A Study on a Ecosystem Approach for
Model-Based Software Engineering

Morten Hartvigsen
Aalborg University, dept. Computer Science
Aalborg, Denmark
mhartvli6@student.aau.dk
m.hartvigsen@gmail.com

ABSTRACT

Utilizing Model-Based Software Engineering (MBSE) can ensure
more sound software solutions because of model checking and
finding issues earlier in the development cycle.

We present an ecosystem approach for using MBSE to develop
modern web applications and present a case study on our proof of
concept framework, highlighting the viability of using MBSE in a
low-code environment.

We investigate eight hypotheses in a qualitative study of the
benefits and usability of MBSE.

We conclude that the ecosystem would enable cross-compatibility
between many different MBSE tools, allowing for easier adaptation
of MBSE in the industry. Furthermore, we conclude that it is hard
for developers to transition to an MBSE workflow, but it would
be advantageous for them to do so. Lastly, we conclude that the
friction in the adaptation of MBSE is due to the lack of maturity in
the current MBSE tools available.

1 INTRODUCTION

When developing modern web applications, companies have many
different types of people who need to work together to create some-
thing the customer wants. Either they can use technologies such as
Bootstrap [1] to enable developers to use prebuilt HTML, CSS, and
JavaScript components to get the desired behavior with minimal
effort or Headless UI [2], where developers have prebuilt JavaScript
and only need to add the wanted styling. Alternatively, they can
utilize low-code platforms [3, 4], which allow people with different
backgrounds and programming knowledge to create software so-
lutions within a drag-and-drop environment, with minimal code
writing.

Using a low-code platform, the users create abstract models that
can be transformed into executable code. Because of this higher level
of abstraction, it might be beneficial to introduce model checking
into the modern web development world to ensure more sound
programs using an MBSE approach.

It is often claimed that an MBSE approach will allow developers
to make software faster than the traditional methods [5, 6]. Al-
though we believe the findings of these sources, many of them only
have a statistical analysis of the speed increase. We believe that to
spread the use of MBSE; we need to understand how and why it
is faster to use. Along with the costs of this speed increase, how
does it affect the software projects’? Does it bring some adverse
side effects such as developers missing opportunities for:

o A deep understanding of the problem domain?
e Exploring alternative solutions?

Mikkel Pedersen

Aalborg University, dept. Computer Science
Aalborg, Denmark
mipedel6@student.aau.dk
mikkel.pedersen96@live.dk

e Does it lead to a carelessness mentality?

From all of these concerns, we present an ecosystem that is a
low-code platform, where the developers can sit with the customer
and define the behavior of specific components to ensure that the
components are correctly defined as the customer wants it. Further-
more, the developer can also model check the given component to
ensure that the code does not contain specific errors. Our ecosystem
consists of the following parts, which can also be seen in Figure 1:

o The Visual Formalism

e A system specification format for representing the visual
formalism

o A compiler that can take the system specification format as
input

e An "Abstract Behaviour Tree"(ABT) that will be the result
from the compiler.

The Modelling tool

The JSON Data Structure

*label: “DropDown Container",
“type": *HiddenShowContainerComponet”

|

The Compiler

Convert data structure into behavior tree Code generation from behavior tree

{ >

p—— 0101110

‘& 0111010

} 0101110
\\ ¢ Output target code
;)\ 0101110
0111010

0101110

Runtime
Environment

Figure 1: An overview of the ecosystem

These parts would allow for a couple of custom tools, such as:

e A Modelling Tool for drawing the behavior models

o Integration with any Model Checking Engine (by utilizing
the compiler to translate to any Model Checking Engine
format from the ABT)

o Allow for translating to any target code platform (by im-
plementing a code generator for the "Abstract Behaviour
Tree")

To understand the viability of MBSE and low-code platforms, we
built a prototype of all parts of this ecosystem and held multiple
workshops with different types of participants. From our won-
derings, we have created eight hypotheses that we would like to
answer:

e H1: Using MBSE, developers can create correct behaving
software solutions faster.

e H2: The use of MBSE provides better communication be-
tween developers and designers.

e H3: The use of MBSE provides better communication be-
tween developers and stakeholders.

o H4: MBSE makes it easier for developers to create complex
systems.

e HS5: People without experience or training in software devel-
opment principles can utilize an MBSE tool to create software
systems.

e H6: MBSE is difficult to adopt for people without formal
training in the discipline.

e H7: Traditional developers will have reservations and feel
some friction in adopting an MBSE approach.

o HB8: MBSE gives developers more confidence in their work.

The main contribution is a proof of concept framework to allow
users to create visual components in web applications using our
visual formalism. Furthermore, we have conducted numerous work-
shops to collect qualitative data regarding the usage of MBSE and
low-code platforms. Finally, we have looked at which challenges
need to be solved to create a software solution utilizing the MBSE
approach.

The rest of the paper is organized as follows. Section 2 looks at
related work and Section 3 will highlight the vision we have for
the final system. Section 4 focuses on preliminary work for this
paper, and Section 5 outlines the compiler that has been built for
this ecosystem and shortly describes how it works. Section 6 will
highlight some of the benefits of MBSE, and Section 7 will highlight
the case studies we have been conducting, and finally section 8 and
will conclude our findings.

2 RELATED WORK

The related work is divided into two distinct parts.

2.1 Tools/frameworks

The use of low-code platforms is growing and becoming more and
more popular [7], as the demand for more complex systems arises.
Systems such as OutSystems [3] and Mendix [4] are examples where
the companies can have different types of people working on the
system. However, because of the growth of platforms, it can be
hard to determine which platform is the best, where the work of 8]
compares some of the more powerful low-code platforms. Further-
more, [8] also looks at what these platforms have in common, such
as their overall structures, and gives the reader an insight into the
pros and cons of each platform.

The work on XState [9] should also be mentioned as they used
the idea of statechart [10] and have implemented a way of making
state machines in React, which the developers can use. However,
their work still requires that the users understanding and are able
to write JavaScript code.

1

3

Morten Hartvigsen and Mikkel Pedersen

2.2 Model-Based Software Engineering

Highlighted in [5], the idea of MBSE should be more widely adopted
because of the way that we can use the models in terms of genera-
tion of code and model checking.

We believe that MBSE should be more used. However, we also
see some of the problems and challenges that come with it, and
some research only focuses on that MBSE is faster than traditional
methods. However, looking at [5, 11], many problems need to be
solved before broader adoption of MBSE can be achieved. One of
the problems mentioned in [5] is the usability of MBSE, and the
infrastructure around such tools is more complex than traditional
methods. As mentioned in [11], the lack of standards and bench-
marks are somewhat of a problem, as we have no way of telling if
one approach is better than another.

3 VISION OF ECOSYSTEM

This section presents the grand vision for the ecosystem that we
propose. We believe that a visual tool using our ecosystem for
web application development should have three main areas; The
Modelling Tool, The Structure Builder, and lastly, The Styling Tool.

The modeling tool is where the user creates the behaviors of
their models, where they can verify the given model using a model
checker engine to see if the model is sound. Furthermore, if an
error occurs, the user can use the simulator to know why the error
occurred and fix the error.

The structure builder is where the user can piece together how
their web application should look, from the structure aspect, not
the styling. Here, the user can drag different HTML elements and
their custom components and see how it looks in a live preview
window.

The styling tool allows the user to style the different elements
they have in their web application. Here we envision that one would
use TailwindCSS [12] to ensure a more uniform styling across the
entire web project. The idea is that the user can click on an HTML
element, and then they get suggested which properties they can
change, e.g., add a margin or padding to that element. Then, just as
in the structure builder, the user should see how the given element
looks in the different viewports.

3.1 System Specification Format

To ensure a uniform way of specifying our components as data, we
have created multiple JSON schemas representing our System Spec-
ification Format, which can validate a JSON object as a component.
Furthermore, these JSON Schemas are all extendable to allow for
new features in the future. We have three different JSON schemas,
one for each component type in our formalism, and Listing 1 shows
some of the schemas for our Simple Component. From the schema,
one can see which data is required to have in a Simple Component.
For example, we have selected that the label key should have the
type string, and the pattern, which is a regex, should allow every
character. To see the rest of these schemas, see Appendix A.

Listing 1: Snippet of the simple component schema

{

"title": "1,
"type": "object",
"required ": [

A Study on a Ecosystem Approach for
Model-Based Software Engineering

"label ",
"initialState ",
"states ",
"events",
"inputs",
"outputs ",
"transitions",
"positions"

1

"properties": {
"label "
"$id": "#root/label",
"title": "Label",
"type": "string",
"default": "",
"pattern": "f.«$"

To validate if these JSON objects are correct and live up to
the JSON schema (System Specification Format), we have utilized
ajv [13] to validate the JSON data against the schema. Validating
the JSON data ensures that when the modeling tool reads a file
from disc, it has the correct format and knows how to parse it into
a drawing, amongst other things.

4 PRELIMINARY WORK

This work is a continuation of [14], a ninth-semester project by the
same authors as this paper. In [14], we proposed a visual formalism
based on Statecharts [10] and Interface Automata [15] for modelling
web-based user interface behaviour. Along with that, we built a
proof-of-concept modelling tool that integrates with the Spin Model
Checker engine [16]. The concept was to develop a formalism that
would allow developers to model a front end’s behaviour and utilize
a model checking engine to check for different behaviours.

[Chat Component |

[Fessogeservee]

P a——
‘ ‘ \msg! | msg?[[RR |
‘ Compose. Message. ’>4\ P — L Wait for message J ‘

[[o))

2

‘ ack? submit / msgl ack! sy

1
D) lack? | oack? |
‘ = -

.
hathanl

. ;\) ; [/"s
= —=J)

Loading

Figure 2: Example of the Robust UI Formalism

Figure 2 shows an example of our formalism, where we have
adapted the AND-superstate from statecharts [10], and we use
Interface Automata [15] to make communications between super
states. However, instead of the name super state, we refer to them
as components. Table 1 shows the different types of components
we have and what they compare to in statecharts [10].

In statecharts

XOR super state

AND super state

XOR super state with selection entry

In our formalism
Simple component
Composite component

Selective component

Table 1: Shows what our components compare to in the stat-
echart formalism

Another thing to note is that we have limited our formalism
compared to Statecharts [10]. Hence, features such as History State,
transitions across State boundaries (Component boundaries in our
vocabulary), actions and activities, and others are not present in
our formalism.

The important takeaway from our formalism is in the manner we
handle Component Communication. Communication has to happen
via the Interface Automata [15] formalism, meaning a Component
can only communicate to another via a message channel. Forcing
communication via message channels disallows transitions across
component boundaries, leading to a more modular formalism that
can allow for a component from one project to be added to another
project.

5 THE COMPILER

The actual development of the compiler is not the main focus of
this paper. Nevertheless, we find it advantageous to quickly discuss
how we chose to build the compiler and the primary consideration
in developing the compiler.

It was essential for us that the compiler could run on the most
widely adopted operating systems, i.e., Windows, macOS, and Linux.
Therefore we chose to utilize the JVM as our runtime environment,
and we decided to use the programming language Kotlin. One uses
the compiler from the terminal by specifying a target language,
a folder path to search for dependencies, and the main file of the
compilation.

The compiler is constructed of three modules:

e The Tokenizer
e The Parser
e The Code Generator

5.1 The Tokenizer

Since this compiler takes a pre-defined data structure, which is
JSON-based, as opposed to traditional text-based source code, we
chose to omit the Lexical Analyzer and Syntax Analyzer and instead
use an off the shelf JSON parser to read the source files and convert
the data structure of the formalism into a stream of tokens.

The Tokenizer can construct the following tokens:

Composite Component Token
Selective Component Token
Simple Component Token
State Token

Transition Token

The Composite Component Token contains its name, a list of
child components, a list of input events, and a list of output events.

The Selective Component Token contains its name, the name
of the default case, a list of the cases, and the input stream.

The Simple Component Token contains its name, the name of
the initial state, a list of states, a list of browser events, a list of input
events, a list of output events, and a list of transitions. Next, the
State Token contains its name, and finally, the Transition Token
contains the name of the origin state, the label of the transition,
and the destination state.

5.2 The Parser

After the tokenizer has converted the data structures into a stream
of tokens, the parser will convert the tokens into a tree structure
representation that allows the code generator to traverse the tree
and generate the correct semantics’ target code.

The different nodes that the Tree Structure can consist of is:

Module Node

Composite Component Node
Selective Component Node
Simple Component Node
State Node

Transition Node

Stream Node

Identifier Node

Guard Node

Case Node

5.2.1 Module Node. The head of the tree will always be a Module
Node and acts as an indicator of the start of a component, either
Simple, Composite, or Selective component. The idea behind such
an indicator is for target codes that would like to utilize reusable
code, where they can check if the module is already generated and
then reference it instead of building it. Furthermore, the Module
Node contains a Stream Node for the inputs, a Stream Node for the
outputs, and a Stream Node for the browser events. The idea behind
having this information on the module is based on our practical
experience with different configurations, where we found it easier
to have all streams in the module node as appose to putting it into
the component node itself. Finally, the body property of a Module
Node contains either a Simple, Composite, or Selective Component.

Listing 2: ModuleNode in pseudocode

Morten Hartvigsen and Mikkel Pedersen

var type = "SimpleComponentNode";

var children: List<StateNode >;

var typelLookUpTable: Map<String, String >;
var parent: ModuleNode;

class ModuleNode {

var name: String;

var type = "ModuleNode";

var intputStreamNode: StreamNode;

var outputStreamNode: StreamNode;

var eventStreamNode: StreamNode;

var body: SimpleComponentNode | CompositeComponentNode |
SelectiveComponentNode;

var typelLookUpTable: Map<String, String >;

5.2.2 Simple Component Node. The Simple Component Node act
as the bottom of the component hierarchy. It is the only compo-
nent that is allowed to contain actual states. The property children
contains a list of all the State Nodes included in the component.
Besides that, it includes a reference to its parent, i.e., the Module
Node. This reference has shown through empirical testing to be an
excellent property to have for some code generators.

Listing 3: SimpleComponentNode in pseudocode

class SelectiveComponentNode {
var name: String;

The remaining nodes can be seen in Appendix B.
Figure 3 shows a visual representation of the ABT of the Chat
Component shown in Figure 2.

5.3 Code Generator

The Code Generator is where third-party developers would extend
the compiler to support any desired target platform. Currently,
the compiler has four code generators, one for QTree (a latex tree-
drawing plugin), one for Treant]S [17], a JavaScript library for
interactive tree-structures in the browser, one for Promela for the
model checker Spin [16] and lastly, one for the RobustUI Framework
in TypeScript.

Runtime Environment

nede

A

Model Checking Engine ;: ?

Figure 4: An overview of how one can use the ecosystem

The RobustUI Framework is our proof-of-concept runtime frame-
work for running the constructed machines in the browser and
allowing real-world behavior to be translated from visual drawings
into browser interactions.

These four Code Generators use a Visitor Pattern [18] inspired
method to convert the ABT into target code. Since all names of the
nodes are prefixed with a namespace, helping the code generator
correctly identify the nesting of components, they also have differ-
ent helper methods for dealing with the namespacing. We would
recommend any third-party developer who wishes to extend the
compiler to study these four already existing generators to get an
idea of converting the ABT into target code.

6 BENEFITS OF MODEL BASED SOFTWARE
ENGINEERING

In this section we will present the supposed benefits of an MBSE
approach to software development. These supposed benefits acts
as the ground for our case studies and we will try to validate the
claims in an qualitative manner, but more about that in Section 7.

6.1 Makes Development Faster

One of the advantages often agreed-upon with an MBSE approach is
that it makes developing sound software solutions faster [6]. It also
seems logical when considering the power of modeling formalism
combined with model-checking engines that can verify specific

A Study on a Ecosystem Approach for
Model-Based Software Engineering

ModuleNode(Chat Component)

StreamNode (Inputs) StreanNodé(Outputs)

StreamNode (Events)

CompositeComponentNode (Chat Component)

| ModuleNode (Chat Box) | IModuleNode(Message Service)l

ModuleNode(Chat Box)

StreamNode(Inputs) StreamNode (Outputs)

IdentifierNode(ack) IdentifierNode(msg)

StreamNode (Events)

IdentifierNode(submit)

TransitionNode(Compose Message, submit/msg, loading)

CompositeComponentNode(Chat Component)

StateNode (Compose Message)* StateNode(loading)

TransitionNode(loading, ack, Compose Message)

/

ModuleNode (Message Service)

StreamNode (Inputs) StreanNodé (Outputs)

IdentifierNode(msg) IdentifierNode(ack)

StreamNode (Events)

StateNode(waif for message)x

TransitionNode(wait for message, msg, loading)

CompositeComponentNode (Chat Component)

StateNode (loading)

TransitionNode(loading, ack, wait for message)

Figure 3: A visual example of the ABT for Figure 2

properties. However, we allow ourselves to be skeptical to accept
this as a fact since software engineering is about more than shipping
the first version.

One example is how software innovation is becoming more and
more critical for the competitiveness of software companies [19].
How would the supposed speed of MBSE affect a project that re-
quires software innovation? Would engineers have enough time
to realize opportunities for pivoting, exploitation of existing tech-
nologies and so on? Would an MBSE approach even fit in, in an
innovative project using a process such as Essence [19]?

Another example is the software lifetime. For a long-lived soft-
ware project, how would the project’s maintainability be affected
by using an MBSE approach? Would it be possible to extend or
change the behavior of the software in a reasonable manner with
regards to deployment pipelines, modularity, and scalability both
in terms of computing scalability and personal scalability?

There are also soft-value considerations to take into account,
how does MBSE affect the individual engineer’s commitment to
the project. Would the supposed speed harm their professionalism,
would it affect their sense of quality and result in a carelessness
among the developers? On the other hand, would it have a positive
effect in terms of relieving burnout and stress among engineers?
Would it give engineers more confidence in their solutions and help
engineers trust the quality of their work?

6.2 Easier to Change

It is a reasonable assumption that using an MBSE approach would
lead to a process that will allow engineers to make changes to
the system easier and safer, this assumption is shown somewhat
correct in Model-Driven Development [20]. We believe that this
assumption comes from the fact that all developers with experience
have tried the dreadful situation of changing a small part of a
traditional developed system and thereby mystically breaking the

entire system. Whereas on the surface of MBSE, it looks pretty
manageable to make a small change to a sub-model in a bigger
model and utilizing the power of both the visual modelling tool
and perhaps a model checking engine to verify the model to ensure
that nothing broke.

However manageable it seems in theory, how would it work
in practice for an entire system? Would the engineers be able to
comprehend the effect of their changes throughout the model of the
system? Do visual modeling tools offer enough encapsulation to al-
low for minor changes in a reasonable scope? How would changing
a software built with MBSE compare to changing a well-designed
software built with practices such as Test-Driven Development?

6.3 Ease of Collaboration

In chapter 10, "Practical experience and implementation", of [10],
David Harel talks about how using a visual modelling language
helped with the communication across different stakeholders and
contributors of varying disciplines. But David Harel’s scenario is
one where the development was internally in the company, with
engineers and other domain experts representing the same com-
pany.

How does it hold up in a scenario where there is a customer and
supplier dynamic, where a customer hires the software developers.
Would the customer invest the time to learn how to decode the
visual models? Would they be able to understand it (assuming
that the customer has little to no technical expertise)? Would they
recognize the value-proposition of MBSE? Or would they instead
prefer a hands-off approach and get the final product delivered with
little to no involvement? Does a visual model allow engineers to
communicate hard to understand technical details in a condensed
and understandable fashion for non-technical stakeholders?

7 WORKSHOP

We held three workshops with different participants. However, due
to COVID-19, it was more challenging to get the number of par-
ticipants that we would like to have. Table 2 shows how many
participants we had in each workshop and what their background
are. For the other disciplines, one of them works with different
technologies in product line management and understands how
workflows work. The other understands prototyping and engineer-
ing for different kinds of machines and has a little programming
knowledge, but not enough to be classified as a developer in our
study.

Developers | Designers | Other disciplines
Workshop 1 | 2 1 0
Workshop 2 | 0 0 1
Workshop 3 | 0 0 1

Table 2: Classifications of participants in each workshop

We have two primary wishes for the workshops in regards to
what we aim to achieve. The first one is that we want a qualitative
discussion regarding the use of MBSE and to try and answer some
of the hypotheses presented in Section 1. Secondly, we want to
discuss our proof-of-concept tool to understand what requirements
such a tool should have for future development.

The workshop is split into three parts. The first part introduces
the participants to what MBSE is, then introduces our visual for-
malism and presents our proof of concept tool. The second part
consisted of four different tasks that the participants should solve
using our tool. Finally, the last part is an open discussion where we
first talked about the tasks they had to solve and how it went, and
then spoke about MBSE.

7.1 Tasks

The four tasks will be increasing in complexity, and the participants
should reuse what they had learned in the previous task to solve
the next one. We created a small TypeScript project, per task, where
the HTML and CSS code needed to solve the task is pre-defined.
First, the participants were to make the correct model, where each
task had a description regarding the functionality that the given
component should have. After making the model, the participants
would then generate the TypeScript code and copy it into the Type-
Script project for that particular task. The last thing they should do
was to open the project in the browser and validate that they had
met the task’s requirements.

An example of task one can be seen in Listing 4. The rest of the
task can be seen in Appendix C

Listing 4: SimpleComponentNode in pseudocode

In this task you should create a "simple" component which can do
the following
3| » It has two states which are "on" and "off"
+| » If the component is in the state "on" and the user presses it,
then the component should go to the state "off" and vice
versa

6

Morten Hartvigsen and Mikkel Pedersen

You have got the needed HTML and CSS to solve the task. Your task
is to model this component and paste it into the given
project and get everything to work with the functionalities
mentioned above

7.2 Results from workshops

This section will highlight some of the key points from our work-
shops.

7.2.1 Visual programming as a concept. To start our discussion,
we wanted to get feedback on our proof of concept to understand
if visual programming is useful for developing software systems.
Here we have an interesting discovery between the developers and
non-developers. The developers argued that a visual system would
make it harder for them to develop software, with arguments such
as

o Developers have, through many years, learned to make their
keyboard the primary tool, so drawing with the mouse is very
unnatural for us.

o Developers are generally not of the visual thinking types. We
think more in abstract constructs, so it is hard to translate the
thoughts to visually representations

The non-developers have opposing views, where they find the
visual way of doing it beneficial and have arguments such as:

e You can use it[our tool] to make prototypes of software and
can easily get developers to further develop on the system at a
later stage of the development stage

e It is possible to relieve some of the work from the developers,
which enables non-developers to influence the project in the
right direction and get a uniform language of communication
with the developer.

This disagreement between developers and non-developers is
something we expected, but what is interesting is the developers’
arguments, which are not as serious as they might seem. The argu-
ment regarding the keyboard being their primary tool is valid in
our perspective, as the keyboard is the only tool, which traditional
development allows. However, this is a question about the historical
necessity and not necessarily a desired feature. We also find the
argument that developers are not visual thinking to be wrong, as
most developers can understand and create diagrams such as UML
diagrams to communicate ideas. Furthermore, we assume that the
problem is that using a visual tool is a radical change in discipline
than the traditional way. It would require many hours to convert
a traditional developer to be comfortable with a visual tool. Our
opinion is that this issue is similar when developers work in one
programming paradigm and then need to work in another para-
digm. There is a learning curve where the new paradigm would be
unnatural. However, we see developers switch from one paradigm
to another multiple times in their careers, so why would it not be
the same with MBSE? We believe that Model-Based development
is still rather new and misses the validation through usage that the
other programming paradigms have.

Regarding the arguments from the non-developers, we have
certain reservations regarding these arguments, such as the non-
developers can create a prototype and then give it to the developers
at a later stage. We acknowledge that MBSE would allow non-
developers to create a prototype. However, we see a problem when

A Study on a Ecosystem Approach for
Model-Based Software Engineering

the developer should work further on the prototype. There would
be a massive overhead and assumptions such as the developer
should understand MBSE and be comfortable with such a tool.
Alternatively, it could be understood as the generated code would be
sent to the developers. However, this highlights another assumption:
the generated code has been created so that a traditional developer
can understand it and work further on it. The last way we see
how it can be understood is that the developers should start from
scratch and use the prototype as a requirements specification. We
find this point the most realistic and an important point regarding
if MBSE could be used to, as an example, creating software for
microcontrollers that could test a potential marked quickly and
later send the prototype and the models to developers, which would
make the actual product.

Regarding the argument that the non-developers could take some
of the work from the developers, we are not sure that this would
be "allowed," as a company might have in-house developers, which
jobs are creating such software. However, we agree that the visual
program allows non-developers to get a better overview of the
software to find issues in the early stages. We also agree that a
visual tool would allow better communication between developers
and non-developers if both parties understand the visual formalism.

7.2.2 Reliability on MBSE. We asked the participants regarding
their confidence in the models they exported into the project. The
developers have arguments such as:

o [t can be hard to trust the auto-generated code, as you do not
have any feelings for it. You do not know if the developers
behind the auto-generated code have been thorough or if there
are edge cases that destroy the behavior

o Developers will have little to no trust in the auto-generated
code, whereas designers and non-developers will trust more on
their models if it "'works on their computer’

o [t is hard to evaluate if the model is good or not, compared to if
it has any errors for the given use case, but also if the modeling
will give unnecessary overhead in the generated code, contra
to have modeled it differently

For the non-developers, they have a different view on the relia-
bility for MBSE, where they had arguments such as:

o You have confidence in the solution if the program tells you
that there are no errors, which is a big help and gives confidence
in your own work

From Section 7.2.1, we see the same thing in regards to devel-
opers vs. non-developers. Again, there is a clear line between the
developers, who have more experience and understanding of what
happens in an auto-generated code environment and know that
mistakes can happen. The non-developers do not consider that
the auto-generated code can affect the end product. We got the
intuition that the non-developers see the code to have two main
properties: Either it works or it does not. The developers have more
properties, which they consider such as, scalability, maintainability,
and edge cases.

We want to point out that the question about the quality of
models can be hard to assess, compared to traditional development,
where principles such as SOLID [21] can help one assess the quality
of the code. The missing principles in MBSE are a problem. However,

it should be possible to introduce similar principles. The same is
true, for example, for software patterns, as we see no problem in
translating these patterns into modeling patterns. We even see many
software patterns communicated as UML diagrams already [18],
which is a form of modeling.

We will recognize that the developers’ worries are valid and that
the developers has to lay great confidence in a tool that creates
auto-generated code before they will accept using it. However, the
truth is that almost every developer already does it today. The
developers do not concern about the quality of the assembly code,
which their compiler generates, so we see this more like a "fear." It
could be beneficial for MBSE to position itself differently. Instead
of positioning MBSE as a means of code generation, it could take
the position as a new programming language in the declarative
paradigm, for example. That way, MBSE will possibly not seem so
frightening to traditional programmers.

7.2.3 Other points for MBSE. This section will cover some of the
points and arguments, we got from the discussion which was not
planned. The following points have been captured here are:

e Possibility of expression compared to traditional program-
ming

e Speed of MBSE

e Mental burden in MBSE

e Communication benefit

It quickly got discussed by the developers how the expressiveness
in the models are a problem, with arguments:

o Itisa problem that there are things in traditional programming
that you are being forced to consider, e.g., naming of details,
separation of concern, etc, which are being removed in a model.
It is often through these details that we, as developers, can
signal our intent to other developers and make it easier for
others to understand and maintain our systems

o The principle about communication from and to different com-
ponents should go through message channels is simple to un-
derstand. However, it is hard to evaluate if it is easy in the
real world. We have different communication techniques in
traditional programming, such as message queues, method
invoking, getters, and setters. They have all proven to solve
different communications demands in a system

The non-developers found that it was non-intuitive that you
should define browser events on every state, with arguments:

e When you sit down and make behavior for a button, then it is
weird that you should define a click event on all states since it
is known that a button can be clicked. It disturbs the process
that you need to define a standard behavior

We find all of these arguments interesting, and we will first
look at the arguments for the developers. The problem regarding a
higher level of abstraction, thereby removing details, we do not see
as a problem with MBSE but more a problem with the developers’
missing experience in decoding models. However, there might be
a valid argument in separations of concern, which we have tried
to solve by our component-based formalism. However, it would be
necessary to build a larger system to evaluate whether it is still a
problem or not.

Regarding the non-developers argument, we believe that this
is a question about the missing experience in MBSE. The whole
argument is based on false facts that a button can always be pressed.
However, this is not true in the real world. If non-developers got
more experience, they would understand why they need to add a
click event for multiple transitions.

After we had discussed which challenges the participants feels
that there are in using our system contra their daily tools, we talked
about the speed in MBSE, and the participants have arguments such
as:

o [believe [the use of MBSE] would give a big lead at the start
of a new project, but there will be some cut-off point, where
it would begin to be a hindrance in the development, as the
models will be too big or depend too much on each other and
it will be more difficult to introduce new features to the system
over time

o Once you have modeled your component and exported it, I can
imagine that you will often end up fighting against whatever
framework you actually use. It is always a sign of bad crafts
when you end up fighting against the framework. Likewise, I
believe that no matter what formalism you use, you will end
up fighting the MBSE tool every time you hits a use case that
is outside of the norm

However, the developers could also see when MBSE would be
beneficial to use, saying:

o If you use it to make small prototypes to validate the under-
standing of a problem domain, MBSE will make it much easier.
However, you will probably take the models and hand imple-
ment them when you go away from the prototype phase

o MBSE will be good to use when you sketch your ideas among
developers where you would use a tool that could be an exe-
cutable whiteboard sketch and get validation immediately

The developers feel that MBSE’s biggest benefit is in starting
a system project or developing smaller atomic systems. We mean
that this is a good insight into what the developers feel about the
useability of an MBSE tool. The developers have an understanding
that MBSE means a lower option for maintenance and expanding
of systems. Furthermore, this can indicate that MBSE still suffers
from immature tools compared to tools developers are used to in
traditional development. Finally, this shows that the developers care
about other details than getting the software to work. From all of
this, we believe that in our proof of concept, it is a fair assumption
that there would be a cut-off point where the tool will become
a hindrance. However, we think that this might not be true in
general for MBSE approaches, but just an indication that our proof
of concept is not mature enough for real-life projects. It would be
advantageous to create an experiment with a bigger project where
one would try to identify which features a tool should have to create
a big project.

Regarding the argument to fight against the framework to get
the auto-generated code to work, we believe that our proof of
concept tool has introduced this problem. However, we mean that
an MBSE tool should not integrate with other frameworks after the
code generation. Instead, it should export final projects, which we
already see, such as in OutSystems [3].

Morten Hartvigsen and Mikkel Pedersen

Regarding fighting the MBSE tool, if you try to implement some-
thing outside of the formalism, we think that this is the price you
need to pay for early adopters of such technology. Furthermore,
this also happens in traditional development, which has multiple
years of practical uses, and we still see new languages that try to
fix the problem with the "perfect language" We believe that we
would be able to improve formalisms for modeling iteratively, just
as programming languages, and then slowly removing the pain
points. However, before we can do this, we need developers to use
MBSE to find these pain points and then solve them.

From all of this, we find it interesting that both developers and
non-developers recognize that MBSE will allow for making proto-
types and communicating about solutions faster than traditional
techniques. However, they cannot see the possibility that the speed
will be faster in system development. Here we see two causes which
we suspect are the reason why, 1) MBSE tools are not mature enough
at this time to get traditional developers to take these tools seriously,
2) developers’ general distrust of auto-generated code.

The participants discussed how MBSE affects their mental burden
under the development of systems with arguments:

o There is missing a way to define an unknown component that
should have a certain interface, as we see it with dependency
injection in traditional programming. If I model something
which should use another component, then I do not care about
how the component works, I am only interested in the interface,
so my only option is to create a new component to get going,
which is a big mental break, compared to get the overview of a
vertical slice

o It quickly gets unmanageable in which dependencies a given
component has. I am missing a better hierarchy structure,
where it would be more simple and obvious

We want to dive deeper into these arguments and understand
how MBSE affects the mental burden for developers. The first argu-
ment about missing a construct for dependency injection, we see
as a major missing feature, since we could observe that doing the
tasks, the developers had issues starting a new task, as they had
to work in a top-down manner. As a result, the developers needed
to decide important details early on, which can have undesired ef-
fects on later stages of the model. Therefore, we see it beneficial to
introduce a construct for handling dependencies in our formalism.
Such as dependency construct could be introduced by specifying
a placeholder interface automata that could be "swapped" with a
real model later. This idea is possible, but our visual tool and visual
formalism do not have any constructs to allow this. Because of this,
we see this as an important feature to introduce in the future, which
would enable developers to work more encapsulated.

Regarding the unmanageable hierarchy structure issue, we rec-
ognize that our visual tool did not help developers. For example,
none of the developers realized that they could zoom in on a com-
posite component to see the details inside. Therefore when building
a visual tool, we recommend researching if other visual hierarchical
methods are available other than zooming or make it intuitive and
robust to utilize the zoom effect. A visual tool must have a good
hierarchy system to manage complex models.

The participants also came with a point regarding the communi-
cation between components, with the argument:

A Study on a Ecosystem Approach for
Model-Based Software Engineering

e It was not easy to get an overview of a component when it
needed to communicate with another. The communication was
made through the naming convention. It would be better if you
could connect which outputs should go to which input and vice
versa

We agree that this was something that is confusing in our system.
The only reason why we did not find a better solution to this is that
our tool is just a proof of concept. It would be beneficial if the users
could drag and drop which outputs should talk with which inputs or
open up the possibility that when creating an input, the user should
select which outputs it is connected to and which component.

The last point we will highlight from the discussion is whether
MBSE would make it easier to include the clients into the devel-
opment process, which is wished in an agile work process. The
developers said this:

o [t depends on the client, compared to how much time they
want to invest in learning and to understand the concepts,
some might like it, whereas others do not want to use their
time on it

This point is somewhat worrying as [22] shows that the clients’
involvement in a software project has a big effect, and one of the
benefits which are often highlighted in modeling is that it makes it
easier to communicate with the clients. Therefore we believe that
it should be examined if using a visual modeling tool would help
to involve the clients more.

8 CONCLUSION

When building web-based user interfaces, companies utilize li-
braries or frameworks to get pre-built components, allowing the
companies to build software faster. Furthermore, utilizing low-code
platforms can allow even faster development cycles and even enable
non-developers to create end-to-end software solutions.

Customization can be hard when using libraries, frameworks,
or low-code platforms. Sometimes even resulting in developers
fighting against the tools to realize their requirements. Therefore
we introduce a general use ecosystem for building web-based user
interfaces that allow developers to create their tool-chain. This
ecosystem contains a visual formalism and a compiler to translate
the graphical models to an Abstract Behaviour Tree. Developers can
then traverse the Abstract Behaviour Tree to generate the desired
platform-specific code.

Furthermore, the ecosystem allows an open-source community
to grow around it with many different visual modeling tools, code
generators, model checking engine extensions, etc. The point is
that using an ecosystem, as presented in this paper, will allow cross-
compatibility between many tools, which we believe is the first step
to achieve general adoption of Model-Based Software Engineering.

On evaluating our qualitative study, we first would like to point
out that it would have been beneficial to have more participants.
We originally aimed for 15-20 participants, but most participants
could not attend due to COVID-19 restrictions. Unfortunately for
our study, but we still believe that the few participants we had
provided valuable insights.

Therefore we would like to conclude our hypothesis from the
discussion in Section 7.

H1: Using MBSE, developers can create correct behaving software
solutions faster. Per our participants, this is only true in a limited
scope for developing prototypes, small isolated systems, or for
defining requirements. So, yes, MBSE will allow developers to be
faster. But for larger systems or long-lived systems, it is suspected
that it would make the process slower. But slower does not mean
worse, and we suspect that given enough time, it would be possible
to create a tool that could mitigate the decrease in speed.

H2: The use of MBSE provides better communication between de-
velopers and designers. 1t is hard to derive a clear answer from
our study. On the one hand, the designer expressed difficulties un-
derstanding the visual formalism, especially when talking about
transitions. However, on the other hand, throughout the four tasks,
we observed that the designer was quite involved in the process.
We had chosen to pair the designer with a developer and have
them work together on the tasks. The level of involvement from
the designer gave us an indication that they were able to under-
stand and work with the developer to define the behavior. Also, we
felt that the designer could envision the different visual "states" of
the component. However, through the discussion, it did not seem
like the designer shared our insights. Therefore we are hesitant to
conclude a definitive answer. We believe, however, that through
training, the hypothesis might show to be true.

H3: The use of MBSE provides better communication between devel-
opers and stakeholders. Our participants did not necessarily agree
with this hypothesis. They express concerns about whether clients
would invest the time needed to understand the visual formalism
and review them with the developers. However, the participants
believe that as an internal tool, it would strengthen the communica-
tion. Therefore we believe that this is true for internal stakeholders,
just like Harel [10] observed in his work.

H4: MBSE makes it easier for developers to create complex systems.
With the discussion from our study, we have to assert this hy-
pothesis as false. However, we suspect that this might be due to
our specific proof-of-concept tool and not necessarily true for any
MBSE tool. There might be value in conducting a study with mul-
tiple modern MBSE tools to see how our findings compare with
more mature tools.

H5: People without experience or training in software development
principles can utilize an MBSE tool to create software systems. The
consensus of the participants was that this might be true, as long as
the desired software system is a prototype or has a very small scope.
With the tasks that we had the participants do, all non-developers
could achieve the desired behavior, but it is unclear how they would
fair building a larger system.

Hé6: MBSE is difficult to adopt for people without formal training in
the discipline. Through the study, we observed a significant differ-
ence in the intuition between the people that had some experience
with modeling and those that had no experience. Although the
people without experience could create the correct models, they
never understood why the model worked, and they tended to trial
and error their way into the correct solution. In comparison, the
people with experience were more methodic in their approach. The
difference between experienced and inexperienced indicates that

although people without training in the discipline can utilize an
MBSE tool, it would never become their tool of choice without
some form of training.

H?7: Traditional developers will have reservations and feel some fric-
tion in adopting an MBSE approach. Throughout our discussion
in Section 7, it is clear that the traditional developers have many
reservations and friction when it comes to using an MBSE approach.
Therefore it is obvious to us that this hypothesis is true.

H8: MBSE gives developers more confidence in their work. On face
value, it seems from the discussion that this hypothesis might be
false. However, an interesting detail is that many expressions of
lack of confidence were not about the developers’ work but rather
about the generated code and so forth. Furthermore, doing the tasks,
we did not observe the developers ever having to question why
something did not work. As soon as they came to generating code,
they all integrated it into the javascript project without any major
issues. So, we believe that the developers had great confidence in
their work, but they were unsure of the quality of the tool that
they used. The only detail that cannot be overlooked is that they
expressed a lack of quality measurement when creating a model.
They felt that they did not have any way to ensure the model itself
was good enough. So we believe that a mature MBSE tool with some
quality measures built-in would give developers more confidence
in their work.

We conclude that traditional developers experience friction when
using an MBSE approach from the answers to our hypothesis. We
suspect this friction is due to; the lack of mature MBSE tools, and
the lack of big project examples using MBSE showcasing the capa-
bilities and advantages. A majority of the issues expressed by the
participants can be attributed to our proof-of-concept tool. Due to
this, we still believe that MBSE could deliver on many if not all of
the supposed benefits given more effort in building a mature tool.
Therefore, we conclude that it would be beneficial for developers
to adopt an MBSE approach if a mature tool were to exist.

9 FUTURE WORK

There are a couple of areas that we find of interest for future work.
Firstly, the current visual formalism has no defined semantic behind
it. We find it essential for any formalism to have a clearly defined
semantic. Therefore it would be valuable to look into defining
the semantics of our visual formalism. On the visual formalism,
we are also in doubt regarding the feature set currently included.
Therefore, it would be beneficial to study our visual formalism
to identify and develop missing features or generally improve it.
Also, our formalism has no notion of time. Time is a crucial part of
modern web development, so it would be important to introduce
time into our formalism.

The current state of the compiler might not be to an industry
quality. Therefore we also want to work on improving the compiler.
One key aspect would be introducing a plug-in system that would
allow third-party plug-ins to be added at runtime instead of at
compile time.

Late into the project, we realized that the Spin [16] model checker
engine might not be a natural choice for our formalism. Therefore,

Morten Hartvigsen and Mikkel Pedersen

it would benefit from integrating or even developing a new model
checker engine with a more natural fit. On the notion of a model
checker engine, it is currently a major lack that we do not facilitate
any language for formal verification of properties in a model. There-
fore we need to implement the support for a query language such
as Computation Tree Logic (CTL), Linear Temporal Logic (LTL), or
something else.

In order for such an ecosystem, as presented in this paper, to gain
any adoption, it is important to have a strong toolset surrounding
the ecosystem. Therefore, we want to develop a tool-chain with
mature and robust tools for Modeling behavior, structuring HTML
elements, and styling those elements, alongside tools for model
checking and code generators for vanilla JavaScript alongside the
major JavaScript frameworks.

Lastly, due to the impact COVID-19 had on our case study, we
would like to repeat the case study with more participants in the
future. We would also like to have a long-running case study with
one or more companies to get more in-depth insights into how
MBSE would affect a development workflow.

REFERENCES

[1] Bootstrap homepage. https://getbootstrap.com/.

[2] Headless ui homepage. https://headlessui.dev/.

[3] Outsystems homepage. https://www.outsystems.com/.

[4] Mendix homepage. https://www.mendix.com/.

[5] Bran Selic. Personal reflections on automation, programming culture, and model-
based software engineering. Automated Software Engineering, 15(3):379-391, Dec
2008.

[6] T. Weigert and F. Weil. Practical experiences in using model-driven engineering
to develop trustworthy computing systems. In IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06), volume 1,
pages 8 pp.—, 2006.

[7] Gartner forecasts worldwide low-code development technologies market to grow
23% in 2021. https://www.gartner.com/en/newsroom/press-releases/2021-02-15-
gartner-forecasts-worldwide-low-code-development-technologies-market-to-
grow-23-percent-in-2021, 2021.

[8] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieranto-
nio. Supporting the understanding and comparison of low-code development
platforms. 2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 171-178, 2020.

[9] Xstate homepage. https://xstate.js.org/.

[10] David Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, 1987.

[11] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Challenges in
model-driven software engineering. Models in Software Engineering, pages 35-47,
2009.

[12] Tailwindcss homepage. https://tailwindcss.com/.

[13] Ajv json schema validator homepage. https://ajv.js.org/.

[14] Mikkel Pedersen and Morten Hartvigsen. Robust ui - when the ui becomes wonky,
robustui makes it funky. https://projekter.aau.dk/projekter/files/402371631/
SV902E20.pdf.

[15] Luca de Alfaro and Thomas A. Henzinger. Interface automata. SIGSOFT Softw.
Eng. Notes, 26(5):109-120, September 2001.

[16] Spin homepage. http://spinroot.com/spin/whatispin.html.

[17] Treantjs - javascipt library for visualization of tree diagrams.
https://fperucic.github.io/treant-js/.

[18] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
1994.

[19] Ivan Aaen. Essence: facilitating software innovation. European journal of infor-

mation systems, 17(5):543-553, 2008.

Wojciech J. Dzidek, Erik Arisholm, and Lionel C. Briand. A realistic empirical

evaluation of the costs and benefits of uml in software maintenance. IEEE

Transactions on Software Engineering, 34(3):407-432, 2008.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Pearson, 2008.

Rashina Hoda, James Noble, and Stuart Marshall. The impact of inadequate

customer collaboration on self-organizing agile teams. Information and Software

Technology, 53(5):521-534, 2011. Special Section on Best Papers from XP2010.

[20

[21

~
&,

https://projekter.aau.dk/projekter/files/402371631/SV902E20.pdf
https://projekter.aau.dk/projekter/files/402371631/SV902E20.pdf

63

66

68

A Study on a Ecosystem Approach for
Model-Based Software Engineering

A JSON SCHEMA

Listing 5: JSON schema for a Simple component

"definitions ": {}

"$schema": "http://json-schema.org/draft -07/schema#",
"$id": "https://example.com/object1612866524.json",

"title": "1,
"type": "object",
"required ": [
"label ",
"initialState ",
states ",
events ",
inputs",
outputs”,
transitions ",

"positions"

,].

roperties ": {
"type”: {

"$id": "#root/type",
"title": "Type",
"type": "number"”,
"default": "",

w.oowa

"pattern
}
"type":

RN

"$id": "#root/type",
"title": "Type",
"type": "number"”,

"default": ""

}
"label ": {

"$id": "#root/label",
"title": "Label",
"type": "string",
"default": "",

"pattern

e

"initialState ":

w.owa

RN
{

"$id": "#root/initialState",

"title": "lIni

tialstate ",

"type": "string",
"default": "",
"pattern": "f.«$"

"states ": {

"$id": "#root/states",
"title": "States",
"type': "array",

"default": []
"items ":{

"$id": "#root/states/items",
"title": "ltems",
"type": "object"”,

"required ":
"label ",
"type”

"properties
"label ":
"$id "

"title "

"type":

[

"
{
"#root/states/items/label",
"Label ",

"string",

"default": "",
"pattern": "M «$"

’
Type s
"$id "

“title ":

"type":

"default”

"#root/states/items/type",
"Type",
"string ",

"pattern”: "".«$"

}
}
}

"events ": {
"$id": "#root

/events",

"title": "Events",
"type": "array",

"default": []
"items ":{

"$id": "#root/events/items",
"title": "ltems",

97

99
100
101
102
103
104
105
106
10

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

125

"type": "string",
"default": "",
"pattern": "".«$"

}

"inputs": {

"$id": "#root/inputs”,
“title": "Inputs",
"type": "array",
"default": [],
"items ":{
"$id": "#root/inputs/items",
"title "ltems",
"type": "string",
"default": "",
"pattern”: "".«$"

}

"outputs": {

}

"$id": "#root/outputs",
“title": "Outputs",
"type": "array",
"default": [],
"items ":{

"$id":

#root/outputs/items",
"title "ltems",

"type": "string",

"default": "",

"pattern": "".«$"

}

"transitions ": {

"$id": "#root/transitions",
"title": "Transitions",
"type": "array",
"default": [],
"items ":{
"$id": "#root/transitions/items",
"title": "ltems",
"type": "object",
"required ": [
"from",
"label ",
"to
1.
"properties": {
"anchorPoint ":{
"$id": "#root/transitions/items/anchorPoint",
"title": "anchorPoint",
"type": "object",
"required ": [

]

"properties ": {
tx "
"$id": "#root/transitions/items/x",
"title": "x",
"type": "number”,
"default": "",

"pattern”: "A..§"

A
"$id": "#root/transitions/items/y",
"title": "y",
"type": "number",
"default": "",
"pattern": "M .«$"
}
}
I
“from":
"$id": "#root/transitions/items/from",
"title": "From",
"type": "string",
"default": "",
"pattern": "*.«$"
I
"label ": {
"$id": "#root/transitions/items/label",
"title": "Label",
"type": "string",
"default": "",
"pattern": "f.«$"
I
"to": |
"$id": "#root/transitions/items/to",
"title": "To",
"type": "string",

"default": "",
“pattern": "".«$"
}
}
}

}
"positions ": {
"$id": "#root/positions",
"title": "Positions",
"type": "array",
"default": [],
"items ":{
"$id": "#root/positions/items",
"title": "ltems",
"type": "object",
"required ": [
"label ",

y
"width"
1.
"properties": {

"label ": {

"$id": "#root/positions/items/label",

"title": "Label",

"type": "string",

"default": "",

"pattern": "M.«$"

[V
"$id": "#root/positions/items/x",
“title": "X",

"type": "number",
“default": 0

y"
"$id": "#root/positions/items/y",
“title": "Y",

"type": "number",

"default": 0

I
"width": {
"$id": "#root/positions/items/width",
“title": "Width",
"type": "integer",
"default": 0

Listing 6: JSON schema for a Composite component

"definitions ": {},
"$schema": "http://json-schema.org/draft -07/schema#",
"$id": "https://example.com/object1613469890.json",
title": "2",
"type": "object",
"required ": [

"label ",

"type",

"components",

"inputs",

"outputs ",

"positions"

1.

"properties ": {

"label ": {
"$id": "#root/label",
"title": "Label",
"type": "string",
"default": "",
"pattern": "f.«$"

}

"type": {
"$id": "#root/type",
"title": "Type",
"type": "integer",
"default": 0

’

"components ": {
"$id": "#root/components",

60

Morten Hartvigsen and Mikkel Pedersen

"title": "Components",
"type": "array",
"default": [],
"items ":{
"$id": "#root/components/items",
"title": "ltems",
"type": "object",
"required ": [
"label ",
"type”

"properties": {
"label ": {
"$id": "#root/components/items/label",
"title": "Label",
"type": "string",
"default": "",
"pattern": "".+$"

: "#root/components/items/type",
"title": "Type",

"type": "string",

"default": "",

"pattern": "*.«$"

"inputs": {

"$id": "#root/inputs",

“title": "Inputs",

"type": "array",

"default": [],

"items ":{
"$id": "#root/inputs/items",
“title": "ltems",
“type": "string",
"default" ",
"pattern”: "".«$"

}

"outputs": {

"$id": "#root/outputs",

"title": "Outputs",

"type": "array",

"default": [],

"items "
"$id": "#root/outputs/items",
“title": "ltems",

"type": "string",
"default": "",
"pattern": "f.«$"

}

"positions ": {

"$id": "#root/positions",

"title": "Positions",

"type": "array",

"default": [],

"items "
"$id": "#root/positions/items",
"title "ltems",

"type": "object",
"required ": [
"label ",

Yy
“width"

"properties": {
"label": {
"$id": "#root/positions/items/label",
"title": "Label",
"type": "string",
"default": "",
"pattern": "f.«$"

"$id": "#root/positions/items/x",
X,

"type": "number",

"default": 0

"y
"$id": "#root/positions/items/y",
"title s y",
"type": "number",

A Study on a Ecosystem Approach for
Model-Based Software Engineering

120 "default": 0 71 “title": "ltems",
121 1, 72 "type": "object",
122 "width " { 73 "required ": [
123 "$id": "#root/positions/items/width", 74 "guard",
124 “title ": "Width", 75 "type"
125 "type": "number", 76 1,
126 "default": 0 77 "properties": {
127 } 78 "guard ": {
128 1 79 "$id": "#root/cases/items/guard",
129 } 80 “title": "Guard",
130 81 "type": "string",
131 } 82 "default": "",
132 } 83 "pattern”: "".x§$"
133] } 84 b,
85 “label ": {
86 "$id": "#root/cases/items/label",
87 "title": "Label",
Listing 7: JSON schema for a Selective component 8 Lype ’ " "string”,
89 efau : s
1| { 90 "pattern”: " .«$"
2 "definitions ": {}, 91 b,
3 "$schema": "http://json-schema.org/draft -07/schema#", 92 "type": {
4 "$id": "https://example.com/object1614245601.json", 93 "$id": "#root/cases/items/type",
5 "title": "3", 94 "title": "Type",
6 "type": "object", 95 "type": "string",
7 "required ": [96 "default": "",
8 "label ", 9 "pattern”: "*.«§"
9 "type", 98 }
10 "initialCase", 99 }
11 "observer", 100 }
12 "cases", 101
13 "inputs", 102 s
14 "outputs", 103 "inputs": {
15 "positions" 104 "$id": "#root/inputs"”,
16 1, 105 “title": "Inputs",
17 "properties": { 106 "type": "array",
18 "label ": { 107 "default": [],
19 "$id": "#root/label", 108 "items "
20 "title": "Label", 109 "$id": "#root/inputs/items",
21 "type": "string", 110 "title "ltems ",
22 "default": "", 111 "type": "string",
23 "pattern": " «§" 112 "default" ",
24 I 113 "pattern”: "".«$"
25 "type": { 114 }
26 "$id": "#root/type", 115 N
27 "title": "Type", 116 "outputs": {
28 "type": "integer", 117 "$id": "#root/outputs"”,
29 "default": 0 118 “title": "Outputs",
30 I 119 "type": "array",
31 "initialCase ": { 120 "default": [],
32 "$id": "#root/initialCase", 121 "items "
33 "title": "initial Case", 122 "$id": "#root/outputs/items",
34 "type": "string", 123 “title": "ltems",
35 "default": "", 124 "type": "string",
36 "pattern": "f.«$" 125 "default": "",
37 N 126 "pattern”: "f.x$"
38 "observer": { 127 }
39 "$id": "#root/observer", 128 1,
40 "title": "Observer", 129 "positions ": {
41 "type": "object”, 130 "$id": "#root/positions",
42 "required ": [131 "title": "Positions",
43 "input", 132 "type": "array",
14 "dataType" 133 "default": [],
45 1, 134 "items "
46 "properties": { 135 “$id" #root/positions/items",
47 "input": { 136 “title": "ltems",
48 "$id": "#root/observer/input", 137 "type": "object",
49 “title": "Input", 138 “required ": [
50 "type": "string", 139 “label ",
51 "default": "", 140 "x",
52 "pattern": "M.«$" 141 "y,
53 b, 142 "width"
54 "dateType ": { 143 s
55 "$id": "#root/observer/dataType", 144 "properties": {
56 "title ": "Datatype”, 145 "label ": {
57 "type": "string", 146 "$id": "#root/positions/items/label",
58 "default": "", 147 "title": "Label",
59 "pattern": "M.«$" 148 "type": "string",
60 } 149 "default": "",
61 } 150 "pattern”: "".«$"
62 } 151
63 s 152 : |
64 "cases ": { 153 "$id": "#root/positions/items/x",
65 "$id": "#root/cases", 154 "title": "X",
66 "title": "Cases", 155 "type": "number",
67 "type": "array", 156 "default": 0
68 "default": [], 157 b,
69 "items ":{ 158 "y
70 "$id": "#root/cases/items", 159 "$id": "#root/positions/items/y",

160

Gos ot

"title": "Y",
"type": "number",
"default": 0
I
"width ": {
"$id": "#root/positions/items/width",
"title": "Width",
"type": "number",

"default": 0

B COMPILER NODES
B.1 Composite Component Node

The Composite Component node contains a list of children which

are all the modules that are to run orthogonal inside this component.

Besides that, it includes a reference to its parent, i.e. the Module
Node. This reference has shown through empirical testing to be an
excellent property to have for some code generators.

Listing 8: CompositeComponentNode in pseudocode

class CompositeComponentNode {
String;

type = "CompositeComponentNode";
children: List <ModuleNode >;
typeLookUpTable: Map<String,
parent: ModuleNode;

name:

String >;

B.2 Selective Component Node

The Selective Component node contains a list of children which
are all the cases that the selective entry should consider. Besides
that, it includes a reference to its parent, i.e. the Module Node. This
reference has shown through empirical testing to be an excellent
property to have for some code generators.

Listing 9: SelectiveComponentNode in pseudocode

Morten Hartvigsen and Mikkel Pedersen

B.4 Guard Node

The Guard Node contains the information necessary to evaluate
whether a given case should be active or not. The property stream
contains the name of the input message channel that includes the
data to assess. The property guard contains the expression that
should use to evaluate the boolean result.

Listing 11: GuardNode in pseudocode

GuardNode {

name: String;

type "GuardNode";

stream: String;

guard: Expression;
typeLookUpTable: Map<String ,
parent:CaseNode;

String >;

B.5 State Node

The State Node represent a specific state that a simple component
can be in. The property children contain all the allowed transition
away from the particular state.

Listing 12: StateNode in pseudocode

StateNode {

name: String;

type = "StateNode";

children: List<TransitionNode >;
typeLookUpTable: Map<String, String>;
parent: SimpleComponentNode;

B.6 Transition Node

The Transition Node contains all the information to perform a
transition internally in a Simple Component. The property "from"
contains the name of the source state, the label is the event that
should happen for activation, and the "to" property has the name
of the target state.

Listing 13: TransitionNode in pseudocode

SelectiveComponentNode {
String;

type = "SelectiveComponentNode";
children: List <CaseNode >;
typeLookUpTable: Map<String,
parent: ModuleNode;

name:

String >;

B.3 Case Node

The Case Node represents a case in the Selective Component. It
contains a component property that holds a ModuleNode and means
which component should activate if the guard is true. The Guard
Node is in the guard property. Besides this, it also contains an initial
property that is true if this particular case should be considered the
default case, either at bootup or if no other guard is true.

Listing 10: CaseNode in pseudocode

class CaseNode {
var name: String;
var type = "CaseNode";

guard: GuardNode;

component: ModuleNode;
typeLookUpTable: Map<String, String>;
parent: ModuleNode;

initial: Boolean;

class TransitionNode {
var name: String;
var type = "TransitionNode";
var from: String;
var label: String;
var to: String;

typeLookUpTable: Map<String, String>;
parent: SimpleComponentNode;

B.7 Stream Node

The Stream Node symbolizes a communication "direction", either
input, output or environment. In our use case, the environment is
the stream of browser events that a Module might need for tran-
sitions inside the component of its body. The property children
contain a list of identifiers that are the name of the streams.

Listing 14: StreamNode in pseudocode

StreamNode {

name: String;

type = "StreamNode";

children: List<ldentifierNode >;
typeLookUpTable: Map<String, String>;
parent: ModuleNode;

A Study on a Ecosystem Approach for
Model-Based Software Engineering

B.8 Identifier Node

The Identifier Node simply holds an identifier name in the name
property. This node is helpful since the identifiers might be have
meaning outside the generated code.

Listing 15: IdentifierNode in pseudocode

IdentifierNode {

name: String;

type = "IdentifierNode";
typeLookUpTable: Map<String,
parent: StreamNode;

class

String >;

C TASKS

Listing 16: Task two

In this task, you should create a "composite” component where you
should make a dropdown button with the following
functionalities:

+ When you hover one of the options, should be
highlighted

» When you press the button, then the options should be visible

» If you press the dropdown menu button, then the options should
disappear or if you press outside of the dropdown button

« If you press one of the options, then the menu should disappear,
and the selected option should be logged

then the option

You have got the needed HTML and CSS to solve the task. Your task
is to model this component, paste it into the given project,
and bring everything to work with the functionalities
mentioned above.

Listing 17: Task three

In this task, you should create a "selective" component with the
following functionalities:

+» A input field where the user can write some text

+» If you write "1", then there should be shown some text, and if
there is nothing or you write anything else than "1", then
another piece of text should be shown

You have got the needed HTML and CSS to solve the task. Your task

is to model this component, paste it into the given project,
and bring everything to work with the functionalities
mentioned above.

Listing 18: Task four

This task is optional

In this task, you should use everything you have learned in the
previous tasks. The task is about showing two components
depending on what the user writes. It should have the
following functionalities:

» A text input field where if you write "1", then the toggle

component(Task 1) should be shown,
you write anything else than "1",
component(Task 2) should be shown
» The Toggle component should work as described in Task 1
» The dropdown component should work as described in Task 2

and if there is nothing or
then the dropdown

You have got the needed HTML and CSS to solve the task. Your task
is to model this component, paste it into the given project,
and bring everything to work with the functionalities
mentioned above.

	Abstract
	1 Introduction
	2 Related work
	2.1 Tools/frameworks
	2.2 Model-Based Software Engineering

	3 Vision of ecosystem
	3.1 System Specification Format

	4 Preliminary Work
	5 The Compiler
	5.1 The Tokenizer
	5.2 The Parser
	5.3 Code Generator

	6 Benefits of Model Based Software Engineering
	6.1 Makes Development Faster
	6.2 Easier to Change
	6.3 Ease of Collaboration

	7 Workshop
	7.1 Tasks
	7.2 Results from workshops

	8 Conclusion
	9 Future work
	References
	A JSON schema
	B Compiler nodes
	B.1 Composite Component Node
	B.2 Selective Component Node
	B.3 Case Node
	B.4 Guard Node
	B.5 State Node
	B.6 Transition Node
	B.7 Stream Node
	B.8 Identifier Node

	C Tasks

