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Abstract:

In this project, we investigate the use of BNNs for
bridging the gap between expressing uncertainty
in Al models and explaining the predictions of the
models. The BNN used in this project is build
with TensorFlow and TensorFlow Probability, and
is trained through Variational Inference. Here, we
propose the possibility of sampling models from a
BNN and explaining these with LRP. By using the
relevance scores calculated with LRP from multi-
ple sampled models, we can consider the variance
in relevance scores for each individual feature. We
argue that this variance reflects the uncertainty in
the predictions, and gives an insight into which
features affect the uncertainty the most.

The LRP approach is evaluated by setting the val-
ues of features to 0, where we find that when set-
ting features to 0, for features with low relevance
scores and low variance, the predictions and uncer-
tainty in these remain similar. On the other hand,
when doing the same for features with high rele-
vance scores and high variance in these, the pre-
dictions differ from the original predictions, often
with a lower uncertainty. We conclude that there
is a clear correlation between the variance in rel-
evance scores and the uncertainty in predictions,
and that our method is able to give an insight into
which features contribute most to the uncertainty

in predictions.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

authors.
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Summary

Al has proven itself in many different domains, and is now slowly finding its way into healthcare.
Here, Al offers precise diagnoses on complex problems [1, 2], and the ability to express uncer-
tainty and abstain from predictions by saying "i do not know", increases the trust in an AI model
[3]. In addition to this, if an AI model is to be deployed in the EU, it is required by law that black
box models such as neural networks can explain their predictions [4], when making decisions
that affect people. In order to increase trustworthiness, we see great potential in combining ex-
plainability and uncertainty quantification. Also, to our knowledge, little research has been made
about combining these two fields, with the goal of explaining the uncertainty in outputs of an Al
model. Therefore, we set an initial problem statement with the goal of acquiring more knowledge
about uncertainty quantification and explainability of AI models.

During research, we find and evaluate state of the art methods for quantifying uncertainty.
Here, we choose to focus on explaining the uncertainty produced by Variational Inference, as
this method uses probability distributions over the parameters of the model, which provides
information about the uncertainty in the network. For explainability, we choose to focus on
the LRP method, as it works on individual predictions and shows promise for the possibility
of explaining uncertainty. Throughout this project, we use two different datasets for predicting
sepsis. Here, we choose to use the data framing "Fixed Time To Onset", as this data framing
yielded the best calibrated models. We also choose a time representation that use delta values,
where the change in a feature is part of the dataset. This allowed for simpler models in terms of
model architectures, which we deem fitting when testing the novel method we propose. Having
these choices in mind, we present an idea of how to explain the features that affect the predictions
of the model, in terms of model uncertainty.

Here, we get inspiration from Bykov et al. [5], who use LRP to explain predictions from a
BNN, with the goal of determining the uncertainty in the explanation. We propose a method that
follows this approach of sampling multiple different models from a BNN and explaining these
models with LRP. However, we consider the variance in relevance scores for each sampled model,
where we argue that the variance reflects the uncertainty of the predictions.

In order to ensure that the explanations of the uncertainty can be trusted, we see great im-
portance in the model being well calibrated, and therefore conduct an experiment to investigate
this. Here, we see that the BNN is generally well calibrated for both datasets, compared to its non
stochastic counterpart. We also see that the model is better calibrated on the dataset with fewest
missing values.

After this experiment, we experiment with different methods of using the uncertainty in the
predictions to abstain from making a prediction, by saying "i do not know". Here, we see that the
uncertainty of a model can be used to enhance the performance by abstaining. Following this,
we show the results of the explanation method for uncertainties that we have proposed. Here,
we see different patterns for different datasets, and that some features seem more important than
others. Additionally, we see that when the variance in the predictions of the sampled models are

high, this variance is also reflected in the relevance scores for the features.
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After displaying the results, we evaluate the method. Here, we choose to set feature values to
0 for features with high relevance scores, and high variance in these. Based on the results, we see
that setting a feature to 0, which has a high variance in its relevance scores, causes the variance in
the predictions to decrease. However, this is not always the case for one of the datasets, which is
significantly more sparse than the other. We suspect the different results are due to this sparsity,
and that setting a feature to 0 reduces the provided information too much. Based on our results,
we conclude that there is a clear correlation between variance in relevance scores and uncertainty
in predictions, for the datasets and models used, and that our proposed model can give an insight

into how the uncertainty in predictions is affected by the input features.
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Readers Guide

This report is targeted at students having experience with machine learning, who are studying
on the last semester of their master’s degree in software engineering.

Citations follow the IEEE citation style, where a cite is represented with a number within
square brackets. The number refers to the numbers used in the bibliography.

All illustrations within the report are made by us.

When referencing other parts of the report, either ‘Chapter” or "Section’ is used together with
a number, which states which chapter or section within a chapter is referenced. For example,
Section 4.3 refers to section 3 in chapter 4. When referring to parts in the appendix, the prefix is
"Appendix’, followed by a letter and then by a number, which likewise refers to a chapter and a
section.

For some experiments conducted during the project, many results are calculated. Therefore,
to make the Appendix less cluttered, some results are moved into a Supplementary Appendix,

which is included as an external document.
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Part 1

Problem Analysis



Chapter 1

Introduction

Artificial Intelligence (Al) is a rapidly evolving technology, and is starting to find its way into
healthcare, where it shows great potential in improving healthcare by offering precise diagnoses
[1]. The United Nations (UN) has set 17 sustainable development goals, which aim to improve
the sustainability of the world, where one of these goals regards "Good health and well-being"
[8]. Here, machine intelligence can be of great value in supporting the medical professionals in
making the correct decisions [2]. As machine intelligence is moving into the field of healthcare,
the trust in machine intelligence systems becomes increasingly vital for their viability [9].

The European Commission has released a report regarding the use of artificial intelligence in
medicine and healthcare, stating that the trust of Al in healthcare is particularly important [1].
One way of establishing trust in a machine intelligence model for medical professionals, is to
have the model reason about its uncertainty, with the possibility of providing the answer "i do
not know" [3]. This helps medical professionals determine when to trust a machine intelligence
model, which is especially important when regarding critical decisions [2].

In our pre-master thesis, "Analyzing Calibration of State of the Art Deep Learning Architectures
for Electronic Health Records” [10], we explored calibration as a measure of uncertainty. Here, the
notion of calibration relates to how well a model’s predictions fit the overall frequency of an
event. If we have 10 predictions, all with a confidence of 0.7 that patients contract sepsis, we
expect that 7 out of 10 patients contract sepsis during their admission. Through experiments,
we found that the architectures TCN and LSTM provided the overall lowest calibration scores on
datasets regarding prediction of sepsis onset. While calibration is insufficient for capturing model
uncertainty [2], Guo et al. discuss that a well calibrated model enhances the trustworthiness for
its users [11], which means that it is still relevant to consider.

In order to establish more trustworthiness in the uncertainty of a prediction, it is also relevant
to make a distinction between model uncertainty (epistemic uncertainty) and data uncertainty
(aleatoric uncertainty) [12]. Here, epistemic uncertainty refers to the uncertainty inherent in the
parameters of the model, and is caused by insufficient data. Epistemic uncertainty is pivotal
in expressing the uncertainty of a model on out-of-distribution data, which might be the case
with rare illnesses that has limited occurrences within a dataset [12]. Aleatoric on the other
hand, refers to the uncertainty or randomness inherent in the data. Unlike epistemic uncertainty,
aleatoric uncertainty cannot be reduced by gathering more data. A more in-depth coverage of
aleatoric and epistemic uncertainty is found in Section 3.3. Making a distinction between these
types of uncertainty makes it transparent whether the uncertainty is caused by inherent noise in
the data or insufficient data, which in turn makes the predictor more trustworthy [13]. Based on
these points, we want to explore other methods for capturing uncertainty, but also consider the

calibration of the resulting model.



Even with uncertainty estimates from a neural network, it might be difficult for medical pro-
fessionals to understand the meaning of these. Therefore it is also important to consider how
the uncertainty of a machine intelligence system is communicated [3]. Expressing the uncertainty
in a way that makes it clear why the model is uncertain, gives the medical professional a better
foundation for decision making.

In 2018, the European Union updated its laws regarding General Data Protection Regulation
(GDPR), to also include "right to explanation" [4]. This law requires, that if a decision is made
by an algorithm, the user has the right to get an explanation for the decision. This law directly
requires that black box models, such as neural networks, must be explainable when deployed in
tields where a decision affects people. For example, if a person is rejected a loan by a machine
intelligence system, the person has the right to know why.

We only find one paper working in the area of combining explanation and uncertainty [14],
which itself states that little work has been done in this area. Explaining the uncertainty of a
prediction provides new information in the context of what caused the uncertainty, in which we
see great potential. For example, if there is high uncertainty in a specific prediction, this may have
a correlation to some part of the input data. Explaining which features from the input data that
cause this uncertainty, opens up for new possibilities of communicating the uncertainty. For ex-
ample, uncertainty tied to a specific lab measurement might imply, for the medical professionals,
that a new measurement is needed.

Based on the importance of expressing uncertainty in a medical setting, and the advantages

from explainability of uncertainty, we construct the following initial problem statement:

How can we express uncertainty in a Neural Network to increase the trustworthiness of
a prediction?

¢ How can we modify a neural network to make it possible to express the uncertainty of its

predictions?

¢ How can the uncertainty of a prediction be explained, such that it is possible to determine

which features in the input data cause the uncertainty?

¢ How can we make a distinction between epistemic and aleatoric uncertainty in the predic-

tions of a model?



Chapter 2

Quantifying Uncertainty in Deep Learn-
ing

In this chapter, we present state of the art methods for quantifying uncertainty in deep learning.
The motivation behind this chapter is to evaluate these methods, and determine which method is
best suited for explaining the uncertainty contribution of features, as discussed in Chapter 1.

Our previous work consists of evaluating calibration in different state of the art deep learning
architectures, as a measure of uncertainty [10]. Calibration is a way of determining whether the
predicted probabilities of a network correlate to the real frequencies, which can be seen as a
frequentist notion of uncertainty [15]. However, the calibration metrics alone do not capture the
model uncertainty [2]. For traditional neural networks, the goal is to predict a single estimate of
6 (the parameters of the network) [16]. Contrary to this, the Bayesian approach is to represent
6 as random variables, which allows the possibility of expressing uncertainty in the parameters.
If a model is able to express its uncertainty, it brings more insight into how certain the model is
about the predicted probabilities, which would be of great value in the medical domain [17].

The remainder of this section is based on information from [16] and [18].

In Bayesian statistics, the principle is to express a level of belief in different outcomes. In
Bayesian Neural Networks (BNNs), compared to neural networks, stochastic elements are in-
troduced. For example, it is possible to express a BNN as a neural network where, instead of
point estimate weights (shown on Figure 2.1), probability distributions over the weights are used
(shown on Figure 2.2). These probability distributions express a belief in the different values of

the weights.

. . . . . Figure 2.2: Bayesian Neural Network where stochastic
Figure 2.1: Neural Network with point estimate weights. o .
elements express belief in different values of the weights.



One way to obtain these probability distributions, is to compute the posterior distribution p(6|D)
using Bayes Rule (see Equation 2.1a). Here, p(D|0) is known as the likelihood, which represents
the similarity between the parameters and data. p(6) is the prior and represents knowledge
about outcomes before evidence is observed about the outcomes. The prior can for example be
expert knowledge from a doctor, that some disease occurs more often than others, or common
knowledge that a coin flip has a probability around 0.5 for either outcome. p(D) is the probability
of the data, which can be calculated as the marginalization of § from p(D, 6), which can be seen

in Equation 2.1b.

plélp) = EEREC) @.1a)
p(0|D) = T (gnz)z(? = (2.1b)

Ideally, the true posterior distribution can be computed as seen in Equation 2.1a. However, the
marginalization of [, p(D|0)p(6)d6 is often intractable to compute, as it scales with the number
of parameters in the network [19]. As a solution to this intractability, different methods exist for
approximating the posterior distribution. After obtaining an approximated distribution over the
parameters, it is possible to use this approximation to compute the probability distribution of a
model’s output, which can be seen in Equation 2.2. Here, y is a prediction given a data point x
and a dataset D. This distribution also expresses the model’s uncertainty, which will be covered

more in-depth in Section 3.3.

plx.D) = [ p(ylx,0)p(6]D)do 2

In the following sections, we explore the predominant state of the art methods for computing the

approximated posterior.

2.1 Deep Ensembles

Deep Ensembles is a method for approximating the intractable posterior by training an ensemble
of N models [15]. By giving these models different random initializations, they follow different
trajectories while training, which results in the models being able to explore different minima
of the function space [20]. This creates diversity in the predictions, which can be used to ex-
press the uncertainty of the ensemble. Lakshminarayanan et al. [15] suggest that for classifi-
cation, the predictions of an ensemble can be averaged by p(y|x) = & Yo, po, (y|x,0m). The
diversity in predictions can then be found, by computing how much the predictions from the
models in the ensemble disagree with the average prediction, where this disagreement repre-
sents the uncertainty in the predictions. More precisely, this disagreement can be computed by:
Y M KL(pg, (y|x)||pe(y|x)), where pe(y|x) is the average prediction of the ensemble and KL is
the KL-divergence. Comparing Deep Ensembles to Bayesian methods, Dusenberry et al. find that
their Bayesian models achieved similar performance metrics, while having significantly less pa-
rameters than the Deep Ensemble. This makes the Deep Ensemble method more computationally

heavy, which also makes it a less attractive choice for clinical deployment [2].



2.2 Markov Chain Monte Carlo

As described in [17], Markov Chain Monte Carlo (MCMC) is a family of algorithms used for
approximating the true posterior p(6|D) by using a Markov Chain. The Metropolis-Hasting
algorithm is an algorithm within the family of MCMC algorithms. In the Metropolis-Hasting
algorithm, the Markov Chain is built by using an initial sample and a candidate distribution to
draw a new subsequent sample x,. If the sample x, complies with the acceptance rules, a new
sample x, 1 is sampled from the candidate distribution. By generating enough of these samples,
the MCMC algorithm is guaranteed to produce an asymptotically exact distribution with respect
to the true posterior distribution, if doing enough iterations of the MCMC algorithm [21]. While
MCMC provides a good approximation, the computation time is heavily dependent on the size
of the dataset, which can lead to problems on bigger datasets. In addition to this, the method is

also more computationally expensive, compared to Variational Inference [18].

2.3 Variational Inference

Variational Inference is another method for approximating the true posterior. In Variational Infer-
ence, the parameters 6 of a network consist of probability distributions, rather than point estimate
values [18]. The parameters 6 are trained to be as close as possible to the true distribution p(6|D).
When generating a prediction with the network, the weights are sampled from the probability
distributions 6. Several predictions can be generated this way, where the diversity in the predic-
tions represents the uncertainty, similar to the Deep Ensemble approach. An in-depth description
of the method follows in Section 3.1. While Variational Inference is less computationally heavy
than MCMC, Variational Inference does not offer the guarantee of an asymptotically correct ap-

proximation [18].

2.4 Monte Carlo Dropout

Monte Carlo Dropout (MC Dropout) is another method for approximating the true posterior
p(0|D). MC Dropout uses the regularization method of dropout, where random neurons are
dropped during training, meaning that only a subset of the neurons in the network are propagat-
ing information. For MC Dropout, neurons are also dropped during inference, which makes it
possible to simulate an ensemble of networks, which functions as a Bayesian approximater. Neu-
rons in the network are dropped by drawing a probability from a Bernoulli distribution, deciding
whether a neuron should be dropped or not [22]. MC Dropout can be seen as a more simple al-
ternative compared to MCMC and Variational Inference, while being less computationally heavy

than Deep Ensembles, as it only requires the training of a single model.

2.5 Evaluation

As mentioned in Chapter 1, we want to explore how to explain the uncertainty and which features

cause it. In the previous sections, we have examined established methods for quantifying the



uncertainty of a model. In this section, we want to discuss the viability of these methods for
explaining which features affect the uncertainty of a prediction.

When using Deep Ensembles, the uncertainty quantification is only based on the output of
the models. Therefore, limited information is available to analyze what causes the uncertainty,
making it difficult to connect the uncertainty to specific features.

For MC Dropout, we have a similar problem. Here, predictions change based on which
neurons are dropped, but uncertainty is still based on the output, which means that limited
information is available.

Based on this, we assert that explaining the uncertainty relative to specific features, for both
Deep Ensembles and MC Dropout, is infeasible. Therefore, we do not choose Deep Ensembles or
MC Dropout as the method for quantifying uncertainty with the objective of explaining it.

This leaves Variational Inference and MCMC as the remaining candidates. Both of these
methods make use of probability distributions over the parameters of the model. This provides
information about uncertainties on the entire network, as opposed to Deep Ensembles or MC
Dropout. Therefore, we believe these two methods to be more viable and consistent methods to
base explanations on. When comparing Variational Inference and MCMC, the big difference lies
in computation time and the potential of the approximation. MCMC produces an asymptotically
exact distribution, but scales poorly with the number of features and dataset size. Variational
Inference does not provide this guarantee of an asymptotically exact distribution, but it scales
better with features and dataset size. Based on the sizes of the datasets at our disposal, which
consist of 36,232 data points with 50 features and 39,789 data points with 75 features, covered in
Chapter 4, we believe that the best suited method for quantifying and explaining uncertainty in

this project is Variational Inference.



Chapter 3

Theory

In this chapter, we present theory related to Variational Inference and uncertainty quantification,
as this is the method we choose for quantifying uncertainty, described in Chapter 2. This chapter
builds on top of Chapter 4 “Theory” from our pre-master thesis [10], which can be found in
Appendix F.

3.1 Variational Inference

This section is based on information from [16] and [18].

In Variational Inference, the principle is to find an approximate probability distribution () that
is sufficiently similar to the true intractable posterior probability p(6|D), to be used as a substitute
for it. The similarity of the two probability distributions can be calculated using the Kullback-
Leibler (KL) divergence:

KLG(©)Ip(eID)) = [ q(6)1og - 5L 0 = 5, 105 7L 61

The KL divergence is always non-negative, and is 0 iff p(6|D) = g(6). q(6), the candidate prob-
ability distribution, belongs to a family of probability distributions, Q, that can approximate the
true posterior probability. Therefore, finding the distribution 4 € Q that minimizes KL diver-

gence, can be seen as an optimization problem:

q"(9) = argminKL(4(6)|[p(0|D)) (32
9(6)€Q

However, when using KL divergence to measure the similarity between p(6|D) and g(6), the
intractable true posterior is needed. Moreover, if the true posterior is already known, there is no
need for finding the approximate posterior probability q(0). Therefore, the evidence lower bound

(ELBO) is used in the optimization problem instead of KL divergence.
To derive ELBO, we start by multiplying both the numerator and denominator of the KL
divergence by p(D), as seen on Equation 3.3a. This results in the joint probability p(6, D) in the
denominator, while the p(D) in the numerator can be moved outside the expectation term, as it

is constant wrt. g (Equation 3.3b).

KL(4(6)||p(6]D)) = E, [1og m] (332)
=E, [log p?G(,GI)D)} +1log p(D) (3.3b)



Isolating the constant log p(D), we get Equation 3.4a with the constant term, KL divergence term

and the ELBO term, where the ELBO term covers the expectation term shown in Equation 3.4b.

log p(D) = KL(q(0)|[p(6|D)) + ELBO(q) (3.4a)
_ q(0)
ELBO(q) = —FE, [log 26, D)] (3.4b)

As the name implies, ELBO is a lower bound on the logarithm of the evidence. This is apparent
in Equation 3.4a, where the constant equals the sum of the non-negative KL divergence and the
ELBO.

With the knowledge that the KL divergence is non-negative and log p(D) is constant, it is ap-
parent that the KL divergence decreases as ELBO increases. Therefore, the optimization problem
where ELBO is maximized has the effect of minimizing KL divergence, and can be calculated
without the intractable true posterior. However, because it is intractable to calculate the constant,
we have the problem that it is intractable to say to which degree an approximate posterior is
similar to the true posterior. However, it can still be used to express whether one approximate
posterior is more similar to the true posterior than others, which means that it can be used to find

out which g € Q fits the true posterior the best.

3.2 Mean-Field Family

One possible family to use for the approximate posterior is the mean-field family. In the mean-
field family, the approximate posterior is the product of the probability distributions of the latent
variables, as shown in Equation 3.5. This means that it is assumed that the latent variables are
not conditioned on the other latent variables. Additionally, each latent variable has its own set of

variational parameters, which are updated independently of other latent variables [18].

16|

q(0) = 1_!%'(9]') (3.5)
i

3.3 Aleatoric & Epistemic Uncertainty

In Section 5.1 “Aleatoric & Epistemic Uncertainty” in our pre-master thesis [10], we make a general
description of aleatoric and epistemic uncertainty. In this section, we build on top of this with a
more in-depth description.

In traditional neural networks, the output is often in the form of a predictive probability, that
given an input x, the output is y. This predictive probability, p(y|x, ), is a measure of the aleatoric
uncertainty. This is the uncertainty stemming from irreducible noise in the data collection process.
Epistemic uncertainty on the other hand, is sometimes called reducible uncertainty, as it originates
in missing knowledge that can be reduced by introducing more data. This type of uncertainty
is a result of uncertainty about the model, and is expressed as p(6|D), which corresponds to
the posterior distribution, representing a level of belief in the parameters of the model [12, 17].

Therefore, one way of quantifying epistemic uncertainty is to sample N models from the posterior



of a BNN, and use the disagreement of the sampled models as a measure of epistemic uncertainty.
A high level of disagreement is caused by a high variance in the sampled parameters, indicating
a high epistemic uncertainty [2].

In Equation 3.6, we show the marginalized predictive probability distribution, p(y|x,D).
p(y|x,D) is an overall predictive distribution that considers both aleatoric and epistemic un-
certainty [2]. This means that without additional effort, p(y|x, D) cannot show aleatoric and

epistemic uncertainty separately.

plx.D) = [ plylx,0)p(o|D)do 36)

To get a more visual insight into what aleatoric and epistemic uncertainty is, a representation
of a linear regression example, visualizing both types of uncertainty, can be seen on Figure 3.1.
On the figure, it can be seen that the left group of data points is scattered with some lying close
to the underlying function (shown with the dotted line) and some further away from it. In this
group of data points, the aleatoric uncertainty is high. In the group of data points on the right
side, the aleatoric uncertainty is lower, as the data points are closer to the underlying function.
The epistemic uncertainty is high when it is difficult to decide whether the parameters of a model
are correct, and thereby whether the function of the model follows the underlying function of the

data. This is the case for areas where no or few data points are available.

Low Aleatoric Uncertainty

—

e
High Aleatoric Uncertainty RON©)
y @] .t
Q-
o..0 O

High Epistemic Uncertainty

X

Figure 3.1: Linear regression example with labels showing the aleatoric and epistemic uncertainty.

3.4 Binary Cross Entropy

In this section, we cover the loss function we use when training networks throughout this project.
Since we are working with a binary classification problem, we have chosen to use the Binary
Cross-Entropy (BCE) loss function. BCE uses the logarithm of a model’s confidence for the ground

truth label as the loss, given by:

1

BCE = Y. (v log(f(x))+(1—y) log(1— f(x))) (3.7)

|D| (x,y)eD

Here, the logarithm used is the natural logarithm [23], and f(x) is the predicted probability
from the model, given input x from dataset D. Since the logarithm of probabilities results in

negative values, the total sum is negated when used as a loss value for the network, which
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is then minimized during training. When using BCE, the loss follows a negative logaritmic
curve, meaning that the loss grows rapidly as the predicted probability approaches the wrong
label value. This means that if y = 1, the loss is very high for a prediction near 0, and vice
versa. Additionally, note that the negative logarithm of probabilities used by BCE is equivalent to
negative log likelihood, which is particularly useful when implementing our BNN in Section 7.1
[16].
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Chapter 4

Description of Datasets

This chapter builds on top of Chapter 2 "Description of Datasets” from our pre-master thesis [10],
which can be found in Appendix C.

For our pre-master thesis [10], we used two different datasets, which we also use in this
project. The first is a publicly available dataset from PhysioNet (DP) [6] for predicting sepsis in
patients admitted to an intensive care unit (ICU). The second dataset consists of preprocessed
data from the research project Cross-Tracks (DCT) [7], which is accessible to us through our
employment and tasks at Enversion A/S (Enversion). Before handling the data, we have received
appropriate data protection training, and have signed a non-disclosure agreement [10]. We denote
the PhysioNet and Cross-Tracks datasets as DP and DCT, respectively.

Both DP and DCT contains Electronic Health Records (EHRs) and are therefore structured as
time series data, which is described in Appendix C. At Enversion, they have previously been
working with time series data [24, 25], but in their later work, they have experimented with
different methods for preprocessing and framing the data, which is discussed in [26]. In the
preprocessing method discussed in the paper, the temporal aspect of the data is encoded as
delta values in the dataset of DCT, which is described in Section 4.2. This allows non sequential
models to have a notion of time incorporated in the data. Because of the novelty of explaining
uncertainty, we find this time representation fitting, as it allows for a simpler BNN in terms of
model architecture. We therefore choose to use the delta representation covered in Section 4.2, on
both DP and DCT. The preprocessing involves the calculation of delta values between two time
periods, and we therefore denote it with a A prefix, followed by the name of the dataset (Eg. ADP
or ADCT). In the remainder of this chapter, we want to provide additional information about DP
and DCT, discuss how delta preprocessing is applied to DP and DCT, and which data framing

method is used.

4.1 Expanding On Dataset Description

In this section, we provide additional information about the two datasets, which was not included

in the description in Appendix C.

4.1.1 PhysioNet

The PhysioNet dataset is collected from two different hospitals, namely the Beth Israel Deaconess
Medical Center (DP-A) and the Emory University Hospital (DP-B) [6]. As the two datasets are
from two different hospitals, there are inherent differences in the datasets, as described in Ap-
pendix C. This means that when training and evaluating a model on DP, this is done on the two

datasets separately. Something that was not mentioned in Appendix C, is that if an admission is
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less than eight hours, the admission is not included in the dataset. In addition to this, if sepsis

onset happens in the first four hours of an admission, this admission will not be included.

4.1.2 Cross-Tracks Cohort

Through our employment at Enversion we have access to DCT, which is a subset of the Cross-
Tracks Cohort consisting of data from sepsis patients, which has been preprocessed by Enversion.
The data regards inpatients of 18 years or older at the Horsens Regional Hospital, collected in the
time period 1st of September 2012 to the 31st of December 2018.

4.2 Delta Preprocessing

In this section, we describe the delta preprocessing method, which follows the method described
by Lauritsen et al. [26]. Note that all admissions shorter than the observation window of 12
hours (the period of data being considered when making a prediction for sepsis) are excluded.
Delta preprocessing is done by applying the following steps to laboratory values and vital sign

parameters:

1. The observation window of 12 hours is split into two periods of six hours, where values for
each feature are averaged, meaning that there is only one value for each feature in each of
the two periods.

2. If no value is available for a specific feature in one of the periods, forward and backward
imputation is applied. This means that if there is no value for example for 'FiO2’ in the first
period, but the second period has one, the value from the second period is copied into the
first, and vice versa.

3. If no value is available for a feature in either of the two periods, 0 is inserted in both.

4. Delta values are calculated as the differences between the averaged values in the first and
the second period.

5. The averaged values from the second period are used together with the delta values as a
data point in the Adataset.

6. The sepsis label is set to 1 if the patient gets sepsis within the prediction window of 12

hours, and 0 otherwise.

A representation of a single data point can be seen in Table 4.1.

Vital Signs | Laboratory Values | Vital Signs | Laboratory Values | Demo- | Sepsis
A A 2. Period 2. Period graphics | Label
Table 4.1: Representation of ADP. ADCT is equivalent, but without demographics. - - - represents the values of each

feature under each category.

For DP, demographics are available together with the laboratory values and vital sign param-
eters, whereas only laboratory values and vital sign parameters are available in DCT. For the

demographics in DP, delta value preprocessing is not applied, as most of them stay the same
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throughout the admission. These features are age, gender, Unitl and Unit2, which represents at
which ICU the patient is admitted, and HospAdmTime, representing the number of hours the
patient is admitted at a hospital before being admitted at an ICU. Instead of delta values, values
for the features in demographics are extracted from the last time step in the observation window,
which means that the last feature in demographics, ICU length-of-stay (ICULOS), represents the
admission time of the patient when a prediction is made.

Gender from demographics in DP is originally encoded as a value of 0 for female and 1
for male. We see this as being problematic, especially if gender plays a significant role in the
uncertainty of a prediction. This means that the gender feature can be asserted as the contributor
to the uncertainty, but a specific gender cannot. Therefore, we encode it using a one-hot encoding,
as shown in Table 4.2, such that no prior assumptions are made about the priority and order of

the genders.

Male | Female
1 0
0 1

Table 4.2: One-hot encoding of gender for male and female.

4.3 Dataset Framing

In [26], Lauritsen et al. discuss multiple dataset framing methods: "Fixed Time To Onset", "Sliding
Window", "Sliding Window With Dynamic Inclusion”, and "On Clinical Demand". The framing
methods are represented on Figure 4.1.

"On Clinical Demand" extracts samples when an Early Warning Score (EWS) assessment is
made by a clinical staff. If the patient is sepsis positive within the 12 hour prediction window
after the EWS assessment, the sample is positive. This data framing is only available for DCT, as
there are no EWS assessments in DP.

With "Fixed Time To Onset", a model is trained to predict sepsis onset at a fixed time before it
occurs for sepsis positive patients. If the patient is sepsis negative, a random point in time from
the admission is used.

The last two framing methods, "Sliding Window" and "Sliding Window With Dynamic In-
clusion”, extract consecutive observation windows from the original health records. For "Sliding
Window With Dynamic Inclusion", observation windows where the SOFA score is 0 are excluded,
while for "Sliding Window" samples are extracted from the entire admission. Both methods result

in models that can be used periodically during the admission of a patient.

4.3.1 Choice of Data Framing

Lauritsen et al. [26] mentions that "Model framing must reflect the expected clinical environment",
and that this is important when considering risk prediction models for clinical settings.
All the data framing methods mentioned above are applicable on the DCT dataset. Here, we

"non

argue that the data framings "Sliding Window", "Sliding Window With Dynamic Inclusion" and

14



Sepsis
Onset

0
@
+
@

"Fixed Time To Onset"

: i
H 1
H 1
H 1
° > ° O——
U : :
' 1
H 1
"On Clinical Demand" '
1
° > ° 0
| > o T
1 ' 1
"Sliding Window" i § :
o > § |
o ; > | :
. ; > | :
. > -
: ° > :
[ —>
— O ="
° —) >
‘o () >
1 U
"Sliding Window With , g :
' ' 1
Dynamic Inclusion" e 5 > : ]
e > :
@ —> :
— 7
' 1
{ : u >
| T\ >
il . >
Time
~— —
Sepsis Negative Sample Sepsis Positive Sample Excluded Sample Observation Window Prediction Window

Figure 4.1: Representation of data framing methods, based on Figure 2 from [26].

"On Clinical Demand" best fits the real world scenario of a model for predicting sepsis. A model
trained on "Sliding Window" and "Sliding Window With Dynamic Inclusion" should be able to
do a sepsis prediction at any time throughout a patient’s admission. For "On Clinical Demand",
the model is trained to do predictions when a medical professional suspects an increase in SOFA
score (see Appendix E). This would be an ideal time to predict sepsis, making "On Clinical
Demand" fit a real world scenario as well. For "Fixed Time To Onset", the model is trained to
predict positive sepsis at a specific time before onset. This arguably makes it less suited for a
real world scenario, as the time to onset is unknown and might not fit with the actual prediction
times.

Based on this, we would like to use "On Clinical Demand" for DCT and one of the "Sliding
Window" framings for DP, since "On Clinical Demand" is not available for DP. However, through
initial experiments, we find that we are unable to get satisfactory results with these data framings.
This is described further in Section 9.2. Because of this, we try experimenting with the "Fixed Time
To Onset" framing. While not being the best framing for reflecting the expected environment of
the model, it is still realistic, and we achieve much better performance and calibration when using

this framing. Additionally, this improvement gives a better foundation for experimenting with
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uncertainty explanation, as we get more trustworthy predictions. Because of this, we choose to
use "Fixed Time To Onset" as the data framing for both DP and DCT.

4.4 Sample Count

When using the data framing "Fixed Time To Onset" on ADP, the sample count is almost un-
changed from the original dataset. For some patients, the admission length is too short for the
12 hour observation and prediction windows, which results in some admissions being excluded.
This results in a positive percentage of 8.75% for ADP-A and 5.73% for ADP-B, as seen in Table 4.3.
This is close to the original dataset, which contains 8.8% sepsis positve cases for DP-A and 5.8%
sepsis positive cases for DP-B (Appendix C).

For the "Fixed Time To Onset" data framing on ADCT, the positive to negative sample ratio is
very similar, with 5.75% positive and 94.25% negative samples. With the applied data framings,
the positive and negative ratios are 1 : 16.4 for ADCT, and 1 : 10.4 and 1 : 16.4 for ADP-A and
ADP-B respectively.

Set A Set B Combination

Total 20,114 | 19,675 | 39,789
Negative 18,354 | 18,548 | 36,902
Positive 1,760 | 1,127 | 2,887

Negative percentage | 91.25% | 94.27% | 92.74%
Positive percentage | 8.75% | 5.73% | 7.26%

Table 4.3: Count of samples for the two datasets in ADP-A and ADP-B, and the combination of the two, using the
"Fixed Time To Onset" dataset framing.

Total 36,232
Negative 34,149
Positive 2,083

Negative percentage | 94.25%

Positive percentage | 5.75%

Table 4.4: Count of samples for the ADCT dataset, using the "Fixed Time To Onset" dataset framing.
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Chapter 5

Explanation Method

In this chapter, we explore state of the art methods for explanation of neural network models. The
idea behind explanation methods is to explain the reasoning behind the predictions of a model,
more specifically which features in the data were used to arrive at a given prediction [27]. This
is very similar to our idea, described in the Introduction, Chapter 1, where we want to explain
which features are the cause of the uncertainty in a given prediction. Therefore, we explore

explanation methods to draw inspiration for the design of our own method.

5.1 Overview

In this section, we give a brief overview over different categories of explanation methods, mainly
based on the paper by Samek et al. [27], and choose the method we find most promising for
explaining the uncertainty of predictions relative to the input features. Many different methods

exist, but for brevity we group them into the following four categories of methods:

¢ Perturbation-Based Methods work by adjusting the input to the model and observing how
it affects the prediction. The intuition is that if adjusting a specific feature changes the
prediction, that feature likely has a high relevance for the prediction. An example of this
is the occlusion method used in [28], where part of the input image is covered by a grey
square, to see how it affects classification.

¢ Surrogate Methods work by approximating the complex model by using a simpler surro-
gate function, that is easily explainable. This is done by training the surrogate function on
some or all of the same data as the complex model, using the corresponding predictions
from the complex model as target values. By fitting the surrogate function to the complex
model, it can be used to explain the predictions of the model. An example of a surrogate
method is LIME [29].

¢ Propagation-Based Methods work directly on the structure of the model, by backpropagat-
ing the predicted output, or some relevance score of the output, back to the input features.
This gives a value for each feature, indicating its relevance for the prediction. An example
of a propagation-based approach is Layer-wise Relevance Propagation (LRP) [30].

¢ Meta Explanation Methods work by aggregating individual explanations for a model. This
means that a separate explanation method is used to get the explanations for individual
predictions. These explanations are then analyzed to find patterns in the predictions of the
model, in an attempt to better understand the general behavior of the model. An example of
a meta explanation method is SpRAy [31], which clusters individual heatmap explanation

of images.
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Since meta explanation methods focus on aggregating explanations and finding general patterns,
they do not fit our goals, as we want to focus on individual predictions.

For surrogate methods, the idea is to approximate the actual model with a simple, inter-
pretable model. Since this model is only an approximation, it introduces some level of uncertainty.
We see this as a big disadvantage, since we want to base our explanation on the uncertainty in
predictions, and using a surrogate method adds a new layer of uncertainty.

The method we find most promising is a propagation-based method, namely the LRP method.
LRP works by propagating a relevance score from the output back to the features of the input,
by following one or more relevance propagation rules. We want to consider this concept for our
method, and explore whether LRP can be used to propagate the uncertainty of a prediction back
to the features causing it.

Perturbation-based methods are also interesting, as it is rather simple to adjust the input and
observe how it affects the uncertainty of the prediction. However, perturbation methods are not
computationally efficient, as the model must evaluate each perturbation of the input, which can
grow to a large number of runs based on the number of features. In contrast, LRP requires one
forward pass of the model to get the prediction, followed by one backwards pass to propagate

the relevance scores. Therefore, we choose to focus on LRP when designing our method.

5.2 Layer-wise Relevance Propagation

This section is based on information from [30].
As mentioned, LRP works by propagating a relevance score from the model output to the input
features. This gives each feature a score based on how large an influence it had on the output
value. A positive relevance score means that a feature had a positive influence on the output,
increasing its value, whereas a negative relevance score means that a feature had negative influ-
ence, decreasing the value of the output. The propagation of relevance is done in a layer-wise
manner and follows a conservation property, such that the sum of relevance scores for each layer
is identical, and is equal to the model output. However, this is not always true in practice, as bias
neurons and some of the LRP rules can absorb part of the relevance from a layer. The process
is visualized on Figure 5.1, where it can be seen that some neurons receive a greater part of the
relevance from the following layer than other neurons. Here, the second input feature had the
highest relevance score, and thus the highest impact on the prediction.

The amount of relevance each neuron receives is based on its contribution to the outputs of
the neurons in the following layer, which is computed using one of the LRP rules. The general

idea can be shown with the generic rule:

Ri=Y &

= Ry, (5.1)
g L Zjk

where zj; denotes the contribution from neuron j to neuron k in the following layer. R; denotes
the relevance score for neuron j, and is computed by taking the sum of relevance scores Ry from
neurons k in the following layer, that are connected to neuron j. Each relevance score Ry is scaled

by the contribution from neuron j, divided by the total contribution received by neuron k. For
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Figure 5.1: Propagation of relevance scores through a neural network.

example, if neuron j contributes 30% of the total value of neuron k, it receives 30% of the relevance
score of neuron k.

The contribution zj; is computed differently based on the LRP rule used for the specific layer, but
is usually based on the activation of neuron j and the weight between neuron j and neuron k.

To get an insight into the variety of LRP rules, consider the three rules shown below. The first is
the basic rule, LRP-0:

ajWik

Ri=Y 10
T Lo, 4jWjk

j Ry (5.2)

This shows how the contribution of neurons are calculated based on activations and weights.
Note that the 0 in the sum of the denominator refers to an additional neuron representing the
bias, with an activation ap = 1. LRP-0 works well for the upper layers close to the output, as these
contain lot of condensed latent information, and LRP-0 does not filter out information.
The second rule is LRP-€:

ajwig

R =Y T
€+ Yo ajwi

j (5.3)

Here, a small positive constant € is added to the total contribution, to prevent the denominator
from getting too close to 0. This also has the effect of absorbing a small amount of the relevance
from the individual neurons, to reduce the impact of weak or noisy contributions. This makes
LRP-¢ suited for the many middle layers of a network, as these can include more variations,
which can then be filtered by LRP-€.

The third rule is LRP-7:

+
R — aj<wjk + ’yw]-k)

- Ry (5.4)
T Yo, aj(wi + ’wai)

This rule increases the impact of positive contributions by adding the term 'ywj+k, where 7 is a
constant and w]?;( = max(0, wjk). The larger v becomes, the smaller the impact of negative contri-
butions becomes. The LRP-y rule distributes relevance more uniformly than other rules, which

for example makes it good for layers close to the input when considering image classification, as
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this makes more pixels light up on the resulting heatmap, making it easier to visualize relevant
parts of the input.

The different LRP rules can be used in combination to get the best possible explanation, based on
the structure of the network and the type of explanation that best fits the problem.
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Chapter 6

Problem Statement

In this chapter, we highlight the most important points of the problem analysis. Based on these
points, we present a problem statement, which shapes the remainder of this project.

From our pre-master thesis [10], we found that a well calibrated model enhances its trustwor-
thiness, as is also discussed by Guo et al. in the paper "On Calibration of Modern Neural Networks”
[11]. In Chapter 1, we find that trustworthiness is an important subject when machine learning
systems are used in safety critical areas, which makes it relevant to consider the calibration of our
model.

We find that machine intelligence systems show great potential in improving healthcare
around the world, and thus directly impacting the UN’s goal of "Good health and well-being"
[8]. However, in order for machine intelligence systems to be fully viable in the medical field,
they need to be explainable, which is required by laws in the EU [4]. Besides the need to be
explainable, having the machine intelligence system express its uncertainty also increases the
medical professionals” trust in the system [3]. As mentioned in Chapter 1, little research has been
done on combining uncertainty and explanation methods, which we believe could be of great
value.

In order to get a better understanding of how to express uncertainty in deep learning, we
examine the most predominant methods for quantifying this uncertainty in Chapter 2. Here, we
evaluate four different ways for expressing uncertainty in deep learning, namely: Deep Ensem-
bles, MC Dropout, Markov Chain Monte Carlo and Variational Inference. Due to the limited span
of this project, we limit our focus to explaining the uncertainty captured by Variational Inference.
In Chapter 5, we research already established methods for explaining deep neural networks, and
find that a propagation-based method, specifically LRP, may be suitable for explaining uncer-
tainty.

The datasets we base our models and explanations on regards the prediction of sepsis onset
from EHRs, described in Chapter 4. We have two datasets at our disposal, one from the Cross-
Tracks cohort [7] and another from the PhysioNet sepsis challenge [6].

Based on the problem analysis, we present the following problem statement:

How can the uncertainty of a neural network for predicting sepsis be explained
using LRP, such that is possible to determine the uncertainty contribution of each
feature?

¢ How can a BNN be implemented with Variational Inference to express the uncertainty of
the network?

¢ How well calibrated is the resulting BNN?

¢ How can LRP be used to explain which features affect the uncertainty for a given prediction?
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Part 11

Implementation
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Chapter 7

Implementing a BNN in TensorFlow

In this chapter, we discuss how our BNN is implemented using TensorFlow, including how Den-
seVariational layers are used in relation to Variational Inference, and how the reparameterization

trick is used during optimization of the model.

7.1 DenseVariational

In this chapter, we cover how we implement a BNN trained with Variational Inference, answer-
ing the first subquestion of the problem statetment in Chapter 6. The BNN is implemented
through the use of DenseVariational layers in TensorFlow (tensorflow.org). TensorFlow Proba-
bility (tensorflow.org/probability) is a library built on top of TensorFlow, which implements
additional features that are useful for creating probabilistic models. The construction of a feed
forward neural network with stochastic layers can be done by using the DenseVariational layer in
the TensorFlow Probability library. A DenseVariational layer learns the parameters for the approx-
imation of the posterior probability distributions over 6 by using Variational Inference, described
in Section 3.1.

The function signature for creating a DenseVariational layer in TensorFlow Probability can be
seen in Code snippet 7.1. Here, the function parameters units, make_posterior_fn and make_prior_fn
are required by the user. This means that when using the DenseVariational layer, we have to spec-
ify the prior p(0) and approximated posterior () distributions. It is important to note that the
posterior we define has to be learned, in order for it to be an approximation of the true posterior

p(6|D).

1| tfp.layers.DenseVariational(

2 units, make_posterior_fn, make_prior_fn, kl_weight=None, kl_use_exact=False,
3 activation=None, use_bias=True, activity_regularizer=None, **kwargs
a4l )

Code snippet 7.1: The DenseVariational layer, with its corresponding inputs. Please note that this is a direct copy of

the implementation in TensorFlow Probability [32].

The DenseVariational layer approximates the true posterior distribution p(6|D) by using the ELBO
term derived in Equation 3.4b from Section 3.1. This can be rewritten by dividing both the

enumerator and denominator in the ELBO equation with p(6):

ELBO = —E, [log M} (7.1)

By splitting up the logarithmic equation, we can further rewrite Equation 7.1 to:

ELBO = —E, [log Ziz))] +E, [mg P ;9(’9])3 )] (7.2)
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Realizing that the first expectation in Equation 7.2 is equivalent to the KL divergence in Equa-
tion 3.1 from Section 3.1, and that the division in the second expectation term results in the

conditional probability p(D|6), we rewrite this:
ELBO = ~KL(1(8)||p(®)) + E | log p(D]6) 73)

The first term of Equation 7.3 is also called the penalty term, which penalizes the approximated
posterior if it deviates too far from the prior [33].

As mentioned in Section 3.1, we maximize the ELBO term in order to approximate the true
posterior p(6|D). However, when using the DenseVariational layer, this is done by minimizing
the negative ELBO:

~ ELBO = KL(q(6)||p(6)) — E, [1og p(DM 7.4

In our case, a data input x has a corresponding data output y, which can be specified in the

equation:
- ELBO = KL(4(0)[p(6)) ~ ;| log p(¥1,)] 7.5

Here, X and Y represent the inputs and outputs of our dataset, respectively. By observing Equa-
tion 7.5, we can see that the last term is the negated expected value of the log probability for a
prediction of the model. This is equivalent to the BCE loss function from Section 3.4 [34]. This
means that when using the DenseVariational layer, the loss from BCE is added together with the
penalty from the KL divergence between the posterior and prior, acting as a total loss. This total
loss is then minimized through the training of the network.

When implementing the posterior and prior distributions, we follow a TensorFlow Probability
code example [34]. The prior distribution is implemented as seen in Code snippet 7.2. The prior
has n parameters, which is based on the number of parameters in the kernel and bias, where the
kernel is a weight matrix for the layer [35]. Here the priors are initialized with a loc (mean) of 0,
and a scale (standard deviation) of 1. The value 1 for standard deviation is determined through

grid search.

1| def prior(kernel_size, bias_size=0, dtype=None):

2 n = kernel_size + bias_size

3 return tf.keras.Sequential([

4 tfp.layers.DistributionLambda(lambda _: tfd.Independent (
5 tfd.Normal (loc=tf.fill([1, n], (0.0)),

6 scale=tf.fill1([1, n], (1.0))),

7 reinterpreted_batch_ndims=1)),

8 D

Code snippet 7.2: The function that defines the prior distribution.

The posterior distribution, defined in Code snippet 7.3, is a mean field distribution, which is ex-
plained in Section 3.2. This is because of the VariableLayer, which uses independent variables that
are not conditioned on the input [36]. The definition of the posterior distribution in Code snip-

pet 7.3 shares some similarities with the prior from Code snippet 7.2. The main difference here
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is that the posterior distribution uses a VariableLayer in order to have learnable parameters,
whereas the prior is not trained. In order to avoid negative values for the standard deviation, the

parameters are passed through a softplus activation function:
softplus(x) = log(1+ exp(x)) (7.6)

This implementation of the mean field posterior (Code snippet 7.3) deviates from [34], since we
have chosen to scale the output of the softplus function. With an unscaled softplus, we find
that a small network is unable to learn, even after 2000 epochs. We suspect this being due to
a high variance in the standard deviation in the distributions of the network. We therefore try
scaling the softplus activation of the posterior, hparams["posterior_softplus_weight"] on line 7 in
Code snippet 7.3, which results in much faster learning and better performance of the network.

The increase in performance can be seen in Appendix A.

1| def posterior_mean_field(hparams, kernel_size, bias_size=0, dtype=None):

2 n = kernel_size + bias_size

3 return tf.keras.Sequential ([

4 tfp.layers.VariableLayer(2 * n, dtype=dtype),

5 tfp.layers.DistributionLambda(lambda t: tfd.Independent (

6 tfd.Normal (loc=t[..., :n],

7 scale=le-5 + hparams["posterior_softplus_weight"] *
tf.nn.softplus(t[..., n:])),

8 reinterpreted_batch_ndims=1)),

9 D

Code snippet 7.3: The function that defines the posterior distribution, with regularizing softplus scale.

However, we find that the network being unable to learn could also be due to poorly initialized
posteriors, as found by Rossi et. al [37]. By using grid search, we find fitting initializations for
the means and standard deviations of the parameters in the posterior. This is done by sampling
means and standard deviations from two seperate normal distributions, each with a standard
deviation of 0.1 and a mean found through grid search. Here, we find the best mean value to
be 0 for the distribution for initializing mean values, and —6 for the distribution for initializing
standard deviation values. This results in comparable learning and performance rates to that of

scaling the softplus. The manual initializations of the VariableLayer is shown in Code snippet 7.4.

1| def posterior_mean_field(hparams, kernel_size, bias_size=0, dtype=None):

2 n = kernel_size + bias_size
3 return tf.keras.Sequential ([
4 tfp.layers.VariableLayer(2 * n, dtype=dtype, initializer=lambda shape, dtype:

random_gaussian_initializer (hparams["posterior_init_loc"],

hparams ["posterior_init_scale"], shape, dtype), trainable=True),

5 tfp.layers.DistributionLambda(lambda t: tfd.Independent (
6 tfd.Normal (loc=t[..., :n],

7 scale=1e-5 + tf.nn.softplus(t[..., n:1)),
8 reinterpreted_batch_ndims=1)),

9 D

Code snippet 7.4: The function that defines the posterior distribution, using initialized weights.
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7.2 Optimization

For optimization of parameters in the BNN, we use the Adam algorithm, described in Ap-
pendix G. The gradients used for optimizations in Adam are calculated in TensorFlow, following
the principle of backpropagation, which is described in Appendix F.1.1.

The following description of the reparameterization trick is based on information from [38].

Here, it is important to notice that, as weights are sampled from distributions (in our case
normal distributions), and as this sampling cannot be differentiated, the gradients with relation
to the parameters of the distributions cannot be determined. As a solution to this, the reparame-
terization trick can be used.

The principle is to convert the random variable 6 ~ g4(6) into a deterministic variable (¢ is the
parameters of the posterior distributions, y and ¢). This is done using a deterministic mapping
such that 6 = g,(e) where e ~ N (0,1), such that the stochasticity is not an inherent part of the
sampling of 6. The function g is defined in relation to the distributions used, which for our case
is: gg(€) = € * 0 + p. This simulates the sampling from the distribution, while allowing gradients
to be computed for the parameters y and ¢.

In TensorFlow’s implementation of the normal distributions, this reparameterization trick is
used when sampling values, as shown in Code snippet 7.5. This means that operations using the
parameters loc and scale (4 and ) can be recorded using GradientTape, such that gradients of

the loss function with respect to the parameters can be calculated during training.

1| def _sample_n(self, n, seed=None):

2 loc = tf.convert_to_tensor(self.loc)

3 scale = tf.convert_to_tensor(self.scale)

4 shape = ps.concat([[n], self._batch_shape_tensor(loc=loc, scale=scale, axis=0)
5 sampled = samplers.normal(

6 shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed)

7 return sampled * scale + loc

Code snippet 7.5: The implementation of the method for sampling values from a normal distribution. Please note that

this is a direct copy of the implementation in TensorFlow Probability [39].
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Chapter 8

Uncertainty in Features

In this chapter, we give an overview of our method for evaluating the uncertainty of a given
prediction relative to the input features, by using LRP on a BNN, as well as a description of
the implementation of the method. This covers the third subquestion of the problem statement
in Chapter 6. The idea takes inspiration from the B-LRP method from Bykov et al. [5], where
they perform LRP on several sampled models from a BNN to consider the uncertainty in the
explanations. Note that in the paper, they specifically consider the uncertainty in explanations,

not the uncertainty of predictions or how these are affected by the input features.

8.1 Method Overview

The basis of our approach, that allows us to consider the uncertainty in our predictions, is our
BNN. We train our BNN based on Variational Inference, described in Section 3.1, and use it to
get predictions by sampling parameters from the approximated posterior g(6). To consider the
uncertainty relative to each feature, we look at the variance in LRP relevance scores for each

teature. The general approach is as follows:

e Sample N models from the approximated posterior g(6).
¢ Run LRP on each of the N models to get N relevance scores for each feature.
¢ Consider the distributions over relevance scores for each feature, and evaluate the variation

in the distributions.

This builds on the intuition that a feature with high relevance has a high impact on the prediction.
If a feature with high relevance has high variance, this indicates uncertainty in the prediction,
which is tied to the specific feature.

As described in Section 5.2, relevance scores from LRP are based on the weights and acti-
vations of the network for the given prediction. As we sample N different sets of parameters,
we get N different relevance scores for each feature. This means that the change in relevance
scores across samples are caused by the change in parameters. From this, it follows that a high
variance in relevance scores must be caused by a high variance in parameters, which stems from
epistemic uncertainty in the model parameters of the BNN. However, since the relevance value
we propagate back from the output is the probability of sepsis, the total relevance of each predic-
tion is affected by the aleatoric uncertainty inherent in the prediction. Whereas the parameters
of the sampled model determine how relevance is distributed among features, the prediction de-
termines how much total relevance is distributed, which also affects the size of relevance scores.
Therefore, by evaluating the variation in relevance scores, we get a feature-specific measure of

total uncertainty for model predictions, including both aleatoric and epistemic uncertainty.
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8.2 Method Implementation

In this section, we describe our implementation of the method, including how we compute the
LRP relevance scores for a given model and data point, and how we sample the parameters for
the models based on our BNN.

8.2.1 Computing LRP

As an overview, the computation of LRP relevance for a single model consists of a forward
pass and a backward pass. In the forward pass, parameters are sampled, and activations and
total contributions (the denominator in Equation 5.1 from Chapter 5) are computed, up to and
including the output prediction. In the backward pass, the output probability is propagated back
through the network as relevance, using the activations and total contributions computed during
the forward pass. This approach is based on the description of how to efficiently implement LRP,

described by Montavon et al. [30]. Here, they split the computation into four steps, as follows:

Yz =€+ ZO,]. aj - wi (8.1a)
Vi sk = Ri/zg (8.1b)
Viicj =) wi-sk (8.1¢)
Vi:Rj=aj-cj (8.1d)

Here, j and k denote neurons in the current layer and the following layer respectively, following
the notation from the LRP rules in Section 5.2. The four computation steps change the order of
computations in the LRP rules, such that computation steps are done for a full layer at a time.

In our implementation, this is done by recursively going through the forward pass in the first
step (Equation 8.1a) until reaching the output layer, after which we backtrace through the callstack
while computing the backward pass in the last three steps (Equation 8.1b - Equation 8.1d). The
block of code performing these four steps can be seen on Code snippet 8.1:

1| def lrp_step(self, activation_prev, layer_number, ...):

2

3

4 with tf.GradientTape() as g:

5 g.watch(activation_prev)

6

7 #Adds a 1 as activation for bias neurons.

8 input_with_bias = _add_bias_activation(activation_prev)
9

10 #Forward step #1

1 if "lrpO0" in layer_name:

12 z = tf.matmul (input_with_bias, weights)

13 else:

14 z = tf.matmul (input_with_bias, weights) + self.epsilon
15

16 #Element-wise division #2
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17 R, prediction = self.lrp_step(activation_next, layer_number + 1)
18 s=R/ z

19

20 #Backward step #3

21 #Has to stop the tape from recording gradients or else the tape will consider
22 #how activation_prev is used in following calculations.

23 1 = tf.reduce_sum(z * tf.stop_gradient(s))

24 ¢ = g.gradient(1l, activation_prev)

25

26 #Element-wise multiplication #4

27 return activation_prev * c, prediction

Code snippet 8.1: Code Snippet from the recursive 1rp_step function, showing the implementation of the four steps
for efficient LRP.

Note that the activation of the bias neuron is added on line 8, as it is used when calculating the
contribution values in step 1.

The first step, Equation 8.1a, can be seen on lines 8 — 11. Note that we use two different LRP
rules, LRP-0 and LRP-e. We use LRP-0 for the last layer before the output layer, as it does not filter
out information, and LRP-€ for the other layers, as this can remove some noise in the relevance,
as described in Chapter 5.

The second step, Equation 8.1b, can be seen on lines 14 and 15. On line 14 we get the rele-
vance from the next layer through the recursive call to 1rp_step. Note that the final prediction
is also propagated back, to be returned alongside the relevance scores, but it is not used in the
computations. The computation for the s values can be seen on line 15.

The third step, Equation 8.1c, can be seen on lines 20 and 21. Here, we use a trick from
Montavon et al. [30], where we compute the c values as gradients, which allows them to be com-
puted efficiently through TensorFlow’s automatic differentiation. More specifically, TensorFlow
uses reverse order auto differentiations with eager execution. When doing reverse order auto
differentiation, a list of operations is required, which is why GradientTape is used. GradientTape
logs specified variables and the operations done on these variables, and in this case we specify
this variable to be the previous activations with g.watch(activation_prev) on line 2. The list of
operations is then traversed in reverse order using the chain rule for each step [40, 41]. For more
details on back propagation, see Section F.1 in Appendix F.

The last step, Equation 8.1d, can be seen on line 24, where we simply return the relevance as

the product of activations and c values, along with the output prediction.

8.2.2 Sampling Parameters

As mentioned, the parameters of the model are sampled during the forward pass of the method,
which means that parameters are sampled in a layerwise manner. In our implementation, we
sample parameters manually and use them to create point estimate dense layers. This is done
to ensure that the same parameters are used in both the forward and backward pass of our LRP
computations. The sampling of parameters can be seen on Code snippet 8.2:

1| #Generates normaldistributions from the parameters and samples a weight or bias from

each.
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2| weights = []

3| for loc_weight, scale_weight in zip(loc_weights, scale_weights):
4 weights.append(tfd.Normal(loc=loc_weight, scale=le-5 +
tf.nn.softplus(scale_weight)) .sample())

6| biases = []
7 for loc_bias, scale_bias in zip(loc_biases, scale_biases):

8 biases.append(tfd.Normal(loc=loc_bias, scale=le-5 +

tf.nn.softplus(scale_bias)).sample())

Code snippet 8.2: Implementation of the sampling of parameters from the BNN.

Here, weights and biases are sampled from the posterior of the BNN by recreating the posterior
distribution from the loc (mean) and scale (standard deviation) from the corresponding layer
of the BNN. The loc and scale parameters used in the loops are found by indexing into the
parameters of the BNN. After the weights and biases have been sampled, they are used to create
a Tensorflow Dense layer, which is then returned. The full function, including indexing and layer

creation, can be seen on Code snippet I.1 in the Appendix (Part V).

30



Part 111

Experiments
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Chapter 9

Initial Experiments

In this section, we cover the setup of our experiments and how hyperparameters of our models
are tuned and logged. Following this, we introduce a set of initial experiments, which is used
to determine the model structure and hyperparameters of the BNN model to be used in fur-

ther experiments. The models used throughout this chapter are implemented according to the

description in Section 7.1.

9.1 Configuration Files

In order to ensure reproducibility and documentation of the experiments, we choose to use a
configuration file for setting up and executing experiments. This configuration file is a JSON file

with two main parts, one for overall "setup" and one specific to "experiments", as shown in

Code snippet 9.1.

1l {

2 "setup": {

3 "data_path": "", #Path for dataset.

4 "log_path": "", #Path for where to put logs for the runs. The logs can be

10

11

12

13

14

15

16

used when reproducing the experiments.

"dataset": "", #Used for specifying either DP or DCT.

"train_split": 0.7, #Specifies how much of the dataset should be used for
training.

"val_split": 0.15, #Specifies how much of the dataset should be used for
validation.

"shuffle_seed": 12345, #Used as seed for how the elements in the dataset are
shuffled.

"tensorflow_seed": 12345, #Used for specifying a seed to be used by
TensorFlow for generating random values, for example for initial weights
in a neural network.

"log": true, #Specifies whether to create a log file for the run.

"save_path": "", #Path for where to save diagrams, experiment results and
logs used in TensorBoard for visualization of hyperparameters and
training of models.

"saved_models_dir": "" #Additional path used for saving a model, instead of

retraining the same model for every run.

"experiments": [

{
"model": "bayesian_linear_model", #The identifier used to specify a

specific model.
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17 "load_model_from": "", #Path used to load an existing model, rather than
training a new model. If specified, Hyperparameters should be left
empty.

18 "hyperparameters": [ #A set of hyperparameters used in a model. Grid
search is applied to the parameters specified in the hyperparameters.
19 {

20 "units_layerl": [50, 100],

21 000
2 "metric2": ["AUC"]
23 }

2 ]

25 }

26 ]

7|}

Code snippet 9.1: Representation of a config file used for running experiments.

In the "experiments" part, parameters specific to each experiment is specified. The "experiments"
part can contain a list of experiments, which will be run in succession. In the "setup" part, pa-
rameters used across all experiments are specified.

The parameters specified in the scope of "experiments" are the hyperparameters used for
the experiments. When multiple values are specified for a hyperparameter in an "experiment",
for example as shown with "units_layer1" in Code snippet 9.1, a grid search is applied. This
means that the total number of runs for that experiment is the product of the number of values for
each hyperparameter. These hyperparameters are saved as Hparams. Hparams is a feature within
TensorBoard, that automatically logs all specified parameters in "experiments". These logs can be
visualized by TensorBoard, which shows in-depth information about a model’s training process,
and the results for different combinations of hyperparameters [42]. In addition to this, the entire
configuration file and the commit ID is saved as a text file within a log file directory, which allows
replication of the exact experiments. By using configuration files, we have created a pipeline for

running experiments and saving relevant information from the runs.

9.2 Initial Experiments on ADP

This section covers a set of initial experiments on ADP, with the goal of obtaining an optimized
model for this dataset. The two PhysioNet datasets, ADP-A and ADP-B, are from two different
hospitals, which may be why we see different performances from models trained on ADP-A,
compared to ADP-B. During the initial phases of the optimization process, we chose to focus
on optimizing towards ADP-B, as this dataset resulted in the best performing models. Whereas
ADCT must be accessed through a remote server, ADP-B is locally available, which provided the
benefit of a fast experimentation process. The data framing we based the initial hyperparameter
optimization on was "Sliding Window", as this best reflects the expected clinical environment,
as mentioned in Chapter 4. All the BNNs in this section are implemented by using TensorFlow

DenseVariational layers, which is described in Section 7.1.
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9.2.1 Early Tests

At the start of the optimization process, we tested many different parameters, namely:

* Model Width and Model Length.
* Learning Rate.

KL Weight Scale.

Epochs.

Batch Size.

For model width and length, we found that generally, smaller BNNs performed the best, as seen
in Appendix B.1. We observe that a learning rate of 0.0001 and 0.001 yielded the best results, with
varying numbers of epochs depending on model size and the learning rate.

We also tested changing the KL weight scale for scaling the penalty term described in Sec-
tion 7.1, consisting of the KL divergence between the posterior and prior used by the DenseVari-
ational layers. Through the tests, we found that changing the scaling of the penalty term gave
worse results, and we therefore chose to keep using the suggested scaling value of 1/N, where N
is the number of data points in the dataset [34], during any following hyperparameter tuning.

At the time of the early tests, we were using the data framing "Sliding Window" on ADP-B.
This provided us with great performance metrics and low ECE and ACE values. However, as
seen on the reliability diagram Figure 9.1, this is due to the low probabilities of the predictions,
resulting in a few well calibrated bins containing most of the predictions. Since ECE is weighted
based on number of data points in the bin, as described in Appendix H, this resulted in a good
ECE. For ACE, these predictions are dispersed into 10 ranges with very similar probabilities, in
turn resulting in a low ACE.

Due to this, we decided to change the data framing from "Sliding Window" to "Fixed Time
To Onset". We based a new grid search on parameters that showed the best performance on the
"Fixed Time To Onset" data framing, which can be seen on Figure B.5 in Appendix B.4. Changing
data framing provided better AUROC and AUPRC, as well as higher confidence predictions, as
seen on Figure 9.2. Here, we also found that ADP-A now provided the best results. This means
that through the remainder of the report, when referring to models trained on the PhysioNet
dataset, this refers to ADP-A.
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Figure 9.1: Reliability diagram based on results from 5 Figure 9.2: Reliability diagram based on results from 5
sampled models on the ADP-B test set, using the BNN sampled models on the ADP-A test set, using the BNN
from Appendix B.2.

from Appendix B.2.

During the hyperparameter tuning, we find that training a BNN is more complicated, com-
pared to training its point estimate counterpart. This might be due to the additional parameters
that are present in a BNN, in terms of parameters for the prior and posterior distributions, which
are very dependent on their initial values when working with complex problems [37]. The effect
of a bad or good initialization can be seen on Figure 9.3a and Figure 9.3b respectively. As a result,
searching for the right initializations of the prior and posterior distributions is tedious, as many
parameters need to be searched. We observe that, when training an FFNN on the same data, with
the same model structure, it is less affected by the hyperparameters. However, when good hyper-
parameters are found for the BNN, we often see better performance, better calibration and less
tendency to overfitting, as shown on Figure 9.3b, whereas the FFNN is more prone to overfitting,

as shown on Figure 9.3c. This is also discussed by Hernandez-Lobato et al. in [43].
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Figure 9.3: The figures show the AUROC during training for different model types. The x-axis shows the number of
epochs, the y-axis shows the AUROC. The blue line represents AUROC for the training set, and the red line for the

validation set.

9.2.2 Two Outputs for LRP

When doing LRP, we use the confidence in a given label as relevance for the last layer and
propagate it back through the network, as described in Section 5.2. Since the BNN we use has a
single output neuron, which expresses its confidence in the sepsis positive class, a prediction of
0.99 is a confident sepsis positive prediction. However, this also means that a prediction of 0.01 is
a confident sepsis negative prediction. This means that when a prediction of 0.01 is propagated
with LRP, this small value is distributed among the features that contributed to the prediction,

resulting in low relevance scores, as seen on Figure 9.4.
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Figure 9.4: Relevance diagram showing low relevance scores (see x-axis) for a prediction on ADP-A, from a BNN with

a single output neuron.
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This makes it difficult to evaluate which features the model base its prediction on when predicting
sepsis negative. In order to avoid this issue, we choose to use a network with two output neurons.
Here, one neuron expresses its belief in the sepsis positive class, and the other expresses its belief
in the sepsis negative class. We use a softmax activation function to ensure the two outputs sum
to 1, such that if the positive class predicts 0.7, the negative class predicts 0.3, representing the
probability of each outcome. Now, instead of having a prediction of 0.01 in the sepsis negative
class, this would instead be a prediction of 0.99. After this change we saw similar performance

for a model with the same hyperparameters.

9.2.3 Final Configuration

Through the different experiments, we end up with the following final configuration for the BNN
used on ADP-A with the "Fixed Time to Onset" data framing:

* 1,500 epochs.

¢ 5,000 batch size.

¢ 0.0001 learning rate.

¢ 0.0 mean for the distribution used for initializing mean values in the posterior.

¢ —6.0 mean for the distribution used for initializing standard deviation values in the poste-

rior.

The model consists of three stochastic layers, with 60, 40, and 20 neurons, followed by two output

neurons, as seen on Figure 9.5.

Input: 75 Features

Layer 1: 60 Neurons

Layer 3: 20 Neurons  Output: 2 Neurons
Softmax

Figure 9.5: Model architecture of the final BNN on ADP-A, based on the grid search in Appendix B.3.

The final model structure and hyperparameters yield the following performance and calibration

scores:
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BNN | AUROC | AUPRC | ECE ACE
Mean | 0.8726 0.7295 0.0264 | 0.0239
Max | 0.8785 0.7399 0.0273 | 0.0251
Min | 0.8664 0.7255 0.0258 | 0.0232

Table 9.1: AUROC, AUPRC, ECE and ACE based on results from 5 sampled models, using the BNN with the final
configuration on ADP-A with the data framing "Fixed Time To Onset".

9.3 Initial Experiments on ADCT

In this section, we cover the search for an optimized model on ADCT. Since we also observe low
probabilities in the predictions on ADCT when using the data framing "Sliding Window", we
choose to use the "Fixed Time To Onset" data framing for ADCT as well. We also modify the
network to have two output neurons, to accommodate the problems encountered when doing
LRP, mentioned in the previous section.

As for PhysioNet, we also observe through early experiments that smaller models give better
results on ADCT. Therefore, minimal testing is done on model size, where the best performing
model is identical to the model used for ADP-A in Figure 9.5. Instead, we focus on testing
different hyperparameters for learning rate, batch size, number of epochs and initialization values
for the distributions. A grid search of the hyperparameters on ADCT can be found in Figure B.7
in Appendix B.6. Here, we observe that the best hyperparameters for our model trained on DCT

are:

¢ 3,000 epochs.

¢ 5,000 batch size.

¢ (0.0001 learning rate.

¢ (0.0 mean for the distribution used for initializing mean values in the posterior.

* —6.0 mean for the distribution used for initializing standard deviation values in the poste-

rior.

The final configuration for the BNN trained on ADCT results in the following performance:

BNN | AUROC | AUPRC | ECE ACE
Mean | 0.7675 0.2882 0.0074 | 0.0073
Max | 0.7787 0.2984 0.0095 | 0.0087
Min | 0.7609 0.2744 0.0075 | 0.0065

Table 9.2: AUROC, AUPRC, ECE and ACE based on results from 5 sampled models, using the BNN with the final

configuration.

We observe that the performance on Table 9.2 is significantly lower for AUROC and AUPRC,
compared to the performance on Table 9.1. We believe the main reason for this, is that ADCT
contains substantially more missing values than ADP-A, as it is not based on information from

ICUs, which is also observed in Appendix C. However, we see that the calibration scores for
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ADCT are better than for ADP-A. This is explored further in the calibration experiment, described
in Chapter 10.
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Chapter 10

Calibration

In Chapter 1, we mention that calibration is important when evaluating whether a model’s pre-
diction confidence can be trusted [11]. In addition to this, Jospin et al. [17] mentions that BNNs
are often better calibrated, compared to non-Bayesian Feed Forward Neural Networks (FFNN).
Therefore, we want to run an experiment, where we evaluate the expected calibration error (ECE)
and adaptive calibration error (ACE) of a BNN, and compare these to the ECE and ACE of an
equivalent FFNN. This answers the second subquestion of the problem statement in Chapter 6.
More information about ECE and ACE can be found in Appendix H, which is a copy of parts
from Chapter 5 “"Reasoning about Uncertainty” from our pre-master thesis [10]. Guo et al. [11]
observes that multiple factors impacts the calibration of a model, for example model size. There-
fore, when selecting the equivalent FFNN, we do not grid search for different model sizes, and
only replace the stochastic layers with corresponding deterministic layers. However, for epochs,
learning rate and batch size, we conduct a small grid search, seen in Section J.1, as we find that
these parameters have an impact on whether the FFNN starts to overfit or not. By observing
Section J.1 and Section J.2, we can see that the most optimal models on either dataset use the

same values for these parameters, namely:

¢ Identical model architecture to that found in Chapter 9.
¢ 1,500 epochs.

¢ (.0001 learning rate.

¢ 5,000 batch size.

In this experiment, the results regarding the FFNN is based upon five models trained with differ-
ent parameter initializations, whereas the results for the BNN is based upon five sampled models.
This means that the error bars in the reliability diagrams on Figure 10.1 and Figure 10.2 represent
the variations in model accuracy for each bin, with the lower part of the error bar being the mini-
mum accuracy and the upper part being the highest accuracy. The tables throughout this section

include the minimum, maximum and mean values for ECE and ACE over five runs.

10.1 PhysioNet

In this section, we compare calibration errors of the BNN found in Chapter 9 and the FFNN
discussed above, on the PhysioNet dataset ADP-A. In Table 10.1 and Table 10.2, it can be seen
that in general, the BNN is better calibrated. The BNN has a mean ECE of 0.0264, and a mean
ACE of 0.0239, whereas the calibration errors of the FFNN are 0.0397, and 0.0350 respectively. In
addition to this, there is also a significant difference in the performance. Here, the BNN has a
mean AUROC of 0.8726 and a mean AUPRC of 0.7295, compared to the FFNN’s mean AUROC
of 0.8333 and a mean AUPRC of 0.6380.
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BNN | AUROC | AUPRC | ECE ACE

Mean | 0.8726 0.7295 0.0264 | 0.0239
Max | 0.8785 0.7399 0.0273 | 0.0251
Min | 0.8664 0.7255 0.0258 | 0.0232

Table 10.1: AUROC, AUPRC, ECE and ACE based on five models sampled from the BNN on ADP-A.

FFNN | AUROC | AUPRC | ECE ACE

Mean | 0.8333 0.6380 0.0397 | 0.0350
Max 0.8415 0.6557 0.0449 | 0.0372
Min 0.8198 0.6103 0.0373 | 0.0320

Table 10.2: AUROC, AUPRC, ECE and ACE based on five FFNN models with different initialized weights on ADP-A.

By examining the reliability diagrams in Figure 10.1, we observe that the BNN is better calibrated

for most of the confidence ranges, and has lower variation in the accuracy in most of the bins.
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(a) Reliability diagram for five sampled BNN models. (b) Reliability diagram for five FFNN models with different ini-

tialized weights.

Figure 10.1: Reliability diagram for the five sampled models from the BNN and the five FFNN models.

10.2 Cross-Tracks

In this section, we compare calibration errors of the BNN found in Chapter 9 and the FFNN
discussed in the start of this chapter on the ADCT dataset. By inspecting Table 10.3 and Table 10.4,
we can see that the BNN, as also observed in Section 10.1, has significantly lower calibration
errors. Where the BNN has a mean ECE of 0.0074, and a mean ACE of 0.0073, the FFNN has a
mean ECE of 0.0417 and a mean ACE of 0.0316. Comparing the FENN and BNN, the BNN has
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higher AUROC and lower calibration errors, but the FENN has the best AUPRC. Here, the FFNN
has a mean AUPRC of 0.3380, compared to a mean AUPRC of 0.2882 for the BNN.

BNN | AUROC | AUPRC | ECE ACE

Mean | 0.7675 0.2882 0.0074 | 0.0073
Max | 0.7787 0.2984 0.0095 | 0.0087
Min | 0.7609 0.2744 0.0063 | 0.0065

Table 10.3: AUROC, AUPRC, ECE and ACE based on five models sampled from the BNN on ADCT.

FFNN | AUROC | AUPRC | ECE ACE

Mean | 0.7300 0.3380 0.0417 | 0.0316
Max 0.7383 0.3535 0.0423 | 0.0329
Min 0.7167 0.3211 0.0408 | 0.0303

Table 10.4: AUROC, AUPRC, ECE and ACE based on five trained FFNN models with different initialized weights on
ADCT.

The reliability diagrams in Figure 10.2 shows that the BNN lacks predictions in the last confidence
bin, yet the BNN has a lower ECE and ACE. Also, the bin containing confidences within 0.8 — 0.9
in Figure 10.2 has significantly larger error bars, compared to the other bins, which can indicate a
low number of predictions for the bin. By observing the first two bins, 0.0 — 0.1 and 0.1 — 0.2, in
Figure 10.2b, we can see that the reliability diagram for the FFNN has significantly larger errors,
compared to the diagram for the BNN, shown in Figure 10.2a. As ADCT contains more negative
cases (94.25%), being miscalibrated in these bins acts as a major contribution to the overall ECE
of the model, as ECE is based on the volume of predictions within each bin. Here, one could
assume that the bins containing the largest number of predictions would be these exact bins.
Also, in relation to this, it is therefore expected that the model is better calibrated for these bins.
This is not the case for the FFNN (Figure 10.2b), as it has large calibration errors relative to the
0.0 — 0.1 and 0.1 — 0.2 bins. Because of this miscalibration, we expect that the FFNN makes less
FN and TN predictions, and that it predicts more TP and FP predictions as well, such that it gets
a higher mean AUPRC of 0.3380, but also a lower mean AUROC of 0.7300, compared to the BNN,
with 0.2882 and 0.7675, respectively. We also observe that the average error bars for confidences
less than 0.8, on the reliability diagram of the FFNN in Figure 10.2b, are notably larger, compared
to the BNN in Figure 10.2a. In addition to this, the BNN in Figure 10.2a is better calibrated on
almost every bin with confidences less than 0.8. Keeping this in mind, we see the BNN as being
the better calibrated model.
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tialized weights.

Figure 10.2: Reliability diagram for the five sampled models from the BNN and the five FFNN models.

On both ADP-A and ADCT, when comparing the BNN and FFNN, the BNN has better calibration
scores, while generally maintaining better performance. This means that the observations made

by Jospin et al. [17], are also present in the models we have inspected.
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Chapter 11

I Do Not Know

In Chapter 1, we discuss that a model being capable of answering "i do not know", is one way
of enhancing trust in its predictions. Therefore, as we have implemented a BNN, which makes it
possible to express uncertainty in predictions, we want to run some experiments where we apply
this concept.

In the medical article “Second opinion needed: communicating uncertainty in medical machine learn-
ing” by Kompa et al. [3], the ability for neural networks to express "i do not know" (IDK), and
abstain from making predictions, is discussed as being important when using Al in a medical
context. They also discuss an approach for deciding when to abstain, where two functions, f
and g, are used. f is the prediction function for a neural network, and g is a selection function
that decides if the neural network can make a prediction or if it abstains. We want to follow
this approach by having f be the mean of predictions from multiple sampled models, and g be a
function that uses the uncertainty expressed by the BNN for deciding when to abstain and when
to predict.

We see multiple ways of defining the function g. Either it selects whether to abstain or not
based on disagreements in multiple predictions, together with a limit for how many predictions
can disagree, or based on the standard deviation of multiple predictions, together with a thresh-
old. For both of these definitions, we want to conduct an experiment, to evaluate whether the
uncertainty of the BNN can be used to improve predictions.

In both experiments, we want to use the number of true positives (IPs), false negatives (FNs),
false positives (FPs), and true negatives (TNs), together with AUPRC and AUROC, to analyze

whether the model performs better or worse, when abstaining from predicting.

11.1 Abstain with Disagreement

In the first experiment, the procedure is as follows:

1. Sample N models from the BNN and make a prediction for each data point with each
model.
2. Calculate the number of TP, FN, FP, and TN predictions together with AUPRC and AUROC,

at different positive thresholds and different disagreement limits.

The number of models sampled will be [5,10,50,100,150], to gain a deep insight into how the
number of predictions affects the results.

The positive thresholds are defined as the limit for when a prediction is said to be sepsis
positive or sepsis negative. For example, with the threshold 0.5, all confidence levels for the
positive class over or equal to 0.5 are positive predictions, whereas all confidence levels below

the threshold are negative predictions. In order to evaluate the entire range of confidence levels,
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we want to experiment with varying the thresholds between 0 and 1, and to limit the scope of
results, we use the following thresholds: [0.1,0.2,...,0.8,0.9].

The disagreement limit is used as a cutoff for when the model makes a prediction and when it
abstains. The limit defines the percentage of the N predictions from the sampled models, which
can disagree before abstaining from a prediction. For example, with a disagreement limit of 10%
and with 10 sampled models, 9 out of 10 predictions need to be on the same class, for the model to
make a prediction, otherwise the model abstains from making predictions. For the disagreement
limit, we want to experiment with the following thresholds: [0%, 10%, 20%, 30%, 40%.

If the model does not abstain from making a prediction, the confidence of the prediction is
calculated as the mean of the predictions from the N sampled models.

For the different values of the disagreement limit we also show a baseline model, which cannot

make IDK predictions, and where the prediction is the class with the highest mean confidence.

11.1.1 Discussion about Results

The most interesting results from the experiment are included in this section, and the full set of
results can be found in Appendix K.1 for ADP-A and in Appendix K.3 for ADCT.

When observing the results, we see a very interesting outcome, that by allowing the model to
express IDK, there is nearly always a metric (either TP, FN, FP, TN, AUPRC, or AUROC) that is
improved compared to not expressing IDK.

If we first have a look at Table 11.1, we find that by having a low positive threshold of 0.1, the
model is more likely to make positive predictions and less likely to make negative predictions.
This means that TP and FN are improved, but at the cost of more FP and less TN predictions.

When decreasing the disagreement limit, the model makes more IDK predictions, and inter-
estingly, a large part are FPs (around 30% of the 74 IDK predictions, between the disagreement
limits 40% and 20%, and around 25% of the 117 additional IDK predictions, between the dis-
agreement limits 20% and 0%), and only a small part is TPs, which results in a higher AUPRC
and AUROC when the model abstains more from making predictions.

Note that the following tables show results from different numbers of sampled models, however the same
tendencies are found.

Fositive DL Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 175 | 2842 | - | 161 | 103 | 14 | 2739 | 07472 | 0.8820
0.1 0(0%]) |204 | 2622191 | 171 |70 |33 | 2552 | 0.7703 | 0.8847
0.1 1(]20%)) | 237 [ 2706 | 74 | 177 | 76 |60 | 2630 | 0.7583 | 0.8826
0.1 2(140%)) [ 267 [ 2750 [0 [ 182 [ 82 |85 | 2668 | 0.7472 | 0.8820

Table 11.1: PhysioNet: Disagreement results where 5 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree. Full table in Table K.1.

In connection to the previous result, we also find that, either with a positive threshold of 0.5
or a higher positive threshold of 0.9 (shown in Table 11.2 and Table 11.3 respectively), a large
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part of the IDK predictions are TP. We find that this makes sense, as the datasets have a large
percentage of negative samples, which means that the model might be more uncertain about
the positive predictions and output lower confidence, resulting in more disagreement between

sampled models at these thresholds.

Positive DL Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 175 | 2842 | - | 159 | 105 | 16 | 2737 | 0.7471 | 0.8827
0.5 0([0%]) | 142 | 2776 | 99 ['140| 90 |2 |'2686 | 0.7375 | 08726
0.5 2(|20%)) | 159 | 2823 | 35 152 98 |7 | 2725 | 0.7432 | 0.8786
0.5 4(|40%)) [ 171 [ 2837 |9 [157 | 103 | 14 | 2734 | 0.7459 | 0.8815

Table 11.2: PhysioNet: Disagreement results where 10 models are sampled. Full table in Table K.2.

Eii:;;f)ld DL Pos | Neg | IDK | TP | FN | FP | TN | AUPRC | AUROC
0.5 (Baseline) | - 177 | 2840 | - | 161 | 103 | 16 | 2737 | 0.7487 | 0.8845
0.9 5(|10%)) | 106 | 2860 | 51 | 105 | 118 | 1 | 2742 [ 0.6953 | 0.8647
0.9 10 (|20%]) | 117 | 2870 | 30 | 116 | 125 | 1 | 2745 | 0.7222 | 0.8744
0.9 15 ([30%]) | 125 | 2877 [ 15 | 124|128 | 1 | 2749 [ 07354 | 0.8794
0.9 20 (|40%)) | 128 | 2883 [ 6  [127] 182 | 1 | 2751 | 0.7434 | 0.8824

Table 11.3: PhysioNet: Disagreement results where 50 models are sampled. Full table in Table K.3.

For ADP-A, we find the best results for AUPRC and AUROC when sampling 150 models and
using a disagreement limit of 0% (See Table 11.4). With these settings, the AUPRC increases
to 0.8054 and AUROC increases to 0.8937. We also find that the number of FN predictions are
nearly halved compared to the baseline, and that TP only decrease slightly. We see this as a
great improvement, as we argue that telling a person that he/she does not contract sepsis, when
he/she does, is the most dangerous case. We therefore find that using the uncertainty, in order
to determine when to abstain from making a prediction, is useful when the data has limited

information about a class, resulting in uncertain predictions.

Fositive DL Pos | Neg | IDK | TP | EN | FP | IN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 176 | 2841 | - | 161 | 103 | 15 | 2738 | 0.7478 | 0.8833
0.1 0([0%)) | 165 | 2334 | 518 | 1155 | 53 | 10 | 2281 | 0.8054 | 0.8937
0.2 0(0%)) | 144 | 2508 | 365 | 141 | 67 | 3 | 2441 | 0.7664 | 0.8797
0.3 0([0%)) | 138 | 2580 | 299 | 186 | 71 |2 | 2509 | 0.7487 | 0.8740

Table 11.4: PhysioNet: Disagreement results where 150 models are sampled. Full table in Table K .4.

For ADCT we find similar patterns and results, which can be found in Appendix K.3. Here, we
find the highest AUPRC to be 0.3521, up from 0.3112, when using a positive threshold of 0.1, a
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disagreement limit of 0%, and when 150 models are sampled. For AUROC, the highest result is
0.7947, up from 0.7888, when using the same positive threshold, a disagreement limit of 20%, and
when 50 models are sampled.

11.2 Abstain with Standard Deviation

This experiment follows nearly the same procedure as the previous experiment. However, instead
of using a disagreement limit, we now use the standard deviation of multiple predictions when
deciding whether or not to abstain from making a prediction.

Here, we sample the same numbers of models as for the experiment with disagreement limit.
Unlike the previous experiment, the positive threshold does not affect the number of IDK pre-
dictions, as this is only affected by the standard deviation, and that the IDK predictions are
the same even with different thresholds. Therefore, we want to limit the positive thresholds to
[0.25,0.5,0.75] instead.

To get a deeper insight into how different numbers of IDK predictions affect the perfor-
mance of the model, we want to use a large range of values for the standard deviation cutoff
[0.01,0.02, ...,0.08,0.09,0.1,0.2, ...,0.5,0.6].

11.2.1 Discussion about Results

The most interesting results from the experiment are included in this section, and the full set of
results can be found in Appendix K.2 for ADP-A and in Appendix K.4 for ADCT.

Compared to the previous experiment, the performance increase is less noticeable, and we
only see slight improvements in AUPRC and AUROC with few of the settings.

With the lowest positive threshold of 0.25, shown in Table 11.5, we see similar results as for
the previous experiment, where a large percentage of the IDK predictions come from positive
predictions. When increasing the standard deviation, the number of IDK predictions decreases
from 123 to 14 with the positive predictions increasing from 146 to 205, which means that more
than 50% of the IDK predictions are from the positive predictions. This again supports the idea
that the model is more uncertain about positive predictions, as the data is unbalanced.

Note that the following tables show results from different numbers of sampled models, however the same

tendencies are found.

E;ig;;;d ithdreshold Pos | Neg | IDK | TP | EN | FP | IN | AUPRC | AUROC
0.5 (Baseline) | - 176 | 2841 | - | 160 | 104 | 16 | 2737 | 0.7424 | 0.8801
0.25 0.09 146 | 2748 | 123 [143 | 87 | 3 | 2661 | 0.7360 | 0.8717
0.25 0.1 149 | 2757 | 111 | 145 | 87 | 4 | 2670 | 0.7358 | 0.8719
0.25 0.2 186 | 2789 | 42 | 161 | 90 | 25 | 2699 | 0.739 | 0.8769
0.25 0.3 205 | 2798 | 14 | 170 | 90 |85 | 2708 | 0.7431 | 0.8793

Table 11.5: PhysioNet: Standard deviation results where 5 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know". Full table in Table K.5.

47



When using a positive threshold of 0.5, as shown in Table 11.6, we see that the number of IDK
predictions that are from positive predictions falls, compared to a positive threshold of 0.25.
When we increase the standard deviation threshold from 0.1 to 0.3, the number of IDK predic-
tions decreases from 133 to 11. Of these predictions, 34 were positive, which means that positive
predictions made up slightly less than a third of the IDK predictions. For a higher positive thresh-
old, shown in Table 11.7, it seems that the positive IDK predictions are likewise saturated, which
means that when the model abstains from more predictions, it is often for negative predictions.
This makes sense, as the model has few positive predictions with high confidence, as shown in
Chapter 10. Unfortunately, a large part of the negative predictions are from TNs, without a large

improvement in FNs, which therefore generally results in lower AUPRC and AUROC.

Fositive Std Pos | Neg | IDK | TP | EN | FP | IN | AUPRC | AUROC
Threshold Threshold

0.5 (Baseline) | - 173 | 2844 | - | 160 | 104 | 13 | 2740 | 0.7487 | 0.8844
0.5 0.1 133 | 2751 | 133 [ 182 87 | 1 | 2664 | 0.7334 | 0.8706
0.5 0.2 157 | 2815 | 45 |[150| 99 | 7 | 2716 | 0.7458 | 0.8807
0.5 0.3 167 | 2839 | 11 [ 159 | 104 | 8 | 2735 | 0.7530 | 0.8850

Table 11.6: PhysioNet: Standard deviation results where 10 models are sampled. Full table in Table K.6.

i;ile:;;d ithdreshold Pos | Neg | IDK | TP | EN | FP | IN | AUPRC | AUROC
0.5 (Baseline) | - 176 | 2841 | - | 161 | 103 | 15 | 2738 | 0.7464 | 0.8805
0.75 0.08 123 [ 2699 | 195 [122| 88 |1 | 2611 | 07273 | 0.8645
0.75 0.09 123 [ 2719 | 175 [ 122190 |1 | 2629 | 0.7265 | 0.8643
0.75 0.1 125 | 2729 | 163 [ 12492 |1 [2637 | 07299 | 0.8661
0.75 0.2 141 | 2825 | 51 | 187 | 110 | 4 | 2715 | 07392 | 0.8757

Table 11.7: PhysioNet: Standard deviation results where 50 models are sampled. Full table in Table K.7.

In Table 11.8 we show the best settings for the experiment on ADP-A, when AUPRC and AURPC
are considered. Compared to using disagreement for deciding when to abstain from making a
prediction, the performance increase is less noticeable. When comparing the baseline to the best
settings with a positive threshold of 0.5, only 11 IDK predictions are made, of which 6 result
in fewer TPs and TNs with the rest being FNs. This, we see as a drawback for using standard

deviation for deciding when to abstain, as nearly half of the IDK predictions result in a worse

performance.
Fositive Std Pos | Neg | IDK | TP | FN | FP | TN | AUPRC | AUROC
Threshold Threshold
0.5 (Baseline) | - 173 | 2844 | - | 160 | 104 | 13 | 2740 | 0.7487 | 0.8844
0.25 0.3 206 | 2800 | 11 | 172 | 91 |34 | 2709 | 0.7530 | 0.8850
0.5 0.3 167 | 2839 | 11 [ 159 | 104 | 8 | 2735 07530 | 0.8850
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0.75 03 | 144 [ 2862 |11 [140 123 4 [2789 | 07530 | 0.8850

Table 11.8: PhysioNet: Standard deviation results where 10 models are sampled. Full table in Table K.6

As for the previous experiment, we also see similar tendencies and patterns when comparing the
results to ADCT, where AUPRC and AUROC are only slightly improved for a few settings. The
highest AUPRC is 0.3181, up from 0.3173, and the highest AUROC is 0.7851, up from 0.7850.
These results can be found in Appendix K.4.

11.3 Comparison

When comparing the two approaches for when to abstain from making a prediction, we argue
that abstaining with disagreement is more useful. The reason is that for almost all settings,
we see an improvement in multiple of the metrics used, though with different trade-offs. This
means that, if for example FNs are very expensive to predict, nearly half can be excluded with
the right settings, and oppositely nearly all FPs can be excluded with another setting. Also,
when considering AUPRC and AUROC, we see a large boost in performance when sampling 150
models and with a disagreement limit of 0, but at the cost of making over 500 IDK predictions.
For the standard deviation approach we see similar results, but often at a greater expense in true
predictions. When considering both approaches, we also think that these results make sense, as
the disagreement approach might result in situations where the predictions from the sampled
models have a large variance, but all with confidence levels well within the range of either the
positive or negative class, set by the positive threshold. This might be opposite for the standard
deviation approach, as even though all predictions are well within one of the ranges, they might

still be considered IDK predictions, because of too high standard deviation.
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Chapter 12

Layer-wise Relevance Propagation

In this chapter, we consider the relevance scores from our method for evaluating the uncertainty
of predictions relative to the input features, described in Chapter 8. This gives an insight into
which features are generally used by the model to predict sepsis positive and sepsis negative,
respectively. It also shows the variance in relevance scores, and to which degree it is present in
different predictions. Here, we consider results from both the ADP-A and ADCT datasets.

12.1 Experiment Approach

Through the experiments, we use two different approaches to observe relevance scores. The
first approach is to consider the relevance scores for individual data points based on 20 sampled
models. Here, we consider the 20 different relevance scores and the mean relevance score for each
feature, excluding features with 0 relevance. Additionally, we consider the minimum, maximum
and mean prediction values for the 20 model samples, shown in the bottom of the diagrams.
This is done separately for both the sepsis positive and sepsis negative class. An example of the
resulting diagrams from this approach for the sepsis positive class can be seen on Figure 12.1,
though note that the diagrams shown here only show the most relevant features. Full diagrams
can be seen in Appendix L.

The second approach is to take a broader view at the distribution of relevance scores across
data points. Here, we consider the relevance scores from 3,000 different data points from the
testset of each dataset. The resulting relevance scores are then grouped together to create a
diagram for each feature, showing the different relevance scores it received, based on its value.
This is also done separately for the sepsis positive and sepsis negative class. To get a clearer
insight into how the features affect predictions for the two classes, we filter the results to only
show true positives for the respective class, with a probability threshold of 0.9. This filters out
the low relevance scores from true negative predictions, as well as outliers with unusually high
relevance scores from uncertain predictions. For ADCT, this threshold is lowered to 0.5, since
positive predictions are generally lower for ADCT, as mentioned in Chapter 10. An example of

this type of diagram can be seen on Figure 12.4.

12.2 Most Relevant Features

In this section, we review the most relevant features used by the BNN to predict sepsis pos-
itive and sepsis negative, respectively. Note that the features used by the ADP-A and ADCT
datasets are not identical (see Appendix D), and that ADCT contains more missing values (see

Appendix C), which can lead to differences in relevant features.
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12.2.1 PhysioNet

For ADP-A, the most dominant feature for predicting sepsis positive is TCULOS” (ICU Length
of Stay), where a high ICULOS’ value receives positive relevance, and a low 'ICULOS’ value

receives negative relevance. This can be seen on Figure 12.1 and Figure 12.2 respectively.

Relevance for Positive Class
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Figure 12.1: Sepsis positive data point from ADP-A with positive TCULOS’ relevance for the positive class.
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Figure 12.2: Sepsis positive data point from ADP-A with negative ICULOS’ relevance for the positive class.

This indicates a pattern in the data, that patients with long admissions at an ICU are more likely
to have contracted sepsis, which can be seen clearly on Figure 12.4. For sepsis negative predic-
tions, we see the same pattern for 'ICULOS’, but where a low 'ICULOS’ value receives positive
relevance, and vice versa (see Figure 12.3). This fits our expectations, as negative relevance for
the sepsis positive prediction becomes positive relevance for the sepsis negative prediction.
Interestingly, the "Age’ feature seems to be inversely correlated to 'ICULOS’, where predic-
tions with positive relevance for ICULOS” has negative relevance for "Age” and vice versa, as
seen on Figure 12.1 and Figure 12.2. The correlation between ICULOS” and "Age’ results in
mixed relevance scores for different "Age” values, with little correlation between "Age” value and
relevance score, as seen on Figure 12.5 for sepsis negative. However, we do see that low "Age’
values tend to have low relevance, and that high "Age” values have more data points with high

negative relevance, suggesting a higher tendency towards sepsis positive.
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Relevance for Negative Class
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Figure 12.3: Sepsis negative data point from ADP-A with positive ICULOS’ relevance for the negative class.
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Figure 12.4: Overview of relevance scores for 'ICULOS’ Figure 12.5: Overview of relevance scores for "Age” when
when considering sepsis negative predictions in ADP-A. considering sepsis negative predictions in ADP-A.

Aside from 'ICULOS’ and "Age’, we also see high relevance in the bottom six features on Fig-
ure 12.1: ’Diastolic Blood Pressure’, 'Mean Arterial Pressure’, ‘Systolic Blood Pressure’, "Tem-
perature’, ‘O2Sat” and 'Heart Rate’, which are all vital signs. Of these features, ‘O2Sat” and
"Temperature” show the clearest patterns, though note that they are still quite noisy. For “O2Sat’,
we see increasing relevance for sepsis negative as the value rises towards 100 (Figure 12.6). This
tits well with the fact that a normal ‘O2Sat’, the amount of oxygen in the blood, falls around
95 —100% [44]. For "Temperature’, we see a triangular shape for sepsis negative, where relevance
increases towards 37 and decreases as the value moves above or below 37 (Figure 12.7). This also
makes sense, as a normal body temperature is around 37°celsius.

Aside from the features mentioned here, ‘Chloride’, ‘Glucose’, ‘'Platelets’, "Hematocrit’, ‘SaO2’
and 'PaCO2’" also have notable relevance scores, but are much less prevalent in the data. It is
somewhat disappointing that the most used feature is 'ICULOS’, rather than one of the vital

signs or lab values, as 'ICULOS’ is not directly connected to the patient’s health or the definition
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of sepsis (see Appendix E). However, several other relevant features used by the model are more

closely related to the patients health and sepsis.
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Figure 12.7: Overview of relevance scores for "Temper-

Figure 12.6: Overview of relevance scores for ‘O2Sat’ , I . . _— .
ature’ when considering sepsis negative predictions in

when considering sepsis negative predictions in ADP-A. ADP-A.

We note that for many features, we see irregular relevance scores, that do not correspond to
the pattern we otherwise see or expect. An example of this can be seen on Figure 12.6, where
negative relevance also increases as ‘O2Sat” increases, though at a smaller rate than the positive
relevance. It is unclear what exactly causes this behavior, but the filtering of false positives and
false negatives, along with the probability threshold of 0.9 to focus on certain predictions, helped
reduce this behavior. We believe the most likely explanation is either that the model has not

properly learned the patterns in the data, or that the patterns in the data are inherently noisy.

12.2.2 Cross-Tracks

For ADCT, we generally see that less features are present and that positive predictions are not
as high as for ADP-A, with more uncertainty in the predictions. This is likely due to ADCT
having more sparse data, as it is not from ICUs. We see a tendency that positive cases more
often have more features, whereas some negative cases only have information for the six vital
sign parameters, indicating that more measurements are done close to sepsis onset.

For the most certain sepsis positive predictions, the most relevant features are "P(aB)-Sodium’
and 'P(aB)-Chloride’, as seen on Figure 12.8. 'P(aB)-Sodium” and "P(aB)-Chloride” measure the
levels of sodium and chloride in the blood, respectively, and have both been shown to be con-
nected to sepsis [45, 46]. We do not see a clear pattern between the values for these features and
the relevance scores they receive, but this may be due to the notable uncertainty present in the

positive predictions.

53



Relevance for Positive Class
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Figure 12.8: Sepsis positive data point from ADCT with positive relevance for "P(aB)-Sodium” and "P(aB)-Chloride” for

the positive class.

As for ADP-A, we also see high relevance for the six vital sign parameters in our model trained
on ADCT. This can be seen more clearly on Figure 12.9, which shows a prediction for sepsis
negative. Here, we also see the clearest patterns for "Temperature” and "SpO2’ (a measure for
‘O2Sat’), shown on Figure 12.10 and Figure 12.11. The patterns are very similar to those from
ADP-A, where sepsis negative relevance for ‘'SpO2’ increases as the value increases towards 100,
and sepsis negative relevance for "Temperature” peaks around 37.

Note that for "Temperature’ and 'SpO2’, relevance is almost always positive for the sepsis
negative class. We see this pattern in several features in ADCT, where relevance is almost always
either positive or negative. This may indicate that the model has found a pattern in some features,
where a measurement simply being present for the feature has a certain effect. However, we also
see that the actual value of the feature has a clear effect on the amount of relevance received.

It is interesting that we see similar patterns across datasets, with the main differences being
the relevance for "Age” and 'ICULOS’ in ADP-A, which are both unavailable in ADCT, and the rel-
evance for 'P(aB)-Sodium” and 'P(aB)-Chloride’” in ADCT, where no sodium measure is available
in ADP-A.
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Figure 12.9: Sepsis negative data point from ADCT with relevance scores for vital sign features for the negative class.
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ADCT.

12.3 General Observations

In this section, we state some general observations we see during the LRP experiments.

The first observation occurs when one class dominates the prediction, e.g. when sepsis pos-
itive has a probability of around 1 and sepsis negative has a probability of around 0, or vice
versa. Here, we see that the distribution of relevance from the dominating class is reflected in the
distribution of relevance in the other class, where we see very similar results, but of course with
much lower relevance scores. We believe this is due to the fact that the two classes share most of
their parameters throughout the network, having only 20 unique weights each from the last layer,

as seen on Figure 9.5. However, we still see a clear difference between relevance in high positive
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predictions and relevance in high negative predictions, showing that the model is still able to use
different features and patterns for sepsis positive and sepsis negative respectively.

Additionally, note that the relevance scores shown in this chapter are based on relatively
certain predictions. However, when predictions are very uncertain, ranging between both high
positive and high negative predictions, we see a more mixed result in relevance scores. Here,
many features receive both positive and negative relevance for the same data point, as shown on
Figure 12.12. We believe this shows how different relevance is assigned to the same feature value,
based on whether the model tries to predict positive or negative. This can explain the mixed
relevance scores, considering the shared weights in the network as explained above.

We also observe that the features with highest relevance are often features with high values.
For example, ICULOS’ can have values above 100, whereas the delta values are always compar-
atively low, typically with values below 10. We believe this might affect the patterns found by
the model through training, which can explain the way relevance is distributed to high valued
teatures. Therefore, we perform a short experiment where we normalize ADP-A such that all
features have values between —1 and 1, and train a BNN using this dataset. However, this results
in lower performance, and does not show significant changes in the distribution of relevance (e.g.
"ICULOS’ still receives high relevance), other than the gender and unit features receiving higher
relevance. An example can be seen on Figure 12.13. Based on these results, we choose to not use
the normalized dataset.

Lastly, we see a general tendency that predictions with high uncertainty also show high vari-
ance in relevance scores, as well as having outliers with high scores, especially for some of the
most relevant features. This shows that the variance in relevance scores are affected by the un-
certainty of the predictions. We therefore expect that the uncertainty in the predictions can be
explained using the variance in relevance scores, which we evaluate further in the experiment in
Chapter 14.
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Figure 12.12: Sepsis positive data point from ADP-A with high uncertainty and mixed relevance scores.
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Figure 12.13: Sepsis positive data point from normalized ADP-A.
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Chapter 13

Weight Uncertainty in First Layer

In this section, we cover an experiment of inspecting the first layer of either a fully Bayesian
NN, or a BNN where only the first layer is stochastic. From the chapter discussing the results of
experimenting with LRP (Chapter 12), we find that when conducting LRP on multiple sampled
models, some features have larger variance compared to others. Based on these findings, we
want to explore whether weight uncertainty in the first layer has a correlation with features that
provide the most uncertainty to a prediction. Here, we represent the probability distributions
over the weights, by plotting the mean and the standard deviation of the weights connected to a
specific feature.

The chapter is split into two subsections, based on what is plotted on the x-axes, namely
standard deviation and mean. Throughout this chapter, we only include the most interesting

parts of the plots (full plots can be found in Appendix M).

13.1 Standard Deviation

In this section, we inspect the plots where the standard deviation of the first layer is plotted
on the x-axis, for both the fully Bayesian NN and the BNN with one stochastic layer. When
observing Figure 13.1, we can see that the standard deviation is generally very similar across
features. Here, no clear patterns are visible, and the randomness of the standard deviation is
a reoccurring pattern across datasets and the two different models featured in this experiment.
This is a little surprising, as the idea to experiment with a BNN, in which only the first layer is
stochastic, came from the assumption that, when limiting the layers in which uncertainty can be
expressed, the standard deviation of the remaining layer has to compensate, which would then

result in more noticeable changes.
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Figure 13.1: Standard deviation plot for probability distributions over weights in the first layer of a fully Bayesian NN
on ADP-A. The full figure can be viewed on Figure M.1 in Appendix M.

13.2 Mean

In this section, we inspect the plots where the mean of the distributions over weights in the first
layer is plotted on the x-axis, for both the fully Bayesian NN and the BNN with one stochastic
layer. By inspecting Figure 13.2, we can see that some features have fluctuating mean values,
whereas others have mean values that are very close to 0. For example, when looking at ICULOS’
and "Age’ in Figure 13.2, we see that the absolute values of the means are high, and that the
mean values have a high variance. When comparing to the results from Chapter 12, we can
see that these features also often have large relevance scores. The same pattern can be seen
for the features: 'Diastolic Blood Pressure’, ‘"Mean Arterial Pressure’, 'Systolic Blood Pressure’,
"Temperature’, ‘O2Sat” and "Heart Rate’. This means that if a feature has higher weights, because
of higher mean values, these also receive higher relevance scores. This is probably due to how
LRP propagates most of the relevance through high weights. This also means that these features
have a greater impact on the output of the model, compared to features which mean values are

centered around 0, for example "End-Tidal Carbon Dioxide’.
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Figure 13.2: Mean plot for probability distributions over weights in the first layer of a fully Bayesian NN on ADP-A.

Figure 13.3 shows the BNN where only the first layer is stochastic. Here, we see the same patterns

as we see in the fully Bayesian model on Figure 13.2.
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Figure 13.3: Mean plot for probability distributions over weights in the first layer of a BNN where only the first layer

is stochastic, on ADP-A.

On Figure 13.4, the mean values for distributions in the first layer are plotted for ADCT. Here, we

see similar patterns to Figure 13.3 and Figure 13.2, where some features have fluctuating mean

values, whereas others are centered around 0. Interestingly, many of the features shared between

the two datasets also share a correlation in the magnitude of the mean values. For example,

"HeartRate” and "Systolic Blood Pressure’ both have high mean values, whereas "Potassium” has

low values. However, we also see disagreement in some features, for example, 'Creatine” and

'Glucose’.

As ADCT is not composed of ICU patients, we see a lot more missing values, as observed in

Section C.3, with the vital signs being the most observed features. This likely contributes to why

these features are more important to the model.
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Figure 13.4: Mean plot of the first layer on a fully Bayesian network on ADCT.

13.3 Summary

Generally, we see that the absolute mean values of the first layer both in a fully Bayesian NN and

a BNN with one stochastic layer, indicate which features the model base its predictions on. We

find it surprising that such a clear pattern can be seen by only considering the first layer.

Regarding the standard deviation, we expect that there is a connection between the variance
in the relevance scores of a feature, and the standard deviation of the weights connecting to that
feature. However, we see no apparent correlation between the plots for standard deviation and
the relevance scores of multiple sampled model. Therefore, without investigating other ways of

representing the standard deviation in the first layer, we do not see much potential in using the

tirst layer as an indicator of which features affect the uncertainty in predictions.
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Chapter 14

Evaluating Uncertainty in

Relevance Scores

In Chapter 12, we see a correlation between the uncertainty in predictions and the variance in
the relevance scores of input features. Therefore, in this chapter we evaluate the method of using
LRP to explain which features have a large impact on the uncertainty in predictions, as described
in Chapter 8.

In [47], Binder et al. discuss a method for evaluating the relevance scores computed using
LRP. This method is called pixel flipping, and is related to image classification, where a pixel’s
value is set to the negated value (flipped pixel = pixel - (=1)). Here, Binder et al. observe,
that when flipping a pixel that has high relevance for the prediction, the confidence is reduced.
However, since we do not use pixel data, we adapt it in the form of feature flipping, such that
flipped feature = feature - (—1). Even though there are inherent differences in flipping a single
pixel in a picture with 400 pixels, and flipping a feature in a dataset consisting of 75 features, we
still see this as an interesting experiment. Therefore, we want to evaluate how the variations in
relevance scores are affected when using feature flipping.

To gain a wide insight into how feature flipping affects different outcomes from LRP using
multiple sampled models, we want to experiment with three different types of features. These

are features with:

¢ High positive relevance together with high variance.
¢ High negative relevance together with high variance.

¢ Low relevance and low variance.

These three types of outcomes should make it possible to evaluate feature flipping, both for
features which have positive impact, negative impact, and little impact on the predictions and the

uncertainty in them.

14.1 Feature Flipping

When comparing the outcomes of feature flipping for both ADP-A and ADCT, we see very mixed
results. For example, one outcome is that when flipping a feature, the predictions remain some-
what similar, with similar uncertainty in the predictions, as shown in Figure 14.1 and Figure 14.2.
For other outcomes, either the uncertainty decreases or increases, or the prediction confidences
decrease or increase, without following a clear pattern (The full set of results can be found in Ap-
pendix N.3 for ADP-A and in Appendix N.4 for ADCT). Therefore, we do not see feature flipping

as a reliable procedure, when evaluating the method.
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An additional argument against using feature flipping is, that often when flipping values, the
features assume an out of distribution value, which the model is not trained on. This means that
for many cases, the feature is assigned an impossible value (e.g. negative "Heart Rate’), which
we think results in unexpected predictions. This might also be the reason why the results from
teature flipping show no clear patterns, when considering the predictions of the model and the

uncertainty in these.
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Figure 14.1: Negative prediction on negative data point from ADP-A. Features with low relevance and variance are

excluded on the figure, full version can be seen on Figure N.1 in Appendix N.1.
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Figure 14.2: Negative prediction on negative data point from ADP-A, where ‘Glucose’ is feature flipped. Features with

low relevance and variance are excluded on the figure, full version can be seen on Figure N.8 in Appendix N.3.
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14.2 Setting Features To 0

As no useful results were found when using feature flipping for evaluating our method for ex-
plaining uncertainty in predictions using LRP, we want to try another approach. Here, we want
to try to set different features to 0, such that those features have no relevance for the predictions.

With this method, our expectation is that:

* When a feature has high relevance, the result of setting the feature value to 0 either pulls
the predictions down, if the relevance is positive, or up, when the relevance is negative.
¢ When features with high variance in the relevance scores are set to 0, the uncertainty in the

predictions decreases.

We acknowledge that when setting a feature to 0, the feature is not completely discarded from
the data point, and is still given to the model as an input feature, which conveys information to
the model.

14.2.1 Discussion of the Results

Contrary to feature flipping, we see more clear patterns in the outcomes, when features are set to
0.

Figure 14.4 shows the relevance scores for the same data point used in Figure 14.3, but where
'ICULOS’ is set to 0. Here, we see that the relevance scores for ICULOS’ in the original data
point varies a lot, with both positive and negative relevance. The result of setting it to 0 is an
increase in confidences in the predictions, and that the predictions has less variance. This fits
our expectations, that setting a feature with high variance in relevance scores to 0 decreases the
uncertainty in predictions. In addition to this, some features now provide relevance for the oppo-
site class, where the biggest contributors for a positive prediction are the features "Age’, ‘O2Sat’,
"Heart Rate’, and 'Chloride’. Also, note on the x-axes of the figures that the relevance scores are
significantly lower for the more certain predictions, after setting "ICULOS’ to 0, meaning that the
variance in the resulting relevance scores are significantly lower as well.

Another outcome of setting a feature to 0 is shown in Figure 14.5, where we set "ICULOS’ to
0 for the data point shown on Figure 14.1. Here, a short ICULOS’ of 13 has positive relevance
for the sepsis negative class, which means that "ICULOS’ pulls the prediction toward sepsis neg-
ative. When 'ICULOS’ is set to 0, the model changes its predictions from mostly having a high
confidence in a sepsis negative prediction, to being certain that the patient contracts sepsis. This
means that without ICULOS’, the model needs to use other features for the predictions, where
it now finds high relevance in "Platelets’, but with negative relevance scores. This confirms that
setting a feature with high relevance to 0 can push predictions towards the opposite class.

We also test the outcome of setting a feature with low relevance and low variance to 0. Here,
we choose the feature ‘BaseExcess” from the data point seen on Figure 14.3. As expected, setting
"BaseExcess” to 0 shows minimal changes in the other relevance scores and the uncertainty of the
predictions, shown on Figure N.22.

The full set of results can be seen in Appendix N.5 for ADP-A and in Appendix N.6 for ADCT.

Generally, the results confirm our expectations. For all data points, we see that when setting a
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Figure 14.3: Positive prediction on positive data point from ADP-A. Features with low relevance and variance are
excluded on the figure, full version can be seen on Figure N.2 in Appendix N.1.

feature with low relevance and low variance to 0, the predictions and the uncertainty in the
predictions only change minimally. When setting features with high relevance to 0, we also see
results that follow our expectations, however with few situations where it seems like too little
information is available, resulting in the model having lower confidences in its predictions. For
most of the cases, the confidences increase when setting a feature with negative relevance scores
to 0, and oppositely it decreases for a feature with positive relevance.

We find that, when setting the value of a feature to 0, this affects the uncertainty in the
prediction. For example, if a feature has a lot of variance in its relevance scores, compared to
the other features in the prediction, setting this feature to 0 yields a decrease in the uncertainty
of the prediction. We find this most evident for ADP-A. For example, for the negative data
point in Figure 14.1, when setting ‘Glucose” or ICULOS’ to 0, it results in less variation in the
predictions (shown in Figure N.20 and Figure 14.5 respectively). Note that for 'ICULOS’, the
prediction becomes certain for the opposite class in this case. Here, ‘Glucose” and 'ICULOS’ are
chosen, as these have high negative and positive relevance, respectively, as well as high variance
in relevance scores. Also, when setting ‘O2Sat” or 'ICULOS’ to 0 for the positive data point in
Figure 14.3, the uncertainty in the predictions decreases, shown in Figure N.24 and Figure 14.4
respectively. Again, ‘O2Sat” and 'ICULOS’ are chosen as these have a high variance in relevance
scores.

For data points from ADCT, we often find that when setting features with high positive rele-

vance to 0, the confidence in the predictions decreases, sometimes resulting in more uncertainty.
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Figure 14.4: Positive prediction on positive data point from ADP-A where 'ICULOS’ is set to 0. Features with low
relevance and variance are excluded on the figure, full version can be seen on Figure N.23 in Appendix N.3.
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Figure 14.5: Negative prediction on negative data point from ADP-A where ICULOS is set to 0, features with low
relevance and variance are excluded on the figure, full version can be seen on Figure N.21 in Appendix N.3.

Oppositely, we find that setting features with high negative relevance to 0 results in more certain
predictions, generally with higher confidence. We think that this might be a result of the data
points from ADCT generally containing fewer measurements, and therefore, that the uncertainty
in the predictions are more affected by changes to the data points, than for ADP-A.

To conclude on our expectations from this experiment, we mostly find results that confirm
these. For ADP-A, it is clear that the variations in the relevance scores is a result of uncertainty
in the predictions. Setting a feature with high variance in its relevance scores to 0 clearly affects
the uncertainty in the predictions, whereas setting a feature with low variance to 0 has a much
smaller impact on the uncertainty. On ADCT, the results are less clear regarding uncertainty,
likely due to the smaller amount of information in data points. However, it is clear that, when
setting features with high relevance scores to 0, it has a direct relation to the confidence in the

predictions.
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Part IV

Evaluation
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Chapter 15

Discussion

In this chapter, we discuss interesting findings and results found during this project.

15.1 Uncertainty in Deep Learning

In this project, we have chosen to use variational inference as our method for quantifying uncer-
tainty. We have created a BNN that is comprised of elements from TensorFlow and TensorFlow
Probability, such as DenseVariational layers and distributions. We argue that by using variational
inference, we have been able to make a more in-depth analysis of uncertainty, that would oth-
erwise not have been possible using either of the other methods discussed in Chapter 2. For
example, the experiment discussed in Chapter 13 about analyzing mean and standard deviation
of the distributions over the weights, would have been troublesome with MCMC, as distributions
over the weights have to be constructed manually. We also see the use of MC Dropout and Deep
Ensembles as being implausible for this, since either no distribution can be found for the weights,
or the relation between weights from multiple trained models is unknown.

For the experiments with LRP, we sample models by sampling each layer from the DenseVaria-
tional layers of the BNN, and propagate relevance through each resulting model. This can also be
done by training multiple models or by doing inference in an MC Dropout model multiple times.
This means that these experiments can be conducted with either of the methods for quantifying
uncertainty from Chapter 2, and that our method could be applied for either of the methods.

We think the choice of using variational inference provided us with a problem of finding the
correct hyperparameters. During development, a lot of hyperparameter tuning was required to
find a BNN with good performance. However, we also see that with good parameters, the BNN
often gets better performance, is better calibrated, and does not overfit as easily, compared to a
corresponding FFNN.

As mentioned in Chapter 8, the variance in relevance scores represents the total uncertainty
of the predictions, where the aleatoric uncertainty comes from the predictions, and the epistemic
uncertainty comes from the variance in sampled parameters. Instead, we can specifically consider
the epistemic uncertainty, by propagating a value of 1 as the total relevance, rather than the
predicted probability of sepsis for each sampled model. This eleminates the aleatoric uncertainty
from the relevance scores, and since the distribution of relevance among features is exclusively
based on the parameters and activations, propagating the same value through all sampled models
means that the resulting variance in relevance scores will specifically represent the epistemic

uncertainty.
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15.2 Dataset Framing

In Chapter 4, we discuss that "Sliding Window" and "On Clinical Demand" best fit the clinical
environment for ADP and ADCT respectively. However, through our conducted grid search ex-
periments, we were not able to find a model with sufficient calibration on either of these datasets,
so we opted to use the "Fixed Time To Onset" data framing instead. Here, we acknowledge that
limited search has been done in terms of model architecture, as we have prioritized keeping the
architecture simple, due to the novelty of our method. However, as the method we propose is
based on LRP, other architectures can be used (if they allow for stochastic elements, and sampling
of multiple models), though handling of special layers will have to be considered.

We do not think the "Fixed Time To Onset" data framing is ideal, as we argue it does not
properly reflect the clinical environments from which the two datasets are gathered. Therefore,
when using a model trained on the "Fixed Time To Onset" framing, the model will inherently
be best at predicting a TP when the patient contracts sepsis 12 hours later. In addition to this,
Lauritsen et al., in [26], find that when using "Fixed Time To Onset", they see an erroneous
correlation between relevance scores for ‘SpO2’, whereas the other framing methods seem to
find the correct correlation. Also, during the experiments, we find some results that we likewise
speculate is affected by the framing. For example, when experimenting with LRP using ADP-A,
'ICULOS’ often has a large relevance score compared to the other input features, which seems
wrong as 'ICULOS’ is not directly related to the health of the patient. We believe that using
another data framing than "Fixed Time To Onset", which better fits the clinical context of the
datasets, might lead to the model learning better patterns from the data, for example where
"ICULOS’ receives less relevance. Another way of mitigating the problem, is to use the knowledge
gained from the experiment in Chapter 12 to do feature engineering. Here, Ribeiro et al. [29]
show, that information from explanations can be used for feature engineering on the dataset, in
order to make a classifier use the "correct” features in the dataset.

Besides the unexpected patterns for ICULOS’, when considering "Age’ from ADP-A, we see
an unclear tendency that higher age results in higher negative relevance scores for the negative
class, which means that it pulls towards a positive sepsis prediction. However, we also see an
unclear tendency, that a higher age results in higher positive relevance scores for the negative
class, though generally with lower scores. This seems counterintuitive, as the hospitalization rate
for sepsis patients 65 years and above is much higher than for those under the age of 65 [48]. In
Chapter 14, we also observe that when setting 'ICULOS’ to a value of 0, we often see that this
flips the relevance of the age feature. Based on this finding, we think that it would be interesting
to train a new BNN on a dataset where 'ICULOS’ is omitted, or maybe even all demographic
features. Additionally, we find it interesting to apply other framing methods than "Fixed Time to
Onset", though this means that additional investigation is needed, in order to find a more well

calibrated model.
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15.3 Experiments

In Section 14.2, we discuss the experiment about setting feature values to 0. Even though feature
values are set to 0, information is still fed into the network. However, this information can
be interpreted as the feature being either missing or having a value of 0. For the experiment
about LRP, we argue that it still works as a way for evaluating which features uncertainty in
the predictions stems from, as features with a value of 0 have no relevance. Considering this
method, a feature with high variance in relevance should have a high effect on the uncertainty
in predictions. Setting the feature to 0 means that the feature receives no relevance, and can
therefore not be the contributing factor to the uncertainty of the prediction, according to our
method. Arguably, changing the value of the feature to 0 causes a notable change in the data
sample, which in theory can lead to more uncertainty. However, through our results we see
a consistent pattern on ADP-A that setting the feature with highest variance to 0 makes the
predictions more certain, which supports our expectations. For ADCT, this pattern is not as clear,
which may be due to a lower amount of information being present in the data samples, meaning
that setting a feature with high relevance to 0 removes too much information. However, this does
not rule out the possibility that the feature being set to 0 is a highly contributing factor to the
uncertainty in the predictions.

Another approach is to introduce two input values for each feature, one with the original
value and one stating if the value is missing. This allows for another procedure, where the model
might distinguish between when a feature is missing and when it has a value of 0. This can allow
the model to find patterns in the presence of measurements, and allows missing values to receive
relevance from LRP through the value stating whether the feature is missing. This might result
in a more in-depth analysis of how missing values affect the uncertainty in predictions. However,
for now we see the current evaluation as being sufficient for concluding that features with high
variance in the relevance scores contribute more to the uncertainty in the predictions.

In the experiment about allowing the model to abstain from making a prediction, Chapter 11,
we find that the number of FN and FP can be reduced by abstaining with either disagreement
or standard deviation, with disagreement yielding the best results. However, we also discuss
that for different limits and thresholds, the boost in performance is accompanied by tradeoffs in
other metrics. Therefore, more investigation is needed for evaluating this approach in a specific
context, for example by using net benefit analysis as discussed by Lauritsen et al. [24]. For
example, a higher cost can be given to FNs, as these might result in situations where patients are
discharged from the hospital, but contract sepsis within the next few hours, or higher cost for
EPs, if treatment of healthy patients are expensive. So, even though we cannot conclude that the
approach results in lower costs in specific situations, we still get better AUPRC and AUROC for

some limits and thresholds, and we therefore argue that it will be useful in some situations.
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Chapter 16

Conclusion

In the Introduction in Chapter 1, we emphasize that trustworthiness is important when deploy-
ing Al for clinical use. Here, we mention that trustworthiness can be achieved if a model is
explainable, and if it can reason about its uncertainty. We discuss that calibration is important
for trustworthiness, but is insufficient for capturing model uncertainty. Therefore, based on an
evaluation of state of the art methods for quantifying uncertainty and explanation, we create the

following problem statement in Chapter 6:

How can the uncertainty of a neural network for predicting sepsis be explained
using LRP, such that is possible to determine the uncertainty contribution of each
feature?

To answer the first subquestion in the problem statement, we create a BNN trained with Varia-
tional Inference in Section 7.1, which is able to express uncertainty in its predictions. To answer
the second subquestion, we investigate the ECE and ACE of said model. Here, we compare the
calibration scores to an equivalent non stochastic FFNN, and find that in comparison, the BNN is
well calibrated, which is also found by Jospin et al. in [17]. To answer the third subquestion, we
propose a novel method in Chapter 8 for explaining which features the uncertainty in predictions
stems from. Here, we use the BNN to sample multiple models, where each of these models are
explained by using LRP. These different explanations are then used to consider the variance in
relevance scores, which represents the uncertainty contribution for each feature in the prediction.

In Chapter 12, we show the results of using the proposed method, where we see that when
there is high variance in the predictions, there is also high variance in the relevance scores for the
features. We evaluate these observations in Chapter 14, where we set certain input features to 0
and observe its effect on the variance in the predictions. When setting features with high variance
in relevance scores to 0, we often see a decrease in the variance of the predictions. However, this is
not always the case on ADCT, which we speculate might be due to the sparsity of the data, which
results in fewer features the model can base its prediction on. Based on this, we conclude that
there is a clear correlation between variance in relevance scores and uncertainty in predictions,
and that the proposed method can be used to explain which features contribute to uncertainty in
predictions, on the datasets described in Chapter 4, with the model described in Section 7.1 and
Chapter 9.
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Chapter 17

Future Work

In this chapter, we present some additional experiments that we find interesting, but which we
were not able to fit into the scope of this project.

Firstly, we would like to experiment with different architectures, in order to resolve the prob-
lem with badly calibrated models on the data framing "Sliding Window" and "On Clinical De-
mand". This would make the models more compelling for use in their respective clinical envi-
ronments. Additionally, we would also like to experiment with other uncertainty quantification
methods, and compare these to the BNN developed in this project. In theory, methods where
multiple models can be sampled, will work with the proposed method. Therefore, we find it
interesting to evaluate if there is any noticeable differences in how the uncertainty is quantified
and how this influences the relevance scores and variance in these.

Additionally, we would like to try isolating the epistemic uncertainty, by propagating a rele-
vance score of 1 through LRP, rather than the predicted output, as explained in Chapter 15. We
can then compare the results from this with the results from Chapter 14, where we consider the
total uncertainty. This way, we can consider how big an impact the epistemic uncertainty has on
the predictions, compared to the total uncertainty.

In addition to this, we want to experiment with the method mentioned in Chapter 15, where
an additional value is introduced for each feature, which denotes whether a value for the feature
is present or not. We expect that this will introduce the possibility of evaluating whether relevance
scores vary because of missing features, or because of features having a value of 0. This allows
for distinguishing between these two cases, when explaining how the features affect uncertainty

in the prediction. The results from this can then be compared to the results found in Section 14.2.
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Appendix A

PhysioNet Softplus Scaling

A.1 During Training

(a) posterior_softplus_weight = 1. (b) posterior_softplus_weight = 0.0001.

Figure A.1: AUROC plotted for each epoch during training with different posterior_softplus_weight. Red plot is

for training set and blue is for validation set. The y-axis shows the AUROC and the x-axis shows the epoch number.

A.2 Performance

posterior_softplus_weight | AUC_train | AUC_val | auprc_train | auprc_val
1 0.5 0.5 0.0155 0.0155
0.1 0.48 0.475 0.0146 0.0144
0.01 0.767 0.771 0.0665 0.0669
0.001 0.809 0.797 0.0862 0.0799
0.0001 0.808 0.796 0.0868 0.0786

Table A.1: Performance of the model in relation to different posterior_softplus_weight values, on the ADP-B

dataset.
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Appendix B

Hyperparameter Tuning

B.1 PhysioNet Config & Hyperparameters 1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

"experiments":

{

[

"model": "bayesian_long_model",

"plot": false,

"hyperparameters": [

{

"units_layerl": [100],

"units_layer2": [150],

"units_layer3": [200],

"units_layer4": [100],

"units_layer5": [50],

"batch_size": [10000],

"k1_weight_scale": [0.5, 1, 1.5],
"posterior_softplus_weight":[0.0002, 0.0005, 0.001],
"prior_scale":[5, 10],

"learning rate": [0.0001, 0.00005, 0.00001, 0.000001],
"epochs": [500],

"optimizer": ["adam"],

"loss_function": ["binary_crossentropy"],

"metricl": ["auprc"],

"metric2": ["AUC"]

"model": "bayesian_long_model",
"plot": false,

"hyperparameters": [

{

"units_layeri": [200],

"units_layer2": [300],

"units_layer3": [400],

"units_layer4": [200],

"units_layer5": [100],

"batch_size": [10000],

"k1_weight_scale": [0.5, 1, 1.5],
"posterior_softplus_weight":[0.0002, 0.0005, 0.001],
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38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

"prior_scale":[5, 10],
"learning_rate": [0.0001,
"epochs": [500],

"optimizer": ["adam"],

"loss_function": ["binary_

"metricl": ["auprc"],
"metric2": ["AUC"]

"model": "bayesian_linear_model",

"plot": false,

"hyperparameters": [

{

0.00005, 0.00001, 0.000001],

"point_estimate": [false],

"units_layeri": [100],
"units_layer2": [50],
"units_layer3": [20],
"dropout": [0],

"batch_size": [10000],

"k1_weight_scale": [0.5, 1, 1.5],
"posterior_softplus_weight":[0.0002, 0.0005, 0.001],

"prior_scale":[5, 10],
"learning rate": [0.0001,
"epochs": [200],

"optimizer": ["adam"],

"loss_function": ["binary_

"metricl": ["auprc"],
"metric2": ["AUC"]

"model": "bayesian_linear_model",
"plot": false,

"hyperparameters": [

{

0.00005, 0.00001, 0.000001],

"point_estimate": [false],

"units_layeri": [200],
"units_layer2": [100],
"units_layer3": [40],
"dropout": [0],

"batch_size": [10000],

"k1l_weight_scale": [0.5, 1, 1.5],
"posterior_softplus_weight":[0.0002, 0.0005, 0.001],

"prior_scale":[5, 10],
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85 "learning_rate": [0.0001, 0.00005, 0.00001, 0.000001],
86 "epochs": [200],

87 "optimizer": ["adam"],

88 "loss_function": ["binary_crossentropy"],

89 "metricl": ["auprc"],

90 "metric2": ["AUC"]

o1 }

92 ]

93 }

oa | ]
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Figure B.1: bayesian_long_model on ADP-B.
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Figure B.2: bayesian_linear_model on ADP-B.

B.2 PhysioNet Config & Hyperparameters 2

1

2| "experiments": [

3 {

4 "model": "bayesian_manual_posterior_model",
5 "plot": false,

6 "calculate_uncertainty_metric": false,
7 "load_model_from": [],

8 "ece_error_bars" : true,

9 "hyperparameters": [

10 {

11 "point_estimate": [false],

12 "units_layeri": [60],

13 "units_layer2": [40],

14 "units_layer3": [20],

15 "batch_size": [10000],
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"posterior_init_loc":[0],
"posterior_init_scale":[-6],
"learning_rate": [0.0001],

"pos_weight": [1],

"epochs": [300],

"optimizer": ["adam"],

"loss_function": ["binary_crossentropy"],
"metricl": ["auprc"],

"metric2": ["AUC"]
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Figure B.3: bayesian_manual_posterior on ADP-B, with —6 scale initialization value.

supre_val 0

o1

supre_train_0
011

0.10

PhysioNet Config & Hyperparameters 3 - Fixed Time To Onset

"experiments": [

{

"model": "bayesian_manual_posterior_model",
"plot": false,
"calculate_uncertainty_metric": false,
"load_model_from": [],

"ece_error_bars" : true,

"hyperparameters": [

{
"point_estimate": [false, truel,
"units_layeri": [60],
"units_layer2": [40],
"units_layer3": [20],
"batch_size": [6000, 10000],
"posterior_init_loc":[0, 0.5],
"posterior_init_scale":[-4, -5, -6],
"learning_rate": [0.0001, 0.001],
"pos_weight": [1],
"epochs": [1500, 3000],
"optimizer": ["adam"],

"loss_function": ["binary_crossentropy"],
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Figure B.4: Expanded grid on ADP-A, values based on earlier best performing grids.

Onset,
Best Model

"experiments": [

{
"model": "bayesian_manual_posterior_model",
"plot": false,
"calculate_uncertainty_metric": false,

(1,

. true,

"load_model_from":
"ece_error_bars"
"hyperparameters": [
{
"point_estimate": [false],

(601,

[40],

[20],

[6000, 100007,

"posterior_init_loc": [0, 0.5],

"units_layerl":
"units_layer2":
"units_layer3":

"batch_size":

"posterior_init_scale":[-4, -5, -6],
[0.001, 0.0001],
(11,

[1500, 3000],

["adam"],

"loss_function":

"learning_rate":
"pos_weight":
"epochs":
"optimizer":
["binary_crossentropy"],
"metricl": ["auprc"],

"metric2": ["AUC"]
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Figure B.5: Expanded grid on ADP-A, values based on earlier best performing grids.

The best performing parameters:
¢ 5,000 Batch Size.
¢ 0.0001 Learning Rate.
1,500 Epochs.
0 Posterior Init Loc

—6 Posterior Init Scale

B.5 Tvarspor Config & Hyperparameters 1

1| "experiments": [

2 {

3 "model": "bayesian_linear_model",

4 "plot": false,

5 "hyperparameters": [

6 {

7 "point_estimate": [false],

8 "units_layeri": [50],

9 "units_layer2": [30],

10 "units_layer3": [10],

1 "dropout": [0.02],

12 "batch_size": [10000],

13 "k1_weight_scale": [0.5, 1],

14 "posterior_softplus_weight":[0.0001, 0.00001, 0.000001],
15 "prior_scale":[1, 1.5, 2],

16 "learning_rate": [0.001, 0.0001],
17 "epochs": [1000],

18 "optimizer": ["adam"],

19 "loss_function": ["binary_crossentropy"],
20 "metricl": ["auprc"],

21 "metric2": ["AUC"]

22 }

23 ]

24 },

25 {

26 "model": "bayesian_linear_model",

27 "plot": false,

28 "hyperparameters": [

29 {
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"k1l_weight_scale": [0.5, 1],
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"learning_ rate": [0.001, 0.0001],
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Figure B.6: bayesian_linear_model.

B.6 Tvarspor Config & Hyperparameters 2

10

11

12

13

14

15

16

"experiments":

{

[

"model": "bayesian_manual_posterior_model",

"plot": false,

"calculate_uncertainty_metric": true,

"hyperparameters": [

{

"point_estimate": [false],

"units_layerl":

"units_layer2":

"units_layer3":
"dropout": [0],

"batch_size":

[eol,
[40],
[20],

[5000, 10000],

"k1l_weight_scale": [1],

"posterior_init_loc":[0],

"posterior_init_scale":[-4, -5, -6],
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Figure B.7: Grid search on ADCT.
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Appendix C

This appendix is a copy of Chapter 2 "Description of Datasets” from our pre-master thesis [10].

Description of Datasets

Enversion has earlier worked with two projects about early detection of sepsis, which both work
on EHR data [24, 25]. We therefore choose to narrow our scope of EHR data to be within the area
of sepsis detection, with the goal of reasoning about the uncertainty of models that are designed
for early detection of sepsis. A description of sepsis can be found in Appendix A.

A dataset preprossed by Enversion, which is based on the CROSS-TRACKS cohort, has been
made accessible to us through our employment and tasks at Enversion. As part of our terms of
employment we have signed a non-disclosure agreement as well as received the appropriate data
protection training. All data presented in the report is anonymous.

Since our supervisor has not signed a non-disclosure agreement, he cannot view the dataset
made accessible to us by Enversion. Therefore, we choose to find another dataset with no acces-
sibility restrictions, which also resembles this dataset. For this we find a dataset from PhysioNet
[6], which also consists of EHR data, which can be used to predict sepsis. In this chapter, we

describe the two datasets and a comparison between them.

C.1 Dataset Introduction

In this section, we give a general description of the datasets and what we investigate about them
in the following sections. The first dataset is prepared by Enversion using data from the research
project Cross-Track [7] and is referred to as DCT. The second dataset is from PhysioNet and is
referred to as DP. Both datasets consist of different measurements taken from multiple patients

admitted to hospitals, and can be divided into two kinds of values:

¢ Vital Signs - Essential values from measurements for monitoring the health of patients, such
as heart rate, temperature, and blood pressure.
* Laboratory Values - Values from laboratory experiments, such as measuring the content of

calcium or magnesium in the patient’s blood.

For both datasets, the vital signs and laboratory values are aggregated over an hour and stored in
a matrix, where each row corresponds to a time span of one hour, which we call timesteps, and
each column consists of measurement values. We refer to what the columns describe as features.
Since some measurements are not conducted for every timestep, some cells do not contain any
value and is therefore assigned NaN. These are referred to as missing values.

To better understand the two datasets, we investigate the following for DCT and DP:

¢ How much of the data is missing values?

— Does this change over time?

— Which features contain missing values more frequently than others?
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— How often are measurements made?

* What is the distribution of sepsis-positive and -negative patients?
¢ Is there a correlation between the admission time and whether the patients are sepsis-

positive or -negative?

The following two sections answer these questions for DP and DCT respectively, followed by a

comparison of the two, to evaluate whether DP is similar enough to DCT.

C.2 PhysioNet

PhysioNet has a publicly available dataset with medical records of more than 40,000 patients
distributed over two hospitals, referred to as dataset A and B [6]. The framing used in DP
is sequential data with a fixed time to sepsis onset. The data from the two hospitals can be
downloaded as separate ZIP files through PhysioNet’s archive and contains EHRs for patients,
stored as Pipe Separated Values (PSV) files. As described in Section C.1, each row in the files
represents a timestep and each column a feature. The columns describe a total of 40 features and

a sepsis label, and are sorted according to the following categories:

e 1 — 8: Vital Signs

* 9 —34: Laboratory Values

¢ 35 — 40: Demographics - Information about the patient, such as age and gender, which are
constant for all timesteps.

¢ 41: Sepsis Label - A boolean label indicating whether the patient has been diagnosed with
sepsis. The label is offset six hours before sepsis onset, which means that the label changes

from 0 to 1, six hours before the patient is diagnosed with sepsis.

C.2.1 Data Analysis

In this section, we analyze DP to answer the questions from Section C.1.

Data Sparsity

We count the number of missing values and actual values for each feature in the timesteps, for
each dataset, which is displayed in Figure C.1. Both datasets in Figure C.1 show that some
features include missing values more frequently than others. The frequency is often related to its

category, described in Section C.2.
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Figure C.1: Illustration of frequency of missing values in DP.

6 out of 8 features in the Vital Signs category include measurements for over 80% of the data
points. The third feature, which is temperature, includes over 60% missing values in both dataset
A and B, despite being a vital sign. The eighth feature, which is end-tidal carbon dioxide, only
has missing values in dataset A and around 95% missing values in dataset B. Features within the
laboratory values category are very sparse, and close to all features include 90% missing values.
Missing values in the demographic features are only present in the features indicating which ICU
the patient is located at. The only demographic feature that changes value over time is length of
admission feature, while age, gender, ICU, and admission time remain the same.

To find out how the frequency of measurements changes over time, we find the percentage of
patients with measurements for each lab value at every timestep. To simplify the graph, shown in
Figure C.2a, we average the percentage over all the lab values to get one point for each timestep.
Figure C.2a shows that DP has a few more measurements in the beginning, but is almost the same
over time.

Figure C.2b shows the frequency of vital sign measurements. The frequency is high and stays

consistent across the admission, since the data is from ICUs, where vitals are checked very often.
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Figure C.2: Frequency of measurements over time in DP.
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Time Between Measurements

Concerning the sparse data, we examine how frequent each of the measurements occur by taking
the average time between the measurements of each patient’s features, and plot the median value

for each feature, as seen in Figure C.3.
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Figure C.3: Average time between measurements for each feature.

Patient Count

To get an overview of the number of patients with sepsis, we count the number of sepsis-negative

and sepsis-positive patients, which are shown in Table C.1.

Set A | Set B Combination

Total 20,336 | 20,000 | 40,336
Negative 18,546 | 18,858 | 37,404
Positive 1,790 | 1,142 | 2,932

Negative percentage | 91.1% | 94.3% | 92.7%
Positive percentage | 8.8% | 58% | 7.3%

Table C.1: Count of patients for the two datasets, A and B, and the combination of the two.

We observe that the datasets include more sepsis-negative patients, with a percentage of over
90%. This shows a general imbalance in the distribution of postitive and negative samples in the
data.

Length of Admission

We observe that in several cases, patients diagnosed with sepsis have a prolonged admission to
the ICU, compared to sepsis-negative patients. Figure C.4 shows the admission length for both
sepsis-positive and sepsis-negative patients in dataset A and B. Sepsis-positive patients have a
prolonged admission in dataset A, with 6 out of 18,546 sepsis-negative patients and 651 out of
1,799 sepsis-positive patients being admitted for more than 60 hours. However, this is not the case
for dataset B, where 223 out of 18, 858 sepsis-negative patients and 393 out of 1, 142 sepsis-positive
patients in dataset B are admitted to the ICU for more than 60 hours.
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Figure C.4: Length of admission.

Note that the scale of the y-axis for the two graphs in Figure C.4 is logarithmic to make it easier
to distinguish the values below 10. The curve of sepsis-positive patients in Figure C.4b shows
that a large part of the patients are diagnosed with sepsis within their first days of admission in
the ICU.

C.3 Cross-Tracks

As DCT has been prepared by Enversion using data from the research project Cross-Tracks [7], it
is already structured as a NumPy array (numpy.org). The NumPy array has been serialized and
stored to disk using pickle (docs.python.org/3/library/pickle.html), so it can easily be loaded
into memory. DCT has 25 features, where the first six are vital signs and the rest are laboratory
values.

These are stored in a three-dimensional array with the following indexes: [anonymized pa-
tient ID][timestep][feature]. The data is prepared using the on-clinical demand framing, which
means that the end time of sequences is the time where clinical staff performs an assesment of
early warning score (EWS) [49]. The start time of the sequences is 24 hours before that. These
assesments are conducted multiple times during an admission, with no indication in the data
of when in the admission they are performed. Due to this, we cannot say anything about the
patients” length of admission for DCT. The sepsis label indicates if a patient gets sepsis within 12
hours after a test is requested. These sepsis labels are stored in a separate array with one boolean

entry per patient.

C.3.1 Data Analysis

In this section, we analyze DCT to answer the questions from Section C.1. The graphs and table
in this section are made in the same way as the graphs in Section C.2.1.

Data Sparsity

Figure C.5 shows that DCT only has values for around 10% of the timesteps for the vital signs,

and less than 3% for laboratory values.
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Figure C.5: Missing values in DCT.

If we look at how the frequency of measurements change over time, as shown in Figure C.6a and
Figure C.6b, we see that there are more measurements in the beginning, and for vital signs there
is a spike in the last timestep. We think the reason there are more measurements in the last hour,
is because it is the timestep where the clinical staff performs the EWS assessment. We can see
that the frequency of measurements are much lower than for DP, since the data from DCT is not
from ICUs.
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Figure C.6: Frequency of measurements over time in DCT.

Time Between Measurements

Figure C.7 shows that most measurements are taken once every 11 hours and the rest of the

measurements are taken around every four hours.
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Figure C.7: Median time between measurements for each feature for DCT.

Sample Count

DCT has a lot of samples, but most of them are sepsis-negative as shown in Table C.2. Overall,

DCT has more sepsis-negative samples compared to sepsis-positive than DP.

DCT
Total 340,450
Negative 337,814
Positive 2,636

Negative percentage | 99.2%

Positive percentage | 0.8%

Table C.2: Count of samples for DCT.

Length of Admission

Because DCT only has data for the last 24 hours, we cannot say anything about the length of

admission.

C.4 Dataset Comparison

After having analyzed and described DP and DCT, we show a comparison between the two
datasets and discuss their similarities and differences, to evaluate whether DP is sufficiently sim-
ilar to DCT.

Table C.3 shows the similarities and differences between the datasets. In general, the datasets
have a lot of similarities. The raw data format of the datasets is different, but the content of the
sepsis admissions contains the same kind of data. One of the main differences between them is
that DP has demographic data, while DCT does not, and that the framing is different. Another
difference is that DP has more features than DCT, with 40 and 25 features respectively. As the
data from DP is taken from an ICU, the measurements are taken more frequently than other
departments at the hospital. As the number of timesteps, i.e. the length of admission, in DCT is

limited to 24, it differs from DP, which contains timesteps for all hours of admission. Therefore,

95



we need to consider the size of the observation window of timesteps when doing experiments
with the data. Additionally, DCT has a higher frequency of missing values than DP.

We deem DP and DCT to be sufficiently similar to be used in the same models, as the differ-
ences mostly are that DP has more data about each patient and take measurements more often.
However, because the framing is different we cannot directly compare performance metrics be-

tween the two datasets.

Attribute PhysioNet Enversion

Raw data format Pipe-separated values Python NumPy array
Framing Fixed time to onset On-clinical-demand
Vital signs 8 6
Laboratory-categories  (e.g. | 25 19

Blood tests)

Average time between vital | 1.5 11

signs (hours)

Average time between Labo- | 12 8

ratory measurements (hours)

Age Yes No

Gender Yes No

Admission time Yes No

Aggregation time One hour One hour

Positive patient count 2,932 2,636

Country USA Denmark

Sepsis definition Sepsis-3 definition Sepsis-3 definition

Table C.3: Comparison between the datasets from PhysioNet and Enversion.
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Appendix D

This appendix is a copy of Appendix C “Feature Description of Datasets” from our pre-master thesis [10].

Feature Description of Datasets

Feature number Measurement

1 Temperature

2 SpO2

3 Heart rate

4 Diastolic BP

5 Respiratory Frequency
6 Systolic BP

7 B-Leukocytes

8 B-Neutrophils

9 B-Platelets

10 eGFR

11 P-Albumin

12 P-Bilirubine

13 P-C-reactive protein
14 P-Glucose

15 P-Potassium

16 P-Creatinine

17 P-Sodium

18 P(aB)-Hydrogen carbonate
19 P(aB)-Potassium

20 P(aB)-Chloride

21 P(aB)-Lactate

22 P(aB)-Sodium

23 P(aB)- pCO2

24 P(aB)-p

25 P(aB)- p02

Table D.1: Features of dataset prepared by Enversion from Cross-Track’s dataset [7].

Feature number ‘ Measurement Description

Vital signs (Feature 1-8)

1 HR Heart rate (beats per minute)
2 O2Sat Pulse oximetry (%)

3 Temp Temperature (Deg C)
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4 SBP Systolic BP (mm Hg)

5 MAP Mean arterial pressure (mm Hg)

6 DBP Diastolic BP (mm Hg)

7 Resp Respiration rate (breaths per minute)
8 EtCO2 End-tidal carbon dioxide (mm Hg)

Laboratory values (Feature 9-34)

9 BaseExcess Measure of excess bicarbonate (mmol/L)

10 HCO3 Bicarbonate (mmol/L)

11 FiO2 Fraction of inspired oxygen (%)

12 pH N/A

13 PaCO2 Partial pressure of carbon dioxide from arterial blood (mm
Hg)

14 Sa0O2 Oxygen saturation from arterial blood (%)

15 AST Aspartate transaminase (IU/L)

16 BUN Blood urea nitrogen (mg/dL)

17 Alkalinephos Alkaline phosphatase (IU/L)

18 Calcium (mg/dL)

19 Chloride (mmol/L)

20 Creatinine (mg/dL)

21 Bilirubin_direct Bilirubin direct (mg/dL)

22 Glucose Serum glucose (mg/dL)

23 Lactate Lactic acid (mg/dL)

24 Magnesium (mmol/dL)

25 Phosphate (mg/dL)

26 Potassium (mmol/L)

27 Bilirubin_total Total bilirubin (mg/dL)

28 Troponinl Troponin I (ng/mL)

29 Hct Hematocrit (%)

30 Hgb Hemoglobin (g/dL)

31 PTT partial thromboplastin time (seconds)

32 WBC Leukocyte count (count - 103/ uL)

33 Fibrinogen (mg/dL)

34 Platelets (count - 103/ uL)

Demographics (Feature 35-40)

35 Age Years (100 for patients 90 or above)

36 Gender Female (0) or Male (1)

37 Unitl Administrative identifier for ICU unit (MICU)

38 Unit2 Administrative identifier for ICU unit (SICU)

39 HospAdmTime Hours between hospital admit and ICU admit

40 ICULOS ICU length-of-admission (hours since ICU admit)

98




Table D.2: Features of dataset from PhysioNet [6].
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Appendix E

This appendix is a copy of Appendix A "Sepsis” from our pre-master thesis [10].
Sepsis

In this section, we describe the disease sepsis, and how it is diagnosed, based on the article [50].
Sepsis is a severe medical condition, where damage to tissue and organs is caused by the immune
system’s response to an infection. If bacteria from an infection spreads to the bloodstreams, it
might spread to other organs, which can be fatal. The immune system reacts to the infection by
lowering the blood pressure and thereby slowing down the blood flow, making it harder for the
bacteria to reach the organs. However, this reduces the oxygen flow to the organs, which can
cause them to fail, resulting in organ and tissue damage.

Sepsis is described as a life-threatening disease, as the mortality rate ranges between ~ 20%
to ~ 40%, and is one of the most common causes of death in intensive care units (ICUs). The
number of sepsis cases has doubled over the last 10 years, however, the overall mortality rate has
decreased due to advancements within health care. Early detection of sepsis can be difficult, as
the signs of the disease can be divergent.

As of the time of writing, there have been a total of three sepsis definitions. With the sepsis-3
definition, the old criteria were replaced with a new system, Sequential Organ Failure Assessment
(SOFA). Now, sepsis is diagnosed with the SOFA scoring system, which evaluates the condition
of six organ systems. This score can be used to determine whether any of the organ systems have
reduced functionality, which may indicate that the patient has sepsis. The six organ systems that

the SOFA scoring system evaluate are:

¢ Respiratory System: By measuring the partial pressure of oxygen in the arterial blood [51].

¢ Coagulation: By measuring the number of platelets in the blood. A higher number of
platelets results in a higher chance of blood clotting [52].

¢ Cardiovascular: By measuring hypotension, which is a low systolic blood pressure [53].

¢ Liver: By measuring the amount of bilirubin present in the liver. A high amount of bilirubin
is a sign of diseases [54].

* Renal: By measuring the amount of creatinine in the renal or urine output of the patient.
Creatinine is a waste product in the blood, and is the result of muscle attrition [55].

¢ Central Nervous System: By measuring disruptions in brain function with the Glasgow
Coma Scale (GCS). GCS analyses the mental status of the patient through a set of criteria
and assign points to the patient according to their brain functions. A lower GCS score

signifies less consciousness in the patient [56].

A score of 0 to 4 can be assigned to each of the six evaluated organ systems, meaning that the
total score can be between 0 and 24. If a patient experiences symptoms that result in a SOFA
score with an increase of two, the patient is diagnosed with sepsis. The number of points can

reflect the mortality of the patient, as more points can indicate a more severe case of sepsis. For
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example, with a score ranging between 0 and 6, the mortality of the patient can be expected to be

less than 10%, and with a score above 15, the expectation is 90%.

101



Appendix F

This appendix is a copy of Chapter 4 "Theory”, Section 4.1 "Artificial Neural Networks” from our pre-
master thesis [10].

Artifical Neural Networks Theory

E1 Artificial Neural Networks

In this section, we give an introduction to artificial neural networks, based on information from
[16] and [23]. Artificial neural networks are a group of algorithms inspired by the biological neural
network, like the human brain. Throughout this report, we refer to artificial neural networks as
neural networks.

A neural network consists of an input layer, a number of hidden layers, and an output layer,
each containing a number of neurons. Between two consecutive layers, a number of weights
connect the neurons in layer / — 1 to neurons in layer /. The weights are denoted w}k, where j is the

index of the neuron in layer / and k is the index of the neuron in layer I — 1. Each neuron contains
!
j
function, o, with input zé, as shown in Equation F.1b. z} is calculated as the sum of products of all

an internal value, that we denote z}, and an output, denoted a;-. a; is the output of an activation

weights connected to the neuron and the output of the activation function for the corresponding
neuron from the previous layer, a, !, shown in Equation F.la. An activation function is used
to make a neural network approximate nonlinear functions. Without an activation function, a
neural network is only able to approximate linear functions, which is undesirable in many cases.
WM), which produces outputs
between 0 and 1. Additionally, neural networks use biases, which are used to shift the function

An example of a nonlinear activation function is sigmoid (

of the neural network.
z} = ;wék cap ! (F.1a)

at = o(zh) (E1b)

In the following description, the bias is augmented as an extra activation from the previous
layer, always having a value of 1, which is analogous to having a bias neuron with an output
of 1, connected with weights to all neurons in a layer. Additionally, we will only be using ¢ to
symbolize an activation function, although activation functions can be different between layers.
Instead of representing the activations from a layer as individual scalars, the activations can
also be represented in the form of a vector, a!, where the elements are each activation from
the layer. The weights for a layer | can be represented as a matrix W!, where index W'[2,3]
refers to wh,. With this representation, we can calculate the activations of a layer a' using matrix

multiplication as shown in Equation F.2:

2l =W gt (F2a)
a =o(2) (E2b)



These equations encapsulate the forward propagation of the neural network, from input to out-

put.

F1.1 Training a Neural Network

In this section, we explain how a neural network is trained. The basic principle of training a neural
network is to update the parameters of the network based on the gradient of a cost function, C,
given a set of input-output pairs. C is a function that measures the correctness of the prediction in
relation to the ground truth labels. This measure is also known as the cost or loss. One example
of a cost function is cross-entropy, which can be used when doing classification. In our case, we

do binary classification when classifying whether a person gets sepsis or not.

1 R .
C=—1p Y. (y-log(y(x)) + (1 —y) -log(1—9(x))) (F3)
(x,y)eD
Equation E.3 calculates the cost for a neural network, in relation to a dataset D, where D contains
the input-output pairs (x,y). 7(x) is the output of the activation function of the output layer in

the network, a’.

Backpropagation

The purpose of backpropagation is to calculate the gradients of the cost function with respect to
the parameters of the neural network.

The gradients of the cost function are calculated as the partial derivatives of C with respect
to each weight in W, denoted as %’%k. Using the chain rule, this can be rewritten as shown in
Equation F.4, where the partial derivatives on the right-hand side each represent a backward step

in the backpropagation.

l l
oC  dC da; 0z

— === E4)
I 191 I (
aw].k da; 0z aw].k
od! ..
As % . B—Z{ is used for calculating the gradients with respect to all weights to neuron j in layer [,
i i
: ! 1 _ ac %
we introduce J; as an error term such that J; = 25 - .

If we introduce V,C as a vector of partial derivatives of C with respect to each activation in

the output layer, shown in Equation F.5a, then the error term of the output layer can be calculated
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as shown in Equation F.9a. ¢’ is the derivative of the activation function with respect to the inputs

to that activation function, sz, such that the output of ¢’ is the vector shown in Equation E5b.

dC
BulL
v.e=| : (E.5a)
aC
aalLaL‘
BulL
at
ozH) =1 : (E.5b)
aulLaL‘

ozt
|aL|

The error term of the output layer is used to calculate the error term of the preceding layer, using
Equation F.9b, which is in turn used to further propagate the error term backwards through the
network. This means that the error term has to include these extra backward steps, which can be

seen in the expansion of the chain rule (Equation F4), shown in Equation E.6.

Z( aC  9alt! azf.H) 9z}

+1 7 o I+1 gl
T o\da; " 0z 0z;

oC

(F.6)
awj.k

"5
8w].k

1+1
The expansion introduces the term ag;z shown in Equation F7, where the right hand side is
j

derived from Equation F.1.

ozi+1 l
— i1 I
ﬁ =w; - 0'(z) (F7)
]
In Equation E.8, the partial derivatives inside the summation in Equation F.6 is substituted by the

error term from the following layer and Equation E7.

=Y (o w0 (&)
1

The summation in Equation F.6 can be expressed in the form of matrix-vector multiplication,

I
az].

R
aw].k

oC

— ES8
S, (F8)

calculating all error terms for a layer, as shown in Equation F9b.

oC
oz} or
st=v,cod:z)=| : | =] : (F.9a)
aC L
leLa L 5|aL\
aC
o &
o =((WhT.s"oedE) =] | [=] (F9b)
dC 1
azfa,‘ 5|a’ |
oz
Now that the error terms are introduced, ﬁ from Equation F.4 and Equation F.6 is the only
jk

l

additional term that needs to be considered. % is calculated as the derivative of Equation F.1a
ik
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with respect to w;.k, which has the result: af:l. Therefore, the gradients of C with respect to each

parameter in the neural network are calculated as shown in Equation F.10.
oC
— =0 a ! (F.10)
ow e

Optimization

When the gradients have been computed, they can be used to update the parameters of the neural
network. One way of doing this is through gradient descent, which updates the parameters
along their gradients towards a local optimum for the cost function. Equation F.11 calculates the
delta values for each weight, which is how much the weights are increased or decreased in the

optimization step.

m
Awhy = —p- % : Z g;’{f (F.11)
i OWi

Here, p is the learning rate, which is a small positive real number that adjusts how much the
parameters of the neural network are updated in a single training step. The delta values are
calculated as the learning rate multiplied by the average of the gradients for data samples x;. If
we consider simple gradient descend, the gradients are calculated for the entire dataset, meaning
that m denotes the total number of data samples in Equation FE11. This can be time consuming
for large datasets, but can be improved by using stochastic gradient descend. In stochastic gradient
descend, a randomly selected batch of training samples are considered at a time, and the average
gradient for the training samples are calculated. In this case, m in Equation F.11 denotes the
number of samples in the batch.

Choosing the value of the learning rate is important for the training of the network. A high
learning rate makes larger changes to the parameters and thus converges faster, whereas a low
learning rate makes smaller changes and is better at fine-tuning parameters. Therefore, it is
advantageous to have a high learning rate early in the training process, to converge faster, and
then change to a low learning rate later in the training process, to fine-tune parameters closer
to the optimum. Adam is a method that uses this concept of adaptive learning rate, which finds

individual learning rates for updating different parameters in the network.
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Appendix G

Adam Optimizer

This section is based on information from [16], [57] and [58].

In this section, we cover the optimizer we use when training models throughout this project.
The Adaptive Moment Estimation (Adam) is an adaptive optimizer where each parameter in the
model has its own adaptive learning rate. Here, the gradients of a single parameter g;; for the tth

timestep for parameter i, with regards to loss function L, is defined as:
8ti = Vo, L(0)1 (G.1)

Using this definition, we can define v; as the exponentially moving average of the squared gradi-
ent from previous t timesteps. v; is used to scale the global learning rate in relation to individual
parameters, such that each parameter can have an individual learning rate. Here, if a parameter
sees small updates, v; will slowly decay, in turn resulting in an increase in learning rate for these

parameters. v; uses a decay factor B>, where Kingma et al. propose a default value of 0.999 for

Bo.
vr = Bovp—1 + (1 — B2)g7 (G.2)

In addition to this, we also define m;, which is used for scaling the learning rate in a momentum
like manner. This means that parameters with high gradients get higher m;, which results in
larger step sizes. m; uses a different decay factor, namely B;. Here, Kingma et al. propose a
default value of 0.9 for B;. The exponentially moving average for m; is also based on previous

gradients, but unlike v; they are not squared:

my = Pime—1 + (1 — B1)gt (G.3)

As vy and my are initialized to both be 0, the following v; and m; are biased towards 0. Due to

this, Adam uses a regularization step for v; and m;:

A mi
my = 7(1 — 135) (G.4a)
A Ot

Uy = 7(1 — lgtz) (G.4b)

Equation G.5 shows the update rule for Adam, which computes the updates for the parameters
in the network. The rule makes use of the regularized 9; and 1, as well as a global learning rate

« and an € to avoid division by zero, where Kingma et al. propose a default of 1078 for .

o
th—f—e

01 = 0 — e (G.5)
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Appendix H

This appendix is a copy of parts of Chapter 5 "Reasoning about Uncertainty” from our pre-master thesis
[10].

Calibration

H.1 Calibration of a Neural Network

The calibration of a network indicates how well the confidence output of a network fits with the
actual probability of an event. The confidence output corresponds to the network’s predicted
probability of the event, as a value between 0 and 1. The higher the confidence is, the more likely
the event is, and vise versa.

If a neural network outputs ten predictions for the next ten days, where each prediction has
a confidence of 0.3 for rain, we expect it to rain on three out of ten days. This means that the
confidence output should be equal to the actual probability. However, this is not always the case,
as proposed by the paper by Guo et al. [11], where they discover that modern neural networks are
often miscalibrated. This is problematic if such a network is used for high risk decision making,
such as whether to brake in self driving cars, or as a second opinion system for clinical use. For
example, if a network has a low confidence of 0.1 that a patient gets sepsis, and 19—0 patients with
similar symptoms get sepsis, we have a bad calibration that might lead to a missed diagnosis.

Perfect calibration can be formally defined as [11]:
P(Y=Y|P=p)=pVpec[01] (H.1)

Given P, the predicted confidence, we assess the probability of the predicted class label Y being
equal to the actual ground truth class label Y. For a perfectly calibrated network, this expression
should be equal to the confidence for a specific prediction p. The left hand side of Equation H.1
corresponds to the accuracy of a network, and the right hand side corresponds to the confidence
of a network. Since perfect calibration cannot be measured with a finite dataset, the accuracy and
confidence are approximated by splitting the predictions into M bins, B, and then calculated for

each bin using Equation H.2 and Equation H.3.

1

acc(By) = Bl
m

Y LW =vi) (H.2)
i€By

Equation H.2 shows how to compute accuracy for a binary classifier. Here, yj; is the predicted
class label for sample i, y; is the ground truth class label for sample i, and 1 is an indicator
function. The indicator function is used to determine whether the predicted label is equal to the
ground truth label, where 1 is returned if they are equal, and 0 is returned otherwise. Note that
each prediction is considered positive, such that x predictions with a confidence of 0.2 should

achieve an accuracy of 0.2 to be perfectly calibrated.

1 .
conf(By) = W Z pi (H.3)
Ml ieBy,
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Equation H.3 shows how to compute the confidence for a binary classifier. Here, p is the predicted
probability that sample i is positive, such that the confidence of a bin equals the average predicted
probability for that bin.

By partitioning the predictions into bins, we can compute the difference between accuracy
and confidence for each bin as a measure for calibration error. Calibration can be viewed as a
way of telling to which degree a model actually reasons about its uncertainty [59]. If a network is
well calibrated, its output confidence expresses the actual frequency, whereas a large difference
between confidence and accuracy means that there is a lot of uncertainty tied to the prediction.

Additionally, Guo et al. [11] find that three general concepts used in machine learning affect
the calibration of a network, namely model size (width and depth), weight decay and batch
normalization. The descriptions for these, based on [16], and their effect on calibration, according

to [11], is as follows:

¢ Increasing model width (adding more parameters per layer) and depth (adding more layers)

both yield a progressively worse calibration.

¢ Weight decay concerns the regularization of a weight, where a factor between 0 and 1 is
used to downscale the weight, which in turn reduces the chances of the network overfitting

on training data. Using less weight decay has a negative impact on calibration.

* Batch normalization is a method for speeding up training in a network, by using batches
of input [60]. By normalizing the output of each activation function in a layer, all outputs
have a standard deviation of one and a mean of zero. This limits fluctuation of the output,
which speeds up training of the network. Training models with batch normalization shows

that batch normalization results in better accuracy, but worse calibration.

These findings make it interesting to consider these concepts when further working with calibra-

tion.

H.1.1 Expected Calibration Error

The calibration measure presented by Guo et al. [11] is called Expected Calibration Error (ECE),

and is defined as:
M | Bul
ECE= ) T!acc(Bm) —conf(Bu)| (H.4)
m=1

Here, the predictions are partitioned into M bins, for a total number of n data samples across
all bins. Each bin includes the predictions from a specific prediction confidence interval, e.g. all
predictions with confidence between 0 and 0.2. A perfectly calibrated network has an ECE value
of zero, and the higher the value the worse calibrated the network is.

The comparison between confidence and accuracy can be visualized in a reliability diagram,
as seen in Figure H.1, with confidence on the x-axis and accuracy on the y-axis. As mentioned
earlier, perfect calibration is when the confidence is equal to the accuracy, which can be seen as the
diagonal line. The blue bars represent the average accuracy for a given bin and the transparent red

bars represent the difference between the calibration of the model and perfect calibration. When
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the bar is above the diagonal, as with the sixth bin, it indicates that the model is underconfident
for that bin, since the accuracy is higher than the confidence. Likewise, if the bar is below the
diagonal, as with the last bin, it indicates that the model is overconfident, since the confidence is

higher than the accuracy.
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Figure H.1: Example reliability diagram for the ECE measure.

H.1.2 Adaptive Calibration Error

Nixon et al. [61] presents another calibration measure, called Adaptive Calibration Error (ACE).
ACE is adapted to consider all predictions in a multi-class classification setting, and it uses a

different binning scheme. The equation for ACE is defined as:
1 K R
ACE = 1= k; r; lacc(r, k) — conf(r,k)| (H.5)

Here, K is the number of classes, R is the number of ranges, and acc(r, k) is the accuracy for
class k in range r. The ranges work similarly to bins, but rather than including an interval for
confidence, each range includes a specific number of the total predictions, sorted by confidence
value, such that all predictions are spread evenly across the R ranges. This prevents the cases
where the bins are imbalanced, meaning that some bins include the majority of predictions, and

other bins include only a small number of predictions.
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Appendix I

BNN Implementation Code Snippets

1| def _get_dense_from_variational(layer, input_shape):

2 weights = layer.weights[0]

3 len_parameters = weights.shape[0]

4 half_len = int(len_parameters/2)

5

6 #Extracts the first half of the parameters for mean, and the second half for loc.
7 loc_parameters = weights[0:half_len]

8 scale_parameters = weights[-half_len:]

9

10 output_shape = layer.output_shape[1]

1

12 bias_size = output_shape

13 weight_size = half_len - bias_size

14

15 #Splits params for loc into params for weights and for biases.
16 loc_weights = loc_parameters[0:weight_size]

17 loc_biases = loc_parameters[-bias_size:]

18

19 #Splits params for scale into params for weights and for biases.
20 scale_weights = scale_parameters[0:weight_size]

21 scale_biases = scale_parameters[-bias_size:]

2

23 #Generates normaldistributions from the parameters and samples a weight or bias

from each.

2% weights = []
25 for loc_weight, scale_weight in zip(loc_weights, scale_weights):
26 weights.append(tfd.Normal(loc=loc_weight, scale=le-5 +

tf.nn.softplus(scale_weight)) .sample())

27

28 biases = []
29 for loc_bias, scale_bias in zip(loc_biases, scale_biases):
30 biases.append(tfd.Normal (loc=loc_bias, scale=le-5 +

tf.nn.softplus(scale_bias)) .sample())

31

32 #Constructs a initializer used for building the corresponding dense layer.
33 weight_initializer = tf.keras.initializers.constant(np.array(weights))
34 bias_initializer = tf.keras.initializers.constant(np.array(biases))

35
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36

37

38

dense = tf.keras.layers.Dense(units=output_shape,
kernel_initializer=weight_initializer, bias_initializer=bias_initializer,
activation=’relu’)

dense.build (input_shape)

return dense

Code snippet I.1: Function for sampling parameters from a specific layer in the BNN posterior.
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Appendix ]

FFNN Grid Search

J.1 FFNN Grid Search On ADCT

units_layert units._layer2 units_layer3 point_estimate learning_rate batch_size epochs m_aupre_test
204 Ei 204 - 000100 10.000 5 3,000 0345
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Figure J.1: FENN grid search on ADCT.

1| "experiments": [

2 {

3 "model": "bayesian_manual_posterior_model",
4 "plot": false,

5 "calculate_uncertainty_metric": true,

6 "hyperparameters": [

7 {

8 "point_estimate": [true],

9 "units_layeri": [60],

10 "units_layer2": [40],

1 "units_layer3": [20],

12 "batch_size": [6000, 10000],

13 "learning rate": [0.0001, 0.001],
14 "epochs": [1500, 3000, 1000],

15 "optimizer": ["adam"],

16 "loss_function": ["binary_crossentropy"],
17 "metricl": ["auprc"],

18 "metric2": ["auroc"]

19 }

20 ]

21 3

2| ]

Code snippet J.1: Configuration of the best FFNN, found in Figure J.1.

The best performing parameters:
* 5,000 Batch Size.
¢ (0.0001 Learning Rate.
¢ 1,500 Epochs.
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J.2 FFNN Grid Search On ADP-A
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Figure J.2: FFNN grid search on ADP-A.

"experiments": [

{

"model" :

"plot": false,

learning_rate

0.00100
0.00080
0.00080 =
0.00070 <
0.00080
0.00050 -
0,00040 +
0.00020 4

0.00020 4

0.00010 -#

epochs

2,000+

2,800

2.600—

2,400

2.200

2,000~

1,800

1.600 -

"bayesian_manual_posterior_model",

"calculate_uncertainty_metric": true,

"hyperparameters": [

{

"point_estimate":

"units_layerl":
"units_layer2":
"units_layer3":
"batch_size":
"learning_rate":
"epochs":
"optimizer":
"loss_function":
"metricl":

"metric2":

Code snippet J.2: Configuration of the best FFNN, found in Figure J.2.

The best performing parameters:
¢ 5,000 Batch Size.

¢ (0.0001 Learning Rate.

¢ 1,500 Epochs.

[true],
[60],
[40],
[20],
[5000, 10000],
[0.0001, 0.001],
[1500, 3000, 10007,

["ada.m"] s

["auprc"] ,

["auroc"]
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Appendix K

Uncertainty Experiments

The most relevant results can be found in this chapter, and the full set of results can be found in
the Supplementary Appendix.

K.1 Disagreement Results (PhysioNet)

Positive DL Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 175 | 2842 | - | 161 | 103 | 14 | 2739 | 0.7472 | 0.8820
0.1 0(0%]) | 2042622191 [171 ] 70 0.7703 | 0.8847
0.2 0(0%]) | 180 | 2715 | 122 | 163 | 79 0.7599

0.3 0(0%]) | 171 | 2751 | 95 84 | 12 0.7539

0.4 0(0%]) | 161 | 2770 | 86 9 |8 0.7519

0.5 0 ([0%]) | 150 | 2789 | 78 94 |5

0.6 0(0%]) | 140 | 2807 | 70 99 |4

07 0(0%]) | 137 | 2826 | 54 4

0.8 0 ([0%]) | 127 | 2836 | 54 3

0.9 0(0%]) | 111 | 2854 | 52 1

0.1 1([20%)) | 237 | 2706 | 74 | 177 | 76 0.7583 | 0.8826
0.2 1([20%)) | 202 | 2767 | 48 | 171 | 87 0.7561 | 0.8831
03 1([20%)) | 184 | 2792 [ 41 | 164 | 89 0.7491

04 1([20%)) | 173 | 2810 | 34 95 |13 0.7487

0.5 1([20%)) | 162 | 2825 | 30 9 |9

0.6 1([20%)) | 155 | 2841 | 21 8

0.7 1([20%)) | 146 | 2850 | 21 5

0.8 1([20%)) | 139 | 2861 | 17 4 | 2743

0.9 1([20%)) | 121 | 2875 | 21 1 | 2748

0.1 2(|40%)) | 267 | 2750 [0 | 182 | 82 0.7472 | 0.8820
0.2 2(|40%)) | 225 | 2792 |0 | 175 | 89 07472 | 0.8820
0.3 2 (|40%)) | 201 | 2816 |0 | 171 | 93 0.7472 | 0.8820
04 2(|40%)) | 185 | 2832 |0 | 165 | 99 0.7472 | 0.8820
0.5 2(|40%)) | 172 | 2845 | 0 | 161|103 | 11 | 2742 | 07472 | 0.8820
0.6 2 (|40%)) | 166 | 2851 | 0 11 | 2742 | 07472 | 0.8820
0.7 2 (|40%)) | 157 | 2860 | 0 9 | 2744 | 07472 | 0.8820
0.8 2 (|40%)) | 150 | 2867 | 0 6 | 2747 | 07472 | 0.8820
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0.9 2 (140% ) [ 131 | 2886 | 0 - 3 | 2750 | 0.7472 | 0.8820

Table K.1: PhysioNet: Disagreement results where 5 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive DL Pos | Neg | IDK | TP | EN | FP | IN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 175 | 2842 | - | 159 | 105 | 16 | 2737 | 07471 | 0.8827
0.1 0([0%]) | 195 | 2570 | 252 | 172 | 69 07829 | 0.8897
0.2 0([0%]) | 170 | 2669 | 178 | 161 | 75 |9 0.7682

0.3 0([0%]) | 160 | 2719 | 138 81 |6 0.7562

0.4 0([0%]) | 150 | 2750 | 117 88 | 4 0.7488

0.5 0([0%]) | 142 | 2776 | 99 90 |2

0.6 0([0%]) | 135 | 2794 | 88 95 |2

0.7 0([0%]) | 128 | 2814 | 75 103 | 2

0.8 0([0%]) | 120 | 2830 | 67 1

0.9 0([0%]) | 103 | 2854 | 60 1 | 2738

0.1 1([10%)) | 212 | 2660 | 145 | 173 | 71 0.7658 | 0.8841
0.2 1([10%)) | 188 | 2737 | 92 | 167 | 82 0.7607 | 0.8829
0.3 1([10%]) | 170 | 2762 | 85 | 159 | 85 | 11 0.7539

0.4 1([10%)) | 161 | 2788 | 68 91 |6 0.7508

0.5 1([10%)) | 153 | 2804 | 60 9 |5

0.6 1([10%)) | 145 | 2827 | 45 104 | 4

0.7 1([10%)) | 138 | 2838 | 41 B

0.8 1([10%)) | 130 | 2852 | 35 2 | 2738

0.9 1([10%)) | 111 | 2869 | 37 1 | 2746

0.1 2([20%]) | 226 | 2688 | 103 | 175 | 74 0.7607 | 0.8835
0.2 2([20%]) | 198 | 2764 | 55 | 173 | 88 0.7625 | 0.8860
0.3 2([20%)) | 179 [ 2794 | 44 | 162 | 93 0.7526

0.4 2 ([20%)) | 168 | 2810 | 39 9 | 11

0.5 2 ([20%)) | 159 | 2823 | 35 98 |7

0.6 2 ([20%]) | 150 | 2838 | 29 5

0.7 2 ([20%)) | 143 | 2850 | 24 5 | 2737

0.8 2 ([20%)) | 134 | 2861 | 22 3 | 2742

0.9 2 ([20%)) | 118 | 2875 | 24 2 | 2746

0.1 3([30%)) | 239 | 2718 | 60 | 176 | 78 0.7554 | 0.8828
0.2 3([30%)) | 205 | 2783 |29 | 173 | 91 0.7564 | 0.8852
0.3 3([30%)) | 192 | 2804 | 21 | 168 | 94 07522 | 0.8836
0.4 3([30%]) | 176 | 2819 | 22 | 160 | 96 | 16

0.5 3(130%])) | 164 | 2828 [ 25 [1154 101 | 10




0.6 3([30%)) | 154 | 2843 | 20 6 0.7511

0.7 3(|30%)) | 144 | 2856 | 17 5 | 2741

0.8 3(130%)) | 138 | 2867 | 12 4 | 2745

0.9 3([30%)) | 125 | 2879 | 13 3 | 2748

0.1 4(|40%)) | 254 | 2746 | 17 | 178 | 81 0.7491

0.2 4(]40%)) | 213 | 2791 | 13 | 173 | 91 0.7509 | 0.8838
0.3 4(]40%)) | 199 | 2815 | 3 | 170 | 94 0.7481 | 0.8830
0.4 4(|40%]) | 184 | 2826 | 7 | 163 | 97

0.5 4 (|40%]) | 171 | 2837 | 9 103 | 14

0.6 4 (]40%)) | 162 | 2849 | 6 12 0.7492 | 0.8828
0.7 4 (|40%]) | 149 | 2860 | 8 6 | 2744

0.8 4 (|40%]) | 142 | 2873 | 2 5 | 2748

0.9 4(]40%)) | 131 | 2883 | 3 3 | 2749

Table K.2: PhysioNet: Disagreement results where 10 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Fositive DL Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 177 | 2840 | - | 161 | 103 | 16 | 2737 | 0.7487 | 0.8845
0.1 0([0%)) | 172 | 2423 | 422 5 |15 0.7930 | 0.8900
0.2 0([0%]) | 153 | 2580 | 284 71 |6 0.7600

0.3 0([0%)) | 145 | 2649 | 223 75 | 4

0.4 0([0%)) | 137 | 2688 | 192 78 |2

05 0([0%)) | 126 | 2724 | 167 86 |1

0.6 0([0%)) | 119 | 2756 | 142 88 | 1

0.7 0([0%)) | 115 | 2775 | 127 97 |1

0.8 0(l0%]) | 107 | 2803 | 107 1

0.9 0([0%)) |92 |2828]97 1

0.1 5(|10%)) | 202 | 2627 | 188 | 173 | 70 0.7726 | 0.8885
0.2 5([10%)) | 176 | 2717 [ 124 | 161 | 80 | 15 0.7604

0.3 5([10%]) | 166 | 2760 | 91 88 | 11 0.7536

0.4 5([10%]) | 153 | 2785 | 79 91 |5

0.5 5([10%)) | 147 | 2795 | 75 93 |3

0.6 5([10%)) | 139 | 2816 | 62 101 | 2

0.7 5([10%]) | 132 | 2829 | 56 1

0.8 5([10%)) | 123 | 2844 | 50 1

0.9 5([10%]) | 106 | 2860 | 51 1 | 2742

0.1 10 (|20%]) | 218 | 2677 | 122 | 175 | 73 0.7658 | 0.8865
0.2 10 ([20%]) | 190 | 2751 | 76 | 169 | 85 07619 | 0.8861
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0.3 10 ([20%]) | 173 | 2782 | 62 | 161 | 89 | 12 0.7533

0.4 10 (|20%]) | 162 | 2804 | 51 94 |8

0.5 10 ([20%]) | 153 | 2818 | 46 98 |5

0.6 10 (|20%]) | 146 | 2833 | 38 103 | 3

0.7 10 ([20%]) | 139 | 2841 | 37 2

0.8 10 (|20%]) | 132 | 2854 | 31 1 | 2739

0.9 10 ([20%]) | 117 | 2870 | 30 1 | 2745

0.1 15 ([30%]) | 231 | 2710 | 76 | 177 | 78 0.7612 | 0.8864
02 15 ([30%)) | 199 | 2777 | 41 | 172 | 89 0.7582 | 0.8866
0.3 15 ([30%]) | 183 | 2799 | 35 | 164 | 92 0.7514

0.4 15 (|30%]) | 168 | 2816 | 33 95 | 10

0.5 15 ([30%]) | 159 | 2827 | 31 9 |7

0.6 15 (|30%]) | 150 | 2838 | 29 4

0.7 15 ([30%]) | 144 | 2849 | 24 3 | 2739

0.8 15 ([30%]) | 138 | 2864 | 15 2 | 2745

0.9 15 ([30%]) | 125 | 2877 | 15 1 | 2749

0.1 20 (|40% ) | 247 | 2734 | 36 | 179 | 79 0.7543 | 0.8848
02 20 (|40%)) | 206 | 2790 | 21 | 174 | 90 0.7548 | 0.8863
0.3 20 (|40%]) | 194 | 2810 | 13 | 169 | 92 0.7499

0.4 20 (|40%)) | 179 | 2824 | 14 | 163 | 96 | 16

0.5 20 (|40%]) | 168 | 2838 | 11 102 | 11

0.6 20 (|40%)) | 156 | 2845 | 16 6 | 2737

0.7 20 (|40%)) | 147 | 2860 | 10 3 | 2745

0.8 20 (|40%)) | 142 | 2870 2 | 2749

0.9 20 (|40%]) | 128 | 2883 1 | 2751

Table K.3: PhysioNet: Disagreement results where 50 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive DL Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 176 | 2841 | - | 161 | 103 | 15 | 2738 | 0.7478 | 0.8833
0.1 0([0%]) | 165 | 2334 | 518

0.2 0([0%]) | 144 | 2508 | 365

0.3 0([0%]) | 138 | 2580 | 299

0.4 0([0%]) | 125 | 2637 | 255

0.5 0([0%]) | 1182677 | 222

0.6 0([0%]) | 116 | 2716 | 185

0.7 0([0%]) | 107 | 2749 | 161

0.8 0([0%]) |99 | 2781137

117



0.9 0(l0%]) |88 |2816 113 1

0.1 15 (|10%]) | 199 | 2626 | 192 | 172 | 70 0.7738 | 0.8871
0.2 15 (|10%]) | 175 | 2715 | 127 | 162 | 78 | 13 0.7620

0.3 15 (|10%]) | 162 | 2760 | 95 89 |9 0.7525

0.4 15 (|10%]) | 151 | 2781 | 85 91 |4

0.5 15 (|10%]) | 147 | 2796 | 74 95 |3

0.6 15 (|10%]) | 140 | 2814 | 63 100 | 3

0.7 15 (|10%]) | 133 | 2827 | 57 1

0.8 15 (|10%]) | 120 | 2841 | 56 1

0.9 15 ([ 10%]) | 104 | 2860 | 53 1 | 2740

0.1 30 (|20%]) | 214 | 2682 | 121 | 174 | 72 0.7649 | 0.8843
0.2 30 (|20%]) | 188 | 2756 | 73 | 169 | 86 0.7623 | 0.8852
0.3 30 (|20%]) | 175 | 2785 [ 57 | 162 |91 | 13 0.7548

0.4 30 (|20%]) | 163 | 2802 | 52 94 |9

0.5 30 (|20%]) | 152 | 2816 | 49 98 |5

0.6 30 (|20%]) | 148 | 2831 | 38 103 | 4

0.7 30 (|20%]) | 137 | 2840 | 40 2

0.8 30 (|20%]) | 131 | 2856 | 30 1 | 2740

0.9 30 (|20%]) | 117 | 2869 | 31 1 | 2745

0.1 45 (|30%]) | 230 | 2713 | 74 | 176 | 79 0.7603 | 0.8851
0.2 45 (|30%]) | 197 | 2775 | 45 | 172 | 89 0.7589 | 0.8858
0.3 45 (|30%]) | 183 | 2799 [ 35 | 165 | 92 0.7519

0.4 45 (|30%]) | 170 | 2817 | 30 97 | 11 0.7494

0.5 45 (|30%]) | 159 | 2830 | 28 100 | 8

0.6 45 (|30%]) | 150 | 2840 | 27 5

0.7 45 (|30%]) | 146 | 2848 | 23 4 | 2739

0.8 45 (|30%]) | 137 | 2861 | 19 2 | 2744

0.9 45 (|30%]) | 121 | 2877 | 19 1 | 2749

0.1 60 (|40%]) | 241 | 2746 |30 | 178 | 82 0.7533 | 0.8840
0.2 60 (|40%]) | 207 | 2791 | 19 | 173 | 90 0.7524 | 0.8845
0.3 60 (|40%]) | 192 | 2809 | 16 | 167 | 94 0.7499

0.4 60 (|40%)) | 181 | 2825 | 11 | 164 | 97 0.7483

0.5 60 (|40%]) | 167 | 2836 | 14 102 | 10

0.6 60 (|40%]) | 153 | 2845 | 19 5 | 2739

0.7 60 (|40%]) | 147 | 2859 | 11 5 | 2744

0.8 60 (|40%)) | 139 | 2869 2 | 2747

0.9 60 (|40%)) | 127 | 2884 1 | 2751

Table K.4: PhysioNet: Disagreement results where 150 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.
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K.2 Standard Deviation Results (PhysioNet)

Positive Std Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold Threshold

0.5 (Baseline) | - 176 | 2841 | - | 160 | 104 | 16 | 2737 | 0.7424 | 0.8801
0.25 0.01 97 | 2404 | 516 1
0.5 0.01 97 | 2404 | 516 1
0.75 0.01 97 | 2404 | 516 1
0.25 0.02 106 | 2546 | 365 1
0.5 0.02 106 | 2546 | 365 1
0.75 0.02 106 | 2546 | 365 1
0.25 0.03 109 | 2618 | 290 1
0.5 0.03 109 | 2618 | 290 1
0.75 0.03 109 | 2618 | 290 1
0.25 0.04 118 | 2664 | 235 2
0.5 0.04 117 | 2665 | 235 1
0.75 0.04 116 | 2666 | 235 1
0.25 0.05 122 | 2684 | 211 2
0.5 0.05 120 | 2686 | 211 1
0.75 0.05 119 | 2687 | 211 1
0.25 0.06 127 | 2714 | 176 2
0.5 0.06 123 | 2718 | 176 1
0.75 0.06 122 | 2719 | 176 1
0.25 0.07 132 | 2725 | 160 2
0.5 0.07 127 | 2730 | 160 1
0.75 0.07 125 | 2732 | 160 1
0.25 0.08 138 | 2740 | 139 3
0.5 0.08 133 | 2745 | 139 2
0.75 0.08 127 | 2751 | 139 1
0.25 0.09 146 | 2748 | 123 3
0.5 0.09 139 | 2755 | 123 2
0.75 0.09 132 | 2762 | 123 1
0.25 0.1 149 | 2757 | 111 4
0.5 0.1 140 | 2766 | 111 2
0.75 0.1 132 | 2774 | 111 1
0.25 0.2 186 | 2789 | 42

0.5 0.2 159 | 2816 | 42

0.75 0.2 136 | 2839 | 42

0.25 0.3 205 | 2798 | 14
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0.5 0.3 169 | 2834 | 14 103 | 12 0.7431

0.75 0.3 140 | 2863 | 14 3 | 2740 | 0.7431

0.25 0.4 217 12799 | 1 174 | 90 0.7428 0.8802
0.5 0.4 176 | 2840 | 1 160 | 104 | 16 0.7428 0.8802
0.75 0.4 140 | 2876 | 1 3 | 2749 | 0.7428 0.8802
0.25 0.5 218 | 2799 | 0 174 | 90 0.7424 0.8801
0.5 0.5 176 | 2841 | 0 160 | 104 | 16 | 2737 | 0.7424 0.8801
0.75 0.5 140 | 2877 | 0 3 | 2750 | 0.7424 0.8801
0.25 0.6 218 | 2799 | 0 174 | 90 0.7424 0.8801
0.5 0.6 176 | 2841 | 0 160 | 104 | 16 | 2737 | 0.7424 0.8801
0.75 0.6 140 | 2877 | 0 3 | 2750 | 0.7424 0.8801

Table K.5: PhysioNet: Standard deviation results where 5 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

Positive Std

Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold Threshold
0.5 (Baseline) | - 173 | 2844 | - 160 | 104 | 13 | 2740 | 0.7487 | 0.8844
0.25 0.01 92 | 2373 | 552 57 |1
0.5 0.01 92 | 2373 | 552 57 |1
0.75 0.01 92 | 2373 | 552 57 |1
0.25 0.02 103 | 2517 | 397 68 |1
0.5 0.02 103 | 2517 | 397 68 |1
0.75 0.02 103 | 2517 | 397 68 |1
0.25 0.03 110 | 2587 | 320 71 |1
0.5 0.03 110 | 2587 | 320 71 |1
0.75 0.03 110 | 2587 | 320 71 |1
0.25 0.04 113 | 2627 | 277 73 |1
0.5 0.04 113 | 2627 | 277 73 |1
0.75 0.04 111 | 2629 | 277 75 |1
0.25 0.05 116 | 2671 | 230 77 |1
0.5 0.05 116 | 2671 | 230 77 |1
0.75 0.05 114 | 2673 | 230 79 |1
0.25 0.06 121 | 2696 | 200 79 |1
0.5 0.06 119 | 2698 | 200 81 |1
0.75 0.06 117 | 2700 | 200 83 |1
0.25 0.07 125 | 2711 | 181 81 |1
0.5 0.07 122 | 2714 | 181 84 |1
0.75 0.07 119 | 2717 | 181 87 |1
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0.25 0.08 128 | 2726 | 163 81 |1

0.5 0.08 125 | 2729 | 163 8 |1

0.75 0.08 122 | 2732 | 163 87 |1

0.25 0.09 134 | 2740 | 143 82 |1

0.5 0.09 130 | 2744 | 143 86 |1

0.75 0.09 125 | 2749 | 143 91 |1

0.25 0.1 139 | 2745 | 133 82 |2

0.5 0.1 133 | 2751 | 133 87 |1

0.75 0.1 128 | 2756 | 133 92 |1

0.25 0.2 182 | 2790 | 45 160 | 89

0.5 0.2 157 | 2815 | 45 99 |7

0.75 0.2 141 | 2831 | 45 4

0.25 0.3 206 | 2800 | 11 172 | 91 0.7530 0.8850
0.5 0.3 167 | 2839 | 11 104 | 8 0.7530 0.8850
0.75 0.3 144 | 2862 | 11 4 0.7530 0.8850
0.25 0.4 216 | 2801 | O 173 | 91 0.7487 0.8844
0.5 0.4 173 | 2844 | 0 160 | 104 | 13 | 2740 | 0.7487 0.8844
0.75 0.4 144 | 2873 | 0 4 | 2749 | 0.7487 0.8844
0.25 0.5 216 | 2801 | O 173 | 91 0.7487 0.8844
0.5 0.5 173 | 2844 | O 160 | 104 | 13 | 2740 | 0.7487 0.8844
0.75 0.5 144 | 2873 | 0 4 | 2749 | 0.7487 0.8844
0.25 0.6 216 | 2801 | O 173 | 91 0.7487 0.8844
0.5 0.6 173 | 2844 | 0 160 | 104 | 13 | 2740 | 0.7487 0.8844
0.75 0.6 144 | 2873 | 0 4 | 2749 | 0.7487 0.8844

Table K.6: PhysioNet: Standard deviation results where 10 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is

the number of data points for which the model express "i do not know".

Positive Std Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold Threshold

0.5 (Baseline) | - 176 | 2841 | - | 161 | 103 | 15 | 2738 | 0.7464 | 0.8805
0.25 0.01 87 | 2270 | 660 54 |1

0.5 0.01 87 | 2270 | 660 54 |1

0.75 0.01 87 | 2270 | 660 54 |1

0.25 0.02 05 | 2452 | 470 61 |1

0.5 0.02 95 | 2452 | 470 61 |1

0.75 0.02 95 | 2452 | 470 61 |1

0.25 0.03 100 | 2539 | 378 66 | 1

0.5 0.03 100 | 2539 | 378 66 | 1
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0.75 0.03 100 | 2539 | 378 66 |1

0.25 0.04 105 | 2597 | 315 72 |1

0.5 0.04 105 | 2597 | 315 72 |1

0.75 0.04 105 | 2597 | 315 72 |1

0.25 0.05 110 | 2631 | 276 74 |1

0.5 0.05 110 | 2631 | 276 74 |1

0.75 0.05 109 | 2632 | 276 75 |1

0.25 0.06 116 | 2653 | 248 77 |1

0.5 0.06 116 | 2653 | 248 77 |1

0.75 0.06 114 | 2655 | 248 79 |1

0.25 0.07 124 | 2674 | 219 78 |1

0.5 0.07 122 | 2676 | 219 80 |1

0.75 0.07 118 | 2680 | 219 84 |1

0.25 0.08 130 | 2692 | 195 81 |1

0.5 0.08 127 | 2695 | 195 8 |1

0.75 0.08 123 | 2699 | 195 88 |1

0.25 0.09 132 | 2710 | 175 81 |1

0.5 0.09 127 | 2715 | 175 86 |1

0.75 0.09 123 | 2719 | 175 90 |1

0.25 0.1 135 | 2719 | 163 82 |1

0.5 0.1 130 | 2724 | 163 87 |1

0.75 0.1 125 | 2729 | 163 92 |1

0.25 0.2 179 | 2787 | 51 90

0.5 0.2 155 | 2811 | 51 100 | 8

0.75 0.2 141 | 2825 | 51 4

0.25 0.3 207 | 2802 | 8 173 | 90 0.7485 0.8808
0.5 0.3 172 | 2837 | 8 103 | 12 0.7485 0.8808
0.75 0.3 146 | 2863 | 8 4 | 2742 | 0.7485 0.8808
0.25 0.4 214 | 2803 | O 174 | 90 0.7464 0.8805
0.5 0.4 176 | 2841 | 0 161 | 103 | 15 | 2738 | 0.7464 0.8805
0.75 0.4 146 | 2871 | O 4 | 2749 | 0.7464 0.8805
0.25 0.5 214 |1 2803 | 0 174 | 90 0.7464 0.8805
0.5 0.5 176 | 2841 | 0 161 | 103 | 15 | 2738 | 0.7464 0.8805
0.75 0.5 146 | 2871 | O 4 | 2749 | 0.7464 0.8805
0.25 0.6 214 | 2803 | 0 174 | 90 0.7464 0.8805
0.5 0.6 176 | 2841 | 0 161 | 103 | 15 | 2738 | 0.7464 0.8805
0.75 0.6 146 | 2871 | O 4 | 2749 | 0.7464 0.8805
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Table K.7: PhysioNet: Standard deviation results where 50 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

K.3 Disagreement Results (Cross-Tracks)

Positive DL Pos | Neg | IDK | TP | FN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 58 | 5378 | - 37 |276 |21 | 5102 | 03025 | 0.7858
0.1 0([0%]) | 183 | 4246 | 1007 | 86 | 119 0.3287

0.2 0([0%]) |99 |4918 | 419 |60 | 179

0.3 0([0%]) |69 |5165|202 |46 | 214

0.4 0([0%]) |36 |5269 131 237 | 12

0.5 0(0%]) |7 |5327 102 253 | 1

0.6 0([0%]) |0 |5351]85 262 | 0

0.7 0(0%]) |0 |5387 |49 0 | 5106

0.8 0([0%]) |0 |5419 17 0 | 5115

0.9 0(0%]) |0 [5434 ]2 0 | 5122

0.1 1(|10%)) | 262 | 4543 | 631 | 107 | 139 03292 | 0.7887
0.2 1(|10%]) | 123 | 5078 | 235 | 68 | 196

0.3 1([10%]) | 85 | 5254 |97 |54 | 228

0.4 1([10%)) | 54 | 5309 | 73 246 | 20

0.5 1([10%]) | 14 | 5345 | 77 257 | 4

0.6 1([10%]) | 2 | 5371 | 63 274 | 1

0.7 1([10%]) | 0 | 5411 | 25 0 | 5116

0.8 1([10%)) [0 | 5432 | 4 0 | 5122

0.9 1([10%)) | 0 | 5436 | 0 0 |5123

0.1 2 ([20%)) | 335 | 4675 | 426 | 118 | 153 03228 | 0.7914
0.2 2([20%)) | 140 | 5154 | 142 |71 | 207

0.3 2([20%]) | 96 | 5280 |60 |55 | 240

0.4 2([20%]) | 65 | 5330 | 41 |42 | 251

0.5 2([20%)) | 27 | 5353 | 56 261 | 10

0.6 2([20%)) | 4 [5390 | 42 2 | 5104

0.7 2([20%)) |1 [ 5422 | 13 1 | 5119

0.8 2([20%]) |0 | 5435 | 1 0 | 5122

0.9 2([20%)) [0 | 5436 | 0 0 |5123

0.1 3([30%)) | 414 | 4795 | 227 | 126 | 163 03117 | 0.7882
0.2 3([30%)) | 155 | 5196 | 85 | 76 | 216

0.3 3([30%]) | 103 | 5298 | 35 | 58 | 245

0.4 3([30%]) | 75 | 5337 |24 |48 | 253
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0.5 3(|30%)) | 41 | 5360 | 35 265 | 16

0.6 3(|30%)) | 10 | 5406 | 20 2 | 5110

0.7 3(130%)) [ 1 | 5425 | 10 1 | 5121

0.8 3([30%])) | 0 | 5435 0 |5122

0.9 3(|30%]) | 0 | 5436 |0 0 | 5123

0.1 4(]40%]) | 476 | 4885 [ 75 | 136 | 168 03052 | 0.7861
0.2 4(]40%]) | 174 | 5228 [ 34 |79 | 222

0.3 4(|40%]) | 109 [ 5309 | 18 | 61 | 248

0.4 4(|40%)) | 82 |[5346 |8 |52 | 257

0.5 4(|40%]) | 59 | 5365 | 12 270

0.6 4(|40%]) | 13 | 5415 | 8 3 | 5114 | 03090

0.7 4(]40%]) | 3 [ 5432 |1 1 | 5121 | 0.3090 | 0.7859
0.8 4(|40%)) |0 | 5436 |0 0 | 5123

0.9 4(|40%]) |0 | 5436 |0 0 | 5123

Table K.8: Cross-Tracks: Disagreement results where 10 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive DL Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold

0.5 (Baseline) | - 67 |5369 |- |44 | 269 |23 | 510003092 | 0.7879
0.1 0([0%]) | 113 | 3505|1818 | 62 | 85 0.3388

0.2 0([0%]) |66 | 4562|808 |45 | 150 | 21

0.3 0([0%]) |34 |4957 445 184 | 9

0.4 0(0%]) |3 |5171]262 217 | 0

05 0([0%]) |0 |5269] 167 235 | 0

0.6 0([0%])) |0 |5315] 121 248 | 0

0.7 0([0%]) |0 |5351]85 260 | 0

0.8 0([0%]) |0 539541 0 | 5105

0.9 0([0%])) |0 |5428]8 0 | 5118

0.1 10 ([10%]) | 217 | 4417 | 802 |96 | 129 0.3416

0.2 10 ([10%]) | 107 | 5025 | 304 | 63 | 189

0.3 10 ([10%)) | 76 | 5237 | 123 |50 | 224

0.4 10 ([10%]) | 53 | 5304 | 79 244 | 18

05 10 ([10%]) | 2 | 5336 | 98 251 | 1

0.6 10 ([10%]) | 0 | 5354 | 82 260 | 0

0.7 10 ([10%)) | 0 | 5402 | 34 0 | 5109

0.8 10 ([10%]) | 0 | 5434 | 2 0 |5122

0.9 10 ([10%]) | 0 | 5436 | 0 0 |5123

0.1 20 (|20%)) | 291 | 4620 | 525 | 111 | 147 03333 | 0.7923
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Table K.9: Cross-Tracks: Disagreement results where 100 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is

the number of data points for which the sampled models disagree.

0.2 20 (|20%]) | 127 | 5125 | 184 | 67 | 201
0.3 20 (|20%)) | 87 | 5273 |76 |56 | 232
0.4 20 (|20%)) | 66 | 532050 |44 |248 |22
0.5 20 ([20%]) | 21 | 5349 | 66 256 | 7
0.6 20 ([20%]) | 0 | 5377 | 59 0
0.7 20 ([20%]) | 0 | 5421 | 15 0
0.8 20 (|20%]) [0 | 5436 | 0 0
0.9 20 (|20%)) | 0 | 5436 | 0 0
0.1 30 (|30%)) | 364 | 4742 | 330 | 120 | 158
0.2 30 (|30%)) | 148 | 5174 | 114 |74 | 210
0.3 30 ([30%]) | 97 | 5293 | 46 | 60 | 242
0.4 30 ([30%]) | 72 | 5333 | 31 |48 | 250
0.5 30 (|30%)) | 38 | 5355 | 43 262 | 11
0.6 30 (|30%]) | 0 | 5396 | 40 0
0.7 30 ([30%]) | 0 | 5433 |3 0
0.8 30 (|30%)) | 0 | 5436 | 0 0
0.9 30 (|30%)) | 0 | 5436 | 0 0
0.1 40 (|40%)) | 446 | 4844 | 146 | 132 | 166
0.2 40 (|40%]) | 167 | 5219 | 50 | 82 | 219
0.3 40 (|40%]) | 107 | 5312 | 17 | 63 | 246
0.4 40 (|40%)) | 83 | 5343 | 10 |53 | 254
0.5 40 (|40%)) | 54 | 5362 | 20 265 | 17
0.6 40 (|40%]) | 5 | 5409 | 22 2
0.7 40 (|40%]) | 0 | 5435 0
0.8 40 (|40%)) | 0 | 5436 0
0.9 40 (|40%)) | 0 | 5436 0

5102
5118
5123
5123

5108
5122
5123
5123

5112
5122
5123
5123

K.4 Standard Deviation Results (Cross-Tracks)

0.3231

0.3154

0.7911

0.7898
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Positive Std Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold Threshold

0.5 (Baseline) | - 60 | 5376 |- |42 | 271 | 18 | 5105 | 0.3041 | 0.7850
0.25 0.01 0 | 2772 | 2664 64 | 0

0.5 0.01 0 | 2772 | 2664 64 | 0

0.75 0.01 0 | 2772 | 2664 64 | 0

0.25 0.02 0 | 4188 | 1248 124 | 0

0.5 0.02 0 | 4188 | 1248 124 | 0




0.75 0.02 0 4188 | 1248 124 | 0
0.25 0.03 0 4622 | 814 157 | 0
0.5 0.03 0 4622 | 814 157 | 0
0.75 0.03 0 4622 | 814 157 | 0
0.25 0.04 1 4827 | 608 174 | 0
0.5 0.04 1 4827 | 608 174 | 0
0.75 0.04 0 4828 | 608 175 | 0
0.25 0.05 5 4995 | 436 190 | 2
0.5 0.05 3 4997 | 436 190 | 0
0.75 0.05 0 5000 | 436 193 | 0
0.25 0.06 14 | 5116 | 306 213 | 6
0.5 0.06 8 5122 | 306 214 | 1
0.75 0.06 0 5130 | 306 221 | 0
0.25 0.07 30 | 5182 | 224 220 | 12
0.5 0.07 18 | 5194 | 224 224 | 4
0.75 0.07 0 5212 | 224 238 | 0
0.25 0.08 49 | 5235 | 152 227

0.5 0.08 24 | 5260 | 152 235 | 5
0.75 0.08 0 5284 | 152 254 | 0
0.25 0.09 71 | 5262 | 103 230

0.5 0.09 29 | 5304 | 103 242 | 6
0.75 0.09 0 5333 | 103 265 | 0
0.25 0.1 87 | 5273 | 76 43 | 233

0.5 0.1 36 | 5324 | 76 248 | 8
0.75 0.1 0 5360 | 76 0
0.25 0.2 148 | 5287 | 1 75 | 238

0.5 0.2 60 | 5375 |1 42 | 271 | 18
0.75 0.2 0 5435 | 1 0
0.25 0.3 149 | 5287 | 0 75 | 238

0.5 0.3 60 | 5376 | 0 42 | 271 | 18
0.75 0.3 0 5436 | 0 0
0.25 0.4 149 | 5287 | 0 75 | 238

0.5 0.4 60 | 5376 | 0 42 | 271 | 18
0.75 0.4 0 5436 | 0 0
0.25 0.5 149 | 5287 | 0 75 | 238

0.5 0.5 60 | 5376 | 0 42 | 271 | 18
0.75 0.5 0 5436 | 0 0
0.25 0.6 149 | 5287 | 0 75 | 238
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5122

5105
5123

5105
5123

5105
5123

0.3047 0.7851
0.3047 0.7851
0.3041 0.7850
0.3041 0.7850
0.3041 0.7850
0.3041 0.7850
0.3041 0.7850
0.3041 0.7850
0.3041 0.7850




0.5 0.6 60 | 5376 | 0 42 | 271 | 18 | 5105 | 0.3041 0.7850
0.75 0.6 0 5436 | 0 0 |5123

Table K.10: Cross-Tracks: Standard deviation results where 10 models are sampled. Std Threshold is a upper limit on

standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

Fositive Std Pos | Neg | IDK | TP | EN | FP | TN | AUPRC | AUROC
Threshold Threshold

0.5 (Baseline) | - 62 | 5374 |- |41 | 272 |21 | 5102 | 0.3100 | 0.7880
0.25 0.01 0 | 2319|3117 58 |0
0.5 0.01 0 | 2319|3117 5 |0
0.75 0.01 0 |2319 | 3117 58 |0
0.25 0.02 0 | 4021 1415 105 | 0
0.5 0.02 0 | 4021|1415 105 | 0
0.75 0.02 0 | 4021|1415 105 | 0
0.25 0.03 0 | 4497 | 939 141 | 0
0.5 0.03 0 | 4497 | 939 141 | 0
0.75 0.03 0 | 4497 | 939 141 | 0
0.25 0.04 0 | 4736 | 700 162 | 0
0.5 0.04 0 | 4736 | 700 162 | 0
0.75 0.04 0 | 4736 | 700 162 | 0
0.25 0.05 0 | 4923|513 177 | 0
0.5 0.05 0 | 4923|513 177 | 0
0.75 0.05 0 | 4923|513 177 | 0
0.25 0.06 0 | 5050 | 386 193 | 0
05 0.06 0 | 5050 | 386 193 | 0
0.75 0.06 0 | 5050 | 386 193 | 0
0.25 0.07 3 | 5157 | 276 212 | 1
05 0.07 3 | 5157 | 276 212 | 1
0.75 0.07 0 |5160 | 276 214 | 0
0.25 0.08 15 | 5223 | 198 228 | 5
0.5 0.08 12 | 5226 | 198 229 | 3
0.75 0.08 0 | 5238198 238 | 0
0.25 0.09 29 | 5264 | 143 233 | 10
05 0.09 18 | 5275 | 143 238
0.75 0.09 0 |5203 143 252 | 0
0.25 0.1 56 | 5282 | 98 236
0.5 0.1 24 | 5314 | 98 246 | 5
0.75 0.1 0 | 533898 265 | 0
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0.25 0.2 147 | 5289 | 0 74 | 239 0.3100 0.7880
0.5 0.2 62 | 5374 | 0 41 | 272 | 21 | 5102 | 0.3100 0.7880
0.75 0.2 0 5436 | 0 0 | 5123
0.25 0.3 147 | 5289 | 0 74 | 239 0.3100 0.7880
0.5 0.3 62 | 5374 | 0 41 | 272 | 21 | 5102 | 0.3100 0.7880
0.75 0.3 0 5436 | 0 0 | 5123
0.25 0.4 147 | 5289 | 0 74 | 239 0.3100 0.7880
0.5 0.4 62 | 5374 | 0 41 | 272 | 21 | 5102 | 0.3100 0.7880
0.75 0.4 0 5436 | 0 0 | 5123
0.25 0.5 147 | 5289 | 0 74 | 239 0.3100 0.7880
0.5 0.5 62 | 5374 | 0 41 | 272 | 21 | 5102 | 0.3100 0.7880
0.75 0.5 0 5436 | 0 0 | 5123
0.25 0.6 147 | 5289 | 0 74 | 239 0.3100 0.7880
0.5 0.6 62 | 5374 | 0 41 | 272 | 21 | 5102 | 0.3100 0.7880
0.75 0.6 0 5436 | 0 0 | 5123

Table K.11: Cross-Tracks: Standard deviation results where 100 models are sampled. Std Threshold is a upper limit
on standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK

is the number of data points for which the model express "i do not know".
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Appendix L

LRP Relevance Diagrams

The most relevant results can be found in this chapter, and the full set of results can be found in

the Supplementary Appendix.
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L.1 PhysioNet

Relevance for Positive Class

Male ( 1.0) 1 ®
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Figure L.1: ADP-A POS8True.
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Input Feature

Relevance for Positive Class

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance
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Figure L.2: ADP-A POS3True.
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Input Feature

Relevance for Negative Class
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Figure L.3: ADP-A NEG2False.
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Input Feature

Relevance for Positive Class
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Figure L.4: ADP-A POS9True.
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L.2 Cross-Tracks

Relevance for Positive Class
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Figure L.5: ADCT POS11True.
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Input Feature

Relevance for Negative Class
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Appendix M

Weight Uncertainty in First Layer

M.1 Uncertainty In Fully a Bayesian Network

This section covers the results of inspecting the mean and standard deviation of the probability

distributions for weights in the first layer, in a fully Bayesian NN.
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M.1.1 Mean (ADP-A)
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M.1.2 Standard Deviation (ADP-A)
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M.1.3 Mean (ADCT)
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M.1.4 Standard Deviation (ADCT)
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Figure M.4

M.2 Limiting Uncertainty To First Layer

This section covers the results of inspecting the mean and standard deviation of the probability

distributions for weights in the first layer, in a BNN where only the first layer is stochastic.

140



M.2.1 Mean On ADP-A
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M.2.2 Standard Deviation On ADP-A
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M.2.3 Mean On ADCT
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Figure M.7
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M.2.4 Standard Deviation On ADCT
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AP(aB)-Lactate 00 @ @ CHEEED i AN e ¢ 0 0 °
AP(aB)-Chloride - ® @ 0NOG D CIDOENDG® ¢ 00
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Appendix N

Evaluating LRP

The naming scheme for captions in the following figures is as follows: Figures starting with Neg
is for a data point with a sepsis negative label, and Pos is for a sepsis positive label. The following
integer is an index for the data point in the test set. Following is a parenthesis, containing either
"Original", if neither feature flipping nor feature exclusion is applied, "FF" if feature flipping is
applied for that feature, or "0" if the feature is excluded. Lastly, False means that relevance is

propagated from the output for the negative class, and True for the positive class.
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N.1 Originals (ADP-A)

N.1.1 Neg0(Original)False

Relevance for Negative Class

Female ( 1.0) 1

ICULOS ( 13.0) 4

HospAdmTime ( -11.2)

Unitl ( 1.0)

Age ( 63.7) 1

Alactate ( 1.0)

APaCO2 ( -8.0) A

ApH ( -0.0)

ABaseExcess ( -2.8) |
ARespiration Rate ( 1.6)
ADiastolic Blood Pressure ( -2.9)
AMean Arterial Pressure ( 8.8) |
ASystolic Blood Pressure ( 22.3)
ATemperature ( -0.7)

AO2Sat ( 2.5) 4

AHeart Rate ( 3.1) |

Platelets ( 228.0) -

Laukocyte Count ( 19.4) |

Partial Thromboplastin Time ( 31.6)
Hemoglobin ( 10.1) 4
Hematocrit ( 28.6)

Potassium ( 4.3) 1

Phosphate ( 3.4) 1

Magnesium ( 2.5) 1

Lactate ( 2.1) A

Glucose ( 180.0) 1

Creatine ( 0.6) 1

Chloride ( 109.0) 1

Calcium ( 8.2) 4

Blood Urea Nitrogen ( 12.0) A
PaCO2 ( 53.0) 1

pH ( 7.3)

FiO2 ( 0.5) 1

HCO3 ( 19.0) 1

Respiration Rate ( 14.2) 1
Diastolic Blood Pressure ( 62.7) 1
Mean Arterial Pressure ( 72.0) 1
Systolic Blood Pressure ( 95.5) A
Temperature ( 36.7)4

02Sat ( 94.3) 1

Heart Rate ( 91.3) 1

Input Feature

,.'ngog

L]

Max Prediction: 0.979

o

40 60 80 100 120 140
+/- Relevance Score

Mean Prediction: 0.786

Figure N.1: Neg0(Original)False
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160

*%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.356



N.1.2 POS8(Original)True

Relevance for Positive Class

Male ( 1.0)

ICULOS ( 55.0) 1

HospAdmTime ( -0.0) A

Age ( 62.2) 1

ARespiration Rate ( -1.6) |
ADiastolic Blood Pressure ( -0.6) 1
AMean Arterial Pressure ( 0.3) -
1.3) 1
ATemperature ( -1.1)

AO2Sat ( 2.8) A

AHeart Rate ( -12.9) A

Platelets ( 180.0) -

Laukocyte Count ( 11.7)

Partial Thromboplastin Time ( 35.5) 1
Hemoglobin ( 10.8) 1

Hematocrit ( 31.2)

Potassium ( 4.0) 1

3.5) 1
Magnesium ( 2.4) A

Glucose ( 118.0) A

Creatine ( 1.0) 4

Chloride ( 112.0)

Calcium ( 8.0) 1

Blood Urea Nitrogen ( 23.0) A
PaCO2 ( 40.0) 1

pH ( 7.4)

Fi02 ( 0.4) 1

HCO3 ( 24.0) A

BaseExcess ( 2.0) 1

Respiration Rate ( 16.9) 1
Diastolic Blood Pressure ( 54.8)
Mean Arterial Pressure ( 72.7)
Systolic Blood Pressure ( 111.0) A
Temperature ( 38.1)1

0O2Sat ( 96.8)

Heart Rate ( 74.2) 4

ASystolic Blood Pressure (

Phosphate (

Input Feature

® & 60 0 0 0 9
!
0

[

)

egeoecgege

A |

Max Prediction: 0.933

40 60 80 100 120
+/- Relevance Score

Mean Prediction: 0.764

Figure N.2: POS8(Original)True
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140

160

%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.49



N.2 Originals (ADCT)

N.2.1 Neg4(Original)False

Relevance for Negative Class

Systolic BP ( 135.0) 3 w S
Respiratory Frequency ( 12.0) 4 . ©

Diastolic BP ( 75.0) 1 =0 -
]
S ® Negative Relevance
o ® Positive Relevance
; # Negative Mean Relevance
o # Positive Mean Relevance

Heart rate ( 65.0) 1 = B o WS S © &
Sp02 ( 93.0) 1 — P = %
Temperature ( 37.0) 1 ~@ums

0.0 0.1 0.2 0.3 0.4 0.5
+/- Relevance Score

Max Prediction: 0.982 Mean Prediction: 0.972  Min Prediciton: 0.96

Figure N.3: Neg4(Original)False
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N.2.2 Neg6(Original)False

Relevance for Negative Class

Systolic BP ( 154.0) BB W0

Respiratory Frequency ( 24.0) 1 <om =

Diastolic BP ( 74.0) | G

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

*x00

Input Feature

Heart rate ( 140.0) A o—P —- S -n@e =

Sp0O2 ( 98.0) A =2

Temperature ( 36.5) 1 @&

0.0 0.5 1.0 1.5 2.0 2.5
+/- Relevance Score

Max Prediction: 0.938 Mean Prediction: 0.889  Min Prediciton: 0.782

Figure N.4: Neg6(Original)False
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N.2.3 Pos38(Original)True

Relevance for Positive Class

P(aB)-p0O2 ( 11.6) 1

P(aB)-pH ( 7.4) 1

P(aB)-pCO2 ( 6.1)

P(aB)-Sodium ( 142.0)

P(aB)-Lactate ( 1.8)

P(aB)-Chloride ( 112.0) A

P(aB)-Potassium ( 4.2)

P(aB)-Hydrogen carbonate ( 24.0)

Input Feature

Systolic BP ( 115.0) A

Respiratory Frequency ( 19.0)

Diastolic BP ( 61.0)

Heart rate ( 70.0) |

Sp0O2 ( 95.0)

Temperature ( 37.2) A

oW\ B I a5

W= SB A

Max Prediction: 0.759

0 2 4 6
+/- Relevance Score

Figure N.5: Pos38(Original)True
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Mean Prediction: 0.565

10

*%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.367



N.2.4 Pos48(Original)True

Relevance for Positive Class

AP(aB)-pO2 ( 0.5) 1 ®

AP(aB)-pH ( -0.0) 1 ®

AP(aB)-pCO2 ( 0.1) 1 ®
AP(aB)-Sodium ( 2.0) 1 @
AP(aB)-Lactate ( -0.1) 1 @
AP(aB)-Chloride ( 1.0) 1 &
AP(aB)-Potassium ( 0.8) 1 @
AP(aB)-Hydrogen carbonate ( 0.9) 1 ®

P(aB)-p02 (

9.6) 1

@
P(@aB)-pH ( 7.3)1 @
P(aB)-pCO2 ( 6.3)1 @&
P(aB)-Sodium ( 146.0) 4@ <

P(aB)-Lactate ( 1.4)1 @

P(aB)-Chloride ( 115.0)

Input Feature

P(aB)-Potassium ( 4.0) 1 @&
P(aB)-Hydrogen carbonate ( 20.8) 1 @# <
P-Sodium ( 148.0) 1 @&« &
P-Creatinine ( 79.0) 1 ® &5
P-Potassium ( 4.3) 1 ®
P-C-reactive protein ( 51.6) 1 @&

P-Bilirubine ( 21.0) 4 @<

P-Albumin ( 36.0) 1 @& < =5

eGFR ( 64.0) 1 @@= <
B-Platelets ( 135.0) 1@

B-Leukocytes ( 12.8) 1 @

Max Prediction: 0.791

Figure N.6: Pos48(Original)True

10 15
+/- Relevance Score
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Mean Prediction: 0.589

20

*%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.312



N.3 Feature Flipping (ADP-A)

N.3.1 Neg0(deltaRespirationRateFF)False

Relevance for Negative Class

Female ( 1.0) 1

ICULOS ( 13.0) 4

HospAdmTime ( -11.2)

Unitl ( 1.0)

Age ( 63.7) 1

Alactate ( 1.0)

APaCO2 ( -8.0) A

ApH ( -0.0)

ABaseExcess ( -2.8) |
ARespiration Rate ( -1.6)
ADiastolic Blood Pressure ( -2.9)
AMean Arterial Pressure ( 8.8) |
ASystolic Blood Pressure ( 22.3)
ATemperature ( -0.7)

AO2Sat ( 2.5) 4

AHeart Rate ( 3.1) |

Platelets ( 228.0) -

Laukocyte Count ( 19.4) |

Partial Thromboplastin Time ( 31.6)
Hemoglobin ( 10.1) 4
Hematocrit ( 28.6)

Potassium ( 4.3) 1

Phosphate ( 3.4) 1

Magnesium ( 2.5) 1

Lactate ( 2.1) A

Glucose ( 180.0) 1

Creatine ( 0.6) 1

Chloride ( 109.0) 1

Calcium ( 8.2) 4

Blood Urea Nitrogen ( 12.0) A
PaCO2 ( 53.0) 1

pH ( 7.3)

FiO2 ( 0.5) 1

HCO3 ( 19.0) 1

Respiration Rate ( 14.2) 1
Diastolic Blood Pressure ( 62.7)
Mean Arterial Pressure ( 72.0) 1
Systolic Blood Pressure ( 95.5) A
Temperature ( 36.7)4

02Sat ( 94.3) 1

Heart Rate ( 91.3) 1

Input Feature

!?,Q.'....'.’,!C...OOOQOQ.!QQ:.

ERERSRS

Max Prediction: 0.979

o ’ .
o]
L 3

Figure N.7: Neg0(deltaRespirationRateFF)False

N
o

40

60

152

80

+/- Relevance Score

Mean Prediction: 0.788

100

120

*%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.36



N.3.2 Neg0(glucoseFF)False

Relevance for Negative Class

Female ( 1.0) 1

ICULOS ( 13.0) A

HospAdmTime ( -11.2)

Unitl ( 1.0) A

Age ( 63.7) 1

Alactate ( 1.0)

APaCO2 ( -8.0)

ApH ( -0.0) 1

ABaseExcess ( -2.8)
ARespiration Rate ( 1.6) A
ADiastolic Blood Pressure ( -2.9)
AMean Arterial Pressure ( 8.8)
ASystolic Blood Pressure ( 22.3) |
ATemperature ( -0.7)

AO2Sat ( 2.5) 1

AHeart Rate ( 3.1) o

Platelets ( 228.0) A

Laukocyte Count ( 19.4)

Partial Thromboplastin Time ( 31.6) 1
Hemoglobin ( 10.1) 4
Hematocrit ( 28.6)

Potassium ( 4.3) 1

Phosphate ( 3.4)

Magnesium ( 2.5) A

Lactate ( 2.1)

Glucose (-180.0) 1

Creatine ( 0.6) 1

Chloride ( 109.0) A

Calcium ( 8.2)

Blood Urea Nitrogen ( 12.0) A
PaCO2 ( 53.0) 1

pH ( 7.3) 1

FiO2 ( 0.5)4

HCO3 ( 19.0) 4

Respiration Rate ( 14.2) 1
Diastolic Blood Pressure ( 62.7)
Mean Arterial Pressure ( 72.0) 1
Systolic Blood Pressure ( 95.5) -
Temperature ( 36.7)A

0O2Sat ( 94.3)

Heart Rate ( 91.3) 4

Input Feature

DWW

1"

®

|

l".'*ggg..Q..’Q...’.

$
|
}

. ®
()]

peegee

%00

Max Prediction: 0.998

0 5 10 15 20
+/- Relevance Score

Mean Prediction: 0.843

Figure N.8: Neg0(glucoseFF)False
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25

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.31



N.3.3 Neg0(iculosFF)False

Relevance for Negative Class

Female ( 1.0) 1

ICULOS ( -13.0)

HospAdmTime ( -11.2)

Unitl ( 1.0)

Age ( 63.7) 1

Alactate ( 1.0)

APaCO2 ( -8.0) A

ApH ( -0.0) 1

ABaseExcess ( -2.8)
ARespiration Rate ( 1.6)
ADiastolic Blood Pressure ( -2.9)
AMean Arterial Pressure ( 8.8)
ASystolic Blood Pressure ( 22.3) |
ATemperature ( -0.7) A

AO2Sat ( 2.5) 4

AHeart Rate ( 3.1) 1

Platelets ( 228.0) A

Laukocyte Count ( 19.4) |
Partial Thromboplastin Time ( 31.6)
Hemoglobin ( 10.1) 4
Hematocrit ( 28.6)

Potassium ( 4.3) 1

Phosphate ( 3.4) 1

Magnesium ( 2.5) |

Lactate ( 2.1) 1

Glucose ( 180.0)

Creatine ( 0.6) 1

Chloride ( 109.0) A

Calcium ( 8.2) 1

Blood Urea Nitrogen ( 12.0) A
PaCO2 ( 53.0) 1

pH ( 7.3)

Fi02 ( 0.5) 1

HCO3 ( 19.0)

Respiration Rate ( 14.2) 1
Diastolic Blood Pressure ( 62.7)
Mean Arterial Pressure ( 72.0)
Systolic Blood Pressure ( 95.5) 1
Temperature ( 36.7)4

02Sat ( 94.3) 1

Heart Rate ( 91.3) A

Input Feature

o
6
3

|

¢

OQ.Q,....'O;.,

?’%
%
i
}

I

.OO.,.

11
b8

g..ooosoo

*3
I
I

Max Prediction: 0.0

1 2 3
+/- Relevance Score

Figure N.9: Neg0(iculosFF)False
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Mean Prediction: 0.0

le-5

Min Prediciton: 0.0

2200

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance



N.3.4 POSS8(baseExcessFF)True

Relevance for Positive Class

Male ( 1.0)

ICULOS ( 55.0) 1
HospAdmTime ( -0.0) A

Age ( 62.2) 1

ARespiration Rate ( -1.6) |
ADiastolic Blood Pressure ( -0.6) 1
AMean Arterial Pressure ( 0.3) -
ASystolic Blood Pressure ( 1.3) 4
ATemperature ( -1.1)

AO2Sat ( 2.8) A

AHeart Rate ( -12.9) A

Platelets ( 180.0) -

Laukocyte Count ( 11.7)

Partial Thromboplastin Time ( 35.5) 1
Hemoglobin ( 10.8) 1

Hematocrit ( 31.2)

Potassium ( 4.0) 1

Phosphate ( 3.5)

Magnesium ( 2.4) A

Glucose ( 118.0) A

Creatine ( 1.0) 4

Chloride ( 112.0)

Calcium ( 8.0) 1

Blood Urea Nitrogen ( 23.0) A
PaCO2 ( 40.0) 1

pH ( 7.4)

Fi02 ( 0.4) 1

HCO3 ( 24.0) A

BaseExcess ( -2.0)

Respiration Rate ( 16.9) 1
Diastolic Blood Pressure ( 54.8)
Mean Arterial Pressure ( 72.7)
Systolic Blood Pressure ( 111.0) A
Temperature ( 38.1)1

0O2Sat ( 96.8)

Heart Rate ( 74.2) 4

Input Feature

.'........Q..,Q........,Q,.....O,...

]

Max Prediction: 0.936

o 4

100

200 300
+/- Relevance Score
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Mean Prediction: 0.77

400

500

%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.496

Figure N.10: POS8(baseExcessFF)True



N.3.5 POSS8(iculosFF)True

Relevance for Positive Class

Male ( 1.0)

ICULOS ( -55.0)

HospAdmTime ( -0.0) A

Age ( 62.2) 1

ARespiration Rate ( -1.6) |
ADiastolic Blood Pressure ( -0.6) 1
AMean Arterial Pressure ( 0.3) -
ASystolic Blood Pressure ( 1.3)
ATemperature ( -1.1)

AO2Sat ( 2.8) A

AHeart Rate ( -12.9) A

Platelets ( 180.0) -

Laukocyte Count ( 11.7)

Partial Thromboplastin Time ( 35.5) 1
Hemoglobin ( 10.8) 1

Hematocrit ( 31.2)

Potassium ( 4.0) 1

3.5) 1
Magnesium ( 2.4) A

Glucose ( 118.0) A

Creatine ( 1.0) 4

Chloride ( 112.0)

Calcium ( 8.0) 1

Blood Urea Nitrogen ( 23.0) A
PaCO2 ( 40.0) 1

pH ( 7.4) A

Fi02 ( 0.4) 1

HCO3 ( 24.0) A

BaseExcess ( 2.0) 1

Respiration Rate ( 16.9)
Diastolic Blood Pressure ( 54.8)
Mean Arterial Pressure ( 72.7)
Systolic Blood Pressure ( 111.0) A
Temperature ( 38.1)1

0O2Sat ( 96.8)

Heart Rate ( 74.2) 4

Phosphate (

Input Feature

ceegogs

!

,',".'..i..

6 cmEFe

S0}

Max Prediction: 1.0

0.0 0.1

Figure N.11: POS8(iculosFF)True

0.2

0.3 0.4 0.5
+/- Relevance Score

Mean Prediction: 1.0
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0.6

0.7

Min Prediciton: 1.0

%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance



N.3.6 POSS8(o02satFF)True

Relevance for Positive Class

Male ( 1.0)

ICULOS ( 55.0) 1
HospAdmTime ( -0.0) A

Age ( 62.2) 1

ARespiration Rate ( -1.6) |
ADiastolic Blood Pressure ( -0.6) 1
AMean Arterial Pressure ( 0.3) -
ASystolic Blood Pressure ( 1.3)
ATemperature ( -1.1)

AO2Sat ( 2.8) A

AHeart Rate ( -12.9) A

Platelets ( 180.0) -

Laukocyte Count ( 11.7)

Partial Thromboplastin Time ( 35.5) 1
Hemoglobin ( 10.8) 1

Hematocrit ( 31.2)

Potassium ( 4.0) 1

Phosphate ( 3.5)

Magnesium ( 2.4) A

Glucose ( 118.0) A

Creatine ( 1.0) 4

Chloride ( 112.0)

Calcium ( 8.0) 1

Blood Urea Nitrogen ( 23.0) A
PaCO2 ( 40.0) 1

pH ( 7.4) A

Fi02 ( 0.4) 1

HCO3 ( 24.0) A

BaseExcess ( 2.0) 1

Respiration Rate ( 16.9)
Diastolic Blood Pressure ( 54.8)
Mean Arterial Pressure ( 72.7)
Systolic Blood Pressure ( 111.0) A
Temperature ( 38.1)1

02Sat (-96.8) 1

Heart Rate ( 74.2) 4

Input Feature

Max Prediction: 0.995

0.0 0.5 1.0 1.5 2.0

T
+/- Relevance Score

Mean Prediction: 0.978

Figure N.12: POS8(02satFF)True
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2.5

%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.952



N.4 Feature Flipping (ADCT)

N.4.1 Neg6(heartRateFF)False

Relevance for Negative Class

Systolic BP ( 154.0) 1 % & L .
Respiratory Frequency ( 24.0) L 2 3

Diastolic BP ( 74.0) 4 @®sa &
]
E ® Negative Relevance
o @ Positive Relevance
; # Negative Mean Relevance
3 # Positive Mean Relevance

Heart rate (-140.0) 1 5 BT 8O T Py
Sp02 ( 98.0) S+ w8
Temperature ( 36.5) (@
0.00 0.05 0.10 0.15 0.20 0.25

+/- Relevance Score

Max Prediction: 0.999 Mean Prediction: 0.995  Min Prediciton: 0.988

Figure N.13: Neg6(heartRateFF)False
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N.4.2 Neg6(systolicBPFF)False

Relevance for Negative Class

Systolic BP (-154.0) 98-8 eces 9 SR ©

Respiratory Frequency ( 24.0) 1 ram <

Diastolic BP ( 74.0) | @ssases

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

*x00

Input Feature

Heart rate ( 140.0) A B e i —

SpO2 ( 98.0) 1 ®@=as

Temperature ( 36.5) 1 @a® &

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
+/- Relevance Score

Max Prediction: 0.881 Mean Prediction: 0.717  Min Prediciton: 0.425

Figure N.14: Neg6(systolicBPFF)False
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N.4.3 Negé6(temperatureFF)False

Relevance for Negative Class

Systolic BP ( 154.0) 4+ <& c@uns @

Respiratory Frequency ( 24.0) 1 ome

Diastolic BP ( 74.0) 1 (@@me& =
g .
3 @® Negative Relevance
] @ Positive Relevance
g # Negative Mean Relevance
g # Positive Mean Relevance
Heart rate ( 140.0) A S @0 S WMEes —

Sp02 ( 98.0) 1+ cwme e

Temperature ( -36.5) 1@

0.0 0.5 1.0 1.5 2.0 2.5
+/- Relevance Score

Max Prediction: 0.933 Mean Prediction: 0.866  Min Prediciton: 0.745

Figure N.15: Neg6(temperatureFF)False
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N.4.4 Pos38(pabChlorideFF)True

Relevance for Positive Class

P(aB)-p0O2 ( 11.6) 4 —@m=

P(aB)-pH ( 7.4) 1 @

P(aB)-pCO2 ( 6.1) 1 @

P(aB)-Sodium ( 142.0) - e G et e

P(aB)-Lactate ( 1.8) 1 @

P(aB)-Chloride (-112.0) X B —O—& 06—

P(aB)-Potassium ( 4.2) 1 @

P(aB)-Hydrogen carbonate ( 24.0) 1 @@

Input Feature

Systolic BP ( 115.0) 4 s -

Respiratory Frequency ( 19.0) |0 B <

Diastolic BP ( 61.0) 1 @®&® @&+

Heart rate ( 70.0) 4 09 @Bogoos—Ppe ee e =le

Sp0O2 ( 95.0) e o "

Temperature ( 37.2) 1 @®a:

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
+/- Relevance Score

*%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Max Prediction: 0.041 Mean Prediction: 0.032  Min Prediciton: 0.02

Figure N.16: Pos38(pabChlorideFF)True
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N.4.5 Pos38(pabPotassiumFF)True
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Figure N.17: Pos38(pabPotassiumFF)True
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N.4.6 Pos38(systolicBPFF)True
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Figure N.18: Pos38(systolicBPFF)True

2 3
+/- Relevance Score

163

Mean Prediction: 0.623

*%00

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Min Prediciton: 0.34



N.5 Setting Value to 0 (ADP-A)

N.5.1
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Figure N.19: Neg0(deltaRespirationRate0)False
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N.5.2 Neg0(glucose0)False

Relevance for Negative Class

Female ( 1.0) 1

ICULOS ( 13.0) A

HospAdmTime ( -11.2)

Unitl ( 1.0)

Age ( 63.7) 1

Alactate ( 1.0)

APaCO2 ( -8.0) A

ApH ( -0.0)

ABaseExcess ( -2.8)
ARespiration Rate ( 1.6)
ADiastolic Blood Pressure ( -2.9) 1
AMean Arterial Pressure ( 8.8) |
ASystolic Blood Pressure ( 22.3)
ATemperature ( -0.7) A

AO2Sat ( 2.5) 4

AHeart Rate ( 3.1) |

Platelets ( 228.0)

Laukocyte Count ( 19.4) A

é

§ Partial Thromboplastin Time ( 31.6) 1

@ Hemoglobin ( 10.1)
; Hematocrit ( 28.6) S

= Potassium ( 4.3)

- Phosphate ( 3.4)

Magnesium ( 2.5) A

Lactate ( 2.1)

Creatine ( 0.6) 1

Chloride ( 109.0) A

Calcium ( 8.2) 1

Blood Urea Nitrogen ( 12.0) |
PaCO2 ( 53.0) 1

pH ( 7.3) A

FiO2 ( 0.5) 1

HCO3 ( 19.0) 1

Respiration Rate ( 14.2) 4
Diastolic Blood Pressure ( 62.7)
Mean Arterial Pressure ( 72.0)

I

.,.?.,..Q,....,.,.,’.Q..,..Q.?.l.? ®

Systolic Blood Pressure ( 95.5) A A S
Temperature ( 36.7)1 @ e
02Sat ( 94.3) 1 - £
Heart Rate ( 91.3) 4 G- B >

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

%00

0.0 2.5 5.0 7.5 10.0 125
+/- Relevance Score

Mean Prediction: 0.933

15.0
Max Prediction: 0.996

Figure N.20: Neg0(glucose0)False
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N.5.3 Neg0(iculos0)False
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Figure N.21: Neg0O(iculosO)False
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N.5.4 POS8(baseExcess0)True
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Figure N.22: POS8(baseExcess0)True



N.5.5 POSS8(iculos0)True
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Figure N.23: POSS8(iculos0)True
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N.5.6 POS8(02sat0)True
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Figure N.24: POS8(02sat0)True
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N.6 Setting Value to 0 (ADCT)

N.6.1 Neg4(heartRateO)False
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Figure N.25: Neg4(heartRate0)False
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N.6.2 Neg4(spo20)False
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Figure N.26: Neg4(spo20)False
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N.6.3 Neg4(temperature0)False
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Figure N.27: Neg4(temperatureO)False
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N.6.4 Negé6(heartRate0)False
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Figure N.28: Neg6(heartRateO)False
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N.6.5 Neg6(systolicBP0)False
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Figure N.29: Neg6(systolicBP0)False
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N.6.6 Negé6(temperature0)False
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Figure N.30: Neg6(temperatureO)False
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N.6.7 Pos38(pabChloride0)True
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Figure N.31: Pos38(pabChloride0)True
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N.6.8 Pos38(pabPotassium0)True
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Figure N.32: Pos38(pabPotassium0)True
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N.6.9 Pos38(systolicBP0)True
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Figure N.33: Pos38(systolicBP0)True
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N.6.10 Pos48(bLeukocytes0)True
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Figure N.34: Pos48(bLeukocytes0)True
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N.6.11 Pos48(pabChloride0)True
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Figure N.35: Pos48(pabChloride0)True
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N.6.12 Pos48(pSodium0)True
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Figure N.36: Pos48(pSodium0)True
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