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Abstract:
We study the Higher-Order Ψ-calculi (HOΨ) of Parrow et al.
[28]: a general framework for representing many variants
and extensions of the first- and higher-order π-calculi. Each
specific calculus is obtained by setting and varying a small
number of parameters; notably, the terms (channels) M,N ,
conditions φ, and assertions Ψ of the language, which are
nominal data types, and an entailment relation Ψ ⊩ φ for
controlling in which environmentsΨ a condition φ, such as
the equivalence between two channels,M,N , holds.
We review the syntax and labelled semantics, and we fur-
thermore create three different reduction semantics for the
HOΨ-calculus: One is fully compositional and uses struc-
tural congruence, but does not fully match every τ -labelled
transition; the second matches this relation exactly but uses
reduction contexts in place of structural rules; and the last
is larger than the τ -transition relation and employs an eval-
uation relation rather than structural congruence directly.
Higher-order process mobility appears as a limited form of
the more general capability of reflection; the generic ability
of a program to turn code into data, compute with it, even
modify it, and reinstantiate it as running code. We explore
this connexion by showing that the HOΨ-framework can
even represent the Reflective Higher-Order (RHO or ρ) cal-
culus of Meredith and Radestock [20].
We define a generic type system for HOΨ, using the largest
of the three reduction semantics, which thus encompasses
all τ -labelled transitions. It includes generic rules for type
judgements of processes, but requires type judgements for
terms, conditions and assertions to be given as parameters,
mirroring the fact that these sets are also parameters in the
HOΨ-calculus. We prove a general result of subject reduc-
tion for the generic type system, but we cannot prove safety,
since this relies on a notion of type error which will depend
on the specific choice of parameter setting for the terms, con-
ditions and assertions. Safetymust therefore be provedman-
ually for each instantiation.
Lastly, we attempt to type reflection, by instantiating the
generic type system to the representation of the ρ-calculus.
The example hints at the kinds of limitation that must be
imposed on reflection to make it typable, such as including
type information in the definition of entailment, to create a
typed channel equivalence.
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Summary

Reflection is the generic ability of a program to turn code into data, compute with
it, even modify it, and lastly turn it back into code again. This is often a desirable
property to have in a programming language, because it affords a greater flexibility.
However it comes at the cost of seemingly making static checks of the code, such
as type checking, difficult or impossible, when the program itself can generate new
code at runtime. For example, we have shown in a previous study [2], that a certain
reflective process calculus, the ρ-calculus of Meredith and Radestock [20], cannot
be represented within the well-known π-calculus [26], and, not surprisingly, that
we were unable to create a π-calculus style type system for the full ρ-calculus, but
only for a certain subset of processes that corresponded to π-calculus processes.

In the present thesis, we study the Ψ-calculi of Bengtson et al. [3, 4]; a gen-
eral framework for representing many variants and extensions of the π-calculus, by
specifying just a few parameters: notably, the terms (channels)M,N , conditions φ,
and assertions Ψ of the language, and an entailment relation Ψ ⊩ φ for controlling
in which environmentsΨ a condition φ, such as the equivalence between two chan-
nels, M ·←→ N , holds. Specifically, we study the Higher-Order Ψ-calculi of Parrow
et al. [28], which is an extension of the ‘first-order’Ψ-calculi to enable higher-order
capabilities, thereby extending the range of calculi that may be represented within
the framework, such as CHOCS [36] and the HOπ-calculus [31; 32].

Besides reviewing the syntax and labelled semantics of the original formula-
tion, we also discuss the formulation of a reduction semantics for the HOΨ-calculus
framework, and we create three different variants of a reduction relation → with
different properties: One is fully compositional and uses structural congruence, but
does not fully match every τ -labelled transition; the second matches τ−→ exactly and
is an extension of a reduction semantics by Åman Pohjola [39] for the first-order
Ψ-calculus, which uses reduction contexts in place of structural rules; and the last
is slightly larger than the τ−→ relation and makes use of an evaluation relation rather
than structural congruence directly.

It may be noted that the higher-order capabilities of calculi such as HOπ and
CHOCS are just a special, limited form of reflection, since they allow processes to
be communicated as data terms, and later reinstantiated as processes, but without
the ability to compute with, or modify, the process code. As mentioned above, these
calculi are representable within the HOΨ-framework; but in the present thesis we
also show that HOΨ is also capable of representing the full ρ-calculus. This is first
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and foremost made possible by the way in which one may parametrise the HOΨ-
framework with (almost) arbitrarily complex definitions of terms and a channel
equivalence relation ·←→ for concluding the equivalence between these structured
terms. This allows us to build the equivalent of the name equivalence relation ≡N
of the ρ-calculus directly into the specification of this parameter. Thus, the HOΨ-
framework can even be used to represent reflection.

A second strand in our work concerns the development of a generic type system
for the HOΨ-calculus framework: Hüttel [17] creates a generic type system for
the first-order Ψ-calculus, which may likewise be instantiated through parameter
setting to yield type systems for the calculi representable within the Ψ-calculus
framework, and we build upon this work to create a similarly generic type system
for HOΨ, thereby allowing us to instantiate type systems for higher-order calculi.

Notably, we give generic rules for type judgements of processes, but require
type judgements for terms, conditions and assertions to be given as parameters,
mirroring the fact that these sets are also parameters in theHOΨ-calculus. Likewise,
we prove a general result of subject reduction in the style of Wright and Felleisen
[38] for the generic type system, but we cannot prove safety, since this relies on a
notion of type error (an error predicate) or, conversely, of well-behaved processes,
which, in either case, will depend on the specific choice of parameter setting for
the terms, conditions and assertions. Safety must therefore be proved manually for
each instantiation.

We demonstrate how the generic type system may be used by creating an in-
stantiation for a simplified HOπ-like calculus, and lastly, we return to the topic of
typing reflection, by instantiating the generic type system to our instantiation of
the ρ-calculus, thereby again attempting to create a type system for this calculus,
which had previously eluded us [2].

However, surprisingly, we find that even though we can represent the ρ-calculus
within theHOΨ-framework, we cannotmake the corresponding type system instan-
tiation sound, without including the type environment Γ in the definition of entail-
ment for channel equivalence. This is necessary, because the type of a ρ-calculus
name is not derived from the structure of the name, which thus makes it possible to
build two names that are channel equivalent, but nevertheless have different types.
Including type information in the definition of entailment would allow us to restrict
channel equivalence to only hold between terms of the same type, i.e. yielding a
typed channel equivalence; but thereby also either restricting the flexibility afforded
by the reflective capability of the ρ-calculus, or requiring us to know in advance
the type of every name that will be generated at runtime. Neither option seems
attractive, or tractable.

Thus in conclusion, we have shown that the HOΨ-framework can represent re-
flection, and we have created a generic type system for HOΨ, which to our knowl-
edge is the first of its kind. However, as our examples show, the type system cannot
be instantiated to every calculus that is representable within the HOΨ-framework,
including, unfortunately, the elusive ρ-calculus.
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1 Introduction

Reflection is the ability of a program to inspect its own code at runtime, turn it into
data, compute with it, even modify it, and then re-instantiate it as running code.1
This affords a greater flexibility for the programmer, but simultaneously presents a
problem: We often want to reason about properties of our programs before the code
is executed, e.g. by using type systems to ensure a form of safety or correctness; but
with reflective capabilities in the language, new code may be generated at runtime
which therefore cannot be available for static inspection. Hence, our purpose in the
present thesis is to develop a type system for a reflective language, to investigate
whether or to what extent we may be able to resolve this apparent conflict between
safety and flexibility.

1.1 Computational model

Process calculi are a well-known family of formalisms for modelling and reasoning
about concurrent programming, encompassing both parallel computations within
a single program, and distributed programs executing at multiple sites. Among
the most prominent examples is undoubtedly the π-calculus of Milner [26] and
Sangiorgi and Walker [33], that has proved to be a highly versatile computational
model, capable of capturing a wide range of the aforementioned phenomena. It
has a well-developed theory with several formulations of operational semantics (i.e.
labelled, symbolic, reduction), bisimulation and characterisation with modal logic
and so forth, most of which is summarised in [26; 27].

Furthermore, a wealth of type systems have also been developed to capture a
range of safety features: for example Milner’s original sorting system for correct
channel usage [26]; a type system with subtyping by Pierce and Sangiorgi [30];
and type systems with input/output capabilities for channel usage and for ensuring
termination [9; 8], to name but a few.

Briefly, the π-calculus assumes an infinite set of namesN ranged over by x, y, z,
that can be used as both channels, data and variables. In an output construct x<z>.P

1Actually, there is, at least to our knowledge, no universally agreed-upon definition of what pre-
cisely is entailed by the term ‘reflection’ but the concept harkens back at least to the work of Smith [35]
on procedural reflection in LISP, and the aforementioned features seem at least to be in accordance
with this.
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we say that x is the subject and z is the object, and likewise in an input construct
x(y).Q with y here as the object. Computation is then modelled in the π-calculus
through communication of names on named channels, such as

x<z>.P | x(y).Q τ−→ P | Q{z/y}

where the data term z is sent along the channel x and replaces the variable y within
the continuation Q.

This marks the π-calculus as belonging purely within the first-order paradigm,
since it only allows transmission of channel names, and nothing else. Consequently,
the π-calculus itself does not immediately appear to be a suitable model of reflec-
tion. However, this style of computational model, dubbed the object paradigm by
Milner [24], has since seen the development of many other π-like process calculi,
and amongst these is one of particular interest for our endeavour: The Reflective
Higher-Order calculus (RHO or ρ) by Meredith and Radestock [20] (cf. appendix A
for a detailed review).

1.2 Reflection in process calculi

The ρ-calculus departs from the tradition of other π-like calculi in that it does not
assume a set of atomic namesN . Instead, it lets names be built from the same syntax
as processes, but quoted, like a fragment of program code that is put in quotes and
then treated like any other text string. Thus, if P is a ρ-process, then ⌜P⌝ is a
quoted process, and therefore a name. This yields a very small language, even by
process-calculi standards, consisting of just five syntactic constructs:

P,Q,R ::= 0
∣∣ P | Q

∣∣ ⌜P⌝ ⟨|Q|⟩
∣∣ ⌜P⌝(⌜R⌝).Q

∣∣ ⌝⌜R⌝⌜

The 0 and parallel constructs are similar to their π-calculus counterparts, and
so is the input construct ⌜P⌝(⌜R⌝).Q, save only that both the subject ⌜P⌝ and the
object ⌜R⌝ are structured terms (i.e. quoted processes) rather than atomic entities.

The lift operation, ⌜P⌝ ⟨|Q|⟩, corresponds to a π-like output operation, except
that it takes a process Q as its object, rather than a name ⌜Q⌝, because its purpose
precisely is to quote the object Q, before it is sent along ⌜P⌝. Thence it can be
received by an input as the name ⌜Q⌝, e.g. as in

⌜P⌝ ⟨|P |⟩ | ⌜P⌝(⌜R⌝).Q→ Q {⌜P⌝/⌜R⌝}

and thus the calculus can generate new names at runtime, thereby making a π-like
ν-operator superfluous. And lastly, the drop operation, ⌝⌜R⌝⌜, is a request to run
the process within a name, by removing the quotes around it. It is not performed
by a reduction, but rather by a form of substitution

⌝⌜R⌝⌜{⌜P⌝/⌜R⌝} = P

2



where the entire process ⌝⌜R⌝⌜ is replacedwith the processP that was foundwithin
the name. We call this an eager drop mechanism, because the drop is performed
immediately, everywhere in the continuation of an input.2 Thus, ⌝⌜R⌝⌜ will only
ever be reached in a reduction, if ⌜R⌝ is not bound by an input (i.e. it is a free name),
and since it has no reduction, it actually represents a deadlock.

Together, the lift and drop operations precisely enable the ρ-calculus to turn
‘code’ (i.e. processes) into data, and the converse. They are the source of its reflec-
tive capability. Indeed, there is little else in the language apart from parallelism,
communication and reflection, and taken together, these features are enough to
yield a succinct model of both parallel and distributed computation.

1.3 Reflection and higher-order characteristics

The ρ-calculus’ reflective capability alsomakes it an inherently higher-order calculus.
Indeed, higher-order characteristics appear as just a limited form of reflection, at
least according to the (rather broad) view of reflection adopted here, since it allows
code to be passed around as data, and then reactivated at the reception point.

Code mobility may be convenient, but it adds nothing in terms of expressiv-
ity to a language that is already computationally complete. Several other process
calculi have been extended with a construct for code mobility, to allow processes
to be passed around directly, rather than by reference: notable examples include
Thomsen’s CHOCS calculus [36], and the Higher-Order π-calculus, HOπ, by San-
giorgi [32], yet these variants are precisely extensions of preexisting computational
models; here of CCS [23] and the π-calculus, respectively. But not the ρ-calculus:
Its higher-order characteristics derive from its reflective capability, and there seems
to be no obvious way to reduce it to a first-order calculus without also limiting its
expressivity.

This is curious, in light of a remark by Davide Sangiorgi in his Ph.D thesis [31,
p. 8], where he notes that

[…] theHOπ is representable within the π-calculus. This proves that the first-
order paradigm, being by far simpler, should be taken as basic. Such a conclusion
takes away the interest in the opposite direction, namely the representability of
the π-calculus within a language using purely communications of agents …

Yet the ρ-calculus does not immediately appear any more complicated than the
π-calculus, despite having higher-order characteristics: Indeed, it can seem even
more basic, when measured in terms of syntactic constructs or semantic rules.

2This is in contrast to a delayed drop that instead would use a reduction rule ⌜⌝R⌜⌝ → R to
perform the drop. In [2] we conjecture that the mechanism of eager drop cannot be captured by a
delayed drop semantics.
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1.4 Reflection and encodability

The above considerations led us in [2] to investigate the relationship, in terms of
encodability and separation, between the ρ- and π-calculi: The ρ-calculus can, per-
haps not unexpectedly, encode the π-calculus in a reasonably straightforward way:
only the ν-operator and replication require some care to ensure that all generated
names will in fact be unique.

More surprisingly, however, the π-calculus does not seem to be able to encode
the ρ-calculus, as we conjectured in [2]. To see why, recall that Carbone andMaffeis
[7] formally proved the separation between the π-calculus and their eπ-extension.
This theorem was later rederived and reformulated by Gorla [14] as follows: Let the
match degreeMd (L) of a languageL denote the least upper bound on the number of
names thatmust bematched to yield a reduction inL. Thus, for exampleMd (π) = 1
because π-calculus communications are of the form

x<z>.P | x(y).Q→ P | Q{z/y}

i.e. the number of names in subject position is exactly 1. By allowing up to n-ary
vectors x̃ of names in subject position x̃(y).P and x̃<z>.Q, we obtain the language
πn, for any n ≥ 0, and the language eπ is then

eπ ≜
∞⋃
n=0

πn

i.e. the union of these languages for all n. Thus, for any such n we have that
Md (πn) = n, and the language eπ itself will have Md (eπ) =∞.

The theorem then states that for two languages L1 and L2, satisfying some very
general assumptions, if Md (L1) > Md (L2) then there does not exist a valid encod-
ing of L1 into L2. Both the assumptions and the criteria for encoding validity are
described in [14], but it suffices to note that they are satisfied by all calculi we shall
consider here. Thus the ‘tower of expressiveness’ of Carbone and Maffeis [7] also
follows immediately, since

Md (π1) < . . . < Md (πn) < Md (eπ)

where π1 = π, and hence that the π-calculus cannot encode the eπ-extension.
But the ρ-calculus can encode it. By using a suitable convention on name gen-

eration, like the one we define in [2], we can encode eπ-like name composition

x1 · x2 · . . . · xn

in the ρ-calculus by composing the processes within the names. Assume thatXi is
the process within the xi’th name. Then we could define

⌜X1⌝ · ⌜X2⌝ · . . . · ⌜Xn⌝ ≜ ⌜
n∏

i=1

Xi⌝ = ⌜X1 | X2 | . . . | Xn⌝

4



which can then be extended to vectors of arbitrary length. This composition can be
performed at runtime through the ρ-calculus’ lift operator, and we can thus encode
eπ input and output operations with n-ary subjects as follows:

Jx1 · . . . · xn(y).P Ka ≜ a ⟨|⌝x1⌜ | . . . | ⌝xn⌜|⟩ | a(v).v(y).JP Ka+Jx1 · . . . · xn<z>Ka ≜ a ⟨|⌝x1⌜ | . . . | ⌝xn⌜|⟩ | a(v).v ⟨|⌝z⌜|⟩

where we assume all the names xi are implemented as quoted processes ⌜Xi⌝; and
where the parameter a is an internal name that is chosen fresh for each translation,
and a+ is derived from a by a suitable convention of name incrementation, that is
ensured to never cause a name clash (e.g. the method we describe in [2]).

The above argument is merely a sketch of a formal proof of separation, but its
implications should be immediately clear: there cannot be an encoding of the ρ-
calculus into the π-calculus, because if such an encoding existed, then it could be
composed with the above encoding to yield an encoding of eπ into the π-calculus,
in contradiction of the aforementioned theorem by Gorla [14].

1.5 Typing reflection in higher-order Ψ-calculi

As previously noted, a plethora of type systems have been developed for the π-
calculus, to capturemany different kinds of safety-features. If we could simply adapt
them to the ρ-calculus, then our task would be easy: indeed, we used this approach
in [2], where we, as a means to adapt a π-calculus type system to the ρ-calculus,
also attempted to define a first-order form of ρ-calculus with inspiration from the
Fusion calculus [29]. However, it turned out to be little else than the π-calculus in
disguise, and, not surprisingly in light of the previous discussion, it failed to encode
the ρ-calculus. Following the argument above, we cannot hope to be able to type
the ρ-calculus with a π-calculus type system by simply encoding the ρ-calculus into
the π-calculus and then typing the result, because the ρ-calculus is not just the π-
calculus in disguise. We shall need a different approach.

Bengtson et al. [3, 4] define Ψ-calculi as a generalisation of various extensions
of the π-calculus [26]: by choosing appropriate settings for a small number of pa-
rameters, a range of (first order) π-like calculi can be expressed as instantiations of
the Ψ-calculus framework.3 Of particular interest is here the ability to declare ar-
bitrary assertions in the syntax, and to transmit structured data terms, rather than
names alone: As these authors show, it enables them to represent, amongst other,
the full eπ-calculus of Carbone and Maffeis [7], which we already know is beyond
the representability of the π-calculus.

3Note that the authors of [3; 4] usually speak of Ψ-calculi in plural, when referring to the gen-
eral framework. However, we find this usage to be unnecessarily unnatural and cumbersome, so in
the following, when we speak of the Ψ-calculus (in definite singular), we refer not to any particular
instantiation (which is a Ψ-calculus, in indefinite singular), but rather to the framework itself, i.e. the
abstract calculus, with its abstract semantics without any parameter settings.
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Furthermore, Hüttel [17] has created a generic type system for the first-order
Ψ-calculus framework, that likewise generalises several of the type systems for the
π-calculus and its many extensions. The generic type system can similarly be instan-
tiated through parameter setting to yield bothwell-known and new type systems for
the calculi that are representable as first-orderΨ-calculi, including Dπ by Hennessy
and Riely [15]; the calculus of explicit fusions [13]; and not least the aforementioned
eπ-calculus.

Parrow et al. [28] later extend the Ψ-calculus framework to also include higher
order communication, thus creating the Higher-Order Ψ-calculi (HOΨ), which the-
reby further widens the range of calculi that can be expressed as a Ψ-calculus.
For example, they show that both the CHOCS- and HOπ-calculi are representable
as HOΨ-instantiations, as well as every calculus that the ‘first-order’ Ψ-calculus
framework can represent. The authors of HOΨ never create an instantiation of the
ρ-calculus in their examples, but we nevertheless suspect that it is representable
therein, since the HOΨ-framework can encompass both the name-generating capa-
bilities of eπ, and can extend these with higher-order characteristics.

Thus, to be able to type reflection through the HOΨ-framework, we shall there-
fore firstly have to create such an instantiation of the ρ-calculus, and secondly to
extend the generic type system of Hüttel [17] to the HOΨ-calculus. Like its pre-
decessor, our generic type system for the HOΨ-calculus should satisfy a subject re-
duction property, and furthermore, every instance of the generic type system should
satisfy a given appropriate definition of safety, expressing (at least) a notion of ab-
sence of channel type errors.

However, unlike its predecessor, the generic type system must additionally be
able to type higher-order behaviour, such that mobile processes may be restricted
with respect to the names they are allowed to use, and whether or not they should
be allowed to be re-executed at the reception point. Taken together, these two prop-
erties should allow us to capture both the name-generating and higher-order capa-
bilities of the ρ-calculus.

1.6 Summary of our approach

Given the considerations above, the rest of the report is structured as follows: Chap-
ter 2 reviews the syntax and labelled semantics of the higher-order Ψ-calculus. In
chapter 3 we then give a reduction semantics for HOΨ to facilitate proofs for the
generic type system, which we develop in chapter 5. Inbetween, chapter 4 con-
cerns the development of an instantiation of ρ-calculus, which we arrive at through
an analysis of several other instantiations of first- and higher-order calculi, and in
chapter 6 we demonstrate how the generic type system may be instantiated to yield
type systems for some of the aforementioned instantiations of the HOΨ-calculus.
Lastly, in chapter 7 we conclude on our endeavours and discuss some alternative
approaches to the problem of typing reflection.
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2 The Higher-Order Ψ-calculus

Our purpose in the present chapter is to give a structured and concise presentation
of the syntax and operational semantics of the higher-orderΨ-calculus. Thus in the
following, we shall forgo the longer, motivating examples, some of which have been
deferred to chapter 4, as well as the separate definition of the first-orderΨ-calculus.
Instead we shall proceed directly to the definition of the higher-order Ψ-calculus,
since it contains all of the former’s syntax and semantics, plus the extension by Par-
row et al. [28]. Many of the definitions in the following will therefore apply equally
to both the first-order and higher-order variants, and we shall not distinguish expli-
citly between Ψ- and HOΨ-calculi, except when a definition applies solely to the
higher-order variant.

2.1 Nominal datatypes

Ψ-calculi rely on a notion of nominal datatypes, which are nominal sets in the style
of Gabbay and Pitts [12], equipped with a set of equivariant functions, which are
functions that obey the restriction that they are invariant under name swapping. We
shall briefly review these concepts in the following:

Definition 2.1 (Transposition function). Weassume a countably infinite set of atomic
namesN , ranged over by a, b, x, y etc. For any setX of structures in which these names
may occur, with X ∈ X , a transposition function is a function

(·, ·)·· : N ×N ×X → X

written (a, b)·X , that replaces each occurrence in X of a with b and vice versa.

A transposition function is thus a reversible name swapping function, i.e. such
that

(a, b)·
(
(a, b)·X

)
= X

As a simple example of such an X , consider the set of n-tuples of N for any
n ∈ Z. An example of X could then be the tuple ⟨a, x, b, a⟩, which by application
of the transposition function yields

(a, b)·⟨a, x, b, a⟩ = ⟨b, x, a, b⟩
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X (a, b)·X

(a, b)·f (X) = f ((a, b)·X)f (X)

(a, b)·

(a, b)·
f f

Figure 2.1: Commutativity diagram illustrating that f is an equivariant function.

Definition 2.2 (Equivariant function). A function f : X → X is equivariant if it
holds for all a, b ∈ N , and for all structures X ∈ X in which a, b may occur, that

(a, b)·f (X) = f ((a, b)·X)

In other words, the effect of f on some structureX is unaffected by name swap-
ping, so we can draw the usual commutativity diagram for f w.r.t. transposition, cf.
figure 2.1. The definition of equivariance is then extended to functions and relations
of any arity.

Definition 2.3 (Nominal datatype). A nominal set is a set equipped with at least one
transposition function. A nominal datatype is then a nominal set with a number of
equivariant endofunctions defined on the set.

Definition 2.4 (Support and freshness). A name a occurs in X if it is affected by
transposition. The support of X , written n(X), is the set of names that occur in X .
Formally

n(X) ≜ { a ∈ N | { b ∈ N | (a, b)·X ̸= X } is not finite }

i.e. a /∈ n(X) iff (a, b)·X = X is true for all but finitely many b ∈ N . A name a is
fresh forX , written a#X , if a /∈ n(X). This is then extended to sets of names A such
that A#X if it is the case that ∀a ∈ A.a /∈ n(X).

See Gabbay and Pitts [12, p. 345] for further details on this definition. It is worth
noting that for a structure such as the aforementioned tuple

T = ⟨a, x, b, a⟩

the support of T is (obviously) just the set of all names that occur syntactically in
T , so n(T ) = { a, b, x }. However, in other structures where notions of binders
and α-equivalence exist, such as e.g. terms of the λ-calculus, the support of such
a structure will only correspond to the free names, because any bound name could
always be α-converted to some other name. Thus, since

λx.e ≡α λy.e {y/x} and x /∈ n(λy.e {y/x})
then it should also be the case that x /∈ n(λx.e).

Lastly, for the purpose of defining Ψ-calculi it is required that there exists an
equivariant substitution function defined on the nominal datatypeX , and parametrised
with a substitution σ mapping names from N to structures of a set Y :
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Definition 2.5 (Substitution). Let Y be a set of structures, with N ⊆ Y . A substitu-
tion σ is a (non-injective) function

σ : N n → Yn

mapping vectors of names x̃ ∈ N n to vectors of structures Ỹ ∈ Yn of equal arity. We
shall often only write the non-trivial part of a substitution as [x̃ := Ỹ ], which is the
substitution that maps each element xi ∈ x̃ to the corresponding element Yi ∈ Ỹ and
all other names to themselves.

This definition is slightly more complicated than what is commonly seen in
process calculi, because the Ψ-calculus framework does not require its nominal
datatypes to be sets of names themselves. Hence, to ensure that σ is well-defined
for all x ∈ N we let Y contain the set of names.

Definition 2.6 (Substitution function). A substitution function

(·) [· := ·] : X × (N n → Yn)→ X

on a nominal datatype X , written X[ã := Ỹ ], is an equivariant endofunction on X ,
parametrised with a substitution σ.

In the above definition, each Yi can be of the same type as X , but it is not
required. Now, rather than defining the substitution function explicitly, it is enough
to define a few requirements that any substitution function must satisfy:

Definition 2.7 (Substitution laws). The substitution function must then be defined
such that it satisfies the following substitution laws:

1. If ã ⊆ n(X) and b ∈ n(Ỹ ) then b ∈ n
(
X[ã := Ỹ ]

)
2. If ũ#X, ṽ then X[ṽ := Ỹ ] =

(
(ũ, ṽ)·X

)
[ũ := Ỹ ]

The requirements are quite general and should be satisfied by any ordinary def-
inition of substitution: The first law states that names cannot be lost in substitu-
tion, i.e. the names present in Ỹ must also be present when the substitution has
been performed; whilst the second law states that substitution cannot be affected
by transposition.

2.2 Parameters

As previously mentioned, the Ψ-calculus is a general framework for expressing
many different kinds of π-like calculi. This is done by setting a few parameters,
consisting of three nominal datatypes and four equivariant operators defined on
the datatypes.
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Definition 2.8 (Ψ-calculus datatypes). Any Ψ-calculus requires a specification of
three nominal datatypes, terms, conditions and assertions denoted by the following
sets and metavariables:

M,N ∈ T data terms

φ ∈ C conditions

Ψ ∈ A assertions

The three sets are not necessarily disjoint. Note further that the definition allows
data terms (channels) to be structured objects of arbitrary complexity. Thus, they
could be just single names, as in the monadic π-calculus, or vectors of names as
in the polyadic π-calculus, or even whole terms of another language such as the
λ-calculus.

Definition 2.9 (Ψ-calculus parameters). AnyΨ-calculus requires a definition of two
equivariant operators, channel equivalence ·←→ and assertion composition ⊗, a unit
element 1 of assertions, and an entailment relation ⊩, defined on the respective nom-
inal datatypes and with the following signatures:

·←→ : T×T→ C channel equivalence

⊗ : A×A→ A assertion composition

1 ∈ A assertion unit

⊩⊆ A× C entailment relation

where we write the entailment relation asΨ ⊩ φ to denote the conditions φ entailed by
the assertionsΨ. Lastly, a substitution function (·) [ã := M̃ ], substituting n-ary term
tuples M̃ for n-ary name tuples ã, must be defined on each of the three sets T,C,A:

(·) [· := ·] : T× (N n → Tn)→ T

(·) [· := ·] : C× (N n → Tn)→ C

(·) [· := ·] : A× (N n → Tn)→ A

At this point we should also note a difference between our presentation and the
one given by Parrow et al. [28] for the HOΨ-calculi. In this extension, the authors
introduce a fourth set called clauses, which are of the form M ⇐ P , pronounced
‘M is a handle for P .’ Clauses are entailed by assertions, just like conditions, but
in [28] the authors decide to maintain a distinction between the sets of clauses and
conditions, although it makes no practical difference. However, this decision then
necessitates that they overload the entailment relation, such that it is defined for
both conditions and clauses. We find such excessive use of overloading unnecessar-
ily confusing, and we shall therefore in the following treat clauses as a just a subset
of conditions. Thus in the sequel we shall just assume that the set C of conditions
be defined in such a way that

{M ⇐ P |M ∈ T ∧ P ∈ PΨ } ⊆ C
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where PΨ is the set of Ψ-calculus processes, if the framework is to be used for
instantiating higher-order calculi.

For any particular choice of the aforementioned parameters to form a valid Ψ-
calculus, it is also required that ·←→ be a partial equivalence relation (PER), i.e. sym-
metric and transitive but not necessarily reflexive; that ⊗ be compositional; and
that (A/≃,⊗,1) be an abelian monoid. We express these requirements as follows:

Definition 2.10 (Assertion equivalence). Two assertions are assertion equivalent,
written Ψ1 ≃ Ψ2 if it is the case that

∀φ.Ψ1 ⊩ φ ⇐⇒ Ψ2 ⊩ φ

That is, two assertions are equivalent if they entail the same conditions. With
this notion of assertion equivalence we can now specify the requirements for valid
parameter settings:

Definition 2.11 (ValidΨ-calculus parameters). An instantiation is a validΨ-calculus
if the following conditions all hold:

1. Channel equivalence is symmetric and transitive:

[ceq-sym]Ψ ⊩M
·←→ N

Ψ ⊩ N
·←→M

[ceq-tRans]Ψ ⊩M
·←→ N Ψ ⊩ N

·←→ L

Ψ ⊩M
·←→ L

2. Assertion composition is compositional:

[ass-comp] Ψ1 ≃ Ψ2

Ψ1 ⊗Ψ′ ≃ Ψ2 ⊗Ψ′

3. (A/≃,⊗,1) is an abelian monoid:

[ass-ident] Ψ⊗ 1 ≃ Ψ
[ass-assoc] (Ψ1 ⊗Ψ2)⊗Ψ3 ≃ Ψ1 ⊗ (Ψ2 ⊗Ψ3)
[ass-comm] Ψ1 ⊗Ψ2 ≃ Ψ2 ⊗Ψ1

2.3 Syntax

With the definition of the three nominal sets, terms, conditions, and assertions, in
place, we can now move on to defining the syntax of HOΨ-calculus processes (or
agents):

Definition 2.12 (HOΨ-calculus processes). The set of HOΨ-calculus processes PΨ,
ranged over by P,Q etc., are generated by the following formation rules:
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P,Q ∈ PΨ ::= 0 Nil∣∣ P | Q Parallel∣∣ MN.P Output∣∣ M(λx̃)N.P Input∣∣ runM Invocation∣∣ case φ̃ : P̃ Selection∣∣ (νx)P Restriction∣∣ !P Replication∣∣ LΨM Assertion

where φ̃ : P̃ is a shorthand:

φ̃ : P̃ ≜ φ1 : P1 [] . . . [] φn : Pn

2.3.1 Comments on the syntax

Some of the syntactic constructs are similar to those found in the π-calculus [26]
and other π-like calculi: In particular, 0 is the inactive process; P |Q is the parallel
composition of P andQ; (νx)P restricts the visibility of the name x to P , and !P is
replication of P . Lastly, LΨM is included to allow assertions to appear in the syntax,
such that they can become enabled during the course of program execution. The
remaining constructs are mostly generalisations, and we shall comment on each in
greater detail below:

The output construct MN.P sends the object data term N along the channel
namedM and continues as P , just as in the π-calculus. The main difference is that
both the subjectM , and the object N , can be structured data terms, and not merely
atomic names. Thus, both subject and object could be e.g. vectors of names ⟨x, y, z⟩,
or even complex terms of another language entirely.

The input constructM(λx̃)N receives alongM a structured term, e.g. K , and
thisK is then matched against the pattern N , where (λx̃) is the argument list. For
example, the ordinary π-calculus input construct x(y).P can be expressed in this
format as x(λy)y, since all terms consist of just a single name each. The polyadic
π-calculus input x(ỹ).P can similarly be expressed as x(λỹ)ỹ.P by merely letting
terms be tuples of any arity.

The selection construct case φ1 : P1 [] . . . [] φn : Pn selects one Pi process
for which the corresponding condition φi is entailed by the assertions in effect,
and discards the rest. If more than one φi is entailed by the assertions, then the
Pi is chosen non-deterministically. This too is a generalisation; it combines the π-
calculus’ match and mismatch operators and the various other choice constructs,
which can all be expressed in this general format. Notably:

• If there is only one condition φ and one process P , then it corresponds to an
if-then construct:

if φ then P ≜ case φ : P
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• If conditions such as a = b and a ̸= b are included in C, then, given the afore-
mentioned encoding of if-then, then match and mismatch can be expressed
as

[a = b]P ≜ if a = b then P and [a ̸= b]P ≜ if a ̸= b then P

• If there exists a condition ⊤ such that ∀Ψ.Ψ ⊩ ⊤, i.e. ⊤ is true for all asser-
tions, then the π-calculus’ non-deterministic choice P +Q can be expressed
as

P +Q = case ⊤ : P [] ⊤ : Q

Lastly, the invocation construct runM will run the process P ifM is a handle
for P , written M ⇐ P , and this condition is entailed by the assertions in effect.
This construct is the sole extension to the syntax, introduced by Parrow et al. [28],
to create the higher-order Ψ-calculus from the (first-order) Ψ-calculus.

2.3.2 Criteria for well-formedness

Not all processes generated by the syntax in definition 2.12 will be meaningful. For
example, a replicated assertion !LΨM is allowed, even though it cannot do anything.
We shall therefore introduce a few restrictions on the forms of processes that we
shall allow:

Definition 2.13 (Prefix, subject, object). A prefix π is either an input or an output
construct:

π ::=M(λx̃)N
∣∣ MN

and for either kind of prefix, we say thatM is the subject and N is the object of the
prefix action.

Definition 2.14 (Assertion guarded processes). An assertion LΨM is guarded if it
occurs under a prefix π: If LΨM is a subterm of P then LΨM is guarded in π.P . A pro-
cess is assertion guarded if all its assertion subterms are guarded. Assertion guarded
processes G are hence built by the formation rules:

G ::= 0
∣∣ G1 | G2

∣∣ case φ̃ : G̃
∣∣ π.P

∣∣ (νx)G
∣∣ !G

∣∣ runM

Definition 2.15 (Well-formed processes). A process is well-formed if it satisfies all
of the following criteria:

• x̃ ⊆ n(N) inM(λx̃)N is a sequence without duplicates.

• Every replication is assertion guarded: !G

• Every choice is assertion guarded: case φ̃ : G̃

• Every handle is assertion guarded: M ⇐ G

• Every handle for P must contain P ’s names: M ⇐ P =⇒ n(P ) ⊆ n(M)
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The last criterion in particular may require some further explanation: It states
that when a term M is a handle for the process P , then M must contain at least
all the names occurring in P , and possibly more. This ensures that any restriction
binding names in P will also bind the same names in M . Thus, if M is passed
around, these scopes must firstly be extruded to encompass the reception sites, and
this, in turn, ensures that ifM is used in a runM term, leading to P being executed,
then all restricted names in P will still be restricted at the execution site. In other
words, this criterion merely ensures that any restricted names in P cannot suddenly
become unrestricted when P is run at some other site that (initially) may have been
outside the scope of the restriction.

2.4 Labelled semantics

Both the original presentation of (first order) Ψ-calculi by Bengtson et al. [3] and
Bengtson et al. [4], and the later (higher order) extension by Parrow et al. [28], on
which we also base our presentation, all give the semantics in terms of a labelled
transition system. Here, we shall essentially repeat their presentation in the follow-
ing, with only some minor clarifications. We shall firstly need the notion of a frame,
which is an environment consisting of the restrictions and assertions in effect, in
which the process executes:

Definition 2.16 (Frame of a process). The frame of a process consist of the set of
all top-level restrictions and the composition of all unguarded assertions of the process.
Formally, we define the frame of a process P by the two recursive functionsFν(P ) and
FΨ(P ) that collect the top level restrictions resp. assertions in the expected way. The
relevant clauses are:

FΨ(P | Q) ≜ FΨ(P )⊗FΨ(Q)

FΨ((νx)P ) ≜ FΨ(P )

FΨ(LΨM) ≜ Ψ

Fν(P | Q) ≜ Fν(P ) ∪ Fν(Q)

Fν((νx)P ) ≜ {x } ∪ Fν(P )

and with all remaining clauses of the forms:

FΨ(P ) ≜ 1 and Fν(P ) ≜ ∅

respectively. Frames are identified up to α-equivalence, and in the case of parallel
composition F(P | Q) it is furthermore required that

Fν(Q)#Fν(P ) ,FΨ(P ) and Fν(P )#Fν(Q) ,FΨ(Q)

i.e. that the restricted names inP must be fresh for the whole frame ofQ, and conversely
for the restricted names in Q.

Note that the format of this definition differs markedly from the presentation
by Bengtson et al. [3, 4]; Parrow et al. [28], although the results are equivalent.
The aforementioned authors would write F(P ) = (νx̃P )ΨP for the frame of P ,
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where we instead write Fν(P ) ,FΨ(P ), but the difference is purely syntactic. The
benefit of their notation is that it suggests that the restrictions (νx̃P ) bind into
the assertions ΨP (which they do). Thus, frames (and particularly assertions) are
identified by α-equivalence, and α-conversion may be required to ensure that name
clashes cannot occur in frames.

Compared to the above, our notation is less suggestive, although the same con-
siderations w.r.t. α-equivalence and α-convertibility still apply. However, our pur-
pose in choosing this alternative notation is twofold: Firstly, it means that we, un-
like the aforementioned authors, can avoid overloading the ⊗ operator for frames
(cf. e.g. [28, p. 7]); and secondly, for any P it will allow us to refer to the set of
restricted names x̃ and the assertions Ψ separately, by the functions Fν(P ) and
FΨ(P ) respectively. The utility of this shall become apparent below, in our presen-
tation of the semantics for the Ψ-calculus:

Definition 2.17 (Ψ-calculus actions). The set of Ψ-calculus actions A (or labels),
ranged over by α, is defined by the following syntax:

α ∈ A ::=M (νx̃)N
∣∣ MN

∣∣ τ

whereM (νx̃)N denotes sending,MN denotes reception, and τ is an internal action.
For both input and output it must be the case that x̃ ⊆ n(N). For the output label,
(νx̃) represents name binding, and the bound names bn (α) of a label α is defined in
the obvious way:

bn (α) =
{
{ x̃ } if α =M (νx̃)N

∅ otherwise

Definition 2.18 (HOΨ-calculus labelled semantics). The semantics of higher order
Ψ-calculi is given in terms of a labelled transition system, where transitions are of the
form

Ψ ▷ P
α−→ P ′

and the transition relation · ▷ · α−→ · is given by the following rules:

[Case] Ψ ▷ Pi
α−→ P ′ Ψ ⊩ φi

Ψ ▷ case φ1 : P1 [] . . . [] φn : Pn
α−→ P ′

[Open] Ψ ▷ P
M(νx̃)N−−−−−→ P ′

Ψ ▷ (νz)P
M(νx̃z)N−−−−−−→ P ′

(
z#x̃,Ψ,M
z ∈ n(N)

)

[Com]

FΨ(P )⊗FΨ(Q)⊗Ψ ⊩M
·←→ K

FΨ(Q)⊗Ψ ▷ P
M(νx̃)N−−−−−→ P ′

FΨ(P )⊗Ψ ▷ Q
KN−−→ Q′

Ψ ▷ P | Q τ−→ (νx̃) (P ′ | Q′)

 x̃#Q
Fν(P )#Fν(Q) , Q,M,Ψ
Fν(Q)#Fν(P ) , P,M,Ψ
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[In] Ψ ⊩M
·←→ K

Ψ ▷M(λx̃)N.P
KN [x̃:=L̃]−−−−−−−→ P [x̃ := L̃]

[Res] Ψ ▷ P
α−→ P ′

Ψ ▷ (νz)P
α−→ (νz)P ′

(z#α,Ψ)

[PaR]FΨ(Q)⊗Ψ ▷ P
α−→ P ′

Ψ ▷ P | Q α−→ P ′ | Q

( bn (α)#Q
Fν(Q)#α, P,Ψ

)

[Out] Ψ ⊩M
·←→ K

Ψ ▷MN.P
K(νϵ)N−−−−−→ P

[Rep]Ψ ▷ P | !P
α−→ P ′

Ψ ▷!P
α−→ P ′

[Run]Ψ ⊩M ⇐ P Ψ ▷ P
α−→ P ′

Ψ ▷ runM α−→ P ′

We omit the symmetric forms of the [PaR] and [Com] rules. Note also that
both frames, processes and transitions are (implicitly) identified up toα-equivalence.
Hence, we can use α-conversion in the premises to choose new bound names in
order to satisfy the freshness criteria listed in the side conditions.

We havemade a few cosmetic changes of the rules, compared to the presentation
found in [28]. Most notably, in the rule [Out] we use the labelK (νϵ)N where (νϵ)
represents the empty list of restricted names.1 We also consistently use the frame
functionsFν(P ) andFΨ(P ) in side conditions to refer to the two parts of the frame
of a process P .

2.4.1 Comments on the rules

The transition rules in definition 2.18 are clearly of a highly abstract nature, and
hence not necessarily clearly understandable. There are a number of subtle points,
especially regarding the freshness conditions on some of the rules, and the interplay
between the parameter settings from definition 2.9, so we shall comment on each
rule in some detail below. Notice firstly that all transitions are of the form

Ψ ▷ P
α−→ P ′

HereΨ ▷ represents an environment of active assertions inwhich the transition
itself takes place. New assertions may also appear in the syntax, as LΨM, and if they
are free (i.e. do not stand under a prefix), then they will be collected in the [PaR] and
[Com] rules, through application of the frame function FΨ(·) from definition 2.16,
and composed with the active assertions in the premises of these rules. For example
in the [PaR] rule (where we omit the side conditions for clarity):

[PaR]FΨ(Q)⊗Ψ ▷ P
α−→ P ′

Ψ ▷ P | Q α−→ P ′ | Q

the idea is that free assertions LΨ1M | . . . | LΨnM may appear in Q, and these
will also form part of the environment for P ; they may even entail conditions that

1In contrast, Parrow et al. [28] write KN , but this label format is actually not included in the set
of actions given in definition 2.17.
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enable P ’s transition. Therefore, they are collected by the frame functionFΨ(Q) =
Ψ1 ⊗ . . .⊗Ψn and composed with the other active assertions in the premise

FΨ(Q)⊗Ψ ▷ P
α−→ P ′

The rule may have to be applied several times (or the [Com] rule), each time
collecting new free assertions. Thus the active assertions will increase towards the
leaves in the derivation tree for a given transition. Notice also that assertions LΨM
are never removed in transitions, and since previously guarded assertions may be-
come free after a transition, the number of free assertionswill therefore also increase
during the course of program execution.

A second characteristic feature of this semantics, which sets it apart from many
other ‘conventional’ labelled semantics for process calculi, is the explicit use of fresh-
ness criteria in the side conditions of several rules. This is necessary because the
setN of atomic names can be used in the definition of any or all of the three nomi-
nal datatypes T,C and A from definition 2.8. Hence, the usual assumption, that a
name x in e.g. a restriction (νx) P is always fresh, may not necessarily hold for the
whole program, and instead the freshness conditions make it clear where x at least
has to be chosen such that it is locally fresh to ensure that a name clash does not
occur. We shall see some examples of this in the following, when we comment on
the individual rules. Consider firstly the [Case] rule:

[Case] Ψ ▷ Pi
α−→ P ′ Ψ ⊩ φi

Ψ ▷ case φ1 : P1 [] . . . [] φn : Pn
α−→ P ′

Here we select (possibly non-deterministically) one Pi from the list, for which
the condition φi is entailed by the active assertionsΨ, and this Pi must furthermore
be able to do a transition α−→. Both criteria must be satisfied, so if a process has no
available transitions, it cannot be selected, even if its condition is entailed. Thus,
even if we assume ⊤ is a condition that is entailed by all assertions, then a process

case ⊤ : (νa) ax.0

will not have any transitions. To see this, consider next the [Res] rule:

[Res] Ψ ▷ P
α−→ P ′

Ψ ▷ (νz)P
α−→ (νz)P ′

(z#α,Ψ)

Here, the freshness condition states that z must be fresh for both α and Ψ.
Hence, if P was an output with restriction (νz) zx, as in the example above, then α
were to have been an output label z (νϵ)x, which would then violate the freshness
condition, since it does not hold that z#z (νϵ)x. This is intuitively what we should
expect, since z is a restricted name, but the freshness condition makes this intuition
explicit.

Secondly, this also means that the action α concluded using this rule must either
be an input or output involving some other name(s), not under restriction, or be an
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internal communication, in which case the label is τ . If instead the action is an
output of the restricted name, it must be concluded by application of the [Open]
rule:

[Open] Ψ ▷ P
M(νx̃)N−−−−−→ P ′

Ψ ▷ (νz)P
M(νx̃z)N−−−−−−→ P ′

(
z#x̃,Ψ,M
z ∈ n(N)

)

The purpose of this rule is to open the scope of (νz) by adding it to the list of
restricted names in the label in the conclusion. Thus, if P can do a transition

Ψ ▷ P
M(νx̃)N−−−−−→ P ′

in the premise, then z is added to the label M (νx̃z)N in the conclusion. Thus, if
N contained a vector of n restricted names (νx̃), then this rule would be applied
repeatedly, up to n times, to build the list of restricted names in the labelM (νx̃)N .

We note in passing, that this is another point where our notation differs in-
significantly from that of Parrow et al. [28], who instead writeM (νx̃ ∪ { z })N to
signify that z can be inserted anywhere in x̃. We regard x̃ as a list, rather than a
set, so we find this implicit overloading of ∪ to be an unwarranted and unnecessary
complication. Since the name z indeed can occur anywhere, we simply choose to
always concatenate it to the end of the list.

Conversely, if there is only a single restricted name (νz), then the list of re-
stricted names will be empty in the premise, so the label will be preciselyM (νϵ)N ,
as used also in the [Out] rule:

[Out] Ψ ⊩M
·←→ K

Ψ ▷MN.P
K(νϵ)N−−−−−→ P

Here, the only other notable subtlety is that channel equivalenceΨ ⊩M
·←→ K

is checked in the premise, and it is K that appears in the label’s subject position,
rather than M . Thus we must always choose an equivalent term for the label’s
subject, rather than M itself, unless ·←→ is also defined to be reflexive, which, as
noted in definition 2.11, is allowed but not required. The check occurs in the premise
of both the [In] and [Com] rules, which thus e.g. may allow the original M to be
recovered, even if ·←→ is not reflexive. Bengtson et al. [4] give a longer example of
why this may be necessary with some parameter settings, such as an instantiation
of the Fusion Calculus [29], where assertions may declare arbitrary pairs of names
to be equivalent during the course of program execution.

Apart from the aforementioned detail with ·←→, the [In] rule is fairly straightfor-
ward:

[In] Ψ ⊩M
·←→ K

Ψ ▷M(λx̃)N.P
KN [x̃:=L̃]−−−−−−→ P [x̃ := L̃]
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However, note the specification of pattern matching on the received object: The
labelKN [x̃ := L̃] states that there must exist some vector L̃ of terms, matching the
arity of x̃, and the received object must exactly match N with x̃ substituted for L̃.
This is a somewhat convoluted way of expressing that the subterms L̃, matching the
pattern of x̃ within N , are extracted from the received object, and then substituted
into the continuation. For example, suppose a term could have an email address-
like format N1@N2.N3. If this term was received on M , then an input pattern of
the formM(λx1, x2, x3)x1@x2.x3.P would extract the three subtermsN1, N2, N3

and bind them to x1, x2, x3 within the continuation P . Thus, the input construct
can also be used to extract subterms from a term, as in e.g. macro programming
with pattern matching. This also implies that if e.g. the composition

M1(λx̃)N1.P1 |M2N2.P2

is able to communicate, then it must also be the case firstly that M1
·←→ M2, and

secondly thatN2 mustmatch the pattern found inN1. Both criteriamust be satisfied
if the communication is to be enabled.

The [Com] rule ties together all of the aforementioned [In], [Out] and [Open]
rules:

[Com]

FΨ(P )⊗FΨ(Q)⊗Ψ ⊩M
·←→ K

FΨ(Q)⊗Ψ ▷ P
M(νx̃)N−−−−−→ P ′

FΨ(P )⊗Ψ ▷ Q
KN−−→ Q′

Ψ ▷ P | Q τ−→ (νx̃) (P ′ | Q′)

 x̃#Q
Fν(P )#Fν(Q) , Q,M,Ψ
Fν(Q)#Fν(P ) , P,M,Ψ


Firstly, this rule closes any scopes (νx̃) that were opened by application of the

[Open] rule in the derivation of the premise

FΨ(Q)⊗Ψ ▷ P
M(νx̃)N−−−−−→ P ′

which explains the appearance of the restriction (νx̃) (P ′ | Q′) after the transition
in the conclusion of this rule. Note that if there are no restricted names involved in
the derivation, i.e. the label contains (νϵ), then obviously

(νϵ)
(
P ′ | Q′) = P ′ | Q′

in the conclusion. Otherwise, since the names x̃ came from P , the first freshness
requirement in the side condition ensures that these names are also fresh forQ, the-
reby allowing the scope of (νx) to be extruded from P to encompassQ. This is sim-
ilar to the usual capture-avoiding requirement that x /∈ fn (Q), when a structural
congruence axiom (νx)P | Q ≡ (ν) (P | Q) is used to handle scope extrusion.

Then, in the premises, the unguarded assertions in Q are adjoined to the envi-
ronment for the derivation of P ’s transition, and vice versa for Q, similar to the
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[PaR] rule, and lastly, all unguarded assertions from both P andQ are added to the
environment to check the entailment of the channel equivalence.

The other two freshness criteria mirror each other: They state that neither P
nor Q may bind any names in each other (which would cause a name clash), nor
in the subject M (which would disable communication), nor in the environment
Ψ. A subtlety here is that it is required for Fν(P ) to be fresh for both Q and the
restricted names Fν(Q) in Q (and vice versa for Fν(Q) w.r.t. P ). This may seem
redundant, but recall from definition 2.4 that freshness w.r.t. e.g. Q is defined in
terms of the support n(Q), that precisely disregards the bound names. However,
the frame function extracts the restricted names into two sets of names, which may
then be compared. Thus, the requirement Fν(P )#Fν(Q) is merely a complicated
way of stating that the intersection of the two sets of restricted names must be
empty.

Lastly, the [Run] rule2 enables a form of higher-order process mobility:

[Run]Ψ ⊩M ⇐ P Ψ ▷ P
α−→ P ′

Ψ ▷ runM α−→ P ′

IfM ⇐ P and this is entailed by the active assertions, and P can do a transition
toP ′, then runM α−→ P ′. Thus, this rule allows processes to be bound to terms, that
may be passed around, and then later used to invoke the process. This obviously
places the restriction on P that it must be able to do at least one transition: runM
cannot be used to invoke a deadlocked process.

Secondly, M ⇐ P is a condition φ, so as mentioned in definition 2.11 it is
assumed that the set C of conditions is defined such that

C ≜ { . . . } ∪ {M ⇐ P | M ∈ T ∧ P ∈ PΨ ∧ n(P ) ⊆ n(M) }

where { . . . } represents the definition of other forms of conditions. Which pro-
cesses are bound to which terms can then be controlled in the definition of the set
A of assertions, as well as in the entailment relation ⊩. Suppose for example that
the definition of ⊩ contains the rule

(M,P ) ∈ Ψ =⇒ Ψ ⊩M ⇐ P

and with A defined as the set of tuples A ≜ T × PΨ and ⊗ ≜ ∪. Then processes
can be bound to terms during the course of program execution, by declaring the
bindings as assertions L{ (M,P ) }M. However, this is by no means the only possible
parameter setting: Parrow et al. [28] give evenmore involved examples, for instance
using parametrised clauses, but we defer them to chapter 4 where we shall give a
more detailed account of the parameter settings necessary to instantiate some well-
known first- and higher-order calculi.

2Note: Parrow et al. [28] named it [Invocation], but we preferred a shorter name.
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* * *

In this chapter we have attempted to create a structured and succinct presentation
of the fundamental definitions pertaining to nominal datatypes, and the the syn-
tax and labelled semantics of (higher-order) Ψ-calculi. Notably, the semantics here
presented were given in terms of a labelled transition system, which may be well-
suited for some tasks, but less so for others. Thus, with these definitions in place
we can now proceed to discuss developments of a reduction semantics for the HOΨ-
calculus framework.
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3 Reduction semantics

The presentations of the (first and higher order) Ψ-calculus framework by Bengt-
son et al. [3, 4] and Parrow et al. [28] all give their semantics in terms of labelled
transition systems. As argued by e.g. Sangiorgi [31, p. 27], labelled semantics may
be advantageous when we wish to reason about behavioural equivalences such as
bisimulation, because it describes the behaviour of each process individually, irre-
spective of context.

On the other hand, a reduction system is usually simpler, by having fewer rules,
because both the symmetric forms of [Com] and [PaR] rules can be subsumed un-
der structural congruence, and complementary interaction rules like [Input] and
[Output] are are not used. This may simplify proofs by induction in the rules;
for example invariance1 proofs for type systems, which may be useful for our later
endeavours.

Åman Pohjola [39] defines a reduction semantics for the first-order Ψ-calculus
framework, but to our knowledge, there does not exist a reduction semantics for the
higher-orderΨ-calculus. Our purpose in the present chapter is therefore to discuss
the development of such a reduction semantics, which (as shall become apparent)
is not an entirely trivial task.

3.1 Reduction with structural rules

The idea in a reduction semantics, as described by Milner [25], is to define the re-
duction relation → such that it coincides (preferably exactly) with the τ -labelled
transitions τ−→ of the labelled semantics. Furthermore, the redex of a process cal-
culus term, consisting usually of parallel compositions, will be distributed over the
entire term, and hence the task of defining→ may be simplified if it is defined not
between pairs of individual processes, but between equivalences classes, induced
by a structural congruence relation on the set of processes.

3.1.1 A first attempt

The task of defining→ such that it matches τ−→ exactly may however not always be
entirely trivial. Consider for example the following attempt: Assume we let struc-

1I.e. subject reduction/type preservation and the accompanying lemmas.
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tural congruence≡ be defined in the usual way, as the least congruence containing
α-equivalence; where (PΨ/≡, | ,0) is an abelian monoid; and such that it contains
the following axioms:

!P ≡ P | !P

(νx)P | Q ≡ (νx) (P | Q) if x#Q
(νx) (νy)P ≡ (νy) (νx)P

(νx)0 ≡ 0

corresponding to most of the equational properties of bisimilarity for HOΨ, as
proved by Parrow et al. [28, theorem 4.5]. Then suppose we let the reduction re-
lation be defined by the following rules:

[Com] Ψ ⊩M
·←→ K

Ψ ▷MN [x̃ := L̃].P |K(λx̃)N.Q→ P | Q[x̃ := L̃]

[Res] Ψ ▷ P → P ′

Ψ ▷ (νx)P → (νx)P ′ (x#Ψ) [Run]Ψ ▷ P → P ′ Ψ ⊩M ⇐ P

Ψ ▷ runM → P ′

[StRuct]P ≡ Q Ψ ▷ Q→ Q′ Q′ ≡ P ′

Ψ ▷ P → P ′

[PaR]FΨ(Q)⊗Ψ ▷ P → P ′

Ψ ▷ P | Q→ P ′ | Q
(Fν(Q)#P,Ψ)

[Case] Ψ ▷ Pi → P ′ Ψ ⊩ φi

Ψ ▷ case φ1 : P1 [] . . . [] φn : Pn → P ′

These rules are certainly simpler than the labelled semantics of definition 2.18,
but unfortunately also too simple: → is too small compared to τ−→. Specifically, the
problems pertain to the [Case] and [Run] rules: In the premise of the proposed
[Case] rule we require of the selected process Pi that

Ψ ▷ Pi → P ′

i.e. that it must be able to perform an entirely internal communication. The labelled
semantics places no such restriction onPi; there, it is enough thatP can do either an
input (inclusive) or an output. The problem with the proposed [Run] rule is similar.

One possible solution for [Case] could be to require that C and ⊩ always be
defined in such a way that there exists a condition ⊤ ∈ C such that

∀Ψ ∈ A.Ψ ⊩ ⊤

i.e. ⊤ is entailed by all assertions. This imposes only a slight extra restriction on
the generality of the framework. Then we could extend the definition of≡with the
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axiom
case ⊤ : P ≡ P

which, when read from the right, allows us to rewrite any process term to a case
that always holds. Clearly, if P τ−→ P ′ by the labelled semantics, then we also have
that

P → P ′ ⇐⇒ case ⊤ : P → P ′

by the present rules. We can then amend the [Com] rule as follows:

[Com’] Ψ ⊩ φ1 Ψ ⊩ φ2 P1 ≡MN [x̃ := L̃].P | P ′ P2 ≡ K(λx̃)N.Q | Q′ Ψ ⊩M
·←→ K

Ψ ▷ (case . . . [] φ1 : P1 [] . . .) | (case . . . [] φ2 : P2 [] . . .)→ P | P ′ | Q[x̃ := L̃] | Q′

This rule relies on a kind of (implicitly defined) pattern matching on case terms,
where all . . . represent (possibly empty) sequences of case expressions. Alterna-
tively we could also extend ≡ with commutative monoidal rules for case, by treat-
ing each case expression φ : P as a pair (φ,P ), with (⊤,0) as the identity element
and [] as the binary operator.

3.1.2 The unfolding problem

Unfortunately, even the revised [Com] rule is not enough to fully capture the τ−→
relation of the labelled semantics of HOΨ. There are still some cases which it cannot
handle; notably the runM construct. Consider again the [Run] rule:

[Run]Ψ ▷ P → P ′ Ψ ⊩M ⇐ P

Ψ ▷ runM → P ′

By this rule, P must perform an internal communication, if runM is allowed
to reduce. This excludes the possibility that P might be able to reduce by communi-
cating with another process in the context of runM instead. Assume, for the sake
of simplicity, a π-calculus-like instantiation:

∅ ▷ xz.P | x(λy)y.Q τ−→ P | Q[y := z]

Intuitively, we would expect to be able to replace one (or both) of these terms
with runM processes, but this is not the case. For example, choose any M such
that n(xz.P ) ⊆ n(M) to satisfy the requirement for names in handles. Then

{M ⇐ xz.P } ▷ runM | x(λy)y.Q ̸→

because xz.P ̸→, as the [Run] rule requires. Thus, the proposed [Run] rule cannot
capture this behaviour of the corresponding labelled semantics. Furthermore, this
problem propagates to the aforementioned revised [Com’] rule, because a case can-
not be unfolded, if the inner process is a runM . Again, by the present [Com’] rule
we have that

∅ ▷ (case ⊤ : xz.P ) | (case ⊤ : x(λy)y.Q)
τ−→ P | Q[y := z]
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but no corresponding reduction is possible, if we rewrite one of the processes to a
runM :

{M ⇐ xz.P } ▷ (case ⊤ : runM) | (case ⊤ : x(λy)y.Q) ̸→

again because runM cannot on its own reduce, nor can it be converted to a prefixed
form, as required in the [Com’] rule.

Intuitively, we might expect that this issue could be resolved by adding another
axiom to structural congruence, along the lines of

Ψ ▷ runM ≡ P if Ψ ⊩M ⇐ P

to allow runM to be unfolded, but, unfortunately, this will not work as expected,
because it would allow any runM to unfold at any time, regardless of whether P
can perform any reduction at all; for example, if τ.Q τ−→ Q by any rule, then

{M ⇐ xz.P } ▷ runM | τ.Q ≡ xz.P | τ.Q→ xz.P | Q

but no similar transition can be derived by the rules of the labelled semantics. This
axiom is thus unsound.

3.1.3 A second attempt

Rather than trying to find separate solutions for the problems of case and runM
separately, we might try to resolve both issues simultaneously: Firstly, we shall
assume that the setC of conditions is closed under conjunction; i.e. that there exists
a binary operator

∧ : C× C→ C

similar to logical ∧, that may allow any two conditions φ1 and φ2 to be composed,
such that

Ψ ⊩ φ1 ∧ φ2 ⇐⇒ Ψ ⊩ φ1 ∧Ψ ⊩ φ2

Then we add another axiom

case . . . [] φi :
(
case φ̃ : P̃

)
[] . . . ≡ case . . . [] φi ∧ φ̃ : P̃ [] . . .

to structural congruence, to allow a hierarchy of nested case expressions to be flat-
tened by composing the outer condition φi with each of the inner conditions in φ̃;
i.e. φi ∧ φ̃ : P̃ is an abbreviation for

φi ∧ φ1 : P 1 [] . . . [] φi ∧ φn : Pn

where the superscripted φi and P i denote the components of the inner φ̃ : P̃ list.
Recall now from definition 2.9 that we specifically included the process binding

clausesM ⇐ P as a subset of the set of conditions. Using this fact, we, at last, add
the rule

runM ≡ caseM ⇐ P : P
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to the definition of structural congruence. This allows runM terms to be handled as
just a special instance of a case expression, and the reduction can then be concluded
by either [Case] or the amended [Com’] rule. Assume for example that P τ−→ P ′

and n(P ) ⊆ n(M) andM ⇐ P ∈ Ψ. Then we could conclude e.g.

[StRuct]runM ≡ caseM ⇐ P : P Ψ ▷ caseM ⇐ P : P → P ′ P ′ ≡ P ′

Ψ ▷ runM → P ′

by the [StRuct] rule, and then conclude the premise by the [Case] rule:

[Case]Ψ ▷ P → P ′ Ψ ⊩M ⇐ P

Ψ ▷ caseM ⇐ P : P → P ′

As can be seen, the previously proposed [Run] rule now appears as just a spe-
cialised instance of the [Case] rule. Thus, [Run] can now be subsumed under
[Case], and removed as an explicit rule, thereby simplifying the definition of→.

3.1.4 The unfolding problem again: Mixed case

Unfortunately, even with this extended form of structural congruence, the current
definition of→ still fails to capture one class of τ−→ transitions. Consider a pair of
processes P,Q where Ψ ▷ P ̸ τ−→ and Ψ ▷ Q ̸ τ−→ but Ψ ▷ P | Q τ−→ for any Ψ, and
suppose that we then place P within a case expression:

(case ⊤ : P ) | Q

Obviously, this process should still be able to reduce, since the condition is ⊤,
but suppose then further that P itself consists of an inner case expression and some
other subterms in parallel:

P ≜ (case φ1 : P1) | P2

and such that P1 | Q
τ−→ but P2 | Q ̸

τ−→, i.e. such that the communication with Q
happens with the process within the inner case. Then

Ψ ▷ (case ⊤ : (case φ1 : P1) | P2) | Q ̸→

because the current form of structural congruence only allows a hierarchy of nested
cases to be flattened, if the entire inner term is a case, which is not the case here.

Even though this preliminary attempt a definition of a→ relation fails to fully
capture τ−→, it nevertheless highlights some relevant issues: Firstly, that the main
difficulties with defining→ seem to pertain to case and runM ; and secondly that
the semantics of these two constructs, with just a few, very reasonable assumptions
about the way C is defined, can be handled together, as instances of the same rule.
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3.2 Reduction with contexts

The problems pertaining to case unfolding are not particular to the higher-order
Ψ-calculi; they also appear in the first-order variant, since the case construct exists
in both. Åman Pohjola [39] defines a reduction semantics for first-order Ψ-calculi
by using reduction contexts, rather than structural congruence, to isolate the redex
in case expressions. Given that HOΨ is obtained from the first-order Ψ-calculus
just by the addition of the runM construct, and this, in turn, may be seen as just
a special instance of case, we may thus hope to be able to adapt the first-order
reduction semantics to the higher-order variant. We shall therefore review the first-
order semantics in the following, with a few insignificant changes compared to [39]:

Definition 3.1 (Reduction contexts). The set of reduction contexts C ∈ C is built
by the formation rules:

C ∈ C ::= [] hole∣∣ G assertion guarded process∣∣ C1 | C2 parallel composition∣∣ case φ̃1 : G̃1 [] φ : C [] φ̃2 : G̃2 case composition

and the notation C[G̃] denotes the process obtained by substituting each element of
G̃ into the corresponding hole in C . The number of holes must match the arity of G̃;
otherwise, the substitution is undefined.

Note here that reduction contexts are defined, not in terms of processesP in gen-
eral, but in terms of assertion guarded processes G, as described in definition 2.14
(cf. page 13). The idea is to use reduction contexts to isolate the communicating
(sub)terms, and then collect the remainder of the contextual processes after the
communication has occurred. To this end, the semantics relies on two auxiliary
functions to collect the parallel compositions and conditions:

Definition 3.2 (Conditions and parallel). The conditions conds (C) and parallel
compositions ppR (C) of a context C are defined by the recursive equations:

conds ([]) ≜ ∅
conds (G) ≜ ∅

conds (C1 | C2) ≜ conds (C1) ∪ conds (C2)

conds
(
case φ̃1 : G̃1 [] φ : C [] φ̃2 : G̃2

)
≜ {φ } ∪ conds (C)

ppR ([]) ≜ 0

ppR (G) ≜ G

ppR (C1 | C2) ≜ ppR (C1) | ppR (C2)

ppR
(
case φ̃1 : G̃1 [] φ : C [] φ̃2 : G̃2

)
≜ ppR (C)
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Definition 3.3 (Structural congruence). Let structural congruence, written ≡, be
the least equivalence on process terms containing the congruence rules:

[s-con-paR] P1 ≡ P2

P1 | R ≡ P2 | R

[s-con-Rep] G1 ≡ G2

!G1 ≡ !G2

[s-con-Res] P1 ≡ P2

(νx)P1 ≡ (νx)P2

[s-con-out] P1 ≡ P2

MN.P1 ≡MN.P2

[s-con-case] ∀i.G1i ≡ G2i

case φ̃ : G̃1 ≡ case φ̃ : G̃2

and the commutative monoidal rules for (PΨ/≡, | ,0), and the algebraic axioms:

(νx)0 ≡ 0

(νx)P | Q ≡ (νx) (P | Q) if x#Q
(νx) (νy)P ≡ (νy) (νx)P

case φ̃ : (νx) P̃ ≡ (νx)
(
case φ̃ : P̃

)
if x#φ̃

MN. (νx)P ≡ (νx)MN.P if x#M,N

M(λz̃)N. (νx)P ≡ (νx)M(λz̃)N.P if x#M,N, z̃

!P ≡ P | !P

and lastly the axioms for unit and composition of assertions:

LΨ1M | LΨ2M ≡ LΨ1 ⊗Ψ2ML1M | P ≡ P
The definition adds all the congruence properties and algebraic properties of

HOΨ bisimilarity (cf. Åman Pohjola [39, p. 11-12]). Notably, bisimilarity is not a
congruence for input, and it is only a congruence for case and replication, if the
processes are assertion guarded. This is as expected, since case and replication are
only well-formed, if the process subterms are assertion guarded (cf. definition 2.15).

Note also that the two last axioms, for unit and composition of assertions, are
not part of the original presentation by Åman Pohjola [39], but have been added by
us to simplify the notation of assertions by allowing them to be combined by struc-
tural congruence. We then enforce this combination by only allowing reductions
on process terms with a single assertion LΨM at the left-most position in a parallel
composition. The unit rule L1M | P ≡ P then ensures that an assertion always
can be present at that position, by allowing the unit assertion L1M to be inserted
anywhere. The reduction relation→ can then be defined as follows:
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Definition 3.4 (Reduction relation). The reduction relation→⊆ PΨ×PΨ is defined
inductively by the following rules:

[R-ctx] Ψ ⊩M
·←→ K ∀φ ∈ conds (C) .Ψ ⊩ φLΨM | C[MN [x̃ := L̃].P ; K(λx̃)N.Q]→ LΨM | P | Q[x̃ := L̃] | ppR (C)

[R-stRuct]P ≡ Q Q→ Q′ Q′ ≡ P ′

P → P ′
[R-Res] P → P ′

(νx)P → (νx)P ′

Compared to ‘usual’ formulations of reduction semantics, such as our own pre-
vious attempt in section 3.1, the formulation in definition 3.4 differs significantly in
one particular regard: It does not contain a rule for reduction of a term in parallel
composition. Instead, this is handled solely by the reduction context in the [R-ctx]
rule: The context is used to pattern match against the term, to isolate two subterms
that are able to communicate. Any processes parallel to these terms are then col-
lected by ppR (C) and composed with the reduct, such that they are preserved for
the next reduction step. Thus, the derivation of a reduction would first use the [R-
stRuct] rule (and possibly the [R-Res] rule) to arrange the process in the required
format, and then isolate two subterms that shall communicate, by pattern matching
with the context. According to Åman Pohjola [39], this definition of → matches
exactly the τ−→ relation of the first-order Ψ-calculus labelled semantics.

Note that our formulation of the rule [R-ctx] in definition 3.4 differs insignifi-
cantly from the presentation in [39] in that we only allow a single LΨM at the left-
most position of the redex and reduct, whilst the original formulation here has a
parallel composition L̃ΨM ≜ LΨ1M | . . . | LΨnM
of arbitrarily many assertions, which furthermore is just assumed to be equal to L1M
if the sequence is empty. It was precisely to avoid this assumption and extra notation
that we instead introduced the aforementioned two extra axioms for assertion unit
and composition in structural congruence.

Now, the reduction relation in definition 3.4 is only defined for the first-order
variant of theΨ-calculus framework, but we can easily extend it to the higher-order
calculus by just including the axiom

runM ≡ caseM ⇐ P : P

as previously described. We do not even need to add the axioms for collapsing
nested case terms, since they can be built by the syntax for contexts. It also allows
a mixing of case and parallel compositions, and we thus avoid the problem of mixed
case that our previous attempt could not handle. Thus, we have the following result:
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Theorem 1 (Semantic equivalence). Let P be any higher-order Ψ-calculus process,
and let→ be defined as in definition 3.4 with ≡ extended with the axiom for runM .
Then

P
τ−→ P ⇐⇒ P → P ′

The theorem has been proved by Åman Pohjola [39] for the first-order calculus.
Thus we only need to extend this proof to cases where the redex is, or includes, a
runM term. The details of this proof is given in appendix B.

3.3 Reduction with an evaluation relation

As we have seen in the previous section, the difficulties with creating a reduction
semantics for HOΨ pertain particularly to the runM and case constructs, because
the reduction of both these terms is conditional upon a subterm, which in the case
of runM is not even present in the syntax of the redex. In both cases, the problem
is how to ensure that these subterms perform an actual reduction step, and are not
merely rewritten by structural congruence.

Reduction contexts sidestep the issue by using pattern matching, rather than
structural rules, to isolate reducible subterms to build a redex. This ensures pre-
cisely that rewriting by structural congruence cannot happen at arbitrary points in
the tree. However, the downside of this technique is that the context rule [R-ctx]
becomes complicated and unwieldy to use in proofs, because one would have to
do induction in the formation rules for contexts, rather than just in the hight of the
derivation tree. It may thus defy our very purpose of defining a reduction semantics;
namely to make the semantics simpler to use in proofs for e.g. type systems.

In this section, we shall therefore consider a third alternative, which is to build a
reduction relation that is slightly larger than the τ−→ transition relation. The benefit
of working with a larger relation is that every property of the reduction relation
then also holds for the τ -transition, since we will have that

P → P ′ =⇒ P
τ−→ P ′

Specifically, wewill allow case and runM to unfold, regardless of whether they
contain reducible subterms that can perform an internal or external communication:
For example, if we assume that Ψ ⊩ φ, Ψ ⊩ M ⇐ P , P ̸ α−→ and Q τ−→ Q′, then we
will allow reductions such as

Ψ ▷ (case φ : P ) | Q→ P | Q′ and Ψ ▷ runM | Q→ P | Q′

even though they cannot be concluded by the rules of the labelled semantics. Lifting
this restriction removes most of the aforementioned difficulties pertaining to the
behaviour of these two constructs.

In effect, we shall make the process runM equivalent to P , if M ⇐ P is en-
tailed byΨ, and likewise for case φ̃ : P̃ which we shall regard as equivalent to Pi if
Ψ ⊩ φi. Thus we shall again make use of a notion of process equivalence similar to

31



structural congruence, but this time we shall add axioms for unfolding runM and
case constructs, rather than using structural rules.

However, this unfolding is contingent upon the free assertions LΨM present in
the process to be rewritten, and we shall therefore need to parametrise our equiv-
alence relation with the active assertions. We could require processes to be on a
certain a normal form, such as

(νx̃)
(L̃ΨM | P)

where we require all scopes to have been fully extruded, and all assertions to appear
at the left-most position, but this would precisely require a notion of structural con-
gruence to allow an arbitrary process to be rewritten to this form, thereby making
the definition circular.

Instead we shall proceed as Bengtson et al. [3, 4] and Parrow et al. [28] and use
the frame function FΨ(·) from definition 2.16 to collect the free assertions in the
redex. Before we can proceed to define our parametrised equivalence relation, we
shall then firstly define a version of structural congruence that is simpler than the
one given previously, in definition 3.3:

Definition 3.5 (Simplified structural congruence). We define the simplified struc-
tural congruence written, ≡S , as the least congruence on process terms containing
α-equivalence, the commutative monoidal rules for parallel composition, and the rule
for scope extrusion:

[S-Scope] (νx)P | Q ≡S (νx) (P | Q) if x#Q

With this definition in place, we could then try to proceed by extending struc-
tural congruence with a parametrisation, i.e.

· ▷ · ≡S · ⊆ A× PΨ × PΨ

and then add the two unfolding rules:

Ψ ⊩ φi

Ψ ▷ case φ̃ : P̃ ≡S Pi

Ψ ⊩M ⇐ P

Ψ ▷ runM ≡S P

for unfolding runM and cases, if their conditions are entailed by theΨ parameter.
Unfortunately, this definition of structural congruence is unsound: The relation is
symmetric, and we can therefore use the rule for case unfolding to create an arbi-
trary process P : Assume for example that Ψ ⊩ φ1 and Ψ ⊩ φ2; then

Ψ ▷ 0 ≡S case φ1 : 0 [] φ2 : P ≡S P

because we can read the rule from right to left. A related problem arises with the
runM construct, where the unfolding rule now allows one process to be substituted
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for another, if they share a handle: Assume for example thatM ⇐ P andM ⇐ Q;
then the we may perform the two rewrites

Ψ ▷ P ≡S runM ≡S Q

by using the unfolding rule twice, first from right to left, and then left to right. In
both cases, the problem derives from the symmetry of≡S , and we shall therefore in-
stead create an asymmetric relation≫, that we term the evaluation relation, defined
as follows:

Definition 3.6 (Evaluation relation). We define the parametrised evaluation relation

· ▷ ·≫ · ⊆ A× PΨ × PΨ

by the following rules:

[E-Res] Ψ ▷ P ≫P ′

Ψ ▷ (νx)P ≫ (νx)P ′ (x#Ψ)

[E-StRuct] P ≡S P
′

Ψ ▷ P ≫P ′

[E-Case] Ψ ⊩ φi

Ψ ▷ case φ̃ : P̃ ≫Pi

[E-Run] Ψ ⊩M ⇐ P

Ψ ▷ runM≫P

[E-PaR]Ψ⊗FΨ(Q) ▷ P ≫P ′

Ψ ▷ P | Q≫P ′ | Q
(Fν(Q)#Ψ,Fν(P ) , P )

[E-Rep]
Ψ ▷ !P ≫P | !P

This definition ensures that the two unfolding rules, [E-Run] and [E-Case], can-
not be applied in the other direction, and thus we avoid the aforementioned problem
of symmetry. The [E-StRuct] rule then allows ≫ to rewrite processes by our sim-
plified structural congruence, where symmetry is unproblematic; and, lastly, the
rule [E-PaR] is used to ensure that the free assertions in Q are taken into account
when evaluatingP in a parallel composition, similar to the [PaR] rule in the labelled
semantics. Then at last we can define the reduction relation:

Definition 3.7 (Reduction relation). We define the reduction relation

· ▷ · → · ⊆ A× PΨ × PΨ

by the following rules:

[R-com] Ψ ⊩M
·←→ K

Ψ ▷MN [x̃ := L̃].P |K(λx̃)N.Q→ P | Q[x̃ := L̃]
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[R-eval]Ψ ▷ P ≫Q Ψ ▷ Q→ P ′

Ψ ▷ P → P ′
[R-Res] Ψ ▷ P → P ′

Ψ ▷ (νx)P → (νx)P ′ (x#Ψ)

[R-paR] Ψ⊗FΨ(Q) ▷ P

Ψ ▷ P | Q→ P ′ | Q
(Fν(Q)#Ψ,Fν(P ) , P )

As mentioned above, this definition yields a reduction relation that is strictly
larger than the τ -labelled transition relation; hence we cannot have a full correspon-
dence, but only one direction of implication, as expressed in the following theorem:

Theorem 2. Ψ ▷ P
τ−→ P ′ =⇒ Ψ ▷ P → P ′

Proof. The proof is by induction in the derivation of Ψ ▷ P
τ−→ P ′, where we

show that for each possible transition of this form, we can derive a corresponding
conclusion of the form Ψ ▷ P → P ′ by using the rules of the reduction semantics.

* * *

In this chapter we have discussed the development of a reduction semantics for the
higher-order Ψ-calculus framework. We have given three examples of the defini-
tion of a reduction relation: One (the first) that was strictly smaller than τ−→; one
(the second) that coincided with τ−→ but used reduction contexts and reinterpreted
runM as a special case construct; and lastly one (the third) that was strictly larger
than τ−→ and used an asymmetric evaluation relation rather than the usual structural
congruence.
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4 Instantiations

Our purpose in the present chapter is twofold: Firstly, our presentation of the HOΨ-
calculus in chapter 2 was rather terse and devoid of any illustrative examples of in-
stantiations; these are instead deferred to the present chapter, where we shall review
and expand on some of the examples of both first- and higher-order instantiations
by Bengtson et al. [3, 4] and Parrow et al. [28].

Secondly, as described in chapter 1, one of our main purposes in this thesis is to
show that the ρ-calculus can be represented within the HOΨ-framework. We shall
therefore use the aforementioned examples to build towards such an instantiation.

4.1 First-order instantiations

We shall firstly consider instantiations of the π-calculus [26], both its monadic and
polyadic variants, as well as the eπ-calculus of Carbone andMaffeis [7]. They appear
much alike, when viewed through the abstract lens of the Ψ-calculus framework,
since only a small change in parameter settings is required to obtain one from the
other.

Themonadic π-calculus allows only a single name, both in subject and in object
position, whilst the polyadic π-calculus allows vectors of names in object position.
Lastly, the eπ-calculus reverses this pattern by allowing vectors of names in subject
position, but only single names in object position. The syntactic difference between
the monadic, polyadic and eπ variants thus lies in the form of the input and output
operators, and we shall therefore define the common syntax here at the outset for
later reference:

Definition 4.1 (Common π-syntax). The common syntax of π-calculi with matching
is given by the following formation rules:

P ∈ P ::= 0
∣∣ ∏n

i=1 Pi

∣∣ ∑n
i=1 αi.Pi

∣∣ [x = y]P
∣∣ (νx)P

∣∣ !P

where
∏

denotes parallel composition,
∑

denotes choice, and α is a communication
prefix. Sums and products with only a single term denote just the term itself; i.e.

1∏
i=1

P1 =
1∑

i=1

P1 = P1
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To obtain the various π-calculi in the following, we need only redefine the com-
munication prefix α accordingly, and perhaps amend the syntax slightly. The mean-
ing of the remaining operators is the standard interpretation, as described in e.g.
[27], but rather than repeating the semantics here we shall instead define a general
translation intoΨ-calculus syntax, that we shall reference in the following sections:

Definition 4.2 (Common π-translation). The translation of the common π-calculus
syntax is given by the following recursive equations:

J0K = 0J∏n
i=1 PiK = JP1K | . . . | JPnKJ∑n

i=1 αi.PiK = case ⊤ : Jα1.P1K [] . . . [] ⊤ : Jαn.PnKJ[x = y]P K = case x ·←→ y : JP KJ(νx)P K = (νx) JP KJ!P K = !JP K
Note that the translation is homomorphic for most of the operators, and in-

troduces only a minimum of encoding for the rest. Specifically, nondeterministic
choice P1 + P2 is encoded by using the case expression with ⊤ as the condition,
as we also described in our comments on the Ψ-calculus’ syntax (cf. section 2.3.1).
Matching [x = y]P is similarly encoded with a case expression, this time with a
comparison by ·←→ as the condition, similar to an if φ then P construct.1

The semantics will then follow from the specific parameter settings and transla-
tions of the communication operators that we shall define for each variant below.

4.1.1 The monadic π-calculus

Themonadic π-calculus is the most basic variant, since it only allows a single name
in both subject and in object position. We define the prefix α accordingly:

α ::= x(y)
∣∣ x<z>

Now, to describe the monadic π-calculus as a Ψ-calculus instantiation, we shall
expand on an example by Bengtson et al. [4]. We set the parameters as follows:

Definition 4.3 (Monadic π-instantiation). Themonadic π-calculus is obtained by the
following Ψ-calculus parameter settings:

T ≜ N
C ≜

{
M

·←→ N | M,N ∈ T
}
∪ {⊤}

⊩ ≜
{
(1, x

·←→ x) | x ∈ N
}
∪ { (1,⊤) }

A ≜ {1 }
⊗ ≜ λx.λy.1

and with substitution defined as the usual capture-avoiding replacement function of
names for names.

1Here we deviate from the instantiation by Bengtson et al. [4] who instead explicitly define ·←→
to be the = relation. However, we found this double definition to be an unnecesssary complication.
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Thus, the set of terms,T, is just the set of namesN , and the set of conditions, C
consists of comparisons of terms (which are just atomic names) by the ·←→ operator.
We also include the ⊤ symbol to represent a condition that is true for all assertions.
The π-calculus does not use assertions, so we define them to be empty, by letting
the set of assertions A contain only the unit assertion 1, and with the composition
operator as a function that for any two arguments will return 1.

Lastly, the entailment relation is defined as a set ofA×C pairs of the form (1, φ),
since 1 is our only valid assertion, and consisting of the pair (1,⊤), to let ⊤ be a
condition that is always entailed, and of pairings of 1 with precisely all conditions
where a name x is compared to itself by the channel equivalence operator ·←→. Thus
we implicitly define ·←→ to be exact syntactic equivalence between names.

Given these settings, the translation of the α-prefixes is straightforward:

Definition 4.4 (Monadic π-translation). The translation of the monadic π-calculus
extends the translation of the common syntax from definition 4.2 with the following
clauses for input and output:

Jx(y).P K = x(λy)y.JP KJx<z>.P K = xz.JP K
4.1.2 The polyadic π-calculus

The polyadic variant of the π-calculus allows transmission of vectors of names, x̃,
rather than just a single name. We shall represent such vectors as dot-separated
lists:

x̃ ≜ x1 · . . . · xn

and we change the definition of prefixes accordingly:

α ::= x(y1 · . . . · yn)
∣∣ x<z1 · . . . · zn>

It requires just a small addition to the definition of the set of terms T to accom-
modate this change, whilst the remaining parameter settings are as in the monadic
variant:

Definition 4.5 (Polyadic π-instantiation). The polyadic π-calculus is obtained with
the following definition for Ψ-calculus terms:

T ≜
{
M · x | M ∈ T ∧ x ∈ N

}
∪N

C ≜
{
M

·←→ N | M,N ∈ T
}
∪ {⊤}

⊩ ≜
{
(1, x

·←→ x) | x ∈ N
}
∪ { (1,⊤) }

and with assertions A ≜ {1 } and composition ⊗ ≜ λx.λy.1 as before.
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As can be seen, the settings for C,A,1,⊗ and the entailment relation ⊩ is ex-
actly as in definition 4.3. The only difference is in the definition of the set of terms,
T, where we adjoin a new set of composite names (vectors) onto the basic set of
atomic names.

This setting allows all terms to be vectors of any length, which technically also
would allow vectors to appear in subject position, and in the conditions with the
channel equivalence relation. However, our definition of entailment is still as in
the monadic instance, so only conditions with exact syntactic equivalence between
single names x ·←→ x are entailed, and since channel equivalence is used in the
communication rules on precisely the terms appearing in subject position, only in-
put and output operations with a single name in subject position will give rise to a
transition.

Lastly, the translation of the polyadic α-prefixes is as expected:2

Definition 4.6 (Polyadic π-translation). The translation of the polyadic π-calculus
extends the translation of the common syntax from definition 4.2 with the following
clauses for input and output:

Jx(y1 · . . . · yn).P K = x(λy1, . . . , yn)y1 · . . . · yn.JP KJx<z1 · . . . · zn>.P K = xz1 · . . . · zn.JP K
4.1.3 The eπ-calculus

The polyadic π-calculus has atomic names in subject position, but allows composite
names in object position. The eπ-calculus of of Carbone and Maffeis [7] reverses
this pattern, by instead having composite names in subject position, but only atomic
names as objects (cf. also section 1.4). We once again redefine the α prefixes accord-
ingly:

α ::= x1 · . . . · xn(y)
∣∣ x1 · . . . · xn<z>

and we can furthermore remove the matching construct [x = y]P from the com-
mon syntax of definition 4.1, since it can be encoded in eπ.

As mentioned above, the definition for the polyadic π-calculus allowed vectors
in both subject and object position, but only communication operations with sin-
gle names in subject position would be entailed and thus yield transitions. All we
therefore need is to lift this restriction, by changing the definition of the entailment
relation to let syntactic equivalence between composite names of any length be en-
tailed:

Definition 4.7 (eπ-instantiation). The eπ-calculus is obtained with the following Ψ-
calculus parameters:

2This is another point where we deviate from the presentation by Bengtson et al. [3], who instead
use a tupling symbol tn(x1, . . . , xn) for a vector of length n to represent the composite names. We
saw no point in complicating the presentation with this extra symbol, and preferred instead the dot-
notation which also is directly transferable to the eπ-syntax.
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T ≜
{
M · x | M ∈ T ∧ x ∈ N

}
∪N

C ≜
{
M

·←→ N | M,N ∈ T
}
∪ {⊤}

⊩ ≜
{
(1,M

·←→M) | M ∈ T
}
∪ { (1,⊤) }

and with assertions A ≜ {1 } and composition ⊗ ≜ λx.λy.1 as before.

Thus, the settings for T,C,A and ⊗ are the same as definition 4.5 for the
polyadic π-calculus, and the only change in the definition of ⊩ is that syntactic
equivalence of all terms M ·←→ M , rather than just atomic names x ·←→ x, is now
entailed. Note that the definition of terms T includes vectors of unit length (i.e.
single atomic names), so the entire monadic π-calculus is a sub-language of eπ, as
expected. The translation is therefore again straightforward:

Definition 4.8 (eπ-translation). The translation of the eπ-calculus extends the trans-
lation of the common syntax from definition 4.2 with the following clauses for input
and output:

Jx1 · . . . · xn(y).P K = x1 · . . . · xn(λy)y.JP KJx1 · . . . · xn<z>.P K = x1 · . . . · xnz.JP K
Note a curious detail: The variant of eπ defined by Carbone and Maffeis [7] is

monadic, since it only allows single names in object position. This is reflected in the
above translation, but the Ψ-calculus instantiation does not explicitly disallow the
use of such vectors in object position. Thus, this instantiation actually represents a
polyadic form of eπ.

Furthermore, in the ordinary eπ-calculus the length of a name vector cannot
grow at runtime, but in the present Ψ-calculus instantiation it can, because the
substitution function is defined such that it substitutes whole terms for names, and
terms are vectors of names. Thus, if we let single names appear in object position
of inputs, but use vectors in outputs, then we can compose new name vectors of
arbitrary length at runtime. Consider the following transition:

x(λy)y.wz1 · y | xz2 · z3
τ−→ wz1 · z2 · z3

Here the single name y is bound in object position of the input, but the com-
posite name vector z2 · z3 appears in object position of the output. The polyadic
π-calculus would use a sorting system like Milner’s [26] to disregard such processes,
since they would not be meaningful in the ordinary π-calculus, where polyadic
communication is encoded with monadic operators, but we can allow them in the
Ψ-calculus representation, precisely because the substitution function here can be
defined such that it replaces single names with whole terms. Thus, when z2 · z3 re-
places ywithin the continuation we obtain the new composite name vector z1 ·z2 ·z3,
which is then ready to be sent out on w. Thence it may be received by some other
process, and used for further communication.

This instantiation thus allows us to generate new names at runtime, thereby
making the ν-operator redundant. In other words, we have obtained something
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akin to the name generating capability of the ρ-calculus, but without the higher-
order characteristics

4.2 Higher-order instantiations

The runM construct adds higher-order process mobility to the Ψ-calculus frame-
work, thereby allowing any representable first-order calculus to be lifted to a higher-
order variant, including all of the previous examples. Parrow et al. [28] give a very
general presentation of how this may be done in a generic way for a number of
representable calculi, including, at least in principle, the aforementioned polyadic
variant of eπ with name-generating capabilities, although these authors never ex-
plicitly explore the properties of this particular higher-order variant. Yet, lifting the
polyadic eπ-instantiation would yield a π-like calculus with both name-generating
capabilities and higher-order process mobility; that is, precisely the characteristic
features of the ρ-calculus. Thus, we might say that whilst the polyadic eπ instanti-
ation seems to approach the ρ-calculus ‘from below,’ a higher-order variant might
very well approach it ‘from above.’

We shall return to this possibility below, after reviewing a few other examples
of instantiations of higher-order calculi to further explore the capabilities afforded
by runM construct. As with the first-order instantiations, we shall begin with a
basic language and proceed in an incremental fashion, by adding complexities to
the basic definition.

4.2.1 Plain process mobility

Consider, as our first example, the following prototypical higher-order language,
which is reminiscent of the Plain CHOCS language ofThomsen [37], except that we
have removed the restriction and renaming operators and replaced them with the
scoping ν-operator:

Definition 4.9 (Plain processmobility). Assume a setN of atomic names, partitioned
into two disjoint sets of channel names C, ranged over by a, x, y, and of process
variables V , ranged over by X,Y, Z ; i.e.

a, x, y ∈ C ⊆ N ∧ X,Y, Z ∈ V ⊆ N ∧ C ∩ V = ∅

and then let the set P of processes be built by the following formation rules:

P ∈ P ::= 0
∣∣ P | Q

∣∣ P +Q
∣∣ (νa)P

∣∣ a(X).P
∣∣ a<Q>.P

∣∣ X

As can be seen, this CHOCS-like language is merely a simplified form of the
general π-calculus syntax (cf. definition 4.1), with processes rather than names ap-
pearing in object position of communication prefixes, and with replication replaced
by process variables X . The idea is that communication should yield transitions
like the following:

a(X).X | a<P>.Q τ−→ P | Q
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where the process P itself is sent along a and immediately substituted forX in the
continuation. It is not much, but it is clearly enough to represent infinite behaviour.
We can, for example, use the same method as Meredith and Radestock [20] for en-
coding replication in the ρ-calculus, and define a copying process D, as

D (a) ≜ a(X). (X | a<X>)

and let it copy itself, to encode infinite behaviour. Clearly, if we let

P ≜ (νa) (D | a<D>)
= (νa) (a(X). (X | a<X>) | a<a(X). (X | a<X>)>)

then P → P →ω , and from this we can encode replication. We shall now describe
the CHOCS-like language as a HOΨ-calculus, where we expand on an example by
Parrow et al. [28, p. 10].

Definition 4.10 (CHOCS-instantiation). To obtain the instantiation of CHOCS we
let the HOΨ-parameters be defined as follows:

T ≜ N ∪ P
C ≜

{
a

·←→ b | a, b ∈ N
}
∪
{
P ⇐ Q | P,Q ∈ P

}
∪ {⊤}

⊩ ≜
{
(1, a

·←→ a) | a ∈ C
}
∪ { (1, P ⇐ P ) | P ∈ P } ∪ { (1,⊤) }

and with assertions A ≜ {1 } and composition ⊗ ≜ λx.λy.1 as before.

The definition states that terms T can be atomic names or whole processes, and
conditions C are either on the form of a comparison of atomic names by the ·←→
operator, or a declaration that one process is a handle for another. The latter is
the important part: This is the setting that will allow the process code itself to be
transmitted in a communication, and it is possible precisely becausewe let processes
themselves be terms.

Assertions are again not needed and hence defined with an empty value as in
the first-order examples, and lastly we define the entailment relation to again let
exact syntactic equality of channel names be entailed. But furthermore we also let
all conditions be entailed where a process is a handle for itself ; i.e. such that P ⇐ P
is entailed for all processes P .

The syntactic translation is now straightforward, with the clauses for 0, P |Q,
P + Q and (νa)P exactly as in the translation of the common π-calculus syntax,
and with the input and output operators changed in the obvious way to use process
variables rather than channel names in object position:

Definition 4.11 (CHOCS-translation). The translation of CHOCS extends the trans-
lation of the common syntax in definition 4.1 with the following clauses for the com-
munication operators and process variables:Ja(X).P K = a(λX)X.JP KJa<Q>.P K = aJQK.JP KJXK = run X
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and with substitution defined as the capture-avoiding replacement of names (process
variables X) for terms (processes P ).

The Ψ-calculus’ term language can be arbitrarily complex, and by letting pro-
cesses be handles for themselves we are automatically ensured that the well-formed-
ness criterion for handles (cf. definition 2.15) is satisfied, because we obviously have
that n(P ) ⊆ n(P ). However, it also has another curious, but useful effect: Consider
again our previous communication example, that through the translation now be-
comes

1 ▷ a(λX)X.run X | aP.Q τ−→ run P | Q

which is immediately concluded by the [Com] rule. Consider then the term run P
that results from the communication: Here run P α−→ P ′ if P α−→ P ′, which is
concluded by the [Run] rule:

[Run]1 ⊩ P ⇐ P 1 ▷ P
α−→ P ′

1 ▷ run P α−→ P ′

so in other words, run P ≃ P for any reasonable definition of a behavioural equiv-
alence ≃. Thus, the transmitted process does not need a number of ‘extra’ transi-
tion steps to be able to resume its operation; it behaves similar to the ‘eager drop’
mechanism employed in the ρ-calculus’ higher-order substitution function (see ap-
pendix A), as long as the dropped process is not a deadlock. This is relevant for our
endeavour to create an instantiation of the ρ-calculus, because, as we argued in [2],
the ‘eager drop’ method of higher-order substitution cannot be encoded with a ‘de-
layed drop’ semantics rule, or its equivalent, a ‘trigger process’ !x.P as one would
use in the π-calculus to represent the higher-order paradigm (cf. [32]), because a
reduction always will require at least one extra step to perform the communication
on x that will trigger the process.

4.2.2 The HOπ-calculus

The CHOCS-like language from the previous section allowed only process terms to
appear in object position of a communication. Thus, one may send an entire input
operation, but not just the name to input something on.

To make the calculus a little more flexible, we can allow both by amending the
syntax for the communication prefixes as follows:

Definition 4.12 (Simplified HOπ-syntax). Let the sets a, x, y ∈ C ⊆ N andX,Y ∈
V ⊆ N with C ∩ V = ∅ be as in definition 4.9. Then let the input and output prefixes
be redefined as follows:

α ::= a<K>.P
∣∣ a(U).P

K ::= x
∣∣ P

U ::= y
∣∣ Y
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Here K , appearing in object position of outputs, is either a name or a process;
and U , appearing as object of inputs, is either an ordinary variable or a process
variable. This yields a simplified form of monadic HOπ, similar to the one described
by Parrow [27] in his overview of variants of the π-calculus.

This ‘simplified HOπ’ extension requires no change to the parameter settings
from definition 4.10, and the translation is the same as in definition 4.11, so one
might almost say that it was implied in the settings from the outset, with the only
change residing in the syntax of the input language. It is, however, quite far from
the original form of the HOπ-calculus, as defined by Sangiorgi in [31; 32], which
has both polyadicity; process constantsD instead of replication; and an application
construct D⟨K̃⟩ and X⟨K̃⟩ allowing processes to be parametrised with vectors of
data terms, like a function call:

Definition 4.13 (HOπ-calculus syntax). Let the set of names N be partitioned into
three disjoint sets of channel names C and process variables V , as previously defined,
and then thirdly a setD of process constants, ranged over byD. The syntax ofHOπ is
then similar to the common π-calculus syntax of definition 4.1, but without replication,
and extended with the following constructs:

P ::= . . .
∣∣ D⟨K̃⟩

∣∣ X⟨K̃⟩
α ::= x<K̃>

∣∣ x(Ũ)
K ::= x

∣∣ D
∣∣ P

U ::= y
∣∣ Y

where each D has a defining equation on the form D ≜ (λŨ)P , with the notation
(λŨ)P denoting process abstraction, with Ũ binding a number of names or process
variables within P . We write D andX forD⟨⟩ andX⟨⟩, i.e. when the length of K̃ is
zero.

The purpose of process abstraction (λ·)· in the definition of constants is to act
as a list of formal parameters that will be bound by the application operator ·⟨·⟩ on
process constants and process variables. The semantic rule for process constants
with application is therefore

[Const]P{K̃/Ũ} → P ′

D⟨K̃⟩ → P ′

(
D ≜ (λŨ)P

)
with substitution being used to bind the formal parameters Ũ to the actual K̃ .

The application operator can likewise occur on process variables, to enable a
form of dynamic parametrisation of received processes. The variable X⟨K̃⟩ itself
has no reduction rule but will instead be evaluated eagerly by the higher-order sub-
stitution; i.e. theX will have been replaced by some other term before it is reached
in the reduction. Suppose now that a process constant D with a zero-length argu-
ment list is received and substituted for X , but the process abstraction bound to D

43



has a formal parameter list Ũ of non-zero length; i.e. thatD ≜ (λŨ)P and that we
have a reduction sequence like

a(X).X⟨K̃⟩ | a<D>→ D⟨K̃⟩ → P ′

where P{K̃/Ũ} → P ′. Thus we may even parametrise processes with other pro-
cess abstractions, that again expects parameters with process abstractions, and so
on.3

Polyadicity can, as we have seen above, be handled straightforwardly in the Ψ-
calculus framework, but to represent process constants and parametrisability we
shall have to fundamentally alter our parameter settings. Firstly, we shall define a
form of parametrised process handles, similar to those in [28], and its associated
form of entailment:

Definition 4.14 (Parametrised handle). Let the application operator ·⟨·⟩ be any bi-
nary operator

·⟨·⟩ : T×T→ T

defined on the set ofΨ-calculus terms. The corresponding form of abstraction is then a
parametrised handle of the formM(λx̃)N ⇐ P , with x̃ binding into N and P ; and
the associated entailment rule for application of parametrised handles is then

[PaRa] M(λx̃)N ⇐ P ∈ Ψ

Ψ ⊩M⟨N [x̃ := L̃]⟩ ⇐ P [x̃ := L̃]

The [PaRa] rule is quite general and not limited to the HOπ-calculus, but can be
used in a variety of instantiations where this form of parametrisation is desirable,
simply by includingM⟨N⟩ in the term language, and sets of parametrised handles
M(λx̃)N ⇐ P in the definition of assertions, and then lastly adding the [PaRa]
rule to the corresponding entailment relation. Indeed, Parrow et al. [28] use it, in a
slightly different formulation, in their generic procedure for lifting first-order Ψ-
calculi to higher order. With this definition in place we can now define the Ψ-
calculus parameters for HOπ:

Definition 4.15 (HOπ-calculus instantiation). Let the sets of Ψ-calculus terms, con-
ditions and assertions be defined as follows:

T ≜ N ∪ P ∪
{
M ·N | M,N ∈ T

}
∪ {M⟨N⟩ | M,N ∈ T }

C ≜
{
x

·←→ y | x, y ∈ N
}
∪
{
M ⇐ P | M ∈ T ∧ P ∈ P

}
∪
{
⊤
}

A ≜ P({M(λx̃)N ⇐ P | M,N ∈ T ∧ P ∈ P })

with 1 ≜ ∅ and ⊗ ≜ ∪, and with the entailment relation defined by the [PaRa] rule
from definition 4.14 and the following rules:

3It is on this basis that Sangiorgi [32] states that whilst the π-calculus is of 1st order, and CHOCS
is 2nd order, any HOπ-process can be of arbitrarily high order and the HOπ-calculus is therefore of
ω order.
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[Chaneq]
Ψ ⊩ x

·←→ x
[TRue]

Ψ ⊩ ⊤

Terms T are here defined to be vectors of names or processes (or even mixes,
although we shall not use that possibility here), and and they may optionally be
parametrised, since we also include the application operator ·⟨·⟩ in the term lan-
guage. ConditionsC are again defined as channel equivalence tests between vectors
of names, the true condition ⊤, and the set of process handles; note that we here
only let terms be handles for single processes P , and not vectors of processes. Asser-
tions A are defined as sets of parametrised handles, as described in definition 4.14,
with assertion composition⊗ as set union and the unit assertion 1 as the empty set.
And lastly, the entailment relation ⊩ is defined with the [PaRa] rule as prescribed,
as well as the two usual rules for syntactic equivalence of channel names and the
true condition.

Now, before we can proceed to define the translation, we must handle one re-
maining difficulty: Recall that process constants D are declared ‘outside’ of the
syntax of processes, even though the declaration obviously uses the syntax of pro-
cesses on the right-hand side. To enable the translation to be simple and homo-
morphic even for process constant declarations we shall therefore assume that each
such declaration D ≜ (λŨ)P actually does appear in the syntax of processes, as
unguarded parallel compositions at top level. That is, we assume a HOπ-program
is of the form (

n∏
i=1

Di ≜ (λŨ)Pi

)
| P

with no declarations appearing within any of the Pi processes or within P . We can
now define the translation, which is mostly similar to the translation of the common
π-calculus syntax, except for the input and output operations, process constants and
process variables.

Definition 4.16 (HOπ-calculus translation). The HOπ-translation extends the com-
mon translation of the π-calculus syntax in definition 4.2 with the following clauses:

JP K =


JD ≜ (λŨ)P K = L{D(λŨ)Ũ ⇐ JP K}MJD⟨K̃⟩K = run D⟨JK̃K⟩JX⟨K̃⟩K = run X⟨JK̃K⟩Jx(Ũ).P K = x(λŨ)Ũ .JP KJx<K̃>.P K = xJK̃K.JP K
JK̃K =


Jx̃K = x̃JP1 · . . . · PnK = JP1K · . . . · JPnKJDK = D
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The translation firstly converts all process constant declarations to top-level as-
sertions, where the process constant now appears as a parametrised handle for the
process. This is possible, because we defined the set of process constants D to be a
subset of the set of names N , and thus included in the set of terms.

Technically, we are required by the well-formedness criterion in definition 2.15
to ensure that n(M) ⊆ n(P ) ifM ⇐ P , if we intend to use the labelled semantics.
This is, however, difficult to do within the recursive translation function itself, but
one solution could be to use the possibility of having composite terms, consisting of
mixed vectors of names and processes, and let the handles be defined as composite
terms D · P , consisting of the constant itself and the process it represents.

4.3 Towards reflection

We are come at last to the problem of creating an instantiation of the ρ-calculus,
our model of reflection. Throughout the previous sections we have seen how the
HOΨ-calculus framework can represent calculi with features such as names with
a structure (eπ), binding processes to names (HOπ) and code mobility (CHOCS);
features that are all characteristic of the ρ-calculus, and which we now shall attempt
to combine to obtain an instantiation.

We briefly described the syntax and semantics of the ρ-calculus in the intro-
duction, section 1.2, and more at length in appendix A. Recall that the ρ-calculus
has no atomic names at all, but builds its names from the syntax of processes by
quoting, including even the bound names ⌜R⌝ appearing in the input construct
⌜P⌝(⌜R⌝).Q. But this name is precisely bound and can therefore be α-converted
to any other name ⌜R1⌝ as long as it does not cause a name clash.

The free names, like ⌜P⌝ in the previous example, can all be dropped (at least
in principle), and thus be converted back into the process found within the name;
hence, the structure of a free name has a form of ‘meaning’ in the sense that it de-
notes the behaviour of the process within. But a bound name can never be dropped,
and thus its internal structure only serves to distinguish it from any other bound
name, but the actual format of this difference is irrelevant, as long as it can be used
to build a notion of α-equivalence. In this sense, the bound names might equally
well be regarded as atomic entities. Thus we shall begin by slightly amending the
syntax of the ρ-calculus, by letting bound names be atomic, drawn from the set N ,
rather than built from quoted processes:

Definition 4.17 (Amended ρ-syntax). AssumeN is a countably infinite set of atomic
names, ranged over by x. The sets of amended ρ-calculus processes and names are then
built by the formation rules:

P ::= 0
∣∣ P1 | P2

∣∣ n(x).P
∣∣ n ⟨|P |⟩

∣∣ ⌝n⌜
n ::= x

∣∣ ⌜P⌝

where we assume all free names are quoted processes.
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Note that we can easily convert a ‘pure’ ρ-calculus process into this amended
form, as long as we are able to choose such a bound name x afresh whenever we
encounter an input operation, by using the following translation:

J0K = 0JP1 | P2K = JP1K | JP2KJn(⌜Q⌝).P K = JnK(x).JP {x/⌜Q⌝}K where x# n(P )Jn ⟨|P |⟩K = JnK ⟨|JP K|⟩J⌝n⌜K =⌝JnK⌜J⌜P⌝K = ⌜JP K⌝JxK = x

However, we shall not explicitly use this translation function. Rather, in the
sequel, we shall simply assume that any ρ-calculus process is written by using the
amended syntax of definition 4.17, with all free names being quoted processes and
all bound names being atomic and chosen distinct from all others (i.e. the Barendregt
convention).

Given these preliminary considerations we shall now proceed to build two dif-
ferent instantiations of the ρ-calculus: one using code mobility directly, like the
CHOCS instantiation; and another using names as process constants, like the sec-
ond instantiation of the HOπ-calculus.

4.3.1 The ρ-calculus with code mobility

Before we build our first instantiation of the ρ-calculus, we should at least attempt
to clarify why doing so may not be entirely trivial. The main difficulty lies not in
the higher-order process mobility itself, which, as we have seen above, can easily
be handled within the HOΨ-framework. Instead, it derives from the ρ-calculus’
ability to generate names with structure at runtime, and the fact that this structure
determines the equivalence of names in a way that is different from purely syntactic
equivalence. Indeed, name equivalence, ≡N , in the ρ-calculus is generated by the
two rules

[Nameeq1]
P1 ≡ P2

⌜P1⌝ ≡N ⌜P2⌝
[Nameeq2]⌜⌝⌜P⌝⌜⌝ ≡N ⌜P⌝

that are also found in definition A.3 (cf. appendix A). The first rule, [Nameeq1],
declares that two names are equivalent if the processes within them are structurally
congruent; and structural congruence, in turn, is a congruence which thus again
may require us to compare the free names of processes, to decide whether they are
structurally congruent or not.

Suppose for example that we must decide whether

⌜⌜P1⌝ ⟨|0|⟩⌝
?≡N ⌜⌜P2⌝ ⟨|0|⟩⌝

47



This would, by the [Nameeq1] rule, require us to decide whether the two processes
are structurally congruent:

⌜P1⌝ ⟨|0|⟩
?≡ ⌜P2⌝ ⟨|0|⟩

which again comes down to deciding whether

⌜P1⌝
?≡N ⌜P2⌝

The two relations depend on each other in a mutual recursion, and deciding name
equivalence between any two names thus becomes an actual computation, albeit one
that will always terminate in a finite number of steps, since the sets of names and
processes are both well-founded. Hence, the level of quoting within a name cannot
be infinite. Consider for example the following process and reduction:

⌜R⌝ ⟨|P |⟩ | ⌜R⌝(x).x ⟨|0|⟩ | ⌜Q⌝(y).✓
→ ⌜P⌝ ⟨|0|⟩ | ⌜Q⌝(y).✓

Whether or not this processwill reduce to✓ in the next step depends onwhether
⌜P⌝ ≡N ⌜Q⌝, which again depends on whether P ≡ Q, as described above. But
P may have been composed at runtime, and thus be contingent upon the reduction
history of the process. This is the main difficulty in creating an encoding of the
ρ-calculus into another process calculus: The target language must also be able to
perform the computational steps involved in deciding name equivalence between
objects that are built at runtime.

Yet the HOΨ-framework can accommodate this, precisely because it is paramet-
ric in the channel equivalence operator ·←→ and the entailment relation. Thus, our
strategy is to build the equivalent of name equivalence into the definition of entail-
ment. We begin by defining the other parameters:

Definition 4.18 (ρ-calculus instantiation). To obtain the ρ-calculus instantiation we
let the set of terms T and conditions C be defined thus

T ≜ N ∪ { ⌜P⌝ | P ∈ P } ∪ { ⟨|⌜P⌝|⟩ | P ∈ P }
C ≜

{
M

·←→ N | M,N ∈ T
}

∪ {P1 ≡ P2 | P1, P2 ∈ P }
∪ {M ⇐ P | M ∈ T ∧ P ∈ P }

with assertions A ≜ {1 } and composition ⊗ ≜ λx.λy.1, and with the substitution
function [x :=M ] on terms defined as

⟨|⌜P⌝|⟩ [x :=M ] = ⟨|⌜P [x :=M ]⌝|⟩
⌜P⌝[x :=M ] = ⌜P⌝

z[x :=M ] =

{
M if z = x

z if z ̸= x
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Note that we have not yet defined the entailment relation: We postpone its
definition until after we have created the translation, since they are rather closely
entwined. However, for the set of conditions C we have, apart from the usual com-
parisons of terms by channel equivalence M ·←→ N , also included another kind of
condition, P1 ≡ P2, foreshadowing some of the definitions to come.

As for the set of terms, T, we include two kinds of structured terms, both built
from the syntax of processes like names in the ρ-calculus: ⌜P⌝ and ⟨|⌜P⌝|⟩, where
the latter is intended to remind us of the lift operator ⌜R⌝ ⟨|P |⟩. Here, the operand
(or object) is a process, which means that names within it can be replaced by substi-
tution, whilst the subject ⌜R⌝ is a quoted process, i.e. a name, which is unaffected
by substitution.

The purpose of the two different kinds of structured terms is precisely to main-
tain this distinction, although mainly for the sake of clarity. The substitution func-
tion will of course only ever replace atomic names, and in our amended ρ-calculus
syntaxwe ensured that only bound nameswould be replaced by atomic names. Thus,
if an atomic name x appears in a term, then that namemust be bound by some input
prefix, and if that prefix occurs outside the term, then that term can only have been
a lifted process in the source language. That is, for some x ∈ N we may possibly
have that x ∈ n(⟨|⌜P⌝|⟩), but for all x ∈ N we have that x /∈ n(⌜P⌝). Indeed, if
this was not the case, then the substitution function would fail to satisfy the first of
the first substitution law in definition 2.7.

Given these definitions and considerations we can now create the translation:

Definition 4.19 (ρ-calculus translation). The translation to HOΨ of ρ-calculus pro-
cesses and names, using the amended syntax of definition 4.17, is given by the equa-
tions:

J0K = 0JP1 | P2K = JP1K | JP2KJn(x).P K = JnK(λx) ⟨|x|⟩ .JP KJn ⟨|P |⟩K = JnK ⟨|⌜JP K⌝|⟩ .0J⌝n⌜K = run JnKJ⌜P⌝K = ⌜JP K⌝JxK = x

The translation is quote straightforward, with only aminimum of encoding. The
only noteworthy detail occurs in the translation of input, where the pattern ⟨|x|⟩
ensures that the brackets are removed from any received term ⟨|⌜P⌝|⟩, resulting in
only ⌜P⌝ being substituted for xwithin the continuation. The translation also gives
us the syntax of any HOΨ-process that may represent a ρ-calculus process in this
instantiation, and with this we can now at last define the entailment relation:

Definition 4.20 (ρ-calculus entailment). Let the entailment relation for conditions
of channel equivalence ·←→ be generated by the rules:
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[Chaneq1]
Ψ ⊩ ⌜runM⌝ ·←→M

[Chaneq2]
Ψ ⊩ P1 ≡ P2

Ψ ⊩ ⌜P1⌝ ·←→ ⌜P2⌝

and including the symmetric and transitive closure of ·←→ as described in definition 2.11.
Then let the entailment relation for conditions of structural congruence ≡ be defined
such that ≡ contains α-equivalence; that (P/≡, | ,0) is an abelian monoid; and
containing the following congruence rules:

[PaR] Ψ ⊩ P1 ≡ P2

Ψ ⊩ P1 | R ≡ P2 | R

[Run] Ψ ⊩M1
·←→M2

Ψ ⊩ runM1 ≡ runM2

[In] Ψ ⊩M1
·←→M2 Ψ ⊩ P1 ≡ P2

Ψ ⊩M1(λx1) ⟨|x1|⟩ .P1 ≡M2(λx2) ⟨|x2|⟩ .P2

[Out]Ψ ⊩M1
·←→M2 Ψ ⊩ P1 ≡ P2

Ψ ⊩M1 ⟨|⌜P1⌝|⟩ ≡M2 ⟨|⌜P2⌝|⟩

and lastly, let the entailment of handles be defined by the rule

[Handle]
Ψ ⊩ ⌜P⌝⇐ P

The rules [Chaneq1] and [Chaneq2] correspond directly to the [Nameeq1] and
[Nameeq2] rules, and the structural congruence rules then mirror the rules of struc-
tural congruence as defined for the original ρ-calculus, with recursive calls to chan-
nel equivalence on subjects of input and output.

Returning to our previous example of ⌜⌜P1⌝ ⟨|0|⟩⌝ ≡N ⌜⌜P2⌝ ⟨|0|⟩⌝, its trans-
lated counterpart would then be concluded in the expected way:

[Chaneq2]
[Out]

[Chaneq2]

. . .

1 ⊩ P1 ≡ P2

1 ⊩ ⌜P1⌝ ·←→ ⌜P2⌝ 1 ⊩ 0 ≡ 0

1 ⊩ ⌜P1⌝ ⟨|⌜0⌝|⟩ ≡ ⌜P2⌝ ⟨|⌜0⌝|⟩
1 ⊩ ⌜⌜P1⌝ ⟨|⌜0⌝|⟩⌝ ·←→ ⌜⌜P2⌝ ⟨|⌜0⌝|⟩⌝

4.3.2 The ρ-calculus with process handles

In [2] we attempted to extend the π-calculus with a Fusion construct inspired by the
Fusion calculus [13]. The idea was to let processes be ‘fused’ with atomic names,
written [z = P ] and stating that ‘z represents the process P ,’ as a means to use
atomic names rather than quoted processes directly in the syntax. The ρ-calculus’
lift operator would then be encoded as

Jn ⟨|P |⟩K = (νz)n<z>.[z = P ]

This calculus, called the ρ-fusion, was intended to act as an intermediary step
between the ρ-calculus and the π-calculus, to facilitate encoding of the first into the
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latter – something that we now know to be impossible, as we argued in chapter 1.
It failed for precisely the same reasons that we described in the previous section:
because the purely syntactic equivalence of atomic names cannot capture the name
equivalence relation of the ρ-calculus. It equates too few names.

But as we also saw above, the name equivalence relation can be built into the
definition of entailment, and we can therefore now create another instantiation of
the ρ-calculus, where we reuse this idea of fusing processes to atomic names by
letting [z = P ] be an assertion L{ z ⇐ P }M, stating that ‘z is a handle for the process
P .’ In fact, it is similar to using process constants as handles, like we did in the HOπ-
instantiation.

However, this approach faces one technical difficulty, that we alsomentioned for
HOπ: By the well-formedness criteria of definition 2.15 we are required to ensure
that n(P ) ⊆ n(M) ifM ⇐ P , which rather limits the kinds of processes that can
be fused, if we only use a single name z as the handle. An obvious solution would
be to let processes be part of the term language and include the whole of P into the
termM , for example as z · P , but then there seems little point in adding the extra
name z in the first place, since we instead could just let each process be a handle for
itself, P ⇐ P , like we did in the CHOCS instantiation.

The well-formedness criterion thus seems quite restrictive and limiting to the
usefulness of having terms as handles, and we might wonder whether we can avoid
it. According to Parrow et al. [28], this particular well-formedness criterion was
introduced to ensure that restricted names cannot suddenly be moved outside of
their scope by the runM construct. Suppose for example we had the following
generic HOΨ-process:

(νx)
(
az.L{ z ⇐ xz.0 }M) | a(λy)y.run y | x(λy)y.✓

Here x is a restricted name inside the scope, and clearly x ∈ n(xz.0) and also
x /∈ n(z). Thus, if we simply ignored the well-formedness criterion and let the
process reduce, we would not open the scope of x in the communication, and yet
the process containing the restricted name x would be run, thereby causing a name
clash with the free name x outside the scope:

(νx)
(
az.L{ z ⇐ xz.0 }M) | a(λy)y.run y | x(λy)y.✓
→ (νx)

(L{ z ⇐ xz.0 }M) | run z | x(λy)y.✓
?→ (νx)

(L{ z ⇐ xz.0 }M) | ✓

The purpose of the well-formedness criterion is precisely to ensure that this
situation cannot arise, by requiring that any restricted names used within P must
also occur in the handle of P , thereby ascertaining that all scopes will be extruded if
the handle is sent out. To circumvent the problem, we shall therefore instead have
to assume that all scopes are always maximally extruded: that is, we shall assume
that all processes are always on a normal form

(νx̃)
(LΨ̃M | P )
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where all unguarded assertions are gathered in the leftmost position, and all scopes
are extruded to encompass both assertions and processes, and all have been appro-
priately α-converted. This is easy if we use the reduction semantics, because we
can use the scope extrusion axiom [S-Scope] of structural congruence to ensure
that any process is on this form prior to any reduction.

With this assumption we can safely use single names as handles in our instan-
tiation, because no bound name in a process can then ever be moved outside of its
scope. In fact, wemight as well let all names occurring anywhere within a ρ-process
(including within other quoted processes) be represented as atomic names, and not
just the bound names. The key distinction between free and bound names will then
be that all free names must have a defining equation x ≜ P , whilst bound names
must not.

This is precisely similar to using HOπ process constantsD as free names (which,
as the reader may recall, is howwe represented them in HOΨ anyway), and we shall
therefore have to make a similar assumption about these defining equations: that is,
we remove ⌜P⌝ from the syntax of names in definition 4.17, such that only atomic
names remain, and instead we add the construct x ≜ P to the syntax of processes.
For each ⌜P⌝ occurring in the ‘amended syntax’ of definition 4.17 we shall then
instead require that a declaration x ≜ P is added in parallel at top level for some
fresh name xwhich is then used in the syntax instead of ⌜P⌝; and furthermore that
declarations occur do not occur anywhere else in the syntax, apart from at top level.
That is, we assume now that a ρ-calculus program is on the form(

n∏
i=0

xi ≜ Pi

)
| P

where each name xi is chosen distinct from the others. The translation of this ‘pre-
processed’ form of the ρ-calculus into HOΨ is then as expected:

Definition 4.21 (ρ-calculus translation).

J0K = 0JP1 | P2K = JP1K | JP2KJx(y).P K = x(λy)y.JP KJx ⟨|P |⟩K = (νz)xz.L{ z ⇐ JP K }MJ⌝x⌜K = run xJz ≜ P K = L{ z ⇐ JP K }M
Note that lift, perhaps not surprisingly, becomes an output, combined with the

equivalent of precisely a declaration z ≜ P . The only difference between the new
names thus created at runtime, and the ‘statically quoted’ names appearing as defin-
ing equations at top level in the syntax, is that the latter are defined with free names,
whilst the former use the ν-operator to choose a fresh name z at runtime.
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However, this distinction cannot have any practical meaning in the translated
program, because all names in the ρ-calculus are globally visible; that is, it is always
possible to construct any name anywhere in a program, so there can be no secret or
unobservable names. There is simply no way to shield a name from being observed
anywhere in the ρ-calculus.

We use (νz) in the present translation to choose a fresh name z in the translated
program, but this does not mean that communication on z, or running the process
P bound to z, will be limited by the scope of z; indeed, we must set our HOΨ-
parameters such as to disregard the scoping mechanism of ν to mimic this global
visibility property of the ρ-calculus.

However, before we proceed to the parameter settings, we should briefly discuss
an alternative to the ν-operator, that we also mentioned earlier: namely the name-
generating capability of the polyadic eπ-calculus. Rather than using ν at runtime
to choose a new atomic name for each lifted process, we might instead consider
using only a finite set of atomic names, and then composing new name vectors of
increasing length by the method we described in section 4.1.3.

This is, indeed, a possibility, but it would mean that names are generated inde-
pendently of their being bound to a process. Thuswewould no longer be ascertained
that all names ‘point’ to a process, and hence that all names x̃ can be used in a run x̃
construct. On the contrary, it would always be possible to build a new name vector
with no associated process and then attempt to run it, whichwould be the equivalent
of a null-pointer dereference. It is for this very reason that we here instead require
every free or generated name to be bound to a process; and we shall consequently
use the structure of their associated processes, rather than the names themselves,
to decide channel equivalence between any pair of names.

Definition 4.22 (ρ-calculus instantiation). We let the sets of terms, conditions, asser-
tions and associated operators be defined as follows:

T ≜ N
H ≜

{
M ⇐ P | M ∈ T ∧ P ∈ P

}
C ≜

{
M

·←→ N | M,N ∈ T
}
∪ {P1 ≡ P2 | P1, P2 ∈ P } ∪H

A ≜ P(H)

1 ≜ ∅
⊗ ≜ ∪

where H is a generic set of handles. Furthermore, we let the substitution function
on terms be the standard capture-avoiding replacement of names for terms, and for
assertions be defined as:

{ z ⇐ P } [x :=M ] = { z[x :=M ]⇐ P [x :=M ] }

There are no conditions appearing directly in the syntax, so we need not define
the substitution function for them. For assertions appearing in the syntax as LΨM,
each such Ψ will be of the form { z ⇐ P }, and we therefore do not need to define
substitution for anything else than singleton sets of handles.
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Lastly, we shall implement ≡N through the ·←→ operator in the entailment rela-
tion as before. Many of the rules for ≡ are structurally similar to the first version,
differing only in the specific form of the processes, but we shall give them all re-
gardless:

Definition 4.23 (ρ-calculus entailment). Let the entailment relation for conditions
of channel equivalence ·←→ be generated by the rules:

[Chaneq1]
{x1 ⇐ run x2 } ⊗Ψ ⊩ x1

·←→ x2

[Chaneq2]
Ψ ⊩ P1 ≡ P2

{x1 ⇐ P1, x2 ⇐ P2 } ⊗Ψ ⊩ x1
·←→ x2

and including the symmetric and transitive closure of ·←→ as described in definition 2.11.
Next, let the entailment relation for conditions of structural congruence≡ be defined
such that ≡ contains α-equivalence; that (P/≡, | ,0) is an abelian monoid; and
containing the following congruence rules:

[Run] Ψ ⊩ x1
·←→ x2

Ψ ⊩ run x1 ≡ run x2

[PaR] Ψ ⊩ P1 ≡ P2

Ψ ⊩ P1 | R ≡ P2 | R
[In] Ψ ⊩ x1

·←→ x2 Ψ ⊩ P1 ≡ P2

Ψ ⊩ x1(λy1)y1.P1 ≡ x2(λy2)y2.P2

[Out] Ψ ⊩ x1
·←→ x2 Ψ ⊩ P1 ≡ P2

Ψ ⊩ (νz1)x1z1.L{ z1 ⇐ P1 }M ≡ (νz2)x2z2.L{ z2 ⇐ P2 }M
And lastly, let the entailment of handles be defined by the rule

[Handle]
{x⇐ P } ⊗Ψ ⊩ x⇐ P

Again, the rules [Chaneq1] and [Chaneq2] correspond to the [Nameeq1] and
[Nameeq2] rules, but compared to the previous instantiation we now use the asser-
tions Ψ to hold the information on which process is bound to each of the names.
Channel equivalence is then concluded on the basis of structural congruence be-
tween these processes, as before. Thus, the name itself does not matter; only the
structure of the process to which it points.
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* * *

In this chapter we have reviewed and expanded on several of the examples of instan-
tiations of both first- and higher-order process calculi presented by Bengtson et al.
[4] and Parrow et al. [28]. Most notably, we discussed the relationship between the
monadic and polyadic π-calculus and the eπ calculus, as they appear when viewed
through the lens of a Ψ-calculus parameter settings, which led us to realise that
a (purposefully ill-sorted) polyadic eπ-calculus may also be capable of generating
names with a structure, like the ρ-calculus. Another notable contribution in this
chapter was the creation of a ‘full’ HOπ-instantiation with both application and
process constants, that follows Sangiorgi’s original formulation much more closely
than the ‘generic’ instantiation described in [28].

And lastly, we created two different instantiations of the ρ-calculus: the first
quite closelymirrored the ρ-calculus’ concept of letting names (here terms) be quoted;
whilst the latter took a fundamentally different approach and let all names be the
equivalent of a HOπ process constant. In both cases, the crucial detail enabling
these instantiations to actually represent the ρ-calculus, was the possibility of hav-
ing the equivalent of the ρ-calculus’ name equivalence relation directly represented
in the definition of entailment. It shows that the peculiarity of the ρ-calculus does
not reside in its use of quoted processes as names per se, but in its method of de-
ciding equivalence between names, depending on structures that are built within
the calculus itself. Whether or not these structures are the names themselves, or
whether names are just atomic pointers to these structures, does not matter.
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5 A generic type system for the
Higher-Order Ψ-calculus

In this chapter we will introduce a generic type system for the HOΨ-calculus. Un-
like an ordinary type system for a specific language, the generic type system is itself
intended to be instantiated through parameter setting, similar to the way the Ψ-
calculus is instantiated to yield a representation of a specific language. Thus, it
represents a general framework for type systems, and consequently, when we have
an instantiation of the HOΨ-calculus, we can create a corresponding instance of the
generic type system.

A process is well-behaved when the process is well-typed; that is, we are en-
sured that certain predefined runtime errors can not occur when the process is well-
typed. As with the HOΨ-calculus, in order to make an instance of the generic type
system, some parameters must be defined and some requirement/assumption must
hold for the parameters. While we cannot show safety for every instance of the
generic type system, since the notion of well-behaved processes is dependent on
each instance, we can show subject reduction for every instance of the generic type
system; that is, if a process is well-typed so is every reduct of the process. Since it
follows from safety that a well-typed process is well-behaved, we derive that if a
process is well-typed, then every following process is well-behaved.

In this chapter we firstly introduce the generic type system and the definition
of the type judgement in section 5.2. Then, in section 5.3 we define the instance
parameters and instance assumption, which is used to instantiate a type system
for an instance of the HOΨ-calculus, and lastly, in section 5.4 we prove subject
reduction and its associated lemmas. We also give a short description of how safety
can be defined. Example of instances of the generic type system are deferred to
chapter 6.

5.1 Preliminary considerations

There already exists a generic type system for the first-order Ψ-calculus made by
Hüttel [17].1 However, this type system, is based on the labelled semantics for the

1The definition of our type system will be heavily inspired by the type system of Hüttel [17],
and we therefore suspect that our type system and the type system by Hüttel [17] will have same

57



Ψ-calculus by Bengtson et al. [4], andwewish instead to define a type system for the
HOΨ-calculus and base it on the reduction semantics that we developed in chapter 3.
We have two principal reasons for this choice:

• Subject reduction is always a desired property for any type system. Theorems
for subject reduction with a labelled transition relation will commonly be on
the form:

Γ ⊢ P ∧ P τ−→ P ′ =⇒ Γ ⊢ P ′

and in order to show that his property holds, one will often also need to show
preservation of well-typedness for any labels. Theorems for subject reduction
with a reduction relation will instead be on the form:

Γ ⊢ P ∧ P → P ′ =⇒ Γ ⊢ P ′

i.e. we do not have to consider labels, and hence and the proof is (sometimes)
simpler than the proof for subject reduction with a labelled transition relation.

• A reduction semantics often comes with a definition of structural congru-
ence, which can be used to rewrite processes. A corresponding type system
will then also have a lemma stating that any well-typed process remains well-
typed after a rewrite; that is, well-typedness is preserved by structural con-
gruence. Given such a lemma, we can therefore rewrite processes such that
the typing becomes more manageable. An example of this could be to extrude
all scopes to the outermost position, such that we may begin typing a process
by adding the types of all new names to the type environment.

In chapter 3 we formulated three different reduction semantics; one that was
strictly smaller than the τ -labelled transition relation; one that matched it exactly
but used reduction contexts in place of structural rules for (particularly) parallel
composition; and one that was strictly larger but instead used an evaluation rela-
tion ≫ to circumvent some of the problems created by the symmetry of structural
congruence. In the following, we shall base our type system on the largest of the
three reduction relations, cf. section 3.3, because we found it easier to work with
structural rules rather than reduction contexts. Although it does not match the τ -
labelled transition relation exactly, it will relate every pair of processes related by
the τ -labelled transition relation since it is strictly larger, and our type system will
therefore also be able to correctly type processes in the labelled transition system.
Thus, if we have a process P , type environment Γ and an assertion environmentΨ,
we can derive the following from theorem 2 and subject reduction (see theorem 3):

Ψ ▷ P
τ−→ P ′ =⇒ Ψ ▷ P → P ′

Γ,Ψ ⊢ P ∧Ψ ▷ P → P ′ =⇒ Γ,Ψ ⊢ P ′

Γ,Ψ ⊢ P ∧Ψ ▷ P
τ−→ P ′ =⇒ Γ,Ψ ⊢ P ′

expressive power, when excluding higher-order behaviour. We will however not attempt to prove
this, since it will not be relevant for later results.
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Wewill generally follow the same approach as in the type system by Hüttel [17],
but we shall deviate from it in the assumptions and lemmas we make. Furthermore,
we will also extend it to support the higher-order behaviour found in the HOΨ-
calculus.

5.2 The generic type system

The first problem that arises when defining the generic type system for the HOΨ-
calculus is how to handle unguarded assertions collected from the context of a pro-
cess. This is important because the unguarded assertions determine which channel
names (or rather, terms) M,N are equal and therefore need the same type, and
which terms are handles for which processes when used in a runM operator. The
type system by Hüttel [17] solves this by including assertions in type environments,
to be able to handle bound names in assertions correctly. The definition of type en-
vironments by Hüttel [17] is

Γ ::= Γ, x : T
∣∣ Γ,Ψ

∣∣ ∅
and Γ is said to be well-formed if Γ is on the form Γ1,Ψ,Γ2 and n(Ψ) ⊆ dom(Γ1).2

We specifically wish to exclude the assertions from the type environment and
instead keep them separate for the sake of clarity, and we therefore instead define
type environments in the following way:

Definition 5.1 (Type environments). Let a type environment Γ be a partial function
with finite support Γ : N ⇀ Types. We shall write this as a set of tuples N × Types,
and we say that if (x, T ) ∈ Γ then Γ(x) = T . We write Γ, x : T to denote the type
environment Γ extended by the name x with type T .

However, we still need to keep track of the assertions in the outside context, and
for this purposewe shall therefore introduce an assertion environment, containing as-
sertions from an outside context. This creates an stronger correspondence between
type judgements for processes and the reduction relation, and we can therefore
write a judgement for processes as

Γ,Ψ ⊢ P

and the subject reduction theorem will then be on the form:

Γ,Ψ ⊢ P ∧Ψ ▷ P → P ′ =⇒ Γ,Ψ ⊢ P ′

Next, we shall define a notion of well-formed type judgements to ensure that a
type environment in a type judgement supports all free names in both the process
and the assertion environment:

2Note that type environments are denoted E in the generic type system by Hüttel [17].
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Definition 5.2 (Well-formed type judgement). A type judgement Γ,Ψ ⊢ P is said
to be well-formed if it is the case that

n(Ψ) ∪ n(P ) ⊆ dom(Γ)

This corresponds to the aforementioned definition of well-formed type environ-
ments by Hüttel [17]. Furthermore, the assertion environment in the type system
also represents an over-approximation of the assertion environment in the reduc-
tion relation; that is, it is an over-approximation of itself. We over-approximate the
assertion environment though weakening (cf. section 5.4 for details).

Returning briefly to the form of the type environment found in Hüttel [17], we
might use two functions, E(Γ) and Ψ(Γ) respectively, to extract the name-type
pairs and the assertions. The recipe we shall follow in the following for defining
our rules for type judgements might then abstractly be expressed as

Γ ⊢ P =⇒ E(Γ),Ψ(Γ) ⊢ P

that is, our type judgements for all constructs in the first-orderΨ-calculus will (not
surprisingly) have the same form as in the type system by Hüttel [17], save only
that we separate the assertions from the type envionment, and we then extend this
with a rule for typing the runM construct from the HOΨ-calculus. Thus, we give
the type judgements for processes as follows:

Definition 5.3 (Type judgements for processes). Let type judgements be on the form
Γ,Ψ ⊢ P and defined by the typing rules described in figure 5.1.

The rules [t-in] and [t-out] are similar to the type judgements rules by Hüttel
[17]. In order to support higher order behaviour we also need a rule for the runM
operator, which is [t-Run]: here a termM is a handle for a process P , and we use a
relation x to obtain the type environment for P from the type ofM . This relation
is one of the parameters that must be specified when instantiating the type system
(cf. section 5.3 for details).

As mentioned above, the purpose of the assertion environment is to collect and
represent assertions from an outer context. We can do this with one component
of the frame function, FΨ(·) from definition 2.16 in the [t-paR] rules. Additionally,
since the premises must be well-formed, we also need to collect the types of the
bound names, for which we use the other component of the frame function, Fν(·).

5.3 Parameters and assumptions

The purpose of making a generic type system is to be able to instantiate it with a
specific parameter setting, such that we obtain a type system that handles a set of
runtime errors. We shall now define these parameters for the generic type system,
and we denote them instance parameters for the generic HOΨ-calculus. They consist
of typing rules for terms, conditions (including clauses) and assertions, mirroring
the fact that these nominal data types are also parameters in the HOΨ-calculus.
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[t-in]

T ↫ T ′

Γ,Ψ ⊢M : T

Γ, x̃ : T̃ ,Ψ ⊢N : T ′

Γ, x̃ : T̃ ,Ψ ⊢P
Γ,Ψ ⊢M(λx̃)N.P

[t-Run]

T x Γ′

Γ,Ψ ⊢M : T

Ψ ⊩M ⇐ P

Γ′,Ψ ⊢P
Γ,Ψ ⊢ runM

[t-out]

T ↫ T ′

Γ,Ψ ⊢M : T

Γ,Ψ ⊢N : T ′

Γ,Ψ ⊢P
Γ,Ψ ⊢MN.P

[t-paR]

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢P
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢Q

Γ,Ψ ⊢ P | Q

(
Fν(P )#Ψ,Fν(Q) , Q

Fν(Q)#Ψ,Fν(P ) , P

)

[t-new]
Γ, x : T,Ψ ⊢ P

Γ,Ψ ⊢ (νx : T )P
(x#Ψ) [t-nil]

Γ,Ψ ⊢ 0
[t-Repl] Γ,Ψ ⊢ P

Γ,Ψ ⊢ !P

[t-case]

Γ,Ψ ⊢ φi

Γ,Ψ ⊢ Pi

Γ,Ψ ⊢ case φ̃ : P̃
[t-asseRt] Γ,Ψ ⊢ Ψ′

Γ,Ψ ⊢ LΨ′M
Figure 5.1: Type judgements for processes

Secondly, they consist of the two relations T ↫ T ′ and T x Γ, where the
latter specifies how how we can obtain a type environment from a type. These type
judgements and relations are defined as follows:

Definition 5.4 (Instance parameters for the generic HOΨ-calculus type system).
Let type judgements for terms, conditions and assertions, be of the form Γ,Ψ ⊢ J ,
where J is defined by the following syntax:

J ::=M : T
∣∣ Ψ

∣∣ φ

In order to instantiate the type system we require a set T containing types T ∈ T and
inference rules which define the following type judgements and relations:

[t-teRm] Γ,Ψ ⊢M : T

[t-ass] Γ,Ψ ⊢ Ψ′

[t-cond] Γ,Ψ ⊢ φ
[t-cha] T1 ↫ T2

[t-env] T x Γ

The relation ↫ is used in [t-in] and [t-out] to obtain the type of the object in
an input or output prefix. As an example, consider the channel types in the sorting
system by Milner [26], where we can define the relation to be ch(T ) ↫ T .
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A key motivation for the present type system is the ability to also type the
higher-order behaviour afforded by the runM construct, which is done with the
[t-Run] type judgement rule. It is therefore perhaps here worth elaborating on
some of our considerations underlying the definition of this particular rule. We
could have let the process obtained from a runM operator be typed in the same
type environment as the run operator, such that we would have the following rule:

Ψ ⊩M ⇐ P Γ,Ψ ⊢ P
Γ,Ψ ⊢ runM

However, in order to increase the expressive power of the type system, we also
want to handle which names and types are allowed inside a process, which results in
the current type judgement rule [t-Run]. We therefore need a relationx to extract
the type environment from a type. As a simple example, suppose that every type
of a term would consists of a channel component and a run type component (T,Γ);
then we could define the x relation to be (T,Γ) x Γ.

In order to show subject reduction for our type system, we need to show some
properties holds for the type system, described by Lemma 3, Lemma 5, Lemma 4,
Lemma 6 and Lemma 7. In order to do that we need some requirements/assumptions
for the instance parameters in definition 5.4, and we denote them the instance as-
sumptions for the generic HOΨ-calculus. However, before we can define them, we
need the notion of a preorder on frames:

Definition 5.5 (Frame preorder). We say that(
νx̃1 : T̃1

)
Ψ1 ≤

(
νx̃2 : T̃2

)
Ψ2

if x̃1 ⊆ x̃2 and Ψ2 = Ψ1 ⊗Ψ for any Ψ.

Definition 5.6 (Instance assumptions for the generic HOΨ-calculus type system).
To yield a valid instance of the generic type system, the following assumptions must
holds for all instance parameters:

[t-env-weaK] Γ,Ψ ⊢ J =⇒ Γ, x : T,Ψ ⊢ J
[t-env-stRength] Γ, x : T,Ψ ⊢ J ∧ x ̸∈ n(J ) =⇒ Γ,Ψ ⊢ J

[t-comp-teRm] Γ,Ψ ⊢ J [x̃ := L̃] : F (T̃ ) =⇒ Γ,Ψ ⊢ L̃ : T̃

[t-ass-weaK] Γ,Ψ ⊢ J ∧Ψ ≤ Ψ′ ∧ n(Ψ′) ⊆ dom(Γ) =⇒ Γ,Ψ′ ⊢ J

[t-subs] Γ,Ψ ⊢ L̃ : T̃ ∧ Γ, x̃ : T̃ ,Ψ ⊢ J =⇒ Γ,Ψ ⊢ J [x̃ := L̃]

[t-eal] Γ,Ψ ⊢M : T ∧Ψ ⊩M
·←→ N =⇒ Γ,Ψ ⊢ N : T

[t-env-claus] Γ,Ψ ⊢M : T ∧ T x Γ′ =⇒ dom(Γ) ⊆ dom(Γ′)

[t-weaK-ass-claus] Ψ ⊩M ⇐ P ∧ Γ,Ψ ⊢M ⇐ P ∧Ψ ≤ Ψ′ ∧ n(Ψ) ⊆ Γ

=⇒ Ψ′ ⊩M ⇐ P
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[t-subs-Run] Γ,Ψ ⊢M : T ∧ T x Γ′ ∧Ψ ⊩M [x̃ := L̃]⇐ P

=⇒ Γ′,Ψ ⊢ P

We also require that for all types T ∈ T and names x, that x#T ; i.e. we do not allow
atomic names in types.

We have labelled each of the assumptions such that we may refer to them in-
dividually in the proofs for the type system. [t-env-weaK], [t-env-stRength],
[t-comp-teRm], [t-ass-weaK], [t-subs] and [t-eal] are similar to in the assump-
tions of Hüttel [17].

The assumption [t-env-claus] is used to prove Lemma 5: Specifically, we use
it to weaken the assertion environment in the type judgement of a process P for
whichM is a handle, as in the following example:

Γ,Ψ ⊢M(λx)x.L{M ⇐ P }M | runM

Here we firstly type the process P , and since P might contain x, P is well-typed in
Γ, x : T . When we then type the runM operator, we must have that Γ,⊢ M : T ,
T x Γ, x : T and Γ, x : T,Ψ ⊢ P . Here we clearly see that the assumption
[t-env-claus] holds, since dom(Γ) ⊆ dom(Γ, x : T ).

The assumption [t-weaK-ass-claus] is used in the proof of Lemma 5. It states
that ifM is a handle for P , thenM must till remain a handle for the same process
P if the assertion environment is weakened. An example of a definition that might
not comply with this assumption could be if an assertion was able to ‘delete’ or
otherwise invalidate handles in another assertion:

L{x⇐ P }M⊗ L{ delete x }M = ∅
Regardless, we would still be allowed to delete handles if they are never used in any
conditions. And in any case it might be difficult in practice to define the composition
operator ⊗ such that is associative, as required in definition 2.11, if such a delete
operator was included in the assertion language, so this might arguably be a corner
case.

Lastly, [t-subs-Run] is used to prove Lemma 7: It states that if a term M be-
comes a handle for a new process P after a substitution, then the new process must
still be well-typed in the environment we obtain fromM ’s type T .

5.4 Soundness and safety

Now we wish to show subject reduction for our type system. For this, we shall use
the approach to type system soundness advocated by Wright and Felleisen [38], by
some called ‘syntactic typing.’ Here soundness is based upon the notion of subject re-
duction, also known as preservation, which states that a well-typed process remains
well-typed after a transition or reduction step. This is a necessary condition for
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soundness, but it is not sufficient, since we also need to prove that programs con-
taining type errors are not typable. However, we cannot show this result with the
current, generic setup, since the notion of a type error is dependent on the defini-
tion of the specific type system; that is, the instance obtained by parameter settings
of the generic type system. We will therefore only show subject reduction, and then
give a notion of how type errors can be defined (cf. theorem 4).

We shall build ourway towards this result through a series of lemmas, beginning
with the usual results of weakening and strengthening of the type environment:

Lemma 1 (Weakening). If Γ,Ψ ⊢ P then Γ, x : T,Ψ ⊢ P

Proof. We use proof by induction on the rules of Γ,Ψ ⊢ P . The proof can be found
in appendix C.1.

Lemma 2 (Strengthening). If Γ, x : T,Ψ ⊢ P and x#P,Ψ then Γ,Ψ ⊢ P

Proof. We use proof by induction on the rules of Γ, x : T,Ψ ⊢ P . The proof can be
found in appendix C.2.

We shall also need two results, called frame post reduction and frame post eval-
uation. The former, given in Lemma 3 is used in the proof of subject reduction
(theorem 3) to find any new assertions that may have become composed onto the
pre-existing assertion environment after a reduction. The latter, given in Lemma 4
states that the assertions in a process are unaltered by an evaluation: This is mainly
ensured by the criteria for well-formed processes (cf. definition 2.15) asserting that
all processes in a case operator, and all processes spawned by a runM operator,
must be assertion guarded and hence cannot contain any unguarded assertions, and
the proof establishes that the property of being assertion-guarded is preserved by
the evaluation relation ≫:

Lemma 3 (Frame post reduction). If Ψ ▷ P → P ′ then F(P ) ≤ F(P ′)

Proof. Very simple induction proof on the rules of Ψ ▷ P → P ′. For [R-com],
F(P ) is empty and we extend it with the frames in the continuations. For [R-eval]
we use Lemma 4 to show that the frames are equal, and then we use the induction
hypothesis. For [R-Res] we simply apply the induction hypothesis. For [R-paR] we
use the induction hypothesis and show that the extended frame simply extend the
frame found in the parallel process.

Lemma 4 (Frame post evaluation). If Ψ ▷ P ≫P ′ then FΨ(P ) = FΨ(P
′).

Proof. We use a simple proof by induction on the rules of Ψ ▷ P ≫P ′. For [E-
Res] and [E-PaR] we use the induction hypothesis. For [E-Case] and [E-Run] we
use definition 2.15 which ensures that no unguarded assertion can exist in processes
of a case operator, nor in any processes spawned by the runM operator.
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Next we show assertion environment weakening, given in Lemma 5. This lemma
states that any process that is well-typed remains well-typed after a composition of
any assertion in the assertion environment, so long as all names in the new assertion
environment are in the support of the type environment. This lemma is necessitated
by the syntax of HOΨ-calculus itself, which allows guarded assertions in continu-
ations to become unguarded after a reduction. It is used in the proof of subject
reduction to extend the assertion environment with the assertion found by frame
post reduction (Lemma 3). The instance assumptions [t-ass-weaK], [t-env-claus]
and [t-weaK-ass-claus] are used to prove this lemma.3

Lemma 5 (Assertion environment weakening).
If Γ,Ψ ⊢ P , n(Ψ′) ⊆ dom(Γ) and Ψ ≤ Ψ′ then Γ,Ψ′ ⊢ P .

Proof. We use proof by induction in the rules of Γ,Ψ ⊢ P . The proof can be found
in appendix C.3.

Hereafter we show subject evaluation, given in Lemma 6. This lemma states that
a well-typed process remains well-typed after an evaluation. For the proof, we use
Lemma 4 to keep any assertions in a parallel process unaltered. The lemma is used
in the subject reduction theorem (theorem 3) in the [R-eval] rule.

Lemma 6 (Subject evaluation). If Γ,Ψ ⊢ P and Ψ ▷ P ≫P ′ then Γ,Ψ ⊢ P ′.

Proof. We use proof by induction in the rules for Ψ ▷ P ≫P ′. The proof can be
found in appendix C.4.

The last lemma is subject substitution, given in Lemma 7. This lemma states that a
well-typed process remainswell-typed after a substitution, as long as the substituted
names and the terms used for the substitution have the same type. It is used in the
proof of subject reduction in the [R-com] case, when we use substitution on the
continuation of an input operation. This lemma requires the instance assumptions
[t-subs] and [t-subs-Run].

Lemma 7 (Subject substitution).
If Γ, x̃ : T̃ ,Ψ ⊢ P and Γ,Ψ ⊢ L̃ : T̃ then Γ,Ψ ⊢ P [x := L̃].

Proof. We use proof by induction in the rules of Γ, x̃ : T̃ ,Ψ ⊢ P . The proof can be
found in appendix C.5.

Lastly we show our main result, which is the subject reduction:

Theorem 3 (Subject reduction). If Γ,Ψ ⊢ P and Ψ ▷ P → P ′ then Γ,Ψ ⊢ P ′.

Proof. We use proof by induction in the rules for Ψ ▷ P → P ′. The proof can be
found in appendix C.6.

3A similar property can be found in the generic type system by Hüttel [17], where the relation
<A expresses the weakening of assertions.
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While we are unable to prove safety for the generic type system for the HOΨ-
calculus, we can give a general notion of how a definition of safety might be ex-
pressed. The reason for this inability is that the notion of type errors are dependent
on the formulation of type judgements for terms, conditions and assertions, which
must alle be specified as parameters to the type system. A notion of type error can
be described as

Γ,Ψ ⊢ P →WRONG

where, conversely, a process is said to be well-behaved if it is the case that Γ,Ψ ⊢
P ̸→ WRONG. In order to obtain a result of safety, the following theorem would
need to be shown:

Theorem 4 (Safety). Given a process P , a type environment Γ, and an assertion en-
vironment Ψ, if Γ,Ψ ⊢ P then Γ,Ψ ⊢ P ̸→WRONG

This result will have to be proved for each individual instance, but given such a
result, in combination with the result of subject reduction which we have for any
instance of the generic type system, we can then derive the following for any P ′:

Ψ ▷ P →∗ P ′ ∧ Γ,Ψ ⊢ P =⇒ Γ,Ψ ⊢ P ′ ̸→WRONG

* * *

In this chapter we have given a definition of a generic type system for the HOΨ-
calculus and discussed some of our considerations underlying its definitions, in-
cluding a number of instance assumptions that must be satisfied by every choice of
setting of the instance parameters, both for the HOΨ-calculus and the type system
itself, to yield a valid instance of the generic type system. The genetic type system
extends previous work on a generic type system for the first-order Ψ-calculus by
Hüttel [17], but our type system draws a stronger connexion between the assertion
environment Ψ in a type judgement and in the semantics, and it also includes the
ability to type the higher-order behaviour introduced in the HOΨ-calculus. Lastly,
we showed safety for our generic type system, which holds for any instance of the
generic type system. A discussion of an alternative for the generic type system can
be found in chapter 7.
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6 Type system instantiations

In this chapter we will utilize the generic type system from chapter 5 to define
instances of it for different calculi. In the first section of this chapter (section 6.1), we
will apply the generic type system to the simplifiedHOπ-calculus from section 4.2 in
order to catch faults in the translation from the HOπ-calculus to the HOΨ-calculus.

In the second section of this chapter, wewill apply the generic type system to the
ρ-calculus. We will mainly focus on the first instantiation defined in section 4.3.1.

6.1 Type systems for the simplified HOπ-calculus
In this section we are going to instantiate the generic type system, such that we
are able to type the simplified HOπ-calculus. The syntax for the simplified HOπ-
calculus can be found in definition 4.12, the parameter setting can be found in defi-
nition 4.10 and the translation can be found in definition 4.11.

The syntax for the HOπ-calculus, allows for two different variables, namely first-
order and higher-order variables. However this information is lost in the translation
function, which can introduce communication problems. We can see this with the
following example:

a<P>.0 | a(x).x<b>

Here we are attempting to send a process P over channel a, and substitute it for
the variable x. The variable is then used as a channel to send the channel b. This
process does not reduce since we can not substitute x for P . However when we
translate this process we get:

aP.0 | a(λx)x.xb

which is able to reduce but will then enter a deadlock when we try to use process
P as a channel to send name b. This is due to the definition of conditions in def-
inition 4.10, which does not allow processes in the relation ·←→. We could extend
·←→ to allow processes, such that they are able to be used as channels, however this

would introduce behaviour that is not part of the HOπ-calculus. Another problem
that arises with this translation is in the process:

a<b>.0 | a(X).X
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which substitutes a process variable for a channel, which is not allowed by the HOπ-
calculus.

To solve this issue, we will make an instance of the generic type system, that
captures the behaviour of names wrt. whether they should behave as channels or
processes.

We will first define the types of terms to be:

T ∈ T ::= ch(T )
∣∣ drop(Γ)

The behaviour of channels and first-order variables is captured in the same manner
as the simple sorting system for the π-calculus, by Milner [26]. Process terms and
higher-order variables, will have the type drop(Γ), where the processes are well-
typed in Γ.

Before defining an instance of the generic type system, we wish to define the
type errors that we want to prevent. The type errors have to follow the structure
found in section 5.4. The definition of the type errors can be found in figure 6.1.

We now define the instance parameters from definition 5.4:

[t-con]
Γ,Ψ ⊢ ⊤

[t-ass]
Γ,Ψ ⊢ L1M

[t-cha]ch(T ) ↫ T
[t-end]drop(Γ) x Γ

[t-teRm-1] Γ(x) = ch(T )
Γ,Ψ ⊢ x : ch(T ) [t-teRm-2] Γ′,Ψ ⊢ P

Γ,Ψ ⊢ P : drop(Γ′)

It should be fairly easy to see from definition 5.6, that all instance assumptions
hold.

This type system instance is almost completely defined, but as of now it con-
tains a flaw, namely the rule [t-teRm-2]. Here we can choose any Γ′, such that
the process P is well-typed, which trivialises the drop type. A better solution is
to have the type environment in a drop type, be the same type environment that
is exposed to the processes, when it is defined as an object in an output prefix, i.e.
if we have Γ,Ψ ⊢ aP , we want Γ,Ψ ⊢ P : drop(Γ). This way, when we run
the process, we can recall the bound variables and their types at the time when the
process was sent. In order to implement this feature, we need some mechanism for
storing types of processes. We can not use the type environment, since processes
can not be a member of the domain of a type environment. We could rewrite the
translation function and parameter setting, such that we use atomic names as han-
dles for processes, however a simpler solution exists. We can expand the definition
for assertions, such that they behave as type environments for processes. We do
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Γ,Ψ ⊢M : drop(Γ′) ∨ Γ,Ψ ⊢ Q→WRONG
Γ,Ψ ⊢MN.Q→WRONG

Γ ⊢ P : drop(Γ′) Γ′,Ψ ⊢ P →WRONG
Γ,Ψ ⊢MP.Q→WRONG

Γ,Ψ ⊢M : drop(Γ′)

Γ,Ψ ⊢M(λx)x.Q→WRONG
Γ,Ψ ⊢M : ch(T ) Γ, x : T,Ψ ⊢ Q→WRONG

Γ,Ψ ⊢M(λx)x.Q→WRONG

Γ,Ψ ⊢M : ch(T )
Γ,Ψ ⊢ runM →WRONG

Γ,Ψ ⊢ P : drop(Γ′) Γ′,Ψ ⊢ P →WRONG
Γ,Ψ ⊢ run P →WRONG

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P →WRONG
Γ,Ψ ⊢ P | Q→WRONG

(Fν(Q)#Ψ,Fν(P ) , P )

Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q→WRONG
Γ,Ψ ⊢ P | Q→WRONG

(Fν(P )#Ψ,Fν(Q) , Q)

Γ,Ψ ⊢ P →WRONG
Γ,Ψ ⊢ !P →WRONG

Γ, x : T,Ψ ⊢ P →WRONG
Γ,Ψ ⊢ (νx)P →WRONG

(x#Ψ)

Γ,Ψ ⊢ Pi →WRONG
Γ,Ψ ⊢ case ⊤̃ : P̃ →WRONG

Figure 6.1: Type errors for the instance of the HOπ-calculus.

this with the following definition:

A ≜ P
({
P : T

∣∣ P ∈ P ∧ T ∈ T
})

⊗ ≜ ∪
1 ≜ ∅

⊩ ≜ Ψ×
({

a
·←→ a

∣∣ a ∈ N
}
∪
{
P ⇐ P

∣∣ P ∈ P
}
∪ {⊤}

)
And we extend the encoding for output such that we have:

Ja<P>.QK ≜ aJP K.JQK | L{ JP K : T }M
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For the instance parameters, we change the rule for process names and asser-
tions:

[t-teRm-2]P : drop(Γ′) ∈ Ψ Γ′,Ψ ⊢ P
Γ,Ψ ⊢ P : drop(Γ′)

[t-ass]P : drop(Γ) ∈ Ψ′

Γ,Ψ ⊢ LΨ′M
We can now show safety for the type system.

Theorem 5 (Safety for the HOπ-calculus type system). If Γ,Ψ ⊢ P then P ̸→
WRONG.

Proof. We use proof by induction on the rules of Γ,Ψ ⊢ P . The proof can be found
in appendix D.1.

6.2 Type systems for the ρ-calculus

In this section we are going to instantiate the generic type system, such that we
obtain a type system for the ρ-calculus. However we will see that a sound type
system for the ρ-calculus is not obtainable, and argue that the generic type system
for the Ψ-calculus, is not suitable for typing the ρ-calculus.

In the previous section (section 6.1), we saw a type system for the HOπ-calculus.
The ρ-calculus and the modified HOπ-calculus behave mostly in the same manner,
except for one difference: In the modified HOπ-calculus, names can behave either
as channels or as processes, while in the ρ-calculus names can behave as channels
and as processes.

This difference is reflected in the definition of types, where types reflect the
behaviour of names in a disjunctive manner:

T ∈ T ::= ch(T )
∣∣ drop(Γ)

For the ρ-calculus, the types will reflect the behavior of names in a conjunctive
manner:

T ∈ T ::= ⟨T,Γ⟩

In section 4.3, we defined two instantiations of the ρ-calculus in the Ψ-calculus.
The first instantiation uses code mobility, and the second instantiation uses process
handles. We are going to mainly focus on the first instantiation, since the second
instantiation assumes that all scopes aremaximally extruded, which impedes typing
the instance.

Beforewe define the instance parameters, we are going tomodify theΨ-calculus
parameters. From section 6.1 we saw that we could use assertions as type environ-
ments for processes, and we will use the same mechanism for the ρ-calculus. We
therefore redefine assertions, assertion composition and the assertion unit.

A ≜ P
({

⌜P⌝ : T
∣∣ P ∈ P ∧ T ∈ T

})
∪ P

({
⟨|⌜P⌝|⟩ : T

∣∣ P ∈ P ∧ T ∈ T
})
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In the same manner as the definition of terms, ⌜P⌝ : T indicates that we are not
able to substitute inside P , and ⟨|⌜P⌝|⟩ : T indicates that we are able to substitute
inside P . Note this implies that ∀x ∈ N .x#⌜P⌝.

Hereafter we can modify the translation such that we have:

J⌜R⌝ ⟨|P |⟩K ≜ ⌜JRK⌝ ⟨|⌜JP K⌝|⟩ .0 | L{ ⌜JRK⌝ : T, ⟨|⌜JP K⌝|⟩ : T ′ }MJ⌜R⌝(x).P K ≜ ⌜JRK⌝(λx) ⟨|x|⟩ .JP K | L{ ⌜JRK⌝ : T }M
Now we can instantiate the generic type system, by defining the instance pa-

rameters:

[t-ass]

P : T ∈ Ψ′ =⇒ T x Γ
P ≡ Q ∧ Γ,Ψ ⊢ P : T ∧ Γ,Ψ′ ⊢ Q : T ′ =⇒ T = T ′

Γ,Ψ ⊢ LΨ′M
[t-teRm-1] Γ,Ψ ⊢ P : T

Γ,Ψ ⊢ ⌜P⌝ : ⟨T,Γ′⟩
[t-teRm-2]

Γ,Ψ ⊢ P : T

Γ,Ψ ⊢ ⟨|⌜P⌝|⟩ : T

[t-teRm-3] Γ(x) = T

Γ,Ψ ⊢ x : T
[t-cha] ⟨T,Γ⟩↫ T [t-end] ⟨T,Γ⟩x Γ

and Γ,Ψ ⊢ P : T is defined as:

[t-pRoc-type]

T x Γ′ ∧ Γ′,Ψ ⊢ P
⌜P⌝ : T ∈ Ψ ∨ ⟨|⌜P⌝|⟩ : T ∈ Ψ

Γ,Ψ ⊢ P : T

The rule [t-ass] first ensures that the second component of every type in the
assertion, is the same type environment as the type environment for the judgement.
Next it checks the assertion agrees with the assertion environment i.e. that every
process has the same type in both assertions.

The [t-pRoc-type] rule checks that the process is well-typed in regard to its
type environment, found in the second components of its type. Hereafter it checks
that the process and type pair are represented in the assertion.

While this seems to be the most approachable definition to a type system for
the ρ-calculus, this type system is not sound. Admittedly, we have neglected one
of the instance assumptions for the generic type system. However before showing
which instance assumption, we wish to illustrate what problems arise with this type
system, such that we have a better understanding of why typing the ρ-calculus is
hard.
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Consider the following example

⌜R1⌝ ⟨|⌜P⌝|⟩
| ⌜R1⌝(λy) ⟨|y|⟩ .(⌜R2⌝ ⟨|⌜Q⌝|⟩ | L{ ⟨|⌜Q⌝|⟩ : T1 }M)
| ⌜R2⌝(λx) ⟨|x|⟩ .x ⟨|⌜R3⌝|⟩
| ⌜Q[y := P ]⌝(λz) ⟨|z|⟩ .✓ | L{ ⌜Q[y := P ]⌝ : T2 }M

We have excluded assertions for R1, R2, R3 and P , since they are not needed to
illustrate the underlying problem. The process will reduce to success and is well-
typed, however it is not necessarily sound. If T1 = T2 the process is sound, since
after one reduction we have

⌜R2⌝ ⟨|⌜Q[y := ⌜P⌝]⌝|⟩ | L{ ⟨|⌜Q[y := ⌜P⌝]⌝|⟩ : T1 }M
| ⌜R2⌝(λx) ⟨|x|⟩ .x ⟨|⌜R3⌝|⟩
| ⌜Q[y := P ]⌝(λz) ⟨|z|⟩ .✓ | L{ ⌜Q[y := P ]⌝ : T2 }M

andwe can see the assertions agree on the type ofQ[y := ⌜P⌝]. However if T1 ̸= T2
then the assertions will not agree.

The instance assumption that does not hold, is the [t-weaK-ass-claus] assump-
tion. It states:

Ψ ⊩M ⇐ P ∧ Γ,Ψ ⊢M ⇐ P ∧Ψ ≤ Ψ′ ∧ n(Ψ) ⊆ Γ =⇒ Ψ′ ⊩M ⇐ P

which does not hold from the second premise in the [t-ass] type rule.
Since we have only typed the first instantiation (from section 4.3.1) of the ρ-

calculus in the HOΨ-calculus, it is worth considering the second instantiation of
the ρ-calculus (from section 4.3.2). Here instead of having processes as terms, we
have atomic names that handle the processes. Unfortunately, the problems in the
example above would also apply to this instantiation. We can see this if we rewrite
the example:

(νz) r1z1.L{ z ⇐ P }M
| r1(λy)y. (νz2) r2z2.L{ z2 ⇐ Q }M
| r2(λx)x. (νr3)xr3.L{ r3 ⇐ R3 }M
| q(λz) ⟨|z|⟩ .✓ | L{ q ⇐ Q[y := P ] }M

Here z2 and q are well-typed even if they have different types, and after one re-
duction we have { z2 ⇐ Q[y := P ], q ⇐ Q[y := P ] } ▷ z2

·←→ q, which makes the
process not well-typed.

However, we are able to make the type system sound. For the first type system
instance of the ρ-calculus, we can modify the instantiation of the ρ-calculus, such
that channel equivalence is also determined from the type of the terms. We do this
by including the type environment in the definition of entailment. Hereafter we
redefine the definition of entailment:
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[Chaneq2]

Γ,Ψ ⊩ P1 ≡ P2

Γ,Ψ ⊢ P1 : T ⇐⇒ Γ,Ψ ⊢ P2 : T

Γ,Ψ ⊩ ⌜P1⌝ ·←→ ⌜P2⌝

and remove the second premise of [t-ass] such that it becomes

[t-ass]
P : T ∈ Ψ′ =⇒ T x Γ

Γ,Ψ ⊢ LΨ′M
We also include the type environment in the definition of structural congruence,
since channel equivalence appears inside structural congruence (see definition 4.20).
While this type system is sound, it may not be desirable since:

• The definition of the reduction relation needs to include type environments,
which the processes are well-typed in.

• Quoted processes that eventually becomes structurally congruent, need to
have same type. We therefore need to predict which names become equal, if
we want these names to behave in the same manner as the ρ-calculus. This
suggest a more semantic approach to typing (see section 7.2).

* * *

In this chapter we have described two type system instances. One for the HOπ-
calculus, and one for the ρ-calculus. We have shown that the type system for the
HOπ-calculus, can capture defects in the translation, where incorrect use of chan-
nels results in processes that are not well-typed. We were able to formulate a type
system for the ρ-calculus, however this type system was not sound, since it did
not fulfill all instance assumptions. We have shown that the generic type system
for the HOΨ-calculus is not well suited to type the ρ-calculus. Considerations for
alternatives can be found in chapter 7.
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7 Reflections on reflection

We are come at last to the end of our endeavours, and in this final chapter we
shall briefly review and relate our main findings and conclude upon them. Then
lastly, reflecting in hindsight upon our work, we shall also discuss two alternative
approaches to the problem of typing reflection.

7.1 Discussion and conclusion

We set out in chapter 1 with the aim of investigating whether the higher-order Ψ-
calculus might be able to represent reflection, and if so, whether it might be typable.
Our investigations have shown that the ρ-calculus is indeed representable therein,
and, equally important, that the main enabling factor lay not in possibility of having
an arbitrarily complex term language, nor entirely in the higher-order capability of
HOΨ, but first and foremost in the ability to define the entailment relation such that
channel equivalence may mimic the name equivalence relation of the ρ-calculus.

This is, in hindsight, perhaps not surprising, given our findings in a previous
study [2], where our failure to encode the full ρ-calculus in a variant of the π-
calculus seemed to stem from its inability to represent name equivalence of struc-
tured terms through exact syntactic equivalence. We saw a glimpse of this already
in chapter 1, where we sketched a proof of separation between the π-calculus and
the ρ-calculus, supporting our conjecture from the previous study [2].

We have also seen, in chapter 4, how a purposefully ill-sorted, polyadic instan-
tiation of the eπ-calculus, which is a first-order calculus, might be used to generate
names with structure of increasing complexity at runtime, thereby obviating the
need for a ν-operator. No higher-order capabilities are required for this, but if the
calculus were to be lifted to a higher-order calculus without further modifications,
it would immediately be subject to the equivalent of a null-pointer dereferencing
runtime error, because there would be no guarantee that a thusly generated name
vector x̃ would be a handle for any process P that then might be executed with a
run x̃.

The ρ-calculus avoids this problem precisely because it combines name gener-
ation and higher-order process mobility into one operation, the lift x ⟨|P |⟩, which
thus ensures that every name is associated with a process; namely the process found
within the name itself. However, this only becomes obvious when viewed through
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the lens of the HOΨ-framework, because it precisely allows us to separate these two
capabilities. Also, in light of our developments in later chapters, one might wonder
whether it would be possible to create an instance of the generic type system to
catch this kind of runtime error, but although we have not pursued this question
any further, we strongly suspect that it will not be possible, since it seems to require
us to be able to predict which names will be generated at runtime.

Another contribution of our present work consists in the development of reduc-
tion semantics for the higher-order Ψ-calculus. This was done primarily to ease
the task of proving subject reduction for the generic type system, but it turned out
to be quite challenging to match the τ -labelled transition relation exactly, and we
ended up proposing three different definitions of a reduction relation. The problems
pertained particularly to unfolding case and runM expressions, which, due to the
symmetry of structural congruence, might allow these expressions to be rewritten
into processes without performing a reduction. Åman Pohjola [39] solved this prob-
lem for the first-orderΨ-calculus by using reduction contexts instead of a structural
rule for parallel composition, and because of the similarity between the case and
runM constucts, we were able to adapt his solution to the higher-orderΨ-calculus
by introducing a rule allowing a runM to be rewritten by structural congruence
into a case expression on a certain form that mimics the [Run] rule.1 Regardless, the
solution seems less than elegant, and we therefore instead decided to base our type
system on another formulation of a reduction semantics, which is slightly larger
than the τ -labelled transition relation. We do not presently know whether or how
it may possible to create a reduction semantics that exactly matches the τ -labelled
transition relation, without resorting to this type of rewriting trick.

Last, but not least, our main contribution in the present report consists in the
development of a generic type system for the HOΨ-calculus, based upon the generic
type system for first-orderΨ-calculi by Hüttel [17]; and showing an equally generic
result of subject reduction. This property is then automatically inherited by any in-
stance of the type system that satisfies a number of assumption about the types and
type judgements for the sets of terms, conditions and assertions. To our knowledge,
the generic type system is the first of is kind for higher-order calculi, yet it is still
only a first step in this direction. Hüttel [18] extends his ‘first-order’ generic type
system with capabilities, and then later, in [19] he also develops session types for
the first-order Ψ-calculus. Both of these extensions might be obvious next steps to
consider as future work on our generic type system as well.

We have also shown that it is indeed possible to instantiate the generic type
system to yield a type system for a higher-order calculus, specifically our instan-
tiation of the HOπ-calculus. We do not know whether this instance corresponds
to any known type system for HOπ. However, we were yet again unable to type
the ρ-calculus without introducing further constraints into the language. Specif-

1Parrow et al. [28] also note this likeness, when they discuss the conditions under which the case
expression (and the replication operator) may be abolished, because they can be encoded with the
runM construct. One might then say that we (ab)use this similarity in the opposite direction.
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ically, we found that it would be necessary to include type information into the
definition of name equivalence, creating a typed channel equivalence to ensure that
name-equivalent names also would have to have the same type to be allowed to
communicate. This is necessitated by the fact that the type of a ρ-calculus name is
not derived from the structure of the name, which thus makes it possible to build
two names that are channel equivalent, but nevertheless have different types. Thus,
this example yet again serves to illustrate that the primary difficulty in typing the
ρ-calculus derives from its notion of name equivalence, and the corresponding ca-
pability for generating names with structure at runtime, and not its higher-order
characteristics per se.

This negative result might also, in amore general sense, indicate that the generic
type system might be unable to type reflection, regardless of its manifestation. One
possible reason for why this might be the case is that the HOΨ-calculus itself is
based upon the Ψ-calculus, which in turn is based on the π-calculus; and this cal-
culus has no notion of higher-order behaviour, nor of reflection. As an alternative,
we might instead attempt to develop a similarly generic framework based upon an
entirely different calculus, that is also able to express higher-order behaviour, such
as the blue calculus of Boudol [5]. We discuss this possibility further in section 7.3.

Lastly, as mentioned above, wewould be able to type the ρ-calculus, by changing
the definition of name equivalence, yet even this solution would still require us to
know in advance which names will become equivalent at runtime, post substitution.
This could also suggest that a syntactic approach to typing the ρ-calculus might not
be sufficient, and that instead a semantic approach might be required. One possible
way forward could be to consider bisimulation and modal logic, as Meredith and
Radestock [21] do in another paper; yet as these authors themselves state, it is a
logic and not a type system [21, p. 2]. To avoid abandoning the typing approach
altogether, whilst still being able to takemore of the runtime behaviour into account,
wemight instead consider the approach of Caires [6] and others, sometimes referred
to as semantic typing. We shall discuss this method further immediately, in the
following section.

7.2 Semantic typing

The goal of this investigation has from the outset been to find a suitable method for
typing reflection and, in particular, to make a type system for the ρ-calculus. But
as we have seen, this task has seemed riddled with problems when using the tradi-
tional method of syntactic typing, deriving mostly from the ability of this calculus
to generate names with structure at runtime.

Dreyer [10] andDreyer et al. [11] take a different approach to type system sound-
ness by advocating instead a proof for semantic type soundness, and Dreyer shows
how this approach can be used to type unsafe code, notably reflective code. Reflec-
tion is a central notion of the ρ-calculus, suggesting that this approach of semantic
typing instead might be a tractable alternative. In this section we shall therefore
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discuss this approach in some detail, to provide a starting point for future work in
this direction.

7.2.1 Brief Introduction

The idea of semantic typing hearkens back at least to Milner’s work with polymor-
phism in Milner [22], but it is best explained by contrasting it with syntactic typing.
The usual process of defining a type system is built on the method of subject re-
duction as discussed in chapter 5. In this approach we define the types, the typing
rules and then prove the theorems of safety and subject reduction. However, we
define only a syntax for types, hence one might therefore refer to this approach as
syntactic typing.

In contrast, semantic typing works by giving semantics to types. There are sev-
eral advantages of this alternative approach, such as not having to define typing
rules as in the case of Appel and McAllester [1]. It also affords a greater modularity
in proofs compared to syntactic typing [6], and not least the ability to reason about
unsafe code, as argued by Dreyer [10].

Caires [6] explains that type systems are just a specific realisation of logic, and
we can use this point of view to reason about the syntax and semantics of types.
Within logic, syntax and semantics give rise to a distinction between what is prov-
able and what is true. Statements that are true are those that can be considered
true with respect to some structure, in contrast to the provable statements, which
are those for which we can construct a proof using a system of deduction. The rel-
evant deductive system here consists of rules of inference, as this is the form that
our typing rules are on. It is befitting that syntactic typing works through these
rules of inference, as they prove statements by analysing syntax, and we write that
a statement φ is provable with respect to a set of formulas Γ as Γ ⊢ φ, where we
can recognise the turnstile symbol from typing rules. Similarly, we write that a
statement is true as Γ ⊨ φ, and semantic typing makes use of this double turnstile
in a similar way.

To further illustrate the difference between provable and true statements, we
note that it is possible for a statement to be provable, but at the same time not be
true. This occurs when the rules of inference are not ‘logical,’ and this vague notion
of ‘logical’ is what we formally describe as the property of soundness. We say that a
deduction system is sound if it is the case that every provable statement is also true,
as illustrated by the following equation:

Γ ⊢ φ =⇒ Γ ⊨ φ

which has a complement in the form of completeness, that holds when it is the case
that every formula that is true has a proof, illustrated as follows:

Γ ⊨ φ =⇒ Γ ⊢ φ

In syntactic typing, proving safety and subject reduction means proving that
the type system is sound. However we note that most type systems cannot also
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be complete at the same time. This gives rise to a formal characterisation of the
slack of a type system as: the processes that are not well-typed, but nevertheless are
well-behaved. As simple example, consider processes containing unsafe code that
will never run. The type system will reject these processes, due to being able to see
the unsafe code, but not being able to make any guarantees about their behaviour.
Thinking in terms of provability and truth and considering the statements to be
about well-typed processes, the slack of the type system consists of the statements
that are true, but are not provable. This shows another advantage of semantic typing,
as it may allow us to reason about safety of terms that otherwise reside in the slack.

Going back to an earlier point about the turnstile symbols in rules, given a
syntactic type system with typing rules, we could replace all occurrences of ⊢ in
those rules, with ⊨, corresponding instead to a semantic interpretation of the typ-
ing rules: Appel and McAllester [1] do this for their example of semantic types for
the λ-calculus.

Despite looking very similar, the meaning changes significantly: First of all,
as the typing rules have to do with provability, the rules state that we can prove
that a term is well-typed under type T . But under semantic typing, a term is not
necessarily syntactically well-typed under type T : it may not be. Instead, the se-
mantic interpretation states that the term behaves as the type T , as defined by the
semantic meaning of the type. Additionally, typing rules define what is syntacti-
cally well-typed and will in turn affect the soundness of the syntactic type system,
but in the semantic type system, we are not proving statements. Thus the semantic
interpretation of the rules is not the definition of when semantic typing holds, but
lemmas that will have to be proven true.

To actually define the semantics of types, we use logical relations. Logical rela-
tions are used for proving that the definition of some structure satisfies a certain
property [34]. Rather than proving the correlation directly, logical relations proofs
are structured in two parts: First proving that the definition places all processes
in some relation, and then proving that all processes in the relation satisfies the
desired property, thereby using the relation as an intermediate step. In semantic
typing, the logical relation will be a set indexed by types containing the processes
that are well-behaved. Thus when a process belongs to a type, it means that the
process behaves as defined by the semantics of its type. The semantic approach to
type soundness involves proving, instead of subject reduction and safety, compati-
bility and adequacy. ‘Compatibility’ states that syntactically well-typed processes
are also semantically well-typed, and‘ adequacy’ is the property that the semantic
typing relation corresponds to safety.

7.2.2 Example

To understand semantic typing and logical relations, we will show an example of
proving semantic type soundness for the π-calculus, as done by Caires [6]. We note
that the specific variant of the π-calculus in this case is monadic and with a labelled
transition system.
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We begin by considering our notion of safe behaviour, as the purpose of a type
system is to prevent certain runtime errors from happening. In the polyadic π-
calculus it is normal to consider sorting systems that match the length of vectors
being sent and received, but as the π-calculus under consideration here is monadic,
we instead distinguish between channel names Λc and basic names Λv . In this case,
we then want to ensure that only channel names are used for communication, and
that basic names never appear as the subject of communication. Caires also notes
that this can in fact be seen as a special case of arity, with basic names only being
used at arity zero.

Definition 7.1 (Wrong predicate). The definition of wrong is as follows:
wrong(P ) = (P ≡ (νm) (a(n).Q | R) ∨ P ≡ (νm) (a<n>.Q | R)) ∧ a ∈ Λv

The wrong-predicate tells us that processes are wrong when they are on the
form of an unguarded input or output with a basic name as the subject. Then, given
a definition of wrongness, we can define safe processes as those that are not wrong:

Definition 7.2 (Safe predicate). The definition of safe is as follows:
safe(P ) = ¬wrong(p)

The distinction between channel names and basic names can then be further
codified in our definition of the types:

Definition 7.3 (Types). The definition of the types is as follows:

T ::= nil Base type∣∣ ch(T ) Channel type

Types, as is standard, are assigned to the free names and stored in a type environ-
ment, Γ. This defines the syntax of our types. However, we are using the approach
of semantic typing, which makes the next natural step, to define the semantics of
types. We will do this through a type environment-indexed logical relation that we
refer to as the typing interpretation:

Definition 7.4 (Typing interpretation). The definition of the typing interpretation
is as follows:

P ∈ Rn:T =⇒ safe(P ) ∧ (P
α−→ Q =⇒ Q ∈ Rn:T )

P ∈ Rn:ch(T ) =⇒ (P
n!x−−→ Q ∨ P n?x−−→ Q) =⇒ Q ∈ Rn:T

P ∈ Rn:nil =⇒ (P
n−→ Q =⇒ false)

Moreover, Caires defines the typing interpretation as a conjunctive mapping
such that RΓ,x:T = RΓ ∩ Rx:T holds. Firstly, the definition states that processes
in the interpretation have to be safe, along with any possible reductions. Then pro-
cesses using a channel type will have their reduct be in a typing interpretation of an
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environment containing the object of communication. Lastly we require that base
types may not be used as subjects of communication.

This defines the semantics for types and we can now see what it means for a
process to be semantically well-typed under a given type, as a process will exhibit
behaviour defined by its type.

Definition 7.5 (Semantically well-typed). A process P is semantically well-typed in
a typing environment Γwhen the following holds:

Γ ⊨ P ≜ P ∈
⋃

RΓ ∧ fn (P ) ∈ dom(Γ)

Thedefinition of the typing interpretation in this case is conjunctive, so wewant
P to be in the union of all typing interpretations, and we want to ensure that every
free name in P is assigned a type. With this definition we can then go on to proofs
of the necessary properties of the type system.

Theorem 6 (Compatibility). The semantic typing relation exhibits compatibilitywith
syntactic typing when the following holds:

(Γ ⊢ P ∧ fn (P ) ∈ dom(Γ)) =⇒ Γ ⊨ P

Compatibility states that syntactically well-typed processes are also semanti-
cally well-typed. In some definitions, the condition on the free names of P is not
present, like the one found in e.g. Dreyer [10]. We would prove this by induction
on the syntactic type judgements.

Theorem 7 (Type safety). The semantic typing relation exhibits type safety with
syntactic typing when the following holds:

1. Γ ⊨ P =⇒ safe(P )
2. (Γ ⊨ P =⇒ safe(P ) ∧ P → Q) =⇒ Γ ⊨ Q

3. Γ ⊢ P ∧ P → Q =⇒ safe(Q)

In some cases we would prove adequacy instead, which, going by Dreyer [10],
is defined only as

Γ ⊨ P =⇒ safe(P )
although the definition of type safety in Caires [6] has several more clauses. The
proof of this longer type safety theorem is no more complicated, as the first and sec-
ond clauses are proven simply by the definition of the typing interpretation, and the
third clause follows from a combination of the two first and compatibility. The third
clause is what tells us that our syntactic type system is sound by proofs through the
semantic typing. Caires notes that this is perhaps not the most straightforward way
to prove soundness, especially when considering a simple type system, but it serves
its purpose as an example.
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7.2.3 Semantic types in the ρ-calculus

To construct a semantic type system for the ρ-calculus, we once again have to con-
sider what kind of type of errors we want to prevent. In section 6.2 we discussed
conjunctive types, but we can, like Caires, consider this as just a special case of arity.
Here we shall then distinguish between names used for communication, and names
used for process mobility in the types:

Definition 7.6 (Types). We define the types for the ρ-calculus as follows:

T ::= ch(T )
∣∣ d

We can then define the notion of a safe process as any process where its names
are used in accordance with their respective types. For this, we shall, however, need
the concept of a process context C containing a single hole [], to allow us to extract
a drop process ⌝x⌜ of a bound name x from the continuation of an input construct.
We define it in the usual way:

Definition 7.7 (Process context). Let the set C of ρ-calculus process contexts, ranged
over by C , be defined by the formation rules:

C ∈ C ::= []
∣∣ C | P

∣∣ x(y).C
∣∣ x ⟨|C|⟩

∣∣ ⌝x⌜

Definition 7.8 (Safe predicate). The definition of safe for the ρ-calculus is as follows:
safeΓ(P ) = ∀P ′.P ≡ P ′

∧P ′ = x1(y).Q1 | x2 ⟨|Q2|⟩ | Q3

∧x1 ≡N x2

=⇒

 Γ(x) = Ch(T )
∧ Q1 ≡ C[⌝y⌜] =⇒ T = d
∧ ⌜Q2⌝ ∈ dom(Γ) =⇒ Γ(⌜Q2⌝) = T )


Here, safety actually depends on the type of names. We consider processes safe

if it is the case that when they are on a form that can carry out a reduction, then the
subject has the correct type, the object has the drop type if it appears in a drop in the
continuation, and if the newly created name has the correct type. Note that wemust
quantify over all processes P ′ that are structurally congruent to P to ensure that
this property will hold for any permutation of the parallel compositions within P :
If, for example, two different processes x2 ⟨|Q2|⟩ and x3 ⟨|Q3|⟩with x1 ≡N x2 ≡N x3
existed within P , then the property would have to hold for both. A new name
created through the lift process could already exist in the typing environment, if it
has been lifted before, so this requires that the type of the name does not change
from a reduction. Note that processes like the nil or drop processes are considered
safe, since they are not on this form, so the property holds vacuously in their case.

Definition 7.9 (Logical Typing Predicate). The definition of the typing environment
indexed logical relation for the ρ-calculus is as follows:

RΓ =
{
P | P → P ′ =⇒

( safeΓ(P ) ∧ P ′ ∈ RΓ,⌜Q2⌝:T
) }
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By using this typing environment indexed logical relation, we can require that a
process after a reduction should be considered in a typing environment containing
the possibly newly created name. The definition is very similar to Caires’ typing
interpretation; the difference being that we here have a reduction semantics, so we
do not include the parts of the definition that rely on the transition labels. Similarly
to Caires’ approach, we can define the semantic typing relation to require types for
the free names in P :

Definition 7.10 (Semantically well-typed). A process P is semantically well-typed in
a typing environment Γin the ρ-calculus when the following holds:

Γ ⊨ P ≜ P ∈ RΓ ∧ fn (P ) ∈ dom(Γ)

At this point, we lack the syntactic type system for comparison, and without the
syntactic type judgements we cannot prove the compatibility theorem. However,
we do still have the theorem of adequacy:

Theorem 8 (Adequacy). The semantic typing relation exhibits adequacy when the
following holds:

Γ ⊨ P =⇒ safeΓ(P )
This holds fairly trivially, as safety is part of the definition of semantic typing,

which is often the case [10]. So we cannot syntactically type processes. The ar-
gument for semantic typing in Dreyer [10] talks about being able to do automatic
verification through the syntactic typing system, but then manually proving seman-
tic typing lemmas for programs that cannot be automatically verified. Both Dreyer
[10] and Hinrichsen et al. [16] show examples of manually proving such a typing
lemma.

This approach to semantic typing means that every case will have to be proven
on an ad-hoc basis, which may not seem very different from the syntactic approach,
but it does seem to provide us with a viable alternative to the problem of creating a
non-trivial type system for the ρ-calculus. The argument for modularity advanced
by Caires [6] is also applicable here, since with our current definition, the last part of
the definitions requires us to find suitable typing rules that imply semantic typing.
It remains to be seen what these typing rules would look like.

7.3 The blue calculus

The π-calculus has shown itself to be a successful calculus in modelling first-order
concurrent communication, and by basing the Ψ-calculus on the π-calculus, we in-
herit these properties. However, the π-calculus may not be particularly well-suited
for modelling higher-order behaviour, regardless of the encodability of the higher-
order paradigm within the first-order paradigm, as demonstrated by Sangiorgi [31].
It was precisely in an attempt to solve this for theΨ-calculus, that Parrow et al. [28]
defined the HOΨ-calculus: However, the higher-order behaviour in in HOΨ is not
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based on any inherently higher-order calculus, but is just a simple extension of the
Ψ-calculus.

A better alternative might therefore be to find a calculus that is inherently
higher-order, and then generalising it in the same manner as the π-calculus and
its many extensions were generalised into the Ψ-calculus. By doing this, we might
have an easier way of representing the ρ-calculus in a generic framework. One
promising candidate is the so-called blue calculus created by Boudol [5], since it is
able to both express the asynchronous π-calculus and the λ-calculus well.

We will here sketch a proposal for such a generalisation of the blue calculus,
which we will call the purple calculus. As with the Ψ-calculus, we have termsM ∈
T, conditions φ ∈ C, and assertions Ψ ∈ A. The syntax for the purple calculus is
then

P ::= M
∣∣ (λx̃.M)P

∣∣ P M
∣∣ ⟨M ⇐ P ⟩

∣∣ ⟨M = P ⟩
∣∣ P | Q∣∣ (νx)P

∣∣ LΨM
The blue calculus defines two reduction semantics, namely the (β)-reduction

and the resource fetching reduction. The (β)-reduction substitutes a variable, given
by the λ-expression, into the continuation of the λ-expression. The resource fetch-
ing reduction handles the higher-order behaviour, i.e.

x | ⟨x⇐ P ⟩ → P

We define structural congruence in the samemanner as the blue calculus, where
application on assertions is defined similar to application on declarations. Instead
of having two different reduction relations, we define one single reduction relation
containing both the resource fetching relation and the transitive closure of the (β)-
reduction relation. The reason we include the transitive closure of the (β)-reduction
in the resource fetching relation, and not the other way around, is that the (β)-
reduction relation is strongly normalizing. We begin by defining the (β)-reduction
for the purple calculus:

((λx̃.M)P )(M [x̃ := L̃])→β P [x̃ := L̃]

P →β P
′

P M →β P ′ M

P →β P
′

(νx)P →β (νx)P ′
P →β P

′

P | Q→β P ′ | Q

We can hereafter define the main reduction relation:

Ψ ⊩M
·←→ N

Ψ ▷ (M | ⟨N ⇐ P ⟩)→ P

P ≡ Q Ψ ▷ Q→ P ′

Ψ ▷ P → P ′
P →β Q Ψ ▷ Q→ P ′

Ψ ▷ P → P ′
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Ψ ▷ P → P ′

Ψ ▷ P x→ P ′ x

Ψ ▷ P → P ′

Ψ ▷ (νx)P → (νx)P ′ (x#Ψ)

Ψ⊗FΨ(Q) ▷ P → P ′

Ψ ▷ P | Q→ P ′ | Q
(Fν(Q)#Ψ,Fν(P ) , P )

The definition of F(·) is the composition of all assertions occurring outside of a
declaration.

Since there exists an encoding from the π-calculus to the blue calculus, we can
construct a similar encoding from the Ψ-calculus to the purple calculus. For now,
we exclude the case operator, and we shall restrict ourselves to an asynchronous
version of Ψ-calculus. Furthermore, we require that a replicated process must be
input-guarded. The encoding is then as follows:

JMNK ≜M NJM(λx)N.P K ≜ ⟨M ⇐ (λx.N)JP K⟩J!M(λx)N.P K ≜ ⟨M = (λx.N)JP K⟩JP | QK ≜ JP K | JQKJ(νx)P K ≜ (νx) JP KJLΨMK ≜ LΨM
Boudol [5] also defines a type system for the blue calculus, and since this calcu-

lus is mainly based upon the λ-calculus, it can also inherit the simple type system
from the λ-calculus. This means that type judgements for processes in the blue
calculus have the form:

Γ ⊢ P : τ

We believe it is possible to generalise this type system in the same manner as
Hüttel [17] generalised the simple type system by Milner [26] for the π-calculus.

* * *

We have reviewed our work, reflecting on our aim to type reflection, and although
we have seen that the ρ-calculus is indeed representable within the higher-order
Ψ-calculus framework, we have also glimpsed the limitations of a syntactic typing
approach, and the kind of restrictions we must seemingly impose on reflection to
make it typable. We have also proposed two alternative approaches, using either
the blue calculus or a semantic typing approach, and in closing, we leave them here
as candidates for future work.
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A The ρ-calculus

The Reflective Higher-Order calculus, abbreviated RHO or just ρ, by Meredith and
Radestock [20], is a succinct model of computation, based on the notion of quoting.
As the name implies, it combines reflection, i.e. the ability of a program to generate
and inspect its own code, and higher order process mobility. Furthermore, both its
reflective and higher-order characteristisc are inherent, rather than merely exten-
sions added onto an initially non-reflective, first-order language.

A.1 Syntax and reduction semantics

We shall here briefly review the syntax and reduction semantics for the ρ-calculus,
originally presented by Meredith and Radestock [20]. However, much of the text is
based on the presentation in [2, chapter 2].

DefinitionA.1 (ρ-calculus syntax). Wedefine the set ρ of ρ-calculus processes, ranged
over by P,Q,R etc., by the formation rules:

P,Q,R ∈ ρ ::= 0
∣∣ P | Q

∣∣ ⌜R⌝ ⟨|P |⟩
∣∣ ⌜R⌝(⌜Q⌝).P

∣∣ ⌝⌜R⌝⌜

where the names ⌜Q⌝, ⌜R⌝ are quoted processes. Thus, the set ⌜ρ⌝ of ρ-calculus names,
ranged over by x, y, z, is defined as

x, y, z ∈ ⌜ρ⌝ ≜ { ⌜P⌝ | P ∈ ρ }

The nil, parallel, and input constructs are similar to e.g. the π-calculus [26], with
input x(y).P as a name binding construct. x ⟨|P |⟩, pronounced ‘lift’ quotes P , thus
dynamically creating the name ⌜P⌝, and sends it along x. The last construct, ⌝x⌜,
pronounced ‘drop x’, removes the quotes from xwhich thereby executes the process
within the name.

The semantics in [20] is given as a reduction system, where terms can be rewrit-
ten by structural congruence, defined as follows:

Definition A.2 (Structural congruence). Structural congruence, written ≡⊆ ρ× ρ,
is the least congruence on processes, containing α-equivalence ≡α and satisfying that(
ρ/≡, | ,0

)
is an abelian monoid.
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Likewise, since names are quoted processes, then names too are identified by
an equivalence relation on the set of names, if the processes within are structurally
congruent:

Definition A.3 (Name equivalence). Name equivalence, written≡N⊆ ⌜ρ⌝×⌜ρ⌝, is
the smallest equivalence relation on quoted processes, closed forward under the rules:

[Nameeq1]
P ≡ Q

⌜P⌝ ≡N ⌜Q⌝ [Nameeq2]⌜⌝x⌜⌝ ≡N x

The sets fn (P ) and bn (P ) of free and bound names of P are defined in the
standard way, with x(y).P as the only name binding construct in the syntax. Thus
y is bound, and all other names are free. This leads to a (mostly) standard definition
of capture-avoiding syntactic substitution:

Definition A.4 (Syntactic substitution). Syntactic substitution is a function

(·) {·/·} : ρ× ⌜ρ⌝× ⌜ρ⌝→ ρ

from processes to processes, parametrised with two names, and defined recursively by
the following equations:

(0) {u/v} = 0

(P | Q) {u/v} = (P ) {u/v} | (Q) {u/v}

(x(y).P ) {u/v} =

{
u(z). ((P ) {z/y}) {u/v} if x ≡N v

x(z). ((P ) {z/y}) {u/v} if x ̸≡N v

(x ⟨|P |⟩) {u/v} =

{
u ⟨|(P ) {u/v}|⟩ if x ≡N v

x ⟨|(P ) {u/v}|⟩ if x ̸≡N v

(⌝x⌜) {u/v} =
{
⌝u⌜ if x ≡N v

⌝x⌜ if x ̸≡N v

where z is chosen such that if u = ⌜U⌝ then

z ̸∈ {u, v } ∪ fn (P ) ∪ fn (U) ∪ bn (U)

The requirement on z ensures that z is locally fresh in P , such that it cannot
inadvertently clash with another free or bound name.

Syntactic substitution is used in deciding α-equivalence, which again is con-
tained in structural congruence, which again is used in deciding name equivalence.
The definition is thusmutually recursive, but always ultimately terminating because
of the [Nameeq2] rule, as proved in [20]. However, in the semantics a slightly dif-
ferent form of substitution is used:
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Definition A.5 (Semantic substitution). Semantic substitution, is a function

(·) {·/·} : ρ× ⌜ρ⌝× ⌜ρ⌝→ ρ

from processes to processes, parametrised with two names, and defined by the same
equations as the syntactic subsection, except for the last clause, which instead is defined
thus:

(⌝x⌜) {⌜R⌝/v} =
{
R if x ≡N v

⌝x⌜ if x ̸≡N v

We shall not distinguish explicitly between syntactic or semantic substitution
when there is no risk of confusion between the two. Semantic substitution thus
performs an ‘eager’ drop, as part of the substitution, and it is hence this form of
substitution that is used in the semantics:

Definition A.6 (Reduction relation). The reduction relation→⊆ ρ × ρ is given by
the following rules:

[R-con]P ≡ P
′ P ′ → Q′ Q′ ≡ Q

P → Q
[R-paR] P → P ′

P | Q→ P ′ | Q

[R-com] x1 ≡N x2
x1(y).P | x2 ⟨|Q|⟩ → P {⌜Q⌝/y}

A.2 Labelled semantics

The semantics of the Ψ-calculus framework is originally defined in terms of a la-
belled transition system. Thus, to show that we can instantiate the ρ-calculus, we
shall also define a labelled semantics for it, as follows:

Definition A.7 (Action labels). We define the set of action labels A, ranged over
by α, by the following syntax: α ∈ A ::= τ

∣∣ x!⌜P⌝
∣∣ x?⌜P⌝ where x!⌜P⌝

denotes sending ⌜P⌝ on x, x?⌜P⌝ is the reception of ⌜P⌝ on x, and τ is an internal
communication.

Definition A.8 (Labelled transition system). We define the transition system as the
triple (

ρ,A, α−→⊆ ρ×A× ρ
)

where the transition relation α−→ is given by the following rules:

[sos-paR1]
P

α−→ P ′

P | Q α−→ P ′ | Q

[sos-input] x1 ≡N x2

x1(y).P
x2?⌜Q⌝−−−−−→ P {⌜Q⌝/y}

[sos-paR2]
P

α−→ P ′

Q | P α−→ Q | P ′

[sos-lift] x1 ≡N x2

x1 ⟨|Q|⟩
x2!⌜Q⌝−−−−−→ 0
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[sos-com1]
P

x1!⌜R⌝−−−−→ P ′ x1 ≡N x2 Q
x2?⌜R⌝−−−−→ Q′

P | Q τ−→ P ′ | Q′

[sos-com2]
P

x1?⌜R⌝−−−−→ P ′ x1 ≡N x2 Q
x2!⌜R⌝−−−−→ Q′

P | Q τ−→ P ′ | Q′

This semantics is of the early kind, where the label x?⌜P⌝ contains the actual
value received, and substitution happens in the input rule [sos-input], similar to
the Ψ-calculus semantics.

Note also that name equivalence x1 ≡N x2 is used in both communication rules
(as expected), and in both [sos-input] and [sos-lift]. This is is not strictly neces-
sary in the ρ-calculus, but is done to match the usage of channel equivalence in the
Ψ-calculus (see Bengtson et al. [4, p. 13]).

A.3 Correspondence between the two semantics

We now need to ascertain that the τ -labelled transitions correspond exactly to the
reductions and vice versa:

Proposition 1. ∀P, P ′ : P
τ−→ P ′ =⇒ P → P ′

Proof. To prove this, we shall consider each SOS-rule with a conclusion of the form
P

τ−→ P ′ and show how a similar conclusion can be reached using the reduction
rules. There are two cases to consider:

1. If either [sos-com1] or [sos-com2] was the last rule used to concludeP τ−→ P ′,
then the transition is of the form

P | Q τ−→ P ′ | Q′

where both processes take a transition. The two cases are mirror images of
each other, so we shall consider only [sos-com1]. From the premise we have
that

P
x1!⌜R⌝−−−−→ P ′

which again must have been concluded by the [sos-lift] rule (and possibly
one of the paR-rules). Similarly, we have that

Q
x2?⌜R⌝−−−−→ Q′

which must have been concluded by the [sos-input] rule. Hence, the entire
expression must be of the form

x1 ⟨|R|⟩ | P ′′ | x2(y).Q1 | Q2
τ−→ P ′′ | Q1 {⌜R⌝/y} | Q2
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with x1 ≡N x2. This can be concluded in the reduction semantics by firstly
using the [R-con] rule to reorder the terms to build a redex, e.g. leftmost:

x1 ⟨|R|⟩ | x2(y).Q1 | P ′′ | Q2

and we then use the [R-paR] rule to select only the communicating processes,
and then lastly, as the axiom we use the [R-com] rule.

2. If either [sos-paR1] or [sos-paR2] was the last rule used to conclude P τ−→ P ′

then we know P is a parallel composition of the form P = P1 | P2. Again,
the two cases are symmetrically similar, so we shall only consider the first.
The transition is thus of the form

P1 | P2
τ−→ P ′

1 | P2

with P1
τ−→ P ′

1 in the premise. Assume therefore that P1 → P ′
1 (the induction

hypothesis). Then
P1 | P2 → P ′

1 | P2

can be concluded immediately by the [R-paR] rule.

This proves that any τ -labelled transitions, that can be proved by the rules of
the labelled semantics, can also be proved by the rules of the reduction semantics.
Unfortunately, we cannot prove exactly the same relationship for the other direc-
tion, because 0-processes may be removed in the reduction semantics, through the
use of the [R-con] rule, whilst this is not possible in the SOS. Instead, we shall
show correspondence up to≃, which represents any sensible notion of behavioural
equivalence:

Proposition 2. ∀P, P ′ : P → P ′ =⇒ P
τ−→≃ P ′

Proof. For this proof, we shall consider each reduction rule and show that its con-
clusion can also be reached by using the τ -labelled SOS-rules, whilst allowing 0
processes to be removed by rewriting under ≃. This time, we thus have three cases
to consider:

1. If [R-com] was the last rule used to conclude P → P ′ then the transition is
of the form

x1(y).P | x2 ⟨|Q|⟩ → P {⌜Q⌝/y}

with x1 ≡N x2 as premise. This can then be concluded by the [sos-com2]
rule, where the premises are

x1(y).P
x1?⌜Q⌝−−−−−→ P {⌜Q⌝/y} and x2 ⟨|Q|⟩

x2!⌜Q⌝−−−−−→ 0
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which can be concluded by the [sos-input] and [sos-lift] rules respectively.
Notice that this actually yields P {⌜Q⌝/y} | 0, and we must therefore use
the behavioural equivalence relation to conclude that

P {⌜Q⌝/y} | 0 ≃ P {⌜Q⌝/y}

2. If [R-paR] was the last rule used to conclude P → P ′ then we know the form
of the transition is

P1 | P2 → P ′
1 | P2

with P1 → P ′
1 as premise. Assume therefore that P1

τ−→ P ′
1 (induction hy-

pothesis). Then
P1 | P2

τ−→ P ′
1 | P2

can be concluded immediately by the [sos-paR1] rule.

3. Lastly, if P → P ′ was concluded by the [R-con] rule, then we know only
from the premises that P ≡ Q and Q → Q′ and Q′ ≡ P ′. By the induction
hypothesis we can assume thatQ τ−→ Q′ can be concluded by one of the other
cases, and we therefore just need to show that the labelled semantics can
simulate the two rewrites by structural congruence.
Of these, the latter rewrite is used to eliminate solitary 0 processes, which
as already mentioned cannot be done in the labelled semantics. However,
the resulting process will be behaviourally equivalent to one where the 0-
processes have not been removed, so we shall ignore here.
The first rewrite allows redexes to be built by reordering terms to match the
conclusion in the [R-com] rule. This can be achieved by applying either [sos-
com1] or [sos-com2], and then a number of applications of the [sos-paR] rules
to isolate the input and lift processes, respectively.
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B Proofs for the reduction
semantics

B.1 Proof of theorem 1

This theorem states that
P

τ−→ P ⇐⇒ P → P ′

where P is a HOΨ-calculus process, and → is defined as in definition 3.4 with ≡
extended with the axiom for runM .

Proof. The theorem was proved by Åman Pohjola [39] for the relationship between
the context reduction semantics and the first-order Ψ-calculus of Bengtson et al. [3].
Thus we only need to prove this theorem for the runM extension, i.e. where the
redex P is of the form P = runM |R withM ⇐ Q. For both directions, we then
have two cases to consider:

• The reduct is P ′ | R where Q becomes P ′ after a one-step internal commu-
nication, whilst the context process R is unaltered.

• The reduct is P ′ | R′ where Q becomes P ′ after a one-step interaction with
the context process R.

For the forward direction, the two cases are as follows:

1. If runM | R τ−→ P ′ | R then the τ -label is the result of an entirely internal
communication within the process for which M is a handle. Thus we have
that

[Run]Ψ ⊩M ⇐ Q Ψ ▷ Q
τ−→ P ′

Ψ ▷ runM τ−→ P ′

where we know from the definition of well-formed processes (definition 2.15)
that Q is an assertion guarded process. We then derive the corresponding
reduction as follows: Firstly, by application of the [R-stRuct] rule we can
bring the entire process on the form

(νx̃)
(LΨM | runM | R

)
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whereR represents the rest of the entire process which in the labelled seman-
tics would have been disregarded in the derivation tree by application of the
[PaR] and [Com] rules. The restrictions are disregarded by the [R-Res] rule,
and with one further rewrite by structural congruence, we obtain the process

LΨM | (caseM ⇐ Q : Q) | R

for which we can build a matching reduction context Cτ as follows:

Cτ ≜ (caseM ⇐ Q : C) | G

Here, both holes must occur in the C part, matching the process Q, and G
matches the remainderRwhere no holes occur. NowM ⇐ Q ∈ conds (Cτ ),
but we know from the premise of [Run] that Ψ ⊩ M ⇐ Q. Thus we can
satisfy the premise of the [R-ctx] rule, and by application of this rule we
obtain the reduction

LΨM | (caseM ⇐ Q : Q) | R→ LΨM | P ′ | R

where ppR (Cτ ) = R and Q τ−→ P ′ by an internal communication.

2. If runM | R τ−→ P ′ | R′ then we have that runM α−→ P ′ by doing an α-
action, and R α−→ R′ by performing the corresponding co-action. Again we
assume that M ⇐ Q and thus that Q α−→ P ′. Unlike in the previous case,
we here do have an interaction with the context R, and the τ -transition will
therefore have been derived by the [Com] rule with

[Com]FΨ(R)⊗Ψ ⊩ α
·←→ α FΨ(R)⊗Ψ ▷ runM α−→ P ′ Ψ ▷ R

α−→ R′

Ψ ▷ runM | R τ−→ P ′ | R′

where α ·←→ α represents the channel equivalence check for the correspond-
ing channel names used within the αand α labels. To derive the correspond-
ing reduction we proceed almost exactly as before. The only difference is in
the construction of the reduction context Cα which this time instead is built
in the following way:

Cα ≜ (caseM ⇐ Q : C1) | C2

with one hole occurringwithinC1, matchingQ, and another occurringwithin
C2, matching R.

Thus, from the assumption that P τ−→ P ′ we can derive the reduction P → P .
The proof for the other direction proceeds in a similar fashion, where again we
assume thatM ⇐ Q, and here the two cases are as follows:
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1. If runM | R → P ′ | R, then this will have been concluded by first an
application of the [R-stRuct] rule to rewrite the runM term to

LΨM | (caseM ⇐ Q : Q) | R

and possibly some further rewrites withinQ to bring it on the necessary form
(e.g. if Q itself contained further runM terms). The context is then like Cτ

described above. The corresponding τ−→ transition can then be concluded by
application of the [PaR] rule to isolate runM and then the [Run] rule to
conclude Q τ−→ P ′. The assertion LΨM may have been formed from several
assertions LΨ1M | . . . | LΨnM found within the R process, but these will
have been collected in the [PaR] rule and added to the environment.

2. If runM | R → P ′ | R′ then the case is again similar to the above, except
that the context here will have been like Cα instead. This time there is a
communication with the R component, so we conclude by the [Com] rule
instead, and then [Run] to conclude runM α−→ P ′ in the premise.
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C Proofs for the type system

C.1 Proof of Lemma 1

The lemma states:

If Γ,Ψ ⊢ P then Γ, x : T,Ψ ⊢ P

Proof. We use proof by induction on the rules of Γ,Ψ ⊢ P .

[t-in] Assume

Γ,Ψ ⊢M(λỹ)N.P

which we can conclude with following assumptions

T ↫ T ′ (C.1)
Γ,Ψ ⊢M : T (C.2)

Γ, ỹ : T̃ ,Ψ ⊢ N : T ′ (C.3)
Γ, ỹ : T̃ ,Ψ ⊢ P (C.4)

we want to show

Γ, x : T,Ψ ⊢M(λx̃)N.P (C.5)

Using [t-env-weaK] for (C.2) and (C.3), and using the induction hypothesis
for (C.4) we can conclude

Γ, x : T,Ψ ⊢M : T (C.6)
Γ, x : T, ỹ : T̃ ,Ψ ⊢ N : T ′ (C.7)
Γ, x : T, ỹ : T̃ ,Ψ ⊢ P (C.8)

Using [t-in] with (C.1), (C.6), (C.7) and (C.8) we can conclude (C.5).

[t-Run] Assume

Γ,Ψ ⊢ runM
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which we can conclude with following assumptions

T x Γ′ (C.9)
Γ,Ψ ⊢M : T (C.10)
Ψ ⊩M ⇐ P (C.11)

Γ′,Ψ ⊢P (C.12)

we want to show

Γ, x : T,Ψ ⊢ runM (C.13)

Using [t-env-weaK] for (C.10) we can conclude

Γ, x : T,Ψ ⊢M : T (C.14)

Using [t-Run] with (C.9), (C.13), (C.11) and (C.12) we can conclude (C.13).

[t-out] Assume

Γ,Ψ ⊢MN.P

which we can conclude with following assumptions

T ↫ T ′ (C.15)
Γ,Ψ ⊢M : T (C.16)
Γ,Ψ ⊢N : T ′ (C.17)
Γ,Ψ ⊢P (C.18)

we want to show

Γ, x : T,Ψ ⊢MN.P (C.19)

Using [t-env-weaK] for (C.16) and (C.17), and using the induction hypothesis
with (C.18) we can conclude

Γ, x : T,Ψ ⊢M : T (C.20)
Γ, x : T,Ψ ⊢N : T ′ (C.21)
Γ, x : T,Ψ ⊢P (C.22)

Using [t-out] with (C.15), (C.20), (C.21) and (C.22) we can conclude (C.19).

[t-paR] Assume

Γ,Ψ ⊢ P | Q
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which we can conclude with following assumptions

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P (C.23)
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q (C.24)

Fν(P )#Ψ,Fν(Q) , Q (C.25)
Fν(Q)#Ψ,Fν(P ) , P (C.26)

we want to show

Γ, x : T,Ψ ⊢ P | Q (C.27)

Using the induction hypothesis for (C.23) and (C.24) we can conclude

Γ,Fν(Q) , x : T,Ψ⊗FΨ(Q) ⊢ P (C.28)
Γ,Fν(P ) , x : T,Ψ⊗FΨ(P ) ⊢ Q (C.29)

Using [t-paR] with (C.28), (C.29), (C.25) and (C.26) we can conclude (C.27).

[t-case] Assume

Γ,Ψ ⊢ case φ̃ : P̃

which we can conclude with following assumptions

Γ,Ψ ⊢ φi (C.30)
Γ,Ψ ⊢ Pi (C.31)

we want to show

Γ, x : T,Ψ ⊢ case φ̃ : P̃ (C.32)

Using the [t-env-weaK] for (C.30) and using the induction hypothesis with
(C.31) we can conclude

Γ, x : T,Ψ ⊢ φi (C.33)
Γ, x : T,Ψ ⊢ Pi (C.34)

Using [t-case] with (C.33) and (C.34) we can conclude (C.32).

[t-asseRt] Assume

Γ,Ψ ⊢ LΨ′M
which we can conclude with following assumptions

Γ,Ψ ⊢ Ψ′ (C.35)
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we want to show

Γ, x : T,Ψ ⊢ LΨ′M (C.36)

Using the [t-env-weaK] for (C.35) we can conclude

Γ, x : T,Ψ ⊢ Ψ′ (C.37)

Using [t-asseRt] with (C.37) we can conclude (C.36).

[t-nil] We want to show

Γ,Ψ ⊢ 0 =⇒ Γ, x : T,Ψ ⊢ 0

which naturally holds.

[t-new] Assume

Γ,Ψ ⊢ (νy)P

which we can conclude with following assumptions

Γ, y : T,Ψ ⊢ P (C.38)
x#Ψ (C.39)

we want to show

Γ, x : T,Ψ ⊢ (νy)P (C.40)

Using the induction hypothesis with (C.40) we can conclude

Γ, x : T, y : T,Ψ ⊢ P (C.41)

Using [t-new] with (C.41) and (C.39) we can conclude (C.40).

[t-Repl] Assume

Γ,Ψ ⊢ !P

which we can conclude with following assumptions

Γ,Ψ ⊢ P (C.42)

we want to show

Γ, x : T,Ψ ⊢ !P (C.43)

Using the induction hypothesis with (C.44) we can conclude

Γ, x : T,Ψ ⊢ P (C.44)

Using [t-Repl] with (C.44) we can conclude (C.43).
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C.2 Proof of Lemma 2

The lemma states:

If Γ, x : T,Ψ ⊢ P and x#P,Ψ then Γ,Ψ ⊢ P

Proof. We use proof by induction on the rules of Γ, x : T,Ψ ⊢ P .

[t-in] Assume

Γ, x : T,Ψ ⊢M(λx̃)N.P (C.45)
x#Ψ (C.46)
x#M (C.47)
x#P (C.48)

which we can conclude with

T ↫ T ′ (C.49)
Γ, x : T,Ψ ⊢M : T (C.50)

Γ, x : T, x̃ : T̃ ,Ψ ⊢ N : T ′ (C.51)
Γ, x : T, x̃ : T̃ ,Ψ ⊢ P (C.52)

We want to show

Γ,Ψ ⊢M(λx̃)N.P (C.53)

Using [t-env-stRength] with (C.50) and (C.51) and using the induction hy-
pothesis with (C.48) we can conclude

Γ,Ψ ⊢M : T (C.54)
Γ, x̃ : T̃ ,Ψ ⊢ N : T ′ (C.55)
Γ, x̃ : T̃ ,Ψ ⊢ P (C.56)

Using [t-in] with (C.54), (C.55), (C.56) and (C.49) we can conclude (C.53).

[t-Run] Assume

Γ, x : T,Ψ ⊢ runM
x#runM

x#Ψ

which we can conclude with

T x Γ′ (C.57)
Γ, x : T,Ψ ⊢M : T (C.58)

Ψ ⊩M ⇐ P (C.59)
Γ′,Ψ ⊢P (C.60)
x#M
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We want to show

Γ,Ψ ⊢ runM (C.61)

Using [t-env-stRength] with (C.58) we can conclude

Γ,Ψ ⊢M : T (C.62)

Using [t-Run] with (C.57), (C.62), (C.59) and (C.60) we can conclude (C.61).

[t-out] Assume

Γ, x : T,Ψ ⊢MN.P

x#MN.P

x#Ψ

which we can conclude with

T ↫ T ′ (C.63)
Γ, x : T,Ψ ⊢M : T (C.64)
Γ, x : T,Ψ ⊢N : T ′ (C.65)
Γ, x : T,Ψ ⊢P (C.66)

x#M
x#N
x#P

We want to show

Γ,Ψ ⊢MN.P (C.67)

Using [t-env-stRength] with (C.64), (C.65), (C.66) we can conclude

Γ,Ψ ⊢M : T (C.68)
Γ,Ψ ⊢N : T ′ (C.69)
Γ,Ψ ⊢P (C.70)

Using [t-out] with (C.63), (C.68), (C.69) and (C.70) we can conclude (C.67).

[t-paR] Assume

Γ, x : T,Ψ ⊢ P | Q
x#Ψ, P | Q
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which we can conclude with

Γ, x : T,Ψ⊗FΨ(Q) ⊢P (C.71)
Γ, x : T,Ψ⊗FΨ(P ) ⊢Q (C.72)
Fν(P )#Ψ,Fν(Q) , Q (C.73)
Fν(Q)#Ψ,Fν(P ) , P (C.74)

x#Ψ, P,Q

We want to show

Γ,Ψ ⊢ P | Q (C.75)

Using the induction hypothesis with (C.71) and (C.72) we can conclude

Γ,Ψ⊗FΨ(Q) ⊢P (C.76)
Γ,Ψ⊗FΨ(P ) ⊢Q (C.77)

Using [t-paR] with (C.76), (C.77), (C.73) and (C.74) we can conclude (C.75).

[t-case] Assume

Γ, x : T,Ψ ⊢ case φ̃ : P̃

x#Ψ, case φ̃ : P̃

(C.78)

which we can conclude with

Γ, x : T,Ψ ⊢ φi (C.79)
Γ, x : T,Ψ ⊢ Pi (C.80)

x#φ̃, P̃

We want to show

Γ,Ψ ⊢ case φ̃ : P̃ (C.81)

Using [t-env-stRength]with (C.79) and the induction hypothesis with (C.80)
we can conclude

Γ,Ψ ⊢ φi (C.82)
Γ,Ψ ⊢ Pi (C.83)

Using [t-case] with (C.82) and (C.83) we can conclude (C.83).
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[t-asseRt] Assume

Γ, x : T,Ψ ⊢ LΨ′M
x#Ψ, LΨ′M

which we can conclude with

Γ, x : T,Ψ ⊢ Ψ′ (C.84)
x#Ψ′

We want to show

Γ,Ψ ⊢ LΨ′M (C.85)

Using [t-env-stRength] with (C.84) we can conclude

Γ,Ψ ⊢ Ψ′ (C.86)

Using [t-asseRt] with (C.86) we can conclude (C.85).

[t-nil] We want to show

Γ, x : T,Ψ ⊢ 0 =⇒ Γ,Ψ ⊢ 0

which naturally holds.

[t-new] Assume

Γ, x : T,Ψ ⊢ (νy)P

x#Ψ, (νy)P

which we can conclude with

Γ, x : T, y : T,Ψ ⊢ P (C.87)
x#P

We want to show

Γ,Ψ ⊢ (νy)P (C.88)

Using the induction hypothesis with (C.87) we can conclude

Γ, y : T,Ψ ⊢ P (C.89)

Using [t-new] with (C.89) we can conclude (C.88).
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[t-Repl] Assume

Γ, x : T,Ψ ⊢ !P
x#!P

which we can conclude with

Γ, x : T,Ψ ⊢ P (C.90)
x#P

We want to show

Γ,Ψ ⊢ !P (C.91)

Using the induction hypothesis with (C.90) we can conclude

Γ,Ψ ⊢ P (C.92)

Using [t-Repl] with (C.92) we can conclude (C.91).

C.3 Proof of Lemma 5

The lemma states:

If Γ,Ψ ⊢ P , n(Ψ′) ⊆ dom(Γ) and Ψ ≤ Ψ′ then Γ,Ψ′ ⊢ P .

Proof. We use proof by induction on the rules of Γ,Ψ ⊢ P .

[t-nil] Assume

Γ,Ψ ⊢ 0

n(Ψ′) ⊆ dom(Γ)

Ψ ≤ Ψ′

(C.93)

Our desired result is

Γ,Ψ′ ⊢ 0

which holds.

[t-in] Assume

Γ,Ψ ⊢M(λx̃)N.P (C.94)
n(Ψ′) ⊆ dom(Γ) (C.95)

Ψ ≤ Ψ′ (C.96)
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We can conclude (C.94) with rule [t-in] and following axioms

Γ,Ψ ⊢M : T (C.97)
Γ, x̃ : T̃ ,Ψ ⊢ N : T ′ (C.98)

Γ, x̃ : T̃ ,Ψ ⊢ P (C.99)
T ↫ T ′ (C.100)

We wish to show

Γ,Ψ′ ⊢M(λx̃)N.P (C.101)

Applying [t-ass-weaK] to (C.97) and (C.98), and using the induction hypoth-
esis with (C.99) we have

Γ,Ψ′ ⊢M : T (C.102)
Γ, x̃ : T̃ ,Ψ′ ⊢ N : T ′ (C.103)

Γ, x̃ : T̃ ,Ψ′ ⊢ P (C.104)

With (C.101), (C.102), (C.103) and (C.99) we can conclude (C.100).

[t-out] Assume

Γ,Ψ ⊢MN.P (C.105)
n(Ψ′) ⊆ dom(Γ) (C.106)

Ψ ≤ Ψ′

We can conclude (C.105) with [t-out] and axioms

Γ,Ψ ⊢M : T (C.107)
Γ,Ψ ⊢ N : T ′ (C.108)

Γ,Ψ ⊢ P (C.109)
T ↫ T ′ (C.110)

We wish to show

Γ,Ψ′ ⊢MN.P (C.111)

Applying [t-ass-weaK] with (C.107) and (C.108), and using induction hypoth-
esis with (C.109), we have

Γ,Ψ′ ⊢M : T (C.112)
Γ,Ψ′ ⊢ N : T ′ (C.113)

Γ,Ψ′ ⊢ P (C.114)

Using [t-out], (C.112), (C.113), (C.114) and (C.110) we can conclude (C.111).
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[t-paR] Assume

Γ,Ψ ⊢ P | Q (C.115)
n(Ψ′) ⊆ dom(Γ) (C.116)

Ψ ≤ Ψ′

We can conclude (C.115) with [t-paR] and axioms

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P (C.117)
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q (C.118)

Fν(P )#Ψ,Fν(Q) , Q (C.119)
Fν(Q)#Ψ,Fν(P ) , P (C.120)

We wish to show

Γ,Ψ′ ⊢ P | Q (C.121)

Applying induction hypothesis with (C.117) and (C.118) we have

Γ,Fν(Q) ,Ψ′ ⊗FΨ(Q) ⊢ P (C.122)
Γ,Fν(P ) ,Ψ

′ ⊗FΨ(P ) ⊢ Q (C.123)

We choose Fν(P ) and Fν(Q) such that we have

Fν(P )#Ψ′,Fν(Q) , Q (C.124)
Fν(Q)#Ψ′,Fν(P ) , P (C.125)

Using [t-paR], (C.122), (C.123), (C.124) and (C.125) we can conclude (C.121).

[t-new] Assume

Γ,Ψ ⊢ (νx)P (C.126)
n(Ψ) ⊆ dom(Γ) (C.127)

Ψ ≤ Ψ′

We can conclude (C.126) with [t-new] and axioms

Γ, x : T,Ψ ⊢ P (C.128)
x#Ψ (C.129)

We wish to show

Γ,Ψ′ ⊢ (νx)P (C.130)
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Using the induction hypothesis with (C.128) we can conclude

Γ, x : T,Ψ′ ⊢ P (C.131)

Using alpha renaming, we choose an x such that we have

x#Ψ′ (C.132)

Using [t-new], (C.131) and (C.132) we can conclude (C.130).

[t-asseRt] Assume

Γ,Ψ ⊢ LΨ′′M (C.133)
n(Ψ′) ⊆ dom(Γ) (C.134)

Ψ ≤ Ψ′

We can conclude (C.133) with

Γ,Ψ ⊢ Ψ′′ (C.135)

We wish to show

Γ,Ψ′ ⊢ LΨ′′M (C.136)

Using [t-ass-weaK] with (C.135) we have

Γ,Ψ′ ⊢ LΨ′′M (C.137)

Using [t-asseRt] with (C.137) we can conclude (C.136).

[t-Repl] Assume

Γ,Ψ ⊢ !P (C.138)
n(Ψ′) ⊆ dom(Γ) (C.139)

Ψ ≤ Ψ′

We can conclude (C.138) with [t-Repl] and axiom

Γ,Ψ ⊢ P (C.140)

We wish to show

Γ,Ψ′ ⊢ !P (C.141)

Using the induction hypothesis with (C.140) we have

Γ,Ψ′ ⊢ P (C.142)

Using [t-Repl] with (C.142) we can conclude (C.141).
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[t-case] Assume

Γ,Ψ ⊢ case φ̃ : P̃ (C.143)
n(Ψ′) ⊆ dom(Γ) (C.144)

Ψ ≤ Ψ′

We can conclude (C.143) with [t-case] and axioms

Γ,Ψ ⊢ φi (C.145)
Γ,Ψ ⊢ Pi (C.146)

We wish to show

Γ,Ψ′ ⊢ case φ̃ : P̃ (C.147)

Using [t-ass-weaK] with (C.145), and using the induction hypothesis with
(C.146) we have

Γ,Ψ′ ⊢ φi (C.148)
Γ,Ψ′ ⊢ Pi (C.149)

Using [t-case] with (C.148) and (C.149) we can conclude (C.147).

[t-Run] Assume

Γ,Ψ ⊢ runM (C.150)
n(Ψ′) ⊆ dom(Γ) (C.151)

Ψ ≤ Ψ′

We can conclude (C.150) with [t-Run] and axioms

Γ,Ψ ⊢M : T (C.152)
Ψ ⊩M ⇐ P (C.153)

Γ′,Ψ ⊢ P (C.154)
T x Γ′ (C.155)

We want to show

Γ,Ψ′ ⊢ runM (C.156)

From [t-ass-weaK], (C.152) we can conclude

Γ,Ψ′ ⊢M : T (C.157)
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From [t-weaK-ass-claus] and (C.153) we can conclude

Ψ′ ⊩M ⇐ P (C.158)

From [t-env-claus], (C.155) and (C.157), and the induction hypothesis we
can conclude

dom(Γ) ⊆ dom(Γ′) (C.159)

together with (C.151) we have

n(Ψ′) ⊆ dom(Γ′) (C.160)

Using the induction hypothesis with (C.160) and (C.154) we have

Γ′,Ψ′ ⊢ P (C.161)

Using [t-Run], (C.157), (C.158), (C.161) and (C.155) we can conclude (C.156).

C.4 Proof of Lemma 6

The lemma states:

If Γ,Ψ ⊢ P and Ψ ▷ P ≫P ′ then Γ,Ψ ⊢ P ′.

Proof. We use proof by induction on the rules for Ψ ▷ P ≫P ′.

[E-Res] Assume

Ψ ▷ (νx)P ≫ (νx)P ′ (C.162)
Γ,Ψ ⊢ (νx)P (C.163)

where x#Ψ. We can conclude (C.162) and (C.163) with [E-Res] and [t-new]
and axioms

Ψ ▷ P ≫P ′ (C.164)
Γ, x : T,Ψ ⊢ P (C.165)

We want to show

Γ,Ψ ⊢ (νx)P ′ (C.166)

From the induction hypothesis, (C.164) and (C.165) we can conclude

Γ,Ψ ⊢ P ′ (C.167)

Using [t-new] and (C.167) we can conclude (C.166).
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[E-PaR] Assume

Ψ ▷P | Q≫P ′ | Q (C.168)
Γ,Ψ ⊢P | Q (C.169)

We can conclude (C.168) with [E-PaR] and (C.169) with [t-paR], and with
axioms

Ψ⊗FΨ(Q) ▷P ≫P ′ (C.170)
Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢P (C.171)
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢Q (C.172)
Fν(P )#Ψ,Fν(Q) , Q (C.173)
Fν(Q)#Ψ,Fν(P ) , P (C.174)

(C.175)

We want to show

Γ,Ψ ⊢ P ′ | Q (C.176)

From the induction hypothesis, (C.170) and (C.171) we can conclude

Γ,Fν(Q)Ψ⊗FΨ(Q) ⊢ P ′ (C.177)

With Lemma 4 we can conclude

Γ,FΨ

(
P ′) ,Ψ⊗FΨ

(
P ′) ⊢ Q (C.178)

Fν

(
P ′)#Ψ,Fν(Q) , Q (C.179)

Fν(Q)#Ψ,Fν

(
P ′) , P ′ (C.180)

With [t-paR], (C.177), (C.178), (C.179) and (C.180) we can conclude (C.176).

[E-Case] Assume

Ψ ▷case φ̃ : P̃ ≫Pi (C.181)
Γ,Ψ ⊢case φ̃ : P̃ (C.182)

We can conclude (C.181) with [E-Case] and (C.182) with [t-case], and with
axioms

Ψ ⊩φi

Γ,Ψ ⊢φi

Γ,Ψ ⊢Pi (C.183)

We want to show

Γ,Ψ ⊢ Pi

which is given by (C.183).
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[E-Run] Assume

Ψ ▷runM≫P (C.184)
Γ,Ψ ⊢runM (C.185)

We can conclude (C.184) with [E-Run] and (C.185) with [t-Run], and with
premises

Ψ ⊩M ⇐ P

T x Γ′

Γ,Ψ ⊢M : T

Ψ ⊩M ⇐ P

Γ′,Ψ ⊢ P (C.186)

We wish to show

Γ,Ψ ⊢ P (C.187)

From assumption about handles in the HOΨ-calculus we have

n(P ) ⊆ n(M)

which means we have

Γ′ ⊆ Γ

we can then use Lemma 1 to conclude (C.187).

[E-StRuct] Assume

Ψ ▷ P ≫P ′ (C.188)
Γ,Ψ ⊢ P (C.189)

We can conclude (C.188) with [E-StRuct] and axioms

P ≡S P
′ (C.190)

We wish to show

Γ,Ψ ⊢ P ′ (C.191)

In order to show this case we need to show

P ≡S P
′ =⇒ (Γ,Ψ ⊢ P ⇐⇒ Γ,Ψ ⊢ P ′) (C.192)

We do this with proof by induction on P ≡S P
′
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[S-Scope] Assume

(νx)P | Q ≡S (νx) (P | Q) (C.193)
x#Q (C.194)

First we show from left to right. Assume

Γ,Ψ ⊢ (νx)P | Q (C.195)

We can conclude (C.194) with [t-paR], [t-new] and premises

Γ, x : T,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P (C.196)
Γ, x : T,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q (C.197)

x : T,Fν(P )#Ψ,Fν(Q) , Q (C.198)
Fν(Q)#Ψ, x : T,Fν(P ) , P (C.199)

We want to show

Γ,Ψ ⊢ (νx) (P | Q) (C.200)

With [t-new], [t-paR], (C.195), (C.196), (C.197) and (C.198) we can con-
clude (C.199). The steps from right to left is the exact same as left to
right.

– The commutative, associative, identity, reflexive, symmetric and transi-
tivity cases are trivial to show.

The result (C.191) follows from (C.192).

[E-Rep] Assume

Ψ ▷!P ≫P | !P (C.201)
Γ,Ψ ⊢!P (C.202)

We can conclude (C.202) with [t-Repl] and premise

Γ,Ψ ⊢ P (C.203)

Since P cannot contain any assertion we can conclude (C.203) with [t-paR],
[t-Repl], (C.203) and (C.202).
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C.5 Proof of Lemma 7

The lemma states:

If Γ, x̃ : T̃ ,Ψ ⊢ P and Γ,Ψ ⊢ L̃ : T̃ then Γ,Ψ ⊢ P [x := L̃].

Proof. We use proof by induction on the rules of Γ, x̃ : T̃ ,Ψ ⊢ P .

[t-nil] We want to show

Γ, x̃ : T̃ ,Ψ ⊢ 0 ∧ Γ,Ψ ⊢ L̃ : T̃ =⇒ Γ,Ψ ⊢ 0

which holds.

[t-in] Assume

Γ, x̃ : T̃ ,Ψ ⊢M(λỹ)N.P (C.204)
Γ,Ψ ⊢ L̃ : T̃ (C.205)

We can conclude (C.204) with rule [t-in] and following axioms

Γ, x̃ : T̃ ,Ψ ⊢M : T ′ (C.206)
Γ, x̃ : T̃ , ỹ : T̃ ′,Ψ ⊢ N : T ′′ (C.207)

Γ, x̃ : T̃ , ỹ : T̃ ′,Ψ ⊢ P (C.208)
T ′ ↫ T ′′ (C.209)

We wish to show

Γ,Ψ ⊢M [x̃ := L̃](λỹ)N.P [x̃ := L̃] (C.210)

From the induction hypothesis with (C.205) and (C.208) we have

Γ,Ψ ⊢ P [x̃ := L̃] (C.211)

From [t-subs] with (C.205) and (C.206) we have

Γ,Ψ ⊢M [x̃ := L̃] : T ′ (C.212)

Using [t-in]with (C.207), (C.209), (C.211) and (C.212) we can conclude (C.210).

[t-Run] Assume

Γ, x̃ : T̃ ,Ψ ⊢ runM (C.213)
Γ,Ψ ⊢ L̃ : T̃ (C.214)
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We can conclude (C.213) with [t-Run] and axioms

Γ, x̃ : T̃ ,Ψ ⊢M : T (C.215)
Ψ ⊩M ⇐ P (C.216)

Γ′,Ψ ⊢ P (C.217)
T x Γ′ (C.218)

We want to show

Γ,Ψ ⊢ run (M [x̃ := L̃]) (C.219)

From [t-subs] with (C.215), (C.214), (C.217) we can conclude

Γ,Ψ ⊢M [x̃ := L̃] : T (C.220)

Now assume that

Ψ ⊩M [x̃ := L̃]⇐ Q (C.221)

and with [t-subs-Run] togther with (C.215), (C.220) and (C.218) we can con-
clude

Γ′,Ψ ⊢ Q (C.222)

Using [t-Run], (C.220), (C.221), (C.222) and (C.218) we can conclude (C.219).

[t-out] Assume

Γ, x̃ : T̃ ,Ψ ⊢MN.P (C.223)
Γ,Ψ ⊢ L̃ : T̃ (C.224)

We can conclude (C.223) with [t-out] and axioms

Γ, x̃ : T̃ ,Ψ ⊢M : T ′ (C.225)
Γ, x̃ : T̃ ,Ψ ⊢ N : T ′′ (C.226)

Γ, x̃ : T̃ ,Ψ ⊢ P (C.227)
T ′ ↫ T ′′ (C.228)

We wish to show

Γ,Ψ ⊢M [x̃ := L̃]N [x̃ := L̃].P [x̃ := L̃] (C.229)

From [t-subs] with (C.225) and (C.226) together with (C.224) we can conclude
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Γ,Ψ ⊢M [x̃ := L̃] : T ′ (C.230)
Γ,Ψ ⊢ N [x̃ := L̃] : T ′′ (C.231)

Using the induction hypothesis with (C.227) and (C.224) we can conclude

Γ,Ψ ⊢ P [x̃ := L̃] (C.232)

Using [t-out] with (C.230), (C.231), (C.232) and (C.228) we can conclude
(C.229).

[t-paR] Assume

Γ, x̃ : T̃ ,Ψ ⊢ P | Q (C.233)
Γ,Ψ ⊢ L̃ : T̃ (C.234)

We can conclude (C.233) with [t-paR] and axioms

Γ,Fν(Q) , x̃ : T̃ ,Ψ⊗FΨ(Q) ⊢ P (C.235)
Γ,Fν(P ) , x̃ : T̃ ,Ψ⊗FΨ(P ) ⊢ Q (C.236)

Fν(P )#Ψ,Fν(Q) , Q (C.237)
Fν(Q)#Ψ,Fν(P ) , P (C.238)

We wish to show

Γ,Ψ ⊢ P [x̃ := L̃] | Q[x̃ := L̃] (C.239)

From the induction hypothesis with (C.235) and (C.236) we have

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P [x̃ := L̃] (C.240)
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q[x̃ := L̃] (C.241)

(C.242)

From (C.234) we can conclude

Γ,Fν(Q) ,Ψ⊗FΨ

(
Q[x̃ := L̃]

)
⊢ P [x̃ := L̃] (C.243)

Γ,Fν(P ) ,Ψ⊗FΨ

(
P [x̃ := L̃]

)
⊢ Q[x̃ := L̃] (C.244)

(C.245)
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From Lemma 1 we can conclude

Γ,Fν

(
Q[x̃ := L̃]

)
,Ψ⊗FΨ

(
Q[x̃ := L̃]

)
⊢ P [x̃ := L̃] (C.246)

Γ,Fν

(
P [x̃ := L̃]

)
,Ψ⊗FΨ

(
P [x̃ := L̃]

)
⊢ Q[x̃ := L̃] (C.247)

(C.248)

And we choose Fν

(
Q[x̃ := L̃]

)
and Fν

(
P [x̃ := L̃]

)
such that

Fν

(
P [x̃ := L̃]

)
#Ψ,Fν

(
Q[x̃ := L̃]

)
, Q[x̃ := L̃] (C.249)

Fν

(
Q[x̃ := L̃]

)
#Ψ,Fν

(
P [x̃ := L̃]

)
, P [x̃ := L̃] (C.250)

Using [t-paR], (C.246), (C.247), (C.249) and (C.250) we can conclude (C.239).

[t-new] Assume

Γ, x̃ : T̃ ,Ψ ⊢ (νy)P (C.251)
Γ,Ψ ⊢ L̃ : T̃ (C.252)

We can conclude (C.251) with [t-new] and axioms

Γ, x̃ : T̃ , y : T ′,Ψ ⊢ P (C.253)
y#Ψ (C.254)

We wish to show

Γ,Ψ ⊢ (νy) (P [x̃ := L̃]) (C.255)

Using [t-new], the induction hypothesis, (C.252) and (C.253) we can conclude
(C.255).

[t-asseRt] Assume

Γ, x̃ : T̃ ,Ψ ⊢ LΨ′M (C.256)
Γ,Ψ ⊢ L̃ : T̃ (C.257)

We can conclude (C.256) with

Γ, x̃ : T̃ ,Ψ ⊢ Ψ′ (C.258)

We wish to show

Γ,Ψ ⊢ LΨ′[x̃ := L̃]M (C.259)

Using [t-asseRt] with [t-subs], (C.257) and (C.258) we can conclude (C.259).
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[t-Repl] Assume

Γ, x̃ : T̃ ,Ψ ⊢ !P (C.260)
Γ,Ψ ⊢ L̃ : T̃ (C.261)

We can conclude (C.260) with [t-Repl] and axiom

Γ, x̃ : T̃ ,Ψ ⊢ P (C.262)

We wish to show

Γ,Ψ ⊢ !P [x̃ := L̃] (C.263)

Using [t-Repl], the induction hypothesis with (C.261) and (C.262) we can con-
clude (C.263).

[t-case] Assume

Γ, x̃ : T̃ ,Ψ ⊢ case φ̃ : P̃ (C.264)
Γ,Ψ ⊢ L̃ : T̃ (C.265)

We can conclude (C.264) with [t-case] and axioms

Γ, x̃ : T̃ ,Ψ ⊢ φi (C.266)
Γ, x̃ : T̃ ,Ψ ⊢ Pi (C.267)

We wish to show

Γ,Ψ ⊢ case ˜
φ[x̃ := L̃] :

˜
P [x̃ := L̃] (C.268)

Using [t-subs] with (C.265) and (C.266), and using the induction hypothesis
with (C.265) and (C.267), we can conclude

Γ,Ψ ⊢ φi[x̃ := L̃] (C.269)
Γ,Ψ ⊢ Pi[x̃ := L̃] (C.270)

Using [t-case] with (C.269) and (C.270) we can conclude (C.268).
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C.6 Proof of Theorem 3

The theorem states:

If Γ,Ψ ⊢ P and Ψ ▷ P → P ′ then Γ,Ψ ⊢ P ′.

Proof. We use proof by induction on the rules for Ψ ▷ P → P ′.

[R-eval] Assume

Ψ ▷P → P ′ (C.271)
Γ,Ψ ⊢P (C.272)

with [R-eval] we can conclude (C.271) with premises

Ψ ▷ P ≫P ′′ (C.273)
Ψ ▷ P ′′ → P ′ (C.274)

we want to show

Γ,Ψ ⊢ P ′ (C.275)

With Lemma 6, (C.273) and (C.272) we can conclude

Γ,Ψ ⊢ P ′′ (C.276)

With the induction hypothesis, (C.274) and (C.276) we can conclude (C.275).

[R-paR] Assume

Ψ ▷ P | Q→ P ′ | Q (C.277)
Γ,Ψ ⊢ P | Q (C.278)

We can conclude (C.277) with [R-paR] and (C.278) with [t-paR], and with ax-
ioms

Ψ⊗FΨ(Q) ▷ P → P ′ (C.279)
Fν(P )#Ψ,Fν(Q) , Q (C.280)
Fν(Q)#Ψ,Fν(P ) , P (C.281)

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P (C.282)
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q (C.283)

We want to show

Γ,Ψ ⊢ P ′ | Q (C.284)
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From the induction hypothesis with (C.279) and (C.283) we can conclude

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P ′ (C.285)

From Lemma 3 and (C.279) we know

F(P ) ≤ F
(
P ′) (C.286)

using Lemma 1 with (C.283) we can conclude

Γ,Fν

(
P ′) ,Ψ⊗FΨ(P ) ⊢ Q (C.287)

and togher with Lemma 5 we can conclude

Γ,Fν

(
P ′) ,Ψ⊗FΨ

(
P ′) ⊢ Q (C.288)

We choose the new names in Fν(P
′) and Fν(Q)

Fν

(
P ′)#Ψ,Fν(Q) , Q (C.289)

Fν(Q)#Ψ,Fν

(
P ′) , P ′ (C.290)

Using [t-paR]with (C.289), (C.290), (C.285) and (C.288)we can conclude (C.284).

[R-Res] Assume

Ψ ▷ (νx)P → (νx)P ′ (C.291)
Γ,Ψ ⊢ (νx)P (C.292)

We can conclude (C.291) and (C.292) with [R-Res], [t-new] and premises

Γ, x : T,Ψ ⊢ P (C.293)
Ψ ▷ P → P ′ (C.294)
x#Ψ (C.295)

We wish to show

Γ,Ψ ⊢ (νx)P ′ (C.296)

From the induction hypothesis, (C.293) and (C.294) we can conclude

Γ, x : T,Ψ ⊢ P ′ (C.297)

Using rule [t-new] with (C.297) and (C.295) we can conclude (C.296)
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[R-com] Assume

Ψ ▷MN [x̃ := L̃].P |K(λx̃)N.Q→ P | Q[x̃ := L̃] (C.298)
Γ,Ψ ⊢MN [x̃ := L̃].P |K(λx̃)N.Q (C.299)

We can conclude (C.298) and (C.299) with [R-com], [t-paR], [t-out], [t-in]
and premises

Ψ ⊩M
·←→ K (C.300)

Γ,Ψ ⊢M : T (C.301)
Γ,Ψ ⊢ N [x̃ := L̃] : F (T̃ ) (C.302)
Γ,Ψ ⊢ P (C.303)
Γ,Ψ ⊢ K : T (C.304)

Γ, x̃ : T̃ ,Ψ ⊢ N : F (T̃ ) (C.305)
Γ, x̃ : T̃ ,Ψ ⊢ Q (C.306)

Γ,Ψ ⊢ T ↫ F (T̃ ) (C.307)

Sincewe have the assumption [t-eal] togherwith (C.300),M andK shares
the same type T in (C.301) and (C.304), and N [x̃ := L̃] and N : F (T̃ ) share
type in (C.302) and (C.305).
We wish to show

Γ,Ψ ⊢ P | Q[x̃ := L̃] (C.308)

From instance assumption [t-comp-teRm] and (C.302) we can conclude

Γ,Ψ ⊢ L̃ : T̃ (C.309)

From Lemma 7, (C.306) and (C.309) we can conclude

Γ,Ψ ⊢ Q[x̃ := L̃] (C.310)

From Lemma 1 together with (C.303) and (C.310) we can conclude

Γ,Fν

(
Q[x̃ := L̃]

)
,Ψ ⊢ P (C.311)

Γ,Fν(P ) ,Ψ ⊢ Q[x̃ := L̃] (C.312)

Using Lemma 5 together with (C.311) and (C.312) we can conclude

Γ,Fν

(
Q[x̃ := L̃]

)
,Ψ⊗FΨ

(
Q[x̃ := L̃]

)
⊢ P (C.313)

Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q[x̃ := L̃] (C.314)
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We choose Fν(P ) and Fν

(
Q[x̃ := L̃]

)
such that we have

Fν

(
Q[x̃ := L̃]

)
#Ψ,Fν(P ) , P (C.315)

Fν(P )Ψ, Q[x̃ := L̃], Q (C.316)

With [t-paR], (C.313), (C.314), (C.315) and (C.316) we can conclude (C.308).
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D Proof for instantiations of the
type system

D.1 Proof of Theorem 5

The theorem states:

If Γ,Ψ ⊢ P then P ̸→WRONG.

Proof. We use proof by induction on the rules for Γ,Ψ ⊢ P . We omit the cases
where the process does not match any type error rules.

[t-in] Assume

Γ,Ψ ⊢M(x̃)N.P (D.1)

which we can conclude with [t-in], [t-cha] and the following premises

ch(T ) ↫ T (D.2)
Γ,Ψ ⊢M : ch(T ) (D.3)

Γ, x : T,Ψ ⊢N : T (D.4)
Γ, x : T,Ψ ⊢P (D.5)

We want to show

Γ,Ψ ⊢M(x̃)N.P ̸→WRONG (D.6)

In order for (D.6) to be false there are two cases

– The first rule require the following premises

Γ,Ψ ⊢M : drop(Γ′)

which contradict (D.3).
– The second rule requires

Γ,Ψ ⊢M : ch(T ) (D.7)
Γ, x : T,Ψ ⊢ Q→WRONG (D.8)

By using the indcution hypothesis with (D.5) we contradict (D.8).
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[t-Run] Assume

Γ,Ψ ⊢ runM (D.9)

which we can conclude with [t-in], [t-end] and premises

drop(Γ′) x Γ′ (D.10)
Γ,Ψ ⊢M : drop(Γ′) (D.11)
Ψ ⊩M ⇐ P (D.12)

Γ′,Ψ ⊢P (D.13)

We want to show

Γ,Ψ ⊢ runM ̸→WRONG (D.14)

In order for (D.14) to be false there are two cases

– The first rule require the following premise

Γ,Ψ ⊢M : ch(T )

which contradict (D.11).
– The second rule require the following premises

Γ,Ψ ⊢ P : drop(Γ′) (D.15)
Γ′,Ψ ⊢ P →WRONG (D.16)

Which contradict with the induction hypothesis together with (D.13).

[t-out] Assume

Γ,Ψ ⊢M<N>.P (D.17)

which we can conclude with [t-out], [t-cha] and premises

ch(T ) ↫ T (D.18)
Γ,Ψ ⊢M : ch(T ) (D.19)
Γ,Ψ ⊢N : T (D.20)
Γ,Ψ ⊢P (D.21)

we want to show

Γ,Ψ ⊢M<N>.P ̸→WRONG (D.22)

In order for (D.22) to be false there are two rules
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– The first rule require the following premise

Γ,Ψ ⊢M : drop(Γ′) (D.23)

or

Γ,Ψ ⊢ P →WRONG (D.24)

(D.23) contradict (D.19) and (D.24) contradict the induction hypothesis
together with (D.21).

– The second rule is in case N is process Q, and is concluded with the
following premises

Γ ⊢ Q : drop(Γ′) (D.25)
Γ′,Ψ ⊢ Q→WRONG (D.26)

WhenN isQ we can conclude (D.20) with rule [t-teRm-2] and premise

Γ′,Ψ ⊢ P

which together with the induction hypothesis contradict (D.26).

[t-paR] Assume

Γ,Ψ ⊢ P | Q (D.27)

which we can conclude with [t-paR] and premises

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢P (D.28)
Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢Q (D.29)
Fν(P )#Ψ,Fν(Q) , Q (D.30)
Fν(Q)#Ψ,Fν(P ) , P (D.31)

we want to show

Γ,Ψ ⊢ P | Q ̸→WRONG (D.32)

In order for (D.32) to be false there are to rules

– The first rule require premises

Γ,Fν(Q) ,Ψ⊗FΨ(Q) ⊢ P →WRONG (D.33)
Fν(Q)#Ψ,Fν(P ) , P (D.34)

Witch contradict the induction hypothesis together with (D.28).
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– The second rule require premises

Γ,Fν(P ) ,Ψ⊗FΨ(P ) ⊢ Q→WRONG (D.35)
Fν(P )#Ψ,Fν(Q) , Q (D.36)

Witch contradict the induction hypothesis together with (D.29).

[t-new] Assume

Γ,Ψ ⊢ (νx : T )P (D.37)

which we can conclude with [t-new] and premises

Γ, x : T,Ψ ⊢ P (D.38)
x#Ψ (D.39)

we want to show

Γ,Ψ ⊢ (νx : T )P ̸→WRONG (D.40)

In order for (D.40) to be false the following premises need to hold

Γ, x : T,Ψ ⊢ P →WRONG (D.41)
x#Ψ (D.42)

Which contradict the induction hypothesis together with (D.38).

[t-Repl] Assume

Γ,Ψ ⊢ !P (D.43)

which we can conclude with [t-Repl] and premises

Γ,Ψ ⊢ P (D.44)

we want to show

Γ,Ψ ⊢ !P ̸→WRONG (D.45)

In order for (D.45) to be false following premise need to hold

Γ,Ψ ⊢ P →WRONG

which contradict the induction hypothesis together with (D.44).
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[t-case] Assume

Γ,Ψ ⊢ case φ̃ : P̃ (D.46)

which we can conclude with [t-case] and premises

Γ,Ψ ⊢ φi (D.47)
Γ,Ψ ⊢ Pi (D.48)

We wish to show

Γ,Ψ ⊢ case φ̃ : P̃ ̸→WRONG (D.49)

In order for (D.49) to be false, following premise need to hold

Γ,Ψ ⊢ Pi →WRONG

which contradict with the induction hypothesis together with (D.48).
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