
LOCAL POSITIONING SYSTEM
BASED ON FACE DETECTION

Aalborg University
Institute of Electronic Systems

Vision, Graphics and Interactive Systems
Project Group 926, 2010

Institute of Electronic Systems
Fredrik Bajers Vej 7
DK-9220 Aalborg Ost
Phone +45 99 40 86 00

Title: Local Positioning System Based on Face Detection

Theme: Vision, Graphics and Interactive Systems

Project period: September 6th to December 22nd 2010

Project group:

926

Group members:

Antoine Breton

Audrey Cabec

Océane Esposito

Grazina Laurinaviciute

Alexandre Majetniak

François Rosé

Supervisor:

Zheng-Hua Tan

Co-Supervisor:

Aristodemos Pnevmatikakis

Copies: 3
Pages: 65
Finished: 20th Dec. 2010

Abstract:
The problem of sensing and tracking people is one
which has encouraged much research. One growing
need and application to this kind of system is the
supervision of living environments for elderly.
In this project, we base our system on an existing one
that tracks persons in a multi-camera environment,
where tracking is based on two different modalities:
foreground and feature points. In our system, we
keep the information provided by the foreground and
add a new modality: face.
Firstly, foreground is found in 2D on each camera
frame and then converted to generate voxel-based
3D foreground. The face detection algorithm is then
run, also for each frame, in order to confirm the ex-
istence of a human target. Finally, a particle filter
based on partitioned sampling is used to combine in-
formation from both modalities.
The system is implemented to run on a single com-
puter using video recordings. Tests will be performed
on the CLEAR 2007 data set in order to compare it
with the previous system. Results from the CLEAR
2007 data set are not presented in this report but the
renderer of our system is described in details and can
give an idea of how the system runs.

Preface

This report documents group 926’s work on the 9th semester of the Vision, Graphics
and Interactive Systems specialisation at the Institute of Electronic Systems, Aalborg
University. The work was done during the period from September 6th to December 22nd
2010.

The report is divided into 5 parts: Introduction, Modalities, Tracking System, Imple-
mentation and Evaluation. The first part motivates the project and describes existing
systems for face detection. It concludes in a problem formulation. The different modali-
ties that will be used in the system are then described in the second part. The design of
the tracking system is explained in the third part, and its C++ implementation in the
fourth. In the last part, the performance of the system is evaluated and a conclusion is
drawn.
A bibliography listing all the relevant literature sources can be found at the end of the
report. The references are made using the syntax [number].

We would like to thank our supervisor at Aalborg University Zheng-Hua Tan for allowing
us to work on this project. We would also like to thank our co-supervisor Aristodemos
Pnevmatikakis from Athens Information Technology (AIT) for his assistance throughout
the project and for accepting to test our system on the CLEAR data set.

Antoine Breton Audrey Cabec

Océane Esposito Grazina Laurinaviciute

Alexandre Majetniak François Rosé

Aalborg, December 22nd 2010

v

Contents

I Introduction 1

1 Motivation 3

1.1 Setup and Data Set . 4

2 Modalities and Tracking Systems 7

2.1 Existing Tracking Modalities . 7

2.2 Choice of Modalities . 8

3 Face Detection 9

3.1 Face Detection Problem . 9

3.2 Knowledge and Template-Based Techniques 9

3.3 Feature Invariant-Based Technique . 10

3.4 Appearance-Based Technique . 11

3.5 The Viola and Jones Method . 12

4 Problem Formulation 13

4.1 Problems . 13

II Modalities 15

5 Foreground Estimation 17

5.1 Foreground Estimation in 2D . 17

5.2 Combination of 2D Foreground Masks into 3D Foreground 19

6 Viola Jones Face Detection 21

6.1 Features . 21

6.2 Training of the Algorithm . 22

6.3 Cascade Structure of the Algorithm . 23

vii

CONTENTS

III Tracking System 27

7 Particle Filter 29

7.1 Bayesian Probability, Theory and Notations 29

7.2 Particle Filter Algorithm (SIS and SIR) 30

7.3 Partitioned Sampling . 32

8 Targets 35

8.1 Target Definition . 35

8.2 Target-Blob Matching . 37

8.3 Update . 38

8.4 State Estimation . 40

8.5 Management . 41

9 Foreground Likelihood 45

9.1 State Estimation . 45

9.2 Likelihood Function . 45

10 Face Likelihood 47

10.1 First Approach . 47

10.2 Second Approach . 49

IV Implementation 53

11 Software Design 55

11.1 General Description of the Existing Source Code 55

11.2 Implementation of Face Tracking . 56

V Evaluation 59

12 Renderer 61

12.1 3D Renderer . 61

12.2 Frame Renderer . 62

12.3 Interpretation . 62

13 Conclusion 65

Bibliography 67

viii

Part I

Introduction

1

Contents
This part of the report presents our motivation and the need for many face tracking
applications. It also defines our project goal by a problem formulation. It explains
the most relevant face detecting systems which already exist and the testing part with
CLEAR Data Set.

1 Motivation 3

1.1 Setup and Data Set . 4

2 Modalities and Tracking Systems 7

2.1 Existing Tracking Modalities . 7

2.2 Choice of Modalities . 8

3 Face Detection 9

3.1 Face Detection Problem . 9

3.2 Knowledge and Template-Based Techniques 9

3.3 Feature Invariant-Based Technique . 10

3.4 Appearance-Based Technique . 11

3.5 The Viola and Jones Method . 12

4 Problem Formulation 13

4.1 Problems . 13

Chapter 1

Motivation

People tracking is a process which can be used in very different domains like surveillance,
augmented reality, traffic control and medical imaging. The common goal is to allow an
automatic system to sense the presence of people somewhere in a room. It can assist
people in their work by making it easier. However, it is a very long process because of
the amount of data in a video.

Security systems are often used for monitoring people. They usually use a single camera
with very simple algorithms which can detect if a person is moving in a scene. This
basic system can be improved by a simple idea: when a specific event occurs, an alarm
is triggered and it can be dealt with in a particular way. Finally, if we are able to
differentiate between several events in a video, we can deal with them in many different
ways. The more efficient the algorithm is, the less staff you need to secure a place.

However, the goal of this application is to assist elderly people in their everyday life. It
is very important to help these people because their number is increasing significantly
in the developed countries. Most of the time, old persons live alone and it can be a big
problem when they get hurt at home. This program tries to improve their security and
guarantee their independence.

When an elderly falls over, most of the time he or she cannot reach the phone to call
for help. Fall detection is one of the goals of this project. It is achieved by tracking
the position and determining the mobility of this person on a scene. Knowing the body
posture in real-time, we can provide help instantaneously for someone in trouble.

In order to have an efficient system, we need clear information about the scene. In most
cases, a single camera is used, which is not sufficient since an obstacle can easily obstruct
a person. Passive sensors can be used to get more information but cameras provide more
information about what is happening on a scene. This system uses five cameras and
their information is combined to track a person and determine its body posture.

We decided to work on an existing project and improve it to make it more reliable. This
project has been realized by Martin and Rasmus Andersen [1] during their last year at
Aalborg university.

3

CHAPTER 1. MOTIVATION

Figure 1.1: Camera Setup [1]

1.1 Setup and Data Set

The system is composed of 5 cameras. 4 of them are placed on top corners of the room
and the last one is located in the middle of the ceiling, pointing down. An illustration
of the room is shown in Figure 1.1.

1.1.1 Development Data Set and Setup

A test setup was established in the laboratory of Athens Information Technology (AIT)
to assist in the development process. The 4 corner cameras resolution is 1600x1200 and
the top camera’s resolution is 1024x768. Each camera’s recording rate goes up to 15 fps.
One video sequence of 6.57 min duration has been used in order to test our system. All
cameras are connected to network computers.

1.1.2 CLEAR Data Set

CLEAR 2007 data set [6] is chosen to produce results that can be compared to perfor-
mance of previously developed systems. This international workshop contains 40 video
recordings of meeting rooms, equipped with five cameras like in Figure 1.1. A number of
background frames without people in the room are available for each recording. Record-
ings are taken from five locations and each one is approximately 5 minutes long. In each
video we can see people moving around, sitting at a table and falling.

CLEAR 2007 workshop defines how to measure the performance of a system. It uses
four different measurements:

• Misses: An object is missed if it is not tracked whithin 50 cm accuracy.

4

1.1. SETUP AND DATA SET

• False positives: A false positive is yielded when we are more than 50 cm wrong.

• Mismatches: A mismatch occurs when an object switches to another one.

• Position error : An object has to be tracked within 50 cm to be declared "matched".

These four measurements are combined to obtain the MOTP. This shows the preci-
sion of the tracker system. It also gives a measure of tracker’s configuration errors
- false positive, misses and mismatches.

5

Chapter 2

Modalities and Tracking Systems

This part is going to give an overview of some measurements that we can use to make
an efficient tracking system. In a second part we are going to discuss about the best
modalities that our system can have and to conclude, we will make a choice about our
tracking system concerning these modalities.

2.1 Existing Tracking Modalities

There are a lot of different modalities that can be used in a tracking system. They can
be divided in two distinct categories: sound and visual.

Sound
When a person moves in a room, it interacts with other persons and with the envi-
ronment by making sounds. Thus, by using multiple microphones, this person can be
tracked. Some examples of tracking systems using noise are shown in [30] [14] [20].

Visual
There are four different characteristics that can be used in an image.

• Firstly, it is possible to track a person using the color [28]. The most relevant
color-based method is the one which uses Gaussian distribution in a color mixture
model.

• Secondly, the contours of a person is an effective mean for detection, as seen in
[35]. This method presents a big problem because the outline of a person can be
very easily occluded when the person is behind a chair for example.

• Thirdly, tracking of people can be accomplished using face detection [37] and recog-
nition. In this paper, they are using a skin-color model to detect human faces in
a video. Then, to track a person, a motion model and a camera model are used
respectively to handle head motion and to predict camera motion. Faces are only

7

CHAPTER 2. MODALITIES AND TRACKING SYSTEMS

Visual

Faces Motion

Face
detection

Foreground
detection

Figure 2.1: Modalities that we are using in the system.

present when real people are in the room into consideration and this kind of de-
tection can make the difference between an object and a person when both are
moving. However, some false positives can appear. The best face detection al-
gorithm has been developed by Paul Viola and Michael Jones and is based on a
boosted cascade of simple classifiers [33].

• The last visual cue to detect a person in a room is motion and they are used in
[5] [11]. Two methods have been developed to find motion in a video. For the first
one, a frame by frame difference is computed to obtain a foreground detection. The
second method uses the optical flow and feature points. The optical flow is defined
by the motion of some relevant points on a scene. By tracking these points, it is
possible to track a person in a room. These techniques have a limit because when
a person is not moving, he or she can not be detected.

2.2 Choice of Modalities

To have the best person tracking system, we have to combine at least two modalities.
This is a very important part in the project because we have to choose the modalities
very carefully, otherwise the system can rapidly become very slow.
The first type of cues, the sound modality, is discarded because we want to have a purely
vision-based system. We are improving an existing system, thus we must deal with
previously made choices. The foreground detection is kept, as it is an effective cue, and
it works fine in the previous system. It will be the item for the motion category. On top
of that, we decided to implement another visual item: face detection. These choices are
represented in Figure 2.1.

To conclude, we will combine foreground detection and face detection to track
persons in a room in order to improve the previous project which combined foreground
detection and feature points.

8

Chapter 3

Face Detection

Before developing the system for face tracking, it is important to know a fundamental
computer vision problem which is face detection. Over the past few years and with the
rapid increase of computational powers, lots of advances have been done in the different
approaches of this topic in computer vision literature. In this chapter, an overview of
the different existing techniques in face detection is presented.

3.1 Face Detection Problem

Face detection recently aroused a growing interest from researchers [38] [40] [32] [34]
because of the multiple applications using it: biometrics, video surveillance, energy con-
servation... In his paper [38], Ming-Hsuan Yang gave a definition of face detection:
"Given an arbitrary image, the goal of face detection is to determine whether or not
there are any faces in the image and, if present, return the image location and extent of
each face."
Face detection has been resolved by using a lot of different approaches which can be
grouped into three categories:

• the knowledge and template-based technique will be presented in section 3.2

• the feature invariant approach will be discussed in section 3.3

• the appearance-based technique will be detailed in section 3.4

The last part (3.5) will talk about the algorithm developed by Paul Viola and Michael
Jones. This method revolutionized the face detection research field.

3.2 Knowledge and Template-Based Techniques

The knowledge-based and template-based techniques are two very close methods. The
knowledge-based one encodes what constitutes a typical face by rules referring to human

9

CHAPTER 3. FACE DETECTION

Figure 3.1: Abstract face model at the resolution level of the quartet image [16].

knowledge; for example all faces have two eyes, symmetric to each other, a nose and a
mouse. It is also known that the center part of a face has uniform intensity values and
the difference between the average intensity values of the center part and the upper part
is significant. The template one uses a storage of several standard patterns to describe
the face as a whole. They are both used mainly for face localization. Yang and Huang
proposed a method using these approaches for face detection [36]:
"First step: apply the rule the center part of the face has 4 cells with a basically
uniform intensity to search for candidates. Second Step: local histogram equalization
followed by edge equalization and then edge detection. Third Step: search for eye and
mouth features for validation ".
This is a simple method but it remains difficult enumerating templates for different poses.

Kotropoulos and Pitas [16] proposed an abstract model for the face at the resolution
level of the quartet image. It is shown in Figure 3.1. A hierarchical knowledge-based
system is then designed in order to detect facial features by establishing rules applied to
the quartet image.

Face detection using knowledge-based method or template-based method is easy to imple-
ment with simple rules and it is well appropriate for face localization in tidy background.
However it is difficult to translate human knowledge into precise rules: detailed rules fail
to detect faces and general rules may find many false positives. Besides, it is really
complicated to extend this approach to detecting faces in different poses because it is
impossible to enumerate all the possible cases.

3.3 Feature Invariant-Based Technique

Feature based methods detect faces by using facial features and a combination of them.
Facial features (eyes, eyebrows, nose, and mouth) are extracted using image processing

10

3.4. APPEARANCE-BASED TECHNIQUE

operations such as thresholding, edge detection or morphological operations. Relation-
ships between them are described by statistical models built after the extraction of the
features, and then the existence of a face is verified. Neural networks, graph matching,
and decision trees can also be used to verify candidate faces. There is another powerful
feature which can be used for face detection: skin color, which is considered as an in-
variant and effective feature. Normally, each person has her own skin color but research
has shown that the main difference between human skin colours was the difference in
the lighting intensity component. Thus faces can be detected using a color space such
as HSV or YCrCb.
In their article [19], Lanitis, Taylor and Cootes model the shape of facial features. In a
new image, facial features are located using an Average Search Model. This process is
shown on Figure 3.2:

Figure 3.2: Examples of the Average Shape Model fitting procedure [19].

The feature invariant-based technique presents the advantage that features are invariant
to pose and orientation change. Therefore it is very difficult to locate facial features due
to several corruptions like illumination, noise or occlusion and detecting features in a
complex background is not an easy task either.

3.4 Appearance-Based Technique

In contrast to template matching, appearance-based methods [7] use a huge number of
examples such as images of faces or facial features, with different variations such as face
shape, eye and skin color... The problem of face detection is to know whether there is
a face or not in the image, so we can consider it as a classification problem with two
classes: non-face and face. The non-face class contains images that have representations
of anything that is not a face, while the face class is for all face images. Statistical
analysis and machine learning techniques are used to find the statistical properties of
the pixel brightness patterns on images belonging to both classes. To detect a face in an
input image, the whole image is scanned and image regions are identified as "face" or
"non face" based on these probability functions. Well-known appearance-based methods

11

CHAPTER 3. FACE DETECTION

used for face detection [27], [24], [22] are eigen faces , LDA , neural networks, support
vector machines and hidden Markov models.

3.5 The Viola and Jones Method

Paul Viola and Michael Jones developed a very successful appearance-based face detec-
tion algorithm [33] based on three main ideas: the integral image, classifier learning with
AdaBoost, and the attentional cascade structure. It is one of the first techniques which
can effectively detect faces in an image in real time. The algorithm consists of scanning
the whole image and calculating some characteristics in overlapped rectangular areas.
One particularity of this method is the fact that a lot of characteristics are used but they
are very simple. The first innovative idea is to introduce integral images which enable
to have a faster calculation of the characteristics. The second innovative and important
idea is the selection of these characteristics by using a boosting algorithm - AdaBoost,
representing the characteristics as classifiers. Then, the Viola and Jones method com-
bines the boosted classifiers into a cascade process which is faster and more efficient for
the detection.
To sum up, the method is divided into two steps: the first one is training the classifier,
based on a huge number of positive examples (that is to say, objects of interest: faces, for
example) and negative examples. This training step is done only once and is performed
off-line. The second step for the detection is applying this classifier to unknown images.

We decided to use this method in our project to implement the face detection part
because it is very efficient and the method is mentioned in literature a lot [39] [29]. Be-
sides, it is implemented in OpenCV under a BSD license so we can use it in an easy way.

12

Chapter 4

Problem Formulation

4.1 Problems

The actual tracking system works but needs some improvements because in specific cases,
some problems occur. In many situations, the system can lose a target very easily.

Firstly, when a person stays immobile for a period, the target is lost by the foreground
tracker.

Secondly, when a person is faded into the background but still marked by feature points,
the tracking system has some issues. Namely, the feature point tracker keeps the track
without a problem, but it fails when a person is mobile nearby, because the foreground
and the feature points parts of the tracker try to reach two different goals. While the
foreground part tries to move the target to the area with foreground, the feature points
part tries to keep the target at the originally tracked person. The feature points part
always loses this fight because feature points located far away from the target are erased.

Thirdly, the initialisation procedure can be improved to avoid initialising targets on
moved objects like chairs. Finally, when many people are very close to each other,
they overlap in most camera views. No points are initialised in this situation to avoid
initialising feature points on a wrong person.

With the CLEAR data set, we are going to be able to compare our algorithms to the
previously developed ones. It means that this system must be able to succeed in these
tasks in typical situations. The CLEAR metrics define what a good performance is:

• Entering and leaving: In our system, we only allow the fact that people are
entering and leaving the scene with nobody on the first frame. The system does
not support the situation where people are present in the first frame.

• Mobility: The system must be able to track a person, irrespective of whether he
is moving or not.

• Multiple persons: The system has to track up to 5 persons successfully.

13

CHAPTER 4. PROBLEM FORMULATION

• Precisions: The tracking system needs to give a precision of 5-8 cm.

• Real-time execution: The system must be able to run in real-time.

• Reasoning: Body posture estimation has to be carried out simultaneously with
person tracking.

Problem formulation:

How can a system be developed that, based on combined information from adaptive
foreground estimation and face detection, is able to track multiple persons in a multi-
camera environment and reason about their mobility and body posture?

14

Part II

Modalities

15

Contents
As our goal was to modify and improve the previous project realized by Martin and
Rasmus Andersen [1] we based a significant part of our project on their work. One main
part is foreground detection. In order to implement this type of detection, a lot of meth-
ods based on pixel background models have been developed. In this part, an overview of
previous realizations on foreground detection is presented. Moreover, we describe a face
detection approach, designed by Viola and Jones, which we combine with foreground
detection to improve the system.

5 Foreground Estimation 17

5.1 Foreground Estimation in 2D . 17

5.2 Combination of 2D Foreground Masks into 3D Foreground 19

6 Viola Jones Face Detection 21

6.1 Features . 21

6.2 Training of the Algorithm . 22

6.3 Cascade Structure of the Algorithm . 23

Chapter 5

Foreground Estimation

Foreground processing has already been done by Martin and Rasmus Andersen [1] and
this chapter is a short analysis of it. The term foreground means that there are non-
stationary persons or objects in the scene. Most of the methods for the foreground
estimation in 2D are based on pixel background models [9] [11], which means that the
system does not distinguish objects in the scene, but distributions of pixels. Those pixels
are analysed, then noise and shadows are handled afterwards. The 3D representation
of foreground can be realized by combining several 2D foreground masks and using
preprocessing with combination of informations from the cameras. The last step enables
to reduce efficiently the amount of noise produced with the method used to calculate the
2D foreground. The main advantage of using several cameras for tracking comes from
allowing to track on the floor plan in dimensions that are independent of the camera
positioning.

5.1 Foreground Estimation in 2D

5.1.1 Adaptive Background Estimation

Two approaches exist for the adaptive background estimation: parametric and non-
parametric [21]. The first one assumes that the background is distributed as a predefined
distribution whereas the second one can handle arbitrary distributions. Our system uses
five cameras to work, it means that we have a huge amount of data to calculate so, we
need an adaptive background which does not require too many memory to store the data
so the parametric approach is chosen.

5.1.2 Gaussian Mixture Model (GMM)

A mixture model represents each RGB pixel by several simple distributions such as a
Gaussian distribution. The Gaussian Mixture Model is the most used mixture model [3]
and it is generally chosen for the basis distribution in the mixture model, besides the
Gaussian distribution gives better results than the Laplacian one [15]. Using mixture

17

CHAPTER 5. FOREGROUND ESTIMATION

models pixels means that only one distribution is going to be used to model the back-
ground color. For the foreground objects and persons which are passing in front of the
background, some additional distributions are applied.

5.1.3 The GMM Background Estimation Algorithm

The first step of the algorithm is to find if a pixel value matches a distribution. So, for
each new frame, each color of a pixel is compared against the distributions of the pixel.
If the color belongs to the existing distribution, the pixel is matched to it. The second
step is to update the weight of the distribution and sort it according to the background
likelihood. Each pixel is marked as foreground or background. The background distri-
bution will be present at each step of time whereas the foreground could have some huge
variance.

For this algorithm, it is not required to use high resolution images. By using lower
resolution images, the GMM algorithm runs significantly faster and reduces the time
consumption.

5.1.4 Shadow Removal

In this section, the shadow removal algorithm is explained. Most of the shadow has
to be removed because it is considered as noise in the image. To achieve this goal, a
"per-pixel" shadow removal is performed. To handle shadows, we use separate channels
for brightness and colour informations. Only the pixels marked as foreground are used.
To remove the shadow, we need to introduce two different values: Db and Dc. Db is the
brightness distortion and it is a scalar which indicates the brightness of a particular pixel
compared to the background pixel. Dc is the colour distortion and it is a scalar which
indicates the colour difference between a particular pixel and the background pixel. τDb

and τDc are respectively Db and Dc thresholds. The thresholds are meant to prevent too
many dark pixels from getting marked as shadows.

Shadow removal algorithm [10]:

For each foreground pixel:

• Calculate Db between the most likely background model and the pixel

• If 1 > Db > τDb
then

– If Dc < τDc then a shadow pixel is found

5.1.5 Noise Removal

The last task for 2D foreground detection is noise removal. Different approaches exist to
remove the noise such as neighbourhood averaging [8], BLOB analysis [31], and a pixel
persistence map (PPM) combined with binary decision trees [18]. In our case, the BLOB
analysis is used because it is the simplest and the fastest technique. Indeed, it provides

18

5.2. COMBINATION OF 2D FOREGROUND MASKS INTO 3D FOREGROUND

good results in many situations. The limitation of this technique is that sometimes it
detects false background when the background has high similarities with the foreground.
In this system, the BLOB analysis removes small areas of foreground and background.
A BLOB which has an area with less than a predefined threshold is removed.

5.2 Combination of 2D Foreground Masks into 3D Fore-
ground

First of all, the way of spanning the 3D space has to be chosen. It can be both spanned
in a discrete [17] or a continuous way [4], but due to its simplicity and great effectiveness
for removing the noise, the discrete voxel-based representation of the 3D space is chosen.

Secondly, voxels are projected to the image planes of all cameras and then the corre-
sponding foreground masks are checked. If there are enough cameras detecting significant
foreground, these voxels can be considered as foreground. To do that, three possibilities
have been analysed:

1. A solution based on centre pixels: the center pixel of the voxel indicates
whether or not the projected voxel mostly contains foreground, which in other
terms means, if it is located on the border of a foreground area, on the foreground
area, or out of it. Testing only one pixel saves computation time but is very
sensitive to noise since one affected pixels yield to a wrong conclusion.

2. A solution based on blurring filter: before using the center pixel technique, a
blurring filter is applied to the foreground masks. Its purpose is to add resistance
to noise. However, the blurring filter produces a kernel for each voxels and the
kernel is gathered around the centre pixel. Because of camera distances issue and
various voxel sizes, the kernel might not have the correct size, and therefore will
not be located on the foreground, which leads to false detection.

3. A solution based on distance transform: distance transform is the alternative
solution to the blurring filter. The center pixel is still used instead of the whole
voxel, but this time, the nearest foreground is found using a circle enclosing the
projected voxel. It still leads to false positives but remains more efficient. It does
not include noise reduction.

Noise is already suppressed during combination of different cameras into 3D. That way,
the blurring filter is not needed, and distance transform becomes the best choice.

5.2.1 Hierarchical Grid Structure

To represent foreground in 3D space, coherent volumes have been structured to indicate
the presence of people. To avoid having to test all the voxels to determine if they intersect

19

CHAPTER 5. FOREGROUND ESTIMATION

foreground, the idea is to divide space into hierarchies of voxels. Testing a large voxel,
if it contains foreground, its children will be tested. If not, they are skipped.

Algorithm for doing the conversion of the 2D foreground masks into a grid
of foreground voxels [1]:

• We are using a grid of voxels on N hierarchical levels to span the room.

• Each center and corner of 3D voxel are projected on all levels to the image plane
of each camera. The radius of the enclosing circle C is determined by the corners.

• IF a voxel can not be seen by a sufficient number of cameras THEN remove it.

• FOR each camera: Perform distance transform of the foreground mask.

• Assume that S is a group for all voxels of the highest hierarchical level.

• FOR each voxel in S:

1. FOR each camera:

– IF the value of the center of the projected voxel in the distance map is
below the radius of C

– THEN foreground is detected

2. IF all cameras that can see the voxel detect significant foreground:

– IF the voxel has any child
– THEN repeat the algorithm with S consisting of all children of the voxel
– ELSE mark the voxel as a foreground voxel

20

Chapter 6

Viola Jones Face Detection

This chapter describes the Viola-Jones algorithm providing face detection which we add
to the existing system [1].

The algorithm, presented in [33], provides a solution to the problem of spotting image
regions that contain faces. The algorithm takes a grey scale image as input and produces
a set of rectangles on output, each of which, in an ideal case, corresponds to a human
face in the supplied image.

The whole procedure is based on machine learning, whereby in the beginning a large
data set of images is used to train the algorithm, i.e. make it acquire the necessary
criteria for classifying any arbitrary input image region either as a face, or as a non-face
region. Criteria take the form of features, which can be calculated from a single input
image region, and their corresponding thresholds.

The trained algorithm is then applied to an input image, analysing its subregions of
different sizes and positions. Some of them are accepted as faces and constitute the
output of the algorithm.

6.1 Features

Decisions about face presence in the image are taken based on image features, that can be
computed for every image subregion. The features used in the Viola-Jones face detection
algorithm are reminiscent of Haar basis functions. It classifies images based on the value
of simple features. There are three varieties of them: two-rectangle, three-rectangle and
four-rectangle features. These are shown in Figure 6.1.

• The value of a 2 rectangle feature is the difference between the sum of the pixels
within two rectangular regions.

• The value of a 3 rectangle feature is computed by the sum within 2 outside rect-
angles subtracted from the sum in a center rectangle.

21

CHAPTER 6. VIOLA JONES FACE DETECTION

Figure 6.1: A and B show a two rectangle feature, C illustrates a three rectangle feature and D is
a four rectangle feature. The sum of the pixels which lie within the white rectangles
are subtracted from the sum of pixels in the grey rectangles [33].

• The value of a 4 rectangle feature is computed by the difference between diagonal
pairs of rectangles.

They can be efficiently computed due to an innovative image representation, called an
integral image.

ii(x, y) =
∑

x′≤x,y′≤y
i(x′, y′) (6.1)

6.2 Training of the Algorithm

Now that the features have been defined, the training of the Viola and Jones algorithm
can be described. This requires a data set of N images xi, each having a label yi assigned
to it. yi = 1 when an image is considered a face, and yi = 0 otherwise.

6.2.1 Weak Classifier

Central to understanding the performance of the Viola and Jones algorithm is the concept
of a binary classifier. It is a function which either discards or accepts its input variable
(this corresponds to values 0 or 1, respectively). Dealing with images of faces, an image
region is considered as a variable, and its acceptance or rejection means that it either
contains a face or not.

22

6.3. CASCADE STRUCTURE OF THE ALGORITHM

By the term weak classifier we refer to a single feature and its corresponding optimal
threshold. The threshold is learned as follows: first, the feature value is computed for
each image xi from the training data set. Based on this computation, the image set {xi}
can now be divided into two parts - negative and positive, according to some threshold
applied to the feature value - and the resulting division can be compared with the original
labels yi. The threshold we are looking for is the one that leads to misclassifying the
minimum number of example images.

6.2.2 Strong Classifier

Weak classifiers, taken individually, cannot be trusted enough, when a decision about
face presence in the image region is taken, as they tend to misclassify input significantly.
However, their appropriately chosen linear combination - a classifier itself - performs
the task much better. This combination is called a strong classifier and is obtained by
applying the Ada Boost algorithm to the training data set.

6.2.3 Ada Boost Algorithm

The Ada Boost algorithm takes a feature set and a training set as input and produces a
strong classifier as output. In the beginning, each feature’s optimal threshold is chosen,
as described in 6.2.1.

Afterwards, a sequential process of T rounds is run. Each round selects a single feature
out of the initial set. The selection criterion is the minimum classification error with
respect to weights, assigned to the data set items.

The algorithm is presented in Figure 6.2. Each round starts with a set of normalized
weights, associated with each image xi, marking their relative significance in this round.
Higher weights correspond to the images that were misclassified in the previous round(s),
which leads to subsequent selections of a classifier that compensates for previous mis-
takes.

Each feature’s threshold divides the data set into two parts and this division together
with image weights and true classification labels yi is used to obtain a classification
error for this feature in the current round. The smallest classification error leads to its
corresponding feature being selected in this round.

The process results in a strong classifier, expressed as a linear combination of T weak
classifiers.

6.3 Cascade Structure of the Algorithm

Usually, for each input image, there is a huge number of subregions to analyse and the
great majority of them does not contain faces. However, the right regions should be
selected as quickly as possible. Therefore it is necessary not to spend too much time on
dealing with irrelevant subregions.

23

CHAPTER 6. VIOLA JONES FACE DETECTION

• Given example images (x1, y1), ..., (xn, yn) where yi = 0, 1 for negative and positive
examples respectively.

• Initialize weights w1,i =
1
2m , 1

2l for yi = 0, 1 respectively, where m and l are the
number of negatives and positives respectively.

• For t = 1,...,T:

1. Normalize the weights

wt,i ←
wt,i∑n
j=1wt,j

so that wt is a probability distribution

2. For each feature j, train a classifier hj which is restricted to using a single
feature. The error is evaluated with respect to wt, εj =

∑
iwi | hj(xi)− yi |.

3. Choose the classifier ht, with the lowest error εt.

4. Update the weights:

wt+1,i = wt,i × β1−eit

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and
βt =

εt
1−εt .

5. The final strong classifier is:

m(i) =

 1 if
∑T

t=1 αtht(x) ≥
1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

Figure 6.2: AdaBoost Algorithm [33]

24

6.3. CASCADE STRUCTURE OF THE ALGORITHM

In order to achieve this goal, given the particularities mentioned, a cascade structure
of the Viola-Jones algorithm is chosen, meaning that each input region is processed
consecutively by a number of nodes, called strong classifiers. Each node is a binary
classifier and performs the same task - either classifies the region as a face or rejects it
- however, their criteria differ. Nodes further down the cascade will analyse a subregion
only if it has not been rejected by the previous ones. The nodes are arranged in the order
of increasing complexity, so that the front ones spend less time analysing a single image
subregion and therefore determine more quickly if a face is present. Strong classifiers
further down the cascade, on the other hand, inspect each subregion more thoroughly
before taking a decision. The result is as desired: less time is spent dealing with irrelevant
regions, as they are discarded in the beginning of the cascade, and those that pass
successfully to the end of the cascade are most likely to contain faces and are given the
most attention.

Only subregions having traversed the whole cascade successfully are finally acknowledged
as faces and are further used in our system in face likelihood computations.

25

Part III

Tracking System

27

Contents
The purpose of our system is to be able to track the centroid of a person’s head present in
the room. This goal is achieved by making use of the statistical method called particle
filter. Each person in the scene being observed is associated with a target - a represen-
tation, suitable for the purposes of tracking. Each target, in turn, has its corresponding
particle set. This part is devoted to the discussion of these concepts.

7 Particle Filter 29

7.1 Bayesian Probability, Theory and Notations 29

7.2 Particle Filter Algorithm (SIS and SIR) 30

7.3 Partitioned Sampling . 32

8 Targets 35

8.1 Target Definition . 35

8.2 Target-Blob Matching . 37

8.3 Update . 38

8.4 State Estimation . 40

8.5 Management . 41

9 Foreground Likelihood 45

9.1 State Estimation . 45

9.2 Likelihood Function . 45

10 Face Likelihood 47

10.1 First Approach . 47

10.2 Second Approach . 49

Chapter 7

Particle Filter

Particle filter is an advanced statistical method used to estimate the state of a Bayesian
model. This method uses the available observations and turns them into probabilities.
Then the particle filter evaluates different state hypotheses, also called particles, and a
model estimation is built. This method is an alternative to Kalman filter developed in
1960 by R.E.Kalman [12]. If the particle filter is correctly defined, it can be faster than
a Kalman filter. Also Kalman filters are limited by some assumptions. For example,
Kalman filter assumes that probability density functions are only Gaussian. On the
other hand, a particle filter provides a more general approach, often more efficient to
manage real word statistical models. In computer vision systems, particle filters are very
useful to track objects and people using video data. The first system using particle filter
in this domain was developed by Isard and Blake in 1998. This application is well known
under the name CONDENSATION algorithm [2].
Our system cannot assume that probability functions are Gaussian. Moreover, a particle
filter can be improved to combine efficiently several modalities using partitioned sam-
pling. In this chapter we will describe the basic particle filter algorithm, then we will
explain how we use partitioned sampling to combine foreground measurement with face
detection.

7.1 Bayesian Probability, Theory and Notations

Bayesian probability is a way of using information from the past and current time step
measurements to predict the current time state of a process by evaluating a probability
density function. The mathematical notation for a state at time k is xk and the obser-
vations at time k are denoted zk.
In Bayesian estimation, the true state is assumed to be the result of an unobserved first
order Markov process [30], and the measurement is the observation corresponding to the
true state. In other words, the state at time k depends only on the state at time k − 1

and the measurement is related to the true state. Then some probabilities are defined:

• p(xk) is the prior probability of xk, the probability of the state being equal to xk
before the data zk is observed.

29

CHAPTER 7. PARTICLE FILTER

• p(zk|xk) is the conditional probability of observing zk given that the hypothesis
xk is true. This probability is also called the likelihood.

• p(xk|zk) is the posterior probability, the probability that the state hypothesis is
true, knowing zk.

The purpose of the Bayesian approach is to evaluate the posterior probability distribution
p(xk|zk). In general, algorithms based on this approach do it in 2 steps. First, the
system gives a prediction using the previous state and data. Then it takes the newest
measurement into account in the update step. These steps are described by the following
equations based on Bayes’theorem 7.1.

Bayes’theorem: p(xk|zk) =
p(zk|xk)p(xk)

p(zk)
(7.1)

p(zk) is a constant, so we can simplify Bayes’rule to: p(xk|zk) ∝ p(zk|xk)p(xk)

Predict: p(xk) = p(xk|zk−1) =
∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1 (7.2)

The equation 7.2 holds because of the underlying first order hidden Markov model as-
sumption. p(xk|xk−1) is sometimes called motion model or state evolution model and
p(xk−1|zk−1) is the posterior probability at time k − 1.

Update: p(xk|zk) ∝ p(zk|xk)p(xk|zk−1) (7.3)

p(zk|xk) is a likelihood, also denoted L(xk|zk). This likelihood reflects the probability
of seeing zk for a given state xk.
In many cases the state space is huge and it is often impossible to obtain the true state
because calculating p(zk|xk) and p(xk) cannot be done. The solution is to estimate
p(xk|zk). There are many algorithms used to solve this kind of problem. One of the
most famous is the Kalman filter. It is used in many applications because it is a quite
simple algorithm able to solve complex problems. The main problem of this filter is the
assumption that transition and observation model are considered as Gaussian. An alter-
native to Kalman filter is the particle filter algorithm [23], also known in the computer
vision field as "multiple hypotheses tracking". This filter is able to solve more complex
problems that cannot assume the probability density functions being Gaussian.

7.2 Particle Filter Algorithm (SIS and SIR)

Particle filters are designed to estimate the state of a process using a Bayesian approach.
They are recursive algorithms. The main idea of this method is to generate many hy-
potheses which are represented by the particles. Each particle consists of a state value
and a weight obtained by evaluating a likelihood function for its state. Then, given all
the particles, we use an estimator to get the state estimation.

30

7.2. PARTICLE FILTER ALGORITHM (SIS AND SIR)

Figure 7.1: Illustration of SIS and SIR particle filters in 1 dimension. The particles are represented
by circles and their size are proportional to their weights.

• Prediction: The first step is to generate a new set of particles for the current
time step. Ideally the particles should be distributed according to the posterior
distribution p(xk|zk) but it is not feasible due to the requested calculation process.
The solution is to use a proposal distribution π(xk|z1:k) instead. This approach is
based on first order hidden Markov chain, which means the proposal distribution
will only depend on the previous state and the measurements, i.e: π(xk|zk) =

π(xk|xk−1, zk). The definition of this proposal distribution affects the efficiency of
the filter a lot.

• Update: For each particle a likelihood is calculated. Each particle’s importance
weight is updated by the equation 7.4. Then we normalize weights, i.e for each
particles we divide its weight by the sum of all the weights.

Update weights: wk = wk−1
L(xk|zk)p(xk|xk−1)
π(xk|xk−1, zk)

(7.4)

• Resampling: The purpose of resampling is to change the weight of all the particles
to the same value 1

Np , with Np being the number of particles. But it is important
to make sure that resampling does not change the distribution described by the
particles’ weights. Therefore particles with higher weights are replaced by several
identical particles and the particles with lower weights are deleted.
The Sequential Importance Sampling (SIS) is the basic implementation of the par-
ticle filter without resampling. With SIS, the particle filter can easily produce one
or several particles with very high weights and all the others will have very low
weights. When this particular situation occurs, the particles do not represent the

31

CHAPTER 7. PARTICLE FILTER

posterior distribution correctly. This problem can be solved by occasionally resam-
pling the particles when the problem appears. A good indicator of this problem
is the variance of the importance weights. Thus it is possible to set a maximum
acceptable value for this variance and resample when the variance is above this
threshold.
Another common approach for particle filtering is to resample at each step of time,
which is called Sampling Importance Resampling (SIR). In this case, the proposal
distribution is set to the transitional prior: π(xk|xk−1, zk) = p(xk|xk−1). This
choice simplifies the importance weight update equation 7.4 to:

wk = wk−1L(xk|zk)

Both SIR and SIS are described on figure 7.1

7.3 Partitioned Sampling

The concept of particles is the approximation of the posterior distribution. The number
of particles used in the particle filter defines the accuracy of this approximation. So the
choice of this number is a compromise between performance and accuracy. Thus the
relation between state space dimension and the number of particles required is obvious.
The bigger the state dimension is the more you need particles to obtain good perfor-
mances.
For a system which uses M different measurement sources, it is possible to partition the
particle filter into several stages. This strategy is very useful to combine modalities, and
decreases the number of particles needed to achieve a good level of performance. Perez
and Black use this approach called partitioned sampling in a tracker fusing sound and
visual measurements [26].

Partitioned sampling assumes the M measurements zk = (z1k, z
2
k...z

M
k) are indepen-

dent.Therefore the likelihood can be calculated separately from each sources:

L(zk|xk) =
M∏
m=1

L(zmk |xk)

It is still possible to use this property in a simple particle filter but it is also possible
to exploit it better. To do that, the state is split in M partitions too and the proposal
distribution is redefined to πm(xmk |x

m−1
k , zmk) i.e. each proposal distribution drifts only

the m partition of the state without modifying the others. Then the weights are updated
according to the following equation:

Update weights: wmk = wm−1k

L(xmk |zmk)pm(xmk |x
m−1
k)

πm(xmk |x
m−1
k , zmk)

with m = 1..M (7.5)

Note: Things are a bit different with the first partition: x0
k = xMk−1 and w0

k = wMk−1.

32

7.3. PARTITIONED SAMPLING

Take a set of Np particles from previous set of time and proceed for time k.

Initialization:

For each particle: {x0
k, w

0
k} = {xM

k−1, w
M
k−1}

Then for each partition: m = 1...M

Proposal distribution:

xm
k ∼ πm(xm

k |xm−1
k , zm

k)

Weights update:

wm
k = wm−1

k

L(xm
k |zm

k)pm(xm
k |xm−1

k)

πm(xm
k |x

m−1
k , zm

k)

Afterwards normalize weights to have their sum equal to 1.

Optional resampling:

Replace {xm
k , w

m
k } by {xm

k ,
1

Np
}

According to the distribution represented by weights.

End of time step k

Table 7.1: Generic partitioned sampling framework

This particular strategy splits the state into partitions associated to different measure-
ments and runs one particle filter for each partition with an optional resampling between
each stage. The order of the partition can have an important impact on the performance
of the filter because the first stages guide the particles and the last stage defines the
weights used for the estimation of the state. Therefore, to benefit from the advantages
of partitioned sampling, the measurement modalities must be ordered from coarse to
fine.

33

Chapter 8

Targets

This chapter discusses targets, which are the representations of people in the scene being
monitored. First, the targets’ main constituents are presented, then operations related
to their management are introduced.

8.1 Target Definition

Each target is a collection of relevant information about a moving entity (ideally, a
person) in the room. This information is principally aimed at determining a moving
entity’s position, orientation and size. Its most important parts are target-associated
particles, its state estimate and reliability.

8.1.1 Miscellaneous Fields

To begin the description of targets, several miscellaneous pieces of information stored by
targets need to be brought out:

• Target’s ID - unique identifier of the target in our system;

• Target’s age - number of consecutive frames the target has been in existence;

• Matched blob - the 3D foreground blob, the target is assumed to correspond to it
in the current frame; see 8.2.

8.1.2 Target-Associated Particles

Since the approach chosen for target tracking is filtering by means of particles, each target
the system generates has an associated particle set. The choice of its size is inherited
from the previous system [1] and equals 50.

35

CHAPTER 8. TARGETS

Camera 2Camera 1

Camera 3Camera 0

ϕ1

2 3

7

5

0 6

4

Figure 8.1: Representation of the values for the orientation ϕ. For example, if ϕ = 3, the target
is viewed by cameras 1 and 2.

The state of every particle is defined so as to correspond to the objective of the system,
i.e. being able to know the head centroid’s position at every time instant. Therefore the
state is:

xi = (x, y, z, ϕ, α). (8.1)

Here the meaning of variables is as follows:

• (x, y, z) - 3D coordinates of the head in the world coordinate system;

• ϕ - the viewing direction of the person the target corresponds to, defined as a
discrete value between 0 and 7. The camera-orientation associations are shown in
Figure 8.1;

• α - the measure of the target’s size on the 2D floor plan.

To conclude, at each specific instant, every target is associated with multiple hypotheses
about its position, size and orientation.

8.1.3 Target State Estimate

Based on the states of target-associated particles, the state estimate for the target can
be calculated. This is performed at each time step and the result is the core output of
the system, i.e. the position of the person at a concrete time moment is said to be equal
to this estimate.

Based on particular circumstances (refer to 8.4), our system uses either of two ways for
obtaining this estimate: Maximum a posteriori (MAP) or Weighted average methods.

36

8.2. TARGET-BLOB MATCHING

8.1.4 Target Reliability

The measure of a target’s adequacy for being tracked and yielded as system’s output is
its reliability. It is defined as a numeric value between 0 and 1, higher values meaning
higher adequacy.

Reliability was introduced in order to take account of the possibility of confusing real
persons with noise when initiating new targets and existing targets becoming obsolete
with time.

These issues are addressed by a reliability update mechanism and two reliability thresh-
olds. The first threshold is the minimum reliability value, which is sufficient for a target
to be kept alive. Newly-created target’s reliability is initialized to this elimination
threshold and is expected to increase for targets corresponding to real people in the
scene, and to finally fall below the minimum for those representing anything else, e.g.
non-human moving objects and noise. After the minimum has been transgressed, the
target is discarded.

While the elimination threshold only provides a criterion for the continuation of a target’s
maintenance, the second threshold, called reliable threshold, when exceeded, makes a
target not only kept alive but also reported as system’s output.

Factors taken into account when updating target’s reliability, are:

• existence of a match with a blob, detected in the current frame;

• the amount of evidence from both modalities, expressed as likelihoods;

• target’s age;

• target’s mobility;

• proximity to exit zones;

• sudden disappearance of foreground corresponding to the target.

The reliability computation mechanism, based on these factors, is explained in 8.5.2.

8.2 Target-Blob Matching

Having discussed the concept of the target, we can now turn to the target processing
performed by the system.

Each time step starts with associating foreground blobs of the current time step with
existing targets. First, the 2D distance is determined between every blob and every
existing target. Then, the Smart Hungarian algorithm [25] produces associations based
on the computed distance. The procedure might also yield blobs and targets without a
match, so these output alternatives are possible:

37

CHAPTER 8. TARGETS

• Matched blob-target pairs: each existing target is assigned a pointer to its matched
blob, which is further utilized by the foreground detection part of the system.

• Unmatched blobs: new targets are initiated for large enough blobs.

• Unmatched targets: this will most likely (see 8.5.2) cause target’s reliability to
decrease.

8.3 Update

Our system combines two modalities for solving the tracking task, therefore we use the
partitioned sampling approach to update the values of particles at every time instant.
Namely, update is performed in two steps. At first, the foreground detection part drifts
x, y and α components of the state vector, making use of target-blob matching sketched
out in the previous section. Second, face detection part propagates z and ϕ components.
Figure 8.2 describes the overall operation of partitioned sampling in our system.
Note that face detection will now be referred to as FD, and foreground as FG.

8.3.1 Foreground Detection Update

The particle update performed by the foreground detection part of our system can be
outlined like this:

• Particles are drawn from FG proposal distribution, which combines a Gaussian
random walk and a grid;

• Particle weights are updated according to FG likelihood;

• Weights are normalized;

• Resampling is performed.

Since this part was originally introduced by Martin and Rasmus Andersen and left un-
modified in our system, the reader is referred to [1] for more details on it.

8.3.2 Intermediate Update

Before the face detection part starts updating z and ϕ components of particles, the
necessary resampling of particles according to weights calculated using the FG likelihood
is performed.

38

8.3. UPDATE

Figure 8.2: Partitioned sampling in our system

39

CHAPTER 8. TARGETS

8.3.3 Face Detection Update

Similarly to the foreground detection update, face detection update can be described by
a number of major steps:

• Particles are drawn from FD proposal distribution, which is chosen to be the same
as the state evolution model. For each particle their z and ϕ values are updated
as follows:

– z values are drifted, with the displacement values being distributed according
to a Gaussian distribution of zero mean and a predefined standard devia-
tion. In certain circumstances z values are reinitialized before this drift is
performed. Namely, they are reset to the target’s maximum z value, i.e. its
corresponding blob’s top boundary, when there has been no face detection for
this target for a predefined number of frames.

– ϕ values are also changed by adding a random number from a Gaussian distri-
bution with zero mean and a predefined standard deviation, taking modulus of
8 and making sure the obtained value is odd, so that the resulting orientation
could ensure each particle being projected onto two camera frames.

• Bounding boxes for a target are calculated (see 10.2).

• Particle weights are updated according to FD likelihood. Since the proposal distri-
bution chosen for z and ϕ update is equal to the state evolution model, the weight
update formula is reduced to:

wk = wk−1 × L(zk|xk).

See more on FD likelihood in 10.2.

• Weights are normalized.

• State estimation is performed (explained in 8.4).

• Resampling is performed, if the standard deviation (defined as 8.2) of particle
weights is too high.

8.4 State Estimation

As shown in 8.3.3, state estimation is performed after both parts of the system - fore-
ground and face detection - have updated the particles of a target and before final
resampling is done. Target state is estimated using either MAP, or weighted average.

40

8.5. MANAGEMENT

8.4.1 Maximum a Posteriori Estimate

The first of the possible state estimation methods, used in our system, is the maximum
a posteriori estimate. It can be described by the formula:

x̂MAP
k|k = argmax

xk
p(xk|zk).

(The notation x̂k1|k2 means the estimate x at time k1 given measurements z1:k2 .)

It is applied to the set of particles, so it actually has the effect of choosing the state of
the particle with the highest weight as a state estimate.

8.4.2 Weighted Average Estimate (MMSE)

The second state estimation alternative is the minimum mean squared error (MMSE),
defined as:

x̂MMSE
k|k = E(xk|z1:k) =

∫
xk · p(xk|z1:k)dxk.

With this estimator, the estimated state is the result of a weighted average. This ap-
proach combines (sums up) all particle states into a single value by using their weights
as importance coefficients.

8.4.3 State Estimation in our System

In our system the decision on which state estimation method to use is based on the
particle weight standard deviation value, given by the formula:

s =

√√√√ 1

Np

n∑
k=1

(
1

Np
− wk

)2

(8.2)

MAP is used when s > 0.1× 1
Np

, otherwise the weighted average is used, meaning that
when particle weights differ too much, it is better to choose the state of the particle with
the highest weight and when the weights are quite equal, weighted average would yield
a better solution.

However, the original system of Martin and Rasmus Andersen [1] used only the weighted
average approach to estimate state vector component values.

8.5 Management

Target management includes administrative tasks, related to the proper maintenance of
targets, which have to be executed for each frame. The tasks include target initialization,
reliability determination and target merging and are discussed in this section.

41

CHAPTER 8. TARGETS

8.5.1 Initialization

The process of matching existing targets to foreground blobs discovered in the current
time step might ouput unmatched foreground blobs, as was said in 8.2. These blobs
become the reason for initiating new targets, because they bear witness to the existence
of new persons in the room.

The state components x, y and α of a new target are initiated based on the correspond-
ing blob parameters. z is chosen to reflect the average human height - 170 cm - and is
constant for all new targets. Finally, ϕ is set to a random value from a uniform distri-
bution between 0 and 7, expecting that the particle filter will make its value converge to
the true one anyway.

Together with the target, its particles are initiated. They all have the same x, y, z and α
state components equal, namely, set to those of the initial state of the target. However,
ϕ values are drawn from a uniform distribution.

Target reliability initialization is covered in the next section.

8.5.2 Determining Reliability

After the creation of new targets, their reliability should be initialized, and that of
old targets should be updated. In this section, the current time step target reliability
computation mechanism is presented.

Goals, taken into account, when determining reliability, are [1]:

• Targets, matching real people, should become reliable as soon as possible;

• Mistaken targets, e.g. initialized on moved objects or noise, should not become
reliable sooner than they fade into the background;

• Stationary, but old and reliable targets should retain their reliability for a long
time, so that they could stay alive despite the lack of supporting evidence from the
measurements.

Keeping these goals in mind, the reliability calculation was designed. The formula for
updating the reliability is:

rn = (1− k)rn−1 + k · Pn (8.3)

where rn is the reliability of a target at frame n, with r0 set to the reliability value
reliminate to just prevent the target from being eliminated;
Pn is 1, if the target is present, and 0 otherwise;
k is the reliability learning factor.

In order to implement it, every time step these key computations are performed:

• Reliability of new targets is initialized to the elimination threshold.

42

8.5. MANAGEMENT

• It is determined if the target is detected in the current time step. It is considered
detected, if there exists a spatially matching blob or either of likelihoods is above
a threshold.

• Target mobility is evaluated.

• Reliability learning rate is set according to the formula:

k =

 kmin for an immobile target

min(1n + kmin, kmax) for a mobile target

This formula reflects the third goal by minimizing the reliability change of im-
mobile targets. Also, it means that the learning rate decreases from maximum
to minimum value throughout target’s existence, the decrease being larger (and
therefore reliability more stable) for older targets. Parameters kmin and kmax are
tuned in correspondence to background learning rate in order to achieve the second
goal.

• As an addition to the previous system, face detection module makes a contribution
achieving the first goal, stated above. Namely, if the FD likelihood is above a
threshold, the learning rate is set to the maximum value, meaning the reliability
will increase fast for real humans. Also, if FD likelihood is high, reliability is set to
the reliable threshold, so that targets, corresponding to people, appear as system’s
output immediately.

• Reliability is calculated according to 8.3.

The resulting reliability is used to take a decision about whether to keep or kill a target.
Namely, a target is removed if its reliability is below the elimination threshold, no like-
lihoods are available from any of the modalities, the target is in one of the exit zones or
its corresponding foreground has suddenly disappeared.

8.5.3 Target Merging

Target merging is the final step in target processing, performed at each time step. It
is necessary because it is possible that during the course of system execution different
targets might end up tracking the same person.

Merging is performed by first checking all currently existing target pairs for possible
merging. The criterion is the distance between two targets: if it becomes too small, the
target pair is marked as requesting merging in the current frame. Then, all pairs having
requested merging for a specific number of consecutive frames are merged.

43

Chapter 9

Foreground Likelihood

As we use particle filters to track the target, we need some likelihood functions L(x|z)
which measures the data z with a given state x. We decided to keep the foreground part
from the previous project, so this chapter will give a short summary of the foreground
likelihood function used by Martin and Rasmus Andersen in [1].

9.1 State Estimation

The likelihood function is given as L(xk|z). It measures how likely a state xk is, given
measurement data z.

When using foreground projected to the floor, the minimal possible number of states to
estimate is the two coordinates (x, y). Besides, a size α is added, in order to determine
the space occupied by the target on the scene. With these parameters, the shape of a
state can either be a square or a circle. However the circle does not fit properly with the
discrete representation of the foreground. Therefore, the size is represented as a square.
Figure 9.1 illustrates this choice.

9.2 Likelihood Function

For designing the foreground likelihood function, the position (x,y) can be excluded as
function parameters for a question of simplicity, thus there are three values which can
be taken into consideration :

1. Volume : the number of voxels N(α) represents the volume of a person

2. Density : a person might not have a bigger volume than the volume V , inside his
3D bounding box :

F (α) =
N(α)

V (h, α)
=

N(α)

h.(2α+ 1)2
(9.1)

The height h corresponds to the maximum number of voxels in a one column in
the area.

45

CHAPTER 9. FOREGROUND LIKELIHOOD

Figure 9.1: The foreground projected to the floor at the positions (x, y) and the size α used in the
state [1].

3. Derivative of the density : to have a good state, we expect to be close to the
center of a person and include most of her, that is to say F(α) might drop fast if α
increases. It can be explained by the fact that the area around a person is without
foreground. The derivative ∂F (α)

∂α can measure the change in F(α) :

Fd(α) =
∂F (α)

∂α
=
F (α+ k)− F (α− k)

2k
(9.2)

Fd(α) ≈
1

2kh
(

N(α+ k)

(2(α+ k) + 1)2
− N(α− k)

(2(α− k) + 1)2
) (9.3)

where h corresponds to the maximum height of the smaller area.

The main problem is that the likelihood function has to be able to separate two people
standing close to each other. Besides, as the likelihood function needs to be evaluated
once for each particle of each target, it is important to take into consideration the
computation time. So, the final likelihood function will be :

L(α) = −F (α− k)2.
√
N(α+ k).Fd(α) (9.4)

The function is weighted by squaring F(α - k) and the square root of N(α + k) is realized
to bias toward single coherent people.

46

Chapter 10

Face Likelihood

The second particle weight update of the partitioned sampling is determined by the face
likelihood. The challenge here is to find a way to extract and use the relevant information
from the Viola-Jones face detector described in Chapter 6.
From the state of a particle (see Equation 8.1), only the size α is not used during this
step. The 3D position of the head (x, y, z) and its orientation ϕ will be used in a function
that measures how likely they are to be a face.

In order to determine this function, some preliminary steps are necessary. Starting from
a particle’s state, a process is defined that leads to the actual use of the function. We
tested two different approaches, each one having its own process and final likelihood
function. We will describe both in the following sections.

10.1 First Approach

Process

The first approach is represented in Figure 10.1. The following steps are applied for each
particle.

1. The orientation ϕ gives the number(s) of the corresponding camera frame(s). There
can be one or two cameras. We decide to represent the orientation ϕ with 8 values,
from 0 to 7, this is described in 8.1.2.

2. A head area centered on the (x, y, z) position is defined in 3D. The size of this area
is approximately 3 times that of a head. Its 8 corner points are then projected
to the selected frame using the intrinsic and extrinsic parameters of the camera.
This projection is an image segment in which we look for bounding boxes from
the Viola-Jones detector. The selected bounding boxes (i.e. those located inside
the segment) are then validated according to their width, which is expected to be
roughly one third of the segment width.

47

CHAPTER 10. FACE LIKELIHOOD

Particle [x,y,z,φ]

Camera frame
(1) φ → cam. num.

(2) 3D → 2D

(3) 3D ← 2D

Head area BBs

World coordinates

Figure 10.1: First face likelihood process: (1) The orientation ϕ gives the corresponding camera
frame (2) A head area is defined in 3D and then projected in 2D (3) The selected
bounding boxes are projected back to 3D

3. The validated bounding boxes are projected back to 3D by assuming that their
real width is 15 cm [13]. Only the center of the boxes are projected, resulting into
3D points.

The contribution from a bounding box should be inverse proportional to its distance to
the particle. We therefore define the likelihood as the sum of all of these contributions:

Likelihood =

N∑
i=1

1

(||Xp −XBBi||)K/2 + 1
(10.1)

Results
The first problem we encountered was that our system was very slow. This is a con-
sequence of running the Viola-Jones algorithm every time on the whole image for each
frame of each camera. Secondly, mapping an image point into a real world point was not
accurate enough. Indeed, this task presents several difficulties.
The forward problem of converting from 3D to 2D is a non-linear one, which means that
its inversion is impossible and thus, approximations have to be made. The approxima-
tions don’t give just one single point on the real-world coordinate system because of the
uncertainty on depth. The latter is almost never resolved using just one camera and
this is a problem because faces are often detected just by one camera. For the likelihood
function, we calculated the distance from the particle under consideration, to the center
of the BBs which have been projected to 3D. But here again one of our problems, be-
cause the 2D to 3D conversion is not precise, is that the resulting distance measurement
is incorrect. We used a validation method based on an assumed standard face width

48

10.2. SECOND APPROACH

Particles

Camera frame
(1) φ → cam. num.

(2) 3D → 2D segment

(3) Resize

BBsWorld coordinates

Image segment

(4) Find BBs

Figure 10.2: Second face likelihood process: (1) The orientation ϕ gives the corresponding camera
frame for each particle (2) All particles are projected and define an image segment (3)
The image segment is resized to a constant size (4) Viola-Jones algorithm is applied

of 15 cm, which means that the detected faces which corresponded to profile faces for
example yielded terrible 3D position estimations.

To deal with these problems, we decided to take another approach. To reduce the
execution time, we will only apply the Viola-Jones algorithm on a region of interest that
we will determine beforehand. Then, we will stop doing the 2D to 3D conversion and
we will use just the 2D coordinates for the likelihood function. Finally, we decided to
implement another validation method.

10.2 Second Approach

Process

Given the problems encountered with the first approach, a second one was implemented.
The new process is represented in Figure 10.2.

1. The first step is similar to the previous process, each particle is assigned one or
two camera frame(s) according to its orientation ϕ.

2. All particles are projected to their camera frame(s). An image segment is defined
on each frame by looking for the top/left/bottom/right most particles. This area
is also expanded by a pre-defined scale (e.g. 1.4) to make sure no faces are missed
during detection.

49

CHAPTER 10. FACE LIKELIHOOD

Figure 10.3: Example of false positives on an image segment. It is clear that the actual face area
has a stronger response, which illustrates the use of grouping bounding boxes.

3. The image segment is resized to a constant width of for example 150 pixels. This
is done in order to ensure that the number of bounding boxes returned does not
depend on the proximity to the camera. Both the width and height of the segment

are multiplied by a scale factor β. This factor is then defined as β =
150

segmentwidth
.

4. The Viola-Jones algorithm is applied on this resized segment. The resulting bound-
ing boxes are turned back to their original position and scale on the camera frame
by simply dividing them by β.

Grouping bounding boxes
After this process, the bounding boxes are grouped according to their common area ratio,
defined as:

CAR =
A[BB1 ∩BB2]

min(A[BB1], A[BB2])
(10.2)

Where A[BB] is the area of a certain bounding box.

Two bounding boxes are assigned to the same group whenever their CAR is above a cer-
tain threshold, e.g. 40%. The multiplicity of a group is defined as the number of bounding
boxes it contains. Any group whose multiplicity is lower than a defined threshold is then
discarded. This helps combat false positives which have a lower response in terms of
number of bounding boxes than actual faces. This phenomenon is shown in Figure 10.3.

Likelihood
The likelihood of a particle is now related to its 2D distance to each bounding boxes.
This distance is also multiplied by the multiplicity of the group to which the bounding
box belongs. In case a particle is projected on two camera frames, the likelihoods are
summed.

Likelihood =

N∑
i=1

multiplicity × exp
(
−||Xp −XBBi||2

BBw.BBh.2.σ2

)
(10.3)

50

10.2. SECOND APPROACH

Figure 10.4: Comparison of two σ2 values. Using σ2 = 0.1 yields a more strict selection accord-
ing to the distance. A bigger value such as 1 still allows likelihoods to be clearly
distinguished, but is not selective enough for our tracker.

The σ2 parameter defines how fast the likelihood decreases according to the distance.
This is shown in Figure 10.4. We use a low value of 0.1 for σ2 in order to be strict enough
so that not every particle have good likelihoods. This way, every near-perfect match is
also highly stronger in likelihood than others.

Moreover, the 2D distance is normalised by the area of the face estimate in order to not
penalise the likelihoods of large faces against those of smaller ones. This is done because
it’s the distance in meters and not in pixels that dictates how good the match is. Since
the distance in meters is a function of the distance from the camera, we normalise it as
a function to the face size.

Results
All of these steps to calculate the likelihood form a good and sufficient face validation
process, which eradicates nearly all false positives. All the parameters used in the im-
plementation are shown in Table 10.1.

51

CHAPTER 10. FACE LIKELIHOOD

Parameter Symbol Value

Face validation parameters

Expansion scale of image segment - 1.4

Rescaled segment width - 150 pixels

Minimum CAR for belonging to same group - 40%

Minimum number of BBs for a group to be valid - 8

Variance of the exponential distribution σ2 0.1

Viola-Jones parameters

Scale factor - 1.05

Minimum search size - 14 pixels

Table 10.1: Parameters for then final face likelihood process

52

Part IV

Implementation

53

Contents
In the previous part, the algorithms and techniques of tracking persons using foreground
and face detection were explained. In this part, the implementation of our algorithms
in C++ is designed. It also gives information about the existing source code from the
previous project.

11 Software Design 55

11.1 General Description of the Existing Source Code 55

11.2 Implementation of Face Tracking . 56

Chapter 11

Software Design

This section documents the C++ design of the previous system [1] and explains how we
improve it. There are two different versions of the source code. The first one needs five
computers to run and the second one needs only one. In our project we are going to use
the second version. The basic structure and the most important classes of the source
code are described below.

11.1 General Description of the Existing Source Code

There are two different versions of the tracking algorithms: the first one is executed by
five computers and runs in parallel. The second version of the system combines informa-
tion from all cameras and treats them sequentially. The tracking algorithms’ results are
stored and display by Renderer. It runs in parallel and executes a separate thread while
Application is executed in the main thread. The framework gives intermediate and final
results of the tracking algorithms.

Application: This class calls and synchronizes the algorithms in PerCam and Sequen-
tial. When a class is created, it runs in the main thread which first calls PerCam. It is
followed by running of the tracking algorithms. It ends by requesting DataManager to
swap the ProtectedData buffers.

PerCam: This class contains all the algorithms which are used for each camera. All
results are stored in the back buffer. 97% of the work for the program are spent on
the algorithms perCam. Indeed, the thread in PerCamRunner wait for signal to start
executing algorithms and signal to Application when algorithms are finished.

Sequential: This class contains all the algorithms which cannot be used in parallel.
The results of these algorithms are stored in the back buffer.

Renderer: This class puts the most interesting things on the display. They include the
videos, the 3D view, the reasoning results, and any debugging displays that have been
enabled.

Configuration: The class Configuration keeps in memory all the parameters that the
user can change easily. When the program starts, one or more Configuration files can

55

CHAPTER 11. SOFTWARE DESIGN

be read. The program can run without this file by using default values. Three main
parameters can be changed in the Configuration file:

• Video source: A path to a web-cam, a video file or to a folder of images.

• Algorithms parameters: Parameters of the tracking algorithms.

• Intermediate display : We can choose which result we want to display.

onKey: onKey function receives two keyboard commands: The first one can pause the
video and the second one can rotate the 3D view of the room.

The program needs two other classes to work: DataManager and ProtectedData. These
classes give Renderer access to the intermediate results from the tracking algorithms.
ProtectedData also retains all the shared data.

11.2 Implementation of Face Tracking

We implemented the algorithm for the face detection part in the Track file because we
have to manipulate the Particle and Target objects. Figure 11.1 shows how we update
a target using face detection.

The description of the algorithm is done in Chapter 8. Functions have been added to
the Particle and Target classes and we created a new class which is BBGroup in order to
calculate, manipulate and save the BB groups (see the Equation 10.2). Besides, we save
all the data resulting from the execution of the Viola-Jones algorithm, the calculation
of the bounding boxes groups and the image segments, in the ProtectedData file so as
to make them accessible to the different threads, more particularly the Renderer one,
and also to use them in the calculations we are doing. On top of that, we added and set
some parameters to the Configuration file used for the face detection modalities. The
Configuration class has been updated by taking in account these new parameters and
thus enables their access in any function.

56

11.2. IMPLEMENTATION OF FACE TRACKING

Figure 11.1: Cycle for updating a target using Face Detection. The part 1 and 2 are detailed
respectively in Chapter 10 and Chapter 8.

57

Part V

Evaluation

59

Contents
This part will present the different results obtained while testing the system. It also
describes the main tool used for evaluating the tracker: the renderer. To finish, we will
make a conclusion about what we have done for this project and notably we will sum up
the choices we have made and how we built the system to achieve our goal.

12 Renderer 61

12.1 3D Renderer . 61

12.2 Frame Renderer . 62

12.3 Interpretation . 62

13 Conclusion 65

Bibliography 67

Chapter 12

Renderer

In this chapter, we present a useful tool we used to evaluate our tracking system: a
renderer inherited from the previous project [1]. This renderer generates 2 types of
displays:

• A 3D rendering of the room showing computation results such as 3D foreground
and particles.

• Camera frames with additional informations such as face detections and image
segments (cf. 10.2).

The renderer saves these data in videos. Some videos are available in the CD enclosed
to this report. They are based on videos we used to develop our system.

12.1 3D Renderer

This renderer generates a 3D view of the room using OpenGL. Different relevant infor-
mations are shown. Figure 12.1 illustrates the possibilities of the 3D renderer.

• Foreground voxels: They are displayed as green or grey cubes. Green voxels
show the foreground is big enough to be considered as a target.

• Particles: They are represented as color points. The color is associated to a
target. We use (x, y, z) of each particle state as the 3D position.

• Orientation lines: They are displayed only when faces are detected. It starts
from the target estimated state (red point) and it shows the direction in which the
target is most likely looking. There are two different colours: magenta means the
target face is detected by 2 cameras and cyan means the face is only seen by 1
camera.

• 3D bounding boxes: 3D cube that surrounds the reliable targets. The color is
associated to a target.

61

CHAPTER 12. RENDERER

Figure 12.1: Detailed screen capture of the 3D renderer

• Information boxes: These boxes provide relevant informations for each step of
time such as values of likelihood, reliability, percentage of face detection throughout
time and estimated height of the target head center.

12.2 Frame Renderer

This renderer shows the cameras’ frames with some informations we use to adjust pa-
rameters in the computation of the face likelihood. Figure 12.2 illustrates the features
available in the frame renderer.

• Image segments: For every target, we estimate an area where the face might be
found on each camera frame. These areas are represented by orange rectangles.

• Bounding boxes: Every time we detect valid faces, bounding boxes are grouped
as defined in 10.2, and are then displayed as green rectangles with their multiplicity.

12.3 Interpretation

With the two renderers described previously, we are able to evaluate some features of
our system. We can see when a target is initialized and how fast the system makes it
reliable or discards it. We also see if the system misses a target. After the initialization,

62

12.3. INTERPRETATION

Figure 12.2: Detailed screen capture of the camera frame renderer

63

CHAPTER 12. RENDERER

Figure 12.3: Illustration of how face detection can keep the track when foreground is failing.
1) Blob rendered with good foreground detection. 2) Tracking maintained by face
detection for a while. 3) Rematch target with blob when foreground recovers.

we easily see if the track works and if the target is deleted at the right time. When we
encounter problems with tracking or initialization, the renderer helps us a lot to find
the issue, which is convenient. For example we can determine if false positives in face
detection make the system lose the track or if a moving object like a door becomes a
target. Our system is not meant to work in real time. With the computer we use for
testing we can process between 2 and 3 frames each second. The speed depends on
the number of targets because we use one instance of the particle filter for every target
which corresponds to 50 particles each. We can also use the renderer to test our system
on specific scenarios which demonstrates the relevance of face detection in a tracking
system.

• Scenario 1: The target is correctly initialized and the track works from the be-
ginning. Then the foreground detection fails to build a blob because the target
does not move or because it cannot be seen by enough cameras. At this moment
the face detection allows the system to keep the target reliable until the foreground
detection recovers. Figure 12.3 gives an example of this scenario.

• Scenario 2: The target is a tracked person. This person seats and the target
starts fading into the background. The person is facing a camera so there is a face
detection which is used to keep the track. The challenge here is to find the face
when the height of the head changes quickly.

• Scenario 3: Some targets are tracked by the system and there is a sudden lighting
variation in the room. The system will fail to obtain relevant foreground data, and
the whole room will be turned into foreground. The face detection module is not
sensitive to lighting variation, so the system should track the target with faces only
while the background model is updated.

We don’t have the specific videos to test scenario 2 and 3 but we believe our system
should be able to deal with these situations.

64

Chapter 13

Conclusion

We have presented in this report an efficient way to track persons in a room. A new
algorithm was presented based on foreground and face detection. This kind of system
is very relevant when you want to help elder people in the everyday life. To reach this
goal, the installation and calibration of five cameras in a room is required. This system
can reason about mobility and three different body posture: standing, sitting or fallen.
The system was implemented upon an existing one [1] with the intention of being more
reliable and powerful.

The framework of the tracking system is based on particle filter, also known as the
Condensation algorithm [2]. More specifically, since two modalities are to be combined,
the use of partitioned sampling was decided upon. This allows for a greater state dimen-
sion without the need for additional particles.
The two modalities considered are foreground detection as used in the previous system,
and face detection based on the Viola-Jones algorithm [33]. This widely used method
was chosen for its ability to use a specifically trained cascade, which we have at our dis-
posal. It is already available in various coding libraries, such as OpenCV, which makes
it easy to implement.
The partitioned particle filter can be seen as a cascade of two simple particle filters, each
one being associated to a single modality. The modalities are ordered from coarse to
fine, which corresponds to using foreground detection first to update the floor position
of a target. The second modality - face detection - then evaluates how likely a target is
to be human.

This project shows face detection is a good modality for human tracking even if faces
are not always detected depending on persons’ behaviour. The Viola Jones face detector
has good performances and we have proposed a way to turn its results into likelihoods.
Therefore it is possible and efficient to use it in a particle filter.
Finally our system is able to track people in a room. In some situations, mistakes occur
but most of the time it works fine. Also we only used one set of videos for developing and
testing. Our tracking application is now ready to be tested on more various situations.

65

Bibliography

[1] M. Andersen and R. Andersen. Multi-camera person tracking using particle fil-
ters based on foreground estimation and feature points. Master’s thesis, AAlborg
University, 2010.

[2] M. J. Black and A. D. Jepson. Recognizing temporal trajectories using the conden-
sation algorithm. International Journal of Computer Vision, April 1998.

[3] T. Bouwmans, F. E. Baf, and B. Vachon. Background modeling using mixture of
gaussians for foreground detection - a survey. Recent Patents on Computer Science,
2008.

[4] C. Canton-Ferrer, J. R. Casas, and M. Pardas. Towards a bayesian approach to
robust finding correspondences in multiple view geometry environments. In In In-
ternational Conference on Computational Science (2) pages 281âĂŞ289, 2005.

[5] C. Canton-Ferrer, J. Salvador, J. Casas, , and M.Pardas. Multi-person tracking
strategies based on voxel analysis. Lecture Notes in Computer Science, 2009.

[6] CLEAR. Classification of events, activities and relationships. http://www.
clear-evaluation.org/.

[7] S. Cooray and N. O’Connor. Facial features and appearance-based classification for
face detection in color images. In International Workshop on Systems, Signals and
Image Processing, 2004.

[8] X. H. Fang, W. Xiong, B. J. Hu, and L. T. Wang. A moving object detection
algorithm based on color information. In J. Phys.: Conf. Ser., 2006.

[9] N. Friedman and Russell. Image segmentation in video sequences: A probabilistic
approach. In Thirteenth Conf. on Uncertainty in Artificial Intelligence, 1997.

[10] T. Horprasert, D. Harwood, and L. S. Davis. A statistical approach for real-time
robust background subtraction and shadow detection. In ICCV Frame-Rate WS,
1999.

[11] P. Kaewtrakulpong and R. Bowden. An improved adaptive background mixture
model for realtime tracking with shadow detection. Proc. 2nd European Workshop
on Advanced Video Based Surveillance Systems, 2001.

67

http://www.clear-evaluation.org/
http://www.clear-evaluation.org/

BIBLIOGRAPHY

[12] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME
Journal of Basic Engineering, 1960.

[13] N. Katsarakis and A. Pnevmatikakis. Face validation using 3d information from
single calibrated camera. In The 16th International Conference on Digital Signal
Processing, 2009.

[14] N. Katsarakis, F. Talantzis, A. Pnevmatikakis, and L. Polymenakos. The ait 3d
audio visual person tracker for clear 2007. Lecture Notes in Computer Science,
2009.

[15] H. Kim, R. Sakamoto, I. Kitahara, T. Toriyama, and K. Kogure. Robust silhou-
ette extraction technique using background subtraction. In 10th Meeting on Image
Recognition and Understand (MIRU 2007), July 2007.

[16] C. Kotropoulos and I. Pitas. Rule-based face detection in frontal views. In IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1997.

[17] J. L. Landabaso and M. Pardas. Foreground regions extraction and characterization
towards real-time object tracking. In Proceedings of Multimodal Interaction and
Related Machine Learning Algorithms (MLMI), 2005.

[18] J. L. Landabaso, M. Pardas, and L.-Q. Xu. Hierarchical representation of scenes
using activity information. In In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), March 2005.

[19] A. Lanitis, C. J. Taylor, and T. F. Cootes. Automatic interpretation and coding
of face images using flexible models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 19, No. 7, july 1997.

[20] A. Leone, G. Diraco, C. Distante, P. Siciliano, M. Malfatti, L. Gonzo, M. Grassi,
A. Lombardi, G. Rescio, P. Malcovati, V. Libal, J. Huang, and G.Potamianos. A
multi-sensor approach for people fall detection in home environment. Workshop on
Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, 2008.

[21] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian. Statistical modeling of complex back-
grounds for foreground object detection. IEEE Transactions on Image Processing,
November 2004.

[22] C. Liu. A bayesian discriminating features method for face detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, 1998.

[23] S. Maskell and N. Gordon. A tutorial on particle filters for on-line nonlinear/non-
gaussian bayesian tracking. IEEE Transactions on Signal Processing, 2001.

[24] B. Menser and F. Muller. Face detection in color images using principal component
analysis. In IEE Conference Publication, 1999.

68

BIBLIOGRAPHY

[25] J. Munkres. Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 1957.

[26] J. V. Patrick Pérez and A. Blake. Data fusion for visual tracking with particles. In
Proceedings of the IEEE, February 2004.

[27] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, 1998.

[28] K. Schwerdt and J. L. Crowley. Robust face tracking using color. IEEE International
Conference on Automatic Face and Gesture Recognition, 2000.

[29] P. Smyth. Face detection using the viola-jones method. Technical report, Dublin
City University, 2007.

[30] M. Stamp. A revealing introduction to hidden markov models, 2004.

[31] C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time
tracking. IEEE Trans. Pattern Anal. Mach. Intell., 2000.

[32] E. M. Verma, E. P. Rani, and E. H. Kundra. A hybrid approach to human face
detection. International Journal of Computer Applications, VOL. 1, N0. 13, 2010.

[33] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In IEEE Conference on Computer Vision and Pattern Recognition, number
511, Dec 2001.

[34] J. Wang and T. Tan. A new face detection method based on shape information.
Pattern Recognition Letters 21, november 1999.

[35] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking
of the human body. IEEE, 2002.

[36] G. Yang and T. S. Huang. Human face detection in a complex background. Pattern
Recognition, VOL. 27, N0. 1, 1994.

[37] J. Yang and A. Waibel. A real-time face tracker. IEEE Workshop, 1996.

[38] M.-H. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces in images: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1,
january 2002.

[39] C. Zhang and Z. Zhang. A survey of recent advances in face detection. Technical
report, Microsoft Research, june 2010.

[40] Q. Zhang and E. Izquierdo. Multi-feature based face detection. In IET International
Conference on Visual Information Engineering, 2006.

69

BIBLIOGRAPHY

70

	I Introduction
	Motivation
	Setup and Data Set

	Modalities and Tracking Systems
	Existing Tracking Modalities
	Choice of Modalities

	Face Detection
	Face Detection Problem
	Knowledge and Template-Based Techniques
	Feature Invariant-Based Technique
	Appearance-Based Technique
	The Viola and Jones Method

	Problem Formulation
	Problems

	II Modalities
	Foreground Estimation
	Foreground Estimation in 2D
	Combination of 2D Foreground Masks into 3D Foreground

	Viola Jones Face Detection
	Features
	Training of the Algorithm
	Cascade Structure of the Algorithm

	III Tracking System
	Particle Filter
	Bayesian Probability, Theory and Notations
	Particle Filter Algorithm (SIS and SIR)
	Partitioned Sampling

	Targets
	Target Definition
	Target-Blob Matching
	Update
	State Estimation
	Management

	Foreground Likelihood
	State Estimation
	Likelihood Function

	Face Likelihood
	First Approach
	Second Approach

	IV Implementation
	Software Design
	General Description of the Existing Source Code
	Implementation of Face Tracking

	V Evaluation
	Renderer
	3D Renderer
	Frame Renderer
	Interpretation

	Conclusion
	Bibliography

