
Department of Computer Science
Selma Lagerløfs Vej 300

DK-9220 Aalborg Ø

Title:
Designing a Simulation Tool for a Syn-
chronization Algorithm in a Sensor
Network

Theme:
Distributed Systems

Project Period:
February 2021 - June 2021

Project Group:
ds105f21

Participant(s):
Søren Bundgaard

Supervisor(s):
Ulrik Nyman

Copies: 1

Number of Pages: 30

Date of Completion:
June 17, 2021

Abstract:

This project is about building a sim-
ulation tool that builds upon [1].
One of the main improvements is the
routing algorithm the simulation tool
uses. It is a managed flooding al-
gorithm similar to the one found in
Bluetooth mesh. The tool able more
accurately simulate how data flows
through the sensor network. The
simulation tool also takes device lo-
cation into account as the range of
each device is limited. It is imple-
mented in Scala and the performance
is good compared to a similar model
in Uppaal SMC. It allows the user to
specify parameters from a real sen-
sor network and then simulate the
synchronization algorithm. The met-
rics that are produced can then be
used to compare the synchronization
algorithm against a more naive al-
gorithm. The goal is that the user
would know how many gateways per
sensor are needed and how the gate-
ways should be configured after run-
ning the simulations.

The content of this report is freely available, but publication (with reference) may only be

pursued due to agreement with the author.

Contents

1 Introduction 3
1.1 Communication . 3
1.2 Bluetooth Mesh Networking . 3
1.3 Comparing Simulation Tools . 5

2 Design 8
2.1 Simulation Tool Design . 8
2.2 Component Design . 10

3 Implementation 17
3.1 Component Abstractions . 17
3.2 Profiling . 18

4 Simulation Experiments 20
4.1 Result Data . 21
4.2 Parameters . 21
4.3 Experiments results . 23

5 Evaluation 27
5.1 Tool performance . 28

6 Improvements 28
6.1 Memory Improvements . 28
6.2 Model Improvements . 28

7 Conclusion 29

2

1 Introduction

This project works upon the findings from [1] which was done the previous
semester. [1] was about designing and modeling a synchronization algorithm
for a sensor network for the company Hexastate [3]. Hexastate is a company
that sells software that can do predictive maintenance, and a problem with their
sensor setups was that the connectivity from a factory to their cloud infrastruc-
ture could be limited. A solution to this was to move the predictions to the
gateways placed within the factory. This limits the amount of data sent to the
cloud, which has benefits in terms of bandwidth savings and security as less
data leaves the factory floor. A problem with doing this is that the prediction
algorithm bases its predictions on previous waveforms, which means that when a
gateway receives a waveform from a sensor, all subsequent waveforms should be
sent to the same gateway to achieve optimal predictions. An example setup was
modeled in Uppaal SMC and the algorithm was tested. The algorithm seemed
to work based on the results, but the processing times for each waveform were
too high. The devices communicate through Bluetooth mesh, which has some
specific properties which were not modeled. Uppaal SMC was also limited in
how arrays and time worked which led to a more simplified model. This project
will explore how a sensor network can be modeled and simulated more accu-
rately. While including more realistic parameters such as device location and a
better networking model. This should allow the user of the system to find good
setups for their sensor networks.

1.1 Communication

In [1] the communication was modelled in a point-to-point manner. This meant
that every device in the system was connected to each other through a central
medium. This has the potential to work, but more tuning is required with
relation to how additional devices affect the transfer speed. In the real world, a
Bluetooth mesh network is used and a property of Bluetooth mesh is that when
more devices are added there are more routes between the sender and receiver.
Meaning that adding more devices to relay the data can have a positive effect
on the transfer speeds as different parts of the same message are sent to a single
recipient [10]. However, the locations of the added devices do have an impact
on the change in transfer speed e.g. sensor 10 from Figure 1 has a lower impact
on the transfer speed between gateway A and B compared to sensor 4, as data
is more likely to flood through sensor 4 compared to sensor 10. A problem in [1]
was that a lower amount of devices resulted in a much lower processing time,
as a lower amount of devices did not affect the bandwidth of the system.

1.2 Bluetooth Mesh Networking

As mentioned in section 1.1 the sensor network uses Bluetooth mesh for com-
munication. Bluetooth mesh runs on top of Bluetooth low energy which has
some implications on the range and transfer speed. The range for Bluetooth

3

low energy is less than 100m and the application throughput ranges from up to
305 kb/s - up to 1360 kb/s depending on which version of Bluetooth low energy
is used [11].

Figure 1: An example setup of 10 sensors and 2 gateways, which forms a Blue-
tooth mesh network.

As seen in Figure 1, not every device is connected to every other device, this
would be infeasible due to Bluetooth low energy’s range constraint. When a
sensor wants to send data to a gateway the data has to go through intermediary
sensors, e.g. if sensor 10 were to send data to gateway A the intermediary
sensors could be sensors 7, 4, and 2. The routing algorithm used in Bluetooth
mesh is a flooding algorithm where data is sent to every connected node [9]. By
using flooding messages can take multiple paths and thereby achieve a higher
transfer speed. Caching and a limit on hops are used to limit the reach of
messages sent within the network. The message cache stores the identifiers of
previously received messages, such that if a message is received and it is present
in the cache it is not relayed any further. The cache logic is an implementation
detail that is up to the specific manufacturer to implement.

4

A time to live (ttl) counter is present on every message, it is decremented
each time the message is relayed and when the counter reaches zero it cannot be
relayed any further. This puts a limit on how far in the network a message can
travel, the theoretical limit is 127 hops. However, in a small network such as the
one depicted in Figure 1 a ttl value of 127 would not be useful, because when
the value is that large any message can reach every device, which is wasteful.
An ideal ttl value for a message from sensor 10 to gateway A would be either
4 or 5 such that it is able to reach its destination but not much further. If the
message is a broadcast message the ttl value is less important as the message
should reach every device. Setting a low ttl value is more important when there
are few receivers. Heartbeat messages are used to estimate a good ttl value,
each device will emit heartbeat messages periodically. Heartbeat messages help
with determining which devices are online and estimating the topology of the
network. Heartbeats are broadcast to every device and when they are received
the amount of hops is recorded. Each device keeps track of the received heart-
beat messages, the sender, and a minimum and maximum amount of hops are
saved and those values are used to estimate ttl value for the given component.
The actual estimation based on the minimum and maximum hops is an imple-
mentation detail.

1.3 Comparing Simulation Tools

The sensor network has to be simulated with more realistic parameters, where
location and network topology is taken into account.

Parts of the simulation in [1] were simplified due to time constraints and the
tools used for simulation. Uppaal SMC lacked some features and required addi-
tional tooling for setting up the simulation, running in parallel, and processing
the results. This made the process of running the simulation more complicated.

Requirements For Tools

To alleviate some of the issues with the model in [1] it makes sense to explore
different tools. The requirements for the simulation tool are as follows:

• Expressive language for modeling

• Free for commercial use

• Low memory footprint

• Parallel simulation

• Integration with development environment

• Progress tracking

The simulation tool needs to be expressive to model the environment. This
was an issue with Uppaal SMC as it was limited with how arrays were used,
allocated, and initialized. Time was also an issue as it could only be used for

5

logic but timestamps themselves could not be recorded within the model itself,
which limited the model. Bluetooth mesh networking should be able to be im-
plemented in the given tool as it is important for this specific simulation.

The tool being free for commercial use would be a benefit as it would make
it cheaper for Hexastate as Uppaal SMC is only free for academic uses.

Parallel simulation is important for speeding up the simulation time. Uppaal
SMC did not support this out of the box and in [1] a runner system had to be
used to run simulations. This made the user experience more tedious as the
runner system also had to be configured to work with Uppaal SMC and some
functionalities from Uppaal SMC were no longer usable because of the runner
system. The feature that estimated the number of runs needed was not usable
as it would give the value after it was done with all the simulations.

Memory footprint is another requirement, it is not the most important require-
ment. However, having a low footprint makes it easier to test on a local system.
Uppaal SMC for Windows was only available in 32-bit which limited the memory
usage to about 4GB which was not enough for some models. However, Uppaal
SMC is available as a 64-bit application on Linux and macOS.

Progress tracking can be very helpful for catching errors early, as a slowdown in
the simulation can indicate that something is wrong. In [1] some errors could
have been caught early if there was some kind of progress tracking, by being
able to analyze the collected data before the simulation is finished. The progress
being slow could also indicate something being wrong within the model.

Integration with a development environment makes the user experience nicer
when developing, running, and processing data from the model, since everything
would work together. Uppaal SMC does have some Java libraries and CLI for
interfacing with other tools. The CLI for Uppaal SMC helped with creating the
runner tool but the Java libraries were not used in [1].

Simulation Tool Candidates

There exist many simulation tools the main characteristics I looked for were
how they are used, which libraries they offered to make modeling, especially
the Bluetooth part, easier, and their license. The candidates I have chosen are
Uppaal SMC, ns-3, Matlab, and writing my own custom tool.

Custom Tool

6

A custom tool gives a lot of flexibility in terms of development, features, and
license. Since it is made from the ground up features from section 1.3 can be
implemented. However, more work is required as it has to be designed from
scratch. The way the tool would work would be to define some components
which would react to time passing, much like Uppaal SMC but simpler. The
language the tool would be written in would be Scala as that is the main lan-
guage Hexastate uses, which also makes it easier for them to maintain in the
future. Another benefit of writing the tool in Scala is that some of the logic
can be run on the real hardware, such as the logic on the gateways. And it
also benefits from having access to the Scala ecosystem and the flexibility that
comes with the language. However, the Bluetooth mesh networking logic has to
be implemented.

Uppaal SMC
Uppaal SMC [2] could be used again for this project, but it is not flexible in the
modeling language, the main problem is how arrays are defined and allocated.
However, this could be generated by an external tool by editing the XML file
Uppaal SMC uses for representing a model. The biggest issue with Uppaal
SMC is the memory footprint and how it is integrated into the development
environment. To implement asynchronous communication between components
an array has to be used. This array had to be sized after the worst-case scenario
[1]. Debugging and testing Uppaal SMC models can be a bit difficult as there is
no debugger and when the model is large the program becomes unstable. How-
ever, there are libraries for interfacing with Uppaal SMC, but like the custom
tool, the adapter has to be implemented. It is also not possible to get progress
data or estimates on when the simulation is done, but this can be estimated
with a runner tool. It is proprietary software meaning a license is required to
use it commercially and the software itself cannot be modified.

NS-3
NS-3 is a network simulation platform, it is very low level in terms of abstrac-
tions and has a lot of features when it comes to internet communication. It is
designed as a collection of libraries that are used in C++ applications, it is also
free and open-source [7]. Since it does not use a proprietary language it is pos-
sible to integrate it into a development environment and progress tracking can
also be implemented. However, it does not support Bluetooth mesh networking
out of the box, but there have been developed modules for Bluetooth mesh net-
working by third parties [8]. Ns-3 is very focused on the network aspect, such as
how the specific protocols work, how the routing is done, and the development
of these. This might be out of scope for this project since an approximation of
the Bluetooth mesh network might be good enough.

Matlab

7

Matlab is another tool that can be used for simulating this system. It offers
some nice functionality for displaying data and running simulations in a multi-
core environment [5]. Unlike ns-3 it has some modules for Bluetooth mesh, but
it does not have much documentation for the specific modules [4]. Like ns-3 the
Bluetooth modules might be too focused on the protocols and how they can be
developed and optimized. The biggest downside to Matlab is its license, it is
free for academic use only.

Simulation Tool

It makes sense for this project to build a custom simulation tool. The reasoning
behind the decision is that it gives a lot of flexibility in terms of what and how
different parts of the network are implemented. The Bluetooth mesh networking
part will also only implement the logic as described in section 1.2 since those
parts are important for this project. Matlab and ns-3 would require the de-
veloper to use the entire Bluetooth stack and thereby make the simulation tool
needlessly complicated. The language used for implementing the simulation tool
will be Scala as it is the main language used at the Hexastate. Implementing
the tool in a language they already know will allow them to make modifications
easily. Scala offers a nice selection of features and libraries for modeling the
problem in a typesafe manner which will make the tool easier to debug.

2 Design

2.1 Simulation Tool Design

The simulation tool will work with a discrete-time system to simplify the model.
Meaning that each step the simulation takes is a specific point in time, the time
between two steps, therefore, cannot be represented. Time can then be repre-
sented as an integer that can correspond to either a second, minute, or an hour,
depending on the granularity that is required. A more precise time represen-
tation will require the simulation to go through more steps. The system itself
consists of a top-level system, which can be seen as a container that contains a
global state, and a list of subsystems.
The subsystems have their internal state and have access to the global state
but they do not have subsystems of their own. For each simulation step, each
subsystem takes turns in changing the global state and its state. However, the
order that the subsystems appear in has to be shuffled for every step to introduce
some form of randomness as all traces otherwise would result in the same end
state, it also simulates concurrency.
A simple example of a system would then be a top-level system containing 1
gateway and 2 sensors. The sensors would send data to the gateway and it
would in turn record when data has been received in the global state. Each of
the components would communicate through the global state.

A state St consists of two parts. (V,Co)

8

• V - a set of Scala variables, representing the global state

• Co - Sequence of Components, C ∈ Co

A component C consists of four parts. (Vin, Vout, Vc, F)

• Vin - ⊆ V Input variables

• Vout - ∈ V Output variables

• Vc - a set of Scala variable, the internal state of a component

• F - a Scala function defined over: V × C −→ V × C

A simulation trace is generated by taking the tick transition n number of

times. A trace is a sequence of ticks St0
tick−−→ St1 . . .

tick−−→ Stn the length of the
trace corresponds to the amount of tick transitions. Both components of the
state change.

(V,Co)
tick−−→ (V ′, Co′)

The values of the variables in V change and the order of components in Co are
shuffled. To describe the tick transition and how the values change additional
functions have to be defined.

The function F which is defined on every component is the logic of the
specific component and will behave differently based on the input, the compo-
nent state, and the global state. f ∈ c, c ∈ Co, f(v, c) = (v′, c′) where both
the global and local state is changed. Each components’ F within a state St
has to be called for each tick. Each call will modify the global state v ∈ V ,
which is supplied for the next component’s call of the function F . However,
the new internal state of the components have to be collected, this is done
with the function tickhelp : V × Co × C −→ V × Co. The result of the func-
tion will result in a changed state and the state change of the component is
prepended to the input list. tickhelp(v, co, c) = (v′, co′) where c.f(v, c) = (v′, c′)
and co′ = c′ :: co This function in combination with a combination function will
result in a new state and is the logic of the tick transition. The idea is the co
will start out empty and at the end of the tick transition it will contain every
updated component. The tick transition can be described as a call to a fold1

method. fold(tickhelp, (v, 〈〉), co) The result of the fold call will result in a new
state as the return type can be combined into a new instance of St. However,
using the above definition to produce a trace will result in every trace being
identical. Randomness have to be introduced as not every sub-component will
change the global state in the same order for every tick. This is done with a
shuffle function.

1The fold method, also sometimes called reduce, is a part of the Scala standard library
and combines every element into one, given a function. Url: https://www.scala-lang.org/

api/current/scala/collection/IterableOnceOps.html

9

https://www.scala-lang.org/api/current/scala/collection/IterableOnceOps.html
https://www.scala-lang.org/api/current/scala/collection/IterableOnceOps.html

shuffle : Co −→ Co will change the order of the components in Co. The seman-
tics would be:
shuffle(co) = co′ where co = 〈c1, c2 . . . cn〉 and co′ = 〈c′1, c′2 . . . c′m〉 such that
∀cx ∈ co =⇒ cx ∈ co′ ∧ ∀cy ∈ co′ =⇒ cy ∈ co ∧ n = m

With these definitions we can define four functions:
step : St −→ St
steps : St −→ P(St)
trace : St× Z+ −→ Sts where Sts is a sequence of St
traces : St× Z+ −→ P(Sts)
The step function is a call to fold(tickhelp, (v, 〈〉), shuffle(co)) where the result is
the state of the system in the next time step.
The steps function like step also takes a state St as an input. However the
return is all possible states for the next time step.
The trace function given a positive integer n and a starting state st will call
step n times:
trace(st, n) = 〈st1, st2 . . . stn〉 where st1 = st, st2 = step(st1) . . . stn = step(stn−1)
the traces function given a starting state st and a positive integer n will return
all possible traces of length n.

The result of the function traces will describe all of the possible behaviors
of the model. However, the result of traces is infeasible to calculate for most
models. The Monte Carlo method [6] is used to approximate the result of
the functions traces. This is done by generating random traces with the trace
function. The result should then come close to the result traces after a sufficient
amount of random traces have been generated.

2.2 Component Design

Components that make up the sensor network have to be designed. The com-
ponents include gateways, sensors, and mediums. These all have to fit into the
description from section 2.1. Like in [1] there were additional helper compo-
nents that would turn off gateways to simulate crashes, these would have to be
designed as well.

Communication between components

To accurately capture the behavior of the managed flooding routing algorithm
found in Bluetooth mesh, messages have to include Message ID and a Time
to Live counter. To make the implementation easier two types of messages are
defined and can be seen in Figure 2. The size of the message is given by the
data field. The messages are placed within message queues and the queues for
every device can be seen in Figure 3.

10

Figure 2: Fields included in messages.

Messages are stored within the Outgoing and Incoming queues and the Blue-
tooth Message Queue contains Bluetooth messages. To simulate wireless data
transfers messages are transferred from the queues from one device to another.

Messages from the Outgoing queue are messages generated from the device.
Messages in the Bluetooth Message Queue are messages received from other
devices, which can be relayed and consumed. The reason for multiple queues
is to create a separation between messages. The separation makes it easier for
the consumer of the interface as it does not have to calculate the time to live
field. Figure 3 also includes the high-level communication API which inserts
and retrieves messages from the message queues.

Figure 3: Message queues used for communication.

The algorithm for processing messages can be seen on listing 1, which han-
dled the sending logic for messages already in the queues. The consumeMessage
function will put the message in the Incoming queue. The relay function handles
the actual sending, it will lookup the nearby devices and send the message to
them, the bandwidth used is dependent on the distance between the devices and

11

the size of the message. The bandwidth increases based on the inverse square
law, which means that if the distance doubled the amount of data needed to
be transferred also doubles. This makes the location of the devices in rela-
tion to each other important, as the devices can only transfer a set amount of
bandwidth units per tick.

processMessage () {
va l msg = getMsg ()
cache . add (msg)
i f (msg i s broadcast or f o r t h i s dev i c e) {

consumeMessage (msg)
}
i f (msg i s not f o r t h i s dev i c e or i s broadcast) {

r e l a y (msg)
}

}

Listing 1: pseudo code for processing messages

Medium

The medium uses the queues from Figure 3 to facilitate communication. Medi-
ums, sensors, and gateways are all run concurrently, but every medium will
belong to either a sensor or a gateway. The medium is the device that will
handle the Bluetooth logic.

To simulate the fact that data transfers are not instantaneous each medium
has a bandwidth limit, this limit is reset every tick.

The medium also has a cache containing the message ids of received mes-
sages, when a message is sent to a medium the message id is checked against
the receiving mediums cache. The message is added to the cache when it is
processed as stated in Listing 1.

The state diagram of a medium can be seen in Figure 4, it will either process
messages or broadcast heartbeats. Broadcasting heartbeats is an action that
occurs at a regular interval e.g. every 15 minutes. The time to live value is
estimated as an average between the minimum and maximum amount of hops.
When a message is taken from the Outgoing queue the time to live value will
be calculated.

Heartbeat messages can be seen as regular messages that have to be relayed
to every device within this network.

To keep message processing fair the medium will alternate between getting
messages from the Outgoing Queue and the Bluetooth Message Queue in the
case that they both have messages waiting to be processed. Devices that are
offline will not process or be sent any messages.

12

Figure 4: State diagram of a medium.

Sensor

A sensor has a schedule e.g. four times each day where it samples waveforms
at 8:00, 10:00, 14:00, and 18:00, with a window of 30 mins, meaning the first
measurement of the day would be sometime between 8:00 and 8:30.

The sensor has two states, a Waiting state and a Ready to sample state,
which is shown in Figure 5. Using the previous example the state would be
Ready to sample between 8:00 and 8:30 and between 8:30 and 10:00 it will be
in the Waiting state. This schedule is in the real world sent from the gateways
when the system is set up, but to simplify the system this project assumes that
sensors have already gotten the schedule information.

The Sensors assume no knowledge of the topology of the network, meaning
that a waveform is broadcast to all reachable gateways. This means that a
waveform eventually will end up at every gateway, the closest online gateways
would in most cases receive the waveforms first. The waveforms are split up into
multiple pieces and may not all end up at the same gateway, in that case, the
sensor should create a new waveform if it is requested within the time window.
It should be possible for one gateway to receive a complete waveform within 30
min as they only take about 20 seconds to send.

The sensor uses the API from Figure 3 and then the medium handles the
actual data transfer.

Figure 5: State diagram of a sensor.

13

Waveforms

Waveforms are the data that is sampled by the sensors. They are sampled in a
given time window e.g. 30 mins, this means that two waveforms sampled within
the same window are equivalent in terms of building a statefile. Waveforms are
sent in parts due to their size, splitting, and reassembly is not handled by the
Bluetooth layer and there is no error correction, meaning all parts have to be
present to assemble the waveform. The waveform information can be seen on
listing 2.

Figure 6: Schedule for sensor 1, red dots denoted times where waveforms have
been sampled, the triples is a waveform representation (id, number, sample
time).

A waveform is distinguished by which sensor sampled it and the number,
two waveforms sampled within the same time window will have the same id,
this is shown in Figure 6. However, parts from different waveforms cannot be
mixed and the newer waveform is preferred, they are only ignored if an older
waveform with the same id already has been sent to the cloud. The waveform
number is incremented when a time window has passed.

c l a s s Waveform(
senso r Id : Int ,
number : Int ,
shouldBeSampledBefore : Int ,
sampledAt : Int

)

c l a s s WaveformId (
s en so r Id : Int ,
number : Int

)

Listing 2: Code describing waveform types

14

Gateway

The Gateway is the most complex component of this system as it needs to run
the waveform data synchronization algorithm.

Gateways sometimes crash or lose connection this happens throughout the
day. The gateway crashing mechanism is the same as the one in [1].

It makes sense to split the gateway logic into two parts, one that handles
the assembly and requests for waveform parts, and the other that handles the
synchronization. This adds another message layer that only exists within the
gateway. These messages are waveform messages that consist of a fully assem-
bled waveform and waveform updates.

c l a s s WaveformPart (
waveform : Waveform ,
partNumber : Int ,
maxNumber : Int

)

c l a s s WaveformUpdate (
s en so r Id : Int ,
l ength : Int ,
nextNeeded : Int ,
trackedBy : Int ,
timestamp : Int ,

)

c l a s s WaveformPartsRequest (
waveformId : SimpleWaveformId ,
r eque s t e r : Int

)

// r e c e i v e r i s g iven by the message wrapper
c l a s s WaveformSampleRequest

Listing 3: Code describing gateway messages

Waveform Handler

The waveform handler is the part of the gateway that assembles waveforms, if
that is not possible it will either request waveform parts from other gateways
or send a sample request to the sensor to which parts are missing. The data
contained within the waveform handler can be seen in Figure 7. It is similar to
the Bluetooth message queues from figure 3, but the waveform handler treats
some messages differently. All messages going to the gateway have to go through
the waveform handler. This is to achieve separation of concerns since waveform
data arrives in parts and they have to be assembled before they can be used.
The main tasks are to assemble and disassemble waveforms such that they can
be processed and sent to other gateways.

Gateways can process four types of messages, WaveformPart, WaveformUp-
date, WaveformPartsRequest, and WaveformSampleRequest, they can be seen
in listing 3.

15

Figure 7: Data contained within the waveform handler.

Waveform parts belonging to the same waveform are placed within a con-
tainer, which keeps track of which parts are needed. The container is then
placed within the parts queue. It is not a message queue, but rather a priority
queue where the placement denotes the urgency of getting the parts for the given
waveform. The parts queue is checked every tick, both for completed waveforms
and waveforms that will soon reach the deadline. If pieces are missing a parts
request can be broadcasted to the other gateways such that the missing parts
can be retrieved, this is done 10 minutes before the deadline. If that fails a
sample request can be sent to the sensor that sampled the waveform such that
a new one can be sampled. Sample requests are sent 5 minutes before the dead-
line and the new sample will invalidate old parts. Each of these requests is only
sent once per waveform and towards the end of the deadline as to not spam
the network. The times when the requests are sent are configurable. When a
waveform is completed it is forwarded to the gateway via the Gateway Message
Queue, and the waveform handler will not respond to any parts request for that
waveform. If a gateway has to send a waveform to another gateway, it has to be
disassembled, which is also done within the waveform handler. If the receiving
gateway is offline when the waveform is sent the waveform is put into the wait-
ing queue, it will try to send it about 10 times and will wait about 3 minutes
between each attempt, these times are also configurable. The waiting queue
is also a priority queue where the top element is the waveform that should be
resent next.

Synchronization Algorithm

The synchronization algorithm is almost the same as it was in [1]. However, due
to the mesh network, it has to be modified to handle that there are multiple
copies of the same waveforms within the network. The main change needed
is to add a timestamp to the waveform updates. The waveform updates will
then include information about the waveform length, the next needed waveform,
which gateway is tracking it, and a timestamp for its creation. A statefile is built
based on the received waveforms and whenever a waveform is committed to the

16

statefile a waveform update is made. This update is then sent to all gateways.
Alongside the statefile is information about which sensors are tracked by which
gateways, this is updated through waveform updates. When a waveform update
is received the next needed value is compared and the value of the incoming
waveform update has to be higher than the one that is present. If they are equal
it is the oldest update that takes precedence. The idea is that the gateway that
creates the oldest update for a given sensor is the gateway that is closest and
should therefore be the gateway that tracks that sensor. When a waveform has
been committed the waveform conclusion is sent to the cloud. The conclusion
has information about the waveform, the gateway, and when the conclusion was
created. This makes it easier to calculate the processing time, which is:

conclusion timestamp− sampling timestamp

To test the synchronization algorithm a baseline algorithm also has to be devel-
oped. Like in [1] the baseline system is simple, when a waveform is received it
is sent to the cloud regardless of which other gateways were tracking it.

3 Implementation

The simulation system was implemented according to the design described in
section 2.1. The Global component represents the state, this component will
then contain the gateways and sensors. Subsystems will change the global state
through interfaces such that only relevant variables are exposed to the subsys-
tems.

3.1 Component Abstractions

Having abstractions makes it easy to change parts of the model, while also
making it easier to test. Testing each component individually makes it possible
to verify the specific component logic works as intended. Without abstractions,
a complete model has to be set up for each test, which will make the tests more
complicated.
Having the interfaces allows for simpler implementations in unit tests, where
only the logic of the component being tested is important. An example of such
an interface can be seen in Listing 4. In the production model, there is one big
communication class, which includes queues for every component, but in the
unit test, there is an incoming queue and a queue denoting the sent messages.
The idea is then to setup messages, which the component is about to receive,
then to wait some amount of time and then make assertions to the component
state and the sent messages.

17

t r a i t HighLevelCommunication {
de f send (msg : HighLevelMessage) : Unit
de f s endSe l f (msg : HighLevelMessage) : Unit
de f get (id : Int) : Option [HighLevelMessage]

}

Listing 4: HighLevelCommunication interface, used by sensors and gateways.

There are abstractions for logic related to devices that are in range, down de-
tection, time handling, and communication with the cloud.

Tests and Optimization

During development tests were used to validate that the changes made to the
code base did not break any component logic. There ware two types of tests,
unit test which tested each component individually and integration tests, which
was a test setup with a specific seed and settings.

The result of the integration test resulted in a value for the processing time
of the waveforms. Since the seed between runs is the same, the order in which
the components were interacting with each other are also identical thus resulting
in the same result. Memory usage and run time were also recorded such that
the performance also can be compared.

The development cycle after having the model and tests developed, included
making changes to the code base and use the unit test to identify areas in the
code base were errors could arise. After the unit tests all passed the integration
tests could be run and the results would be compared.

The integration tests were mostly used for performance related changes, as
that should not have an impact of how the components act with relation to each
other, thus resulting in the same results. However, the performance changes
should result in lower ram usage and run time.

3.2 Profiling

Having the tests was not enough as it only gives a total value of how long it
took to run or how much memory was used in total. A profiler can give a more
granular picture of which methods used resources. The specific profiler used
was VisualVM2, which hooks onto a running JVM program and shows metrics.
This is useful as it will show potentially inefficient functions.

Cache Optimization

An inefficient part of the program was message caching, it used a lot of memory
as it kept growing.

2https://visualvm.github.io/index.html

18

https://visualvm.github.io/index.html

Figure 8: Memory layout of the message caching.

Figure 8 shows the memory layout of the cache, a global object has a table
of each device, which points to a set of messages ids received by a specific
device. The easiest way to solve the memory issue is to make the cache smaller.
However, there needs to be a system that can figure out which messages are not
looked up. It should be possible to make the cache smaller as messages only are
within the network temporarily. When the message is no longer in the network
it can be removed from the cache without it impacting the model behavior.

To get the set of messages that are still actively transferred, the Bluetooth
message queues for every device can be used. The set of all message ids in
all Bluetooth message queues is the set of active messages. However, iterating
through every message of every message queue every tick is inefficient and scales
very poorly when adding more devices.

Reference counting can be used to keep track of active messages in a time and
space-efficient way. Whenever a message is sent from any device the message
is added to a lookup table and the count for that message id is incremented by
1. Whenever a message is taken out of a queue the value for the message id
is decremented by 1. Then every message with a non-zero value is an active
message.

This active message lookup table can be compared against the message cache
and every element in the message cache that has a value of zero can be removed.
However, to remove one message from the message cache with the memory
representation of Figure 8 the time complexity is O(Cache Size ∗ Devices).
This can be improved by inverting the cache which can be seen in Figure 9.

19

The inverted cache works by looking up a message id which then gives a set
of devices that contain that message. The space complexity is identical, but
the time complexity to remove a message is only O(Cache Size) which is an
improvement.

Figure 9: Memory layout of the inverted message caching.

Intuitively it makes sense to remove messages from the message cache as they
are removed from the set of active messages. However, by running benchmarks,
it was found that removing messages in batches was faster.

4 Simulation Experiments

The simulation system produces metrics for processing time for waveforms,
score, and statefile rebuilds, all of these are similar to the ones from [1]. The
score metric is the least intuitive of the three, it is calculated based on the
following formula:

Score =

∑w
i=1 len(i)∑w

i=1 i

The score value is per sensor, and the function len(i) gives the current length of
the statefile when waveform i was committed. The value of i corresponds to the
optimal length of the waveform. The idea is that a score of a given statefile is
penalized when a rebuild happens, as len(i) becomes zero after a rebuild. The
longer a statefile is the better predictions it can produce, this means that in the
beginning, a statefile rebuild is not as severe as one that happens later. In the
best case, we have that ∀i, len(i) = i and then the score would be 1.

20

Each system can be configured such that it reflects a real system. This is
done by specifying parameters such as where sensors and gateways are placed
and how they are configured. To simplify the system it is assumed that some
settings are the same for all sensors and gateways, i.e that all devices have the
same bandwidth. However, each sensor can have a unique sending schedule.

4.1 Result Data

The output of a single experiment is a list of waveform conclusions, which can
be seen in Listing 5. Conclusions for a single experiment can be aggregated into
the metrics.

c l a s s Conclus ion (
s enso r : Int ,
sampleTime : Int ,
rece ivedTime : Int ,
dead l ine : Int ,
number : Int ,
l ength : Int ,
gateway : Int

)

Listing 5: Datapoints for results

All metrics are calculated on a per sensor basis, this makes it possible to
combine the data from experiments with different seeds.

4.2 Parameters

To run an experiment parameters have to be defined. There are parameters for
running the simulation and for setting up the experiment. To run the simulation
the following information is needed:

• How many ticks to run

• Seed for random number generator

• The amount of trials

• How many threads to use

• Experiment setup file

Before any experiment can run parameters have to be defined.
The experiment setup file includes information about locations of sensors

and gateways, it also defines global settings such as how long a day is in ticks.
The length of a day is used to generate the sending schedule for each sensor.
The other global parameters can be grouped into three groups, gateway settings
described in Table 1, message size in Table 2, and Bluetooth settings in Table
3. The tables include default values. The default for how many ticks in a day
is 86400 which corresponds to one tick per second. By default all time-related

21

settings assume that one tick is one second. however, if a different day length is
needed such as 1440, which corresponds to one tick per minute, then all time-
related settings have to be changed accordingly, to ensure similar behavior. To
simplify the system every device in the system will have the same global settings.

Gateway Settings
Setting Name Type Default Values

Time before new sample Int 300
Time before requesting parts Int 600
Resend attempts Int 10
Wait time Int 180
Time between crashes Int 60
Crash time Int 30
Baseline Boolean False

Table 1: Global settings for gateways. Time units are in ticks.

For the global gateway settings, the parts and sample requests can be tweaked
to achieve better results. If the values are high the requests are sent earlier,
leading to more messages in the system, this may be necessary if waveforms get
lost due to gateways that crash. In [1] different values for resend attempts were
tested, but in this system, the wait time value specifies the time between the
attempts. In [1] it was found that the higher amount of attempts the better the
score became, but at a cost of processing time. In this system both values have
to be tuned as the total wait time will always be:

Total wait time = Resend attempts ∗ wait time

Message Sizes
Setting Name Type Default Values

Heartbeat message size Int 1
Waveform part size Int 10
Parts Int 1000
Sample request size Int 3
Parts request size Int 3
Waveform update size Int 5

Table 2: Global settings for messages. Time units are in ticks.

Message sizes can also be tuned. The most interesting messages are waveform
parts as they are the most sent messages and therefore will have a big impact on
the transmission speed. Different customers might also have different require-
ments for how much data is sampled and how many parts the waveform consists
of.

22

Bluetooth Settings
Setting Name Type Default Values

Max time to live Int 127
Bandwidth Int 20000
Max Multiplier Int 10
Device range Double 4.5
Time between heartbeats Int 900

Table 3: Global settings for Bluetooth. Time units are in ticks.

Bluetooth settings specify how data is transferred. Bandwidth specifies how
much data can be sent for each tick. The distance between two devices also
impacts the data needed to be sent. Two devices have to be within the specified
range of each other and the further away the devices are the more data needs
to be sent. However, due to the way the inverse square law works the amount
of data needed to be sent grows towards infinity if 2 devices have the maximum
distance between them. To avoid having very large messages the max multiplier
is can be specified, a max multiplier of 10 will increase message size up to about
90% of the distance. This will still penalize devices that are far away without
using all the bandwidth. In a real world setup the devices would not be able to
send anything to a device that is approaching the maximum distance. In the
test setups all devices are within 90% of the maximum distance.

Only sensors have unique settings which are the sending schedules. The send-
ing schedule is a list of integers which is an offset for when on a given day the
waveform should be sampled. A schedule has a deadline which is the same for
every waveform sample time. A new waveform cannot be sampled before the
deadline for the previous waveform has passed.

4.3 Experiments results

Experiments have been conducted to test the synchronization algorithm. Six
experiments have been conducted each of them uses the default parameters,
but the number of gateways varies. Half of the experiments are baseline exper-
iments. The locations of the devices have been randomly generated, but with
the constraint that every device is reachable from every other device and that
every device is within 90% of the total device range. There is a setup with 3,
5, and 7 gateways all with 50 sensors, and the sensors have the same locations
across all experiments and all sensors would sample waveforms 4 times each day.

The physical locations of the devices can be seen in Figure 10, 11, and 12.
These experiments should be able to show the impact of a different amount of
gateways. The experiments were run for 30 simulated days and each of these
were repeated 40 times.

There are three metrics for the results: Processing time in Table 4, statefile
rebuilds in Table 5, and score in Table 6.

23

When looking at the processing times the general pattern is that the baseline
runs tend to have a lower worst-case processing time, which is consistent with
the results from [1]. However, adding or removing gateways does not seem to
have a big effect on processing times as the results are similar and the worst-case
processing time for the 7 gateways could be attributed to bad luck.

When looking at statefile rebuilds the baseline has more than the non-
baseline experiments which is also consistent with [1]. However, In these ex-
periments waveforms were broadcast to every gateway which could explain the
low number of statefile rebuilds on the median case, whereas in [1] sensors would
randomly send the waveform to another gateway. With more gateways in the
system more devices have to share information, this could explain why the num-
ber of rebuilds is higher when more gateways are added. However, the rebuilds
that do happen seem to be at the beginning as those have less impact on the
score.

Figure 10:

24

Figure 11:

Figure 12:

The results of the experiments suggest that there is an advantage to use the
synchronization algorithm as the scores for the experiments are higher. However,
the difference is smaller, the max score for the experiment with 5 gateways
and 50 sensors in [1], was around 9% whereas the max for this experiment was
100%, this could be because of the waveforms being broadcast to every gateway.
In general, the scores are high for the baseline experiments compared to [1].
However, having more gateways per sensor suggests that the statefile is being

25

rebuilt more often, this is not reflected in the score, which indicated that they
happen in the beginning. A reason for this could be that more information has
to be shared between the gateways and this scales when adding more gateways.
The risk of any gateway being crashed increases as more are added which then
could lead to information being lost and then statefile rebuilds.

These experiments show that the synchronization algorithm works compared
to the baseline for the test setups. Having longer crash times or having gateways
crash more often would probably make the experiments with different amounts
of gateways have more different results. A user of this tool should be able to
figure out a good setup e.g how many gateways per sensor and then get metrics
for how this system performs.

Processing Time
Test Setup Min Avg Max Median 5% worst

3 gateways 50 sensors 44.00 s 1595.70 s 13500.00 s 1148.00 s >5537.00 s
3 gateways 50 sensors baseline 44.00 s 1574.42 s 9471.00 s 1094.00 s >5779.00 s
5 gateways 50 sensors 10.00 s 1619.71 s 17783.00 s 1057.00 s >5668.00 s
5 gateways 50 sensors baseline 11.00 s 1171.09 s 9411.00 s 842.00 s >3569.00 s
7 gateways 50 sensors 11.00 s 1631.45 s 30747.00 s 1100.00 s >4779.00 s
7 gateways 50 sensors baseline 11.00 s 1054.18 s 9168.00 s 737.00 s >3237.00 s

Table 4: Processing time for the experiments. Values are per sensor.

Statefile Rebuilds
Test Setup Min Avg Max Median 5% worst

3 gateways 50 sensors 0.00 0.02 1.00 0.00 >0.00
3 gateways 50 sensors baseline 0.00 4.10 119.00 0.00 >48.00
5 gateways 50 sensors 0.00 0.04 1.00 0.00 >0.00
5 gateways 50 sensors baseline 0.00 8.27 119.00 0.00 >60.00
7 gateways 50 sensors 0.00 0.05 1.00 0.00 >0.00
7 gateways 50 sensors baseline 0.00 13.37 119.00 0.00 >66.00

Table 5: Statefile rebuilds for the experiments. Values are per sensor.

26

Scores
Test Setup Min Avg Max Median 5 % worst

3 gateways 50 sensors 98% 100% 100% 100% <100%
3 gateways 50 sensors baseline 0% 94% 100% 100% <3%
5 gateways 50 sensors 98% 100% 100% 100% <100%
5 gateways 50 sensors baseline 0% 85% 100% 100% <1%
7 gateways 50 sensors 98% 100% 100% 100% <100%
7 gateways 50 sensors baseline 0% 74% 100% 100% <1%

Table 6: Scores for the experiments. Values are per sensor.

5 Evaluation

The simulation tool seems to work and it produces good results based on the
test parameters. Based on the requirements from section 1.3 the simulation tool
seemed to satisfy most of them.
The expressive language for modeling is a more general requirement for
how the tool is built, not necessarily how the logic of the specific components
behaves. However, if more features were to be added having unit tests and
interfaces to abstract away concrete implementations makes the process easier.
The interfaces also provide good guidelines for how new features could be im-
plemented.

The free for commercial use requirement is fulfilled since both Scala and the
libraries used to develop the system are free for commercial use.

The low memory footprint requirement has not been solved when compared
to the model from [1] as their memory usage were similar. Even with high mem-
ory usage, the tool was still more usable on a local machine compared to the
model from [1]. However, it can be argued that this model is more advanced
since there are more components and more message queues. But the messages
themselves could probably be represented in a more space-efficient way, which
could lead to a lower memory footprint.

The parallel simulation requirement was solved as each experiment only runs
on one thread and multiple experiments can be run on separate threads and
this is all contained within the system.

The integration with development environment was fulfilled as the tool
is written in Scala and that it integrates well with IntelliJ. The development
environment also made it easier to make and run tests for the tool. This makes
it easier to implement new features as they can be tested with little to no effort.
In [1] every component was tightly coupled and it was difficult to test.

27

The progress tracking requirement was about having information about how
far the simulation has run. For this tool progress was the number of completed
ticks, displayed as a percentage of the total amount of ticks. This is possible as
it is known beforehand when the experiment stops e.g. an experiment can run
for 172,800 ticks. The progress tracker was mostly used to give an indication
of if the model was stuck, which was useful for development. Uppaal does not
show the progress, it only showed how many states per second, which does not
indicate how far it was.

5.1 Tool performance

The performance of the tool was okay, for the tests that were run. The memory
usage was about 10 - 11 GB and would grow even more if more sensors were
added, making it difficult to test larger models. The tests that were ran took
about 1 hour and 30 minutes to simulate 30 days, where one tick corresponded
to one second. Compared to [1] which took about the same time to simulate 30
days where one tick corresponded to one minute. This is a big improvement,
as this tool does more for each tick. Ram is a bottleneck for this tool, the time
it took to run a simulation was only fast if there was enough ram. On bigger
models, the tool would end up spending more time garbage collecting and that
resulted in running simulations on less thread being faster.

6 Improvements

6.1 Memory Improvements

A possible improvement that could improve ram usage would be to change how
messages are stored. As it is now each message is copied to each device, and a
message is an allocated object with some fields. Instead of copying a message a
message could be sent to a message lookup table and then only the message id
would be in the message queues. By doing that only the message id which is an
integer would have to be copied, this is similar to how the cache was handled
as it also works as a central lookup table. Then all messages would never be
copied and just accessed based on their ids. However, this approach has to be
analyzed by a profiler to determine how messages should be removed from the
message database. Removing messages in batches for the cache was faster than
removing them at the earliest possible time as the message became inactive.

6.2 Model Improvements

This tool has a lot of settings. However, some of these settings could be made
dynamic such that the model would be able to adapt to current conditions. Some
of the settings from Table 1 could be dynamically set which could potentially
improve the system. These would also be implemented as unique parameters
for each gateway. Examples of parameters that would adapt dynamically would
be the resend attempts and waiting times.

28

7 Conclusion

To conclude this project a simulation tool was built, which used the synchroniza-
tion algorithm. Based on the tests the algorithm seemed to work with different
amounts of gateways and based on the results a lower amount of gateways per
sensor might be preferable. It is possible to define test setups and define the lo-
cations of the devices and the schedules for when waveforms are sampled. This
can all be used to model a real system and thereby provide metrics of how it
would perform. The performance of the tool is good compared to the model
from [1] as it could process 60 times more ticks while doing more each tick.
However, it used a lot of memory and it grows fast when adding more devices.
Memory is the bottleneck for this tool and to simulate larger sensor networks
more memory optimizations are needed.

29

References

[1] Søren Ebbesen Bundgaard. Modelling an edge computing datasynchroniza-
tion system. Aalborg Universitet, Jan 2021.

[2] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal smc tutorial. International Journal on
Software Tools for Technology Transfer, Jan 2015.

[3] Hexastate. Hexastate. https://hexastate.com/. Accessed: 13-06-2021.

[4] Mathworks. Bluetooth mesh flooding in wireless sen-
sor networks. https://se.mathworks.com/help/comm/ug/

bluetooth-mesh-flooding-in-wireless-sensor-networks.html.
Accessed: 15-02-2021.

[5] Mathworks. Math. graphics. programming. https://se.mathworks.com/
products/matlab.html?s_tid=hp_products_matlab. Accessed: 15-02-
2021.

[6] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the
American Statistical Association, 44(247):335–341, 1949. PMID: 18139350.

[7] nsnam. ns-3 a discrete-event network simulator for internet systems.
https://www.nsnam.org/. Accessed: 20-02-2021.

[8] Kartik Patel. Bluetooth low energy. http://kartikpatel.in/

ns-3-dev-git/group__ble.html. Accessed: 20-02-2021.

[9] Bluetooth Special Interest Group (SIG). Bluetooth mesh profile. https:

//www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/.
Accessed: 21-02-2021.

[10] Bluetooth Special Interest Group (SIG). An intro to blue-
tooth mesh part 2. https://www.bluetooth.com/blog/

an-intro-to-bluetooth-mesh-part2/. Accessed: 01-03-2021.

[11] Jon Gunnar Spon̊as. Things you should know about blue-
tooth range. https://blog.nordicsemi.com/getconnected/

things-you-should-know-about-bluetooth-range. Accessed: 21-
02-2021.

30

https://hexastate.com/
https://se.mathworks.com/help/comm/ug/bluetooth-mesh-flooding-in-wireless-sensor-networks.html
https://se.mathworks.com/help/comm/ug/bluetooth-mesh-flooding-in-wireless-sensor-networks.html
https://se.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://se.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://www.nsnam.org/
http://kartikpatel.in/ns-3-dev-git/group__ble.html
http://kartikpatel.in/ns-3-dev-git/group__ble.html
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/
https://www.bluetooth.com/blog/an-intro-to-bluetooth-mesh-part2/
https://www.bluetooth.com/blog/an-intro-to-bluetooth-mesh-part2/
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range

	Introduction
	Communication
	Bluetooth Mesh Networking
	Comparing Simulation Tools

	Design
	Simulation Tool Design
	Component Design

	Implementation
	Component Abstractions
	Profiling

	Simulation Experiments
	Result Data
	Parameters
	Experiments results

	Evaluation
	Tool performance

	Improvements
	Memory Improvements
	Model Improvements

	Conclusion

