
ResqLP: Relation Sequences for Link Prediction in Knowledge Graphs

Emil S. Bækdahl
ebakda16@student.aau.dk

Department of Computer Science
Aalborg University

18th June 2021

Summary
This project paper focuses on the link prediction (LP) problem for knowledge graphs
(KGs). A KG is a collection of structured data that captures facts, or knowledge,
about a domain by linking entities with relations. These facts collectively make up
a directed graph. The LP problem is concerned with inferring new facts in a KG
given its current state. This problem has many practical use cases. For instance, in
bioinformatics, LP can be used to predict new possible drug targets and to reason
about the interactions of chemical substances. LP is also found useful in question
answering and recommender systems.
In recent years, as deep learning continues to impact the machine learning (ML)

world, research in LP models has gained momentum. Even though many of the
proposed models exhibit increasingly better performance, most of them are hard to
interpret. In other words, they can predict new facts but cannot explain why and
how they do it. Since explainability is becoming more and more important in ML,
we choose to develop an approach to LP where the ability to explain predictions is
integrated into the model itself. We call this model ResqLP.
In the paper, we start by introducing the LP problem and explain a handful of

existing approaches to solving it. Here, we find models based on recurrent neural
networks (RNNs) interesting since they have two properties that complement each
other well: they are efficient to train and they come with the ability to provide
explanations for their prediction in the form of first-order logic rules. However, they
suffer from scalability issues since they learn from sequences of relations found by
enumerating paths in the KG which is a hard, though well-known, problem.

We then propose ResqLP that builds upon these RNN-basedmodels but furthermore
includes an enhanced feature extraction phase that aims to cope with the mentioned
scalability issue. In this phase, the model only considers a subset of the entire KG
when finding relation sequences. Furthermore, we propose to derive a notion of
semantics of the entities based on observable features in the graph. The relation
sequences and entity semantics are encoded using an RNN that outputs a probability
describing how likely it is that the two entities should be linked.
While describing the architecture of ResqLP, we analyse real KGs to guide our

design. After that, we evaluate the model on these KGs and find that its performance
varies between them. ResqLP performs best or next-best in some cases and worst in
others. This is due to the fact that the KGs are structured differently. We find that
ResqLP is best suited for KGs that are sparsely connected and have many different
types of relations while it exhibits worse performance on KGs with few relations. On
one of the KGs, we examine the logic rules that ResqLP learns and find a varying
degree of quality and usefulness. Finally, we end the paper by proposing pointers to
future work on this type up LP model.

1

ebakda16@student.aau.dk

Abstract
Knowledge graphs capture domain knowledge in the form of
facts about entities and have many use cases in information
systems. One of these is link prediction which is the task
of inferring new facts in a knowledge graph. Even though
research in the field gains momentum, few models focus
on being able to explain their predictions. In this paper,
we introduce ResqLP, a link prediction model that learns
probabilistic first-order logic rules fromboth entity semantics
and sequences of relations. The model includes a feature
extraction phase that, by the use of enclosing subgraphs,
aims to cope with the inherently hard path enumeration
problem. We also present a general way to capture entity
semantics based on relations found in entity neighbourhoods.

We find that using enclosing subgraphs speeds up feature
extraction even though large knowledge graphs still cause
problems in some cases. Furthermore, even though the
quality varies, ResqLP is able to learn non-trival logic rules.
Themodel performs the best on relatively sparsely connected
knowledge graphs with many different relations.

1 Introduction
In an increasingly complex society, information systems
play a more and more important role and are set out to solve
equally complicated tasks. Traditionally, many areas, such
as medicine and finance, have relied on domain experts
with highly specialised knowledge. Over recent years, we
have seen this domain knowledge making its way into the
information systems themselves [14, 15]. Due to this evolu-
tion, research in knowledge representation and appropriate
machine learning (ML) agents gains momentum. In such
applications, knowledge graphs (KGs) are widely used as an
intuitive representation of knowledge. A KG is a structured
collection of data that captures knowledge in the form of
facts expressed as a relations between two entities. For
instance, in a KG over fiction literature, the fact that Mar-
garet Mitchell wrote Gone with the Wind can be captured by
linking the entities m. mitchell and gone with the wind
using the relation wrote. Collectively, such facts form a
directed graph as shown in Figure 1. KGs like this are used
to provide real-world knowledge to ML agents in different
scenarios such as recommender systems [36] and question
answering [40].

m. mitchell

gone with the wind

1936
. . .

historical fiction
. . .

war and peace

l. tolstoy

. . .

wrote
published in

has genre
has genre

wrote
writes

Figure 1: A segment of an exampleKG over fiction literature.

KGs are typically very large [35], automatically construc-

ted [30], or continuously changing [19]. Thus, manually
verifying the completeness and validity of their content is
infeasible. Therefore, there is an increasing interest in auto-
mating this task. One central problem here is to infer new
knowledge in an existing KG. This task is commonly referred
to as link prediction (LP) as it aims to predict whether two
entities in a KG should be connected with a given relation.
A practical example of this is found in the medical domain
where LP can be used to predict new targets or possible
side-effects of drugs [11]. In this case, the entities in the
KG are chemical substances while the relations between
them describe how they interact. The LP task is then to
predict how two chemical substances, that are not already
linked in the KG, interact.

Since the LP problem has practical applications in many
fields, it has been approached in just as many different ways.
Some techniques are based on classic graph theory measures
such as common neighbours and PageRank [12]. However,
more recent LP literature focuses on developing ML models
that either learn vector representations of the KG [2, 5, 9,
13, 23, 29, 31, 33, 39] or infer probabilistic first-order logic
rules [7, 8, 22, 26]. The former group, called latent feature
models (LFMs), have the advantage of being efficient to
train and perform relatively well on common benchmark
KGs. However, since they learn latent representations that
do not translate directly to observable features or patterns
in the KG, such models are hard to interpret. Models in the
latter group, called logic rule models (LRMs), come with a
higher degree of interpretability. They learn first-order logic
rules based on common patterns in the KG. These rules can
provide valuable explanations as support to the predictions
of the model.
In this paper, we propose an LRM based on a recurrent

neural network (RNN) that learns from entity semantics
and sequences of relations found in the KG. We call this
model ResqLP; an abbreviation of ‘relation sequence link
prediction’. The RNN itself is inspired by [8, 22]. However,
ResqLP includes a feature extraction phase that aims at
coping with large search spaces, inspired by [31, 39]. In
this phase, we first extract a subset of the KG that encloses
the two entities for which we are to predict a link. Then,
we enumerate the sequences of relations that connect the
two entities in that subgraph. We find that this approach
significantly speeds up the enumeration process for some
KGs. However, in other cases, we see that the entities are
so densely connected that the enclosing subgraph does not
provide a noteworthy speedup. In those cases, we sample
an even smaller subgraph to make the task feasible.
By comparing ResqLP to other LP models, we find that,

even though ResqLP performs the best and next-best in some
cases, its performance depends on the structure of the KG
in question. We find that ResqLP is best suited for KGs
that have many different relations and where the entities are
relatively sparsely connected. In such KGs, the sequences
of relations between two entities are fewer but more varied.

The rest of the paper is structured in the following way. In
Section 2, we introduce preliminary concepts behind KGs
and LP and define them formally, while Section 3 describes

2

some existing approaches to the problem and outlines their
advantages and disadvantages. We describe the overall
architecture and idea behind ResqLP in Section 4 and go
further in depth with the feature extraction phase and RNN
in Sections 5 and 6, respectively. In those sections, we
consult real KGs to identify key properties that guide our
decisions in the design of the model. Finally, we evaluate
ResqLP and compare its performance to other models in
Section 7. We end with concluding remarks and pointers to
future work in Section 8.

2 Preliminaries
In the following two sections, we formally define KGs
and introduce relevant notation. Given this definition, we
formulate the LP as a binary classification problem.

2.1 Knowledge Graphs
A knowledge graph (KG) is a collection of structured data
that describes facts, i.e. knowledge, about how different
entities are related. An entity can be a concrete or ab-
stract object such as a person, an event, a film, or a genre.
A pair of entities is connected by zero or more relations
that describe associations between them. For instance,
in Figure 1, the relation has genre connects the entit-
ies war and peace and historical fiction. Together,
this relation and these entities describe a unit of know-
ledge; in this case that War and Peace is historical fic-
tion. This unit can intuitively be represented as a so-called
triple, (war and peace,has genre,historical fiction).
The left entity in a triple is called the head entity, while the
right is called the tail entity. Formally, we define a KG in
the following way.

Definition 1 (Knowledge graph). A knowledge graph (KG)
over the set of entities E and set of relations R is a set of
triples K = {(h, r, t) | h, t ∈ E ∧ r ∈ R}.

Remark. When referring to a triple in a context where one
or more of its elements are irrelevant, we use dots in place of
said constituents. For instance, (h, r, ·) refers to any triple
that has h and r as head entity and relation, respectively,
while the tail entity can be any e ∈ E .

A KG has a natural graphical representation in the form
of a directed labelled multigraph. Each entity e ∈ E repres-
ents a node labelled with e while each triple (h, r, t) ∈ K
represents a directed edge from h to t labelled with r. This
representation allows us to intuitively reason about paths in
a KG as we would in any graph. A path is an alternating
sequence of entities and relations, such as 〈e1, r1, e2, r2, e3,
. . . , en−1, rn−1, en〉. The existence of this path is implied
by (e1, r1, e2), (e2, r2, e3), . . . , (en−1, rn−1, en) ∈ K. We
make use of these paths later when describing ResqLP.

2.2 Link Prediction
Now that we have defined what a KG is, we can formulate the
link prediction (LP) problem in this context. As described

earlier, the LP problem is concerned with predicting whether
a candidate triple (h, r, t) belongs in a given KG. In existing
research, this is generally approached in one of two ways.
The first considers LP as an information retrieval task. In
this case, an ML model learns a score function f(h, r, t)
that assigns a real valued score to any candidate triple
(h, r, t). The model learns to give relatively high values
to triples (h, r, t) ∈ K and relatively low values to triples
(h′, r′, t′) 6∈ K. When presented with a list of candidate
triples, the model ranks them by score in descending order.
The triples most likely to be belong in the KG appear at the
top of the list while the least probable triples appear at the
bottom.
The second perspective, sometime referred to as triple

classification [28, 37], sees LP as a binary classification
problem. Here, a model is trained to determine whether a
candidate triple belongs or does not belong in the KG. This
is typically done in a probabilistic manner where the model
outputs the probability of h and t being connected by r,
denoted P (r | h, t). In this paper, we propose a model based
on this view. Thus, we define the problem in the following
way.

Definition 2 (Link prediction). Let K∗ be a KG of all true
knowledge in a certain domain and letK be a KG of observed
knowledge such that K ⊂ K∗. Given a triple (h, r, t) 6∈ K,
the link prediction (LP) problem is to suggest the probability
of (h, r, t) ∈ K∗, denoted P (r | h, t).

Remark. We use the terms ‘true’ and ‘false’ about triples that
belong and do not belong in a KG, respectively. Important,
here is the distinction between K and K∗. That fact that a
triple is true does not necessarily mean that it can be found
in K but rather that it is in K∗. Thus, true triples that are not
in K are so-called missing knowledge.

With a definition of KGs and the LP problem in place, we
now look at how the task is approached in existing literature.

3 Related Work
We divide approaches to solving the LP problem into two
major groups: latent feature models (LFMs) and logic rule
models (LRMs). The former is concerned with learning
latent vector representations of entities and relations, while
the latter aims at deriving probabilistic first-order logic rules
based on how entities are connected through one or more
triples. The following sections highlight some concrete
models in each group and outline their advantages and
disadvantages. Following that, we describe how ResqLP fits
in.

3.1 Latent Feature Models
A latent feature model (LFM) learns latent feature embed-
dings of entities and relations. We subdivide this category
further into three groups: models based on distance in the
embedding space, models based on matrix factorisation,
and models based on neural networks. With one exception,

3

h
th+ r

(a) TransE [5]. r acts as translation
from h to t.

h

t

h′

t′

hMr

tMr

h′ + r

(b) TransR [13]. h and t are transformed into a
relation-specific space usingMr before r acts
as translations between them.

h

t

h ◦ r

(c) RotatE [29]. r acts as a rotational
transformation from h to t in the com-
plex plane.

Figure 2: Graphical representation of the constraint in different distance-based LFMs.

all of the LFMs mentioned here are based on the same
overall principle. They define a score function f(h, r, t) in
a way that assigns relatively high values to true triples and
relatively low values to false triples. Using gradient descent,
or a similar optimisation algorithm, the entity and relation
embeddings are tuned such that the score function satisfies
this requirement as good as possible.

Remark. In the following section we refer to latent embed-
dings of entities and relations by using bold letters. For
instance, the entity e may be associated with the embedding
e ∈ Rd where d is the dimensionality of the embedding
space.

Distance-Based Models A popular approach to learning
latent representations of KGs is to define a constraint on the
embeddings based on distances in their space. One of the
first LP models based on this principle is TransE [5]. The
model associates each entity e ∈ E and relation r ∈ R with
the vectors e ∈ Rd and r ∈ Rd, respectively. TransE then
defines the following constraint. For each triple (h, r, t) ∈ K,
the entity and relation embeddings should approximate
h+ r = t. The intuition here is that r acts as a translation
from h to t in the embedding space. This is illustrated in
Figure 2a where the embedding space is R2. This constraint
is used in the score function f(h, r, t) = ‖h+ r − t‖.
One downside of TransE is it inability to properly

learn one-to-many and many-to-one relations [37]. Con-
sider, for instance triples on the form (h,has genre,
historical fiction). One can easily imagine a KG with
multiple h ∈ E for which this triple is true. However, since
TransE aims for h + r = t, the model will learn similar
embeddings for all those entities. This is seldom ideal since
they likely represent quite different things. This issue is
addressed by several models that extend the basic idea of
TransE. These extensions typically go in one of two direc-
tions: they improve the constraint or increase the number
of parameters. An example of a model that works on the
constraint is TransR [13]. In this model, entities and rela-
tions live in different spaces, Rd and Rd′ , and each relation
r ∈ R is furthermore associated with a transformation mat-
rixMr ∈ Rd′×d. This matrix is used to transform the entity
embeddings h and t into a relation-specific space before
making them subject to the constraint from TransE. This is
illustrated in Figure 2b. The score function in TransR is thus
defined as f(h, r, t) = ‖hMr + r − tMr‖. By following
this approach, an entity can have different representations

in each relation-specific space. This allows TransR to over-
come the issue with one-to-many and many-to-one relations
that TransE has.

Another model that builds on top of TransE is RotatE [29].
In RotatE, entities and relations are embedded in the same
complex space Cd under the constraint h ◦ r = t where ◦
is the element-wise product. The model uses the fact that
such product of two complex vectors can be interpreted as
a rotation in the complex plane. As such, the translational
interpretation that relations have in TransE is altered to a
rotational interpretation inRotatE as shown in Figure 2c. The
score function of the model is f(h, r, t) = ‖h◦r− t‖. This
approach comes with a benefit. RotatE is able to capture
some specific types of relations that TransE and TransR
cannot. For instance, a relation r is said to be symmetric
if both (h, r, t) and (t, r, h) are true triples. If TransE or
TransR are to learn from such triples, they will end up with
h = t and r = 0 which is probably not meaningful in many
cases. RotatE, on the other hand, can capture symmetric
relations by having r represent a 180° rotation from h to t
and t to h.

Matrix Factorisation Models Another group of LFMs
uses matrix factorisation to decompose a three-dimensional
matrix representation of a KG into smaller matrices
or vectors. This representation is denoted with X ∈
{0, 1}|E|×|E|×|R| where each entry has the value

Xh,t,r =

{
1 if (h, r, t) ∈ K
0 otherwise.

(1)

A prime example of this type of model is RESCAL [23]
where all entities are embedded as a single matrix E ∈
R|E|×d while each relation r ∈ R is embedded as its own
matrixRr ∈ Rd×d. The objective of RESCAL is to learn
the embeddings such that ERrE

T ≈ Xr for all r ∈ R.
Here, Xr ∈ {0, 1}|E|×|E| is the slice ofX that represents the
triples containing r. As opposed to the other LFMs described
here, RESCAL does not learn its embeddings by optimising
a score function with gradient descent. Instead, the model
uses the ASALSAN matrix factorisation algorithm [1].
One of the main issues with RESCAL is that it has

quadratic space complexity since each relation embedding
requires d2 values. This issue is addressed by the ComplEx
model [33] which learns entity and relation embeddings in
the complex space Cd. The model restricts each relation

4

matrixRr ∈ Cd×d to be a diagonal matrix. In practice, this
means that the model only needs to store a vector r ∈ Cd
for each relation. As such, ComplEx has the same linear
space complexity as, for instance, TransE.
TuckER [2] is another example of an extension to RES-

CAL. The model is based on Tucker decomposition [34]
which factorises a three-dimensional matrix into a smaller
three-dimensional core matrix and three two-dimensional
matrices. In TuckER, the core matrix is denoted X ′ ∈
Rd×d′×d, entities are embedded as E ∈ R|E|×d, and rela-
tions as R ∈ R|R|×d′ . The model learns these matrices
such that X ′ ×1 E ×2R×3 E ≈ X where ×i is the tensor
product along the ith mode. By using the core matrix,
TuckER introduces an element of parameter sharing to the
model. This turns out to beneficial since TuckER is the best
performing LFM among the models described until now.
The following models extend the idea of sharing parameters
by using neural networks.

Neural Network Models LFMs based on neural networks
aim at increasing model expressiveness without increasing
the size of the embedding spaces. One example of this
is the ConvE model [9] that uses a convolutional neural
network (CNN) to accomplish this. Given a triple (h, r, t),
ConvE first combines the embeddings h and r into a single
two-dimensional matrix on which one or more convolutional
filters are applied. The result is projected back into a
vector in the the embedding space. The dot product of this
transformed vector and t is then used as the output of the
score function.
Even though ConvE shares parameters between the em-

beddings by using a convolutional layer, it, and other LFMs,
still only learn from KG triples. Thus, possibly valuable
relationships between entities that span more than one triple
in the graph are ignored. This issue is addressed by the
SEAL model [39] which is based on a graph neural network
(GNN). In this type of neural network, the embedding of an
entity is based on an aggregation of the embeddings of its
neighbours. SEAL introduces the concept of an enclosing
subgraph which is a subset of a graph containing overlap-
ping neighbourhoods of two entities. The model learns
which enclosing subgraphs are typical for entities that are
connected with a given relation. SEAL is further extended
in [21, 31] where elements like attention is added to the
GNN. These models do show improved performance when
compare to other LFMs but are also slower to train since the
neural network is more intricate. Furthermore, the models
are not interpretable and cannot provide explanations for
their predictions since the latent features do not translate to
observable patterns in the KG.

3.2 Logic Rule Models
The logic rule models (LRMs) described in this section
derive probabilistic first-order logic rules from the KG.
Besides being able to predict missing knowledge, the rules
can be used to explain the predictions. Much of the notation
and terminology regarding LRMs is borrowed from the logic

programming field. This means that a triple (h, r, t) ∈ K is
expressed as a logical fact r(h, t). By chaining these facts,
we can express logic rules that reflect patterns in the KG.
For instance, we can imagine a larger version of the KG in
Figure 1 where the following rule holds,

wrote(x, y) ∧ has genre(y, z) =⇒ writes(x, z).

This states that if an author x has written a book y of genre
z, then the author x writes books in the genre z. This rule is,
of course, universally applicable but it is also trivial. When
we want to infer new knowledge in a KG, we may not only be
interested in such trivialities. Instead, we want to discover
more intricate relationships that might be less general. The
LRMs described below capture this dynamic by associating
each rule with a probability. In this way, the model can
reason about rules that holds in some cases.

Inductive Logic Programming By looking at a KG as a
logic database of facts, the LP problem can be formulated as
an inductive logic programming task. That is, given at set
of facts, we want to induce a logic program in which all the
facts hold. However, as mentioned before, logic rules that
always hold are either rare or trivial. To overcome this, [27]
defines a probabilistic version of the logic programming
language Prolog called ProbLog. In ProbLog, each possible
program is associated with a probability of succeeding, i.e.
that the program entails all the facts in the KG. The authors
present an algorithm that approximates this probability for
any ProbLog program and then uses the most probable one
to infer missing knowledge. However, ProbLog does not
scale well and so deciding on the most probable program
quickly becomes an infeasible task as the KG grows.

TensorLog TensorLog [7] is a differentiable logic where
first-order logical operators on variables are expressed as
operations on matrices. In [38], the authors introduce an LP
model called Neural Logic Programming (Neural LP) based
on TensorLog. Here, each entity e ∈ E is associated with
a unique one-hot vector e ∈ {0, 1}|E|, and each relation
r ∈ R with a matrix Rr ∈ {0, 1}|E|×|E|. These relation
matrices are defined in a way similar to Equation (1), namely
that the entry (h, t) in Rr is 1 if (h, r, t) ∈ K and 0
otherwise. In Neural LP, these vectors and matrices are used
to represent logic clauses. For instance, we know that the
clause r1(h, e1) ∧ r2(e1, t) holds for some h, t ∈ E if the
product hTRr1Rr2t is non-zero. Further, if we know that
(h, r3, t) ∈ K, then Neural LP assigns a high confidence α
to the rule r1(h, e1) ∧ r2(e2, t) =⇒ r3(h, t). This is done
by maximising hT(α(Rr1Rr2))t for all h, t ∈ E where
(h, r3, t) ∈ K.

Similar to RESCAL, Neural LP has quadratic space com-
plexity. Furthermore, its number of parameters depends
on the size of E which makes it even less efficient than
RESCAL. This is the main downside of Neural LP.

Recurrent Neural Networks Another group of LRMs is
based on RNNs. This is, for instance, the case in [22] where

5

Knowledge graph

Feature extraction(h, r, t)

Input Πh,t = {〈r1, r3〉, 〈r2, r4, r1〉}

Relation sequences

h =
[
1
2
4

]
t =

[
3
1
1

]
Entity semantics

RNN P (r | h, t)

Output

Figure 3: Overview of the architecture of ResqLP.

themodel learns relation embeddings based on paths between
entity pairs. This allows the model to measure the similarity
between a single relation and a sequence of relations. By
observing which sequences of relations connect a pair of
entities, the model can predict that they should connected by
the most similar relation. This is analogous to a probabilistic
first-order logic rule in that a sequence of relations implies
a certain relation. Another advantage of this model is that
since it only learns from relation sequences it is independent
the entities found in the KG. The model is extended by [8]
who, among other improvements, include entity embeddings
as part of the hidden RNN states. Even though this improves
the performance of the model, its ability to cope with unseen
entities is lost.

These RNNmodels suffer from scalability issues since the
number of paths between two entities increase exponentially
with the size of the KG. However, we do find the nature of
the model, i.e. the combination of the effectiveness of RNNs
and interpretability of first-order logic rules, compelling.
Therefore, we introduce an extension to this type of model
called ResqLP. This model aims at copingwith the scalability
issues by taking inspiration from the enclosing subgraph
concept introduced in [39]. Furthermore, ResqLP includes
entity semantics from observable features in the KG. This
allows the model to learn from both entity semantics and
relation sequences, as in [8], while remaining independent
of the specific entities, as in [22].

4 Overview of ResqLP
This section outlines the architecture of ResqLP which
consists of a feature extraction phase and an RNN. Both
build upon existing research on GNN and RNN-based LP
models [8, 22, 31, 39].
Figure 3 illustrates the overall structure of ResqLP. As

with any LP model, the input is a candidate triple (h, r, t)
for which we are to output P (r | h, t). Based on the entities
of the candidate triple, we extract two types of features. The
first is the set of sequences of relations that appear along the
paths between h and t in the KG. The second is semantic
feature vectors of h and t. Both of these features are directly
observable in the KG. They are combined and encoded using

an RNN that outputs our desired probability P (r | h, t).
In broad terms, the RNN compares the similarity between

r and sequences of relations that connect h and t. If we
know that a relation sequence 〈r1, r2, . . . , rn〉 is similar to
a relation r, we can formulate it as a first-order logic rule,

r1(h, e1) ∧ r2(e1, e2) ∧ · · · ∧ rn(en−1, t) =⇒ r(h, t),

where ri(e, e′) is satisfied if (e, ri, e
′) ∈ K. This logic rule

is then associated with the probability P (r | h, t). Such
rules can be used to provide interpretable explanations of
the predictions of ResqLP.
In Sections 5 and 6, we go in depth with the feature

extraction phase and the RNN, respectively. To support our
decisions in those sections, we look at properties of real KGs.
So before we elaborate on details of ResqLP, we introduce
said KGs.

4.1 Use Case Knowledge Graphs
Throughout the paper, we analyse different aspects of real
KGs with the goal of identifying key features that may
guide the design of ResqLP and tell us when it may, or
may not, be applicable. The KGs that we have selected
are FB15K237 [32], WN18RR [9], YAGO3-10 [9], and
OpenBioLink [6]. They differ in terms of size and domain
as well as how often they are used as benchmark datasets
in the LP literature. FB15K237 and WN18RR are common
benchmark KGs that allow use to compare the performance
of ResqLP to other models. On the other hand, YAGO3-10
and OpenBioLink let us examine how ResqLP handles larger
KGs that may pose more realistic prediction scenarios.

Table 1 shows the number of entities, relations, and triples
in each KG.

Table 1: Basic statistics of the four use case KGs.

Knowledge graph |E| |R| |K|

WN18RR [9] 41 105 11 93 003
FB15K237 [32] 14 541 237 310 116
YAGO3-10 [9] 123 182 37 1 089 040
OpenBioLink [6] 184 635 28 4 563 405

6

FB15K237 Freebase [3] is a KG containing general-
domain data aggregated frommultiple sources. Even though
Freebase is a discontinued product, it continues to be widely
used as a benchmark dataset for LP. Specifically, two subsets
of the KG are used for this. FB15K [5] contains the 15 000
most popular entities in Freebase. This dataset is, however,
often deemed ‘unrealistic’ since it contains many trivial
prediction tasks. Most notably, many correct predictions can
be made by simply reversing triples in the training data. In a
revision of FB15K, commonly called FB15K237 [32], this
issue is addressed. Relations that often appear in reversible
triples are removed, reducing the total number of relations
from over 1000 to 237.

WN18RR WordNet [18] is a lexical KG over the English
language. It describes hierarchical linguistic structures
and semantic relationships with relations like hyponym,
hypernym, and synonym. WN18 [4] is a subset ofWordNet
constructed by selecting 18 relations and filtering out entities
that do not appear in more than 15 triples. Even though
frequently used in the LP literature, WN18 suffers from
the same issues as FB15K. This is addressed with the
refined subset WN18RR [9] that contains only 11 relations.
Compared to Freebase, WordNet is a domain-specific KG.

YAGO3-10 YAGO (yet another great ontology) is a
general-domain KG based on data extracted from Wiki-
pedia. The KG has been refined through four versions and
the third edition [16] has been used as a benchmark dataset
for LP in previous research. Specifically, the subset YAGO3-
10 [9] contains all the entities of YAGO3 that are related
by ten or more relations. The general-domain nature of
YAGO makes its content comparable to Freebase. However,
YAGO10-3 is significantly larger than FB15K237 with over
a million entities. On the contrary, YAGO10-3 has only 37
relations compared to 237 in FB15K237.

OpenBioLink LP has practical uses in bioinformatics for
tasks like drug re-purposing [10] and predicting interactions
between chemical substances [20]. Thus, the OpenBio-
Link [6] KG aims to be an LP benchmark dataset that
mimics a real-world prediction scenario. On the other hand,
FB15K237, WN18RR, and YAGO3-10 are, to a large extent,
merely benchmark datasets. OpenBioLink is an aggrega-
tion of structured bioinformatics data from multiple public
sources. Furthermore, OpenBioLink is significantly larger
than the other KGs with more than four million triples. How-
ever, the ratio between the size and the number of relations
is even smaller than in YAGO3-10.

5 Feature Extraction
The feature extraction phase ofResqLP is concernedwith two
types of features: relation sequences and entity semantics.
The objective of the former is to capture how entities are
related across multiple triples, while the latter captures what
the individual entities actually represent. Both types of

features are directly observable in the KG. In the following
sections, we elaborate on how they are extracted.

5.1 Relation Sequences
In a KG, two entities h and t are likely connected through one
or more paths. However, since paths in a graph, such as 〈e1,
r2, e2, r2, e3, . . . , en−1, rn−1, e1〉, are unique by definition,
they will not make useful features for the model. Instead,
we consider only the sequences of relations in these paths.

Definition 3 (Relation sequence). Let 〈e1, r1, e2, r2, e3,
. . . , en−1, rn−1, en〉 be path in a KG. Its corresponding
relation sequence is 〈r1, r2, . . . , rn−1〉.

We use Πh,t to denote the set of relation sequences that
connect h and t. An element in this set, i.e. a relation
sequence, is denoted with π.
As mentioned in Section 4, the assumption for using

relation sequences as features is that certain relation se-
quences can be predictive of certain relations. As an ex-
ample, consider again the KG over fiction literature in
Figure 1. One can easily imagine that the relation se-
quence 〈wrote,has genre〉 between m. mitchell and his-
torical fiction frequently occurs between other similar
entity pairs. Since the two entities are already connec-
ted with the relation writes, ResqLP will learn that the
sequence 〈wrote,has genre〉 is predictive of that rela-
tion. Then, when the model sees the candidate triple
(l. tolstoy,writes,historical fiction) at inference time,
it finds the same relation sequence 〈wrote,has genre〉
between the entities and predicts that the triple is true.

At first, the task of finding the relations sequences seems
straight forward. We just traverse all paths between h and
t and ignore the concrete entities along the way. It should
be noted that we only consider simple paths, i.e. paths with
no cycles, to avoid possibly infinite relation sequences. The
common approach to finding a simple path between two
nodes in a graph is to use a depth-first search which has the
time complexity O(|E|+ |K|). We are, however, interested
in finding all paths. In the worst case, where the KG forms
as complete graph, the are O((|E||R|)!) possible paths to
enumerate. This can make the task of finding the relation
sequences infeasible in practice even though the worst case
scenario is far from reality in the four use case KGs. In
the following section, we propose an approach to cope with
these large search spaces.

5.1.1 Enclosing Subgraphs

One way to reduce the search space when enumerating
relations sequences is to simply search a smaller graph. To
do this, we build upon the concept of enclosing subgraphs
introduced in [39]. An enclosing subgraph is a subset of
a KG that encloses two specific entities. The definition
in [39] is based on undirected graphs and, thus, not directly
applicable to KGs. Therefore, we first propose a different
definition that is suitable for our case.

The enclosing subgraph with respect to h and t is based on
the neighbourhood of those entities. We say that the direct

7

neighbourhood of an entity e is the set of triples in which e
occurs. By recursively finding these direct neighbourhoods,
we can find neighbourhoods of any depth.

Definition 4 (Entity neighbourhood). Let K be a KG and
e ∈ E . The depth-k neighbourhood of e is a KG over the
set of entities Eke and the set of relations Rke consisting
of the triples Kke =

⋃
e′∈Ek−1

e
K1
e′ . For k = 1, we have

K1
e = {(·, ·, e), (e, ·, ·) ∈ K}.

Given this definition, we can define the enclosing subgraph
which combines two entity neighbourhoods of a certain
depth.

Definition 5 (Enclosing subgraph). Let K be a KG and
h, t ∈ E . The depth-k enclosing subgraph of K with respect
to h and t is a KG containing the intersection of their depth-k
neighbourhoods, Kkh,t = Kkh ∩ Kkt .

Figure 4 shows an example of a depth-2 enclosing sub-
graph with respect to the entities h and t. Entities and
relations outside the subgraph are coloured grey.

h
t

Figure 4: Depth-2 enclosing subgraph with respect to h and
t. Entities and relations outside the subgraph are coloured
grey.

When we want to enumerate the relation sequences Πh,t,
we search only Kkh,t, for some k, instead of K in its entirety.
The assumption here is that entities and relations that are
close to h and t are more relevant than those far away.

5.1.2 Effects of Using Enclosing Subgraphs

We now look at how enclosing subgraphs actually affect the
relation sequence enumeration process. First, we examine
the size of enclosing subgraphs in the different use case KGs.
Figure 5 shows the proportion of all triples that an average
depth-3 enclosing subgraph covers in each of the KGs. The
data points behind the figure aremade by uniformly sampling
100 entity pairs in each KG and extracting their enclosing
subgraph. Clearly, the effect is most noticeable in WN18RR
and YAGO3-10 where the average subgraph covers 0.36%
and 14.53% of the entire KG, respectively. This means that
relation sequence enumeration is significantly faster when
using enclosing subgraphs. For WN18RR and YAGO3-
10, we see a speedup factor in the order of 100 and 1000,
respectively, when using enclosing subgraphs. Not only
is this significant in itself but the absolute time it takes to
enumerate the sequences is also reasonable for practical use.
In WN18RR, the execution time is in order of 0.0001 s and
in YAGO3-10 it is in the order of 0.01 s.

In FB15K237 and OpenBioLink, the situation is different.
The average depth-k enclosing subgraph growsmuch quicker

62.13%

83.41%

0.36%

14.53%

0%

25%

50%

75%

100%

WN18RR YAGO3 FB15K237 OpenBioLink

Figure 5: Proportion of the entire KG covered by an average
depth-3 enclosing subgraph.

and, as Figure 5 shows, even k = 3 results in subgraphs that
span more than half of the entire KG. By looking at Table 1,
we can conclude that enclosing subgraphs in FB15K237 and
OpenBioLink have sizes in the order of hundred thousands
and millions, respectively. This is still too large to make
relation sequence enumeration tractable. Actually, since the
subgraph extraction procedure in itself takes time, it may
even slow the process down.

5.1.3 Neighbourhood Sampling

To cope with the large enclosing subgraphs that we see in
FB15K237 and OpenBioLink, we introduce an element of
randomness to the subgraph extraction process. We use the
term ‘neighbourhood sampling’ for this.
As mentioned in Definition 4, a depth-k neighbourhood

is just a union of depth-1 neighbourhoods. When doing
neighbourhood sampling, we uniformly sample a fraction
s of the triples in each depth-1 neighbourhood. Seen from
a graph perspective, this is equivalent of only following
s of the outgoing edges from each node. Figure 6 shows
how neighbourhood sampling with s = 0.1 affects the
enclosing subgraph size in FB15K237 and OpenBioLink.
This approach makes relation sequence enumeration faster
in both KGs where we see a speedup factor in the order of
10. For FB15K237, this results in an execution time around
0.01 s while the it is around 1 s for OpenBioLink. There
is, however, a significant caveat with this approach: Since
we sample the triples uniformly, we cannot guarantee the
usefulness of the relation sequences found in the subgraphs.
We may very likely discard triples that are part of important
paths between entities. This issue is discussed further in
Section 8.

5.2 Entity Semantics
Until now, focus has been on relation sequences and their
potential ability to be predictive of relations. However, we
know from [8] that integrating entities in the RNN can
be beneficial for the performance of the model. In [8],
each entity e ∈ E is associated with a corresponding vector
embedding e ∈ Rd. These embeddings are parameters in the
RNN and thus learnt during training. This is quite similar to

8

3.22%

90.80%

0.58%

68.02%

0%

25%

50%

75%

100%

FB15K237 OpenBioLink

Not sampled

Sampled

Figure 6: Proportion of entire KG covered by an average
depth-3 enclosing subgraphwith andwithout neighbourhood
sampling.

the concept of LFMs like TransE and RotatE. The downside
of this approach is that the model loses its independence of
the entities in the KG. If we see an entity e 6∈ E on inference
time, there is no corresponding embedding e to use and
the model cannot make predictions. Since we consider this
independence important, we want to preserve it. So instead
of learning a latent vector representation of entities, we use
features that are directly observable in the KG.
We present two different approaches to capturing entity

semantics: a general, called relation frequency semantics,
and a KG-specific. In both cases, the objective is to assign
each entity e ∈ E a suitable feature vector e.

5.2.1 Relation Frequency Semantics

The purpose of this first type of entity semantics is for it to
be applicable in any KG. We define the relation frequency
semantics of an entity e ∈ E based on the relations found
in its direct neighbourhood K1

e . Specifically, we associate
each entity e ∈ E with a vector e ∈ N|R| where the ith
entry corresponds to the frequency of ith relation in the
neighbourhood of e,

ei = |{(·, ri, ·) ∈ K1
e}| (2)

As an example, consider Figure 7 that shows a segment
of a KG overR = {r1, r2, r3, r4}. If we want to find e, we
simply count the frequency of each relation in the direct
neighbourhood of e. For instance, r2 appears twice which
means that e2 = 2, and the full feature vector looks like the
following,

e =

1
2
1
0

 .
The assumption behind using relation frequently se-

mantics is that part of the semantics of an entity is defined
by the relations it occurs in. For instance, continuing with
our fiction literature KG, books probably participate more
frequently in (·,has genre, ·) triples than authors do. Simil-
arly, genres will probably not appear in (·,wrote, ·) triples;
instead, only authors and books will be present there. By

e

r1

r2
r3

r2

r4

r1

Figure 7: KG segment for determining the semantic vector
of the entity e. Entities and relations outsideK1

e are coloured
grey.

this logic, we assume that the relation frequency semantics
is a good fit for KGs that describe many different types of
entities, such as FB15K237 and YAGO3-10. If we look at
some concrete entities, we can see that this holds in some
cases by comparing the feature vectors using cosine similar-
ity. For instance, the entities thomas jefferson and hong
kong film award for best film in FB15K237 share only
one non-zero entry in their feature vectors. This means that
their cosine similarity is relatively small, 0.015. However,
if we compare hong kong film award for best film with
another film award, genie award for best achievement
in editing we get a cosine similarity of 0.85.
An example of where relation frequency semantics may

not be appropriate is in WN18RR. In this KG, there are
relatively few relations, |R| = 11, which means that the
feature vectors vary less. In turn, this means that entities
that indeed are very different have high cosine similarities.
For instance, the entities trigger (as a noun) and heat (as
a verb) have a cosine similarity of 0.99.

5.2.2 Domain-Specific Semantics

An alternative to relation frequency semantics is to analyse
what properties characterise the entities in the individual
KGs. However, as opposed to [8], we want the features
to be observable in the KG. To do this, we use a manual
approach where we identify individual features that may
capture the semantics of the entities. For instance, a book
entity in the KG in Figure 1 may be described by its genre
and publication year which can be extracted from triples
on the form (·,has genre, ·) and (·, published in, ·). By
selecting a number of these features, we can construct feature
vectors for each entity that can be used in ResqLP. Like
relation frequency semantics, this approach preserves the
model’s ability to make predictions about unseen entities
since the features are observable in the KG. In the following,
we propose a definition of domain-specific entity semantics
for the YAGO3-10.
As mentioned earlier, the YAGO3-10 KG describes a

more general domain than, for instance, WN18RR and
OpenBioLink. This means that some entities are more
likely to participate in certain relations than others. We can
use this information to identify some appropriate features.
For instance, even though the entities in YAGO3-10 are
not directly associated with a type, we can infer the type
of many entities based on a number of different relations.
If an entity participates as tail in triples on the form (·,
has official language, ·) we can assume that it is of type

9

y1

r1

[y1; r2]

r2

y2 [y2; r3]

r3

y3 · · · [yn−1; rn]

rn

yn [h;yn; t]

h, t

πh,t

σ(A·) σ(A·) σ(A·) σ(B·)

Figure 8: Overview of how the RNN in ResqLP processes relation embeddings ri ∈ Rd and entity features h, t ∈ Rd′

when encoding the relation sequence π = 〈r1, r2, r3, . . . , rn〉 between the entities h and t.

language. Similarly, we can assign person as type to head
entities in (·,has gender, ·) triples. The latter example also
leads to another potential feature: the gender of a person.
By manually examining the entities and relations in the
KG, we propose a set of features that can be used as entity
semantics in YAGO3-10. These features are type, gender,
occupation, language, and nationality. A description
of how we derive the features for the individual entities
can be found in Appendix A. Naturally, these features are
all categorical and so to represent them in a numerical
way, we use a one-hot encoding. This gives us entity
semantic vectors e ∈ {0, 1}165. In Section 7 we evaluate
how ResqLP performs using domain-specific compare to
relation frequency semantics.

6 Encoding Relation Sequences
Until now, we have explained how to extract the set of
relation sequences Πh,t and entity semantics h and t from
a KG given a candidate triple (h, r, t). In the following
sections, we define the actual RNN that processes these
features, how we train it, and how it can report explanations
for its predictions. The RNN is an extension to the ideas
presented in [8, 22]. Specifically, we present a new way to
combine relation sequences with entity semantics.

6.1 Recurrent Neural Network
Since relation sequences, naturally, are discrete, we must
first represent Πh,t in a continuous manner that fits the
nature of neural networks. We do this by associating each
relation r ∈ R with a vector embedding r ∈ Rd where d is
the dimensionality of the embedding space. This allows us
to represent a relation sequence π = 〈r1, r2, . . . , rn〉 as a
sequence of relation embeddings r1, r2, . . . , rn. Given this
sequence of length n, the RNN has n hidden states where
each state yt ∈ Rd is computed by combining the previous
state yt−1 and the relation rt. Formally, this recursive case
is formulated as

yt = σ(A[yt−1; rt]). (3)

Here, [·; ·] ∈ R2d denotes the stacking of two vectors in
Rd, A ∈ R2d×d is a transformation matrix that keeps the
embeddings in Rd space, and σ(·) is the sigmoid function.
The base case of Equation (3) is

y1 = r1. (4)

The final hidden state of the RNN is considered as the
embedding of π, i.e. π = yn. Figure 8 illustrates this

process of combining hidden states and relation embeddings
according to Equations (3) and (4).
The next step is to combine π with the semantic vectors

of the two entities, h and t. Similar to Equation (3), these
three vectors are first stacked and then transformed back into
Rd space,

πh,t = σ(B[h;π; t]), (5)

where h, t ∈ Rd′ , π ∈ Rd, andB ∈ R2d′+d×d. This final
step in the RNN is show to the right in Figure 8. Worth
noting here is that d′ is the number of dimensions in the entity
feature vectors. When using relation frequency semantics,
we have d′ = |R| while different domain-specific semantic
give rise to different d′. For instance, for the YAGO3-10
semantics introduced in Section 5.2.2, we have d′ = 165.
We now compute the similarity between the relation r

from the candidate triple and πh,t. We do this by first
passing the relation embedding r through the same stacking
transformation as π in Equation (5). Then the dot product
of rh,t and πh,t is used as the similarity score,

score(r, π, h, t) = rh,t · πh,t. (6)

Next, we use this similarity to suggest the probability
P (r | h, t). First, we notice that in most cases, Πh,t will
contain more than one relation sequence. Thus, we compute
Equation (6) for each π ∈ Πh,t and aggregate the similarities
to a single value that represents said probability. Generally,
we define this probability as

P (r | h, t) = g({score(r, π, h, t) | π ∈ Πh,t}) (7)

where g(·) is an aggregation function. In [22], the authors
define g(·) to simply output the highest similarity score and
passing it through the sigmoid function σ(·),

gmax(S) = σ

(
max
s∈S

s

)
. (8)

However, as noted in [8], this approach discards other scores
that may potentially be useful. Therefore, they propose three
different aggregation functions: one that averages all the
similarities, one that averages the top-k similarities, and one
based on LogSumExp function. The latter is defined as

gLSE(S) = σ

(
log
∑
s∈S

es

)
, (9)

and the authors find that it results in the best performance of
their model. Therefore we use Equation (9) as aggregation
function in ResqLP.

10

As mentioned earlier, the advantage of using observable
features inResqLP is that itmakes interpretability easier. The
similarity between a relation and a relation sequence, which
we find in Equation (6), can be used to report explanations
at inference time. In addition to aggregating the similarities
and outputting the probability Equation (7), we can output
the list of relation sequences found between h and t ranked
by their similarity.
The parameters that will be adjusted while training

ResqLP are the relation embeddings {r ∈ Rd | r ∈ R}
and the two transformation matrices A ∈ R2d×d and
B ∈ Rd+2d′×d. Here, d is the dimensionality of the relation
embeddings and d′ is the dimensionality of entity semantic
vectors. Since d and d′ are constants, the number of para-
meters in ResqLP only depends on the number of relations
in the input KG. This makes the model parameter efficient
when compared to common LFMs such as TransE where
the number parameters grows with the number of entities.

6.2 Training With Negative Sampling

As mentioned earlier, we consider LP to be a binary classi-
fication problem: Either a candidate triple (h, r, t) is true,
i.e. it belongs in the KG, or it is false. However, since
the purpose of a KG is to provide true knowledge, it only
contains actual true triples. Only using these triples for
training will not contribute to the prediction capability of
the model since it will not be exposed to examples of false
triples. To cope with this, we utilise negative sampling [17]
to generate false triples based on existing data. For each true
triple (h, r, t) ∈ K, we replace either h or t with another
entity e ∈ E to generate a false triple, such as (h, r, e) 6∈ K.
Using this approach, we can generate a set of false triplesK−
which, together with K, forms the training data for ResqLP.

In the context of KGs, doing negative sampling in the
way described above comes with a risk of generating false
negatives. Just because a triple is not present in the KG does
not mean that it is false. This issue is addressed in [37] where
the authors propose that the choice of replacing either the
head or tail entity in (h, r, t) should not be made uniformly
at random. Instead, it should depend on the cardinality of r.
They introduce the following heuristic. Consider the triple
(h, published in, t). The relation published in is many-to-
one since multiple books can be published in the same year,
but a specific book is only published in a specific year1. Due
to this cardinality, it is more likely that (h, published in, e)
is a actually false compared to (e, published in, t) for some
e ∈ E . Therefore, in this case, it is preferable to replace t.

The cardinality of a relation is determined by two statistics
of the KG tails-per-head, tph(·), and heads-per-tail, hpt(·).
Given a relation r, the tails-per-head statistic is the average
number of tail entities that a head entity is related to by
r; the inverse goes for heads-per-tail. We formulate these

1This is, of course, a simplification since a book can be published in
different editions in different years.

measures in the following way,

tph(r) =

∑
h∈E |{t | (h, r, t) ∈ K}|
|{h | (h, r, ·) ∈ K}|

(10)

hpt(r) =

∑
t∈E |{h | (h, r, t) ∈ K}|
|{t | (·, r, t) ∈ K}|

. (11)

tph(·) and hpt(·) are used to determine the probability
of replacing either the head or tail entity in (h, r, t) when
generating a false triple. Specifically, we have

P (replace t | r) =
hpt(r)

hpt(r) + tph(r)
(12)

P (replace h | r) =
tph(r)

hpt(r) + tph(r)
. (13)

As mentioned above, this is just a heuristic. However, [37]
finds that it improves the performance across differentmodels
and KGs. Therefore, we choose to employ this negative
sampling approach when training ResqLP.
Now that we have a set of true and false training triples,

we define the learning objective of the model as

arg max
θ

∑
(h,r,t)∈K

P (r | h, t) +
∑

(h′,r′,t′)∈K−
1− P (r′ | h′, t′), (14)

where θ denotes the parameters of the RNN, i.e. relation
embeddings ri and the transformation matricesA andB.

7 Experiments
In this section, we conduct a series of experiments with
ResqLP to evaluate its performance on the four use case
KGs. These experiment are, first of all, concerned with
comparing the performance of ResqLP to other models.
However, we also look at the relation sequences that ResqLP
learns as well as how different definitions of entity semantics
affect its performance. In the following sections, we first
describe the setup for these experiments as well as the
metrics used to compare the models. Then, we present the
results of the experiments and highlight our findings.

7.1 Experimental Setup
We conduct a number of different types of experiments with
ResqLP. First, we do hyperparameter optimisation using a
grid search over different parameter values. Second, the
performance of the models with the best performing para-
meter configurations are compare to other LP models. Third,
we evaluate the impact of using different entity semantics
by training two different ResqLP models on the YAGO3-
10 KG. Before describing each experiment in details, we
present the evaluation metrics used and comment briefly on
implementation.

Implementation and Evaluation Since much existing
research views LP as an information retrieval task, perform-
ance metrics from this field is commonly used. The two

11

Table 2: Mean reciprocal rank (MRR) and hits-at-n (H@N) performance of ResqLP compared to other models on the four
use case KGs.

Model FB15K237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RotatE [29] 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
TuckER [2] 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
ConvE [9] 0.325 0.237 0.356 0.501 0.430 0.400 0.440 0.520
ResqLP 0.523 0.262 0.379 0.404 0.605 0.322 0.349 0.384

YAGO3-10∗ OpenBioLink†

RESCAL [23] — — — — — 0.407 — 0.615
ComplEx [33] 0.360 0.260 0.400 0.550 — 0.166 — 0.525
ConvE [9] 0.440 0.350 0.490 0.620 — — — —
ResqLP 0.570 0.335 0.336 0.345 0.629 0.336 0.357 0.410
∗ Results from [9]. † Results from the OpenBioLink leaderboard: https://github.
com/OpenBioLink/OpenBioLink

main metrics are mean reciprocal rank (MRR) and hits-at-n
(H@N). Both are based on a list of test triples S ranked
by an individual score in descending order. In the case of
ResqLP, this score is simply P (r | h, t) for a given triple
(h, r, t) ∈ S . We use rank(h, r, t) to denote its rank among
all candidate triples. Then, MRR is defined as

MRR =
1

|S|
∑

(h,r,t)∈S

1

rank(h, r, t)
. (15)

H@N is a type of precision measure on the ranked list of
candidate triples. For any n, the metric is defined as

H@N =
|true triples in first n elements of S|

n
. (16)

We have implemented ResqLP in Python using the
deep learning library PyTorch [24] and the accompany-
ing research-oriented framework PyTorch Lightning [25].
The implementation is available on GitHub2.

We run each experiment in distributed mode across four
Nvidia Tesla V100 GPUs each with access to four Intel Xeon
Platimum CPU threads at 2.7GHz. The KGs come pre-split
into a training, validation, and test set from their sources3.
We let ResqLP train for at most 100 epochs on the training
data and evaluate it on the validation data every three epochs.
We stop the training process early if the MRR score on the
validation data does not improve after three validation runs.
Then, we test the model on the test data.

Experimental Procedure The first experiment we run is
hyperparameter optimisation. For each use case KG, we
train ResqLP with different values for batch size, b ∈ {64,
128, 256}, size of the relation embedding space, d ∈ {10,
100, 1000}, and learning rate η ∈ {0.01, 0.001, 0.0001}.
The parameters that control enclosing subgraph depth k and
sampling size s are not part of the parameter search. Instead,

2https://github.com/emilbaekdahl/masters-code.
3WN18RR, FB15K237, and YAGO3-10 is available here: https:

//github.com/TimDettmers/ConvE. OpenBioLink is available here:
https://github.com/OpenBioLink/OpenBioLink.

wemanually set them to values that we find reasonable based
on the analysis of the KGs done in Section 5.1. We report the
parameter configurations that lead to the best performance
on each KG. These performance are then compared to other
LP models. We have, however, not been able to find papers
that report results on all four KGs presented in this paper.
Therefore, for some KGs, we compare with different models.

The second experiment we conduct compares how differ-
ent definitions of entity semantics affect the performance of
ResqLP on the YAGO3-10 KG. For this, we train ResqLP
using the domain-specific semantics introduced in Sec-
tion 5.2.2 and compare its performance to the model trained
on the same KG in the previous experiment.

7.2 Results
Table 3 shows the best parameter configurations for each KG.
There are a few things worth noting here. First, WN18RR
is the only KG where ResqLP prefers a higher embedding
dimension d = 1000. This may be because WN18RR has
so few relations that each relation needs more parameters to
distinguish itself from the others. Second, with the exception
of FB15K237, ResqLP uses larger batch sizes as the KG
increases.

Table 3: The best performing parameter configurations for
ResqLP on each KG.

Knowledge graph b k d η s

FB15K237 256 3 100 0.0001 0.3
WN18RR 64 5 1000 0.0001 —
YAGO3-10 128 3 100 0.001 —
OpenBioLink 256 3 100 0.0001 0.1

b: batch size k: enclosing subgraph depth
d embedding space dimensionality
η: learning rate s: subgraph sampling size

The performance of ResqLP as well as other models is
shown in Table 2 where the best and next-best scores in

12

https://github.com/OpenBioLink/OpenBioLink
https://github.com/OpenBioLink/OpenBioLink
https://github.com/emilbaekdahl/masters-code
https://github.com/TimDettmers/ConvE
https://github.com/TimDettmers/ConvE
https://github.com/OpenBioLink/OpenBioLink

each column are highlighted with bold and underlined font,
respectively. For FB15K237 and WN18RR we compare
with RotatE [29], TuckER [2], and ConvE [9]. The results
for these models come from the original papers. Results on
the YAGO3-10 and OpenBioLink KGs come from [9] and
the OpenBioLink leaderboard4, respectively.
From Table 2 we see that ResqLP consistently gets the

best MRR across all KGs. However, for all H@N metrics,
the model is at most next-best. Across all the KGs, ResqLP
performs worst on WN18RR. One explanation for this is
that the relation frequency semantics of the entities are
too similar and that the relation sequences, in many cases,
do not convey much meaning. We find the best MRR,
H@1, and H@10 scores on the OpenBioLink KG, while
the highest H@3 is found on FB15K237. Since these KGs
give rise to the largest enclosing subgraphs, as explained
in Section 5.1, we can also expect to find the most relation
sequences there. Under our assumption that ResqLP actually
learns for relation sequences, this is more or less as expected.
However, the result on OpenBioLink is most surprising since
it has relatively few relations. As such, we would expect that
ResqLP would not find many meaningful relation sequences.

Table 4 shows how ResqLP performs on YAGO3-10 using
relation frequency semantics and domain-specific semantics,
as defined in Section 5.2.2. We see that the domain-specific
semantics lead to increased results. Even though the MRR
does not differ much between the two types of semantics,
the larger increase in H@N indicates that ResqLP is more
precise in its predictions using domain-specific semantics.
This show that, even though relation frequency semantics
may be a good place to start, it is worth investigating how to
define good domain-specific entity semantics on KGs.

Table 4: Results of using relation frequency and domain-
specific semantics on the YAGO3-10 KG.

Semantics MRR H@1 H@3 H@10

Relation frequency 0.570 0.335 0.336 0.345
Domain-specific 0.573 0.348 0.351 0.470

7.3 Predictive Relation Sequences
In this section, we examine the rules that ResqLP actually
learns by looking at examples on the YAGO3-10 KG. We
begin by looking at the most common rule that ResqLP
finds,

is affiliated to(h, t) =⇒ plays for(h, t). (17)

This rule is concerned with athletes and the sports teams
they play for. The rule is more or less trivial since it is very
likely that an athlete who is affiliated with a sports team also
plays for it.

If we look at the most common rules that span more than
one relation, we see similar trivialities. For instance, the

4The leaderboard can be found on the OpenBioLink GitHub repository:
https://github.com/OpenBioLink/OpenBioLink.

following rules capture how airports are connected,

is connected to(h, e1) ∧ is connected to(e1, t)
=⇒ is connected to(h, t).

(18)

Since only airport entities appear in triples on the form
(·, is connected to, ·) and only very few pairs of airports
are not connected, ResqLP assigns the probability 0.9 to
Equation (18). This rule is, of course, useful in the sense
that it predicts true facts. But the facts that it predicts can be
inferred just as well using a manually defined rule without
considering entity semantics.

An example of a rule that ResqLP learns to assign a high
probability but at the same time never holds in the test data
is the following,

was born in(h, e1) ∧ is located in(e1, e2)

∧ deals with(e2, t) =⇒ is citizen of(h, t).
(19)

where the relation deals with describes that two countries
trade with each other. ResqLP assigns the probability 0.83 to
this rule since it happens to hold in many cases in the training
data. But, of course, we cannot derive the citizenship of a
person based which countries their birth-country deals. This
shows that ResqLP only learns rules based on the frequency
of certain patterns in the KG. It does not learn what the
relations actually mean.

The last example is amore intricate rule learned byResqLP
which captures how countries that import and export certain
commodities trade with each other.

deals with(h, e1) ∧ has neighbour(e1, e2)

∧ imports(e2, t) =⇒ exports(h, t).
(20)

Here the has neighbour relation refers to neighbouring
countries. Equation (20) states that if some country h deals
with a country whose neighbour imports a specific product t,
then the country h is an exporter of the product t. The rule
turns out to hold in all cases where it occurs and as such,
ResqLP assigns a probability of 0.99. An example of where
the rule holds is h = bulgaria and t = clothing.

8 Conclusion
We introduce ResqLP, a link prediction (LP) model for
knowledge graphs (KGs) that learns to predict how likely it
is that a certain triple belongs in a KG. ResqLP is based on a
recurrent neural network (RNN) and learns from sequences
of relation found between entities as well as entity semantics.
The task of finding the relation sequences is inherently hard
since it depends on path enumeration. ResqLP includes a
feature extraction component that aims to cope with this
problem by only considering an enclosing subgraph of the
KG, i.e. a subset that encloses the entities for which we are
to predict a link. This decreases the time it takes to find
the relation sequences significantly on some KGs. In other
cases, we reduce the size of the enclosing subgraph more
by uniformly sampling triples from it. Furthermore, we
define a notion of entity semantics, called relation frequency

13

https://github.com/OpenBioLink/OpenBioLink

semantics, that can be derived for any entity in any KG.
ResqLP also takes these semantics into account in its RNN.
We find that the model performs best on KGs with many
different types of relations where the entities are sparsely con-
nected. Furthermore, relation frequency semantics seems to
be a good starting point for including entity semantics, but
experiments show that a manually defined feature vectors
results in better performance.

8.1 Future Work

As mentioned, we find that using enclosing subgraphs when
enumerating relation sequences provides a significant spee-
dup. This shows to be effective for some KGs while in
other cases, the subgraphs are still to large. Our proposed
solution to this is to uniformly sample a subset of these
subgraphs. Even though this actually reduces the search
space to a manageable size, we risk discarding valuable
relation sequences. Furthermore, we cannot even guarantee
that there are any relation sequences at all. Therefore, it is
worth looking how to improve this sampling approach. This
could, for instance, be done by associating each entity with
an importance, such as eigenvector centrality, that can be
used to define a probability distribution over entities to be
employed in sampling. Given a sampling technique that is
good at sampling important subgraphs, it can applied on all
KGs, not only those where the search space is too large, to
further improve path enumeration performance. This leads
us to another area of improvement. Currently, we enumerate
all the relation sequences in a given enclosing subgraph.
However, as mentioned in Section 7.3, some of the rules that
ResqLP are not interesting. So, if we instead only select the
most important sequences, we may both improve execution
time, since we traverse fewer paths, and performance, since
the sequences we find are more relevant. This might be
done in a way similar to the proposed enhanced subgraph
sampling, i.e. by defining a relevant probability distribution
over relations.
Another aspect that may be improved is the definition

of entity semantics. As we conclude in Section 7.2, using
domain-specific entity semantics on YAGO3-10 improves
the performance of ResqLP. However, we have manually
identified the features to include which, naturally, is not
scalable to KGs where the number of relations and types of
entities is high. Therefore, it is worth looking at how we
automatically can derive semantics for the entities. In some
cases, semantics may also come from external sources. For
instance, in the WN18RR KG, word embeddings, which
solve exactly the task of capturing word semantics, may be
used. However, by doing so, the semantics are no longer
observable in the KG. This is a property that we have referred
to multiple times as being preferable since is allows ResqLP
to handle previously unseen entities that may appear as the
KG changes. One can argue, however, that in the case of
WN18RR, this is not an issue since the set of entities in the
KG, i.e. the words in the English language, very likely will
not change.

Acronyms
CNN convolutional neural network

GNN graph neural network

H@N hits-at-n

KG knowledge graph

LFM latent feature model

LP link prediction

LRM logic rule model

ML machine learning

MRR mean reciprocal rank

Neural LP Neural Logic Programming

RNN recurrent neural network

YAGO yet another great ontology

References
[1] Brett W. Bader, Richard A. Harshman and Tamara G. Kolda.

‘Temporal Analysis of Semantic Graphs Using ASALSAN’.
In:Proceedings of the 7th IEEE International Conference on
Data Mining (ICDM 2007), October 28-31, 2007, Omaha,
Nebraska, USA. IEEE Computer Society, 2007, pp. 33–42.
doi: 10.1109/ICDM.2007.54.

[2] Ivana Balazevic, Carl Allen and Timothy M. Hospedales.
‘TuckER: Tensor Factorization for Knowledge Graph Com-
pletion’. In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019. Ed. by Kentaro Inui et al. Association
for Computational Linguistics, 2019, pp. 5184–5193. doi:
10.18653/v1/D19-1522.

[3] Kurt D. Bollacker et al. ‘Freebase: a collaboratively created
graph database for structuring human knowledge’. In: Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008. Ed. by Jason Tsong-Li Wang.
ACM, 2008, pp. 1247–1250. doi: 10.1145/1376616.
1376746.

[4] Antoine Bordes et al. ‘A semantic matching energy function
for learning with multi-relational data - Application to
word-sense disambiguation’. In: Mach. Learn. 94.2 (2014),
pp. 233–259. doi: 10.1007/s10994-013-5363-6.

[5] Antoine Bordes et al. ‘Translating Embeddings forModeling
Multi-relational Data’. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States. Ed. by Christopher J. C. Burges et al. 2013,
pp. 2787–2795. url: https://proceedings.neuri
ps.cc/paper/2013/hash/1cecc7a77928ca8133fa
24680a88d2f9-Abstract.html.

14

https://doi.org/10.1109/ICDM.2007.54
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1007/s10994-013-5363-6
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html

[6] Anna Breit et al. ‘OpenBioLink: a benchmarking framework
for large-scale biomedical link prediction’. In: Bioinformat-
ics 36.13 (Apr. 2020). Ed. by Zhiyong Lu, pp. 4097–4098.
doi: 10.1093/bioinformatics/btaa274.

[7] WilliamW. Cohen, Fan Yang andKathrynMazaitis. ‘Tensor-
Log: A Probabilistic Database Implemented Using Deep-
Learning Infrastructure’. In: J. Artif. Intell. Res. 67 (2020),
pp. 285–325. doi: 10.1613/jair.1.11944.

[8] Rajarshi Das et al. ‘Chains of Reasoning over Entities,
Relations, and Text using Recurrent Neural Networks’. In:
Proceedings of the 15th Conference of the EuropeanChapter
of the Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long
Papers. Ed. by Mirella Lapata, Phil Blunsom and Alexander
Koller. Association for Computational Linguistics, 2017,
pp. 132–141. doi: 10.18653/v1/e17-1013.

[9] Tim Dettmers et al. ‘Convolutional 2D Knowledge Graph
Embeddings’. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and
Kilian Q. Weinberger. AAAI Press, 2018, pp. 1811–1818.
url: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/17366.

[10] Shobeir Fakhraei, Louiqa Raschid and Lise Getoor. ‘Drug-
target interaction prediction for drug repurposing with prob-
abilistic similarity logic’. In: Proceedings of the 12th In-
ternational Workshop on Data Mining in Bioinformatics -
BioKDD ’13. ACM Press, 2013. doi: 10.1145/2500863.
2500870.

[11] Shobeir Fakhraei et al. ‘Network-Based Drug-Target Interac-
tion Predictionwith Probabilistic Soft Logic’. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics
11.5 (Sept. 2014), pp. 775–787. doi: 10.1109/tcbb.2014.
2325031.

[12] David Liben-Nowell and Jon M. Kleinberg. ‘The link-
prediction problem for social networks’. In: J. Assoc. Inf.
Sci. Technol. 58.7 (2007), pp. 1019–1031. doi: 10.1002/
asi.20591.

[13] Yankai Lin et al. ‘Learning Entity and Relation Embeddings
for Knowledge Graph Completion’. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA. Ed. by Blai
Bonet and Sven Koenig. AAAI Press, 2015, pp. 2181–2187.
url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9571.

[14] Yang Liu et al. ‘Anticipating Stock Market of the Renowned
Companies: A Knowledge Graph Approach’. In: Complex-
ity 2019 (Aug. 2019), pp. 1–15. doi: 10.1155/2019/
9202457.

[15] Sarah J.MacEachern andNils D. Forkert. ‘Machine learning
for precision medicine’. In: Genome 64.4 (Apr. 2021),
pp. 416–425. doi: 10.1139/gen-2020-0131.

[16] Farzaneh Mahdisoltani, Joanna Biega and Fabian M.
Suchanek. ‘YAGO3: A Knowledge Base from Multilingual
Wikipedias’. In: Seventh Biennial Conference on Innovative
Data Systems Research, CIDR 2015, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings. www.cidrdb.org,
2015. url: http://cidrdb.org/cidr2015/Papers/
CIDR15_Paper1.pdf.

[17] Tomás Mikolov et al. ‘Distributed Representations of Words
and Phrases and their Compositionality’. In: Advances in
Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States. Ed. by Christopher J. C.
Burges et al. 2013, pp. 3111–3119. url: https://pro
ceedings.neurips.cc/paper/2013/hash/9aa42b
31882ec039965f3c4923ce901b-Abstract.html.

[18] George A. Miller. ‘WordNet: A Lexical Database for Eng-
lish’. In: Commun. ACM 38.11 (1995), pp. 39–41. doi:
10.1145/219717.219748.

[19] T. Mitchell et al. ‘Never-ending learning’. In: Communic-
ations of the ACM 61.5 (Apr. 2018), pp. 103–115. doi:
10.1145/3191513.

[20] Sameh K Mohamed, Vít Nováček and Aayah Nounu. ‘Dis-
covering Protein Drug Targets Using Knowledge Graph
Embeddings’. In: Bioinformatics (Aug. 2019). Ed. by Len-
ore Cowen. doi: 10.1093/bioinformatics/btz600.

[21] Deepak Nathani et al. ‘Learning Attention-based Embed-
dings for Relation Prediction in Knowledge Graphs’. In:
Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers. Association
for Computational Linguistics, 2019, pp. 4710–4723. doi:
10.18653/v1/p19-1466.

[22] Arvind Neelakantan, Benjamin Roth and Andrew McCal-
lum. ‘Compositional Vector Space Models for Knowledge
Base Completion’. In: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing, China,
Volume 1: Long Papers. The Association for Computer Lin-
guistics, 2015, pp. 156–166. doi: 10.3115/v1/p15-1016.

[23] Maximilian Nickel, Volker Tresp and Hans-Peter Kriegel.
‘A Three-Way Model for Collective Learning on Multi-
Relational Data’. In: Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011. Ed. by Lise Getoor
and Tobias Scheffer. Omnipress, 2011, pp. 809–816. url:
https://icml.cc/2011/papers/438_icmlpaper.
pdf.

[24] Adam Paszke et al. ‘PyTorch: An Imperative Style, High-
Performance Deep Learning Library’. In: Advances in
Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, Neur-
IPS 2019, December 8-14, 2019, Vancouver, BC, Canada.
Ed. by Hanna M. Wallach et al. 2019, pp. 8024–8035.
url: https://proceedings.neurips.cc/paper/
2019 / hash / bdbca288fee7f92f2bfa9f7012727740 -
Abstract.html.

[25] PyTorch Lightning. PyTorch Lightning. 13th June 2021.
url: https://pytorchlightning.ai.

15

https://doi.org/10.1093/bioinformatics/btaa274
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.18653/v1/e17-1013
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://doi.org/10.1145/2500863.2500870
https://doi.org/10.1145/2500863.2500870
https://doi.org/10.1109/tcbb.2014.2325031
https://doi.org/10.1109/tcbb.2014.2325031
https://doi.org/10.1002/asi.20591
https://doi.org/10.1002/asi.20591
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://doi.org/10.1155/2019/9202457
https://doi.org/10.1155/2019/9202457
https://doi.org/10.1139/gen-2020-0131
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/3191513
https://doi.org/10.1093/bioinformatics/btz600
https://doi.org/10.18653/v1/p19-1466
https://doi.org/10.3115/v1/p15-1016
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://pytorchlightning.ai

[26] Meng Qu and Jian Tang. ‘Probabilistic Logic Neural
Networks for Reasoning’. In: Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada.
Ed. by Hanna M. Wallach et al. 2019, pp. 7710–7720.
url: https://proceedings.neurips.cc/paper/
2019 / hash / 13e5ebb0fa112fe1b31a1067962d74a7 -
Abstract.html.

[27] Luc De Raedt, Angelika Kimmig and Hannu Toivonen.
‘ProbLog: A Probabilistic Prolog and Its Application in
Link Discovery’. In: IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007. Ed. by Manuela M.
Veloso. 2007, pp. 2462–2467. url: http://ijcai.org/
Proceedings/07/Papers/396.pdf.

[28] Richard Socher et al. ‘Reasoning With Neural Tensor Net-
works for Knowledge Base Completion’. In: Advances
in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by
Christopher J. C. Burges et al. 2013, pp. 926–934.
url: https://proceedings.neurips.cc/paper/
2013 / hash / b337e84de8752b27eda3a12363109e80 -
Abstract.html.

[29] Zhiqing Sun et al. ‘RotatE: Knowledge Graph Embedding by
Relational Rotation in Complex Space’. In: 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
url: https://openreview.net/forum?id=HkgEQnRq
YQ.

[30] Thomas Pellissier Tanon, Gerhard Weikum and Fabian M.
Suchanek. ‘YAGO 4: A Reason-able Knowledge Base’. In:
The Semantic Web - 17th International Conference, ESWC
2020, Heraklion, Crete, Greece, May 31-June 4, 2020,
Proceedings. Ed. byAndreasHarth et al. Vol. 12123. Lecture
Notes in Computer Science. Springer, 2020, pp. 583–596.
doi: 10.1007/978-3-030-49461-2_34. url: https:
//doi.org/10.1007/978-3-030-49461-2_34.

[31] Komal Teru, Etienne Denis and Will Hamilton. ‘Inductive
Relation Prediction by Subgraph Reasoning’. In: Proceed-
ings of the 37th International Conference onMachine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119.
Proceedings of Machine Learning Research. PMLR, 2020,
pp. 9448–9457. url: http://proceedings.mlr.press/
v119/teru20a.html.

[32] Kristina Toutanova and Danqi Chen. ‘Observed versus
latent features for knowledge base and text inference’. In:
Proceedings of the 3rd Workshop on Continuous Vector
Space Models and their Compositionality. Association for
Computational Linguistics, 2015. doi: 10.18653/v1/w15-
4007.

[33] Théo Trouillon et al. ‘Complex Embeddings for Simple
Link Prediction’. In: Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. Ed. by Maria-Florina
Balcan and Kilian Q. Weinberger. Vol. 48. JMLRWorkshop
and Conference Proceedings. JMLR.org, 2016, pp. 2071–
2080. url: http://proceedings.mlr.press/v48/
trouillon16.html.

[34] Ledyard R Tucker. ‘Some mathematical notes on three-
mode factor analysis’. In: Psychometrika 31.3 (Sept. 1966),
pp. 279–311. doi: 10.1007/bf02289464.

[35] Denny Vrandecic and Markus Krötzsch. ‘Wikidata: a free
collaborative knowledgebase’. In: Commun. ACM 57.10
(2014), pp. 78–85. doi: 10.1145/2629489.

[36] Hongwei Wang et al. ‘RippleNet: Propagating User Prefer-
ences on the Knowledge Graph for Recommender Systems’.
In: Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management, CIKM
2018, Torino, Italy, October 22-26, 2018. Ed. by Alfredo
Cuzzocrea et al. ACM, 2018, pp. 417–426. doi: 10.1145/
3269206.3271739.

[37] ZhenWang et al. ‘KnowledgeGraph Embedding by Translat-
ing on Hyperplanes’. In: Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31,
2014, Québec City, Québec, Canada. Ed. by Carla E. Brod-
ley and Peter Stone. AAAI Press, 2014, pp. 1112–1119.
url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI14/paper/view/8531.

[38] Fan Yang, Zhilin Yang and William W. Cohen. ‘Differ-
entiable Learning of Logical Rules for Knowledge Base
Reasoning’. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. Ed. by Isabelle Guyon et al. 2017, pp. 2319–2328.
url: https://proceedings.neurips.cc/paper/
2017 / hash / 0e55666a4ad822e0e34299df3591d979 -
Abstract.html.

[39] Muhan Zhang and Yixin Chen. ‘Link Prediction Based
on Graph Neural Networks’. In: Advances in Neural In-
formation Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, Neur-
IPS 2018, December 3-8, 2018, Montréal, Canada. Ed.
by Samy Bengio et al. 2018, pp. 5171–5181. url:
https : / / proceedings . neurips . cc / paper /
2018 / hash / 53f0d7c537d99b3824f0f99d62ea2428 -
Abstract.html.

[40] Yuyu Zhang et al. ‘Variational Reasoning for Question
Answering With Knowledge Graph’. In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by
Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press,
2018, pp. 6069–6076. url: https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/16983.

A Domain-Specific Entity Semantics
for YAGO3-10

Here we describe how we infer the domain-specific entity
semantics for the YAGO3-10 KG used in Section 5.2.2. By
manually looking at the relations in the KG, we identify the
following five features.

Type YAGO3-10 describes different types of entities. Many
of these can be determined by looking at which relations

16

https://proceedings.neurips.cc/paper/2019/hash/13e5ebb0fa112fe1b31a1067962d74a7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/13e5ebb0fa112fe1b31a1067962d74a7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/13e5ebb0fa112fe1b31a1067962d74a7-Abstract.html
http://ijcai.org/Proceedings/07/Papers/396.pdf
http://ijcai.org/Proceedings/07/Papers/396.pdf
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/b337e84de8752b27eda3a12363109e80-Abstract.html
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
http://proceedings.mlr.press/v119/teru20a.html
http://proceedings.mlr.press/v119/teru20a.html
https://doi.org/10.18653/v1/w15-4007
https://doi.org/10.18653/v1/w15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.1007/bf02289464
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3269206.3271739
https://doi.org/10.1145/3269206.3271739
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983

they participate in. For instance, in triples on the form
(h,acted in, t), the head entity is a person and the
tail entity is a film. We have identified the following
types: people (person), geographical regions (geo),
events (event), sports teams (team), films (film),
educational institutions (education), gender (gender),
awards (award), languages (language), and musical
instruments (instrument). Table 5 shows the types we
assign to the head and tail entities of different relations.

Table 5: Head and tail entities are assign a specific type
feature based on the relation they participate in.

Relation Head type Tail type

is located in geo geo
plays for person sports team
died in person geo
acted in person film
graduated from person education
was born in person geo
has gender person gender
happened in event geo
has musical role person instrument
has won prize person award
has official language geo laguage
is politician of person geo
directed person film
created person film
is citizen of person geo
directed person film
created person film
is citizen of person geo

Gender Triples on the form (h,has gender, t) allow us to
assign the gender t to the entity h.

Occupation A number of relations say something about
a person’s occupation. For instance, a triples such as
(h, plays for, t) describes what sports team a person
plays for. We can use this triple to say that h must be
an athlete. Table 6 shows the relations that we infer
occupations from.

Table 6: Certain relations let us infer an occupation feature.

Relation Head entity occupation

acted in actor
plays for athlete
has musical role musician
is politician of politician
directed producer
created producer

Language There are many geographical regions in YAGO3-
10 and triples on the form (h,has official language,
t) allow us to assign t as the langauge feature of h.

Nationality Similar to the language feature, we can infer
the nationality of a person h by looking at the tail entity
in (h, is citizen of, t).

In cases where entity has multiple values for a given
feature, we select the most frequent one. For instance, if
we are to assign an occupation to an entity that occurs in
one (h,acted in, t) triple and two (h,has musical role,
t) triples, we choose musician.

17

	Introduction
	Preliminaries
	Knowledge Graphs
	Link Prediction

	Related Work
	Latent Feature Models
	Logic Rule Models

	Overview of ResqLP
	Use Case Knowledge Graphs

	Feature Extraction
	Relation Sequences
	Enclosing Subgraphs
	Effects of Using Enclosing Subgraphs
	Neighbourhood Sampling

	Entity Semantics
	Relation Frequency Semantics
	Domain-Specific Semantics

	Encoding Relation Sequences
	Recurrent Neural Network
	Training With Negative Sampling

	Experiments
	Experimental Setup
	Results
	Predictive Relation Sequences

	Conclusion
	Future Work

	Domain-Specific Entity Semantics for YAGO3-10

