will cause the worker to always pick the mineral
field that will allow for the fastest delivery of an amount of minerals in a greedy fashion (Mind
that the method doesn’t guarantee the highest possible income rate given a set of workers, see
Section 5.1. Furthermore, by using these rules for each worker, the actions of the workers can
be simulated to calculate the amount of resources that will be gathered over time.

Rmin (D) = R (D, mi) |mi ∈M,∀m ∈M : R (D, m) ≥ R (D, mi) (3.5)

Rmin (D) is the minimum round-trip time for a worker D, given a set of minerals, M . Equa-
tion 3.5 should be read as: The minimum round-trip time for D is the round-trip time for D,
mi, where mi is a mineral field in M and for all m in M the round-trip time of D, m is greater
than or equal to the round-trip time of D, mi. Selecting the mineral mi for D means that D
will have the fastest round-trip time and will deliver an amount of resources as fast as possible.

Figure 3.2: Illustration of a relatively large mining scenario.

Consider the example seen on Figure 3.2. In this particular scenario there are five workers,
one resource deposit and two mineral fields. The workers are identified as A, B, C, D and E
respectively. The mineral fields are m0 and m1. In order to visualise the actions of the workers,
a trace can be viewed in Table 3.1.

The traces contain the time of each action, the worker affected, the action performed by the
worker, the travel time needed for an action (in parenthesis), the state of the two mineral queues
and the current amount of minerals. Two numbers are important during mineral collection; the
travel time from point to point and the mining time of a mineral. The mining time is a constant,
measured as 80 time units. The travel times from and to every point used in the trace will not be
listed, instead the times will be stated in the rows, below the actions, to which they belong. The
trace describes 3 workers, each moving to one of two minerals, mining the mineral and returning
to the resource deposit. As the workers return to the resource deposit they are assigned to a
new mineral. The actions of the three workers constitute a round-trip for each of them. On
Figure 3.2 it should be noticeable that both the workers A and B have a shorter path to the
mineral m1 than to the mineral m0. However, on the second row of Table 3.1, it may be observed
that the worker B, moves to the mineral m0. The reason for this is that the worker, A, is already
in the queue for m1 and the time B would consume if placed in Qm1

, would be greater than

CHAPTER 3. EFFICIENT MINERAL GATHERING 25

Time Worker Action Queues Minerals

0 A Move to m1 Qm0
= ∅ 0

(110) Qm1
= {A0[work ← 190]}

0 B Move to m0 Qm0
= {B0[work ← 206]} 0

(126) Qm1
= {A0[work ← 190]}

0 C Move to m1 Qm0
= {B0[work ← 206]} 0

(126) Qm1
= {A0[work ← 190], C1[work ← 80]}

190 A Move from m1 Qm0
= {B0[work ← 16]} 0

(90) Qm1
= {C0[work ← 80]}

206 B Move from m0 Qm0
= ∅ 0

(108) Qm1
= {C0[work ← 64]}

270 C Move from m1 Qm0
= ∅ 0

(90) Qm1
= ∅

280 A Deliver & move to m1 Qm0
= ∅ 8

(90) Qm1
= {A0[work ← 170]}

314 B Deliver & move to m0 Qm0
= {B0[work ← 188]} 16

(108) Qm1
= {A0[work ← 136]}

360 C Deliver & move to m1 Qm0
= {B0[work ← 142]} 24

(90) Qm1
= {A0[work ← 90], C1[work ← 80]}

Table 3.1: A sample trace for the scenario on Figure 3.2

choosing m0 as the mineral, due to the time spent standing in line for the mineral.

R (B, m0) = 126 + max[0, 0 − 126] + 80 + 90 = 314

R (B, m1) = 118 + max[0, 204 − 118] + 80 + 90 = 374
(3.6)

Equation 3.6 shows the calculations made before choosing an action for worker B in the second
row of the table, using the function R from Equation 3.4. The set of minerals in the scenario
is M = {m0, m1}, so Rmin(B) is R(B, m0), as it may be verified by Equation 3.5, meaning
that having B move to m0 will give B the lowest round-trip time possible. The trace shown on
Table 3.1 is rather straight forward, as the workers choose the same mineral field in their second
run (chosen when dropping minerals off), as they did in the first run. For a larger scenario
with more workers and possibly more mineral fields, it is not uncommon for workers to change
mineral fields between runs, as one particular mineral may not necessarily keep providing the
lowest round-trip time. Implementation and usage of the algorithm is covered in Section 3.3.

3.2 An Incremental Learning Method for Travel Time

The mining algorithm explained in the previous section depends heavily on a function providing
the time it takes to go from the resource deposit to a mineral field and back. Movement in
StarCraft works by the path finding algorithm finding a path after which the unit will move
through this path to the destination. The chosen path is deterministic given the same starting
position, destination and obstacles, though Blizzard Entertainment have not released the details
of the algorithm. Units do not move at a constant speed. A unit, given a move order while
standing still, will first accelerate towards a maximum speed and decelerate before reaching its
destination.

26

3.3. EXPERIMENTS AND EFFICIENCY OF THE RESOURCE GATHERING

ALGORITHM

As the travel time will only be used for deciding the travel time between a resource deposit
and the mineral fields the amount of starting positions and destinations are relatively few. For
this reason the time needed to travel from one position to another is recorded and the recordings
are then used. Every time a worker unit move from the resource deposit to a mineral field the
time of the travel is recorded (in number of frames). Information on the travel is saved, including
the starting position, the destination and the time.

The idea is that whenever another worker unit is moving in a similar path to the one recorded,
the time is already known. Given enough data, all possible paths a worker may use when mining
minerals, is known for a specific map. So for known source/destination pairs this method will be
very accurate. Though travel time for unknown distances will have to either be approximated
or remain unknown.

The information has been gathered by using the mining algorithm and defining the travel
function as a function that returns a previously calculated value. If no data matching the source
and destination existed the function would return a low value to convince the unit to take the
path and thereby gather previously unknown data. This method has been used on a particular
starting location for a specific map and a lot of data have been gathered. The behaviour is very
obviously affected as more travel information is gathered. Instead of returning a low value, when
no travel time has been recorded, the distance from source to destination could be calculated
and a travel time could be estimated, but then it will take longer to learn a travel time.

3.3 Experiments and Efficiency of the Resource Gathering Al-

gorithm

The mining algorithm as described in Section 3.1 should improve the overall income in compari-
son to a standard approach of mining minerals. In addition to this, the algorithm is expected to
provide a stable and predictable income rate. In this section an approach based on the algorithm
will be presented, as well as the standard approach. The outcome of each approach is measured
and the results are presented, compared and discussed.

3.3.1 StarCraft AI Approach

The most usual and simplest approach for a player to make their workers gather minerals is
by selecting an amount of workers and right clicking any mineral. When the player have right
clicked any mineral the worker will move to that mineral and try to mine it, if the mineral is
occupied it goes to another mineral close by and try to mine this. If no minerals is unoccupied in
the mineral cluster the worker go to a field and wait until it is available. When the worker have
successfully mined the resources it will return to the resource deposit with the mined minerals.
After having dropped off the minerals it will return to the mineral it have lastly mined to mine
this again. This process is automated by StarCraft.

The efficiency of the mining algorithm described in Section 3.1 will be compared to a mining
agent acting the way that have just been described. As a computer agent is able to make
immediate actions, and a human likely has some latency, a computer agent is also used for the
StarCraft AI approach. Using two computer agents makes them more even in terms of speed of
actions, and the comparison therefore relates only to the method used. The StarCraft AI mining
agent will order the units to mine the closest mineral, the first to arrive will mine this mineral,
the others will automatically find another mineral field if more are available. The agent will
construct new workers as soon as possible with respect to the amount of minerals and supply.

CHAPTER 3. EFFICIENT MINERAL GATHERING 27

The tenth worker will on its creation construct a supply depot next to the resource deposit to
allow for the construction of an additional 8 workers, and after constructing this supply depot
the worker will start mining.

3.3.2 Mining Algorithm Implementation

The mining algorithm has been implemented using two worker events. Whenever a worker
is done mining, an event is fired, as well as when a worker delivers minerals to the resource
deposit. At the beginning of the game each worker is assigned to the mineral field giving the
lowest round-trip time. Every time a worker has finished mining an event is called and the
worker is removed from the queue that they previously belonged to. When a worker returns to
the resource deposit with a mineral another event is called and again the mineral field with the
lowest round-trip time for the worker is assigned. Like the StarCraft AI approach, workers are
created as soon as possible and a single supply depot is constructed by the tenth worker. The
lowest round-trip time requires the travel time from point to point. This travel time is recorded
as described in Section 3.2.

3.3.3 Test Setting

All tests will be carried out on the map, Astral Balance. Any map could have been used but
Astral Balance has been chosen due to being the first listed standard map for two players.
Though the difference between starting positions is usually considered negligible, in order to
ensure fairness, tests will always be performed in the upper right corner. The starting positions
lie next to a mineral cluster consisting of eight mineral field each holding 1500 minerals, as well
as a single vespene gas geyser.

The time will be measured in number of frames, as this is a time measurement available
directly through the BWAPI framework. The agents will per 500 frames output their current
amount of minerals. This makes it easier to compare the efficiency of the two approaches, with
respect to the actual amount of minerals gathered in the game, the rate for each 500th frames
and the differences in this rate. From these results the gain from using one method over the
other should be clear. Tests will be run several times, and averages of the outcome of these will
be used as a basis for the results and analysis of the test.

3.3.4 Results

The test were carried out as described in Section 3.3.3. A test with the described setup ran
10 times where it collected data at the same time, but the mining algorithm as described in
Section 3.1 ran one time prior to the data collection, to collect data on the travel time. The
setup ran for 8000 frames and per 500 frames the number of minerals where printed. From these
data the rate could be calculated.

The following three graphs show the difference in the two mining approaches first with
respect to the amount of mined minerals, secondly with respect to the rate at which they collect
minerals per 500 frames and lastly the standard deviation is shown for the two approaches.

Figure 3.3 shows the amount of mined minerals, with the number of minerals on the Y-axis,
and the number of frames on the X-axis. Both algorithms increase the amount of minerals over
time, but as it is visible, the line of the proposed mining algorithm is smoother than that of
the standard StarCraft AI approach. There are some fluctuations in the amount of minerals for
the standard StarCraft AI approach. These fluctuations represent an unavailability of resources
for some point in time, followed by a burst that seems to catch up to the expectations. At no

28

3.3. EXPERIMENTS AND EFFICIENCY OF THE RESOURCE GATHERING

ALGORITHM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Frames

M
in

e
ra

ls

StarCraft AI agent

Our agent

Figure 3.3: Amount of minerals gathered.

point in time, within the measured limits, have the standard StarCraft AI gathered more than
the proposed algorithm. At the last measured (8, 000) the proposed mining approach had in
average mined 4, 096 minerals, whereas the StarCraft AI approach had mined 3971 minerals. The
proposed mining approach mined roughly 3% more minerals than the StarCraft AI approach.

0

100

200

300

400

500

600

700

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Frames

M
in

e
ra

ls
 p

e
r

5
0

0
 f

ra
m

e
s

StarCraft AI agent

Our agent

Figure 3.4: Rate of mineral gathering.

Figure 3.4 shows the rate with which the two approaches collect minerals with a time span of
500 frames. With the number of minerals mined per 500 frames on the Y-axis, and the number
of frames on the X-axis. Both approaches roughly increase their rate over time, as more workers
are created. However, the rate of the standard StarCraft AI approach has some relatively large
changes in rate over the course of the 8, 000 frames, a sudden drop in the rate followed by a large
increase. This was evident in Figure 3.3 and more so in Figure 3.4. It is also interesting to note
that the slope of both graphs seems to decrease over time. This indicates that the gain from
creating a worker may depend on how many workers are already working the mineral fields. One

CHAPTER 3. EFFICIENT MINERAL GATHERING 29

would expect this to be the case as the more workers are present for the set of mineral fields;
the more time is wasted on standing in line for an unavailable mineral. Over time the graph is
likely to reach a horizontal asymptote as the amount of workers reach a point where the mineral
fields are completely occupied at all times, meaning that adding more would not yield a larger
rate of minerals.

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Frames

M
in

e
ra

ls

StarCraft AI agent

Our agent

Figure 3.5: The standard deviation of the collected data.

Figure 3.5 shows the standard deviation of the two mining approaches. The Y-Axis is the
standard deviation in number of minerals. The X-axis represents the time through number of
frames. At each interval there are two columns, the left is the standard StarCraft AI approach
and the right is the results for the proposed algorithm. At the early points the deviation is
relatively small, however, as time progresses the deviation seems to grow. The deviation of
the standard StarCraft AI approach clearly grows at a much higher rate than the proposed
algorithm. As this is the case, it seems that the proposed algorithm is the more reliable of the
two. This is important when aiming to predict the amount of minerals available at a later point.

3.3.5 Conclusion

From the previous result two things can be concluded. The first is that the proposed approach
seems to collects slightly more minerals than the StarCraft AI approach. The second is that the
proposed model is the more predictable of the two. This is true both in terms of stability of
mineral income rate and the confidence that may be attributed to this rate.

3.4 Summary

In this section, a mining algorithm has been suggested as an alternative to the standard mining
mechanism. The algorithm works by having each worker choose the mineral field that will allow
the fastest mineral delivery. Each time a worker returns with an amount of minerals this is
calculated and the worker is assigned to the proper mineral. In this respect the mechanism
should be considered greedy for each worker, meaning that it gives no guarantee to being the
optimal solution over time.

30 3.4. SUMMARY

In order to work, the algorithm needs access to the travel time from point to point of working
units. This has been implemented by measuring the travel times of worker units beforehand and
using this data for the function afterwards.

The results from Section 3.3.4 on page 27 show that the proposed approach is very predictable
as the curves are smoother and consistent from time to time. Observation shows that the rate
increases with time and the number of workers. This is useful when calculating expected income
for an amount of workers over time, as well as the potential gain from creating an expansion.
Furthermore the proposed approach increases the income rate.

CHAPTER 4

EXPANDING: SCANNING AND

SCOUTING TECHNIQUES

This chapter will propose a set of variables that may be important when a human player is
expanding their base operations–such as the enemy position, resources on the map and race
of the player–and a decision model for this will be discussed. A tool will be discussed for the
analysis of StarCraft replay matches, used to measure the influence of the proposed variables.
The chapter will conclude with a discussion of the retrieved data, and the importance of variables
with respect to expanding base operations.

4.1 Variables for Choosing Expansion Bases

Section 1.2.2 argues that the concept of expansions is a key component in winning a game of
StarCraft and that gaining knowledge about your opponents is an important factor in this.
Expansions that can mine minerals uninterrupted by enemy attacks is far more valuable than
one that is destroyed shortly after its creation. Therefore it is useful to consider all the possible
expansions before making a decision. When a human player considers which expansion site to
expand to, a lot of factors are involved. As some base locations contain more resources than
others, some of them can be preferable to others. However, it may not be so easy to map
properties such as resources of a base location to its desirability, as this does not consider the
theory of minds.

A player can choose a base location that is not as immediately attractive as another, if
this means the opponent is less likely to discover the expansion. The problem of the theory of
minds–and two agents that may both knowingly apply this to the other player–is the recursion
that occurs. At the first level we say that a player has an idea of what the opponent thinks, at
the second level a player has an idea of what the opponent’s idea of the player is and so forth.
It should be kept in mind that a player may not always choose the most obvious site for an
expansion for any reason, which is an always-present uncertainty.

In StarCraft, knowledge of an area requires a presence of units which the player controls.
When units exit an area the area is covered by fog of war, meaning that from the perspective of
the player, the state of that area does not change. It is not possible to observe resources being
removed, units being moved away from or through the area, new buildings being constructed

31

32 4.1. VARIABLES FOR CHOOSING EXPANSION BASES

etc. as long as fog of war is present. In order to gain information on these areas, the player can
scout the area in a range of different ways, depending on the race of the player. Scanning an area
where there is no enemy present gives the information that there is no enemy presence in that
particular location. However, scanning an area where the enemy is present, does not only provide
the information of enemy presence in the scanned location; as expansions are costly, it may be
possible to determine an estimate of the total number of expansions, meaning that finding an
expansion will tell the player a lot about the likelihood of other expansion sites containing an
enemy expansion.

By creating a model of how good an expansion site is for a given player, a player may
determine which locations are preferable for expansions. Apart from this, a model will also
make it possible for a player to determine how good a given location is for an opponent player.
This information can be used as the guideline for which locations should be scouted first.

In order to mimic this reasoning for a computerised agent, it is necessary to formalise and
identify the variables that a human player considers important when expanding. Expert knowl-
edge and personal belief have been used in identifying variables that may be important and as
an effect some of these variables may be unimportant while others are essential. This section
will cover these variables superficially and the most promising of them will be described in the
experiments section. The following is a list of the variables:

Variables relative to the location itself

Amount of gas The amount of gas available on the location.

Number of minerals The amount of minerals available on the location.

Number of chokepoints The amount of chokepoints, as defined in Section 1.3.2, in the area.
In general, the fewer chokepoints in an area, the less entrance points exists for enemy
ground units.

Presence in shortest path between enemy and own base A key point to surviving and
making surprise attacks on the enemy, is to remain hidden for as long as possible. If an
expansion is placed in an area that will need to be passed through on the way between
two opposing base locations, there is a chance that the expansion will be discovered by
chance. On the other hand, the area may also be a key strategic position to put up main
defences, since it can be located on the only route between two opposing base locations.

Distances from bases to the area Various distances from both own and enemy bases to the
area. The lower the distance from the nearest enemy base, the faster the opponent can
bring reinforcements to invading forces. In the same way, the lower the distance from the
nearest ally base, the faster reinforcements can be brought to the defenders. The distances
can be split up in four categories:

Own/enemy flying distance The flying distance from the nearest enemy/ally base to
the area.

Own/enemy ground distance The ground distance from the nearest enemy/ally base
to the area, taking into consideration the environmental obstacles that may be on the
way.

Open sides on the base In StarCraft, every map has a fixed size on both axes, with an
impenetrable wall that no units may pass. In effect, an area close to one or more of

CHAPTER 4. EXPANDING: SCANNING AND SCOUTING TECHNIQUES 33

these axes has fewer sides to defend from enemy forces much like what is the case for
chokepoints, but in this case also counting enemy flying units.

Variables relative to the map and the general status of the match

Number of own/enemy expansions The number of enemy expansions vs. the number of
own expansions may tell something about the status of the match. Roughly speaking, the
more expansions a player has, the higher his income and hence the better his position in
battle.

Number of possible expansions Every map in StarCraft is different, and the amount of pos-
sible locations to set up a base for resource gathering varies from one map to another. This
number may directly affect the importance of other factors like the number of own/en-
emy expansions, since 2 expansions in a map with 16 expansion locations might be less
important than the same in a map with 4 expansion locations.

Highest presence in shortest path between enemy and own base In order to clarify
the importance of the presence in shortest path between enemy and own base, as de-
scribed earlier, a normalization factor is needed. A choice for such a variable may me the
highest presence possible between the choices of expansions.

Game time The amount of time that has passed since a match began may be important for
several reasons. For example, since defensive structures takes time and resources to build
and maintain, an early expansion may increase the income of a player, but will leave both
the starter base and the expansion vulnerable until defences has been set up.

Best number of gas/minerals Variables describing the highest number of gas/minerals pos-
sible for all choices of expansions. Both may be used as normalisation factors for other
variables.

Own/Enemy race Each race in StarCraft has its own strengths and weaknesses, so the pres-
ence of different enemy and ally races may proof a factor when deciding where to expand.

4.2 A Decision Model for Base Expansion

Given each of the variables mentioned in Section 4.1, their importance needs to be identified
and utilised. Since some of the variables may affect each other, a structure such as Bayesian
Network that can represent this correlation, seems like a viable choice of representation. With
such a structure, the choices human players make, when deciding where and when to expand
can be boiled down to choosing the action with the highest occurrence, given the variables that
are present when an expansion needs to be made. This network can then be used by a potential
computer player to make decisions on where to expand at a given time in the game. The same
network may be used to estimate where the opponents have expanded at a given point, if they
were to use the same approach. Using the logic presented in Section 4.1, this information may
then in turn be used to know where to scan for information on the opponent.

4.3 Using Replays to Measure Influence of Variables

In order to determine the importance of the variables in Section 4.1, states of the variables,
given lots of different game states, are needed. Since information on the enemy is limited in

34 4.3. USING REPLAYS TO MEASURE INFLUENCE OF VARIABLES

the start of the game, due to the fog of war, a generalised Bayesian Network seeking to match
all players–regardless of their playing style–needs to be constructed, in order to know where to
search for the opponent.

Due to the shear amount of data needed, gathering data from live battles made specifically
for the sake of gathering data for this project is infeasible. Luckily, due to the popularity and
age of StarCraft, a lot of replays has been made during the years, and have been collected on
certain websites, like the ones mentioned in Section 2.4.

Using these replays, the actions made by thousands of players on a great range of different
StarCraft maps, can be gathered for analysis. Unfortunately, due to the nature of the replay
format used in StarCraft, the variables that have been identified in Section 4.1 cannot be collected
directly from the replay file [8]. In order to retrieve the variables, a simulation of the game, from
which the replay was made, needs to be analysed. Since StarCraft currently is closed source,
the only way to be sure the simulation is correct, is to use the original replay launcher from
the game. Using BWAPI along with BWTA (See Section 1.3) to hack and communicate with
StarCraft, the variables can be retrieved from the replays and saved in a format that can later
be used for analysing the data.

4.3.1 Implementation of Replay Analyser

BWAPI is used for collecting data from replays, among other things, by utilising terrain analysis
through BWTA. The purpose of the data is to locate positions that an enemy is likely to occupy
as well as identify locations that are well suited for expansions. This is done by tracking every
time that a player in a replay creates a resource deposit in a new region. When this happens
the properties of the region is saved as an entry tagged BUILD, indicating that a player have
chosen to build an expansion on this region. Every unoccupied region at the point in time where
the player constructed a resource deposit is considered a potential location that was not used.
For each of these locations an entry tagged NOT BUILD is created, with the properties of the
region. The purpose of this act is to have a representation of which properties indicate a good
place to expand and which properties means that a location is not so good. The properties used
in this analysis is described in Section 4.1.

It should be noted that the starting positions of each player is also considered to be an
expansion, in order to ensure that the likelihood of an enemy occupying the location is not
underrepresented. For each set of entries written for a particular time, only one will be a
BUILD entry, the rest will be NOT BUILD. In most cases this will create an overrepresentation
of NOT BUILD entries, but as long as the data is used as a guide for where to build and not
whether or not to build, we do not foresee this to be a problem.

Some properties depend on the amount and locations of existing expansions. In order to
know the locations of the expansions of each player, ownership has been defined. Ownership is
gained by placing a resource deposit on a region that is owned by no one. Ownership is lost
when the last building, able to produce units on the region, is destroyed. Ownership is defined
because controlling a region in StarCraft does not necessarily mean controlling the region for
the entire length of a game. A list of ownerships is maintained and used whenever a property
requires the information.

CHAPTER 4. EXPANDING: SCANNING AND SCOUTING TECHNIQUES 35

4.4 Analysis of Data

In order to perform an analysis on the collected data from the replay parser, the data mining
tool Waikato Environment for Knowledge Analysis1, Weka, is used. Weka is a tool that enables
most common machine learning and data processing algorithms to be run on data sets [12]. The
primary purpose for using Weka on our data set is to gain knowledge on the proposed variables
in Section 4.1, in order to know which variables are important when deciding where to expand
base operations to a new place on the map. Weka is also able to produce a Bayesian Network
based on the data set, which matches our goal of Section 4.2.

Using a small data set based on 250 replays, with 15, 468 instanced based on 19 attributes,
some tendencies are observed. Other than the 18 variables already mentioned in Section 4.1,
the 19th variable is indicating whether or not an expansion is built in a region, whenever they
expand. Entries have been captured in the way described in Section 4.3.1, the entries are
distributed between races as follows: 201 Terran entries, 161 Zerg entries and 194 Protoss
entries. The graphs in this section that are bicolored contains the entries for both BUILD and
NOT BUILD. As explained in Section 4.3.1, the number of NOT BUILD will in most cases be
larger than the number of BUILD entries, but the ratio of BUILD/NOT BUILD can be used as
a comparison between properties, as it is the ratio describing the actual amount of expansions,
to a location with some property, compared to the number of times such an expansion has been
possible. This section will only cover variables with interesting results. As an example, walking
distance has been skipped, as the general tendencies seem to be the same as that of the flying
distance variable.

Amount of Gas

The variable amount of gas determines the total amount of vespene gas in the region. Vespene
gas is used mostly for nonstandard units and upgrades, while minerals are used for constructing
everything. Given that this is the case, the requirement for either resource may not be the same.

0

2000

4000

6000

8000

10000

12000

0-0 0-500 500-
1500

1500-
2000

2000-
4000

4000-
6000

6000-
10000

Gas

O
c

c
u

re
n

c
e

s

Not build

Build

(a) Gas relation.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0-0 0-500 500-1500 1500-

2000

2000-

4000

4000-

6000

6000-

10000

Gas

P
e

rc
e

n
ta

g
e

s

(b) Gas factor.

Figure 4.1: (a) Relation between building and not building on locations with various amounts
of gas. (b) Percentages of building versus not building on locations with various amounts of gas.

As it can be seen in Figure 4.1a and Figure 4.1b, the likelihood of building at a location with
no vespene gas is somewhat high. The likely cause is that these instances represents cases where
the region does not and have not, at any point in time, contained vespene gas. In these cases,
the players interest have been the minerals at the location and the player have disregarded the

1http://www.cs.waikato.ac.nz/ml/weka/

36 4.4. ANALYSIS OF DATA

lack of vespene gas at the location. In the case where there is an amount of vespene gas higher
than zero in the region, players seem most interested in the locations where there is a rather
high amount of vespene gas. It seems reasonable that players will either disregard vespene gas
completely, if that was not the purpose of the expansion, or choose a location with at least a
decent amount of vespene gas, to justify building an expansion at all.

Amount of Minerals

The variable number of minerals determines the number of minerals in a region. Minerals are
the core resource, used for constructing everything. In most maps there will not be any region
with a vespene gas geyser and no mineral fields. Either there are only mineral fields, mineral
fields and one or more vespene gas geysers or no resources at all.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0-
0

0-
50

0

50
0-

15
00

15
00

-2
00

0

20
00

-4
00

0

40
00

-6
00

0

60
00

-1
00

00

10
00

0-
12

00
0

12
00

0-
15

00
0

Minerals

O
c

c
u

re
n

c
e

s

Not build

Build

(a) Mineral relation.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0-0 0-500 500-

1500

1500-

2000

2000-

4000

4000-

6000

6000-

10000

10000-

12000

12000-

15000

Minerals

P
e

rc
e

n
ta

g
e

(b) Mineral factor.

Figure 4.2: (a) Relation between building and not building on locations with various amounts
of minerals. (b) Percentages of building versus not building on locations with various amounts
of minerals.

As it can be seen in Figure 4.2a and Figure 4.2b, players seems to primarily build expansions
at locations where a lot of minerals are present. This is perhaps not very surprising as it is
expected that players will expand to retrieve resources and the primary resource is minerals.
Apart from that, it is not uncommon that starting positions have the maximum amount of
resources in a map.

Number of Chokepoints

The variable number of chokepoints determines the number of entrances to a region from different
regions. The more chokepoints a region contains, the more points must be considered when
defending against ground units. A location with zero chokepoints is referred to as an island,
because it is inaccessible to anything but aerial units.

The data from Figure 4.3a and Figure 4.3b shows that islands are sometimes used for ex-
pansions, however, they do not seem as attractive as other locations with a low amount of
chokepoints. It should be considered that the starting area of players is, in most cases, not
islands. The reason for this is to allow early game ground units to be effective. Constructing
a building on an island requires a worker to be transported to the island. It is true for all
StarCraft races, that the technology to do this is not available right away, so island expansions
are most likely mid- or late game expansions. There does not seem to be much distinction
between regions with two, three or four chokepoints, which would indicate that players does not
distinguish between these, or at least not in the same degree that islands are considered distinct.

CHAPTER 4. EXPANDING: SCANNING AND SCOUTING TECHNIQUES 37

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 8 12

Chokepoints

O
c

c
u

re
n

c
e

s

Not build

Build

(a) Chokepoint relation.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 1 2 3 4 5 6 8 12

Chokepoints

P
e

rc
e

n
ta

g
e

s

(b) Chokepoint factor.

Figure 4.3: (a) Relation between building and not building on locations with various amounts of
chokepoints. (b) Percentages of building versus not building on locations with various amounts
of chokepoints.

Game Time

Figure 4.4 shows the percentage of total builds conducted at specific time intervals. As the
starting position is included in this, each player always constructs a base in the beginning
of each game, which is why the amount of constructed bases for around zero game time is
rather high. It would seem that there is no golden point in time for constructing an expansion.
However looking at the data it seems like early game is perhaps more focused on attack, defence
and getting the current base running, postponing the first expansion. At late game there is a
light drop in the amount of expansions constructed. This may be due to the game being almost
settled, causing players to focus primarily on combat in order to exterminate the last bases of
the enemy. Generally, it seems like expanding may happen through the core part of the game.

0

5

10

15

20

25

30

35

0-100 100-
7000

7000-
14000

14000-
21000

21000-
28000

28000-
35000

35000-
42000

42000-
65373

Frames

B
u

il
d

s
 (

%
)

Figure 4.4: Percentage of total builds conducted at specific time intervals.

Open Sides

The variable open sides shows the number of open sides of a base location. A side is defined as
the north, south, east or west border of a base location and an open side is a side that is not in
close proximity to the edge of the map. In practice, this means that an open side is a direction
in which the base location is not protected by the map border. Air and ground units are likely

38 4.4. ANALYSIS OF DATA

to attack from an open side, where an attack from a closed side is either impossible or restricted
to aerial units. Due to the way a side has been defined, there can be a maximum of four open
sides. This is the case when a base location is positioned in the middle of a large map, in this
case, the base location will be open to attacks from all sides. Three open sides means that the
base location is positioned near the border of a map and two open sides means that the base
location is in one of the four corners of the map.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 3 4

Number of open sides

O
c

c
u

re
n

c
e

s

Not build

Build

(a) Open sides relation.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

2 3 4

Open sides

P
e

rc
e

n
ta

g
e

s

(b) Open sides factor.

Figure 4.5: (a) Relation between building and not building on locations with various amounts
of open sides. (b) Percentages of building versus not building on locations with various amounts
of open sides.

As it can be seen in Figure 4.5a and Figure 4.5b, the collected data shows a slight tendency
towards base locations with few open sides. These locations are often easier to defend and
that may be part of the incentive for constructing an expansion on this type of base location.
However, it should be considered that starting positions are often located in the outskirts of a
map, meaning that the player’s first base will often have at least one closed side.

Own Flying Distance

The variable own flying distance normalised is a property determining the direct distance from
the players nearest already built base to the location being considered. The distances that are
zero represents the starting locations of the players. Figure 4.6a and Figure 4.6b shows that
players seem prone to build expansions in locations that are close to existing bases. This makes
a lot of sense in that it is likely much easier to defend bases that are close together, compared to
bases that are far from each other or where there does not exist a path between. For scanning,
it may be worth considering that if an enemy base has been found, it is possible that there are
more nearby.

Enemy Flying Distance

The variable enemy flying distance normalised is also the direct distance, but in this case the
direct distance to the nearest enemy expansion. It should be noted that the players in the replays
used, may not always have been aware of the locations of enemy expansions. That being said, it
can be seen from Figure 4.7a and Figure 4.7b that players generally build expansions rather far
away from their enemy. Superficially, this seems logical as one would imagine expansions close
to the enemy may be discovered and/or destroyed. An interesting thing to note is that in some
cases bases have been built very close to the enemy, but seemingly not in a midrange distance
from the enemy. This would indicate that if a player is building a base close to the enemy, it

CHAPTER 4. EXPANDING: SCANNING AND SCOUTING TECHNIQUES 39

0

500

1000

1500

2000

2500

0.
1-

0.
16

0.
2-

0.
24

0.
28

-0
.3

2

0.
36

-0
.4

0

0.
44

-0
.4

8

0.
52

-0
.5

6

0.
60

-0
.6

4

0.
68

-0
.7

2

0.
76

-0
.8

0

0.
84

-0
.8

8

0.
92

-0
.9

6

Maximal distance (%)

O
c
c
u

re
n

c
e
s

Not build

Build

(a) Own flying distance relation.

0

0,1

0,2

0,3

0,4

0,5

0,6

0.
1-

0.
16

0.
2-

0.
24

0.
28

-0
.3

2

0.
36

-0
.4

0

0.
44

-0
.4

8

0.
52

-0
.5

6

0.
60

-0
.6

4

0.
68

-0
.7

2

0.
76

-0
.8

0

0.
84

-0
.8

8

0.
92

-0
.9

6

Maximal distance (%)

P
e

rc
e

n
ta

g
e

s

(b) Own flying distance factor.

Figure 4.6: (a) Relation between building and not building on locations with various distances
from own base expansions. (b) Percentages of building versus not building on locations with
various distances from own base expansions.

will be very close. As the number of cases this happens are relatively low, it is not unlikely that
this type of expansion belongs to a specific strategy. Alternatively it should be considered that
there may be some specific game event taking place. Our replay analyser does not discriminate
between cases, where a player is eradicating an enemy expansion and constructing a new base
at the location even before the enemy has been completely removed, and the case where the
player is simply building a resource deposit inside the opponents existing base. The result for
the distance of 0 in Figure 4.7b (N/A) stems from the concrete values, 9 builds and 0 not builds.
Though building inside the enemy base happens very rarely, it still does happen. There are no
cases of not building inside the enemy base, due to the way the variables are collected. Since
a base is occupied by an enemy, it is regarded as not being interesting for players when they
consider new expansion locations and hence, not build will in no case increase.

0

500

1000

1500

2000

2500

3000

0-
0

0.
11

1-
0.

25
9

0.
25

9-
0.

37
0

0.
37

0-
0.

48
1

0.
48

1-
0.

59
3

0.
59

3-
0.

70
4

0.
70

4-
0.

74
1

0.
74

1-
0.

77
8

0.
77

8-
0.

81
5

0.
81

5-
0.

85
2

0.
85

2-
0.

89
9

0.
89

9-
0.

92
6

0.
92

6-
0.

96
3

0.
96

3-
1.

00
0

Maximal distance (%)

O
c

c
u

re
n

c
e

s

Not build

Build

(a) Enemy flying distance relation.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0-
0

0.
11

1-
0.

25
9

0.
25

9-
0.

37
0

0.
37

0-
0.

48
1

0.
48

1-
0.

59
3

0.
59

3-
0.

70
4

0.
70

4-
0.

74
1

0.
74

1-
0.

77
8

0.
77

8-
0.

81
5

0.
81

5-
0.

85
2

0.
85

2-
0.

89
9

0.
89

9-
0.

92
6

0.
92

6-
0.

96
3

0.
96

3-
1.

00
0

Maximal distance (%)

P
e
rc

e
n

ta
g

e

N/A

(b) Enemy flying distance factor.

Figure 4.7: (a) Relation between building and not building on locations with various distances
from enemy base expansions. (b) Percentages of building versus not building on locations with
various distances from enemy base expansions.

Expansions

The variable expansions shows the number of current expansions at the time of constructing
a new expansion. As an example, consider a case where a player has seven expansions and
constructs another. This will be the player’s eight expansion, meaning that the column marked

40 4.5. SUMMARY AND OPEN PROBLEMS

7 is the number of times a player has constructed their eighth expansion.

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7

Expansions

O
c

c
u

re
n

c
e

s

Figure 4.8: Amount of occurences for various amounts of expansions.

From Figure 4.8 it can be observed that the more expansions a player has, the rarer building
an additional expansion is. This could be applied when scouting, considering that the more
enemy expansions have been found, the less likely it is to discover another. One should be careful
not to interpret the data, as it being unlikely for a player to create more than one expansion. A
player may create an expansion while only having the base at the starting position. The player
may then have this expansion destroyed by the opponent and choose to construct a new one. In
this case, both expansions are constructed while having one existing base, though only one of
them should be considered the first expansion. There are a few instances of players constructing
an expansion without having any expansions. This may happen when a player loses ownership
of their last expansion but manages to utilise a worker to create a new expansion before the last
of their buildings are eliminated. This seems to be a rare occurrence, possibly because a player
may be willing to surrender, when they lose ownership of their last base. 250 replays have been
collected with more than 900 cases for building an expansion while having one already. For this
reason, it would seem that constructing expansions is a very common element of StarCraft, as
would have been expected.

4.5 Summary and Open Problems

Weka has been useful in identifying relations between the recorded properties and building or
not building an expansion. The amount of resources, vespene gas and minerals, seems to be
a large factor when choosing a location, hinting that players build expansions for the profit
they may bring and not merely to surround an enemy or get control of strategic key points of
a map. Is also interesting to observe that the distances to both a player’s existing bases and
the distance to the enemy is important factors as well. Players tend to construct expansions
near their own expansions, possibly because it makes the expansions easier to expand. Players
will generally also construct their expansions far away from the enemy, possibly for the reverse
reason. Variables have only been evaluated on how they directly influence the BUILD/NOT
BUILD relation. As an example, this means that it is not considered how the importance of
variables changes with game time. Some of the variables that have been excluded from this
section, due to not showing an interesting relation with BUILD/NOT BUILD, may turn out to
have a clearer influence on this, if coupled with another variable. The gathered data contains
the start base of each player as an entry on par with the player-chosen expansions. In some

CHAPTER 4. EXPANDING: SCANNING AND SCOUTING TECHNIQUES 41

cases it may have been more useful to distinguish between pseudo randomly selected starting
positions and consciously chosen expansions. As an example this can assist in classifying how
valuable a player considers an area with a high amount of resources, by examining the number
of cases a player have actively constructed an expansion on a resource dense area.

42 4.5. SUMMARY AND OPEN PROBLEMS

CHAPTER 5

CONCLUSION AND FUTURE WORK

We have addressed some of the problems concerning mineral gathering and base expansion
in StarCraft. We have designed an algorithm for efficient mineral gathering and performed
preliminary work on identifying scouting strategies when choosing a new expanding location.

We successfully constructed an algorithm for mineral gathering, which queues workers for
minerals. The algorithm minimises the round trip time for each worker in order to maximise
income. The algorithm was implemented and tested against the built-in StarCraft mining ap-
proach. These experiments showed that an agent based on the algorithm gathered 3% more
minerals than the built-in StarCraft mining approach. It was shown that it is difficult to predict
the amount of minerals gathered, using the built-in StarCraft mining approach. In comparison
with this, the standard deviation of gathered minerals by an agent based on our algorithm is
low, making it more predictable. The increased predictability increases the confidence in the
calculations made for the amount of minerals gathered in some finite time. This can in turn be
used when considering at what point in time it is viable to create an expansion, as the potential
gain can be closely approximated.

We analysed a range of variables, some of which influences a human player’s selection of an
expansion location. Data on these variables was gathered by analysing 250 replays. Identifying
the most influential variables is required in order to develop a model for strategic scouting.

The experiments suggested that the distance between a location and existing expansions, is
an important factor. Players are inclined to build expansions close to their own expansions and
far away from the enemy’s.

The amount of resources contained within a region also seems to be a significant factor when
choosing expansion locations. Players had a preference for resource-dense locations, suggesting
that the main purpose of expanding is likely acquisition of resources.

5.1 Future Work

The mining algorithm is greedy in the sense that each worker selects the option, allowing the
fastest mineral gain. It might be beneficial to make the algorithm distribute workers by having
them act as a group, increasing the total income over time instead of the income per worker.

It would be beneficial to use a greater amount of replays for the analysis since this would
generate more accurate data, as stated in Section 2.4.

43

44 5.1. FUTURE WORK

In this technical report we have considered a number of variables, which we believe may be
related to whether or not an expansion at a given location is desirable. It is possible that there
may exist influential variables, which we have not considered. Due to this, it may be beneficial
to perform further experiments. It may also be beneficial to utilise the knowledge of expert
players, in order to identify further variables.

So far data entries have only contained BUILD/NOT BUILD tags. Locations already con-
taining an expansion do not create a new entry. It is possible that creating a tag for ALREADY
BUILT will allow a more accurate depiction of the relation between expansions. As an example,
a player may have a low preference for a resource-dense location, if they already occupy several
of such locations. Introducing an ALREADY BUILT -tag will also allow for a more accurate
representation of the starting base of players, making this a special case that does not have a
BUILD-entry.

BIBLIOGRAPHY

[1] M. Buro and T. M. Furtak. Rts games and real-time ai research.

[2] V. Chartz. Software totals. http://www.vgchartz.com/. [Online; accessed November 25th
2010].

[3] S. De Jong, P. Spronck, and N. Roos. Requirements for resource management game ai. In
In Proceedings of the IJCAI 2005 Workshop on Reasoning, Representation, and Learning
in Computer Games, 2005.

[4] B. Geryk. A history of real-time strategy games. http://www.gamespot.com/gamespot/

features/all/real_time/. [Online; accessed December 5th 2010].

[5] M. Kubovy and A. O. Holcombe. On the lawfulness of grouping by proximity. Cognitive
Psychology, 35(CG970673):71–98, 1998.

[6] J. McCoy and M. Mateas. An integrated agent for playing real-time strategy games. In
Proceedings of the 23rd national conference on Artificial intelligence - Volume 3. The AAAI
Press, 2008.

[7] K. Olsen. South korean gamers get a sneak peek at ’starcraft ii’. USA Today Online, http:

//www.usatoday.com/tech/gaming/2007-05-21-starcraft2-peek_N.htm, May 2007. [Online;
accessed November 25th 2010].

[8] P. Strategies. Mining replays of real-time strategy games to learn player strategies.

[9] B. Weber and M. Mateas. A data mining approach to strategy prediction. In Computational
Intelligence and Games, 2009. CIG 2009. IEEE Symposium on, 2009.

[10] B. G. Weber, M. Mateas, and A. Jhala. Applying goal-driven autonomy to starcraft.
In Proceedings of the Sixth Artificial Intelligence and Interactive Digital Entertainment
Conference. The AAAI Press, 2010.

[11] S. Wintermute, X. Joseph, and J. E. Laird. Sorts: A human-level approach to real-time
strategy ai. In Proceedings of the Third Artificial Intelligence and Interactive Digital En-
tertainment Conference. The AAAI Press, 2007.

45

46 BIBLIOGRAPHY

[12] I. H. Witte and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2nd edition, 2005.

