
Deadline Danger Detection Solutions for an
Industrial Batch System using Tivoli Workload

Scheduler for z/OS
Emil Ernstsen, Peter Borch Greve

Abstract

The banking industry contains large batch systems, including many jobs to be run. This leads to scheduling and monitoring
being essential techniques to improve these batch systems. This paper goes in-depth with monitoring of a batch system provided
by the danish it company, BEC. BEC uses the Tivoli workload scheduler for z/OS, in order to schedule their batch days. We,
therefore, seek to provide insights into TWS and the runs of batch days by creating the tool D3P. This tool is able to retrospectively
analyze and give insights into the completed batches, as well as providing an overview of historical data for each individual job.
Through this work we present the considerations that went into designing this tool, as well as the final results of experiments
testing multiple slightly different solutions. Through these experiments we find that estimating execution times of individual jobs
can be difficult as a wide variety of contexts can impact the execution time immensely. We also found that using our two IBM-
inspired methods for calculating the latest starts of jobs provided equal results, but there is a potential for the D3P-method to
provide better results given more deadline jobs and longer critical paths.

I. INTRODUCTION

In modern day banking and financial industries, batch systems play an essential role. This is a result of the immense amount
of data that needs to be processed on a daily basis [1]. However, the size of these batch systems can make it difficult to
locate and solve a problem, when one occurs in the system. This is what this paper seeks to address. We were given a case
related to this by the Danish financial IT company BEC [2], who this project is made in collaboration with. Furthermore, we
seek to provide value to the company BEC by looking further into the case given to us and thereby producing a piece of
software, which is able to provide insight into BEC’s batch system. We call the software system Dangerous Deadline Detection
Program (D3P). D3P should have some sort of user interface that the BEC employees are able to interact with in order to
gain this insight. D3P should also provide the tracking that results in a better understanding of what the problem with a job
is or which context might result in the job being late. For D3P we also need some way to monitor if the batch is progressing
acceptably. For this we present the deadline detection solution methods, which we call the D3P-method and the IBM partial
re-implementation, both inspired by the already existing solution made by IBM, but modified to fit into BEC’s system. The
D3P method was developed to see if it could provide better tracking than the IBM partial re-implementation.

A. Case

The case was given to us by BEC, and insights into their system was found in an earlier project containing classified
information [3]. The case focuses on BEC’s use of IBM Workload Tivoli Scheduler for z/OS, as some of their batch jobs
might finish later than their deadline. Therefore, we seek to produce a tool that will be able to monitor whether the batch
progresses acceptably. For this tool we will compare two solutions to see which is best for monitoring how the batch progresses.
We will, alongside the IBM solution, also present our own D3P solution, which is inspired by the IBM solution. This tool
should, beside being able to monitor batch progress, also be able to provide profound insight into the system, such as into the
history of the jobs. Throughout the project we had meetings with BEC to regularly verify whether the tool provides further
insight into their system. Furthermore, we used these meetings to find what new insights might be needed in order to provide
as much value as possible.

B. Related Work

As this paper focuses on a somewhat niche area, batch system monitoring and tracking in an industrial setting, the work
related to this is not directly related but do share some aspects in the problem or the solution. The authors in [4] present
batch systems as large and complex with little to no end-to-end transparency. They present their ”if-what analysis” as a tool
to compute the impact of a certain change in the system, whereas we seek to get insight into the system to locate what might
need to be changed. In [5] they present a web based job monitoring and group-and-user accounting tool for the LSF Batch
System. This is also somewhat different from what we want to achieve, as we do not necessarily need a web based tool,
neither do we seek to make a tool for group-and-user accounting regarding the batch system at BEC. They also seek to be an
online tool, which in our case would be a goal for future versions but not a necessity for this project. We rather seek to show
a proof of concept regarding the live features, as well as retrospectively provide insight into the batch system of BEC. The



2

author in [6] presents the tool BOSS, which is a tool made for batch job monitoring and book keeping. This tool was made
to accommodate the large amount of jobs needed for large physics experiments, where it is able to accommodate the different
types of jobs that might be needed in this field. Here the job type is defined by the parameters selected for monitoring, and a
set of executables that contain the algorithms to determine the values of the parameters. This is more or less related to what
we want to address in this paper. This is the case where we, such as they did, wish to create a job monitoring system able to
monitor jobs regarding an area of interest. BOSS was a tool for monitoring physics experiment jobs, whereas our tool will be
able to monitor the batch system provided by BEC. From the paper about BOSS we see that a tool for monitoring jobs can
deliver value regarding large batch systems as to gain insight into what is happening within the batch system.

C. Outline

Section II presents the Tivoli Workload Scheduler for z/OS. This is the heart of BEC’s daily batch operations. Section III-A
presents how IBM is currently handling their deadline danger detection and how a critical path works. In Section III-C we
present our modified solution to how we could calculate the critical path.

II. TIVOLI WORKLOAD SCHEDULER FOR Z/OS

BEC uses Tivoli Workload Scheduler for z/OS (TWS) [7], which is at the heart of their daily batch operation. This means
that a complete change of scheduler is hard to pull off due to how ingrained it is in their daily operations and employees
alike. From this conclusion it is clear that to avoid the costly and risky change of scheduler, a solution that can interface with
TWS is more desirable in the context of BEC. As there is no intent to replace TWS, we will need to properly understand the
behavior that it exhibits in order to employ the proper monitoring and analyzing strategies. Therefore, we will focus on the
aspects of TWS that are important in the context of monitoring and analyzing done by D3P.

To do this we will start by defining the components that TWS uses:
a) Job: A job is a representation for the program that must be executed and thus internally holds the instructions. However,

on the scope of the batch execution, the internal instruction set, data references, etc. is of no importance. However, what does
exert an impact is the expected execution time, actual execution time, and the historical development of the execution time of
the individual job. Thus, these are the attributes that we seek to monitor and provide feedback on suboptimal tendencies that
may occur.

A job can be uniquely identified by a 3-tuple (a id, ia time, opno) Where a id is the application id, ia time is the input
arrival time and opno is the operation number that the job has in its application. Although these three attributes are enough to
uniquely identify jobs we opt to use a 4-tuple which in addition includes the job name: (job name, a id, ia time, opno).
The reason for this is that BEC has chosen to additionally group jobs into batchgroups and the jobs associated department,
both of which are defined in their naming convention on the job name. Although, this has no inherent differences for the user
of D3P, various groupings and search becomes easier to implement.

b) Application: An application is a collection of jobs with unique operation numbers (opno). Note here that opno has no
impact on the order of which jobs, in the given application, are executed. Although, they have additionally uses, in the context
of this project none of this functionality is deemed important.

c) Daily plan: The daily plan is a subset of all jobs, and is the set of jobs that are to be executed in the given batch run.
d) Dependencies: Jobs are connected by a series of dependencies that each define the last jobs only that must be finished

before any given job, thus creating an order to the execution of jobs. There are two different types of dependencies, namely
internal and external dependencies. All dependencies from jobs in one application to a job in another is considered external,
while almost all dependencies from a job within an application to a job within the same application is considered internal.
The exceptions here are that dependencies between jobs in the same application can be explicitly marked as external. The
dependencies between jobs are, however, not static, not only because the relations between jobs can change daily, but also
because there are exceptions that can invalidate any given dependency. These exceptions are as follows:

1) If either the child or parent job is not present in the daily plan
2) If the childs ia time is strictly greater than the parents ia time
3) if the parent and child jobs are in the same application, but the dependency is marked as an external dependency and

the childs ia time is greater than or equal to the parents ia time

The reason for exception rule 3) is to ensure that a dependency can be given from the first job, to execute in an application, to
the last job, to execute in the same application. This is needed as there are no restrictions that all jobs in an application cannot
be executed multiple times in the same batch as well as an application from a previous, unfinished, batch can be executed at
the same day as current batch. However, that these multiple runs are not executed concurrently is a desired feature, as the jobs
within the application would most likely work on the same areas of memory, likely leading to race conditions.

e) Deadlines: A job can also be associated with a deadline, although it is not required. Deadlines are always specified
with an offset in days from the ia time date and a time specifying the time on the calculated day that the deadline is set.



3

Fig. 1: D3P components

III. DEADLINE DELAY DETECTION SOLUTIONS

In this section we present the various methods used to determine when a warning will be thrown. We have three methods
we look into that are all very similar but do distinguish themselves in some key areas, which will be the main focus of this
section. However, to properly understand how these methods work, we will first explain some of the underlying concepts;
latest start, critical network and critical path which all three methods are build on.

a) Latest start: The major pillar behind these solutions is the concept of a latest start. The latest start is, as implied by
the name, the latest a job can start before it is certain that a deadline job, which is dependent on this job, will not be able to
meet the deadline. Note here that this means not all jobs will necessarily have a latest start which can be calculated, as it is
not certain that either job or any (transitive) child job has a deadline.

The latest start is calculated by starting from a deadline job, then the latest start (LS) is equal to the deadline minus the
expected execution time. Then recursively for all children C we calculate the LS as shown in equation 1.

LS = parent LS − expected execution time (1)

b) Critical network: The critical network (CN), see Figure 2, is given for all deadline jobs by the set of all jobs from
which a latest start is calculated from that deadline job. This means that the CN is defined as all jobs that, exceeding their
latest start, will result in the job not being able to meet the deadline.

c) Critical path: A critical path is a subset of the CN, where for each level of predecessors in the CN, the process
chooses the most critical one and includes it in the critical path. The most critical one is the predecessor with the latest end
time.

d) The three methods: In the following sections we will describe the three methods for looking at latest start that we
have explored. First of, we will describe the method that is an existing part of TWS, as this has been the major inspirational
feature for the following methods. As will become clear through the following sections, however, we have no option to test this
on the batches BEC runs. This leads us to look into the two methods we have created, which both are a part of the D3P tool,
as can be seen in Figure 1. Here we have the IBM partial re-implementation, which is made for the purpose of mimicking,
as close as possible, the method used in the existing TWS solution. Lastly, we will present the slightly modified D3P method
and how this intends to improve how latest starts are used.

A. Features in the IBM Solution (IBM-original)

The existing solution for latest start monitoring, build into TWS, contains a wide variety of features that can help monitor
and assist in correcting issues and delays that can result in missed deadlines. Especially the possibility to actively make
changes to the daily plan, priorities, and more at runtime, gives the existing IBM solution incredible power as a tool. However,
as mentioned earlier, we are not able to test nor observe this solution in action, as BEC does not utilize it. As such even
though they can hold great potential, all the features that require being able to make changes or input to the system in any
way is collected in a feature as ”automation”, as seen in Table I. In this table we also see one of the reasons the existing
IBM solution is not used by BEC; namely the use for knowing the exact (or somewhat precise) execution time of each job.
However, obtaining this knowledge can be a daunting task, and to our knowledge currently BEC does not have a method nor
the possibility to obtain these.

Even though we do not know the best way to go about obtaining the required knowledge of the execution times, it is clear
that the task is relatively large. This is not only due to the sheer amount of unique jobs that can be part of each batch, but
also as each unique job can run in a vast amount of different contexts like the amount of data the job needs to process, how
many concurrent jobs that share its special resources, and what time of month or year it runs. The result of this is a high
barrier of entry to utilize the features, and sparks the motivation for constructing a subset of the features with a lower barrier



4

Fig. 2: Latest start example

of entry. This is what is displayed in the table as the IBM re-implementation, which is a solution we have created to mimic
the functionality of latest starts and critical paths, as seen in the IBM solution.

The main monitoring feature we wish to mimic is to continuously monitor that no job exceeds its latest start, as this gives
an early warning system when jobs will exceed their deadline earlier in the batch. Having this information earlier can help
provide the insight to either fix or mend the issue by changing the priorities or other measures.

a) Example of latest starts as done by IBM: To give an example of how the latest starts are both calculated and used,
we have a small fictional set of jobs as part of the daily plan, as seen in Figure 2. In this figure we see boxes representing
individual jobs and lines between them indicating dependencies. The first job to be executed will be the start job located in
the bottom of the figure, as the remaining jobs are either directly or transitively dependent on this job. On the figure we have
a single job with a deadline P-job 1. Here we see that the latest start of each job in the critical network is calculated, as
explained in Section III, recursively with root at the deadline job. For the IBM solution a warning will then be thrown when
a job with a latest start has not yet started by that time, for each deadline job that is transitively dependent on this job.

B. IBM Partial Re-implementation (IBM-re-imp)
Although the re-implementation mimics the original IBM solution, not having access to precise execution times is a limiting

factor that we have to work around. To achieve similar results, we seek to work with estimates of expected execution time.
These estimates are calculated from historical data, but as they are estimates we need to acknowledge the uncertainty in these
and both try to minimize it, as well as express the uncertainty to the user. We choose to express this uncertainty through our
warning system, such that we will give two different levels of warnings when monitoring whether jobs exceed their latest
starts. As such, a given job J with an estimated execution time of X minutes with an uncertainty of Y minutes, will calculate
all latest starts using only X. However, when checking if a job has exceeded its latest start, a low certainty level warning
(yellow warning) will be thrown according to equation 2, similarly the high certainty level warning (red warning) will be
thrown according to equation 3.

yellow warning : current time > latest start(J)− Y (2)

red warning : current time > latest start(J) + Y (3)

C. Dangerous Deadline Detection Program method (D3P-Method)
The D3P method as a solution is, like the IBM-re-imp, inspired by the IBM solution. Where the D3P method differs

compared to the IBM solution is regarding the Latest Start, where both the IBM and IBM-re-imp solutions only accommodate
one latest start per job even in the case of overlapping critical networks.



5

Fig. 3: Latest start example

Feature IBM-re-imp D3P-method IBM-original
Can use exact job duration � � �
Can use historic data to estimate job durations � � ×
Warning thrown when job exceeds latest start � � �
Warning thrown when job running longer than exact job duration × × �
Warning thrown when job ends in error � � �
Multiple latest starts × � ×
Automation × × �

TABLE I: Feature Table

To understand the impact of having only a single latest start per job versus having multiple, we will take the example from
Figure 2 and expand it so that we will have overlapping critical networks from different deadline jobs. This expansion can be
seen in Figure 3. In this figure we have three jobs with deadlines: M-job, P-job 1, P-job 2. We can see that the critical networks
from P-job 1 and P-job 2 overlaps at job 7 and the start job. However, due to the changes in deadlines and accumulated duration
until this overlap, results in two different latest starts, one for each deadline job. However, in the Existing IBM solution and
the IBM-re-imp, having multiple latest starts for a job is not possible. This means that a choice of what latest start to use must
be made. However, no good choice can be made. The choice that is made by the existing IBM solution and the IBM-re-imp
is to always choose the earliest latest start, this however comes with an edge case that is not handled. This can be seen when
we look at job 7 from the figure the latest start from P-job 1 would be 21:19, while the latest start from P-job 2 is the selected
value of 20:19, as marked on the figure. However, lets assume that the job starts at 20:45. This means that P-job 2 should no
longer be able to meet its deadline while P-job 1 can. Although this distinguishing between which job is going to be late and
which will not is not possible from the information of a single latest start. This means that as the earliest latest start is selected
both P-job 1 and P-job 2 would get a warning indicating that none of the jobs will make it by the deadline even though this
is not the case.

Given that the option to have multiple latest start on each job is a feature which is missing even in IBM-re-imp, we will
in this paper conduct experiments on the impact of being able to have multiple latest start for each job for BEC. This is also
why we have decided to create the IBM-re-imp, since this can be used as a reference point. Furthermore, as both D3P-method
and IBM-re-imp work with estimates and uncertainty, any changes in result, if any, can be attributed to this change in having
the option for multiple latest starts on each job.



6

Day 1 2 3 4 5 6 7 8 9 10 11 12
Date 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-29 2021-03-30 2021-03-31 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-12
Jobs in batch 48048 48672 48686 17857 50435 51395 40879 18164 49807 49799 32222 41251
Deadline Jobs 400 401 400 114 398 398 335 184 398 398 283 308

TABLE II: Amount of jobs in batch day and amount of deadline jobs in batch day

Day 1 2 3 4 5 6 7 8 9 10 11 12
Deadline jobs w. at least one overlap in CP 48 48 50 26 50 48 4 30 48 50 4 22
Deadline jobs avg overlap in CP 0.7 0.7 0.7 2.2 0.7 0.7 0.1 1.4 0.7 0.7 0.0 0.1
Deadline jobs avg overlap in CP w. at least one 5.6 5.6 5.4 9.5 5.4 5.6 1 8.3 5.6 5.4 1 1
Max overlap in CP 14 14 14 14 14 14 1 14 14 14 1 1

TABLE III: Critical path statistics

IV. EXPERIMENTS

As the two solution methods have now been presented, we can begin to compare them. Afterwards, we conduct experiments
where the performance of the two will be compared, as well as experiments to gain more in-depth knowledge of the data on
a particular batch day.

A. Setup

In order to compare the two solutions, we set up experiments to see how the two fare compared to each other. Depending
on the experiment, different parameters were set up to either measure the performance of the two solutions or to get a better
overview of the data. The parameters can be split into two categories, warnings and critical path. The warnings parameters
will measure how each solution fares regarding the handling of warnings, as explained throughout Section III. The critical
path parameters are primarily used to get a better understanding of the data regarding a specific day. As we focus on detection
of warnings, we therefore experiment with different functions for calculating the Estimation Method, which is the method for
when a warning should be detected. For this estimation method we will run experiments with three different functions.

The first one will calculate a simple mean function of standard deviations of all historic runs for each specific job, we call this
”Mean”. The second one will calculate a standard deviation of the historic standard deviations, we call this ”StandardDev”. The
third will calculate a mean of the standard deviation of standard deviations, we call this ”MeanStandardDev”. The equations
for calculating these can be seen in Equations 4 through 7, where σ denotes the standard deviation of a given set.

Mean(Job) =
∑

(hitorical job durations(Job)) / historical job durations(Job).len (4)

StandardDevSet(Job) = {σ(x) | x = all historic job durations and x.len = historical durations(Job).len} (5)

MeanStandardDev(Job) =
∑

(StandardDevSet(Job)) / StandardDevSet(Job).len (6)

StandardDev(Job) = σ(StandardDevSet(Job)) (7)

Table II shows the amount of jobs that a given batch day contains alongside the amount of deadline jobs for that given day.
The amount of jobs and deadline jobs will not differ for the batch day throughout all the experiments.

B. Critical Path

In Table III, we see the critical path statistics. These statistics are for each day and should be kept in mind when we
compare the D3P method and the IBM-re-imp. The critical path statistics are important in this matter, as the D3P method
seeks to improve the results by handling the edge case, explained in Section III-C, better than the IBM-re-imp. The critical
path statistics describe how intertwined the deadline jobs are in their critical paths. In the table, CP stands for critical path.
Deadline jobs w. at least one overlap in CP describes how many deadline jobs has a member in their critical path which they
share with another deadline jobs critical path. Deadline jobs avg overlap in CP shows the average amount of overlaps in the
critical path for all deadline jobs, whereas Deadline jobs avg overlap in CP w. at least one shows the average overlap for
deadline jobs that has at least one overlap. Max overlap in CP shows the maximum amount of overlap for a single deadline
job on the given day.



7

Solution method D3P-method IBM-re-imp
Estimation method Mean StandardDev MeanStandardDev Mean StandardDev MeanStandardDev
Day 6 6 6 6 6 6
Amount of jobs w. red warning 12 12 11 12 12 11
Amount of jobs w. yellow warning 42 285 289 42 287 291
Amount of correct red 12 10 8 12 10 8
Amount of wrong red 0 2 3 0 2 3
Percent correct red 100% 83% 73% 100% 83% 73%
Amount of correct yellow 18 204 207 18 204 207
Amount of wrong yellow 24 81 82 24 83 84
Percent correct yellow 43% 72% 72% 43% 71% 71%
Avg time red was thrown before deadline 0 204 210 0 204 210
Avg time yellow was thrown before deadline 123 9 11 123 22 24

TABLE IV: Estimation method comparison

Time 5 Minutes 2 Minutes 1 Minute 30 seconds
Day 6 6 6 6
Amount of jobs w. red warning 12 12 12 12
Amount of jobs w. yellow warning 42 43 44 44
Amount of correct red 12 12 12 12
Percent correct red 100% 100% 100% 100%
Amount of correct yellow 18 13 8 8
Percent correct yellow 43% 30% 18% 18%
Avg time red was thrown before deadline 0 1 0 0
Avg time yellow was thrown before deadline 123 121 119 119

TABLE V: Time interval table

C. Estimation Methods

To find the best Estimation Method for each individual solution, we conducted experiments where both the D3P method and
the IBM-re-imp made use of each Estimation Method. The experiments were conducted for each solution, using every method
throughout all the batch days, as presented in Table II. Table IV shows the results for the D3P method and IBM-re-imp using
each method. In order to compare the results, day 6 was chosen, as this day contains the most amount of jobs. If we first take
a look at the D3P method and the three estimation methods, we see that ”Mean” and ”StandardDev” find the largest amount
of red warnings, 12, where ”Mean” finds them with 100% accuracy, whereas ”StandardDev” has about 83%. This indicates
that ”Mean” will be best for finding the amount of jobs with red warnings. What is also noteworthy is that the average
time red was thrown before the deadline is remarkably larger with ”StandardDev” and ”MeanStandardDev”, being 204 and
207 minutes, respectively, whereas it is 0 minutes with the ”Mean”. We speculate this to be due to the wrong red warnings.
Furthermore, this table shows that ”Mean” has the lowest amount of yellow warnings, 42, whereas the ”StandardDev” and
”MeanStandardDev” methods had 285 and 289, respectively. This might indicate that the two latter mentioned methods might
be better, especially if we also take a look at the percent correct yellow, where they both have about 72% accuracy and
”Mean” only has about 43%. However, even though the percent correct is better, we also see a noticeable rise in amount of
wrong yellow warnings, from 24 in ”Mean” up to 207 in ”MeanStandardDev”, and a fairly large decrease in average time
yellow thrown before deadline, from 123 minutes down to 9 and 7 minutes in ”StandardDev” and ”MeanStandardDev”. This
is due to how we calculate the ”StandardDev”, as we aggregate the data points for jobs with similar sample sizes. These
results indicate that such an aggregation of data points might not be valid and thereby invalidating the estimation methods
”StandardDev” and ”MeanStandardDev”. There can be a multitude of reasons why this aggregation method does not work.
The most likely reason being similar execution times of jobs that run equally often is not sound. It could also be that there
are no correlation between job that can help determine the execution time for any individual job. Due to the uncertainty on
how any aggregation could be done and that the results do not support our attempts of data aggregation, we decide to move
forward with distinguishing jobs uniquely, which is only supported by the ”Mean” method.

D. Query Time Intervals

When deciding how often to query TWS, we wanted to continuously be able to monitor the progress and, therefore, decided
that we wanted to query with 5-minute intervals. However, we wanted to see the effect that querying more often would have.
We, therefore, conducted experiments with shorter time intervals. The results can be seen in Table V. The experiments were
conducted with intervals of 5 minutes, 2 minutes, 1 minute, and 30 seconds. The tendencies shown in Table V suggest that



8

Day 1 2 3 4 5 6 7 8 9 10 11 12
Amount of jobs w. red warning 10 11 15 4 11 12 7 6 11 12 13 6
Amount of jobs w. yellow warning 30 30 34 8 33 42 39 10 33 33 26 24
Amount of correct red 10 11 13 2 11 12 7 6 11 12 10 6
Amount of wrong red 0 0 2 2 0 0 0 0 0 0 3 0
Percent correct red 100% 100% 87% 50% 100% 100% 100% 100% 100% 100% 77% 100%
Amount of correct yellow 16 16 16 2 17 18 22 6 16 17 15 14
Amount of wrong yellow 14 14 18 6 16 24 17 4 17 16 11 10
Percent correct yellow 53% 53% 47% 25% 57% 43% 56% 60% 48% 51% 57% 58%
Avg time red was thrown before deadline 0 0 170 440 0 0 0 1 0 60 35 0
Avg time yellow was thrown before deadline 63 63 134 329 114 123 29 277 64 121 14 7
Avg time correct red was thrown before deadline 0 0 425 440 0 0 0 0 0 0 95 0
Avg time correct yellow was thrown before deadline 133 133 251 437 230 207 62 683 123 230 11 13
Avg time wrong red was thrown before deadline 0 0 0 0 0 0 0 1 0 60 0 0
Avg time wrong yellow was thrown before deadline 2 2 2 3 5 11 3 6 2 18 16 2

TABLE VI: D3P & IBM-re-imp

shorter time intervals produce worse results. This claim is supported by the results seen in the percent correct yellow, where
we see 43% of the yellow warnings are correct in 5 minute intervals and drops to 30% with 2 minute intervals and further
drops to 18% when having 1 minute intervals. Furthermore, it is worth noticing that the percentage does not drop further when
having 30 second intervals, as we only work with minutes in D3P. The reason for the drop in percent correct yellow is likely
due to some jobs with short execution time and with relatively large standard deviation according to the execution time.

Example: Job A has an expected execution time of 1 minute and a standard deviation of 1 minute. If the deadline for job
A is 8:00, the latest start would be 7:59 and we would throw a yellow warning at 7:58.

With 5 minutes the warning in the example would not necessarily be thrown unless we were querying at 7:58. Shorter time
intervals are, therefore, more prone to jobs with large standard deviations relative to their execution time. This claim is also
supported by the decreasing average time of when yellow warnings are thrown before the deadline, as seen in Table V.

E. D3P-method vs IBM-re-imp

For this experiment we wanted to test the two solutions against each other by comparing them across different parameters.
The experiment was conducted to see which method would serve as the best one to use in D3P. The experiment showed
identical results, therefore, we can see the results for both methods in Table VI. The reasons why they show identical results
are due to two main reasons. The first reason is that the methods are fairly identical and the difference between them being
the ability to handle multiple latest starts, as shown in Table I. This ability allows D3P to handle the edge case, which was
explained and exemplified in Section III-C. This leads to the second reason, which is amount of deadline jobs and the length
and overlaps of the critical path. By how the D3P-method work then it should show better results when there are many deadline
jobs, the critical paths overlap, and the critical paths overlap deep in the dependencies. As shown in Table II, we see that we
have about 400 deadline jobs for a majority of the batch days, which does not amount to much when a batch day can contain
up to more than 50,000 jobs. Furthermore, we see in Table III, that the amount of deadline jobs with overlaps is at most 50,
which does not allow D3P to show its promise, as we also see that average amount of overlaps in the critical path, when a
deadline job contains at least one overlap, is at max 9.5.

With these results and these considerations in mind, we argue that the method we will use in D3P should be the D3P-method.
The reasoning for this is that the results for the two methods are identical, but D3P is able to handle an edge case which
IBM-re-imp is not and, therefore, it should be best using the D3P-method going forward.

V. D3P TOOL

The D3P tool was made to be used by BEC. This tool was developed with the intent to provide insights into their batch
systems and the individual jobs. The tool has a simple UI, as seen in Figure 4, which could be further developed. However, a
simple UI is all that is needed for the proof of concept of this tool.

A. Intended Use

The intended use of the tool, that is the D3P software, is to provide insight into different aspects of the batch system that
BEC has provided. This tool should provide features that make it possible for BEC to gain insights needed to solve issues
within the batch system. The tool, however, is not intended to solve the issues, and is a read-only tool without the capabilities
to make changes within the batch system. It is a monitoring tool that should be able to provide retrospective analysis of a given
batch day’s run. This retrospective analysis should provide insights into the individual jobs, delays on jobs, and the critical
paths. This will be further elaborated upon in the following section.



9

B. D3P Features

The two main feature categories for D3P lie within the retrospective analysis and the live tracking, which we will further
elaborate upon.

1) Retrospective Analysis: As we are required to work with historical data to calculate the estimated execution time used
for live monitoring the batch, we also worked on some features that can help BEC gain an overview of completed batches and
overall statistics for these.

a) Job insight: The first feature for retrospective is on the individual job level. Here we will display for the user the
general information that is known based on the historical data, such as:

• The average execution time
• The sample size
• The standard deviation
• Max and Min execution times
• Amount of times the jobs end in error
All these metrics are to provide insight into any job, such that if a job runs longer than expected it can be evaluated in

context to historical data. However, this is not perfect due to impact on these parameters, which can be caused by the specific
context of any given day. Through dialogue with BEC we decided to give D3P the ability to also list each day individually to
give the user the option to manually review execution times in the context of the specific day it was set to run.

b) Delays on jobs: All of the metrics listed above have to do with execution times and how the runs went. BEC, however,
expressed the need to also have insight into when the jobs are running. More precisely, to be able to see tendencies if jobs start
later in the batch than expected. To define a metric that is generic across days is difficult, as the scenario changes daily, resulting
in a wide number of reasons that a job is executed early or late in the batch. To normalize this into a more comprehensive
metric, we decided to look at the the completion time of jobs compared to the input arrival time of the job on that day. By
averaging these durations from input arrival to completion, we will get a single number that can express if the job is run early
or late in the batch.

c) Critical path insight: In addition to the job insight and the delays on jobs, we also provide insight into the critical
path for all the defined deadline jobs in the system. When the user selects a deadline job in D3P, it will show the critical path.
D3P is also able to display a resource scheme of jobs using processing power in intervals when neither the deadline job nor
its critical network is progressing. As it is not necessarily a bad thing that there is no progress on a critical network for any
given deadline job, we also provide a list of deadline jobs of which critical networks do have progress in that time interval.
This is done, as whether it is an issue to not have progress on a critical network for a deadline job, is solely determined by
where the resources are then being used. This is a difficult concept to define, which is why it is left up for manual review.

2) Live Tracking: One of the major selling points of the IBM-original solution, mentioned in Section III-A, is the possibility
for automatically applying changes to keep a batch on time, but also all of the insights, on possibilities that can come with an
early warning system. Although it is not a possibility for D3P to automatically apply any changes to priority etc, it can still
give the option to do so by the information of what deadline job is in danger of exceeding the deadline. However, the data
from the running batch that we are provided are extracted through software called XINFO, a built-in tool for TWS, which
currently in the context for BEC does not allow to extract any data live, but only with a few hours delay which renders live
tracking unusable. Although getting data from TWS live should be possible, it is not feasible for BEC to establish a pipeline
for this within the given time frame.

Although the option for live tracking is not possible this time around, all the value is not lost as the batch day and step
by step progression will have to be simulated to provide the insights described in Section V-B1. So by simulating the day by
continuously making more and more data visible to the system as it would have been provided during the actual batch run, we
can still provide a retrospective overview similar to a complete log of warnings given throughout the batch. The insight this
can provide is that, should a deadline be exceeded, then it is easier to find the reason why this happened after the completion
of the batch. This can be a hard task as the reason for this could have happened anywhere in the critical network, be it delays,
jobs running longer than expected, or even jobs ending in error. Hopefully, a warning telling you much earlier in the batch that
the deadline at this point can no longer be met, can substantially narrow down the search for the root cause of the exceeded
deadline. As such the live tracking feature can also be used retrospectively.

VI. CONCLUSION

Throughout this paper we explored the batch system provided by BEC and the Tivoli Workload Scheduler for z/OS, a
tool BEC uses for scheduling their batch jobs throughout their batch day. We then looked into deadline danger detection
solutions, where three different solutions were presented and the features each solution support were presented in Table I.
Through experiments we found several key results. Firstly, we found that the only valid estimation method we made was
”Mean”. Secondly, we found that shorter time intervals for querying did not provide better results. Thirdly, we found that the
D3P-method and IBM-re-imp provided the same results given the current data and amount of deadline jobs. However, D3P
can potentially provide better results as it is able to accommodate an edge case. After the experiments we presented the D3P



10

Fig. 4: The D3P tool

tool, which is the tool that should be able to provide insights to BEC. The tool is, as of now, able to provide retrospective
analysis and also a kind of retrospective live tracking.

VII. FUTURE WORK

This paper presents the tool D3P, the underlying considerations, and the circumstances around it. However, D3P, as of now,
is not a finished tool, but is a tool that can provide some benefits and be used as a proof of concept for further development.
D3P can with more development provide even more insights and value to BEC, some of which is required for D3P being a
commercially viable product. Furthermore, more experiments could provide a deeper understanding of how to adjust D3P as
to get better results.

A. Livetracking

As mentioned in Section V-B2, live tracking is not supported as of now in D3P, as it is not possible to get live data from
TWS. However, going forward it could provide essential value to have live tracking in D3P, as it would allow live monitoring
of the batch system. This would make D3P able to throw live warnings, which BEC would be able to react to and thereby
adjust jobs, such that their deadline is not exceeded as projected by D3P. As shown in Table I IBM-original has automation
as a feature which the IBM-re-imp and D3P-method do not. However, with live tracking it would be possible to accommodate
some of the problems that automation solve with live tracking, as D3P would now be able to provide BEC with the feedback
needed, so they can take action to resolve issues manually.

B. Monitor jobs

As of now D3P uses the deadline jobs provided by TWS to throw warnings and it is an essential part of D3P. However,
going forward these deadline jobs should not be a part of D3P. Instead a feature we call ”monitor jobs” should be introduced.
This feature should allow for jobs to be set as monitor jobs, and be given a deadline which will not affect the run of the job
but only the monitoring of it. This would allow BEC to set deadlines on problematic jobs that do not have a set deadline
in TWS and allow for D3P to throw warnings according to these jobs rather than the deadline jobs from TWS. This feature
would allow for more customized and in-depth monitoring of jobs in D3P.

C. No progress jobs

Going forward D3P should also be able to show what we call ”no progress jobs”. These jobs are defined as jobs that have
dependencies which are all finished with their execution, but do not start their own execution. This would allow BEC to more
easily find and identify problematic jobs or behavior within their batch system.



11

D. Time intervals

As mention in Section IV-D, we conducted experiments with the time intervals to see if it would benefit D3P to use shorter
time intervals when querying. The results suggested that a shorter time interval would not provide better results. However,
longer time intervals was not explored in these experiments and, therefore, going forward it could be of interest to see if longer
time intervals would provide better results.

E. Better estimation method

In Section IV-A we presented three estimation methods and through the experiments in Section IV-C we found that the only
viable estimation method to use, out of these three, is ”Mean”. Therefore, going forward, a better estimation method could
be developed to better accommodate the different context the jobs run in. These contexts seem like they can more accurately
be defined by which rules that define what days any given job run. However, as these rules are written in a language, used
only internally by TWS, a parser would need to be constructed. Creating a parser for this language should be doable as the
semantics are well defined by IBM. This would, as an example, allow us to better estimate a primo or ultimo job run.

REFERENCES

[1] R. T. Bedeley and L. S. Iyer, “Big data opportunities and challenges: the case of banking industry,” Proceedings of the Southern Association for Information
Systems Conference, vol. 1., April 2014.

[2] BEC, “Om bec,” 2021. [Online]. Available: https://www.bec.dk/om-bec/
[3] E. Ernstsen and P. B. Greve, “Data analyses of scheduling of an industrial batch system,” 2020.
[4] S. Batthala and et al., “If-what analysis to manage batch systems,” International Conference on Communication Systems and Networks (COMSNETS).

IEEE, vol. 8th, 2016.
[5] S. Sarkar and S. Taneja, “A job monitoring and accounting tool for the lsf batch system,” Journal of Physics: Conference Series, vol. 331, no. 7, 2011.
[6] C. Grandi, “Boss: a tool for batch job monitoring and book-keeping,” Conference for Computing in High-Energy and Nuclear Physics, March 2003.
[7] I. Corp., IBM Tivoli Workload Scheduler for z/OS: Managing the Workload, 9th ed. IBM, April 2017.


