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Synopsis and Signature

Synopsis

Målet med denne thesis er at undersøge et transversal design baseret private information
retrival scheme. Konstruktionen af 1-private og (t − 1)-private PIR protokoller vil blive
forklaret og deres egenskaber vist. Konstruktionen af transversal designs baseret på orthog-
onal arrays og GRS koder vil blive vist, idet den giver protokoller med gode egenskaber. En
opdagelse af en indsnævring af størrelsen på GRS koder vil blive inkluderet og forklaret.

Der vil blive lavet en sammenligning med en generel PIR protokol for kodet opbevaring med
samarbejdende servere. Denne protokol har en høj informations rate og gode opbevarings
egenskaber. Modsat har PIR protokollen baseret på transversal designs en meget lav grad
af kompleksitet.

Signature

Christian Juel Martinsen
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Preface and Readers’ Guide

Preface

This project is written by a master’s student in tenth semester mathematics at Aalborg
University during the spring semester 2021. The main theme of this project is private
information retrieval, and a particular scheme that is based on transversal designs. Pre-
requisite knowledge required for reading this project correspond to a bachelor’s degree in
mathematics. In particular, basic knowledge of linear algebra, abstract algebra, design
theory and coding theory is recommended.

I would like to thank Adjunct Oliver Wilhelm Gnilke for his help and supervision during
the writing of this project.

Readers’ Guide

The Vancouver reference style is used for the bibliography. Definitions, theorems, propo-
sitions, lemmas, and examples are numbered consecutively according to the chapter they
are in. Figures and tables are numbered in a similar manner. As are equations.

In this project we use the following specific notation:

• The set AB is the set of n tuples a = (ab)b∈B of the A-elements indexed by the set
B, where |B| = n <∞. This can also be considered as functions from B to A.

• a|T = (at)t∈T for T ⊂ B is the restriction of a to the coordinates of T .

• The expression "PIR scheme" refers to every facet of the PIR scheme, including back-
ground and construction. The expression "PIR protocol" refers to the implemented
and use-able part.
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1. Introduction AAU

1 | Introduction

In the modern globalized world, a lot of the most important information is stored on
computers. Some of the most important storage mediums are servers, since it is easy
to retrieve or manipulate items for people who don’t own the servers. An interesting
problem presents itself when the servers contain information that should only be accessed
by people who should know it. Specifically if one needs to access something on a server,
but the one who owns the server shouldn’t know exactly what has been accessed. This is
called Private Information Retrieval (PIR). The trivial solution to the PIR problem is to
download everything on the server, but this is also very impractical. Thus one needs to
get creative when designing PIR schemes. The most common PIR protocols uses multiple
servers, where the information is encoded and distributed between the servers in some way.
The user who wants to retrieve a certain part of the encoded database, then sends a query
to each server, with the servers not knowing what the user wants to retrieve. The servers
then sends an answer back to the user, based on the received query. The user then takes
the answers and uses a reconstruction algorithm to finally get what they wanted.

In this project a PIR scheme based on transversal designs will be explored. The most
common PIR schemes get their properties from coding theory, but this scheme takes ad-
vantage of a useful property of transversal designs: They partition the set they are defined
upon in equally big disjoint sets, with each element in the set appearing in a partition.
This partition means that the database can be distributed based on the support of the
transversal design, with each server being sent coordinates corresponding to a partition.
The queries of the scheme are chosen based on the blocks of the transversal design.

To give a fundamental understanding of the transversal design based PIR scheme, in Chap-
ter 2 the basic theory of PIR schemes will be defined. In particular the concept of replication
based PIR protocols and distributed PIR protocols will be explored, since the transversal
design based PIR scheme is a distributed PIR protocol. In Chapter 3 design theory and
the transversal design will be reviewed. Some very important results of coding theory will
also be included, since this is very important for all PIR schemes. In particular, how to
construct a code from a design will be shown, since it is very important in creating the
PIR scheme.
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With the fundamental theory stated, in Chapter 4 the construction of the transversal
design based PIR protocol will be explored. First it will be shown how the 1-private PIR
protocol based on a transversal design works; how the queries are generated, answer from
the servers computed and the reconstruction will be shown in detail. Afterwards, how
to construct transversal designs with good properties will be shown. The construction is
based on orthogonal arrays, which can be turned into transversal designs. The orthogonal
arrays will be defined from codes, in particular GRS codes. The divisibility condition will
be presented, since it has implications for the rate of the scheme. Lastly it will be shown
how to obtain t-transversal designs from strength t orthogonal arrays. Using this parallel,
it will be shown how the 1-private transversal design based PIR protocol can be generalized
into the (t− 1)-private PIR protocol, by using t-transversal designs.

Lastly, to better understand the construction and the properties of the transversal design
PIR scheme, an example and a comparison with another scheme will be made in Chapter 5.
The example is based on the orthogonal array construction, and this PIR scheme will be
1-private. Afterwards another PIR scheme will be introduced as a comparison point.
This scheme is more coding theory based and derives its properties from the star product
between two codes. The comparisons will be the rate, storage and complexity between
each scheme.

An interesting observation is made in regards to the orthogonal array construction, specif-
ically the implications of using GRS codes as basis for the construction. One should not
use GRS codes with prime length, since it results in very small codes. This observation is
explained in Chapter 5.
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2 | Private Information Retrieval

In this chapter some of the most fundamental theory of PIR schemes will be presented, in
particular the concept of replication-based and distributed PIR protocols. This chapter is
based on [1], [2] and [3].

Let the database used in the PIR scheme be denoted D = (Di)1≤i≤k ∈ Fkq . This database
contains k log(q) bits. This project focuses on PIR protocols that use distributed storage
systems. In these types of schemes, the database is in a predetermined way distributed on
a number of servers: It is common for PIR schemes to clone the database at the start and
then store a copy on all the servers S1, . . . , Sl. The role of each server Sj is to compute some
combination of symbols from D, related to a query sent by the user. Such replication-based
PIR protocols can be formally defined by:

Definition 2.0.1. Replication-based PIR protocol
For 1 ≤ j ≤ l assume that every server Sj stores a copy of the database D. An l-server
replication-based PIR protocol is a set of three algorithms (Q,A,R) which on input
i ∈ [1, k] runs:

1. Query generation: Q is a randomized algorithm that generates l queries
(q1, . . . , ql) = Q(i). Query qj is sent to server Sj.

2. Answer from the servers: Each server Sj computes an answer aj = A(qj, D) and
sends it back to the user.

3. Reconstruction: The user computes and outputs r = R(i, a,q), where a =
(a1, . . . , al) and q = (q1, . . . , ql).

Two important properties of the PIR protocol is the correctness and the privacy require-
ment of the protocol. Correctness is the ability of protocol to reconstruct the desired
database entry, based on the query.
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Definition 2.0.2. Correctness
Assume that the PIR protocol has been run with input i. If r = Di, then the PIR
protocol is said to be correct.

So when the servers follow the PIR protocol it is correct. The privacy of the protocol is the
requirement that Q(i) is distributed independently of the index i. This means the servers
gain no information about the identity of i, which in practice means the queries sent to
the servers must be independent of what one wants to be reconstruct with the help of the
servers.

Definition 2.0.3. Privacy
If for every (i, i′) ∈ [1, k]2 and every T ⊆ [1, l] with |T | ≤ t chosen uniformly, the
distributions Q(i)|T and Q(i′)|T contain the same information, the PIR protocol is
t-private. Equivalently, as expressed with mutual information:

I(Q(i)|T ; i) = I(Q(i′)|T ; i
′) = 0

t-privacy is equivalent to saying that the PIR protocol resists t-colluding servers.

Communication complexity is the number of bits exchanged between the user and the
servers. Computational complexity is the maximal number of Fq-operations made by a
server in order to compute an answer aj. The servers must jointly carry l copies of the
database, and since |D| = k log(q) the combined storage of the scheme is (l − 1)k log(q)
bits.

A way to reduce the computation cost of PIR protocols is to preprocess the database: A
model for which the database can be encoded and distributed over the servers is desired.
Let c = (ci)i∈K denote an encoding of the database D, so the image of D is an injective map
Fkq → FKq , with |K| = n ≥ k. For convenience it can be assumed that K = [1, s] × [1, l],
c(i1,i2) can be written c

(i2)
i1

and (c
(j)
r )r∈[1,s] can be written c(j). Using this it is possible to

define a distributed PIR protocol:

Definition 2.0.4. Distributed PIR protocol
For 1 ≤ j ≤ l assume that the server Sj holds the part c(j) of the encoded database.
An l-server distributed PIR protocol is a set of three algorithms (Q,A,R) which on
input i ∈ I runs:

1. Query generation: Same as Definition 2.0.1

2. Answer from the servers: Each server Sj computes an answer aj = A(qj, c
(j)) and
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sends it back to the user.

3. Reconstruction: Same as Definition 2.0.1

The database D has now been encoded, and so the storage overhead is defined as the
number of redundancy bits stored by the servers. The storage overhead is thus (sl −
k) log(q) bits. Sometimes it is instead taken as the number of symbols of Fq that holds no
information. Then the storage overhead is of course sl − k Fq symbols.

In regards to the distributed PIR protocol, the concept of the storage overhead leads to a
related concept called the rate. The rate of a PIR scheme is taken as the gained information
over the downloaded information, and since the data is in Fkq and the encoded data is in
Fslq , the rate is R = k

sl
.

The PIR scheme in this project is based on transversal designs, as opposed to more common
schemes, with roots more firmly in coding theory. A more traditional scheme will be
included as a comparison point later.
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3 | Transversal Designs

In this chapter, design theory is introduced and transversal designs are defined. These
designs are fundamental to the PIR protocol. Furthermore, a few results of coding theory
will be introduced, because coding theory is very important for working with PIR protocols.
This chapter is based on [1], [4], [5] [6] and [7].

Design theory has many facets, but at it’s heart is the "block design", of which transversal
designs are simply a special kind.

Definition 3.0.1. Block design
Let X be a finite, non-empty set of elements and B be a family of subsets of X called
blocks. The pair D = (X,B) is called a block design.

There exist a myriad of different designs, all characterized by incidence constraints between
points and blocks. One of the most simple constraints is that each pair of elements in
X must appear in the same number of blocks. In the most simple case, this gives rise
to balanced incomplete block designs. This will not be explored in great detail, since the
focus is transversal designs, but transversal designs also come from the same basic incidence
constraints.

The incidence constraints can be represented by vectors and matrices. The incidence vector
1b ∈ {0, 1}X for b ⊂ X is the row vector whose x-th coordinate is 1 iff. x ∈ b. Block designs
can be represented by an incidence matrix, which is built of incidence vectors.

Definition 3.0.2. Incidence matrix
Let D = (X,B) be a block design and let j ∈ X and i ∈ B be arbitrary. An incidence
matrix MD of D is a size |B| × |X| matrix, whose entries mij are given by:

mij =

{
1 if block i contains point j
0 otherwise

The q-rank of MD is the rank of MD over the field Fq.

Group 5.217d Page 11 of 46



3. Transversal Designs AAU

An incidence matrix of a design depends on the ordering of the blocks and points and thus
is not unique. All incidence matrices representing the same design are permutations of
each other, and so have the same q-rank. This means:

Definition 3.0.3. q-rank of a design
The q-rank of a design is the q-rank of any of its incidence matrices.

Transversal designs are block designs where the elements have been partitioned into groups,
with a special property of each pair of elements of X appearing in groups and blocks in
special ways:

Definition 3.0.4. Transversal design
A transversal design TDλ(l, s), for integers s, l ≥ 2 and λ ≥ 1, is a block design (X,B)
equipped with a partition G = {G1, . . . , Gl} of X called the set of groups, for which:

• |X| = ls,

• |Gi| = s, ∀Gi ∈ G

• |bi| = l, ∀bi ∈ B

• Any pair of elements from X is contained in either one group and no block or in
no group and λ blocks.

Sometimes the transversal design is represented as T = (X,B,G). If λ = 1, then the
notation TD(l, s) is used. Definition 3.0.4 implies that a block cannot be secant to a group
in more than one point. Furthermore, any block must meet any group, by which:

∀(b,G) ∈ B ×G, |b ∩G| = 1

There must be exactly λs2 blocks in B, which can be established by counting pairs of
elements: There are

(
sl
2

)
unordered pairs in X, l groups and each group contains

(
s
2

)
groups. Thus there are

((
sl
2

)
− l
(
s
2

))
unordered pairs in X contained in a block b ∈ B. This

set is now denoted S. By using Definition 3.0.4, the sum∑
{x,y}∈S

∑
b∈B

1{x,y}⊂b =
∑
{x,y}∈S

λ =
∑
b∈B

(
l

2

)
,

can be established. That means:∑
{x,y}∈S

λ = λ

((
sl

2

)
− l
(
s

2

))
= λs2

(
l

2

)
∑
b∈B

(
l

2

)
= |B|

(
l

2

)
by which |B| = λs2.
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3.1 Linear Codes From Block Designs

To build the PIR protocol, it is needed to know how a linear code can be associated to a
transversal design. A linear code is defined by:

Definition 3.1.1. Linear code
Let Fq be the finite field of q elements. A linear code C is a k-dimensional subspace of
the vector space Fnq . It has has codeword length n, message length k and is denoted
[n, k].

The size of the code is the number of codewords, which equals qk.

One of the most important concepts in coding is distance and weight.

Definition 3.1.2. Distance
The distance between two elements in x, y ∈ C, denoted d(x, y) is the number of
coordinate places in which they differ:

d(x, y) = | {i | 1 ≤ i ≤ n, xi 6= yi} |

This is a distance function, that fulfills all the normal criteria of distance functions:

Definition 3.1.3. Distance function
A distance function, or a metric, on a set X is a function

d : X ×X → [0,∞),

for which, with x, y, z ∈ X, the following three axioms are satisfied:

• d(x, y) = 0⇔ x = y,

• d(x, y) = d(y, x),

• d(x, y) ≤ d(x, z) + d(z, y)).

The weight of a codeword is a natural extension of the distance, and vice versa:

Definition 3.1.4. Weight
The weight w(x) of an element x ∈ C is d(x,~0) with ~0 being the zero vector, or
equivalently:

w(x) = |{i | 1 ≤ i ≤ n, xi 6= 0}|
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Most often these quantities are called Hamming distance and Hamming weight.

The minimum distance of an entire code has many formulations, but a simple one is:

Definition 3.1.5. Minimum distance of a code
The minimum distance of a code is the minimum Hamming distance between any pair
of different codewords.

A simple way of finding the minimum distance of a linear code is to use the weight:

Proposition 3.1.6.
The minimum distance of a linear code C is equal to the minimum weight among all
nonzero codewords.

Proof:
C is a linear subspace, so if x, y ∈ C, then x − y ∈ C. Therefore d(x, y) = d(x − y, 0) =
w(x− y). �

A generator matrix of a code C is matrix, for which the rows are a set of basis vectors of
C:

Definition 3.1.7. Generator matrix
Let C be a [n, k] code. A generator matrix G for the code C is a k × n matrix whose
rows are taken from C and are linearly independent.

The association of a linear code with a transversal design in this project is based on the
dual of a code.

Definition 3.1.8. Dual code
The dual C⊥ of the code C ∈ Fnq is the vector space consisting of all vectors h ∈ Fnq
such that ∀c ∈ C:

n∑
i=1

cihi = 0 (3.1)

The dual code C⊥ is an [n, n − k] code. If H is a generator matrix for C⊥, it is called
a parity-check matrix for C. A parity-check or parity-check vector is a vector h that is
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orthogonal to all the words of the code.

Definition 3.1.9. Parity check matrix
A parity-check matrix H for a [n, k] code C is a (n − k) × n matrix whose rows are
linearly independent parity-checks.

A linear code can be built from a block design, by simply taking a block from the design
and considering it as a parity-check vector of the code. The parameters of the code depend
on the q-rank of design, since the parity-check matrix is derived from the incidence matrix.

Definition 3.1.10.
Let Fq be a finite field andD = (X,B) be a block design and n = |X|. The code Cq(D)
is the Fnq -linear code, where the designs incidence matrix MD is a matrix consisting of
parity checks of the code. The dimension of Cq(D) over Fq equals |X| − rankq(MD).

Cq(D) is uniquely defined up to a chosen ordering of X and the ordering of blocks does not
affect the code. Furthermore, sinceMD has coefficients in {0, 1}, rankq(MD) = rankp(MD),
where p is the characteristic of the field Fq.

To make distribution easier, a systematic encoding of the database is used at the start of
the PIR protocol. A systematic encoding is useful for retrieving the message m from the
codeword c efficiently.

Definition 3.1.11. Systematic encoding
Let C ⊆ Fnq be a linear code of dimension k ≤ n. A systematic encoding of C is a
one-to-one map ϕ : Fkq → C, such that there exists an injective map σ : [1, k]→ [1, n],
which ∀m ∈ Fkq and ∀i ∈ [1, k], satisfies:

mi = ϕ(m)σ(i)

The set σ([1, k]) ⊆ [1, n] is called an information set of C.

With all the basic theory presented, the PIR protocol will now be introduced.
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4 | PIR Protocol Construction From
Transversal Designs

In this section the common construction of the PIR protocol based on transversal designs
is presented. The standard construction results in 1-private schemes, and constructions
resulting in stronger privacy will be explored later. This section is based on [1], [4], [8] and
[9].

4.1 1-private Distributed PIR Protocol

The basic PIR protocol is 1-private, i.e. with no colluding servers the scheme guarantees
perfect security. This is because the construction exploits a useful property of transversal
designs: The knowledge of one point in a block from a transversal design gives almost no
information on the other points in that block.

As the starting point let T = (X,B,G) be a transversal design with parameters λ, l, s and
n = |X| = ls. Let the associated Fq-linear code be denoted C = Cq(T) ⊆ Fls=nq and let
k = dimFq C. The overall construction of the PIR scheme based on a transversal design
can be summarized in three steps:

Construction 4.1.1.

TD(l, s) →
Incidence matrix

Cq(T) ⊆ Fnq →
Database encoding

Distributed PIR protocol

Each step of the construction of the protocol itself will now be explained. For a summation,
see Construction 4.1.2. The construction of the distributed PIR protocol should follow
along the lines of 2.0.4. The first step of the construction is the initialization, consisting of
database encoding and distribution to the servers:

• The encoding consists of the user computing a systematic encoding, like Defini-
tion 3.1.11, of the database D ∈ Fkq , resulting in the codeword c ∈ C.
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• For the distribution, denote by c(j) = c|Gj
the symbols of c whose support is the

group Gj ∈ G. Each server Sj receives the corresponding c(j), for 1 ≤ j ≤ l.

Next is the retrieving step. Here the goal is to retrieve the symbol ci for i ∈ X. The
groups in the transversal design T contain each element once, so the index j∗ will denote
the unique group Gj∗ that contains i, i.e. ci = cj

∗
r where r ∈ [1, s]. Furthermore, the subset

of blocks containing i are denoted B∗. The next part is the query generation, the answer
from the servers and the reconstruction. These steps can be explained as:

• Query generation: As derived from Definition 3.0.4, it is known that each group and
each block has one common element. The blocks of B∗ consists of the blocks that
intersects Qj∗ in i. So the user now picks at random a block b ∈ B∗. For j 6= j∗ there
is a unique element in the intersection b ∩ Gj that is not contained in Gj∗ . This is
the index qj ∈ b ∩ Gj and this index is sent to server Sj. The remaining server Sj∗
receives a random query qj∗ uniformly picked in Gj∗ . So all elements of the design
has a chance to be picked as a query, and each query is unique.

• Answer from the servers: Each server Sj (including Sj∗) simply reads the query qj
sent to it and sends back aj = cqj as the answer.

• Reconstruction: The reconstruction relies on Definition 3.0.4, from which it is known
that the incidence vector 1b belongs to the dual code C⊥. That means for a c ∈ C∑

x∈b cx = 0. So, since the servers Sj for j 6= j∗ receive queries correspond to a b that
contains i, it must be true that:

ci = −
∑

x∈b\{i}

cx = −
∑
j 6=j∗

cqj

So in the reconstruction, the user computes

r = −
∑
j 6=j∗

cqj = −
∑
j 6=j∗

aj

and outputs r.

Construction 4.1.2. 1-private distributed PIR protocol
Input: A transversal design TDλ(l, s) called T = (X,B,G). A code Cq(T) with
length n = ls and dimension k = dimFq C.

1. Initialization step.

(a) Encoding. Compute a systematic encoding of the databaseD ∈ Fkq , resulting
in the codeword c ∈ C.

(b) Distribution. Set c(j) = c|Gj
as the symbols of c whose support is the group

Gj ∈ G. For 1 ≤ j ≤ l, send each c(j) to the corresponding server Sj.
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2. Retrieving step for symbol ci for i ∈ X. Pick ci = c
(j∗)
r , where j∗ ∈ [1, l]

is the index of the unique group Gj∗ containing i and r ∈ [1, s]. Set B∗ as the
subset of blocks containing i. Run the three algorithms (Q,A,R), given by:

(a) Q: Queries generation. Pick uniformly at random a block b ∈ B∗. For
j 6= j∗ send the unique index qj ∈ b∩Gj to server Sj. Send a random query
qj∗ uniformly picked in Gj∗ to Sj∗ .

(b) A: Answer from the servers. Each server Sj reads aj := cqj and sends it
back to the user:

A(qj, c
(j)) = cqj

(c) R: Reconstruction. Set a = {a1, . . . , al} and q = {q1, . . . , ql}. Compute

r = R(i, a,q) := −
∑
j 6=j∗

aj = −
∑
j 6=j∗

cqj .

Output: The reconstruction r

As noted in Chapter 3, there are five fundamental factors in the analysis of the scheme: Cor-
rectness, security, communication complexity, computation complexity and storage over-
head.

The correctness has already been considered in the explanation of the reconstruction step
in the algorithm. The protocol is correct as long as there are no errors in the symbols
aj := cqj returned by the servers.

In the case of the security, consider the uniformly random pick of b ∈ B∗. It suffices to
prove that P(i | qj) = P(i) for all j ∈ [1, l], where the probabilities are taken over the
randomness. By the law of total probability:

P(i | qj) = P(i | qj ∧ i ∈ Gj)P(i ∈ G) + P(i | qj ∧ i /∈ Gj)P(i /∈ G)

qj can be eliminated by the following two observations:

• When i ∈ Gj, the definition of the protocol means that qj is uniformly random,
making qj and i independent.

• When i /∈ Gj. Definition 3.0.4 implies that there are as many blocks containing both
qj and i as there are blocks containing both qj and any i′ in X \ Gj. Thus qj and i
are again independent.

These observations mean:

P(i | qj) = P(i | i ∈ Gj)P(i ∈ G) + P(i | i /∈ Gj)P(i /∈ G) = P(i),
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by which the scheme is 1-private, or equivalently it protects against a single non-colluding
server.

The complexities are simple: For communication complexity, exactly one index in [1, s]
and one symbol in Fq are exchanged between each server and the user, thus the overall
communication complexity l(log(s)+ log(q)) = l log(sq) bits. The computation complexity
of the protocol is very low, since each server Sj only needs to read the symbol defined by
query qj. There is thus no extra computational cost for the protocol.

Finally, in the case of the storage overhead, the number of bits stored on a server is s log(q),
giving a total storage overhead of (ls− k) log(q) bits.

In conclusion, the following theorem holds:

Theorem 4.1.3.
Let D be a database with k entries over Fq and T = TD(l, s) be a transversal design,
whose incidence matrix has rank ls−k over Fq. Then there exists a distributed l-server
1-private PIR protocol with:

• Only one Fq symbol to read for each server,

• l − 1 field operations over Fq for the user,

• l log(sq) bits of communication, since l log(s) are uploaded and l log(q) are down-
loaded,

• a total storage overhead of (ls− k) log(q) bits on the servers.

Theorem 4.1.3 implies that, when optimizing the practical parameters of the PIR scheme,
a small number of groups in the transversal design is desired, i.e. small values of l in
TDλ(l, s). Conversely, the dimension of C strongly depends on l and n, so too small
values of l can lead to trivial or very small codes. Thus one should find codes with large
dimension compared to their lengths, arising from transversal designs with few groups.
The characteristic of the field Fq should be chosen carefully in order to obtain non-trivial
codes, as described by the following proposition:

Proposition 4.1.4.
Let T = (X,B,G) be a transversal design given by TDλ(l, s) and let q = pe with p
prime. If p does not divide λs then

C ⊆ {c ∈ Flsq , ∀G ∈ G, c|G ∈ Rep(s)},

where Rep(s) is the repetition code of length s. In particular if p does not divide λs,
then dimFq C is at most l.
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Proof:
For x ∈ X one has Bx = {b ∈ B, x ∈ b}, so define a(x) =

∑
b∈Bx

1b. Since C⊥ is generated
by {1b, b ∈ B}, it follows that ax ∈ C⊥. Denote Gx ∈ G as the only group that contains x.
Then:

axx = λs
axi = 0 ∀i ∈ Gx \ {x}
axj = λ ∀j ∈ X \Gx

This means a(x) − a(y) = λs
(
1{x} − 1{y}

)
if x and y are in the same group. If p does not

divide λs, then 1{x} − 1{y} ∈ C⊥. Now, let

C = SpanFq

{
1{x} − 1{y},∀x, y ∈ X; {x, y} ⊂ G ∈ G

}
,

by which:

C ⊆ {c ∈ Flsq ,∀G ∈ G, c|G ∈ Rep(s)},

and so the desired result is obtained. �

Constructions of transversal designs using orthogonal arrays will now be presented.

4.2 Explicit Construction of 1-private TD-based PIR
Protocols

Let l(k) denote the number of servers involved in a given PIR protocol running on a
database with k entries and n(k) the actual number of symbols stored by all servers.
These parameters correspond respectively to the block size and the number of points of
the transversal design used in the construction. Small values of l and n are desired.

A good way to produce transveral designs which result in high rate codes is to base them
on special geometries or other combinatorial constructions. Two special geometries that
can result in good transversal designs are affine geometries and projective geometries, but
these will not be explored in this project. This project will focus on a construction called
the orthogonal array from which a transversal design can be derived in an interesting
way. Furthermore, the concept of strength of an orthogonal array, leads to the concept of
t-transversal designs.

4.2.1 Orthogonal Arrays

There are many ways of defining an orthogonal array, but the one that uses the sub-array
notation is preferred in this project.
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Definition 4.2.1. Orthogonal Array
Let λ, s ≥ 1 and l ≥ t ≥ 1. Define A as an λst × l array with entries being elements
of set S with |S| = s. A is called an orthogonal array OAλ(t, l, s) if, in any λst × t
sub-array A′ of A, each ordered size t subset of S appears exactly λ times in the rows
of A′.

For an orthogonal array OAλ(t, j, s), λ is called the index, t is called the strength, and l
is called the degree. If the strength is omitted, then t = 2 and if the index is omitted then
λ = 1. In the case of both being omitted the orthogonal array is denoted A = OA(l, s).
These are the most common orthogonal arrays, but higher strength orthogonal arrays will
be important for further developing the PIR scheme. For convenience, this project restricts
Definition 4.2.1 to orthogonal arrays with no repeated column or row.

The following proposition shows how to construct transversal designs from orthogonal
arrays:

Proposition 4.2.2.
A transversal design TD(l, s) can be constructed from an orthogonal array OA(l, s).

Proof:
Let A be an OA(l, s) orthogonal array with R(A) denoting the s2 rows of A. A transversal
design is defined by its point set X, its block set B and its group set G. First, the point
set can be constructed as X = S × [1, l]. For the block set, a block can be defined by
associating each row c ∈ R(A) to a block:

bc := {(ci, i), i ∈ [1, l]}

The block set can then be constructed as:

B := {bc, c ∈ R(A)}

Finally for the group set, G := {S × {i} , i ∈ [1, l]} will partition X into l groups. Thus
Definition 3.0.4 means that the sets (X,B,G) defines a transversal design TD(l, s). �

To expand the exploration of orthogonal arrays, a concept is introduced called a generic
code C0 ⊂ Sl, which is just some code that can be defined as necessary. Listed in rows, all
the codewords of such a generic code C0 forms an orthogonal array, with t derived from
the dual distance d′ of C0 by t = d′− 1. For linear codes, the dual distance is the distance
of the dual code. For a deeper exploration of this concept, see [4, p.698− 699].

Given a code C0, the orthogonal array it defines is denoted AC0 and the transversal design
built from this orthogonal array is denoted TC0 . Finally, Cq(TC0) denotes the code obtained
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from the T0, and thus it is possible to construct a PIR scheme. The parity-check matrix
MTC0

of Cq(TC0) stores incidence relations between all the codewords in C0 so the code is
called the incidence code of C0:

Definition 4.2.3. Incidence code
Let C0 be a generic code C0 ⊂ Sl with |S| = s. The incidence code of C0 over Fq, is
the Fq-linear code of length n = sl built from the transversal design TC0 :

ICq(C0) := Cq(TC0)

The alphabets S and Fq need not be equivalent.

The point of introducing incidence codes is to link C0 more directly with PIR schemes,
since the overall construction can be expanded to:

Construction 4.2.4.

C0 ↔
Equivalence

OA(l, s) →
Proposition 4.2.2

TD(l, s) →
Incidence matrix

ICq(C0)

→
Database encoding

Distributed PIR Scheme

The link between generic codes, incidence codes and PIR protocols is very interesting: Since
C0 is a generic code, the incidence code IC(C0) has an innumerable amount of definitions
and thus an incredibly large family of PIR protocols is obtained. Most of these protocols
are not practical though, essentially because the kernel of the incidence matrix of IC(C0) is
too small. An easy way to simplify the search is to notice that the more blocks a transversal
design contains, the larger its incidence matrix is. This means that the associated code has
a smaller dimension for large amounts of blocks. Conversely, the number of blocks of TC0

is the number of codewords of C0. So the search is restricted to small generic codes since
this should result in large incidence codes. These observations lead to the consideration of
using maximum distance separable, also called MDS, codes.

Maximum Distance Separable codes

MDS codes are very important for many different PIR schemes, but in this case they will
be used to explore incidence codes. They arise from the singleton bound, which is given
by:
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Theorem 4.2.5. Singleton bound
Let C be an [n, k] code with minimum distance d. Then

d ≤ n− k + 1

Proof:
Delete d − 1 fixed positions from all the qk codewords. They must still be different since
each pair differ in at least d positions. There are qn−d+1 vectors with the remaining posi-
tions and thus k ≤ n− d+ 1. �

An MDS code is called as such, because it meets the singleton bound.

Definition 4.2.6. MDS code
A [n,k,d] linear code is called maximum distance separable, if it reaches the singleton
bound:

d = n− k + 1⇔ d+ k = n+ 1

The dual code of an MDS code is also an MDS code:

Theorem 4.2.7.
A linear code C is an MDS code iff. C⊥ is an MDS code.

Proof:
Suppose C is a [n, k, d] MDS code. A parity-check matrix H for C is a generator matrix
for C⊥, and any non-zero codeword c ∈ C⊥ can be taken as a row of H. Every set of
d − 1 = n − k columns H are linearly independent, and so c must have less than d − 1
entries equal to zero. Thus w(c) must be at least n − (d − 1) + 1 = k + 1 and since the
singleton bound implies that this the minimum weight, C⊥ is an MDS code. �

By the proof of Theorem 4.2.7, the dual distance of an MDS code is k + 1.

The best known family of MDS codes are generalized Reed-Solomon codes.

Definition 4.2.8. Generalized Reed-Solomon code
Let l ≥ k ≥ 1. Let x = (x1, . . . , xl) ∈ Flq be a tuple with xi 6= xj for i 6= j, called
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evaluation points and let y = (y1, . . . , yn) ∈ (F×q )l be the column multipliers. The
generalized Reed-Solomon code is given by:

GRSk(x, y) = {y1f(x1), . . . , ylf(xl), f ∈ Fq[X], deg f < k} .

GRSk(x, y) codes are linear MDS codes of dimension k over Fq. If y = (1, . . . , 1), then
a standard Reed-Solomon code is obtained.

The interest in GRS codes comes from the fact, that they are more or less the only instances
of MDS codes of dimension 2.

Lemma 4.2.9.
Let 2 ≤ l ≤ q. All [l, 2, l − 1] MDS codes over Fq are GRS codes.

Proof:
Let C denote a [l, 2, l−1]q code with 2 ≤ l ≤ q. C is a MDS code and thus has dual distance
d′ = 3. It is now claimed that there exists a codeword c ∈ C with Hamming weight l. Let
G = (P1, . . . , Pl) be a generator matrix of C, where Pi ∈ F2

q are columns. This leads to two
observations: First, each point of Pi is non-zero, otherwise the dual distance would be 1.
Second, 0, Pi, Pj are not the same for i 6= j, otherwise the dual distance would be 2. Notice
that codewords in C are evaluations of bi-linear maps µ : F2

q → Fq over (P1, . . . , Pl), i.e. C
can be written:

C =
{
(µ(P1), . . . , µ(Pl)), µ ∈ L(F2

q,Fq)
}
,

and the Pi’s are not all in the same line, otherwise dimC ≤ 1.

Since l ≤ q, there exists Q = (Q0, Q1) ∈ F2
q \ {0} such that Q is not in the line defined by

any of the Pi’s. Define µQ(X, Y ) = Q1X − Q0Y , which is a non-zero bi-linear form and
must vanish on a line of F2

q. Since µQ(Q) = 0, it vanishes on the line spanned by Q. This
means µQ(Pi) 6= 0 for every i ∈ [1, l] and c = (µQ(P1), . . . , µQ(Pl)) belongs to C and has
Hamming weight l.

Finally, pick u ∈ C such that {c, u} spans C. The coordinate-wise product (c1×u1, . . . , clul)
is denoted c ∗ u and ~1 is the vector with all entries 1. Then c = ~1 ∗ c and u = c ∗ (c−1 ∗ u),
where c−1 is the coordinate wise inverse of c through ∗. Then C can be written c∗C ′ where
C ′ has G′ =

( ~1
c−1∗u

)
as generator matrix. In conclusion, C is the GRS code with evaluation

points x = c−1 ∗ u, multiplies y = c and dimension 2. �

Lemma 4.2.9 has some interesting implications for transversal design and to explore this, an
isomorphic map is defined: A map ϕ : X → X ′ is an isomorphism between the transversal
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designs (X,B,G) and (X ′, B′,G′) if it is one-to-one and preserves the incidence relations,
i.e. if ϕ is invertible on the points, blocks and codes:

ϕ(X) = X ′ ϕ(B) = B′ ϕ(G) = G′

The following lemma provides the characterization of isomorphisms between two transver-
sal designs.

Lemma 4.2.10.
Let C,C ′ be two codes such that C ′ = y ∗C for some y ∈ (F×q )l. Then the transversal
designs they define, TC and TC′ respectively, are isomorphic.

Proof:
Let the transversal designs from the two codes be written TC = (X,B,G) and TC′ =
(X ′, B′,G′), by which X = X ′ = Fq × [1, l] and G = G′ = {Fq × {i} , 1 ≤ i ≤ l}. For the
block sets, it is clear thatB = {{(ci, i), 1 ≤ i ≤ l} , c ∈ C} andB′ = {{(yici, i), 1 ≤ i ≤ l} , c ∈ C}.
Consider:

ϕy : Fq × [1, l]→ Fq × [1, l],

which maps:

(xi, i) 7→ (yix, i).

y is invertible over ∗ by which ϕy is one-to-one on X. Furthermore, since ϕy only acts on
the first coordinate, it maps G to itself. Finally ϕy(B) is exactly B′ since C ′ = y ∗ C. �

It is now possible to show that the study of two dimensional MDS codes can be restricted
to RS2(x) Reed-Solomon codes.

Proposition 4.2.11.
Let 2 ≤ l ≤ q and Fp be any finite field. Any incidence code IC(C0) built from
a [l, 2, l − 1]q linear MDS code C0 is permutation-equivalent to the incidence code
ICp(RS2(x)), with x ∈ Flq, xi 6= xj.

Proof:
By Lemma 4.2.9 all [l, s, l − 1]q linear codes C0 can be written y × RS2(x) for x ∈ Flq.
Using the notation of the mapping ϕy, one can write ϕy(TRS2(x)) = Ty∗RS2(x). That means
u ∈ ICp(y ∗RS2(x)) iff. u ∈ Cp(ϕy(TRS2(x))). Consider a new map given by:

ϕ̃y : FXp → FXp ,
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which maps:

u = (ux)x∈X 7→ (uϕy(x))x∈X

It is not hard to observe that ϕ̃y(ICp(RS2(x))) = Cp(ϕy(TRS2(x))) and ϕ̃y is a permutation
of coordinates. Thus ICp(C0) is permutation-equivalent to ICp(RS2(x)) and the proof is
complete. �

It turns out that the incidence code ICp(RS2(Fq)) is equal to another type of code; codes
based on transversal designs built from affine geometries. The construction of transversal
designs from affine geometries has not been explored and thus only some simple observa-
tions will be made. Firstly, the actual proposition that contains the equivalence:

Proposition 4.2.12.
Let TA(2, q) be the transversal design built from the affine space of dimension 2 over
Fq. Such a design is called an affine design. See [1, p. 7] for a formal definition. Let
ICq(RS2(Fq)) be the incidence code over Fq of the full-length Reed-Solomon code of
dimension 2 over Fq.
The codes

• C1 = ICq(RS2(Fq)),

• C2, the code over Fq based on the transversal design build from the affine plane
A2(FQ) TA(2, q),

are equal up to permutation.

Proof:
Proof omitted. �

This means that C1 and C2 have the same rate and dimension considerations. For a further
exploration of the affine geometry construction, see [1, p. 7-8].

4.2.2 Divisible Codes

As it turns out, some very good incidence codes arise from linear codes C0 that satisfy a
certain divisibility condition. The important part is that the incidence codes will have rate
approximately greater than 1

2
. The divisibility condition that C0 must follow is given by:

Definition 4.2.13. Divisibility of a code
Let p ≥ 2. A linear code is p-divisible if p divides the Hamming weight of all its
codewords.
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By considering the incidence matrix which defines an incidence code, the following lemma
can be derived:

Lemma 4.2.14.
Let C0 be a code of length l over a set S, TC0 be the transversal design associated
to C0, and d(x, y) be the Hamming distance between x and y. Denote by MC0 the
incidence matrix of TC0 , where the rows of MC0 are indexed by codewords from C0.
Then:

(MMT )c,c′ = l − d(c, c′) ∀c, c′ ∈ C0

Proof:
Let the notation M [c, (α, i)] be the entry of M indexed by the codeword c ∈ C0 for the
row and (α, i) ∈ S × [1, l] for the column. Further, let ~1u(c,i,α) ∈ {0, 1} denote the Boolean
value of the property u. For c, c′ ∈ C0, then:

(MMT )c,c′ =
∑

α∈S,i∈[1,l]

M [c, (α, i)]M [c′, (α, i)] =
∑

α∈S,i∈[1,l]

~1ci=α~1c′i=α

=
l∑

i=1

∑
α∈S

~1ci=c′i=α =
l∑

i=1

~1ci=c′i = l − d(c, c′).

�

Lemma 4.2.14 means that, if some prime p divides l as well as the Hamming weight of all
the codewords in C0, then MMT vanishes over any extension of Fp, and M is a parity-
check matrix of a code containing its dual. In more general terms, the following proposition
holds:

Proposition 4.2.15.
Let C0 be a linear code of length l over S, with |S| = s. Furthermore let C be the
incidence code ICq(C0), where Fq has characteristic p. Denote by n = ls the length of
C. If C0 is p-divisible and Cpar denotes the parity-check code of length n over Fq, then

C⊥ ∩ Cpar ⊆ C.

This means dimC ≥ n−1
2

and if p divides l, then C⊥ ⊆ C and dimC ≥ n
2
.

Proof:
Let M be the incidence matrix of TC0 and denote by J and J ′ the matrices with all entries
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1, with sizes |C0| × n and |C0| × |C0| respectively. If C0 is assumed to be p-divisible, then
by Lemma 4.2.14:

MMT = lJ ′mod(p)

Furthermore, by an easy calculation:

MJT = lJ ′

Over Fq this means

M(M − J)T = 0,

by which it is natural to consider the code A of length n generated over Fq by the matrix
M − J , where A ⊆ C. Let Cpar :=

{
c ∈ Fnq ,

∑
i ci = 0

}
be the parity-check code of length

n over Fq. It follows that c ∈ Cpar ⇔ cJT = 0 and uJ = 0⇔ uJ ′ = 0. If p does not divide
l, then:

C⊥ ∩ Cpar =
{
c = uM ∈ Fnq , cJT = 0

}
=
{
c = uM ∈ Fnq , luJ ′ = 0

}
=
{
c = uM ∈ Fnq , uJ = 0

}
=
{
u(M − J) ∈ Fnq , uJ = 0

}
⊆ A ⊆ C

The dimension is a simple calculation:

dimC ≥ dim(C⊥ ∩ Cpar) ≥ dimC⊥ − 1 = n− dimC − 1⇔ dimC ≥ n− 1

2

In the case of p dividing l, then lJ ′mod(p) = 0, so MMT = 0 by which C⊥ ⊆ C. For the
dimension:

dimC ≥ dimC⊥ = n− dimC ⇔ dimC ≥ n

2

�

For PIR protocols, the following corollary can be derived:

Corollary 4.2.16.
Assume there exists a p-divisible code of length l0 over Fq with p a prime. Then
a distributed PIR protocol can be build for a k-entries database over Fq with k ≥
(l0q − 1)/2. The Protocol has parameters l(k) = l0 and n(k) = l0q ≤ 2k + 1.

The conclusion is that one would like to find divisible codes C0 defined over large alphabets
compared to the code length.
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4.3 (t-1)-private PIR Protocol Construction From
t-transversal Designs

Simple transversal designs do not suffice in constructing PIR protocols that can protect
against colluding servers. The solution is orthogonal arrays: As shown in Proposition 4.2.2,
it is easy to build a transversal design from a strength two orthogonal array. The idea can
be used higher strength orthogonal arrays, which leads to the concept of t-transversal
designs:

Definition 4.3.1. t-transversal designs
A t-transversal design is a block design D = (X,B) equipped with a group set G =
{G1, . . . , Gl}, with l ≥ t ≥ 1, for which:

• |X| = sl,

• ans group has size s and any block has size l,

• for any T ⊆ [1, l] with |T | = t and for any (x1, . . . , xt) ∈ GT1 × · · · × GTt , there
exists exactly λ blocks b ∈ B such that {x1, . . . , xt} ⊂ b.

Such a design is denoted t-TDλ(l, s) or t-TD(l, s) with λ = 1.

The way to derive a t-transversal design from a strength t orthogonal array is shown in
Section 4.3.1. Clearly, Definition 3.0.4 is the definition of a 2-transversal design, and since
such a design makes a 1-private protocol, a t-design will make a (t−1)-private PIR protocol.
The construction of the (t−1)-private PIR protocol is identical with 1-private PIR protocol,
i.e. define the code Cq(T) associated to the t-transveral design and run Construction 4.1.2.
A t-transversal design is also a 2-transversal design for t ≥ 2, by which, correctness,
communication complexity, computation complexity and storage overhead is identical for
1-private and (t − 1)-private PIR protocols. This means only security remains, but it is
fairly simple:

By using the same approach as establishing that there are λs2 blocks in B of the 2-
transversal design, there must be λst blocks in B of t-transversal design. Now, let T be a
collusion of servers of size |T | ≤ t− 1. For varying i ∈ K, the distributions Q(i)|T are the
same because there are exactly λst−1−|T | ≥ λ 6= 0 blocks containing both i and the queries
known by the servers in T .

In summation, the following theorem holds:

Theorem 4.3.2.
Let D be a database with k entries over Fq, and T = t-TD(l, s) be a t-transversal
design, whose incidence matrix has rank ls− k over Fq. Then, there exist an l-server
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(t− 1)-private PIR protocol with:

• Only one Fq symbol to read for each server,

• l − 1 field operations over Fq for the user,

• l log(sq) bits of communication,

• a storage overhead of (ls− k) log q bits on the servers.

4.3.1 t-transversal Designs from Strength t Orthogonal Arrays

Since the strength t orthogonal arrays gave rise to the idea of the t-transversal design, it
is only appropriate to show how to actually obtain such a design. First is a definition:

Definition 4.3.3.
Let A be an orhogonal array OAλ(t, l, s) on a symbol set S. Here, A is composed of
rows ai = (ai.j)1≤j≤l for 1 ≤ i ≤ λst. From this comes a design T = (X,B,G), where
each set is given by:

• X = S × [1, l],

• bi = {(ai,j, j), 1 ≤ j ≤ l} for all ai ∈ Rows(A),

• G = {S × {i}, 1 ≤ i ≤ l}.

To show that the design defined from the orthogonal array A by Definition 4.3.3, one simply
analyzes each set X, B and G:

Proposition 4.3.4.
If A is an OAλ(t, l, s) orthogonal array, then the design defined with A by Defini-
tion 4.3.3 is a t-TDλ(l, s) design.

Proof:
It is easy to see that G is a partition of X and the blocks and groups have the claimed size.
For the incidence property, let T ⊂ [1, l] with |T | = t and let (x1, . . . , xt) ∈ GT1×· · ·×GTt .
There must be exactly λ blocks b ∈ B such that {x1, . . . , xt} ⊂ b. Consider the map:

ψ : B → Rows(A)

Given by the mapping:

bi = {(ai,j, j), 1 ≤ j ≤ l} 7→ (ai,1, . . . , ai,l)
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By the assumption that the orthogonal arrays have no repeated rows, ψ is one-to-one.
Now, denote by x′ = (x′1, . . . , x

′
t) ∈ St the vector formed by the first coordinates of

(x1, . . . , xt) ∈ X t. By Definition 4.2.1 x′ appears exactly λ times in the submatrix of
A defined by the columns indexed by T . So x′ defines λ pre-images in B, and the proof is
complete. �

Using the orthogonal arrays, a very interesting corollary can be established:

Corollary 4.3.5.
Let C0 be a code of length l and dual distance t + 2 ≤ l over a set S, with |S| = s.
Then the incidence code ICq(C0) defines a t-private PIR protocol.

Proof:
Let A be the orthogonal array defined by C0. A has strength t+1, hence Proposition 4.3.4
implies that the associated transversal design is a (t + 1)-TD(l, s) design. Theorem 4.3.2
ensures that the PIR protocol induced by this transversal design is t-private. �
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5 | Scheme Analysis

In this chapter a comparison will be made between the transversal design based PIR scheme
and another PIR scheme, to illustrate how the design based PIR scheme differentiates itself.
An example of the design based PIR scheme will also be constructed, and from this an
interesting property of the orthogonal array construction will be derived. This chapter is
based on [1] and [2].

5.1 Construction Example

To illustrate the PIR scheme construction, an example that follows Construction 4.2.4 will
be made. In this example the generic code C0 will be the dimension 2 Reed-Solomon code
over F5.

Example 5.1.1. Scheme Construction
Let C0 be the linear [5,2,4] Reed-Solomon code over the field F5 = {0, 1, 2, 3, 4}. The
orthogonal array from this code, is simply all the codewords listed in a matrix.
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This results in an OA(5, 5) orthogonal array, with entries:

0, 0, 0, 0, 0,
1, 1, 1, 1, 1,
2, 2, 2, 2, 2,
3, 3, 3, 3, 3,
4, 4, 4, 4, 4,
0, 1, 2, 3, 4,
0, 2, 4, 1, 3,
0, 3, 1, 4, 2,
0, 4, 3, 2, 1,
1, 2, 3, 4, 0,
1, 3, 0, 2, 4,
1, 4, 2, 0, 3,
1, 0, 4, 3, 2,
2, 3, 4, 0, 1,
2, 4, 1, 3, 0,
2, 0, 3, 1, 4,
2, 1, 0, 4, 3,
3, 4, 0, 1, 2,
3, 0, 2, 4, 1,
3, 1, 4, 2, 0,
3, 2, 1, 0, 4,
4, 0, 1, 2, 3,
4, 1, 3, 0, 2,
4, 2, 0, 3, 1,
4, 3, 2, 1, 0,


By Proposition 4.2.2 this orthogonal array can be turned into an TC0 = TD(5, 5)
transversal design, where the sets (X,B,G) are:

X = {(β, i), i ∈ [1, 5], β ∈ F5}
B = {{(ci, i), i ∈ [1, 5]} , c ∈ Rows(OA(5, 5))}
G = {{0, 1, 2, 3, 4} × {i}, i ∈ [1, 5]}

As a simple example, the ninth row a10 = (1, 2, 3, 4, 0) is turned into the block
{(1, 1), (2, 2), (3, 3), (4, 4), (0, 5)}. Each column correspond to a group, with the first
column corresponding to the group with the elements {(0, 1), (1, 1), (2, 1), (3, 1), (4, 1)}.

The incidence code of this transversal design has length 25, and so to con-
sider the blocks as words in {0, 1}25, the elements of X are ordered like this
(0, 1), (1, 1)...(4, 1), (0, 2)(1, 2).... Thus the ninth row can be turned into the incidence
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vector:

1b9 = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)

The incidence matrix of TC0 is:

MTC0
=



10000 10000 10000 10000 10000
01000 01000 01000 01000 01000
00100 00100 00100 00100 00100
00010 00010 00010 00010 00010
00001 00001 00001 00001 00001
10000 01000 00100 00010 00001
10000 00100 00001 01000 00010
10000 00010 01000 00001 00100
10000 00001 00010 00100 01000
01000 00100 00010 00001 10000
01000 00010 10000 00100 00001
01000 00001 00100 10000 00010
01000 10000 00001 00010 00100
00100 00010 00001 10000 01000
00100 00001 01000 00010 10000
00100 10000 00010 01000 00001
00100 01000 10000 00001 00010
00010 00001 10000 01000 00100
00010 10000 00100 00001 01000
00010 01000 00001 00100 10000
00010 00100 01000 10000 00001
00001 10000 01000 00100 00010
00001 01000 00010 10000 00100
00001 00100 10000 00010 01000
00001 00010 00100 01000 10000


This is a 25 × 25 matrix. An interesting observation is that the incidence matrix
can be obtained directly from OA(5, 5) by substituting 0, 1, 2, 3, 4 with the tuples
(10000), (01000), (00100), (00010), (00001) respectively.

The incidence code has the codewords ofM as the dual code, andM has rank 21. Then
the incidence code has a rank 4 generator matrix, and by either using gaussian elimi-
nation or the fact that it is a transversal design, the incidence code has the following
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generator matrix:

GT =



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



So this is a [25, 4] code. It can encode a D ∈ F4
2 database.

This example brings out the importance of how the field characteristic affects the code
dimension, as shown by Proposition 4.1.4. The characteristic of F2 is of course 2 and
this does not divide λs = 5. Hence this code having only dimension 4, compared
to a length of 25. This means the storage overhead becomes 21 log(2) bits, which is
unnecessarily large for such a small encodable database.

An interesting counterpoint exist with the PIR protocol built from the Reed-Solomon
code of dimension 2 over F4 = {0, 1, α, α+1}. The incidence matrix of the transversal
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design resulting from the corresponding orthogonal array is:

M =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0


This matrix has rank 9, so the dual code has dimension 9, by which the incidence code
has dimension 7. The generator matrix of the incidence code over F2 is:

G =



1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1
0 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


This can encode a D ∈ F7

2 database and has a storage overhead of 9 log(2) bits, which
is a big improvement.

So when working with the generic-to-incidence construction, it is important to con-
sider the transversal design obtained from the generic code, since it has important
implications on the incidence code.

There is an interesting observation from Example 5.1.1, about the orthogonal code con-
struction that uses GRS code: The two transversal designs have group size s equal to the
the size of the field the GRS code is defined over: The F4 GRS code gives a design with
size four groups, while the F5 GRS code design has size five groups. Thus Proposition 4.1.4
comes into play: If one wants to encode a database with entries in F2, one then shouldn’t
choose a prime field for the Reed-Solomon code, since the characteristic of F2 never divides
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a prime. This means that one should not use GRS codes defined over a prime field when
using the orthognal array construction.

5.2 A General PIR Scheme for Coded Storage with Col-
luding Servers

In the interest of comparing the transversal design PIR scheme, a general PIR scheme for
coded storage with colluding servers is introduced. This scheme will be called the general
scheme for brevity. The general scheme is very heavily based on GRS codes and how the
database is coded. An important part of this scheme, and many other schemes, is the star
product between two vector spaces:

Definition 5.2.1. Star product
Let V,W ⊆ Fnq be vector spaces. The star product between V and W is the subspace
of Fqn generated by the Hadamard products:

v ? w = [v1w1, · · · , vnwm],

for all pairs v ∈ V and w ∈ W .

The star product is very important due to the following proposition:

Proposition 5.2.2.
Let V,W ⊆ Fnq be linear codes. The star product V ? W satisfies:

(i) If V ⊆ Fnq and W = Rep(n) ⊆ Fnq , then V ? W = V .

(ii) If V,W ⊆ Fnq with supp(V ) = supp(W ) = [n] and (V ? W )⊥ = H, then dH ≥
dV ⊥ + dW⊥ − 2.

(iii) If V is an MDS code, then (V ? V ⊥)⊥ = Rep(n)

(iv) If V = GRSi(α, v) and W = GRSj(α,w), then V ?W = GRSmin{i+j−1,n}(α, v ?w)
for any parameters v, w.

Proof:
Each property is proved in turn:

(i) This follows directly from Definition 5.2.1.

(ii) See [10].

(iii) To show this, let H = (V ? V ⊥)⊥. Obviously Rep(n) ⊆ H, and by using that C is
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an [n, k] MDS code, C⊥ is an [n, n − k] MDS code, the previous property, and the
singleton bound, it can be seen that H = Rep(n).

(iv) This property is proved by first showing that GRSi(α, v)?GRSj(α,w) ⊆ GRSmin{i+j−1,n}
(α, v?w), and then the converse. The first part is done simply by taking two arbitrary
code words from each V = GRSi(α, v) and W = GRSj(α,w), and then showing that
their star product is in GRSmin{i+j−1,n}(α, v ? w). The converse comes from the fact
GRSmin{i+j−1,n}(α, v ?w) is generated as an Fq-vector space by codewords containing
a monomial of degree m ≤ i + j − 1. These codewords can then be decomposed
into the star product between two differnt codewords, each containing a monomial of
degree a < i, b < j and each an element of GRSi(α, v) and GRSj(α,w) respectively.

�

The main benefit of the general scheme is its high rate. To make clear notation, from this
point forward subscripts refer to servers and superscripts refer to files. Assume that the
files of the database are c1, . . . , cm ∈ Fb×kq , where b is a parameter that will be adjusted to
enable the users retrieval of exactly one whole file. The data is stored in a bm× k matrix
D. The files are encoded with a linear [n, k, d]-code C by using its generator matrix GC ,
by which the encoded database is:

Y = DGC =

y
1
1 · · · y1n
... . . . ...
ym1 · · · ymn


The column yj ∈ Fbm×1q is sent to the j’th server. This encoding type has a very good
benefit: Any dC − 1 servers can fail, and a user can still successfully retrieve any file xi.

The scheme itself is iterative, and the number of iterations of such a scheme is given by z.
The rate of the PIR scheme is then given by:

Definition 5.2.3. Rate
The rate of the PIR scheme for coded storage with colluding servers is bk

nz
.

The scheme starts with two codes:

• The linear [n, k, d]-code C over Fq with generator matrixGC , from which a distributed
storage system Y = DGC can be defined.

• A linear code R ⊆ Fnq called the retrieval code. This code will determine the privacy
properties of the scheme.

The scheme is iterative, where with each iteration a certain number of symbols are down-
loaded. Fix a subset J ⊆ [n] of servers with constant size |J | = max{c, k}, where
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c = dD?R − 1. J is the set of all servers from which the encoded symbols are obtained.
During the u’th iteration of the procedure the symbol yij(a) is obtained from every server

j ∈ Jau , where Jau ⊆ J , with u ∈ [z] =
[

lcm(c,k)
c

]
and a ∈ [b] =

[
lcm(c,k)

k

]
. c is defined as

dC?R − 1. The scheme construction works in the following steps:

Query generation, Q: mb codewords dh,a = [dh,a(1) . . . dh,a(n)] are selected uniformly at
random from R for h ∈ [m] and a ∈ [b], with m being the number of files in the database.
For h ∈ [m] and j ∈ [n], define:

dhj = [dh,1(j) . . . dh,b(j)] ∈ F1×b
q

dj = [d1j . . . d
m
j ] ∈ F1×mb

q

At each iteration, Ju := [c] ∈ J is partitioned into b subsets, where the first iteration is:

J1
1 =

{
1, . . . ,

c

b

}
, J2

1 =

{
c

b
+ 1, . . . ,

2c

b

}
, . . . , J b1 =

{
(b− 1)

c

b
, . . . , b

c

b
= c
}

For the other iterations u = 2, . . . , z, Jau ⊆ J is recursively defined to be the cyclic shift of
Jau−1 within J to the right by g = c

b
indices. So, if Jau−1 = {j1, . . . , jg}, then:

Jau = {j1 + g, j2 + g, . . . , g}

Lastly, let Ju = J1
u ∪ · · · ∪ J bu, by which the queries are given by:

qij =

{
dj + eb(i−1)+a if j ∈ Jau

dj if j /∈ Ju

Here, eb(i−1)+a ∈ F1×mb
q is the (b(i− 1)+ a)’th standard basis vector. For j ∈ Jau , the query

qij is dj, but with entry di,j(j) replaced with di,a(j) + 1.

Answer from the servers, A: A response vector is calculated:

ri = (codeword of C ? R) + yiJu

yiJu is a vector with entries yij(a) in known positions for all j ∈ Jau and all a ∈ [b], and
zeroes elsewhere.

Reconstruction, R: Let S be a generator matrix of (C ? R)⊥. Every c columns of S are
linearly independent, by the definition of c. Assume the file xi must be reconstructed, so
consider the response vector ri from the first iteration, and then compute:

Sri = S(codeword of C ? R) + Syi = Syi

This way, the values yi1(1), . . . , yic(b) are obtained. For the u’th iteration of the scheme all
entries of the form yij(a) for j ∈ Jau and a ∈ [b] are obtained.
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5.2.1 Analysis

Analysis of this scheme follows along the lines of the design based PIR scheme, but it is a
bit different.

During each iteration of the scheme,

g :=
k

z
=
c

b

symbols are downloaded from every row of yi. So after z iterations the scheme will have
downloaded zg = k symbols of the row yi,a of yi for all a ∈ [b].

For correctness the following theorem applies:

Theorem 5.2.4. Correctness
Let C be a [n, k, d]-code and R be retrieval code, such that:

• dC?R − 1 ≤ k, or

• there exists J ⊆ [n] of |J | = max{dC?R − 1.k}, where every K ⊂ J with |K| = k
is an information set of C.

Then the general PIR scheme is correct, i.e. the desired file is retrieved with rate
(dC?D−1)

n
.

Proof:
If the first case is satisfied, one simply chooses J ⊆ [n] of size k to be any information set of
C, and so a proof that shows the second condition satisfies both. During the reconstruction
algorithm, k symbols from each row yi,a of yi are retrieved. Since every K ⊆ J of |K| = k
is an information set, it suffices to recover every yi,a and therefore all of xi. The rate is:

k · lcm(c,k)
k

n · lcm(c,k)
c

=
dC?R − 1

n

�

The security is a bit more involved.

Theorem 5.2.5. Privacy
The general PIR scheme protects against dR⊥ − 1 colluding servers.

Proof:
Let T = {j1, . . . , jt} ⊆ [n] be a set of severs with |T | = t ≤ dR⊥ − 1. The first step is
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to show that during a single iteration of the scheme, the mutual information between the
queries and the index is zero, i.e. I(qij1 , . . . , q

i
jt ; i) = 0. Since t ≤ dD⊥ − 1 every t columns

of R’s generator matrix are linearly independent, so the code RT is the entire space Ftq.
Now, consider the distribution of the vectors

dj = [d1,1(j) . . . d1,b(j) . . . dm,1(j), . . . dm,b(j)] ∈ F1×bm
q

for a single j ∈ T . R{j} is distributed uniformly on Fq and the codewords dh,a are selected
uniformly at random from R, so dj is uniform on F1×bm

q . Furthermore, since RT is all of
Ftq, the joint distribution {dj | j ∈ T} is uniform over (F1×bm

q )t. If f(i, j) denotes the index
of the standard basis vector, then the queries

{qij1 , . . . , q
i
jt} = {dj + ef(i,j) | j ∈ T ∩ J} ∪ {dj | j ∈ T \ J}

are uniformly distributed for all i, since translating the uniform distribution by a vector
gives the uniform distribution again. That means the distribution of queries is independent
of i, by which I(qij1 , . . . , q

i
jt ; i) = 0 for a single iteration.

For all iterations of the scheme, consider the joint distribution Qi
T of all queries to all

servers in T , as all iterations are gone through. During each iteration, the vectors dh,a are
chosen independently of all other iterations, by which Qi

T is uniform (F1×bm
q )tz. Then the

joint distribution is independent of the index, i.e. I(Qi
T ; i) = 0 and the proof is complete. �

5.3 Scheme Comparison

Besides being based on two different ideas, there are four main points in which the two
schemes are different: Rate, Storage, complexity and server error handling. Server error
handling will not be explored in detail, but is still touched upon.

5.3.1 Rate

A PIR schemes rate is very important, since high rate schemes result in very efficient
schemes, as the entire point of PIR schemes is to retrieve information. The rate of the
design based PIR schemes is of course very simple, it is simply the retrieved information
over the encoded information k

n
. Since b and s can be chosen as pleased in the general PIR

scheme, this is of course similar to Definition 5.2.3. But as shown in Theorem 5.2.4, the
rate of the general PIR scheme can be expressed as dC?R−1

n
.

As shown in Example 5.1.1 the rate of the transversal design based PIR scheme is very
dependent on the interaction between the block size and the characteristic of the field the
database will be encoded in. If the characteristic does not divide the group size, the rate
will be at most l

ls
= 1

s
. There is also the divisibility condition as shown in Section 4.2.2,

with the condition satisfied ensuring a rate above 1
2
.
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To get high rate PIR protocols then requires a different approach for each scheme: The
design based scheme should be build around the divisibility condition and the characteris-
tic of the databases field, and the general scheme should be build around the star product.
It is interesting that they both center on GRS-codes: For the 1-private transversal design
PIR protocol, all generic codes are dimension 2 RS codes. Similarly, because of Proposi-
tion 5.2.2, some very good PIR protocols can be achieved when C is a GRS-code.

5.3.2 Storage

Storage overhead is the amount of information stored on the servers to make the PIR
protocol work. This is important, since the storage could potentially be so large, that
the protocol is rendered moot by the effort required to keep these servers running. An
equivalent concept is the storage rate.

The general scheme has an equal amount of servers to the length of the encoding code n,
because each column in the encoded matrix Y represents a server. Each row of y contains
k symbols of information, which means that the amount of extra symbols of a single row
is n − k. The number of entries on each server is shaped by bm. b is negligible, and thus
only the number of files describe how many entries there are on each server. The system
then stores a total of mn Fq symbols, of which km are information symbols. So the total
storage overhead is m(n− k) of symbols in Fq and equivalently n− k storage overhead per
file.

As described in Theorem 4.1.3 and Theorem 4.3.2 the storage overhead of (ls − k) log(q)
bits. There are ls = n elements in the transversal design, which means that the stored
codeword has length n, and of these k are information symbols on the servers. The problem
is that this is not really comparable with the general PIR scheme, since each file is a symbol
in Fkq . So to make the comparison, one takes the files to be Fqk symbols, such that the
database is a string in Fm

qk
. To make sure that the schemes are exactly the same, it would

be needed that the number of servers used are the same for each scheme. It is very hard
to determine if this is possible, but for the sake of argument, this is assumed. There are l
servers each storing s Fqk symbols. This means each server stores sk Fq symbols, and so
the system stores a total of lsk symbols. The system encodes mk symbols of information,
and thus the total storage overhead is lsk −mk symbols of Fq and equivalently a lsk

m
− k

storage overhead per file.

These can also be represented as rates, with the general scheme having a storage rate of k
n

and the TD based scheme has storage rate m
ls
. Both have fairly good storage capabilities,

but it is easier to store larger files in the general scheme, so it is considered slightly superior.

5.3.3 Complexity

Complexity is very important in PIR schemes, since simple PIR schemes are preferable to
other schemes. The transversal design scheme has a very low amount of computational
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complexity for the servers: Each server simply reads it’s query and sends back a response
without any further calculations. The user needs only compute the queries and that is very
easy, based on the properties of the transversal design.

The general scheme’s servers need to compute a response vector:

ri = (codeword of C ? R) + yiJu

rij is computed differently based on whether j ∈ Ja0u or j /∈ Ju. In the latter case:

rij =
〈
qij, yj

〉
=

m∑
h=1

〈
dhj , y

h
j

〉
=

m∑
h=1

b∑
a=1

dh,a(j)yhj (a).

And in the other case:

rij =
m∑
h=1

b∑
a=1

dh,a(j)yhj (a) + yij(a0)

This means that each server performs at least one star product operation and if j ∈ Ja0u
the server also performs an addition operation. The conclusion is that the design based
scheme has a very low amount of complexity.

5.3.4 Operation

Operation of the scheme is also an important consideration. Here the focus is on how easy
or hard it is to change, add or delete files of the original database. It is very easy to do
in the general scheme, since the encoding is very simple: If a file is added, a file can easily
be encoded and added to the servers. If a file is deleted, it is known exactly which row is
deleted in the encoding, and these symbols are simply deleted from the servers. Changing
a file is simply changing the encoding.

It is not simple to do the same for the TD based PIR scheme. When a file is changed, a
new encoding of the entire database needs to be computed. Deleting and adding a file is
very complicated: It is possible to delete a file by simply substituting it with a file of no
information and retain the scheme. But if a file is to be added, the scheme needs to be
redesigned.

5.3.5 Server Failures

One of the main benefits of distributed PIR schemes, is that they can be designed, such
that if a server fails, the information can be reconstructed from the other servers. The
general scheme excels at this, where n − k servers can fail, and it is still possible to use
the PIR protocol. The transversal design based PIR scheme has a very limited capability
in this regard. It would be possible to reconstruct one server if one fails, since it would be
obvious what is missing from the transversal designs set. But resistance against a larger
amount of server failures haven’t been explored.
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6 | Discussion and Conclusion

Discussion

Construction Considerations

In this project extraneous ways of creating transversal designs from other mathematical
structures have not been included. The two most important of these are the construction
using affine planes and the construction using projective geometries. These have not been
concluded because so as to not clutter the project, as well as the orthogonal array con-
struction being more interesting. As Proposition 4.2.12 describes, 1-private PIR schemes
based on the transversal design the affine and orthogonal constructions are essentially the
same. The projective geometry allows one to use a result from Hadamard, with which one
can compute the p-rank of the code based on the projective geometry design. The two
constructions are asymptotically the same. as can be proven by experimentation.

The divisibility condition could also be explored more, since it has important implications
for the rate of the orthogonal array construction. A direct link between the divisibility
condition and the GRS code length observation would be an interesting further investiga-
tion.

Server Error Considerations

Server errors are broad, but to simplify, in this project they are when a server fails in some
way. The general PIR scheme has great measures against server errors, as described in
Chapter 5. The general PIR scheme is maximally robust against failures, if the encoding
code C is an MDS code, i.e. it protects against dC?D − 1 failures. Furthermore, it also
protects against dC?D−1

2
byzantine errors. The reason for this is because the user down-

loads more information than strictly required when using the protocol. This way the lost
information can be reconstructed using the extra information.

Here is presented two directions to proof against server errors for the transversal design
based PIR scheme:

Extra servers: If a server doesn’t respond, one simply needs to acquire the information

Group 5.217d Page 44 of 46



6. Discussion and Conclusion AAU

that the server contained. Thus one could introduce additional servers, that contain that
information. The problem here is that these servers need to be designed with great care.
If they are simply extra cloned parts of the database that are consulted in the case of a
failure, it would be quite easy for the servers to find out what was asked for.

Redundancy introduction: One of the reasons the general scheme protects against failures is
because extra redundant information is downloaded. It could be interesting to modify the
database encoding of the transversal design based PIR scheme, such that extra redundancy
is introduced. This would limit the rate of the scheme, and so one needs to be careful when
introducing redundancy.

Conclusion

In this project a transversal design based private information retrieval protocol has been
explored. The privacy of this PIR protocol comes from the size of t in t-transversal designs.
The protocol is correct as long as each server doesn’t send a wrong answer. This can
be a problem, since if a server fails, the protocol might fail. It has been shown how
transversal designs are built from orthogonal arrays and GRS codes. In this connection,
it has been found out that one should not use GRS codes defined over a prime field,
since the PIR protocol will have a very low rate. The main benefit of the scheme is it’s
remarkably low complexity, where each server needs only read a single symbol, and make
no other calculations. The protocol also has a fairly good rate if the divisibility condition
is satisfied. The storage overhead of scheme differs depending on the database: In the case
of the database being D ∈ Fkq the protocol stores (ls− k) log(q) bits or ls− k Fq symbols.
If the database instead is D ∈ Fm

qk
it stores lsk − mk Fq symbols. The operation of the

protocol may cause problems, since it is hard to manipulate the entries of the original
database after encoding.

Group 5.217d Page 45 of 46



7. Bibliography AAU

7 | Bibliography

[1] Lavauzelle J. Private Information Retrieval From Transversal Designs. IEEE Trans-
actions on Information Theory. 2019 Feb;65(2):1189–1205. Available from: http:
//dx.doi.org/10.1109/TIT.2018.2861747.

[2] Freij-Hollanti R, Gnilke OW, Hollanti C, Karpuk DA. Private Information Retrieval
from Coded Databases with Colluding Servers. SIAM Journal on Applied Algebra and
Geometry. 2017 Jan;1(1):647–664. Available from: http://dx.doi.org/10.1137/
16M1102562.

[3] Raviv N, Karpuk DA. Private Polynomial Computation from Lagrange Encoding;
2019.

[4] Colbourn CJ, Dinitz JH. Handbook of Combinatorial Designs. Discrete Mathematics
and Its Applications. CRC Press; 2006. Available from: https://books.google.dk/
books?id=S9FA9rq1BgoC.

[5] Justesen J, Høholdt T. A Course In Error-Correcting Codes. European Mathematical
Society; 2004.

[6] Cameron PJ, Van Lint JH. Designs, graphs, codes and their links. 1st ed. Lon-
don Mathematical Society Student Texts 22.. Cambridge, U.K: Cambridge University
Press; 1991.

[7] Hughes DR, Piper FC. Design theory. Cambridge: Cambridge University Press; 1985.

[8] Lavauzelle J. Codes with locality : constructions and applications to cryptographic
protocols; 2018.

[9] Assmus EF, Key JD. Designs and their Codes. Cambridge Tracts in Mathematics.
Cambridge University Press; 1992.

[10] van Lint J, Wilson R. On the minimum distance of cyclic codes. IEEE Transactions
on Information Theory. 1986;32(1):23–40.

Group 5.217d Page 46 of 46

http://dx.doi.org/10.1109/TIT.2018.2861747
http://dx.doi.org/10.1109/TIT.2018.2861747
http://dx.doi.org/10.1137/16M1102562
http://dx.doi.org/10.1137/16M1102562
https://books.google.dk/books?id=S9FA9rq1BgoC
https://books.google.dk/books?id=S9FA9rq1BgoC

	Titelblad
	Introduction
	Private Information Retrieval
	Transversal Designs
	Linear Codes From Block Designs

	PIR Protocol Construction From Transversal Designs
	1-private Distributed PIR Protocol
	Explicit Construction of 1-private TD-based PIR Protocols
	Orthogonal Arrays
	Divisible Codes

	(t-1)-private PIR Protocol Construction From t-transversal Designs
	t-transversal Designs from Strength t Orthogonal Arrays


	Scheme Analysis
	Construction Example
	A General PIR Scheme for Coded Storage with Colluding Servers
	Analysis

	Scheme Comparison
	Rate
	Storage
	Complexity
	Operation
	Server Failures


	Discussion and Conclusion
	Bibliography

