
Explaining Predictive Uncertainty in
Bayesian Neural Networks with

Layer-Wise Relevance Propagation
- mi106f21-

Project Report

Casper Krogh Frydkjær

Lasse Østergaard

Mads Nørgaard Stenkær

Aalborg University

Department of Computer Science



Department of Computer Science
Aalborg University

http://www.aau.dk

Title:

Explaining Predictive Uncertainty in

Bayesian Neural Networks with Layer-

Wise Relevance Propagation

Theme:

Bayesian Deep Learning: Modeling Uncer-

tainty in Medical Data

Project Period:

10. Semester 2020

Project Group:

mi106f21

Participants:

Casper Krogh Frydkjær

Lasse Østergaard

Mads Nørgaard Stenkær

Supervisor:

Thomas Dyhre Nielsen

Copies: 1

Page Numbers: 73 (181 with appendix)

Date of Completion: June 18, 2021

Abstract:

In this project, we investigate the use of BNNs for

bridging the gap between expressing uncertainty

in AI models and explaining the predictions of the

models. The BNN used in this project is build

with TensorFlow and TensorFlow Probability, and

is trained through Variational Inference. Here, we

propose the possibility of sampling models from a

BNN and explaining these with LRP. By using the

relevance scores calculated with LRP from multi-

ple sampled models, we can consider the variance

in relevance scores for each individual feature. We

argue that this variance reflects the uncertainty in

the predictions, and gives an insight into which

features affect the uncertainty the most.

The LRP approach is evaluated by setting the val-

ues of features to 0, where we find that when set-

ting features to 0, for features with low relevance

scores and low variance, the predictions and uncer-

tainty in these remain similar. On the other hand,

when doing the same for features with high rele-

vance scores and high variance in these, the pre-

dictions differ from the original predictions, often

with a lower uncertainty. We conclude that there

is a clear correlation between the variance in rel-

evance scores and the uncertainty in predictions,

and that our method is able to give an insight into

which features contribute most to the uncertainty

in predictions.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

authors.

http://www.aau.dk


Summary

AI has proven itself in many different domains, and is now slowly finding its way into healthcare.

Here, AI offers precise diagnoses on complex problems [1, 2], and the ability to express uncer-

tainty and abstain from predictions by saying "i do not know", increases the trust in an AI model

[3]. In addition to this, if an AI model is to be deployed in the EU, it is required by law that black

box models such as neural networks can explain their predictions [4], when making decisions

that affect people. In order to increase trustworthiness, we see great potential in combining ex-

plainability and uncertainty quantification. Also, to our knowledge, little research has been made

about combining these two fields, with the goal of explaining the uncertainty in outputs of an AI

model. Therefore, we set an initial problem statement with the goal of acquiring more knowledge

about uncertainty quantification and explainability of AI models.

During research, we find and evaluate state of the art methods for quantifying uncertainty.

Here, we choose to focus on explaining the uncertainty produced by Variational Inference, as

this method uses probability distributions over the parameters of the model, which provides

information about the uncertainty in the network. For explainability, we choose to focus on

the LRP method, as it works on individual predictions and shows promise for the possibility

of explaining uncertainty. Throughout this project, we use two different datasets for predicting

sepsis. Here, we choose to use the data framing "Fixed Time To Onset", as this data framing

yielded the best calibrated models. We also choose a time representation that use delta values,

where the change in a feature is part of the dataset. This allowed for simpler models in terms of

model architectures, which we deem fitting when testing the novel method we propose. Having

these choices in mind, we present an idea of how to explain the features that affect the predictions

of the model, in terms of model uncertainty.

Here, we get inspiration from Bykov et al. [5], who use LRP to explain predictions from a

BNN, with the goal of determining the uncertainty in the explanation. We propose a method that

follows this approach of sampling multiple different models from a BNN and explaining these

models with LRP. However, we consider the variance in relevance scores for each sampled model,

where we argue that the variance reflects the uncertainty of the predictions.

In order to ensure that the explanations of the uncertainty can be trusted, we see great im-

portance in the model being well calibrated, and therefore conduct an experiment to investigate

this. Here, we see that the BNN is generally well calibrated for both datasets, compared to its non

stochastic counterpart. We also see that the model is better calibrated on the dataset with fewest

missing values.

After this experiment, we experiment with different methods of using the uncertainty in the

predictions to abstain from making a prediction, by saying "i do not know". Here, we see that the

uncertainty of a model can be used to enhance the performance by abstaining. Following this,

we show the results of the explanation method for uncertainties that we have proposed. Here,

we see different patterns for different datasets, and that some features seem more important than

others. Additionally, we see that when the variance in the predictions of the sampled models are

high, this variance is also reflected in the relevance scores for the features.
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After displaying the results, we evaluate the method. Here, we choose to set feature values to

0 for features with high relevance scores, and high variance in these. Based on the results, we see

that setting a feature to 0, which has a high variance in its relevance scores, causes the variance in

the predictions to decrease. However, this is not always the case for one of the datasets, which is

significantly more sparse than the other. We suspect the different results are due to this sparsity,

and that setting a feature to 0 reduces the provided information too much. Based on our results,

we conclude that there is a clear correlation between variance in relevance scores and uncertainty

in predictions, for the datasets and models used, and that our proposed model can give an insight

into how the uncertainty in predictions is affected by the input features.
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Readers Guide

This report is targeted at students having experience with machine learning, who are studying

on the last semester of their master’s degree in software engineering.

Citations follow the IEEE citation style, where a cite is represented with a number within

square brackets. The number refers to the numbers used in the bibliography.

All illustrations within the report are made by us.

When referencing other parts of the report, either ’Chapter’ or ’Section’ is used together with

a number, which states which chapter or section within a chapter is referenced. For example,

Section 4.3 refers to section 3 in chapter 4. When referring to parts in the appendix, the prefix is

’Appendix’, followed by a letter and then by a number, which likewise refers to a chapter and a

section.

For some experiments conducted during the project, many results are calculated. Therefore,

to make the Appendix less cluttered, some results are moved into a Supplementary Appendix,

which is included as an external document.
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Problem Analysis
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Chapter 1

Introduction

Artificial Intelligence (AI) is a rapidly evolving technology, and is starting to find its way into

healthcare, where it shows great potential in improving healthcare by offering precise diagnoses

[1]. The United Nations (UN) has set 17 sustainable development goals, which aim to improve

the sustainability of the world, where one of these goals regards "Good health and well-being"

[8]. Here, machine intelligence can be of great value in supporting the medical professionals in

making the correct decisions [2]. As machine intelligence is moving into the field of healthcare,

the trust in machine intelligence systems becomes increasingly vital for their viability [9].

The European Commission has released a report regarding the use of artificial intelligence in

medicine and healthcare, stating that the trust of AI in healthcare is particularly important [1].

One way of establishing trust in a machine intelligence model for medical professionals, is to

have the model reason about its uncertainty, with the possibility of providing the answer "i do

not know" [3]. This helps medical professionals determine when to trust a machine intelligence

model, which is especially important when regarding critical decisions [2].

In our pre-master thesis, "Analyzing Calibration of State of the Art Deep Learning Architectures
for Electronic Health Records" [10], we explored calibration as a measure of uncertainty. Here, the

notion of calibration relates to how well a model’s predictions fit the overall frequency of an

event. If we have 10 predictions, all with a confidence of 0.7 that patients contract sepsis, we

expect that 7 out of 10 patients contract sepsis during their admission. Through experiments,

we found that the architectures TCN and LSTM provided the overall lowest calibration scores on

datasets regarding prediction of sepsis onset. While calibration is insufficient for capturing model

uncertainty [2], Guo et al. discuss that a well calibrated model enhances the trustworthiness for

its users [11], which means that it is still relevant to consider.

In order to establish more trustworthiness in the uncertainty of a prediction, it is also relevant

to make a distinction between model uncertainty (epistemic uncertainty) and data uncertainty

(aleatoric uncertainty) [12]. Here, epistemic uncertainty refers to the uncertainty inherent in the

parameters of the model, and is caused by insufficient data. Epistemic uncertainty is pivotal

in expressing the uncertainty of a model on out-of-distribution data, which might be the case

with rare illnesses that has limited occurrences within a dataset [12]. Aleatoric on the other

hand, refers to the uncertainty or randomness inherent in the data. Unlike epistemic uncertainty,

aleatoric uncertainty cannot be reduced by gathering more data. A more in-depth coverage of

aleatoric and epistemic uncertainty is found in Section 3.3. Making a distinction between these

types of uncertainty makes it transparent whether the uncertainty is caused by inherent noise in

the data or insufficient data, which in turn makes the predictor more trustworthy [13]. Based on

these points, we want to explore other methods for capturing uncertainty, but also consider the

calibration of the resulting model.
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Even with uncertainty estimates from a neural network, it might be difficult for medical pro-

fessionals to understand the meaning of these. Therefore it is also important to consider how

the uncertainty of a machine intelligence system is communicated [3]. Expressing the uncertainty

in a way that makes it clear why the model is uncertain, gives the medical professional a better

foundation for decision making.

In 2018, the European Union updated its laws regarding General Data Protection Regulation

(GDPR), to also include "right to explanation" [4]. This law requires, that if a decision is made

by an algorithm, the user has the right to get an explanation for the decision. This law directly

requires that black box models, such as neural networks, must be explainable when deployed in

fields where a decision affects people. For example, if a person is rejected a loan by a machine

intelligence system, the person has the right to know why.

We only find one paper working in the area of combining explanation and uncertainty [14],

which itself states that little work has been done in this area. Explaining the uncertainty of a

prediction provides new information in the context of what caused the uncertainty, in which we

see great potential. For example, if there is high uncertainty in a specific prediction, this may have

a correlation to some part of the input data. Explaining which features from the input data that

cause this uncertainty, opens up for new possibilities of communicating the uncertainty. For ex-

ample, uncertainty tied to a specific lab measurement might imply, for the medical professionals,

that a new measurement is needed.

Based on the importance of expressing uncertainty in a medical setting, and the advantages

from explainability of uncertainty, we construct the following initial problem statement:

How can we express uncertainty in a Neural Network to increase the trustworthiness of
a prediction?

• How can we modify a neural network to make it possible to express the uncertainty of its

predictions?

• How can the uncertainty of a prediction be explained, such that it is possible to determine

which features in the input data cause the uncertainty?

• How can we make a distinction between epistemic and aleatoric uncertainty in the predic-

tions of a model?
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Chapter 2

Quantifying Uncertainty in Deep Learn-
ing

In this chapter, we present state of the art methods for quantifying uncertainty in deep learning.

The motivation behind this chapter is to evaluate these methods, and determine which method is

best suited for explaining the uncertainty contribution of features, as discussed in Chapter 1.

Our previous work consists of evaluating calibration in different state of the art deep learning

architectures, as a measure of uncertainty [10]. Calibration is a way of determining whether the

predicted probabilities of a network correlate to the real frequencies, which can be seen as a

frequentist notion of uncertainty [15]. However, the calibration metrics alone do not capture the

model uncertainty [2]. For traditional neural networks, the goal is to predict a single estimate of

θ (the parameters of the network) [16]. Contrary to this, the Bayesian approach is to represent

θ as random variables, which allows the possibility of expressing uncertainty in the parameters.

If a model is able to express its uncertainty, it brings more insight into how certain the model is

about the predicted probabilities, which would be of great value in the medical domain [17].

The remainder of this section is based on information from [16] and [18].
In Bayesian statistics, the principle is to express a level of belief in different outcomes. In

Bayesian Neural Networks (BNNs), compared to neural networks, stochastic elements are in-

troduced. For example, it is possible to express a BNN as a neural network where, instead of

point estimate weights (shown on Figure 2.1), probability distributions over the weights are used

(shown on Figure 2.2). These probability distributions express a belief in the different values of

the weights.

Figure 2.1: Neural Network with point estimate weights.
Figure 2.2: Bayesian Neural Network where stochastic
elements express belief in different values of the weights.
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One way to obtain these probability distributions, is to compute the posterior distribution p(θ|D)

using Bayes Rule (see Equation 2.1a). Here, p(D|θ) is known as the likelihood, which represents

the similarity between the parameters and data. p(θ) is the prior and represents knowledge

about outcomes before evidence is observed about the outcomes. The prior can for example be

expert knowledge from a doctor, that some disease occurs more often than others, or common

knowledge that a coin flip has a probability around 0.5 for either outcome. p(D) is the probability

of the data, which can be calculated as the marginalization of θ from p(D, θ), which can be seen

in Equation 2.1b.

p(θ|D) =
p(D|θ)p(θ)

p(D)
(2.1a)

p(θ|D) =
p(D|θ)p(θ)∫

θ p(D|θ)p(θ)dθ
(2.1b)

Ideally, the true posterior distribution can be computed as seen in Equation 2.1a. However, the

marginalization of
∫

θ p(D|θ)p(θ)dθ is often intractable to compute, as it scales with the number

of parameters in the network [19]. As a solution to this intractability, different methods exist for

approximating the posterior distribution. After obtaining an approximated distribution over the

parameters, it is possible to use this approximation to compute the probability distribution of a

model’s output, which can be seen in Equation 2.2. Here, y is a prediction given a data point x
and a dataset D. This distribution also expresses the model’s uncertainty, which will be covered

more in-depth in Section 3.3.

p(y|x, D) =
∫

θ
p(y|x, θ)p(θ|D)dθ (2.2)

In the following sections, we explore the predominant state of the art methods for computing the

approximated posterior.

2.1 Deep Ensembles

Deep Ensembles is a method for approximating the intractable posterior by training an ensemble

of N models [15]. By giving these models different random initializations, they follow different

trajectories while training, which results in the models being able to explore different minima

of the function space [20]. This creates diversity in the predictions, which can be used to ex-

press the uncertainty of the ensemble. Lakshminarayanan et al. [15] suggest that for classifi-

cation, the predictions of an ensemble can be averaged by p(y|x) = 1
M ∑M

m=1 pθm(y|x, θm). The

diversity in predictions can then be found, by computing how much the predictions from the

models in the ensemble disagree with the average prediction, where this disagreement repre-

sents the uncertainty in the predictions. More precisely, this disagreement can be computed by:

∑M
m=1 KL(pθm(y|x)||pE(y|x)), where pE(y|x) is the average prediction of the ensemble and KL is

the KL-divergence. Comparing Deep Ensembles to Bayesian methods, Dusenberry et al. find that

their Bayesian models achieved similar performance metrics, while having significantly less pa-

rameters than the Deep Ensemble. This makes the Deep Ensemble method more computationally

heavy, which also makes it a less attractive choice for clinical deployment [2].

5



2.2 Markov Chain Monte Carlo

As described in [17], Markov Chain Monte Carlo (MCMC) is a family of algorithms used for

approximating the true posterior p(θ|D) by using a Markov Chain. The Metropolis-Hasting

algorithm is an algorithm within the family of MCMC algorithms. In the Metropolis-Hasting

algorithm, the Markov Chain is built by using an initial sample and a candidate distribution to

draw a new subsequent sample xn. If the sample xn complies with the acceptance rules, a new

sample xn+1 is sampled from the candidate distribution. By generating enough of these samples,

the MCMC algorithm is guaranteed to produce an asymptotically exact distribution with respect

to the true posterior distribution, if doing enough iterations of the MCMC algorithm [21]. While

MCMC provides a good approximation, the computation time is heavily dependent on the size

of the dataset, which can lead to problems on bigger datasets. In addition to this, the method is

also more computationally expensive, compared to Variational Inference [18].

2.3 Variational Inference

Variational Inference is another method for approximating the true posterior. In Variational Infer-

ence, the parameters θ of a network consist of probability distributions, rather than point estimate

values [18]. The parameters θ are trained to be as close as possible to the true distribution p(θ|D).

When generating a prediction with the network, the weights are sampled from the probability

distributions θ. Several predictions can be generated this way, where the diversity in the predic-

tions represents the uncertainty, similar to the Deep Ensemble approach. An in-depth description

of the method follows in Section 3.1. While Variational Inference is less computationally heavy

than MCMC, Variational Inference does not offer the guarantee of an asymptotically correct ap-

proximation [18].

2.4 Monte Carlo Dropout

Monte Carlo Dropout (MC Dropout) is another method for approximating the true posterior

p(θ|D). MC Dropout uses the regularization method of dropout, where random neurons are

dropped during training, meaning that only a subset of the neurons in the network are propagat-

ing information. For MC Dropout, neurons are also dropped during inference, which makes it

possible to simulate an ensemble of networks, which functions as a Bayesian approximater. Neu-

rons in the network are dropped by drawing a probability from a Bernoulli distribution, deciding

whether a neuron should be dropped or not [22]. MC Dropout can be seen as a more simple al-

ternative compared to MCMC and Variational Inference, while being less computationally heavy

than Deep Ensembles, as it only requires the training of a single model.

2.5 Evaluation

As mentioned in Chapter 1, we want to explore how to explain the uncertainty and which features

cause it. In the previous sections, we have examined established methods for quantifying the
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uncertainty of a model. In this section, we want to discuss the viability of these methods for

explaining which features affect the uncertainty of a prediction.

When using Deep Ensembles, the uncertainty quantification is only based on the output of

the models. Therefore, limited information is available to analyze what causes the uncertainty,

making it difficult to connect the uncertainty to specific features.

For MC Dropout, we have a similar problem. Here, predictions change based on which

neurons are dropped, but uncertainty is still based on the output, which means that limited

information is available.

Based on this, we assert that explaining the uncertainty relative to specific features, for both

Deep Ensembles and MC Dropout, is infeasible. Therefore, we do not choose Deep Ensembles or

MC Dropout as the method for quantifying uncertainty with the objective of explaining it.

This leaves Variational Inference and MCMC as the remaining candidates. Both of these

methods make use of probability distributions over the parameters of the model. This provides

information about uncertainties on the entire network, as opposed to Deep Ensembles or MC

Dropout. Therefore, we believe these two methods to be more viable and consistent methods to

base explanations on. When comparing Variational Inference and MCMC, the big difference lies

in computation time and the potential of the approximation. MCMC produces an asymptotically

exact distribution, but scales poorly with the number of features and dataset size. Variational

Inference does not provide this guarantee of an asymptotically exact distribution, but it scales

better with features and dataset size. Based on the sizes of the datasets at our disposal, which

consist of 36, 232 data points with 50 features and 39, 789 data points with 75 features, covered in

Chapter 4, we believe that the best suited method for quantifying and explaining uncertainty in

this project is Variational Inference.
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Chapter 3

Theory

In this chapter, we present theory related to Variational Inference and uncertainty quantification,

as this is the method we choose for quantifying uncertainty, described in Chapter 2. This chapter

builds on top of Chapter 4 "Theory" from our pre-master thesis [10], which can be found in

Appendix F.

3.1 Variational Inference

This section is based on information from [16] and [18].
In Variational Inference, the principle is to find an approximate probability distribution q(θ) that

is sufficiently similar to the true intractable posterior probability p(θ|D), to be used as a substitute

for it. The similarity of the two probability distributions can be calculated using the Kullback-

Leibler (KL) divergence:

KL(q(θ)||p(θ|D)) =
∫

θ
q(θ) log

q(θ)
p(θ|D)

dθ = Eq

[
log

q(θ)
p(θ|D)

]
(3.1)

The KL divergence is always non-negative, and is 0 iff p(θ|D) = q(θ). q(θ), the candidate prob-

ability distribution, belongs to a family of probability distributions, Q, that can approximate the

true posterior probability. Therefore, finding the distribution q ∈ Q that minimizes KL diver-

gence, can be seen as an optimization problem:

q∗(θ) = arg min
q(θ)∈Q

KL(q(θ)||p(θ|D)) (3.2)

However, when using KL divergence to measure the similarity between p(θ|D) and q(θ), the

intractable true posterior is needed. Moreover, if the true posterior is already known, there is no

need for finding the approximate posterior probability q(θ). Therefore, the evidence lower bound

(ELBO) is used in the optimization problem instead of KL divergence.

To derive ELBO, we start by multiplying both the numerator and denominator of the KL

divergence by p(D), as seen on Equation 3.3a. This results in the joint probability p(θ, D) in the

denominator, while the p(D) in the numerator can be moved outside the expectation term, as it

is constant wrt. q (Equation 3.3b).

KL(q(θ)||p(θ|D)) = Eq

[
log

q(θ) · p(D)

p(θ|D) · p(D)

]
(3.3a)

= Eq

[
log

q(θ)
p(θ, D)

]
+ log p(D) (3.3b)
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Isolating the constant log p(D), we get Equation 3.4a with the constant term, KL divergence term

and the ELBO term, where the ELBO term covers the expectation term shown in Equation 3.4b.

log p(D) = KL(q(θ)||p(θ|D)) + ELBO(q) (3.4a)

ELBO(q) = −Eq

[
log

q(θ)
p(θ, D)

]
(3.4b)

As the name implies, ELBO is a lower bound on the logarithm of the evidence. This is apparent

in Equation 3.4a, where the constant equals the sum of the non-negative KL divergence and the

ELBO.

With the knowledge that the KL divergence is non-negative and log p(D) is constant, it is ap-

parent that the KL divergence decreases as ELBO increases. Therefore, the optimization problem

where ELBO is maximized has the effect of minimizing KL divergence, and can be calculated

without the intractable true posterior. However, because it is intractable to calculate the constant,

we have the problem that it is intractable to say to which degree an approximate posterior is

similar to the true posterior. However, it can still be used to express whether one approximate

posterior is more similar to the true posterior than others, which means that it can be used to find

out which q ∈ Q fits the true posterior the best.

3.2 Mean-Field Family

One possible family to use for the approximate posterior is the mean-field family. In the mean-

field family, the approximate posterior is the product of the probability distributions of the latent

variables, as shown in Equation 3.5. This means that it is assumed that the latent variables are

not conditioned on the other latent variables. Additionally, each latent variable has its own set of

variational parameters, which are updated independently of other latent variables [18].

q(θ) =
|θ|
∏
j=1

qj(θj) (3.5)

3.3 Aleatoric & Epistemic Uncertainty

In Section 5.1 "Aleatoric & Epistemic Uncertainty" in our pre-master thesis [10], we make a general

description of aleatoric and epistemic uncertainty. In this section, we build on top of this with a

more in-depth description.

In traditional neural networks, the output is often in the form of a predictive probability, that

given an input x, the output is y. This predictive probability, p(y|x, θ), is a measure of the aleatoric

uncertainty. This is the uncertainty stemming from irreducible noise in the data collection process.

Epistemic uncertainty on the other hand, is sometimes called reducible uncertainty, as it originates

in missing knowledge that can be reduced by introducing more data. This type of uncertainty

is a result of uncertainty about the model, and is expressed as p(θ|D), which corresponds to

the posterior distribution, representing a level of belief in the parameters of the model [12, 17].

Therefore, one way of quantifying epistemic uncertainty is to sample N models from the posterior

9



of a BNN, and use the disagreement of the sampled models as a measure of epistemic uncertainty.

A high level of disagreement is caused by a high variance in the sampled parameters, indicating

a high epistemic uncertainty [2].

In Equation 3.6, we show the marginalized predictive probability distribution, p(y|x, D).

p(y|x, D) is an overall predictive distribution that considers both aleatoric and epistemic un-

certainty [2]. This means that without additional effort, p(y|x, D) cannot show aleatoric and

epistemic uncertainty separately.

p(y|x, D) =
∫

θ
p(y|x, θ)p(θ|D)dθ (3.6)

To get a more visual insight into what aleatoric and epistemic uncertainty is, a representation

of a linear regression example, visualizing both types of uncertainty, can be seen on Figure 3.1.

On the figure, it can be seen that the left group of data points is scattered with some lying close

to the underlying function (shown with the dotted line) and some further away from it. In this

group of data points, the aleatoric uncertainty is high. In the group of data points on the right

side, the aleatoric uncertainty is lower, as the data points are closer to the underlying function.

The epistemic uncertainty is high when it is difficult to decide whether the parameters of a model

are correct, and thereby whether the function of the model follows the underlying function of the

data. This is the case for areas where no or few data points are available.

High Aleatoric Uncertainty

Low Aleatoric Uncertainty

High Epistemic Uncertainty

y

x

Figure 3.1: Linear regression example with labels showing the aleatoric and epistemic uncertainty.

3.4 Binary Cross Entropy

In this section, we cover the loss function we use when training networks throughout this project.

Since we are working with a binary classification problem, we have chosen to use the Binary

Cross-Entropy (BCE) loss function. BCE uses the logarithm of a model’s confidence for the ground

truth label as the loss, given by:

BCE = − 1
|D| ∑

(x,y)∈D
(y · log( f (x)) + (1− y) · log(1− f (x))) (3.7)

Here, the logarithm used is the natural logarithm [23], and f (x) is the predicted probability

from the model, given input x from dataset D. Since the logarithm of probabilities results in

negative values, the total sum is negated when used as a loss value for the network, which
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is then minimized during training. When using BCE, the loss follows a negative logaritmic

curve, meaning that the loss grows rapidly as the predicted probability approaches the wrong

label value. This means that if y = 1, the loss is very high for a prediction near 0, and vice

versa. Additionally, note that the negative logarithm of probabilities used by BCE is equivalent to

negative log likelihood, which is particularly useful when implementing our BNN in Section 7.1

[16].
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Chapter 4

Description of Datasets

This chapter builds on top of Chapter 2 "Description of Datasets" from our pre-master thesis [10],

which can be found in Appendix C.

For our pre-master thesis [10], we used two different datasets, which we also use in this

project. The first is a publicly available dataset from PhysioNet (DP) [6] for predicting sepsis in

patients admitted to an intensive care unit (ICU). The second dataset consists of preprocessed

data from the research project Cross-Tracks (DCT) [7], which is accessible to us through our

employment and tasks at Enversion A/S (Enversion). Before handling the data, we have received

appropriate data protection training, and have signed a non-disclosure agreement [10]. We denote

the PhysioNet and Cross-Tracks datasets as DP and DCT, respectively.

Both DP and DCT contains Electronic Health Records (EHRs) and are therefore structured as

time series data, which is described in Appendix C. At Enversion, they have previously been

working with time series data [24, 25], but in their later work, they have experimented with

different methods for preprocessing and framing the data, which is discussed in [26]. In the

preprocessing method discussed in the paper, the temporal aspect of the data is encoded as

delta values in the dataset of DCT, which is described in Section 4.2. This allows non sequential

models to have a notion of time incorporated in the data. Because of the novelty of explaining

uncertainty, we find this time representation fitting, as it allows for a simpler BNN in terms of

model architecture. We therefore choose to use the delta representation covered in Section 4.2, on

both DP and DCT. The preprocessing involves the calculation of delta values between two time

periods, and we therefore denote it with a ∆ prefix, followed by the name of the dataset (Eg. ∆DP

or ∆DCT). In the remainder of this chapter, we want to provide additional information about DP

and DCT, discuss how delta preprocessing is applied to DP and DCT, and which data framing

method is used.

4.1 Expanding On Dataset Description

In this section, we provide additional information about the two datasets, which was not included

in the description in Appendix C.

4.1.1 PhysioNet

The PhysioNet dataset is collected from two different hospitals, namely the Beth Israel Deaconess

Medical Center (DP-A) and the Emory University Hospital (DP-B) [6]. As the two datasets are

from two different hospitals, there are inherent differences in the datasets, as described in Ap-

pendix C. This means that when training and evaluating a model on DP, this is done on the two

datasets separately. Something that was not mentioned in Appendix C, is that if an admission is
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less than eight hours, the admission is not included in the dataset. In addition to this, if sepsis

onset happens in the first four hours of an admission, this admission will not be included.

4.1.2 Cross-Tracks Cohort

Through our employment at Enversion we have access to DCT, which is a subset of the Cross-

Tracks Cohort consisting of data from sepsis patients, which has been preprocessed by Enversion.

The data regards inpatients of 18 years or older at the Horsens Regional Hospital, collected in the

time period 1st of September 2012 to the 31st of December 2018.

4.2 Delta Preprocessing

In this section, we describe the delta preprocessing method, which follows the method described

by Lauritsen et al. [26]. Note that all admissions shorter than the observation window of 12

hours (the period of data being considered when making a prediction for sepsis) are excluded.

Delta preprocessing is done by applying the following steps to laboratory values and vital sign

parameters:

1. The observation window of 12 hours is split into two periods of six hours, where values for

each feature are averaged, meaning that there is only one value for each feature in each of

the two periods.

2. If no value is available for a specific feature in one of the periods, forward and backward

imputation is applied. This means that if there is no value for example for ’FiO2’ in the first

period, but the second period has one, the value from the second period is copied into the

first, and vice versa.

3. If no value is available for a feature in either of the two periods, 0 is inserted in both.

4. Delta values are calculated as the differences between the averaged values in the first and

the second period.

5. The averaged values from the second period are used together with the delta values as a

data point in the ∆dataset.

6. The sepsis label is set to 1 if the patient gets sepsis within the prediction window of 12

hours, and 0 otherwise.

A representation of a single data point can be seen in Table 4.1.

Vital Signs

∆

Laboratory Values

∆

Vital Signs

2. Period

Laboratory Values

2. Period

Demo-

graphics

Sepsis

Label

· · · · · · · · · · · · · · · · · ·

Table 4.1: Representation of ∆DP. ∆DCT is equivalent, but without demographics. · · · represents the values of each
feature under each category.

For DP, demographics are available together with the laboratory values and vital sign param-

eters, whereas only laboratory values and vital sign parameters are available in DCT. For the

demographics in DP, delta value preprocessing is not applied, as most of them stay the same
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throughout the admission. These features are age, gender, Unit1 and Unit2, which represents at

which ICU the patient is admitted, and HospAdmTime, representing the number of hours the

patient is admitted at a hospital before being admitted at an ICU. Instead of delta values, values

for the features in demographics are extracted from the last time step in the observation window,

which means that the last feature in demographics, ICU length-of-stay (ICULOS), represents the

admission time of the patient when a prediction is made.

Gender from demographics in DP is originally encoded as a value of 0 for female and 1

for male. We see this as being problematic, especially if gender plays a significant role in the

uncertainty of a prediction. This means that the gender feature can be asserted as the contributor

to the uncertainty, but a specific gender cannot. Therefore, we encode it using a one-hot encoding,

as shown in Table 4.2, such that no prior assumptions are made about the priority and order of

the genders.

Male Female

1 0

0 1

Table 4.2: One-hot encoding of gender for male and female.

4.3 Dataset Framing

In [26], Lauritsen et al. discuss multiple dataset framing methods: "Fixed Time To Onset", "Sliding

Window", "Sliding Window With Dynamic Inclusion", and "On Clinical Demand". The framing

methods are represented on Figure 4.1.

"On Clinical Demand" extracts samples when an Early Warning Score (EWS) assessment is

made by a clinical staff. If the patient is sepsis positive within the 12 hour prediction window

after the EWS assessment, the sample is positive. This data framing is only available for DCT, as

there are no EWS assessments in DP.

With "Fixed Time To Onset", a model is trained to predict sepsis onset at a fixed time before it

occurs for sepsis positive patients. If the patient is sepsis negative, a random point in time from

the admission is used.

The last two framing methods, "Sliding Window" and "Sliding Window With Dynamic In-

clusion", extract consecutive observation windows from the original health records. For "Sliding

Window With Dynamic Inclusion", observation windows where the SOFA score is 0 are excluded,

while for "Sliding Window" samples are extracted from the entire admission. Both methods result

in models that can be used periodically during the admission of a patient.

4.3.1 Choice of Data Framing

Lauritsen et al. [26] mentions that "Model framing must reflect the expected clinical environment",

and that this is important when considering risk prediction models for clinical settings.

All the data framing methods mentioned above are applicable on the DCT dataset. Here, we

argue that the data framings "Sliding Window", "Sliding Window With Dynamic Inclusion" and
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"Fixed Time To Onset"

"On Clinical Demand"

"Sliding Window"

"Sliding Window With
Dynamic Inclusion"

SOFA
> 0 EWSEWS Sepsis

Onset

Sepsis Negative Sample Sepsis Positive Sample Excluded Sample Observation Window Prediction Window

Time

Figure 4.1: Representation of data framing methods, based on Figure 2 from [26].

"On Clinical Demand" best fits the real world scenario of a model for predicting sepsis. A model

trained on "Sliding Window" and "Sliding Window With Dynamic Inclusion" should be able to

do a sepsis prediction at any time throughout a patient’s admission. For "On Clinical Demand",

the model is trained to do predictions when a medical professional suspects an increase in SOFA

score (see Appendix E). This would be an ideal time to predict sepsis, making "On Clinical

Demand" fit a real world scenario as well. For "Fixed Time To Onset", the model is trained to

predict positive sepsis at a specific time before onset. This arguably makes it less suited for a

real world scenario, as the time to onset is unknown and might not fit with the actual prediction

times.

Based on this, we would like to use "On Clinical Demand" for DCT and one of the "Sliding

Window" framings for DP, since "On Clinical Demand" is not available for DP. However, through

initial experiments, we find that we are unable to get satisfactory results with these data framings.

This is described further in Section 9.2. Because of this, we try experimenting with the "Fixed Time

To Onset" framing. While not being the best framing for reflecting the expected environment of

the model, it is still realistic, and we achieve much better performance and calibration when using

this framing. Additionally, this improvement gives a better foundation for experimenting with
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uncertainty explanation, as we get more trustworthy predictions. Because of this, we choose to

use "Fixed Time To Onset" as the data framing for both DP and DCT.

4.4 Sample Count

When using the data framing "Fixed Time To Onset" on ∆DP, the sample count is almost un-

changed from the original dataset. For some patients, the admission length is too short for the

12 hour observation and prediction windows, which results in some admissions being excluded.

This results in a positive percentage of 8.75% for ∆DP-A and 5.73% for ∆DP-B, as seen in Table 4.3.

This is close to the original dataset, which contains 8.8% sepsis positve cases for DP-A and 5.8%

sepsis positive cases for DP-B (Appendix C).

For the "Fixed Time To Onset" data framing on ∆DCT, the positive to negative sample ratio is

very similar, with 5.75% positive and 94.25% negative samples. With the applied data framings,

the positive and negative ratios are 1 : 16.4 for ∆DCT, and 1 : 10.4 and 1 : 16.4 for ∆DP-A and

∆DP-B respectively.

Set A Set B Combination

Total 20, 114 19, 675 39, 789

Negative 18, 354 18, 548 36, 902

Positive 1, 760 1, 127 2, 887

Negative percentage 91.25% 94.27% 92.74%

Positive percentage 8.75% 5.73% 7.26%

Table 4.3: Count of samples for the two datasets in ∆DP-A and ∆DP-B, and the combination of the two, using the
"Fixed Time To Onset" dataset framing.

Total 36, 232

Negative 34, 149

Positive 2, 083

Negative percentage 94.25%

Positive percentage 5.75%

Table 4.4: Count of samples for the ∆DCT dataset, using the "Fixed Time To Onset" dataset framing.
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Chapter 5

Explanation Method

In this chapter, we explore state of the art methods for explanation of neural network models. The

idea behind explanation methods is to explain the reasoning behind the predictions of a model,

more specifically which features in the data were used to arrive at a given prediction [27]. This

is very similar to our idea, described in the Introduction, Chapter 1, where we want to explain

which features are the cause of the uncertainty in a given prediction. Therefore, we explore

explanation methods to draw inspiration for the design of our own method.

5.1 Overview

In this section, we give a brief overview over different categories of explanation methods, mainly

based on the paper by Samek et al. [27], and choose the method we find most promising for

explaining the uncertainty of predictions relative to the input features. Many different methods

exist, but for brevity we group them into the following four categories of methods:

• Perturbation-Based Methods work by adjusting the input to the model and observing how

it affects the prediction. The intuition is that if adjusting a specific feature changes the

prediction, that feature likely has a high relevance for the prediction. An example of this

is the occlusion method used in [28], where part of the input image is covered by a grey

square, to see how it affects classification.

• Surrogate Methods work by approximating the complex model by using a simpler surro-

gate function, that is easily explainable. This is done by training the surrogate function on

some or all of the same data as the complex model, using the corresponding predictions

from the complex model as target values. By fitting the surrogate function to the complex

model, it can be used to explain the predictions of the model. An example of a surrogate

method is LIME [29].

• Propagation-Based Methods work directly on the structure of the model, by backpropagat-

ing the predicted output, or some relevance score of the output, back to the input features.

This gives a value for each feature, indicating its relevance for the prediction. An example

of a propagation-based approach is Layer-wise Relevance Propagation (LRP) [30].

• Meta Explanation Methods work by aggregating individual explanations for a model. This

means that a separate explanation method is used to get the explanations for individual

predictions. These explanations are then analyzed to find patterns in the predictions of the

model, in an attempt to better understand the general behavior of the model. An example of

a meta explanation method is SpRAy [31], which clusters individual heatmap explanation

of images.
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Since meta explanation methods focus on aggregating explanations and finding general patterns,

they do not fit our goals, as we want to focus on individual predictions.

For surrogate methods, the idea is to approximate the actual model with a simple, inter-

pretable model. Since this model is only an approximation, it introduces some level of uncertainty.

We see this as a big disadvantage, since we want to base our explanation on the uncertainty in

predictions, and using a surrogate method adds a new layer of uncertainty.

The method we find most promising is a propagation-based method, namely the LRP method.

LRP works by propagating a relevance score from the output back to the features of the input,

by following one or more relevance propagation rules. We want to consider this concept for our

method, and explore whether LRP can be used to propagate the uncertainty of a prediction back

to the features causing it.

Perturbation-based methods are also interesting, as it is rather simple to adjust the input and

observe how it affects the uncertainty of the prediction. However, perturbation methods are not

computationally efficient, as the model must evaluate each perturbation of the input, which can

grow to a large number of runs based on the number of features. In contrast, LRP requires one

forward pass of the model to get the prediction, followed by one backwards pass to propagate

the relevance scores. Therefore, we choose to focus on LRP when designing our method.

5.2 Layer-wise Relevance Propagation

This section is based on information from [30].
As mentioned, LRP works by propagating a relevance score from the model output to the input

features. This gives each feature a score based on how large an influence it had on the output

value. A positive relevance score means that a feature had a positive influence on the output,

increasing its value, whereas a negative relevance score means that a feature had negative influ-

ence, decreasing the value of the output. The propagation of relevance is done in a layer-wise

manner and follows a conservation property, such that the sum of relevance scores for each layer

is identical, and is equal to the model output. However, this is not always true in practice, as bias

neurons and some of the LRP rules can absorb part of the relevance from a layer. The process

is visualized on Figure 5.1, where it can be seen that some neurons receive a greater part of the

relevance from the following layer than other neurons. Here, the second input feature had the

highest relevance score, and thus the highest impact on the prediction.

The amount of relevance each neuron receives is based on its contribution to the outputs of

the neurons in the following layer, which is computed using one of the LRP rules. The general

idea can be shown with the generic rule:

Rj = ∑
k

zjk

∑j zjk
Rk, (5.1)

where zjk denotes the contribution from neuron j to neuron k in the following layer. Rj denotes

the relevance score for neuron j, and is computed by taking the sum of relevance scores Rk from

neurons k in the following layer, that are connected to neuron j. Each relevance score Rk is scaled

by the contribution from neuron j, divided by the total contribution received by neuron k. For
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Figure 5.1: Propagation of relevance scores through a neural network.

example, if neuron j contributes 30% of the total value of neuron k, it receives 30% of the relevance

score of neuron k.

The contribution zjk is computed differently based on the LRP rule used for the specific layer, but

is usually based on the activation of neuron j and the weight between neuron j and neuron k.

To get an insight into the variety of LRP rules, consider the three rules shown below. The first is

the basic rule, LRP-0:

Rj = ∑
k

ajwjk

∑0,j ajwjk
Rk (5.2)

This shows how the contribution of neurons are calculated based on activations and weights.

Note that the 0 in the sum of the denominator refers to an additional neuron representing the

bias, with an activation a0 = 1. LRP-0 works well for the upper layers close to the output, as these

contain lot of condensed latent information, and LRP-0 does not filter out information.

The second rule is LRP-ε:

Rj = ∑
k

ajwjk

ε + ∑0,j ajwjk
Rk (5.3)

Here, a small positive constant ε is added to the total contribution, to prevent the denominator

from getting too close to 0. This also has the effect of absorbing a small amount of the relevance

from the individual neurons, to reduce the impact of weak or noisy contributions. This makes

LRP-ε suited for the many middle layers of a network, as these can include more variations,

which can then be filtered by LRP-ε.

The third rule is LRP-γ:

Rj = ∑
k

aj(wjk + γw+
jk)

∑0,j aj(wjk + γw+
jk)

Rk (5.4)

This rule increases the impact of positive contributions by adding the term γw+
jk , where γ is a

constant and w+
jk = max(0, wjk). The larger γ becomes, the smaller the impact of negative contri-

butions becomes. The LRP-γ rule distributes relevance more uniformly than other rules, which

for example makes it good for layers close to the input when considering image classification, as
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this makes more pixels light up on the resulting heatmap, making it easier to visualize relevant

parts of the input.

The different LRP rules can be used in combination to get the best possible explanation, based on

the structure of the network and the type of explanation that best fits the problem.
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Chapter 6

Problem Statement

In this chapter, we highlight the most important points of the problem analysis. Based on these

points, we present a problem statement, which shapes the remainder of this project.

From our pre-master thesis [10], we found that a well calibrated model enhances its trustwor-

thiness, as is also discussed by Guo et al. in the paper "On Calibration of Modern Neural Networks"
[11]. In Chapter 1, we find that trustworthiness is an important subject when machine learning

systems are used in safety critical areas, which makes it relevant to consider the calibration of our

model.

We find that machine intelligence systems show great potential in improving healthcare

around the world, and thus directly impacting the UN’s goal of "Good health and well-being"

[8]. However, in order for machine intelligence systems to be fully viable in the medical field,

they need to be explainable, which is required by laws in the EU [4]. Besides the need to be

explainable, having the machine intelligence system express its uncertainty also increases the

medical professionals’ trust in the system [3]. As mentioned in Chapter 1, little research has been

done on combining uncertainty and explanation methods, which we believe could be of great

value.

In order to get a better understanding of how to express uncertainty in deep learning, we

examine the most predominant methods for quantifying this uncertainty in Chapter 2. Here, we

evaluate four different ways for expressing uncertainty in deep learning, namely: Deep Ensem-

bles, MC Dropout, Markov Chain Monte Carlo and Variational Inference. Due to the limited span

of this project, we limit our focus to explaining the uncertainty captured by Variational Inference.

In Chapter 5, we research already established methods for explaining deep neural networks, and

find that a propagation-based method, specifically LRP, may be suitable for explaining uncer-

tainty.

The datasets we base our models and explanations on regards the prediction of sepsis onset

from EHRs, described in Chapter 4. We have two datasets at our disposal, one from the Cross-

Tracks cohort [7] and another from the PhysioNet sepsis challenge [6].

Based on the problem analysis, we present the following problem statement:

How can the uncertainty of a neural network for predicting sepsis be explained
using LRP, such that is possible to determine the uncertainty contribution of each
feature?

• How can a BNN be implemented with Variational Inference to express the uncertainty of

the network?

• How well calibrated is the resulting BNN?

• How can LRP be used to explain which features affect the uncertainty for a given prediction?
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Part II

Implementation
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Chapter 7

Implementing a BNN in TensorFlow

In this chapter, we discuss how our BNN is implemented using TensorFlow, including how Den-

seVariational layers are used in relation to Variational Inference, and how the reparameterization

trick is used during optimization of the model.

7.1 DenseVariational

In this chapter, we cover how we implement a BNN trained with Variational Inference, answer-

ing the first subquestion of the problem statetment in Chapter 6. The BNN is implemented

through the use of DenseVariational layers in TensorFlow (tensorflow.org). TensorFlow Proba-

bility (tensorflow.org/probability) is a library built on top of TensorFlow, which implements

additional features that are useful for creating probabilistic models. The construction of a feed

forward neural network with stochastic layers can be done by using the DenseVariational layer in

the TensorFlow Probability library. A DenseVariational layer learns the parameters for the approx-

imation of the posterior probability distributions over θ by using Variational Inference, described

in Section 3.1.

The function signature for creating a DenseVariational layer in TensorFlow Probability can be

seen in Code snippet 7.1. Here, the function parameters units, make_posterior_fn and make_prior_fn

are required by the user. This means that when using the DenseVariational layer, we have to spec-

ify the prior p(θ) and approximated posterior q(θ) distributions. It is important to note that the

posterior we define has to be learned, in order for it to be an approximation of the true posterior

p(θ|D).

1 tfp.layers.DenseVariational(

2 units, make_posterior_fn, make_prior_fn, kl_weight=None, kl_use_exact=False,

3 activation=None, use_bias=True, activity_regularizer=None, **kwargs

4 )

Code snippet 7.1: The DenseVariational layer, with its corresponding inputs. Please note that this is a direct copy of
the implementation in TensorFlow Probability [32].

The DenseVariational layer approximates the true posterior distribution p(θ|D) by using the ELBO

term derived in Equation 3.4b from Section 3.1. This can be rewritten by dividing both the

enumerator and denominator in the ELBO equation with p(θ):

ELBO = −Eq

[
log

q(θ)/p(θ)
p(θ, D)/p(θ)

]
(7.1)

By splitting up the logarithmic equation, we can further rewrite Equation 7.1 to:

ELBO = −Eq

[
log

q(θ)
p(θ)

]
+ Eq

[
log

p(θ, D)

p(θ)

]
(7.2)
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Realizing that the first expectation in Equation 7.2 is equivalent to the KL divergence in Equa-

tion 3.1 from Section 3.1, and that the division in the second expectation term results in the

conditional probability p(D|θ), we rewrite this:

ELBO = −KL(q(θ)||p(θ)) + Eq

[
log p(D|θ)

]
(7.3)

The first term of Equation 7.3 is also called the penalty term, which penalizes the approximated

posterior if it deviates too far from the prior [33].

As mentioned in Section 3.1, we maximize the ELBO term in order to approximate the true

posterior p(θ|D). However, when using the DenseVariational layer, this is done by minimizing

the negative ELBO:

− ELBO = KL(q(θ)||p(θ))−Eq

[
log p(D|θ)

]
(7.4)

In our case, a data input x has a corresponding data output y, which can be specified in the

equation:

− ELBO = KL(q(θ)||p(θ))−Eq

[
log p(Y|X, θ)

]
(7.5)

Here, X and Y represent the inputs and outputs of our dataset, respectively. By observing Equa-

tion 7.5, we can see that the last term is the negated expected value of the log probability for a

prediction of the model. This is equivalent to the BCE loss function from Section 3.4 [34]. This

means that when using the DenseVariational layer, the loss from BCE is added together with the

penalty from the KL divergence between the posterior and prior, acting as a total loss. This total

loss is then minimized through the training of the network.

When implementing the posterior and prior distributions, we follow a TensorFlow Probability

code example [34]. The prior distribution is implemented as seen in Code snippet 7.2. The prior

has n parameters, which is based on the number of parameters in the kernel and bias, where the

kernel is a weight matrix for the layer [35]. Here the priors are initialized with a loc (mean) of 0,

and a scale (standard deviation) of 1. The value 1 for standard deviation is determined through

grid search.

1 def prior(kernel_size, bias_size=0, dtype=None):

2 n = kernel_size + bias_size

3 return tf.keras.Sequential([

4 tfp.layers.DistributionLambda(lambda _: tfd.Independent(

5 tfd.Normal(loc=tf.fill([1, n], (0.0)),

6 scale=tf.fill([1, n], (1.0))),

7 reinterpreted_batch_ndims=1)),

8 ])

Code snippet 7.2: The function that defines the prior distribution.

The posterior distribution, defined in Code snippet 7.3, is a mean field distribution, which is ex-

plained in Section 3.2. This is because of the VariableLayer, which uses independent variables that

are not conditioned on the input [36]. The definition of the posterior distribution in Code snip-

pet 7.3 shares some similarities with the prior from Code snippet 7.2. The main difference here

24



is that the posterior distribution uses a VariableLayer in order to have learnable parameters,

whereas the prior is not trained. In order to avoid negative values for the standard deviation, the

parameters are passed through a softplus activation function:

so f tplus(x) = log(1 + exp(x)) (7.6)

This implementation of the mean field posterior (Code snippet 7.3) deviates from [34], since we

have chosen to scale the output of the softplus function. With an unscaled softplus, we find

that a small network is unable to learn, even after 2000 epochs. We suspect this being due to

a high variance in the standard deviation in the distributions of the network. We therefore try

scaling the softplus activation of the posterior, hparams["posterior_softplus_weight"] on line 7 in

Code snippet 7.3, which results in much faster learning and better performance of the network.

The increase in performance can be seen in Appendix A.

1 def posterior_mean_field(hparams, kernel_size, bias_size=0, dtype=None):

2 n = kernel_size + bias_size

3 return tf.keras.Sequential([

4 tfp.layers.VariableLayer(2 * n, dtype=dtype),

5 tfp.layers.DistributionLambda(lambda t: tfd.Independent(

6 tfd.Normal(loc=t[..., :n],

7 scale=1e-5 + hparams["posterior_softplus_weight"] *

tf.nn.softplus(t[..., n:])),

8 reinterpreted_batch_ndims=1)),

9 ])

Code snippet 7.3: The function that defines the posterior distribution, with regularizing softplus scale.

However, we find that the network being unable to learn could also be due to poorly initialized

posteriors, as found by Rossi et. al [37]. By using grid search, we find fitting initializations for

the means and standard deviations of the parameters in the posterior. This is done by sampling

means and standard deviations from two seperate normal distributions, each with a standard

deviation of 0.1 and a mean found through grid search. Here, we find the best mean value to

be 0 for the distribution for initializing mean values, and −6 for the distribution for initializing

standard deviation values. This results in comparable learning and performance rates to that of

scaling the softplus. The manual initializations of the VariableLayer is shown in Code snippet 7.4.

1 def posterior_mean_field(hparams, kernel_size, bias_size=0, dtype=None):

2 n = kernel_size + bias_size

3 return tf.keras.Sequential([

4 tfp.layers.VariableLayer(2 * n, dtype=dtype, initializer=lambda shape, dtype:

random_gaussian_initializer(hparams["posterior_init_loc"],

hparams["posterior_init_scale"], shape, dtype), trainable=True),

5 tfp.layers.DistributionLambda(lambda t: tfd.Independent(

6 tfd.Normal(loc=t[..., :n],

7 scale=1e-5 + tf.nn.softplus(t[..., n:])),

8 reinterpreted_batch_ndims=1)),

9 ])

Code snippet 7.4: The function that defines the posterior distribution, using initialized weights.
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7.2 Optimization

For optimization of parameters in the BNN, we use the Adam algorithm, described in Ap-

pendix G. The gradients used for optimizations in Adam are calculated in TensorFlow, following

the principle of backpropagation, which is described in Appendix F.1.1.

The following description of the reparameterization trick is based on information from [38].
Here, it is important to notice that, as weights are sampled from distributions (in our case

normal distributions), and as this sampling cannot be differentiated, the gradients with relation

to the parameters of the distributions cannot be determined. As a solution to this, the reparame-

terization trick can be used.

The principle is to convert the random variable θ ∼ qφ(θ) into a deterministic variable (φ is the

parameters of the posterior distributions, µ and σ). This is done using a deterministic mapping

such that θ = gφ(ε) where ε ∼ N (0, 1), such that the stochasticity is not an inherent part of the

sampling of θ. The function g is defined in relation to the distributions used, which for our case

is: gφ(ε) = ε ∗ σ + µ. This simulates the sampling from the distribution, while allowing gradients

to be computed for the parameters µ and σ.

In TensorFlow’s implementation of the normal distributions, this reparameterization trick is

used when sampling values, as shown in Code snippet 7.5. This means that operations using the

parameters loc and scale (µ and σ) can be recorded using GradientTape, such that gradients of

the loss function with respect to the parameters can be calculated during training.

1 def _sample_n(self, n, seed=None):

2 loc = tf.convert_to_tensor(self.loc)

3 scale = tf.convert_to_tensor(self.scale)

4 shape = ps.concat([[n], self._batch_shape_tensor(loc=loc, scale=scale, axis=0)

5 sampled = samplers.normal(

6 shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed)

7 return sampled * scale + loc

Code snippet 7.5: The implementation of the method for sampling values from a normal distribution. Please note that
this is a direct copy of the implementation in TensorFlow Probability [39].
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Chapter 8

Uncertainty in Features

In this chapter, we give an overview of our method for evaluating the uncertainty of a given

prediction relative to the input features, by using LRP on a BNN, as well as a description of

the implementation of the method. This covers the third subquestion of the problem statement

in Chapter 6. The idea takes inspiration from the B-LRP method from Bykov et al. [5], where

they perform LRP on several sampled models from a BNN to consider the uncertainty in the

explanations. Note that in the paper, they specifically consider the uncertainty in explanations,

not the uncertainty of predictions or how these are affected by the input features.

8.1 Method Overview

The basis of our approach, that allows us to consider the uncertainty in our predictions, is our

BNN. We train our BNN based on Variational Inference, described in Section 3.1, and use it to

get predictions by sampling parameters from the approximated posterior q(θ). To consider the

uncertainty relative to each feature, we look at the variance in LRP relevance scores for each

feature. The general approach is as follows:

• Sample N models from the approximated posterior q(θ).
• Run LRP on each of the N models to get N relevance scores for each feature.

• Consider the distributions over relevance scores for each feature, and evaluate the variation

in the distributions.

This builds on the intuition that a feature with high relevance has a high impact on the prediction.

If a feature with high relevance has high variance, this indicates uncertainty in the prediction,

which is tied to the specific feature.

As described in Section 5.2, relevance scores from LRP are based on the weights and acti-

vations of the network for the given prediction. As we sample N different sets of parameters,

we get N different relevance scores for each feature. This means that the change in relevance

scores across samples are caused by the change in parameters. From this, it follows that a high

variance in relevance scores must be caused by a high variance in parameters, which stems from

epistemic uncertainty in the model parameters of the BNN. However, since the relevance value

we propagate back from the output is the probability of sepsis, the total relevance of each predic-

tion is affected by the aleatoric uncertainty inherent in the prediction. Whereas the parameters

of the sampled model determine how relevance is distributed among features, the prediction de-

termines how much total relevance is distributed, which also affects the size of relevance scores.

Therefore, by evaluating the variation in relevance scores, we get a feature-specific measure of

total uncertainty for model predictions, including both aleatoric and epistemic uncertainty.
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8.2 Method Implementation

In this section, we describe our implementation of the method, including how we compute the

LRP relevance scores for a given model and data point, and how we sample the parameters for

the models based on our BNN.

8.2.1 Computing LRP

As an overview, the computation of LRP relevance for a single model consists of a forward

pass and a backward pass. In the forward pass, parameters are sampled, and activations and

total contributions (the denominator in Equation 5.1 from Chapter 5) are computed, up to and

including the output prediction. In the backward pass, the output probability is propagated back

through the network as relevance, using the activations and total contributions computed during

the forward pass. This approach is based on the description of how to efficiently implement LRP,

described by Montavon et al. [30]. Here, they split the computation into four steps, as follows:

∀k : zk = ε + ∑0,j aj · wjk (8.1a)

∀k : sk = Rk/zk (8.1b)

∀j : cj = ∑k wjk · sk (8.1c)

∀j : Rj = aj · cj (8.1d)

Here, j and k denote neurons in the current layer and the following layer respectively, following

the notation from the LRP rules in Section 5.2. The four computation steps change the order of

computations in the LRP rules, such that computation steps are done for a full layer at a time.

In our implementation, this is done by recursively going through the forward pass in the first

step (Equation 8.1a) until reaching the output layer, after which we backtrace through the callstack

while computing the backward pass in the last three steps (Equation 8.1b - Equation 8.1d). The

block of code performing these four steps can be seen on Code snippet 8.1:

1 def lrp_step(self, activation_prev, layer_number, ...):

2 ...

3

4 with tf.GradientTape() as g:

5 g.watch(activation_prev)

6

7 #Adds a 1 as activation for bias neurons.

8 input_with_bias = _add_bias_activation(activation_prev)

9

10 #Forward step #1

11 if "lrp0" in layer_name:

12 z = tf.matmul(input_with_bias, weights)

13 else:

14 z = tf.matmul(input_with_bias, weights) + self.epsilon

15

16 #Element-wise division #2
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17 R, prediction = self.lrp_step(activation_next, layer_number + 1)

18 s = R / z

19

20 #Backward step #3

21 #Has to stop the tape from recording gradients or else the tape will consider

22 #how activation_prev is used in following calculations.

23 l = tf.reduce_sum(z * tf.stop_gradient(s))

24 c = g.gradient(l, activation_prev)

25

26 #Element-wise multiplication #4

27 return activation_prev * c, prediction

Code snippet 8.1: Code Snippet from the recursive lrp_step function, showing the implementation of the four steps
for efficient LRP.

Note that the activation of the bias neuron is added on line 8, as it is used when calculating the

contribution values in step 1.

The first step, Equation 8.1a, can be seen on lines 8− 11. Note that we use two different LRP

rules, LRP-0 and LRP-ε. We use LRP-0 for the last layer before the output layer, as it does not filter

out information, and LRP-ε for the other layers, as this can remove some noise in the relevance,

as described in Chapter 5.

The second step, Equation 8.1b, can be seen on lines 14 and 15. On line 14 we get the rele-

vance from the next layer through the recursive call to lrp_step. Note that the final prediction

is also propagated back, to be returned alongside the relevance scores, but it is not used in the

computations. The computation for the s values can be seen on line 15.

The third step, Equation 8.1c, can be seen on lines 20 and 21. Here, we use a trick from

Montavon et al. [30], where we compute the c values as gradients, which allows them to be com-

puted efficiently through TensorFlow’s automatic differentiation. More specifically, TensorFlow

uses reverse order auto differentiations with eager execution. When doing reverse order auto

differentiation, a list of operations is required, which is why GradientTape is used. GradientTape

logs specified variables and the operations done on these variables, and in this case we specify

this variable to be the previous activations with g.watch(activation_prev) on line 2. The list of

operations is then traversed in reverse order using the chain rule for each step [40, 41]. For more

details on back propagation, see Section F.1 in Appendix F.

The last step, Equation 8.1d, can be seen on line 24, where we simply return the relevance as

the product of activations and c values, along with the output prediction.

8.2.2 Sampling Parameters

As mentioned, the parameters of the model are sampled during the forward pass of the method,

which means that parameters are sampled in a layerwise manner. In our implementation, we

sample parameters manually and use them to create point estimate dense layers. This is done

to ensure that the same parameters are used in both the forward and backward pass of our LRP

computations. The sampling of parameters can be seen on Code snippet 8.2:

1 #Generates normaldistributions from the parameters and samples a weight or bias from

each.
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2 weights = []

3 for loc_weight, scale_weight in zip(loc_weights, scale_weights):

4 weights.append(tfd.Normal(loc=loc_weight, scale=1e-5 +

tf.nn.softplus(scale_weight)).sample())

5

6 biases = []

7 for loc_bias, scale_bias in zip(loc_biases, scale_biases):

8 biases.append(tfd.Normal(loc=loc_bias, scale=1e-5 +

tf.nn.softplus(scale_bias)).sample())

Code snippet 8.2: Implementation of the sampling of parameters from the BNN.

Here, weights and biases are sampled from the posterior of the BNN by recreating the posterior

distribution from the loc (mean) and scale (standard deviation) from the corresponding layer

of the BNN. The loc and scale parameters used in the loops are found by indexing into the

parameters of the BNN. After the weights and biases have been sampled, they are used to create

a Tensorflow Dense layer, which is then returned. The full function, including indexing and layer

creation, can be seen on Code snippet I.1 in the Appendix (Part V).
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Part III

Experiments
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Chapter 9

Initial Experiments

In this section, we cover the setup of our experiments and how hyperparameters of our models

are tuned and logged. Following this, we introduce a set of initial experiments, which is used

to determine the model structure and hyperparameters of the BNN model to be used in fur-

ther experiments. The models used throughout this chapter are implemented according to the

description in Section 7.1.

9.1 Configuration Files

In order to ensure reproducibility and documentation of the experiments, we choose to use a

configuration file for setting up and executing experiments. This configuration file is a JSON file

with two main parts, one for overall "setup" and one specific to "experiments", as shown in

Code snippet 9.1.

1 {

2 "setup": {

3 "data_path": "", #Path for dataset.

4 "log_path": "", #Path for where to put logs for the runs. The logs can be

used when reproducing the experiments.

5 "dataset": "", #Used for specifying either DP or DCT.

6 "train_split": 0.7, #Specifies how much of the dataset should be used for

training.

7 "val_split": 0.15, #Specifies how much of the dataset should be used for

validation.

8 "shuffle_seed": 12345, #Used as seed for how the elements in the dataset are

shuffled.

9 "tensorflow_seed": 12345, #Used for specifying a seed to be used by

TensorFlow for generating random values, for example for initial weights

in a neural network.

10 "log": true, #Specifies whether to create a log file for the run.

11 "save_path": "", #Path for where to save diagrams, experiment results and

logs used in TensorBoard for visualization of hyperparameters and

training of models.

12 "saved_models_dir": "" #Additional path used for saving a model, instead of

retraining the same model for every run.

13 },

14 "experiments": [

15 {

16 "model": "bayesian_linear_model", #The identifier used to specify a

specific model.
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17 "load_model_from": "", #Path used to load an existing model, rather than

training a new model. If specified, Hyperparameters should be left

empty.

18 "hyperparameters": [ #A set of hyperparameters used in a model. Grid

search is applied to the parameters specified in the hyperparameters.

19 {

20 "units_layer1": [50, 100],

21 ...

22 "metric2": ["AUC"]

23 }

24 ]

25 }

26 ]

27 }

Code snippet 9.1: Representation of a config file used for running experiments.

In the "experiments" part, parameters specific to each experiment is specified. The "experiments"

part can contain a list of experiments, which will be run in succession. In the "setup" part, pa-

rameters used across all experiments are specified.

The parameters specified in the scope of "experiments" are the hyperparameters used for

the experiments. When multiple values are specified for a hyperparameter in an "experiment",

for example as shown with "units_layer1" in Code snippet 9.1, a grid search is applied. This

means that the total number of runs for that experiment is the product of the number of values for

each hyperparameter. These hyperparameters are saved as Hparams. Hparams is a feature within

TensorBoard, that automatically logs all specified parameters in "experiments". These logs can be

visualized by TensorBoard, which shows in-depth information about a model’s training process,

and the results for different combinations of hyperparameters [42]. In addition to this, the entire

configuration file and the commit ID is saved as a text file within a log file directory, which allows

replication of the exact experiments. By using configuration files, we have created a pipeline for

running experiments and saving relevant information from the runs.

9.2 Initial Experiments on ∆DP

This section covers a set of initial experiments on ∆DP, with the goal of obtaining an optimized

model for this dataset. The two PhysioNet datasets, ∆DP-A and ∆DP-B, are from two different

hospitals, which may be why we see different performances from models trained on ∆DP-A,

compared to ∆DP-B. During the initial phases of the optimization process, we chose to focus

on optimizing towards ∆DP-B, as this dataset resulted in the best performing models. Whereas

∆DCT must be accessed through a remote server, ∆DP-B is locally available, which provided the

benefit of a fast experimentation process. The data framing we based the initial hyperparameter

optimization on was "Sliding Window", as this best reflects the expected clinical environment,

as mentioned in Chapter 4. All the BNNs in this section are implemented by using TensorFlow

DenseVariational layers, which is described in Section 7.1.
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9.2.1 Early Tests

At the start of the optimization process, we tested many different parameters, namely:

• Model Width and Model Length.

• Learning Rate.

• KL Weight Scale.

• Epochs.

• Batch Size.

For model width and length, we found that generally, smaller BNNs performed the best, as seen

in Appendix B.1. We observe that a learning rate of 0.0001 and 0.001 yielded the best results, with

varying numbers of epochs depending on model size and the learning rate.

We also tested changing the KL weight scale for scaling the penalty term described in Sec-

tion 7.1, consisting of the KL divergence between the posterior and prior used by the DenseVari-

ational layers. Through the tests, we found that changing the scaling of the penalty term gave

worse results, and we therefore chose to keep using the suggested scaling value of 1/N, where N
is the number of data points in the dataset [34], during any following hyperparameter tuning.

At the time of the early tests, we were using the data framing "Sliding Window" on ∆DP-B.

This provided us with great performance metrics and low ECE and ACE values. However, as

seen on the reliability diagram Figure 9.1, this is due to the low probabilities of the predictions,

resulting in a few well calibrated bins containing most of the predictions. Since ECE is weighted

based on number of data points in the bin, as described in Appendix H, this resulted in a good

ECE. For ACE, these predictions are dispersed into 10 ranges with very similar probabilities, in

turn resulting in a low ACE.

Due to this, we decided to change the data framing from "Sliding Window" to "Fixed Time

To Onset". We based a new grid search on parameters that showed the best performance on the

"Fixed Time To Onset" data framing, which can be seen on Figure B.5 in Appendix B.4. Changing

data framing provided better AUROC and AUPRC, as well as higher confidence predictions, as

seen on Figure 9.2. Here, we also found that ∆DP-A now provided the best results. This means

that through the remainder of the report, when referring to models trained on the PhysioNet

dataset, this refers to ∆DP-A.
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Figure 9.1: Reliability diagram based on results from 5
sampled models on the ∆DP-B test set, using the BNN
from Appendix B.2.

Figure 9.2: Reliability diagram based on results from 5
sampled models on the ∆DP-A test set, using the BNN
from Appendix B.2.

During the hyperparameter tuning, we find that training a BNN is more complicated, com-

pared to training its point estimate counterpart. This might be due to the additional parameters

that are present in a BNN, in terms of parameters for the prior and posterior distributions, which

are very dependent on their initial values when working with complex problems [37]. The effect

of a bad or good initialization can be seen on Figure 9.3a and Figure 9.3b respectively. As a result,

searching for the right initializations of the prior and posterior distributions is tedious, as many

parameters need to be searched. We observe that, when training an FFNN on the same data, with

the same model structure, it is less affected by the hyperparameters. However, when good hyper-

parameters are found for the BNN, we often see better performance, better calibration and less

tendency to overfitting, as shown on Figure 9.3b, whereas the FFNN is more prone to overfitting,

as shown on Figure 9.3c. This is also discussed by Hernandez-Lobato et al. in [43].
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(a) Training a BNN with bad hyperparameters. (b) Training a BNN with good hyperparameters.

(c) Training an FFNN with good hyperparameters.

Figure 9.3: The figures show the AUROC during training for different model types. The x-axis shows the number of
epochs, the y-axis shows the AUROC. The blue line represents AUROC for the training set, and the red line for the
validation set.

9.2.2 Two Outputs for LRP

When doing LRP, we use the confidence in a given label as relevance for the last layer and

propagate it back through the network, as described in Section 5.2. Since the BNN we use has a

single output neuron, which expresses its confidence in the sepsis positive class, a prediction of

0.99 is a confident sepsis positive prediction. However, this also means that a prediction of 0.01 is

a confident sepsis negative prediction. This means that when a prediction of 0.01 is propagated

with LRP, this small value is distributed among the features that contributed to the prediction,

resulting in low relevance scores, as seen on Figure 9.4.

Figure 9.4: Relevance diagram showing low relevance scores (see x-axis) for a prediction on ∆DP-A, from a BNN with
a single output neuron.
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This makes it difficult to evaluate which features the model base its prediction on when predicting

sepsis negative. In order to avoid this issue, we choose to use a network with two output neurons.

Here, one neuron expresses its belief in the sepsis positive class, and the other expresses its belief

in the sepsis negative class. We use a softmax activation function to ensure the two outputs sum

to 1, such that if the positive class predicts 0.7, the negative class predicts 0.3, representing the

probability of each outcome. Now, instead of having a prediction of 0.01 in the sepsis negative

class, this would instead be a prediction of 0.99. After this change we saw similar performance

for a model with the same hyperparameters.

9.2.3 Final Configuration

Through the different experiments, we end up with the following final configuration for the BNN

used on ∆DP-A with the "Fixed Time to Onset" data framing:

• 1, 500 epochs.

• 5, 000 batch size.

• 0.0001 learning rate.

• 0.0 mean for the distribution used for initializing mean values in the posterior.

• −6.0 mean for the distribution used for initializing standard deviation values in the poste-

rior.

The model consists of three stochastic layers, with 60, 40, and 20 neurons, followed by two output

neurons, as seen on Figure 9.5.

Layer 1: 60 Neurons
ReLU

Layer 2: 40 Neurons
ReLU

Layer 3: 20 Neurons
ReLU

Output: 2 Neurons
Softmax

Input: 75 Features

Figure 9.5: Model architecture of the final BNN on ∆DP-A, based on the grid search in Appendix B.3.

The final model structure and hyperparameters yield the following performance and calibration

scores:
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BNN AUROC AUPRC ECE ACE

Mean 0.8726 0.7295 0.0264 0.0239

Max 0.8785 0.7399 0.0273 0.0251

Min 0.8664 0.7255 0.0258 0.0232

Table 9.1: AUROC, AUPRC, ECE and ACE based on results from 5 sampled models, using the BNN with the final
configuration on ∆DP-A with the data framing "Fixed Time To Onset".

9.3 Initial Experiments on ∆DCT

In this section, we cover the search for an optimized model on ∆DCT. Since we also observe low

probabilities in the predictions on ∆DCT when using the data framing "Sliding Window", we

choose to use the "Fixed Time To Onset" data framing for ∆DCT as well. We also modify the

network to have two output neurons, to accommodate the problems encountered when doing

LRP, mentioned in the previous section.

As for PhysioNet, we also observe through early experiments that smaller models give better

results on ∆DCT. Therefore, minimal testing is done on model size, where the best performing

model is identical to the model used for ∆DP-A in Figure 9.5. Instead, we focus on testing

different hyperparameters for learning rate, batch size, number of epochs and initialization values

for the distributions. A grid search of the hyperparameters on ∆DCT can be found in Figure B.7

in Appendix B.6. Here, we observe that the best hyperparameters for our model trained on DCT

are:

• 3, 000 epochs.

• 5, 000 batch size.

• 0.0001 learning rate.

• 0.0 mean for the distribution used for initializing mean values in the posterior.

• −6.0 mean for the distribution used for initializing standard deviation values in the poste-

rior.

The final configuration for the BNN trained on ∆DCT results in the following performance:

BNN AUROC AUPRC ECE ACE

Mean 0.7675 0.2882 0.0074 0.0073

Max 0.7787 0.2984 0.0095 0.0087

Min 0.7609 0.2744 0.0075 0.0065

Table 9.2: AUROC, AUPRC, ECE and ACE based on results from 5 sampled models, using the BNN with the final
configuration.

We observe that the performance on Table 9.2 is significantly lower for AUROC and AUPRC,

compared to the performance on Table 9.1. We believe the main reason for this, is that ∆DCT

contains substantially more missing values than ∆DP-A, as it is not based on information from

ICUs, which is also observed in Appendix C. However, we see that the calibration scores for
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∆DCT are better than for ∆DP-A. This is explored further in the calibration experiment, described

in Chapter 10.
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Chapter 10

Calibration

In Chapter 1, we mention that calibration is important when evaluating whether a model’s pre-

diction confidence can be trusted [11]. In addition to this, Jospin et al. [17] mentions that BNNs

are often better calibrated, compared to non-Bayesian Feed Forward Neural Networks (FFNN).

Therefore, we want to run an experiment, where we evaluate the expected calibration error (ECE)

and adaptive calibration error (ACE) of a BNN, and compare these to the ECE and ACE of an

equivalent FFNN. This answers the second subquestion of the problem statement in Chapter 6.

More information about ECE and ACE can be found in Appendix H, which is a copy of parts

from Chapter 5 "Reasoning about Uncertainty" from our pre-master thesis [10]. Guo et al. [11]

observes that multiple factors impacts the calibration of a model, for example model size. There-

fore, when selecting the equivalent FFNN, we do not grid search for different model sizes, and

only replace the stochastic layers with corresponding deterministic layers. However, for epochs,

learning rate and batch size, we conduct a small grid search, seen in Section J.1, as we find that

these parameters have an impact on whether the FFNN starts to overfit or not. By observing

Section J.1 and Section J.2, we can see that the most optimal models on either dataset use the

same values for these parameters, namely:

• Identical model architecture to that found in Chapter 9.

• 1, 500 epochs.

• 0.0001 learning rate.

• 5, 000 batch size.

In this experiment, the results regarding the FFNN is based upon five models trained with differ-

ent parameter initializations, whereas the results for the BNN is based upon five sampled models.

This means that the error bars in the reliability diagrams on Figure 10.1 and Figure 10.2 represent

the variations in model accuracy for each bin, with the lower part of the error bar being the mini-

mum accuracy and the upper part being the highest accuracy. The tables throughout this section

include the minimum, maximum and mean values for ECE and ACE over five runs.

10.1 PhysioNet

In this section, we compare calibration errors of the BNN found in Chapter 9 and the FFNN

discussed above, on the PhysioNet dataset ∆DP-A. In Table 10.1 and Table 10.2, it can be seen

that in general, the BNN is better calibrated. The BNN has a mean ECE of 0.0264, and a mean

ACE of 0.0239, whereas the calibration errors of the FFNN are 0.0397, and 0.0350 respectively. In

addition to this, there is also a significant difference in the performance. Here, the BNN has a

mean AUROC of 0.8726 and a mean AUPRC of 0.7295, compared to the FFNN’s mean AUROC

of 0.8333 and a mean AUPRC of 0.6380.
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BNN AUROC AUPRC ECE ACE

Mean 0.8726 0.7295 0.0264 0.0239

Max 0.8785 0.7399 0.0273 0.0251

Min 0.8664 0.7255 0.0258 0.0232

Table 10.1: AUROC, AUPRC, ECE and ACE based on five models sampled from the BNN on ∆DP-A.

FFNN AUROC AUPRC ECE ACE

Mean 0.8333 0.6380 0.0397 0.0350

Max 0.8415 0.6557 0.0449 0.0372

Min 0.8198 0.6103 0.0373 0.0320

Table 10.2: AUROC, AUPRC, ECE and ACE based on five FFNN models with different initialized weights on ∆DP-A.

By examining the reliability diagrams in Figure 10.1, we observe that the BNN is better calibrated

for most of the confidence ranges, and has lower variation in the accuracy in most of the bins.

(a) Reliability diagram for five sampled BNN models. (b) Reliability diagram for five FFNN models with different ini-
tialized weights.

Figure 10.1: Reliability diagram for the five sampled models from the BNN and the five FFNN models.

10.2 Cross-Tracks

In this section, we compare calibration errors of the BNN found in Chapter 9 and the FFNN

discussed in the start of this chapter on the ∆DCT dataset. By inspecting Table 10.3 and Table 10.4,

we can see that the BNN, as also observed in Section 10.1, has significantly lower calibration

errors. Where the BNN has a mean ECE of 0.0074, and a mean ACE of 0.0073, the FFNN has a

mean ECE of 0.0417 and a mean ACE of 0.0316. Comparing the FFNN and BNN, the BNN has
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higher AUROC and lower calibration errors, but the FFNN has the best AUPRC. Here, the FFNN

has a mean AUPRC of 0.3380, compared to a mean AUPRC of 0.2882 for the BNN.

BNN AUROC AUPRC ECE ACE

Mean 0.7675 0.2882 0.0074 0.0073

Max 0.7787 0.2984 0.0095 0.0087

Min 0.7609 0.2744 0.0063 0.0065

Table 10.3: AUROC, AUPRC, ECE and ACE based on five models sampled from the BNN on ∆DCT.

FFNN AUROC AUPRC ECE ACE

Mean 0.7300 0.3380 0.0417 0.0316

Max 0.7383 0.3535 0.0423 0.0329

Min 0.7167 0.3211 0.0408 0.0303

Table 10.4: AUROC, AUPRC, ECE and ACE based on five trained FFNN models with different initialized weights on
∆DCT.

The reliability diagrams in Figure 10.2 shows that the BNN lacks predictions in the last confidence

bin, yet the BNN has a lower ECE and ACE. Also, the bin containing confidences within 0.8− 0.9

in Figure 10.2 has significantly larger error bars, compared to the other bins, which can indicate a

low number of predictions for the bin. By observing the first two bins, 0.0− 0.1 and 0.1− 0.2, in

Figure 10.2b, we can see that the reliability diagram for the FFNN has significantly larger errors,

compared to the diagram for the BNN, shown in Figure 10.2a. As ∆DCT contains more negative

cases (94.25%), being miscalibrated in these bins acts as a major contribution to the overall ECE

of the model, as ECE is based on the volume of predictions within each bin. Here, one could

assume that the bins containing the largest number of predictions would be these exact bins.

Also, in relation to this, it is therefore expected that the model is better calibrated for these bins.

This is not the case for the FFNN (Figure 10.2b), as it has large calibration errors relative to the

0.0− 0.1 and 0.1− 0.2 bins. Because of this miscalibration, we expect that the FFNN makes less

FN and TN predictions, and that it predicts more TP and FP predictions as well, such that it gets

a higher mean AUPRC of 0.3380, but also a lower mean AUROC of 0.7300, compared to the BNN,

with 0.2882 and 0.7675, respectively. We also observe that the average error bars for confidences

less than 0.8, on the reliability diagram of the FFNN in Figure 10.2b, are notably larger, compared

to the BNN in Figure 10.2a. In addition to this, the BNN in Figure 10.2a is better calibrated on

almost every bin with confidences less than 0.8. Keeping this in mind, we see the BNN as being

the better calibrated model.
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(a) Reliability diagram for five sampled BNN models. (b) Reliability diagram for five FFNN models with different ini-
tialized weights.

Figure 10.2: Reliability diagram for the five sampled models from the BNN and the five FFNN models.

On both ∆DP-A and ∆DCT, when comparing the BNN and FFNN, the BNN has better calibration

scores, while generally maintaining better performance. This means that the observations made

by Jospin et al. [17], are also present in the models we have inspected.
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Chapter 11

I Do Not Know

In Chapter 1, we discuss that a model being capable of answering "i do not know", is one way

of enhancing trust in its predictions. Therefore, as we have implemented a BNN, which makes it

possible to express uncertainty in predictions, we want to run some experiments where we apply

this concept.

In the medical article "Second opinion needed: communicating uncertainty in medical machine learn-
ing" by Kompa et al. [3], the ability for neural networks to express "i do not know" (IDK), and

abstain from making predictions, is discussed as being important when using AI in a medical

context. They also discuss an approach for deciding when to abstain, where two functions, f
and g, are used. f is the prediction function for a neural network, and g is a selection function

that decides if the neural network can make a prediction or if it abstains. We want to follow

this approach by having f be the mean of predictions from multiple sampled models, and g be a

function that uses the uncertainty expressed by the BNN for deciding when to abstain and when

to predict.

We see multiple ways of defining the function g. Either it selects whether to abstain or not

based on disagreements in multiple predictions, together with a limit for how many predictions

can disagree, or based on the standard deviation of multiple predictions, together with a thresh-

old. For both of these definitions, we want to conduct an experiment, to evaluate whether the

uncertainty of the BNN can be used to improve predictions.

In both experiments, we want to use the number of true positives (TPs), false negatives (FNs),

false positives (FPs), and true negatives (TNs), together with AUPRC and AUROC, to analyze

whether the model performs better or worse, when abstaining from predicting.

11.1 Abstain with Disagreement

In the first experiment, the procedure is as follows:

1. Sample N models from the BNN and make a prediction for each data point with each

model.

2. Calculate the number of TP, FN, FP, and TN predictions together with AUPRC and AUROC,

at different positive thresholds and different disagreement limits.

The number of models sampled will be [5, 10, 50, 100, 150], to gain a deep insight into how the

number of predictions affects the results.

The positive thresholds are defined as the limit for when a prediction is said to be sepsis

positive or sepsis negative. For example, with the threshold 0.5, all confidence levels for the

positive class over or equal to 0.5 are positive predictions, whereas all confidence levels below

the threshold are negative predictions. In order to evaluate the entire range of confidence levels,
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we want to experiment with varying the thresholds between 0 and 1, and to limit the scope of

results, we use the following thresholds: [0.1, 0.2, ..., 0.8, 0.9].

The disagreement limit is used as a cutoff for when the model makes a prediction and when it

abstains. The limit defines the percentage of the N predictions from the sampled models, which

can disagree before abstaining from a prediction. For example, with a disagreement limit of 10%

and with 10 sampled models, 9 out of 10 predictions need to be on the same class, for the model to

make a prediction, otherwise the model abstains from making predictions. For the disagreement

limit, we want to experiment with the following thresholds: [0%, 10%, 20%, 30%, 40%].

If the model does not abstain from making a prediction, the confidence of the prediction is

calculated as the mean of the predictions from the N sampled models.

For the different values of the disagreement limit we also show a baseline model, which cannot

make IDK predictions, and where the prediction is the class with the highest mean confidence.

11.1.1 Discussion about Results

The most interesting results from the experiment are included in this section, and the full set of

results can be found in Appendix K.1 for ∆DP-A and in Appendix K.3 for ∆DCT.

When observing the results, we see a very interesting outcome, that by allowing the model to

express IDK, there is nearly always a metric (either TP, FN, FP, TN, AUPRC, or AUROC) that is

improved compared to not expressing IDK.

If we first have a look at Table 11.1, we find that by having a low positive threshold of 0.1, the

model is more likely to make positive predictions and less likely to make negative predictions.

This means that TP and FN are improved, but at the cost of more FP and less TN predictions.

When decreasing the disagreement limit, the model makes more IDK predictions, and inter-

estingly, a large part are FPs (around 30% of the 74 IDK predictions, between the disagreement

limits 40% and 20%, and around 25% of the 117 additional IDK predictions, between the dis-

agreement limits 20% and 0%), and only a small part is TPs, which results in a higher AUPRC

and AUROC when the model abstains more from making predictions.

Note that the following tables show results from different numbers of sampled models, however the same
tendencies are found.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 175 2842 - 161 103 14 2739 0.7472 0.8820

0.1 0 (b0%c) 204 2622 191 171 70 33 2552 0.7703 0.8847

0.1 1 (b20%c) 237 2706 74 177 76 60 2630 0.7583 0.8826

0.1 2 (b40%c) 267 2750 0 182 82 85 2668 0.7472 0.8820

Table 11.1: PhysioNet: Disagreement results where 5 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree. Full table in Table K.1.

In connection to the previous result, we also find that, either with a positive threshold of 0.5

or a higher positive threshold of 0.9 (shown in Table 11.2 and Table 11.3 respectively), a large
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part of the IDK predictions are TP. We find that this makes sense, as the datasets have a large

percentage of negative samples, which means that the model might be more uncertain about

the positive predictions and output lower confidence, resulting in more disagreement between

sampled models at these thresholds.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 175 2842 - 159 105 16 2737 0.7471 0.8827

0.5 0 (b0%c) 142 2776 99 140 90 2 2686 0.7375 0.8726

0.5 2 (b20%c) 159 2823 35 152 98 7 2725 0.7432 0.8786

0.5 4 (b40%c) 171 2837 9 157 103 14 2734 0.7459 0.8815

Table 11.2: PhysioNet: Disagreement results where 10 models are sampled. Full table in Table K.2.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 177 2840 - 161 103 16 2737 0.7487 0.8845

0.9 5 (b10%c) 106 2860 51 105 118 1 2742 0.6953 0.8647

0.9 10 (b20%c) 117 2870 30 116 125 1 2745 0.7222 0.8744

0.9 15 (b30%c) 125 2877 15 124 128 1 2749 0.7354 0.8794

0.9 20 (b40%c) 128 2883 6 127 132 1 2751 0.7434 0.8824

Table 11.3: PhysioNet: Disagreement results where 50 models are sampled. Full table in Table K.3.

For ∆DP-A, we find the best results for AUPRC and AUROC when sampling 150 models and

using a disagreement limit of 0% (See Table 11.4). With these settings, the AUPRC increases

to 0.8054 and AUROC increases to 0.8937. We also find that the number of FN predictions are

nearly halved compared to the baseline, and that TP only decrease slightly. We see this as a

great improvement, as we argue that telling a person that he/she does not contract sepsis, when

he/she does, is the most dangerous case. We therefore find that using the uncertainty, in order

to determine when to abstain from making a prediction, is useful when the data has limited

information about a class, resulting in uncertain predictions.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 176 2841 - 161 103 15 2738 0.7478 0.8833

0.1 0 (b0%c) 165 2334 518 155 53 10 2281 0.8054 0.8937

0.2 0 (b0%c) 144 2508 365 141 67 3 2441 0.7664 0.8797

0.3 0 (b0%c) 138 2580 299 136 71 2 2509 0.7487 0.8740

Table 11.4: PhysioNet: Disagreement results where 150 models are sampled. Full table in Table K.4.

For ∆DCT we find similar patterns and results, which can be found in Appendix K.3. Here, we

find the highest AUPRC to be 0.3521, up from 0.3112, when using a positive threshold of 0.1, a
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disagreement limit of 0%, and when 150 models are sampled. For AUROC, the highest result is

0.7947, up from 0.7888, when using the same positive threshold, a disagreement limit of 20%, and

when 50 models are sampled.

11.2 Abstain with Standard Deviation

This experiment follows nearly the same procedure as the previous experiment. However, instead

of using a disagreement limit, we now use the standard deviation of multiple predictions when

deciding whether or not to abstain from making a prediction.

Here, we sample the same numbers of models as for the experiment with disagreement limit.

Unlike the previous experiment, the positive threshold does not affect the number of IDK pre-

dictions, as this is only affected by the standard deviation, and that the IDK predictions are

the same even with different thresholds. Therefore, we want to limit the positive thresholds to

[0.25, 0.5, 0.75] instead.

To get a deeper insight into how different numbers of IDK predictions affect the perfor-

mance of the model, we want to use a large range of values for the standard deviation cutoff

[0.01, 0.02, ..., 0.08, 0.09, 0.1, 0.2, ..., 0.5, 0.6].

11.2.1 Discussion about Results

The most interesting results from the experiment are included in this section, and the full set of

results can be found in Appendix K.2 for ∆DP-A and in Appendix K.4 for ∆DCT.

Compared to the previous experiment, the performance increase is less noticeable, and we

only see slight improvements in AUPRC and AUROC with few of the settings.

With the lowest positive threshold of 0.25, shown in Table 11.5, we see similar results as for

the previous experiment, where a large percentage of the IDK predictions come from positive

predictions. When increasing the standard deviation, the number of IDK predictions decreases

from 123 to 14 with the positive predictions increasing from 146 to 205, which means that more

than 50% of the IDK predictions are from the positive predictions. This again supports the idea

that the model is more uncertain about positive predictions, as the data is unbalanced.

Note that the following tables show results from different numbers of sampled models, however the same
tendencies are found.

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 176 2841 - 160 104 16 2737 0.7424 0.8801

0.25 0.09 146 2748 123 143 87 3 2661 0.7360 0.8717

0.25 0.1 149 2757 111 145 87 4 2670 0.7358 0.8719

0.25 0.2 186 2789 42 161 90 25 2699 0.7396 0.8769

0.25 0.3 205 2798 14 170 90 35 2708 0.7431 0.8793

Table 11.5: PhysioNet: Standard deviation results where 5 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know". Full table in Table K.5.

47



When using a positive threshold of 0.5, as shown in Table 11.6, we see that the number of IDK

predictions that are from positive predictions falls, compared to a positive threshold of 0.25.

When we increase the standard deviation threshold from 0.1 to 0.3, the number of IDK predic-

tions decreases from 133 to 11. Of these predictions, 34 were positive, which means that positive

predictions made up slightly less than a third of the IDK predictions. For a higher positive thresh-

old, shown in Table 11.7, it seems that the positive IDK predictions are likewise saturated, which

means that when the model abstains from more predictions, it is often for negative predictions.

This makes sense, as the model has few positive predictions with high confidence, as shown in

Chapter 10. Unfortunately, a large part of the negative predictions are from TNs, without a large

improvement in FNs, which therefore generally results in lower AUPRC and AUROC.

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 173 2844 - 160 104 13 2740 0.7487 0.8844

0.5 0.1 133 2751 133 132 87 1 2664 0.7334 0.8706

0.5 0.2 157 2815 45 150 99 7 2716 0.7458 0.8807

0.5 0.3 167 2839 11 159 104 8 2735 0.7530 0.8850

Table 11.6: PhysioNet: Standard deviation results where 10 models are sampled. Full table in Table K.6.

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 176 2841 - 161 103 15 2738 0.7464 0.8805

0.75 0.08 123 2699 195 122 88 1 2611 0.7273 0.8645

0.75 0.09 123 2719 175 122 90 1 2629 0.7265 0.8643

0.75 0.1 125 2729 163 124 92 1 2637 0.7299 0.8661

0.75 0.2 141 2825 51 137 110 4 2715 0.7392 0.8757

Table 11.7: PhysioNet: Standard deviation results where 50 models are sampled. Full table in Table K.7.

In Table 11.8 we show the best settings for the experiment on ∆DP-A, when AUPRC and AURPC

are considered. Compared to using disagreement for deciding when to abstain from making a

prediction, the performance increase is less noticeable. When comparing the baseline to the best

settings with a positive threshold of 0.5, only 11 IDK predictions are made, of which 6 result

in fewer TPs and TNs with the rest being FNs. This, we see as a drawback for using standard

deviation for deciding when to abstain, as nearly half of the IDK predictions result in a worse

performance.

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 173 2844 - 160 104 13 2740 0.7487 0.8844

0.25 0.3 206 2800 11 172 91 34 2709 0.7530 0.8850

0.5 0.3 167 2839 11 159 104 8 2735 0.7530 0.8850
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0.75 0.3 144 2862 11 140 123 4 2739 0.7530 0.8850

Table 11.8: PhysioNet: Standard deviation results where 10 models are sampled. Full table in Table K.6

As for the previous experiment, we also see similar tendencies and patterns when comparing the

results to ∆DCT, where AUPRC and AUROC are only slightly improved for a few settings. The

highest AUPRC is 0.3181, up from 0.3173, and the highest AUROC is 0.7851, up from 0.7850.

These results can be found in Appendix K.4.

11.3 Comparison

When comparing the two approaches for when to abstain from making a prediction, we argue

that abstaining with disagreement is more useful. The reason is that for almost all settings,

we see an improvement in multiple of the metrics used, though with different trade-offs. This

means that, if for example FNs are very expensive to predict, nearly half can be excluded with

the right settings, and oppositely nearly all FPs can be excluded with another setting. Also,

when considering AUPRC and AUROC, we see a large boost in performance when sampling 150

models and with a disagreement limit of 0, but at the cost of making over 500 IDK predictions.

For the standard deviation approach we see similar results, but often at a greater expense in true

predictions. When considering both approaches, we also think that these results make sense, as

the disagreement approach might result in situations where the predictions from the sampled

models have a large variance, but all with confidence levels well within the range of either the

positive or negative class, set by the positive threshold. This might be opposite for the standard

deviation approach, as even though all predictions are well within one of the ranges, they might

still be considered IDK predictions, because of too high standard deviation.
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Chapter 12

Layer-wise Relevance Propagation

In this chapter, we consider the relevance scores from our method for evaluating the uncertainty

of predictions relative to the input features, described in Chapter 8. This gives an insight into

which features are generally used by the model to predict sepsis positive and sepsis negative,

respectively. It also shows the variance in relevance scores, and to which degree it is present in

different predictions. Here, we consider results from both the ∆DP-A and ∆DCT datasets.

12.1 Experiment Approach

Through the experiments, we use two different approaches to observe relevance scores. The

first approach is to consider the relevance scores for individual data points based on 20 sampled

models. Here, we consider the 20 different relevance scores and the mean relevance score for each

feature, excluding features with 0 relevance. Additionally, we consider the minimum, maximum

and mean prediction values for the 20 model samples, shown in the bottom of the diagrams.

This is done separately for both the sepsis positive and sepsis negative class. An example of the

resulting diagrams from this approach for the sepsis positive class can be seen on Figure 12.1,

though note that the diagrams shown here only show the most relevant features. Full diagrams

can be seen in Appendix L.

The second approach is to take a broader view at the distribution of relevance scores across

data points. Here, we consider the relevance scores from 3, 000 different data points from the

testset of each dataset. The resulting relevance scores are then grouped together to create a

diagram for each feature, showing the different relevance scores it received, based on its value.

This is also done separately for the sepsis positive and sepsis negative class. To get a clearer

insight into how the features affect predictions for the two classes, we filter the results to only

show true positives for the respective class, with a probability threshold of 0.9. This filters out

the low relevance scores from true negative predictions, as well as outliers with unusually high

relevance scores from uncertain predictions. For ∆DCT, this threshold is lowered to 0.5, since

positive predictions are generally lower for ∆DCT, as mentioned in Chapter 10. An example of

this type of diagram can be seen on Figure 12.4.

12.2 Most Relevant Features

In this section, we review the most relevant features used by the BNN to predict sepsis pos-

itive and sepsis negative, respectively. Note that the features used by the ∆DP-A and ∆DCT

datasets are not identical (see Appendix D), and that ∆DCT contains more missing values (see

Appendix C), which can lead to differences in relevant features.
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12.2.1 PhysioNet

For ∆DP-A, the most dominant feature for predicting sepsis positive is ’ICULOS’ (ICU Length

of Stay), where a high ’ICULOS’ value receives positive relevance, and a low ’ICULOS’ value

receives negative relevance. This can be seen on Figure 12.1 and Figure 12.2 respectively.

Figure 12.1: Sepsis positive data point from ∆DP-A with positive ’ICULOS’ relevance for the positive class.

Figure 12.2: Sepsis positive data point from ∆DP-A with negative ’ICULOS’ relevance for the positive class.

This indicates a pattern in the data, that patients with long admissions at an ICU are more likely

to have contracted sepsis, which can be seen clearly on Figure 12.4. For sepsis negative predic-

tions, we see the same pattern for ’ICULOS’, but where a low ’ICULOS’ value receives positive

relevance, and vice versa (see Figure 12.3). This fits our expectations, as negative relevance for

the sepsis positive prediction becomes positive relevance for the sepsis negative prediction.

Interestingly, the ’Age’ feature seems to be inversely correlated to ’ICULOS’, where predic-

tions with positive relevance for ’ICULOS’ has negative relevance for ’Age’ and vice versa, as

seen on Figure 12.1 and Figure 12.2. The correlation between ’ICULOS’ and ’Age’ results in

mixed relevance scores for different ’Age’ values, with little correlation between ’Age’ value and

relevance score, as seen on Figure 12.5 for sepsis negative. However, we do see that low ’Age’

values tend to have low relevance, and that high ’Age’ values have more data points with high

negative relevance, suggesting a higher tendency towards sepsis positive.
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Figure 12.3: Sepsis negative data point from ∆DP-A with positive ’ICULOS’ relevance for the negative class.
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Figure 12.4: Overview of relevance scores for ’ICULOS’
when considering sepsis negative predictions in ∆DP-A.
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Figure 12.5: Overview of relevance scores for ’Age’ when
considering sepsis negative predictions in ∆DP-A.

Aside from ’ICULOS’ and ’Age’, we also see high relevance in the bottom six features on Fig-

ure 12.1: ’Diastolic Blood Pressure’, ’Mean Arterial Pressure’, ’Systolic Blood Pressure’, ’Tem-

perature’, ’O2Sat’ and ’Heart Rate’, which are all vital signs. Of these features, ’O2Sat’ and

’Temperature’ show the clearest patterns, though note that they are still quite noisy. For ’O2Sat’,

we see increasing relevance for sepsis negative as the value rises towards 100 (Figure 12.6). This

fits well with the fact that a normal ’O2Sat’, the amount of oxygen in the blood, falls around

95− 100% [44]. For ’Temperature’, we see a triangular shape for sepsis negative, where relevance

increases towards 37 and decreases as the value moves above or below 37 (Figure 12.7). This also

makes sense, as a normal body temperature is around 37°celsius.

Aside from the features mentioned here, ’Chloride’, ’Glucose’, ’Platelets’, ’Hematocrit’, ’SaO2’

and ’PaCO2’ also have notable relevance scores, but are much less prevalent in the data. It is

somewhat disappointing that the most used feature is ’ICULOS’, rather than one of the vital

signs or lab values, as ’ICULOS’ is not directly connected to the patient’s health or the definition

52



of sepsis (see Appendix E). However, several other relevant features used by the model are more

closely related to the patients health and sepsis.
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Figure 12.6: Overview of relevance scores for ’O2Sat’
when considering sepsis negative predictions in ∆DP-A.
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Figure 12.7: Overview of relevance scores for ’Temper-
ature’ when considering sepsis negative predictions in
∆DP-A.

We note that for many features, we see irregular relevance scores, that do not correspond to

the pattern we otherwise see or expect. An example of this can be seen on Figure 12.6, where

negative relevance also increases as ’O2Sat’ increases, though at a smaller rate than the positive

relevance. It is unclear what exactly causes this behavior, but the filtering of false positives and

false negatives, along with the probability threshold of 0.9 to focus on certain predictions, helped

reduce this behavior. We believe the most likely explanation is either that the model has not

properly learned the patterns in the data, or that the patterns in the data are inherently noisy.

12.2.2 Cross-Tracks

For ∆DCT, we generally see that less features are present and that positive predictions are not

as high as for ∆DP-A, with more uncertainty in the predictions. This is likely due to ∆DCT

having more sparse data, as it is not from ICUs. We see a tendency that positive cases more

often have more features, whereas some negative cases only have information for the six vital

sign parameters, indicating that more measurements are done close to sepsis onset.

For the most certain sepsis positive predictions, the most relevant features are ’P(aB)-Sodium’

and ’P(aB)-Chloride’, as seen on Figure 12.8. ’P(aB)-Sodium’ and ’P(aB)-Chloride’ measure the

levels of sodium and chloride in the blood, respectively, and have both been shown to be con-

nected to sepsis [45, 46]. We do not see a clear pattern between the values for these features and

the relevance scores they receive, but this may be due to the notable uncertainty present in the

positive predictions.
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Figure 12.8: Sepsis positive data point from ∆DCT with positive relevance for ’P(aB)-Sodium’ and ’P(aB)-Chloride’ for
the positive class.

As for ∆DP-A, we also see high relevance for the six vital sign parameters in our model trained

on ∆DCT. This can be seen more clearly on Figure 12.9, which shows a prediction for sepsis

negative. Here, we also see the clearest patterns for ’Temperature’ and ’SpO2’ (a measure for

’O2Sat’), shown on Figure 12.10 and Figure 12.11. The patterns are very similar to those from

∆DP-A, where sepsis negative relevance for ’SpO2’ increases as the value increases towards 100,

and sepsis negative relevance for ’Temperature’ peaks around 37.

Note that for ’Temperature’ and ’SpO2’, relevance is almost always positive for the sepsis

negative class. We see this pattern in several features in ∆DCT, where relevance is almost always

either positive or negative. This may indicate that the model has found a pattern in some features,

where a measurement simply being present for the feature has a certain effect. However, we also

see that the actual value of the feature has a clear effect on the amount of relevance received.

It is interesting that we see similar patterns across datasets, with the main differences being

the relevance for ’Age’ and ’ICULOS’ in ∆DP-A, which are both unavailable in ∆DCT, and the rel-

evance for ’P(aB)-Sodium’ and ’P(aB)-Chloride’ in ∆DCT, where no sodium measure is available

in ∆DP-A.
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Figure 12.9: Sepsis negative data point from ∆DCT with relevance scores for vital sign features for the negative class.
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Figure 12.10: Overview of relevance scores for ’SpO2’
when considering sepsis negative predictions in ∆DCT.
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Figure 12.11: Overview of relevance scores for ’Temper-
ature’ when considering sepsis negative predictions in
∆DCT.

12.3 General Observations

In this section, we state some general observations we see during the LRP experiments.

The first observation occurs when one class dominates the prediction, e.g. when sepsis pos-

itive has a probability of around 1 and sepsis negative has a probability of around 0, or vice

versa. Here, we see that the distribution of relevance from the dominating class is reflected in the

distribution of relevance in the other class, where we see very similar results, but of course with

much lower relevance scores. We believe this is due to the fact that the two classes share most of

their parameters throughout the network, having only 20 unique weights each from the last layer,

as seen on Figure 9.5. However, we still see a clear difference between relevance in high positive
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predictions and relevance in high negative predictions, showing that the model is still able to use

different features and patterns for sepsis positive and sepsis negative respectively.

Additionally, note that the relevance scores shown in this chapter are based on relatively

certain predictions. However, when predictions are very uncertain, ranging between both high

positive and high negative predictions, we see a more mixed result in relevance scores. Here,

many features receive both positive and negative relevance for the same data point, as shown on

Figure 12.12. We believe this shows how different relevance is assigned to the same feature value,

based on whether the model tries to predict positive or negative. This can explain the mixed

relevance scores, considering the shared weights in the network as explained above.

We also observe that the features with highest relevance are often features with high values.

For example, ’ICULOS’ can have values above 100, whereas the delta values are always compar-

atively low, typically with values below 10. We believe this might affect the patterns found by

the model through training, which can explain the way relevance is distributed to high valued

features. Therefore, we perform a short experiment where we normalize ∆DP-A such that all

features have values between −1 and 1, and train a BNN using this dataset. However, this results

in lower performance, and does not show significant changes in the distribution of relevance (e.g.

’ICULOS’ still receives high relevance), other than the gender and unit features receiving higher

relevance. An example can be seen on Figure 12.13. Based on these results, we choose to not use

the normalized dataset.

Lastly, we see a general tendency that predictions with high uncertainty also show high vari-

ance in relevance scores, as well as having outliers with high scores, especially for some of the

most relevant features. This shows that the variance in relevance scores are affected by the un-

certainty of the predictions. We therefore expect that the uncertainty in the predictions can be

explained using the variance in relevance scores, which we evaluate further in the experiment in

Chapter 14.

Figure 12.12: Sepsis positive data point from ∆DP-A with high uncertainty and mixed relevance scores.
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Figure 12.13: Sepsis positive data point from normalized ∆DP-A.
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Chapter 13

Weight Uncertainty in First Layer

In this section, we cover an experiment of inspecting the first layer of either a fully Bayesian

NN, or a BNN where only the first layer is stochastic. From the chapter discussing the results of

experimenting with LRP (Chapter 12), we find that when conducting LRP on multiple sampled

models, some features have larger variance compared to others. Based on these findings, we

want to explore whether weight uncertainty in the first layer has a correlation with features that

provide the most uncertainty to a prediction. Here, we represent the probability distributions

over the weights, by plotting the mean and the standard deviation of the weights connected to a

specific feature.

The chapter is split into two subsections, based on what is plotted on the x-axes, namely

standard deviation and mean. Throughout this chapter, we only include the most interesting

parts of the plots (full plots can be found in Appendix M).

13.1 Standard Deviation

In this section, we inspect the plots where the standard deviation of the first layer is plotted

on the x-axis, for both the fully Bayesian NN and the BNN with one stochastic layer. When

observing Figure 13.1, we can see that the standard deviation is generally very similar across

features. Here, no clear patterns are visible, and the randomness of the standard deviation is

a reoccurring pattern across datasets and the two different models featured in this experiment.

This is a little surprising, as the idea to experiment with a BNN, in which only the first layer is

stochastic, came from the assumption that, when limiting the layers in which uncertainty can be

expressed, the standard deviation of the remaining layer has to compensate, which would then

result in more noticeable changes.
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Figure 13.1: Standard deviation plot for probability distributions over weights in the first layer of a fully Bayesian NN
on ∆DP-A. The full figure can be viewed on Figure M.1 in Appendix M.

13.2 Mean

In this section, we inspect the plots where the mean of the distributions over weights in the first

layer is plotted on the x-axis, for both the fully Bayesian NN and the BNN with one stochastic

layer. By inspecting Figure 13.2, we can see that some features have fluctuating mean values,

whereas others have mean values that are very close to 0. For example, when looking at ’ICULOS’

and ’Age’ in Figure 13.2, we see that the absolute values of the means are high, and that the

mean values have a high variance. When comparing to the results from Chapter 12, we can

see that these features also often have large relevance scores. The same pattern can be seen

for the features: ’Diastolic Blood Pressure’, ’Mean Arterial Pressure’, ’Systolic Blood Pressure’,

’Temperature’, ’O2Sat’ and ’Heart Rate’. This means that if a feature has higher weights, because

of higher mean values, these also receive higher relevance scores. This is probably due to how

LRP propagates most of the relevance through high weights. This also means that these features

have a greater impact on the output of the model, compared to features which mean values are

centered around 0, for example ’End-Tidal Carbon Dioxide’.
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Figure 13.2: Mean plot for probability distributions over weights in the first layer of a fully Bayesian NN on ∆DP-A.

Figure 13.3 shows the BNN where only the first layer is stochastic. Here, we see the same patterns

as we see in the fully Bayesian model on Figure 13.2.

Figure 13.3: Mean plot for probability distributions over weights in the first layer of a BNN where only the first layer
is stochastic, on ∆DP-A.

On Figure 13.4, the mean values for distributions in the first layer are plotted for ∆DCT. Here, we

see similar patterns to Figure 13.3 and Figure 13.2, where some features have fluctuating mean

values, whereas others are centered around 0. Interestingly, many of the features shared between

the two datasets also share a correlation in the magnitude of the mean values. For example,

’HeartRate’ and ’Systolic Blood Pressure’ both have high mean values, whereas ’Potassium’ has

low values. However, we also see disagreement in some features, for example, ’Creatine’ and

’Glucose’.

As ∆DCT is not composed of ICU patients, we see a lot more missing values, as observed in

Section C.3, with the vital signs being the most observed features. This likely contributes to why

these features are more important to the model.
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Figure 13.4: Mean plot of the first layer on a fully Bayesian network on ∆DCT.

13.3 Summary

Generally, we see that the absolute mean values of the first layer both in a fully Bayesian NN and

a BNN with one stochastic layer, indicate which features the model base its predictions on. We

find it surprising that such a clear pattern can be seen by only considering the first layer.

Regarding the standard deviation, we expect that there is a connection between the variance

in the relevance scores of a feature, and the standard deviation of the weights connecting to that

feature. However, we see no apparent correlation between the plots for standard deviation and

the relevance scores of multiple sampled model. Therefore, without investigating other ways of

representing the standard deviation in the first layer, we do not see much potential in using the

first layer as an indicator of which features affect the uncertainty in predictions.
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Chapter 14

Evaluating Uncertainty in
Relevance Scores

In Chapter 12, we see a correlation between the uncertainty in predictions and the variance in

the relevance scores of input features. Therefore, in this chapter we evaluate the method of using

LRP to explain which features have a large impact on the uncertainty in predictions, as described

in Chapter 8.

In [47], Binder et al. discuss a method for evaluating the relevance scores computed using

LRP. This method is called pixel flipping, and is related to image classification, where a pixel’s

value is set to the negated value (flipped pixel = pixel · (−1)). Here, Binder et al. observe,

that when flipping a pixel that has high relevance for the prediction, the confidence is reduced.

However, since we do not use pixel data, we adapt it in the form of feature flipping, such that

flipped feature = feature · (−1). Even though there are inherent differences in flipping a single

pixel in a picture with 400 pixels, and flipping a feature in a dataset consisting of 75 features, we

still see this as an interesting experiment. Therefore, we want to evaluate how the variations in

relevance scores are affected when using feature flipping.

To gain a wide insight into how feature flipping affects different outcomes from LRP using

multiple sampled models, we want to experiment with three different types of features. These

are features with:

• High positive relevance together with high variance.

• High negative relevance together with high variance.

• Low relevance and low variance.

These three types of outcomes should make it possible to evaluate feature flipping, both for

features which have positive impact, negative impact, and little impact on the predictions and the

uncertainty in them.

14.1 Feature Flipping

When comparing the outcomes of feature flipping for both ∆DP-A and ∆DCT, we see very mixed

results. For example, one outcome is that when flipping a feature, the predictions remain some-

what similar, with similar uncertainty in the predictions, as shown in Figure 14.1 and Figure 14.2.

For other outcomes, either the uncertainty decreases or increases, or the prediction confidences

decrease or increase, without following a clear pattern (The full set of results can be found in Ap-

pendix N.3 for ∆DP-A and in Appendix N.4 for ∆DCT). Therefore, we do not see feature flipping

as a reliable procedure, when evaluating the method.

62



An additional argument against using feature flipping is, that often when flipping values, the

features assume an out of distribution value, which the model is not trained on. This means that

for many cases, the feature is assigned an impossible value (e.g. negative ’Heart Rate’), which

we think results in unexpected predictions. This might also be the reason why the results from

feature flipping show no clear patterns, when considering the predictions of the model and the

uncertainty in these.

Figure 14.1: Negative prediction on negative data point from ∆DP-A. Features with low relevance and variance are
excluded on the figure, full version can be seen on Figure N.1 in Appendix N.1.

Figure 14.2: Negative prediction on negative data point from ∆DP-A, where ’Glucose’ is feature flipped. Features with
low relevance and variance are excluded on the figure, full version can be seen on Figure N.8 in Appendix N.3.
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14.2 Setting Features To 0

As no useful results were found when using feature flipping for evaluating our method for ex-

plaining uncertainty in predictions using LRP, we want to try another approach. Here, we want

to try to set different features to 0, such that those features have no relevance for the predictions.

With this method, our expectation is that:

• When a feature has high relevance, the result of setting the feature value to 0 either pulls

the predictions down, if the relevance is positive, or up, when the relevance is negative.

• When features with high variance in the relevance scores are set to 0, the uncertainty in the

predictions decreases.

We acknowledge that when setting a feature to 0, the feature is not completely discarded from

the data point, and is still given to the model as an input feature, which conveys information to

the model.

14.2.1 Discussion of the Results

Contrary to feature flipping, we see more clear patterns in the outcomes, when features are set to

0.

Figure 14.4 shows the relevance scores for the same data point used in Figure 14.3, but where

’ICULOS’ is set to 0. Here, we see that the relevance scores for ’ICULOS’ in the original data

point varies a lot, with both positive and negative relevance. The result of setting it to 0 is an

increase in confidences in the predictions, and that the predictions has less variance. This fits

our expectations, that setting a feature with high variance in relevance scores to 0 decreases the

uncertainty in predictions. In addition to this, some features now provide relevance for the oppo-

site class, where the biggest contributors for a positive prediction are the features ’Age’, ’O2Sat’,

’Heart Rate’, and ’Chloride’. Also, note on the x-axes of the figures that the relevance scores are

significantly lower for the more certain predictions, after setting ’ICULOS’ to 0, meaning that the

variance in the resulting relevance scores are significantly lower as well.

Another outcome of setting a feature to 0 is shown in Figure 14.5, where we set ’ICULOS’ to

0 for the data point shown on Figure 14.1. Here, a short ’ICULOS’ of 13 has positive relevance

for the sepsis negative class, which means that ’ICULOS’ pulls the prediction toward sepsis neg-

ative. When ’ICULOS’ is set to 0, the model changes its predictions from mostly having a high

confidence in a sepsis negative prediction, to being certain that the patient contracts sepsis. This

means that without ’ICULOS’, the model needs to use other features for the predictions, where

it now finds high relevance in ’Platelets’, but with negative relevance scores. This confirms that

setting a feature with high relevance to 0 can push predictions towards the opposite class.

We also test the outcome of setting a feature with low relevance and low variance to 0. Here,

we choose the feature ’BaseExcess’ from the data point seen on Figure 14.3. As expected, setting

’BaseExcess’ to 0 shows minimal changes in the other relevance scores and the uncertainty of the

predictions, shown on Figure N.22.

The full set of results can be seen in Appendix N.5 for ∆DP-A and in Appendix N.6 for ∆DCT.

Generally, the results confirm our expectations. For all data points, we see that when setting a

64



Figure 14.3: Positive prediction on positive data point from ∆DP-A. Features with low relevance and variance are
excluded on the figure, full version can be seen on Figure N.2 in Appendix N.1.

feature with low relevance and low variance to 0, the predictions and the uncertainty in the

predictions only change minimally. When setting features with high relevance to 0, we also see

results that follow our expectations, however with few situations where it seems like too little

information is available, resulting in the model having lower confidences in its predictions. For

most of the cases, the confidences increase when setting a feature with negative relevance scores

to 0, and oppositely it decreases for a feature with positive relevance.

We find that, when setting the value of a feature to 0, this affects the uncertainty in the

prediction. For example, if a feature has a lot of variance in its relevance scores, compared to

the other features in the prediction, setting this feature to 0 yields a decrease in the uncertainty

of the prediction. We find this most evident for ∆DP-A. For example, for the negative data

point in Figure 14.1, when setting ’Glucose’ or ’ICULOS’ to 0, it results in less variation in the

predictions (shown in Figure N.20 and Figure 14.5 respectively). Note that for ’ICULOS’, the

prediction becomes certain for the opposite class in this case. Here, ’Glucose’ and ’ICULOS’ are

chosen, as these have high negative and positive relevance, respectively, as well as high variance

in relevance scores. Also, when setting ’O2Sat’ or ’ICULOS’ to 0 for the positive data point in

Figure 14.3, the uncertainty in the predictions decreases, shown in Figure N.24 and Figure 14.4

respectively. Again, ’O2Sat’ and ’ICULOS’ are chosen as these have a high variance in relevance

scores.

For data points from ∆DCT, we often find that when setting features with high positive rele-

vance to 0, the confidence in the predictions decreases, sometimes resulting in more uncertainty.
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Figure 14.4: Positive prediction on positive data point from ∆DP-A where ’ICULOS’ is set to 0. Features with low
relevance and variance are excluded on the figure, full version can be seen on Figure N.23 in Appendix N.3.
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Figure 14.5: Negative prediction on negative data point from ∆DP-A where ICULOS is set to 0, features with low
relevance and variance are excluded on the figure, full version can be seen on Figure N.21 in Appendix N.3.

Oppositely, we find that setting features with high negative relevance to 0 results in more certain

predictions, generally with higher confidence. We think that this might be a result of the data

points from ∆DCT generally containing fewer measurements, and therefore, that the uncertainty

in the predictions are more affected by changes to the data points, than for ∆DP-A.

To conclude on our expectations from this experiment, we mostly find results that confirm

these. For ∆DP-A, it is clear that the variations in the relevance scores is a result of uncertainty

in the predictions. Setting a feature with high variance in its relevance scores to 0 clearly affects

the uncertainty in the predictions, whereas setting a feature with low variance to 0 has a much

smaller impact on the uncertainty. On ∆DCT, the results are less clear regarding uncertainty,

likely due to the smaller amount of information in data points. However, it is clear that, when

setting features with high relevance scores to 0, it has a direct relation to the confidence in the

predictions.
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Part IV

Evaluation
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Chapter 15

Discussion

In this chapter, we discuss interesting findings and results found during this project.

15.1 Uncertainty in Deep Learning

In this project, we have chosen to use variational inference as our method for quantifying uncer-

tainty. We have created a BNN that is comprised of elements from TensorFlow and TensorFlow

Probability, such as DenseVariational layers and distributions. We argue that by using variational

inference, we have been able to make a more in-depth analysis of uncertainty, that would oth-

erwise not have been possible using either of the other methods discussed in Chapter 2. For

example, the experiment discussed in Chapter 13 about analyzing mean and standard deviation

of the distributions over the weights, would have been troublesome with MCMC, as distributions

over the weights have to be constructed manually. We also see the use of MC Dropout and Deep

Ensembles as being implausible for this, since either no distribution can be found for the weights,

or the relation between weights from multiple trained models is unknown.

For the experiments with LRP, we sample models by sampling each layer from the DenseVaria-

tional layers of the BNN, and propagate relevance through each resulting model. This can also be

done by training multiple models or by doing inference in an MC Dropout model multiple times.

This means that these experiments can be conducted with either of the methods for quantifying

uncertainty from Chapter 2, and that our method could be applied for either of the methods.

We think the choice of using variational inference provided us with a problem of finding the

correct hyperparameters. During development, a lot of hyperparameter tuning was required to

find a BNN with good performance. However, we also see that with good parameters, the BNN

often gets better performance, is better calibrated, and does not overfit as easily, compared to a

corresponding FFNN.

As mentioned in Chapter 8, the variance in relevance scores represents the total uncertainty

of the predictions, where the aleatoric uncertainty comes from the predictions, and the epistemic

uncertainty comes from the variance in sampled parameters. Instead, we can specifically consider

the epistemic uncertainty, by propagating a value of 1 as the total relevance, rather than the

predicted probability of sepsis for each sampled model. This eleminates the aleatoric uncertainty

from the relevance scores, and since the distribution of relevance among features is exclusively

based on the parameters and activations, propagating the same value through all sampled models

means that the resulting variance in relevance scores will specifically represent the epistemic

uncertainty.
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15.2 Dataset Framing

In Chapter 4, we discuss that "Sliding Window" and "On Clinical Demand" best fit the clinical

environment for ∆DP and ∆DCT respectively. However, through our conducted grid search ex-

periments, we were not able to find a model with sufficient calibration on either of these datasets,

so we opted to use the "Fixed Time To Onset" data framing instead. Here, we acknowledge that

limited search has been done in terms of model architecture, as we have prioritized keeping the

architecture simple, due to the novelty of our method. However, as the method we propose is

based on LRP, other architectures can be used (if they allow for stochastic elements, and sampling

of multiple models), though handling of special layers will have to be considered.

We do not think the "Fixed Time To Onset" data framing is ideal, as we argue it does not

properly reflect the clinical environments from which the two datasets are gathered. Therefore,

when using a model trained on the "Fixed Time To Onset" framing, the model will inherently

be best at predicting a TP when the patient contracts sepsis 12 hours later. In addition to this,

Lauritsen et al., in [26], find that when using "Fixed Time To Onset", they see an erroneous

correlation between relevance scores for ’SpO2’, whereas the other framing methods seem to

find the correct correlation. Also, during the experiments, we find some results that we likewise

speculate is affected by the framing. For example, when experimenting with LRP using ∆DP-A,

’ICULOS’ often has a large relevance score compared to the other input features, which seems

wrong as ’ICULOS’ is not directly related to the health of the patient. We believe that using

another data framing than "Fixed Time To Onset", which better fits the clinical context of the

datasets, might lead to the model learning better patterns from the data, for example where

’ICULOS’ receives less relevance. Another way of mitigating the problem, is to use the knowledge

gained from the experiment in Chapter 12 to do feature engineering. Here, Ribeiro et al. [29]

show, that information from explanations can be used for feature engineering on the dataset, in

order to make a classifier use the "correct" features in the dataset.

Besides the unexpected patterns for ’ICULOS’, when considering ’Age’ from ∆DP-A, we see

an unclear tendency that higher age results in higher negative relevance scores for the negative

class, which means that it pulls towards a positive sepsis prediction. However, we also see an

unclear tendency, that a higher age results in higher positive relevance scores for the negative

class, though generally with lower scores. This seems counterintuitive, as the hospitalization rate

for sepsis patients 65 years and above is much higher than for those under the age of 65 [48]. In

Chapter 14, we also observe that when setting ’ICULOS’ to a value of 0, we often see that this

flips the relevance of the age feature. Based on this finding, we think that it would be interesting

to train a new BNN on a dataset where ’ICULOS’ is omitted, or maybe even all demographic

features. Additionally, we find it interesting to apply other framing methods than "Fixed Time to

Onset", though this means that additional investigation is needed, in order to find a more well

calibrated model.
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15.3 Experiments

In Section 14.2, we discuss the experiment about setting feature values to 0. Even though feature

values are set to 0, information is still fed into the network. However, this information can

be interpreted as the feature being either missing or having a value of 0. For the experiment

about LRP, we argue that it still works as a way for evaluating which features uncertainty in

the predictions stems from, as features with a value of 0 have no relevance. Considering this

method, a feature with high variance in relevance should have a high effect on the uncertainty

in predictions. Setting the feature to 0 means that the feature receives no relevance, and can

therefore not be the contributing factor to the uncertainty of the prediction, according to our

method. Arguably, changing the value of the feature to 0 causes a notable change in the data

sample, which in theory can lead to more uncertainty. However, through our results we see

a consistent pattern on ∆DP-A that setting the feature with highest variance to 0 makes the

predictions more certain, which supports our expectations. For ∆DCT, this pattern is not as clear,

which may be due to a lower amount of information being present in the data samples, meaning

that setting a feature with high relevance to 0 removes too much information. However, this does

not rule out the possibility that the feature being set to 0 is a highly contributing factor to the

uncertainty in the predictions.

Another approach is to introduce two input values for each feature, one with the original

value and one stating if the value is missing. This allows for another procedure, where the model

might distinguish between when a feature is missing and when it has a value of 0. This can allow

the model to find patterns in the presence of measurements, and allows missing values to receive

relevance from LRP through the value stating whether the feature is missing. This might result

in a more in-depth analysis of how missing values affect the uncertainty in predictions. However,

for now we see the current evaluation as being sufficient for concluding that features with high

variance in the relevance scores contribute more to the uncertainty in the predictions.

In the experiment about allowing the model to abstain from making a prediction, Chapter 11,

we find that the number of FN and FP can be reduced by abstaining with either disagreement

or standard deviation, with disagreement yielding the best results. However, we also discuss

that for different limits and thresholds, the boost in performance is accompanied by tradeoffs in

other metrics. Therefore, more investigation is needed for evaluating this approach in a specific

context, for example by using net benefit analysis as discussed by Lauritsen et al. [24]. For

example, a higher cost can be given to FNs, as these might result in situations where patients are

discharged from the hospital, but contract sepsis within the next few hours, or higher cost for

FPs, if treatment of healthy patients are expensive. So, even though we cannot conclude that the

approach results in lower costs in specific situations, we still get better AUPRC and AUROC for

some limits and thresholds, and we therefore argue that it will be useful in some situations.
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Chapter 16

Conclusion

In the Introduction in Chapter 1, we emphasize that trustworthiness is important when deploy-

ing AI for clinical use. Here, we mention that trustworthiness can be achieved if a model is

explainable, and if it can reason about its uncertainty. We discuss that calibration is important

for trustworthiness, but is insufficient for capturing model uncertainty. Therefore, based on an

evaluation of state of the art methods for quantifying uncertainty and explanation, we create the

following problem statement in Chapter 6:

How can the uncertainty of a neural network for predicting sepsis be explained
using LRP, such that is possible to determine the uncertainty contribution of each
feature?

To answer the first subquestion in the problem statement, we create a BNN trained with Varia-

tional Inference in Section 7.1, which is able to express uncertainty in its predictions. To answer

the second subquestion, we investigate the ECE and ACE of said model. Here, we compare the

calibration scores to an equivalent non stochastic FFNN, and find that in comparison, the BNN is

well calibrated, which is also found by Jospin et al. in [17]. To answer the third subquestion, we

propose a novel method in Chapter 8 for explaining which features the uncertainty in predictions

stems from. Here, we use the BNN to sample multiple models, where each of these models are

explained by using LRP. These different explanations are then used to consider the variance in

relevance scores, which represents the uncertainty contribution for each feature in the prediction.

In Chapter 12, we show the results of using the proposed method, where we see that when

there is high variance in the predictions, there is also high variance in the relevance scores for the

features. We evaluate these observations in Chapter 14, where we set certain input features to 0

and observe its effect on the variance in the predictions. When setting features with high variance

in relevance scores to 0, we often see a decrease in the variance of the predictions. However, this is

not always the case on ∆DCT, which we speculate might be due to the sparsity of the data, which

results in fewer features the model can base its prediction on. Based on this, we conclude that

there is a clear correlation between variance in relevance scores and uncertainty in predictions,

and that the proposed method can be used to explain which features contribute to uncertainty in

predictions, on the datasets described in Chapter 4, with the model described in Section 7.1 and

Chapter 9.
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Chapter 17

Future Work

In this chapter, we present some additional experiments that we find interesting, but which we

were not able to fit into the scope of this project.

Firstly, we would like to experiment with different architectures, in order to resolve the prob-

lem with badly calibrated models on the data framing "Sliding Window" and "On Clinical De-

mand". This would make the models more compelling for use in their respective clinical envi-

ronments. Additionally, we would also like to experiment with other uncertainty quantification

methods, and compare these to the BNN developed in this project. In theory, methods where

multiple models can be sampled, will work with the proposed method. Therefore, we find it

interesting to evaluate if there is any noticeable differences in how the uncertainty is quantified

and how this influences the relevance scores and variance in these.

Additionally, we would like to try isolating the epistemic uncertainty, by propagating a rele-

vance score of 1 through LRP, rather than the predicted output, as explained in Chapter 15. We

can then compare the results from this with the results from Chapter 14, where we consider the

total uncertainty. This way, we can consider how big an impact the epistemic uncertainty has on

the predictions, compared to the total uncertainty.

In addition to this, we want to experiment with the method mentioned in Chapter 15, where

an additional value is introduced for each feature, which denotes whether a value for the feature

is present or not. We expect that this will introduce the possibility of evaluating whether relevance

scores vary because of missing features, or because of features having a value of 0. This allows

for distinguishing between these two cases, when explaining how the features affect uncertainty

in the prediction. The results from this can then be compared to the results found in Section 14.2.
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Appendix A

PhysioNet Softplus Scaling

A.1 During Training

(a) posterior_softplus_weight = 1. (b) posterior_softplus_weight = 0.0001.

Figure A.1: AUROC plotted for each epoch during training with different posterior_softplus_weight. Red plot is
for training set and blue is for validation set. The y-axis shows the AUROC and the x-axis shows the epoch number.

A.2 Performance

posterior_softplus_weight AUC_train AUC_val auprc_train auprc_val

1 0.5 0.5 0.0155 0.0155

0.1 0.48 0.475 0.0146 0.0144

0.01 0.767 0.771 0.0665 0.0669

0.001 0.809 0.797 0.0862 0.0799

0.0001 0.808 0.796 0.0868 0.0786

Table A.1: Performance of the model in relation to different posterior_softplus_weight values, on the ∆DP-B
dataset.
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Appendix B

Hyperparameter Tuning

B.1 PhysioNet Config & Hyperparameters 1

1 "experiments": [

2 {

3 "model": "bayesian_long_model",

4 "plot": false,

5 "hyperparameters": [

6 {

7 "units_layer1": [100],

8 "units_layer2": [150],

9 "units_layer3": [200],

10 "units_layer4": [100],

11 "units_layer5": [50],

12 "batch_size": [10000],

13 "kl_weight_scale": [0.5, 1, 1.5],

14 "posterior_softplus_weight":[0.0002, 0.0005, 0.001],

15 "prior_scale":[5, 10],

16 "learning_rate": [0.0001, 0.00005, 0.00001, 0.000001],

17 "epochs": [500],

18 "optimizer": ["adam"],

19 "loss_function": ["binary_crossentropy"],

20 "metric1": ["auprc"],

21 "metric2": ["AUC"]

22 }

23 ]

24 },

25 {

26 "model": "bayesian_long_model",

27 "plot": false,

28 "hyperparameters": [

29 {

30 "units_layer1": [200],

31 "units_layer2": [300],

32 "units_layer3": [400],

33 "units_layer4": [200],

34 "units_layer5": [100],

35 "batch_size": [10000],

36 "kl_weight_scale": [0.5, 1, 1.5],

37 "posterior_softplus_weight":[0.0002, 0.0005, 0.001],
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38 "prior_scale":[5, 10],

39 "learning_rate": [0.0001, 0.00005, 0.00001, 0.000001],

40 "epochs": [500],

41 "optimizer": ["adam"],

42 "loss_function": ["binary_crossentropy"],

43 "metric1": ["auprc"],

44 "metric2": ["AUC"]

45 }

46 ]

47 },

48 {

49 "model": "bayesian_linear_model",

50 "plot": false,

51 "hyperparameters": [

52 {

53 "point_estimate": [false],

54 "units_layer1": [100],

55 "units_layer2": [50],

56 "units_layer3": [20],

57 "dropout": [0],

58 "batch_size": [10000],

59 "kl_weight_scale": [0.5, 1, 1.5],

60 "posterior_softplus_weight":[0.0002, 0.0005, 0.001],

61 "prior_scale":[5, 10],

62 "learning_rate": [0.0001, 0.00005, 0.00001, 0.000001],

63 "epochs": [200],

64 "optimizer": ["adam"],

65 "loss_function": ["binary_crossentropy"],

66 "metric1": ["auprc"],

67 "metric2": ["AUC"]

68 }

69 ]

70 },

71 {

72 "model": "bayesian_linear_model",

73 "plot": false,

74 "hyperparameters": [

75 {

76 "point_estimate": [false],

77 "units_layer1": [200],

78 "units_layer2": [100],

79 "units_layer3": [40],

80 "dropout": [0],

81 "batch_size": [10000],

82 "kl_weight_scale": [0.5, 1, 1.5],

83 "posterior_softplus_weight":[0.0002, 0.0005, 0.001],

84 "prior_scale":[5, 10],
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85 "learning_rate": [0.0001, 0.00005, 0.00001, 0.000001],

86 "epochs": [200],

87 "optimizer": ["adam"],

88 "loss_function": ["binary_crossentropy"],

89 "metric1": ["auprc"],

90 "metric2": ["AUC"]

91 }

92 ]

93 }

94 ]

Figure B.1: bayesian_long_model on ∆DP-B.

Figure B.2: bayesian_linear_model on ∆DP-B.

B.2 PhysioNet Config & Hyperparameters 2

1

2 "experiments": [

3 {

4 "model": "bayesian_manual_posterior_model",

5 "plot": false,

6 "calculate_uncertainty_metric": false,

7 "load_model_from": [],

8 "ece_error_bars" : true,

9 "hyperparameters": [

10 {

11 "point_estimate": [false],

12 "units_layer1": [60],

13 "units_layer2": [40],

14 "units_layer3": [20],

15 "batch_size": [10000],
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16 "posterior_init_loc":[0],

17 "posterior_init_scale":[-6],

18 "learning_rate": [0.0001],

19 "pos_weight": [1],

20 "epochs": [300],

21 "optimizer": ["adam"],

22 "loss_function": ["binary_crossentropy"],

23 "metric1": ["auprc"],

24 "metric2": ["AUC"]

25 }

26 ]

27 }

28 ]

Figure B.3: bayesian_manual_posterior on ∆DP-B, with −6 scale initialization value.

B.3 PhysioNet Config & Hyperparameters 3 - Fixed Time To Onset

1

2 "experiments": [

3 {

4 "model": "bayesian_manual_posterior_model",

5 "plot": false,

6 "calculate_uncertainty_metric": false,

7 "load_model_from": [],

8 "ece_error_bars" : true,

9 "hyperparameters": [

10 {

11 "point_estimate": [false, true],

12 "units_layer1": [60],

13 "units_layer2": [40],

14 "units_layer3": [20],

15 "batch_size": [5000, 10000],

16 "posterior_init_loc":[0, 0.5],

17 "posterior_init_scale":[-4, -5, -6],

18 "learning_rate": [0.0001, 0.001],

19 "pos_weight": [1],

20 "epochs": [1500, 3000],

21 "optimizer": ["adam"],

22 "loss_function": ["binary_crossentropy"],
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23 "metric1": ["auprc"],

24 "metric2": ["AUC"]

25 }

26 ]

27 }

28 ]

Figure B.4: Expanded grid on ∆DP-A, values based on earlier best performing grids.

B.4 PhysioNet Config & Hyperparameters 4 - Fixed Time To Onset,

Best Model

1

2 "experiments": [

3 {

4 "model": "bayesian_manual_posterior_model",

5 "plot": false,

6 "calculate_uncertainty_metric": false,

7 "load_model_from": [],

8 "ece_error_bars" : true,

9 "hyperparameters": [

10 {

11 "point_estimate": [false],

12 "units_layer1": [60],

13 "units_layer2": [40],

14 "units_layer3": [20],

15 "batch_size": [5000, 10000],

16 "posterior_init_loc":[0, 0.5],

17 "posterior_init_scale":[-4, -5, -6],

18 "learning_rate": [0.001, 0.0001],

19 "pos_weight": [1],

20 "epochs": [1500, 3000],

21 "optimizer": ["adam"],

22 "loss_function": ["binary_crossentropy"],

23 "metric1": ["auprc"],

24 "metric2": ["AUC"]

25 }

26 ]

27 }

28 ]
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Figure B.5: Expanded grid on ∆DP-A, values based on earlier best performing grids.

The best performing parameters:

• 5, 000 Batch Size.

• 0.0001 Learning Rate.

• 1, 500 Epochs.

• 0 Posterior Init Loc

• −6 Posterior Init Scale

B.5 Tværspor Config & Hyperparameters 1

1 "experiments": [

2 {

3 "model": "bayesian_linear_model",

4 "plot": false,

5 "hyperparameters": [

6 {

7 "point_estimate": [false],

8 "units_layer1": [50],

9 "units_layer2": [30],

10 "units_layer3": [10],

11 "dropout": [0.02],

12 "batch_size": [10000],

13 "kl_weight_scale": [0.5, 1],

14 "posterior_softplus_weight":[0.0001, 0.00001, 0.000001],

15 "prior_scale":[1, 1.5, 2],

16 "learning_rate": [0.001, 0.0001],

17 "epochs": [1000],

18 "optimizer": ["adam"],

19 "loss_function": ["binary_crossentropy"],

20 "metric1": ["auprc"],

21 "metric2": ["AUC"]

22 }

23 ]

24 },

25 {

26 "model": "bayesian_linear_model",

27 "plot": false,

28 "hyperparameters": [

29 {
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30 "point_estimate": [false],

31 "units_layer1": [60],

32 "units_layer2": [40],

33 "units_layer3": [20],

34 "dropout": [0.02],

35 "batch_size": [10000],

36 "kl_weight_scale": [0.5, 1],

37 "posterior_softplus_weight":[0.0001, 0.00001, 0.000001],

38 "prior_scale":[1, 1.5, 2],

39 "learning_rate": [0.001, 0.0001],

40 "epochs": [1000],

41 "optimizer": ["adam"],

42 "loss_function": ["binary_crossentropy"],

43 "metric1": ["auprc"],

44 "metric2": ["AUC"]

45 }

46 ]

47 }

48 ]

Figure B.6: bayesian_linear_model.

B.6 Tværspor Config & Hyperparameters 2

1 "experiments": [

2 {

3 "model": "bayesian_manual_posterior_model",

4 "plot": false,

5 "calculate_uncertainty_metric": true,

6 "hyperparameters": [

7 {

8 "point_estimate": [false],

9 "units_layer1": [60],

10 "units_layer2": [40],

11 "units_layer3": [20],

12 "dropout": [0],

13 "batch_size": [5000, 10000],

14 "kl_weight_scale": [1],

15 "posterior_init_loc":[0],

16 "posterior_init_scale":[-4, -5, -6],
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17 "prior_scale":[1],

18 "learning_rate": [0.0001, 0.001],

19 "epochs": [1500, 3000],

20 "optimizer": ["adam"],

21 "loss_function": ["binary_crossentropy"],

22 "metric1": ["m_auprc"],

23 "metric2": ["m_auroc"]

24 }

25 ]

26 }

27 ]

Figure B.7: Grid search on ∆DCT.
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Appendix C
This appendix is a copy of Chapter 2 "Description of Datasets" from our pre-master thesis [10].

Description of Datasets

Enversion has earlier worked with two projects about early detection of sepsis, which both work

on EHR data [24, 25]. We therefore choose to narrow our scope of EHR data to be within the area

of sepsis detection, with the goal of reasoning about the uncertainty of models that are designed

for early detection of sepsis. A description of sepsis can be found in Appendix A.

A dataset preprossed by Enversion, which is based on the CROSS-TRACKS cohort, has been

made accessible to us through our employment and tasks at Enversion. As part of our terms of

employment we have signed a non-disclosure agreement as well as received the appropriate data

protection training. All data presented in the report is anonymous.

Since our supervisor has not signed a non-disclosure agreement, he cannot view the dataset

made accessible to us by Enversion. Therefore, we choose to find another dataset with no acces-

sibility restrictions, which also resembles this dataset. For this we find a dataset from PhysioNet

[6], which also consists of EHR data, which can be used to predict sepsis. In this chapter, we

describe the two datasets and a comparison between them.

C.1 Dataset Introduction

In this section, we give a general description of the datasets and what we investigate about them

in the following sections. The first dataset is prepared by Enversion using data from the research

project Cross-Track [7] and is referred to as DCT. The second dataset is from PhysioNet and is

referred to as DP. Both datasets consist of different measurements taken from multiple patients

admitted to hospitals, and can be divided into two kinds of values:

• Vital Signs - Essential values from measurements for monitoring the health of patients, such

as heart rate, temperature, and blood pressure.

• Laboratory Values - Values from laboratory experiments, such as measuring the content of

calcium or magnesium in the patient’s blood.

For both datasets, the vital signs and laboratory values are aggregated over an hour and stored in

a matrix, where each row corresponds to a time span of one hour, which we call timesteps, and

each column consists of measurement values. We refer to what the columns describe as features.

Since some measurements are not conducted for every timestep, some cells do not contain any

value and is therefore assigned NaN. These are referred to as missing values.

To better understand the two datasets, we investigate the following for DCT and DP:

• How much of the data is missing values?

– Does this change over time?

– Which features contain missing values more frequently than others?
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– How often are measurements made?

• What is the distribution of sepsis-positive and -negative patients?

• Is there a correlation between the admission time and whether the patients are sepsis-

positive or -negative?

The following two sections answer these questions for DP and DCT respectively, followed by a

comparison of the two, to evaluate whether DP is similar enough to DCT.

C.2 PhysioNet

PhysioNet has a publicly available dataset with medical records of more than 40, 000 patients

distributed over two hospitals, referred to as dataset A and B [6]. The framing used in DP

is sequential data with a fixed time to sepsis onset. The data from the two hospitals can be

downloaded as separate ZIP files through PhysioNet’s archive and contains EHRs for patients,

stored as Pipe Separated Values (PSV) files. As described in Section C.1, each row in the files

represents a timestep and each column a feature. The columns describe a total of 40 features and

a sepsis label, and are sorted according to the following categories:

• 1− 8: Vital Signs

• 9− 34: Laboratory Values

• 35− 40: Demographics - Information about the patient, such as age and gender, which are

constant for all timesteps.

• 41: Sepsis Label - A boolean label indicating whether the patient has been diagnosed with

sepsis. The label is offset six hours before sepsis onset, which means that the label changes

from 0 to 1, six hours before the patient is diagnosed with sepsis.

C.2.1 Data Analysis

In this section, we analyze DP to answer the questions from Section C.1.

Data Sparsity

We count the number of missing values and actual values for each feature in the timesteps, for

each dataset, which is displayed in Figure C.1. Both datasets in Figure C.1 show that some

features include missing values more frequently than others. The frequency is often related to its

category, described in Section C.2.
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(a) Missing values in dataset A. (b) Missing values in dataset B.

Figure C.1: Illustration of frequency of missing values in DP.

6 out of 8 features in the Vital Signs category include measurements for over 80% of the data

points. The third feature, which is temperature, includes over 60% missing values in both dataset

A and B, despite being a vital sign. The eighth feature, which is end-tidal carbon dioxide, only

has missing values in dataset A and around 95% missing values in dataset B. Features within the

laboratory values category are very sparse, and close to all features include 90% missing values.

Missing values in the demographic features are only present in the features indicating which ICU

the patient is located at. The only demographic feature that changes value over time is length of

admission feature, while age, gender, ICU, and admission time remain the same.

To find out how the frequency of measurements changes over time, we find the percentage of

patients with measurements for each lab value at every timestep. To simplify the graph, shown in

Figure C.2a, we average the percentage over all the lab values to get one point for each timestep.

Figure C.2a shows that DP has a few more measurements in the beginning, but is almost the same

over time.

Figure C.2b shows the frequency of vital sign measurements. The frequency is high and stays

consistent across the admission, since the data is from ICUs, where vitals are checked very often.

(a) Lab values. (b) Vital signs.

Figure C.2: Frequency of measurements over time in DP.
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Time Between Measurements

Concerning the sparse data, we examine how frequent each of the measurements occur by taking

the average time between the measurements of each patient’s features, and plot the median value

for each feature, as seen in Figure C.3.

Figure C.3: Average time between measurements for each feature.

Patient Count

To get an overview of the number of patients with sepsis, we count the number of sepsis-negative

and sepsis-positive patients, which are shown in Table C.1.

Set A Set B Combination

Total 20, 336 20, 000 40, 336

Negative 18, 546 18, 858 37, 404

Positive 1, 790 1, 142 2, 932

Negative percentage 91.1% 94.3% 92.7%

Positive percentage 8.8% 5.8% 7.3%

Table C.1: Count of patients for the two datasets, A and B, and the combination of the two.

We observe that the datasets include more sepsis-negative patients, with a percentage of over

90%. This shows a general imbalance in the distribution of postitive and negative samples in the

data.

Length of Admission

We observe that in several cases, patients diagnosed with sepsis have a prolonged admission to

the ICU, compared to sepsis-negative patients. Figure C.4 shows the admission length for both

sepsis-positive and sepsis-negative patients in dataset A and B. Sepsis-positive patients have a

prolonged admission in dataset A, with 6 out of 18, 546 sepsis-negative patients and 651 out of

1, 799 sepsis-positive patients being admitted for more than 60 hours. However, this is not the case

for dataset B, where 223 out of 18, 858 sepsis-negative patients and 393 out of 1, 142 sepsis-positive

patients in dataset B are admitted to the ICU for more than 60 hours.
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(a) Length of admission for sepsis-negative. (b) Length of admission for sepsis-positive.

Figure C.4: Length of admission.

Note that the scale of the y-axis for the two graphs in Figure C.4 is logarithmic to make it easier

to distinguish the values below 10. The curve of sepsis-positive patients in Figure C.4b shows

that a large part of the patients are diagnosed with sepsis within their first days of admission in

the ICU.

C.3 Cross-Tracks

As DCT has been prepared by Enversion using data from the research project Cross-Tracks [7], it

is already structured as a NumPy array (numpy.org). The NumPy array has been serialized and

stored to disk using pickle (docs.python.org/3/library/pickle.html), so it can easily be loaded

into memory. DCT has 25 features, where the first six are vital signs and the rest are laboratory

values.

These are stored in a three-dimensional array with the following indexes: [anonymized pa-

tient ID][timestep][feature]. The data is prepared using the on-clinical demand framing, which

means that the end time of sequences is the time where clinical staff performs an assesment of

early warning score (EWS) [49]. The start time of the sequences is 24 hours before that. These

assesments are conducted multiple times during an admission, with no indication in the data

of when in the admission they are performed. Due to this, we cannot say anything about the

patients’ length of admission for DCT. The sepsis label indicates if a patient gets sepsis within 12

hours after a test is requested. These sepsis labels are stored in a separate array with one boolean

entry per patient.

C.3.1 Data Analysis

In this section, we analyze DCT to answer the questions from Section C.1. The graphs and table

in this section are made in the same way as the graphs in Section C.2.1.

Data Sparsity

Figure C.5 shows that DCT only has values for around 10% of the timesteps for the vital signs,

and less than 3% for laboratory values.
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Figure C.5: Missing values in DCT.

If we look at how the frequency of measurements change over time, as shown in Figure C.6a and

Figure C.6b, we see that there are more measurements in the beginning, and for vital signs there

is a spike in the last timestep. We think the reason there are more measurements in the last hour,

is because it is the timestep where the clinical staff performs the EWS assessment. We can see

that the frequency of measurements are much lower than for DP, since the data from DCT is not

from ICUs.

(a) Vital signs. (b) Lab values.

Figure C.6: Frequency of measurements over time in DCT.

Time Between Measurements

Figure C.7 shows that most measurements are taken once every 11 hours and the rest of the

measurements are taken around every four hours.
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Figure C.7: Median time between measurements for each feature for DCT.

Sample Count

DCT has a lot of samples, but most of them are sepsis-negative as shown in Table C.2. Overall,

DCT has more sepsis-negative samples compared to sepsis-positive than DP.

DCT

Total 340, 450

Negative 337, 814

Positive 2, 636

Negative percentage 99.2%

Positive percentage 0.8%

Table C.2: Count of samples for DCT.

Length of Admission

Because DCT only has data for the last 24 hours, we cannot say anything about the length of

admission.

C.4 Dataset Comparison

After having analyzed and described DP and DCT, we show a comparison between the two

datasets and discuss their similarities and differences, to evaluate whether DP is sufficiently sim-

ilar to DCT.

Table C.3 shows the similarities and differences between the datasets. In general, the datasets

have a lot of similarities. The raw data format of the datasets is different, but the content of the

sepsis admissions contains the same kind of data. One of the main differences between them is

that DP has demographic data, while DCT does not, and that the framing is different. Another

difference is that DP has more features than DCT, with 40 and 25 features respectively. As the

data from DP is taken from an ICU, the measurements are taken more frequently than other

departments at the hospital. As the number of timesteps, i.e. the length of admission, in DCT is

limited to 24, it differs from DP, which contains timesteps for all hours of admission. Therefore,
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we need to consider the size of the observation window of timesteps when doing experiments

with the data. Additionally, DCT has a higher frequency of missing values than DP.

We deem DP and DCT to be sufficiently similar to be used in the same models, as the differ-

ences mostly are that DP has more data about each patient and take measurements more often.

However, because the framing is different we cannot directly compare performance metrics be-

tween the two datasets.

Attribute PhysioNet Enversion

Raw data format Pipe-separated values Python NumPy array

Framing Fixed time to onset On-clinical-demand

Vital signs 8 6

Laboratory-categories (e.g.

Blood tests)

25 19

Average time between vital

signs (hours)

1.5 11

Average time between Labo-

ratory measurements (hours)

12 8

Age Yes No

Gender Yes No

Admission time Yes No

Aggregation time One hour One hour

Positive patient count 2, 932 2, 636

Country USA Denmark

Sepsis definition Sepsis-3 definition Sepsis-3 definition

Table C.3: Comparison between the datasets from PhysioNet and Enversion.
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Appendix D
This appendix is a copy of Appendix C "Feature Description of Datasets" from our pre-master thesis [10].

Feature Description of Datasets

Feature number Measurement

1 Temperature

2 SpO2

3 Heart rate

4 Diastolic BP

5 Respiratory Frequency

6 Systolic BP

7 B-Leukocytes

8 B-Neutrophils

9 B-Platelets

10 eGFR

11 P-Albumin

12 P-Bilirubine

13 P-C-reactive protein

14 P-Glucose

15 P-Potassium

16 P-Creatinine

17 P-Sodium

18 P(aB)-Hydrogen carbonate

19 P(aB)-Potassium

20 P(aB)-Chloride

21 P(aB)-Lactate

22 P(aB)-Sodium

23 P(aB)-pCO2

24 P(aB)-pH

25 P(aB)-pO2

Table D.1: Features of dataset prepared by Enversion from Cross-Track’s dataset [7].

Feature number Measurement Description

Vital signs (Feature 1-8)

1 HR Heart rate (beats per minute)

2 O2Sat Pulse oximetry (%)

3 Temp Temperature (Deg C)
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4 SBP Systolic BP (mm Hg)

5 MAP Mean arterial pressure (mm Hg)

6 DBP Diastolic BP (mm Hg)

7 Resp Respiration rate (breaths per minute)

8 EtCO2 End-tidal carbon dioxide (mm Hg)

Laboratory values (Feature 9-34)

9 BaseExcess Measure of excess bicarbonate (mmol/L)

10 HCO3 Bicarbonate (mmol/L)

11 FiO2 Fraction of inspired oxygen (%)

12 pH N/A

13 PaCO2 Partial pressure of carbon dioxide from arterial blood (mm

Hg)

14 SaO2 Oxygen saturation from arterial blood (%)

15 AST Aspartate transaminase (IU/L)

16 BUN Blood urea nitrogen (mg/dL)

17 Alkalinephos Alkaline phosphatase (IU/L)

18 Calcium (mg/dL)

19 Chloride (mmol/L)

20 Creatinine (mg/dL)

21 Bilirubin_direct Bilirubin direct (mg/dL)

22 Glucose Serum glucose (mg/dL)

23 Lactate Lactic acid (mg/dL)

24 Magnesium (mmol/dL)

25 Phosphate (mg/dL)

26 Potassium (mmol/L)

27 Bilirubin_total Total bilirubin (mg/dL)

28 TroponinI Troponin I (ng/mL)

29 Hct Hematocrit (%)

30 Hgb Hemoglobin (g/dL)

31 PTT partial thromboplastin time (seconds)

32 WBC Leukocyte count (count · 103/µL)

33 Fibrinogen (mg/dL)

34 Platelets (count · 103/µL)

Demographics (Feature 35-40)

35 Age Years (100 for patients 90 or above)

36 Gender Female (0) or Male (1)

37 Unit1 Administrative identifier for ICU unit (MICU)

38 Unit2 Administrative identifier for ICU unit (SICU)

39 HospAdmTime Hours between hospital admit and ICU admit

40 ICULOS ICU length-of-admission (hours since ICU admit)
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Table D.2: Features of dataset from PhysioNet [6].

99



Appendix E
This appendix is a copy of Appendix A "Sepsis" from our pre-master thesis [10].

Sepsis

In this section, we describe the disease sepsis, and how it is diagnosed, based on the article [50].

Sepsis is a severe medical condition, where damage to tissue and organs is caused by the immune

system’s response to an infection. If bacteria from an infection spreads to the bloodstreams, it

might spread to other organs, which can be fatal. The immune system reacts to the infection by

lowering the blood pressure and thereby slowing down the blood flow, making it harder for the

bacteria to reach the organs. However, this reduces the oxygen flow to the organs, which can

cause them to fail, resulting in organ and tissue damage.

Sepsis is described as a life-threatening disease, as the mortality rate ranges between ∼ 20%

to ∼ 40%, and is one of the most common causes of death in intensive care units (ICUs). The

number of sepsis cases has doubled over the last 10 years, however, the overall mortality rate has

decreased due to advancements within health care. Early detection of sepsis can be difficult, as

the signs of the disease can be divergent.

As of the time of writing, there have been a total of three sepsis definitions. With the sepsis-3

definition, the old criteria were replaced with a new system, Sequential Organ Failure Assessment

(SOFA). Now, sepsis is diagnosed with the SOFA scoring system, which evaluates the condition

of six organ systems. This score can be used to determine whether any of the organ systems have

reduced functionality, which may indicate that the patient has sepsis. The six organ systems that

the SOFA scoring system evaluate are:

• Respiratory System: By measuring the partial pressure of oxygen in the arterial blood [51].

• Coagulation: By measuring the number of platelets in the blood. A higher number of

platelets results in a higher chance of blood clotting [52].

• Cardiovascular: By measuring hypotension, which is a low systolic blood pressure [53].

• Liver: By measuring the amount of bilirubin present in the liver. A high amount of bilirubin

is a sign of diseases [54].

• Renal: By measuring the amount of creatinine in the renal or urine output of the patient.

Creatinine is a waste product in the blood, and is the result of muscle attrition [55].

• Central Nervous System: By measuring disruptions in brain function with the Glasgow

Coma Scale (GCS). GCS analyses the mental status of the patient through a set of criteria

and assign points to the patient according to their brain functions. A lower GCS score

signifies less consciousness in the patient [56].

A score of 0 to 4 can be assigned to each of the six evaluated organ systems, meaning that the

total score can be between 0 and 24. If a patient experiences symptoms that result in a SOFA

score with an increase of two, the patient is diagnosed with sepsis. The number of points can

reflect the mortality of the patient, as more points can indicate a more severe case of sepsis. For
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example, with a score ranging between 0 and 6, the mortality of the patient can be expected to be

less than 10%, and with a score above 15, the expectation is 90%.
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Appendix F
This appendix is a copy of Chapter 4 "Theory", Section 4.1 "Artificial Neural Networks" from our pre-
master thesis [10].

Artifical Neural Networks Theory

F.1 Artificial Neural Networks

In this section, we give an introduction to artificial neural networks, based on information from

[16] and [23]. Artificial neural networks are a group of algorithms inspired by the biological neural

network, like the human brain. Throughout this report, we refer to artificial neural networks as

neural networks.

A neural network consists of an input layer, a number of hidden layers, and an output layer,

each containing a number of neurons. Between two consecutive layers, a number of weights

connect the neurons in layer l− 1 to neurons in layer l. The weights are denoted wl
jk, where j is the

index of the neuron in layer l and k is the index of the neuron in layer l− 1. Each neuron contains

an internal value, that we denote zl
j, and an output, denoted al

j. al
j is the output of an activation

function, σ, with input zl
j, as shown in Equation F.1b. zl

j is calculated as the sum of products of all

weights connected to the neuron and the output of the activation function for the corresponding

neuron from the previous layer, al−1
k , shown in Equation F.1a. An activation function is used

to make a neural network approximate nonlinear functions. Without an activation function, a

neural network is only able to approximate linear functions, which is undesirable in many cases.

An example of a nonlinear activation function is sigmoid
(

1
1+exp(−x)

)
, which produces outputs

between 0 and 1. Additionally, neural networks use biases, which are used to shift the function

of the neural network.

zl
j = ∑

k
wl

jk · al−1
k (F.1a)

al
j = σ(zl

j) (F.1b)

In the following description, the bias is augmented as an extra activation from the previous

layer, always having a value of 1, which is analogous to having a bias neuron with an output

of 1, connected with weights to all neurons in a layer. Additionally, we will only be using σ to

symbolize an activation function, although activation functions can be different between layers.

Instead of representing the activations from a layer as individual scalars, the activations can

also be represented in the form of a vector, al , where the elements are each activation from

the layer. The weights for a layer l can be represented as a matrix W l , where index W l [2, 3]

refers to wl
23. With this representation, we can calculate the activations of a layer al using matrix

multiplication as shown in Equation F.2:

zl = W l · al−1 (F.2a)

al = σ(zl) (F.2b)
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These equations encapsulate the forward propagation of the neural network, from input to out-

put.

F.1.1 Training a Neural Network

In this section, we explain how a neural network is trained. The basic principle of training a neural

network is to update the parameters of the network based on the gradient of a cost function, C,

given a set of input-output pairs. C is a function that measures the correctness of the prediction in

relation to the ground truth labels. This measure is also known as the cost or loss. One example

of a cost function is cross-entropy, which can be used when doing classification. In our case, we

do binary classification when classifying whether a person gets sepsis or not.

C = − 1
|D| ∑

(x,y)∈D
(y · log(ŷ(x)) + (1− y) · log(1− ŷ(x))) (F.3)

Equation F.3 calculates the cost for a neural network, in relation to a dataset D, where D contains

the input-output pairs (x, y). ŷ(x) is the output of the activation function of the output layer in

the network, aL.

Backpropagation

The purpose of backpropagation is to calculate the gradients of the cost function with respect to

the parameters of the neural network.

The gradients of the cost function are calculated as the partial derivatives of C with respect

to each weight in W , denoted as ∂C
∂wl

jk
. Using the chain rule, this can be rewritten as shown in

Equation F.4, where the partial derivatives on the right-hand side each represent a backward step

in the backpropagation.

∂C
∂wl

jk
=

∂C
∂al

j
·

∂al
j

∂zl
j
·

∂zl
j

∂wl
jk

(F.4)

As ∂C
∂al

j
· ∂al

j

∂zl
j

is used for calculating the gradients with respect to all weights to neuron j in layer l,

we introduce δl
j as an error term such that δl

j =
∂C
∂al

j
· ∂al

j

∂zl
j
.

If we introduce ∇aC as a vector of partial derivatives of C with respect to each activation in

the output layer, shown in Equation F.5a, then the error term of the output layer can be calculated
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as shown in Equation F.9a. σ′ is the derivative of the activation function with respect to the inputs

to that activation function, zL
j , such that the output of σ′ is the vector shown in Equation F.5b.

∇aC =


∂C
∂aL

1
...

∂C
∂aL
|aL |

 (F.5a)

σ′(zL) =


∂aL

1
∂zL

1
...

∂aL
|aL |

∂zL
|aL |

 (F.5b)

The error term of the output layer is used to calculate the error term of the preceding layer, using

Equation F.9b, which is in turn used to further propagate the error term backwards through the

network. This means that the error term has to include these extra backward steps, which can be

seen in the expansion of the chain rule (Equation F.4), shown in Equation F.6.

∂C
∂wl

jk
= ∑

i

(
∂C

∂al+1
i

· ∂al+1
i

∂zl+1
i

· ∂zl+1
i

∂zl
j

)
·

∂zl
j

∂wl
jk

(F.6)

The expansion introduces the term ∂zl+1
i

∂zl
j

shown in Equation F.7, where the right hand side is

derived from Equation F.1.

∂zl+1
i

∂zl
j

= wl+1
ij · σ′(zl

j) (F.7)

In Equation F.8, the partial derivatives inside the summation in Equation F.6 is substituted by the

error term from the following layer and Equation F.7.

∂C
∂wl

jk
= ∑

i

(
δl+1

i · wl+1
ij · σ′(zl

j)
)
·

∂zl
j

∂wl
jk

(F.8)

The summation in Equation F.6 can be expressed in the form of matrix-vector multiplication,

calculating all error terms for a layer, as shown in Equation F.9b.

δL = ∇aC� σ′(zL) =


∂C
∂zL

1
...

∂C
∂zL
|aL |

 =


δL

1
...

δL
|aL|

 (F.9a)

δl = ((W l+1)T · δl+1)� σ′(zl) =


∂C
∂zl

1
...

∂C
∂zl
|al |

 =


δl

1
...

δl
|al |

 (F.9b)

Now that the error terms are introduced,
∂zl

j

∂wl
jk

from Equation F.4 and Equation F.6 is the only

additional term that needs to be considered.
∂zl

j

∂wl
jk

is calculated as the derivative of Equation F.1a
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with respect to wl
jk, which has the result: al−1

k . Therefore, the gradients of C with respect to each

parameter in the neural network are calculated as shown in Equation F.10.

∂C
∂wl

jk
= δl

j · al−1
k (F.10)

Optimization

When the gradients have been computed, they can be used to update the parameters of the neural

network. One way of doing this is through gradient descent, which updates the parameters

along their gradients towards a local optimum for the cost function. Equation F.11 calculates the

delta values for each weight, which is how much the weights are increased or decreased in the

optimization step.

∆wl
jk = −µ · 1

m
·

m

∑
i

∂Cxi

∂wl
jk

(F.11)

Here, µ is the learning rate, which is a small positive real number that adjusts how much the

parameters of the neural network are updated in a single training step. The delta values are

calculated as the learning rate multiplied by the average of the gradients for data samples xi. If

we consider simple gradient descend, the gradients are calculated for the entire dataset, meaning

that m denotes the total number of data samples in Equation F.11. This can be time consuming

for large datasets, but can be improved by using stochastic gradient descend. In stochastic gradient

descend, a randomly selected batch of training samples are considered at a time, and the average

gradient for the training samples are calculated. In this case, m in Equation F.11 denotes the

number of samples in the batch.

Choosing the value of the learning rate is important for the training of the network. A high

learning rate makes larger changes to the parameters and thus converges faster, whereas a low

learning rate makes smaller changes and is better at fine-tuning parameters. Therefore, it is

advantageous to have a high learning rate early in the training process, to converge faster, and

then change to a low learning rate later in the training process, to fine-tune parameters closer

to the optimum. Adam is a method that uses this concept of adaptive learning rate, which finds

individual learning rates for updating different parameters in the network.
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Appendix G

Adam Optimizer

This section is based on information from [16], [57] and [58].
In this section, we cover the optimizer we use when training models throughout this project.

The Adaptive Moment Estimation (Adam) is an adaptive optimizer where each parameter in the

model has its own adaptive learning rate. Here, the gradients of a single parameter gt,i for the tth
timestep for parameter i, with regards to loss function L, is defined as:

gt,i = ∇θt L(θ)t,i (G.1)

Using this definition, we can define vt as the exponentially moving average of the squared gradi-

ent from previous t timesteps. vt is used to scale the global learning rate in relation to individual

parameters, such that each parameter can have an individual learning rate. Here, if a parameter

sees small updates, vt will slowly decay, in turn resulting in an increase in learning rate for these

parameters. vt uses a decay factor β2, where Kingma et al. propose a default value of 0.999 for

β2.

vt = β2vt−1 + (1− β2)g2
t (G.2)

In addition to this, we also define mt, which is used for scaling the learning rate in a momentum

like manner. This means that parameters with high gradients get higher mt, which results in

larger step sizes. mt uses a different decay factor, namely β1. Here, Kingma et al. propose a

default value of 0.9 for β1. The exponentially moving average for mt is also based on previous

gradients, but unlike vt they are not squared:

mt = β1mt−1 + (1− β1)gt (G.3)

As v0 and m0 are initialized to both be 0, the following vt and mt are biased towards 0. Due to

this, Adam uses a regularization step for vt and mt:

m̂t =
mt

(1− βt
1)

(G.4a)

v̂t =
vt

(1− βt
2)

(G.4b)

Equation G.5 shows the update rule for Adam, which computes the updates for the parameters

in the network. The rule makes use of the regularized v̂t and m̂t, as well as a global learning rate

α and an ε to avoid division by zero, where Kingma et al. propose a default of 10−8 for ε.

θt+1 = θt −
α√

v̂t + ε
· m̂t (G.5)
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Appendix H
This appendix is a copy of parts of Chapter 5 "Reasoning about Uncertainty" from our pre-master thesis
[10].

Calibration

H.1 Calibration of a Neural Network

The calibration of a network indicates how well the confidence output of a network fits with the

actual probability of an event. The confidence output corresponds to the network’s predicted

probability of the event, as a value between 0 and 1. The higher the confidence is, the more likely

the event is, and vise versa.

If a neural network outputs ten predictions for the next ten days, where each prediction has

a confidence of 0.3 for rain, we expect it to rain on three out of ten days. This means that the

confidence output should be equal to the actual probability. However, this is not always the case,

as proposed by the paper by Guo et al. [11], where they discover that modern neural networks are

often miscalibrated. This is problematic if such a network is used for high risk decision making,

such as whether to brake in self driving cars, or as a second opinion system for clinical use. For

example, if a network has a low confidence of 0.1 that a patient gets sepsis, and 9
10 patients with

similar symptoms get sepsis, we have a bad calibration that might lead to a missed diagnosis.

Perfect calibration can be formally defined as [11]:

P(Ŷ = Y|P̂ = p) = p, ∀p ∈ [0, 1] (H.1)

Given P̂, the predicted confidence, we assess the probability of the predicted class label Ŷ being

equal to the actual ground truth class label Y. For a perfectly calibrated network, this expression

should be equal to the confidence for a specific prediction p. The left hand side of Equation H.1

corresponds to the accuracy of a network, and the right hand side corresponds to the confidence

of a network. Since perfect calibration cannot be measured with a finite dataset, the accuracy and

confidence are approximated by splitting the predictions into M bins, Bm, and then calculated for

each bin using Equation H.2 and Equation H.3.

acc(Bm) =
1
|Bm| ∑

i∈Bm

1(ŷi = yi) (H.2)

Equation H.2 shows how to compute accuracy for a binary classifier. Here, ŷi is the predicted

class label for sample i, yi is the ground truth class label for sample i, and 1 is an indicator

function. The indicator function is used to determine whether the predicted label is equal to the

ground truth label, where 1 is returned if they are equal, and 0 is returned otherwise. Note that

each prediction is considered positive, such that x predictions with a confidence of 0.2 should

achieve an accuracy of 0.2 to be perfectly calibrated.

con f (Bm) =
1
|Bm| ∑

i∈Bm

p̂i (H.3)

107



Equation H.3 shows how to compute the confidence for a binary classifier. Here, p̂ is the predicted

probability that sample i is positive, such that the confidence of a bin equals the average predicted

probability for that bin.

By partitioning the predictions into bins, we can compute the difference between accuracy

and confidence for each bin as a measure for calibration error. Calibration can be viewed as a

way of telling to which degree a model actually reasons about its uncertainty [59]. If a network is

well calibrated, its output confidence expresses the actual frequency, whereas a large difference

between confidence and accuracy means that there is a lot of uncertainty tied to the prediction.

Additionally, Guo et al. [11] find that three general concepts used in machine learning affect

the calibration of a network, namely model size (width and depth), weight decay and batch

normalization. The descriptions for these, based on [16], and their effect on calibration, according

to [11], is as follows:

• Increasing model width (adding more parameters per layer) and depth (adding more layers)

both yield a progressively worse calibration.

• Weight decay concerns the regularization of a weight, where a factor between 0 and 1 is

used to downscale the weight, which in turn reduces the chances of the network overfitting

on training data. Using less weight decay has a negative impact on calibration.

• Batch normalization is a method for speeding up training in a network, by using batches

of input [60]. By normalizing the output of each activation function in a layer, all outputs

have a standard deviation of one and a mean of zero. This limits fluctuation of the output,

which speeds up training of the network. Training models with batch normalization shows

that batch normalization results in better accuracy, but worse calibration.

These findings make it interesting to consider these concepts when further working with calibra-

tion.

H.1.1 Expected Calibration Error

The calibration measure presented by Guo et al. [11] is called Expected Calibration Error (ECE),

and is defined as:

ECE =
M

∑
m=1

|Bm|
n
|acc(Bm)− con f (Bm)| (H.4)

Here, the predictions are partitioned into M bins, for a total number of n data samples across

all bins. Each bin includes the predictions from a specific prediction confidence interval, e.g. all

predictions with confidence between 0 and 0.2. A perfectly calibrated network has an ECE value

of zero, and the higher the value the worse calibrated the network is.

The comparison between confidence and accuracy can be visualized in a reliability diagram,

as seen in Figure H.1, with confidence on the x-axis and accuracy on the y-axis. As mentioned

earlier, perfect calibration is when the confidence is equal to the accuracy, which can be seen as the

diagonal line. The blue bars represent the average accuracy for a given bin and the transparent red

bars represent the difference between the calibration of the model and perfect calibration. When
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the bar is above the diagonal, as with the sixth bin, it indicates that the model is underconfident

for that bin, since the accuracy is higher than the confidence. Likewise, if the bar is below the

diagonal, as with the last bin, it indicates that the model is overconfident, since the confidence is

higher than the accuracy.

Figure H.1: Example reliability diagram for the ECE measure.

H.1.2 Adaptive Calibration Error

Nixon et al. [61] presents another calibration measure, called Adaptive Calibration Error (ACE).

ACE is adapted to consider all predictions in a multi-class classification setting, and it uses a

different binning scheme. The equation for ACE is defined as:

ACE =
1

KR

K

∑
k=1

R

∑
r=1
|acc(r, k)− con f (r, k)| (H.5)

Here, K is the number of classes, R is the number of ranges, and acc(r, k) is the accuracy for

class k in range r. The ranges work similarly to bins, but rather than including an interval for

confidence, each range includes a specific number of the total predictions, sorted by confidence

value, such that all predictions are spread evenly across the R ranges. This prevents the cases

where the bins are imbalanced, meaning that some bins include the majority of predictions, and

other bins include only a small number of predictions.
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Appendix I

BNN Implementation Code Snippets

1 def _get_dense_from_variational(layer, input_shape):

2 weights = layer.weights[0]

3 len_parameters = weights.shape[0]

4 half_len = int(len_parameters/2)

5

6 #Extracts the first half of the parameters for mean, and the second half for loc.

7 loc_parameters = weights[0:half_len]

8 scale_parameters = weights[-half_len:]

9

10 output_shape = layer.output_shape[1]

11

12 bias_size = output_shape

13 weight_size = half_len - bias_size

14

15 #Splits params for loc into params for weights and for biases.

16 loc_weights = loc_parameters[0:weight_size]

17 loc_biases = loc_parameters[-bias_size:]

18

19 #Splits params for scale into params for weights and for biases.

20 scale_weights = scale_parameters[0:weight_size]

21 scale_biases = scale_parameters[-bias_size:]

22

23 #Generates normaldistributions from the parameters and samples a weight or bias

from each.

24 weights = []

25 for loc_weight, scale_weight in zip(loc_weights, scale_weights):

26 weights.append(tfd.Normal(loc=loc_weight, scale=1e-5 +

tf.nn.softplus(scale_weight)).sample())

27

28 biases = []

29 for loc_bias, scale_bias in zip(loc_biases, scale_biases):

30 biases.append(tfd.Normal(loc=loc_bias, scale=1e-5 +

tf.nn.softplus(scale_bias)).sample())

31

32 #Constructs a initializer used for building the corresponding dense layer.

33 weight_initializer = tf.keras.initializers.constant(np.array(weights))

34 bias_initializer = tf.keras.initializers.constant(np.array(biases))

35

110



36 dense = tf.keras.layers.Dense(units=output_shape,

kernel_initializer=weight_initializer, bias_initializer=bias_initializer,

activation=’relu’)

37 dense.build(input_shape)

38 return dense

Code snippet I.1: Function for sampling parameters from a specific layer in the BNN posterior.
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Appendix J

FFNN Grid Search

J.1 FFNN Grid Search On ∆DCT

Figure J.1: FFNN grid search on ∆DCT.

1 "experiments": [

2 {

3 "model": "bayesian_manual_posterior_model",

4 "plot": false,

5 "calculate_uncertainty_metric": true,

6 "hyperparameters": [

7 {

8 "point_estimate": [true],

9 "units_layer1": [60],

10 "units_layer2": [40],

11 "units_layer3": [20],

12 "batch_size": [5000, 10000],

13 "learning_rate": [0.0001, 0.001],

14 "epochs": [1500, 3000, 1000],

15 "optimizer": ["adam"],

16 "loss_function": ["binary_crossentropy"],

17 "metric1": ["auprc"],

18 "metric2": ["auroc"]

19 }

20 ]

21 }

22 ]

Code snippet J.1: Configuration of the best FFNN, found in Figure J.1.

The best performing parameters:

• 5, 000 Batch Size.

• 0.0001 Learning Rate.

• 1, 500 Epochs.

112



J.2 FFNN Grid Search On ∆DP-A

Figure J.2: FFNN grid search on ∆DP-A.

1 "experiments": [

2 {

3 "model": "bayesian_manual_posterior_model",

4 "plot": false,

5 "calculate_uncertainty_metric": true,

6 "hyperparameters": [

7 {

8 "point_estimate": [true],

9 "units_layer1": [60],

10 "units_layer2": [40],

11 "units_layer3": [20],

12 "batch_size": [5000, 10000],

13 "learning_rate": [0.0001, 0.001],

14 "epochs": [1500, 3000, 1000],

15 "optimizer": ["adam"],

16 "loss_function": ["binary_crossentropy"],

17 "metric1": ["auprc"],

18 "metric2": ["auroc"]

19 }

20 ]

21 }

22 ]

Code snippet J.2: Configuration of the best FFNN, found in Figure J.2.

The best performing parameters:

• 5, 000 Batch Size.

• 0.0001 Learning Rate.

• 1, 500 Epochs.

113



Appendix K

Uncertainty Experiments

The most relevant results can be found in this chapter, and the full set of results can be found in

the Supplementary Appendix.

K.1 Disagreement Results (PhysioNet)

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 175 2842 - 161 103 14 2739 0.7472 0.8820

0.1 0 (b0%c) 204 2622 191 171 70 33 2552 0.7703 0.8847

0.2 0 (b0%c) 180 2715 122 163 79 17 2636 0.7599 0.8806

0.3 0 (b0%c) 171 2751 95 159 84 12 2667 0.7539 0.8790

0.4 0 (b0%c) 161 2770 86 153 90 8 2680 0.7519 0.8784

0.5 0 (b0%c) 150 2789 78 145 94 5 2695 0.7429 0.8753

0.6 0 (b0%c) 140 2807 70 136 99 4 2708 0.7308 0.8719

0.7 0 (b0%c) 137 2826 54 133 106 4 2720 0.7301 0.8729

0.8 0 (b0%c) 127 2836 54 124 108 3 2728 0.7173 0.8684

0.9 0 (b0%c) 111 2854 52 110 118 1 2736 0.7072 0.8654

0.1 1 (b20%c) 237 2706 74 177 76 60 2630 0.7583 0.8826

0.2 1 (b20%c) 202 2767 48 171 87 31 2680 0.7561 0.8831

0.3 1 (b20%c) 184 2792 41 164 89 20 2703 0.7491 0.8799

0.4 1 (b20%c) 173 2810 34 160 95 13 2715 0.7487 0.8804

0.5 1 (b20%c) 162 2825 30 153 99 9 2726 0.7423 0.8783

0.6 1 (b20%c) 155 2841 21 147 105 8 2736 0.7385 0.8774

0.7 1 (b20%c) 146 2850 21 141 112 5 2738 0.7403 0.8780

0.8 1 (b20%c) 139 2861 17 135 118 4 2743 0.7384 0.8776

0.9 1 (b20%c) 121 2875 21 120 127 1 2748 0.7293 0.8745

0.1 2 (b40%c) 267 2750 0 182 82 85 2668 0.7472 0.8820

0.2 2 (b40%c) 225 2792 0 175 89 50 2703 0.7472 0.8820

0.3 2 (b40%c) 201 2816 0 171 93 30 2723 0.7472 0.8820

0.4 2 (b40%c) 185 2832 0 165 99 20 2733 0.7472 0.8820

0.5 2 (b40%c) 172 2845 0 161 103 11 2742 0.7472 0.8820

0.6 2 (b40%c) 166 2851 0 155 109 11 2742 0.7472 0.8820

0.7 2 (b40%c) 157 2860 0 148 116 9 2744 0.7472 0.8820

0.8 2 (b40%c) 150 2867 0 144 120 6 2747 0.7472 0.8820
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0.9 2 (b40%c) 131 2886 0 128 136 3 2750 0.7472 0.8820

Table K.1: PhysioNet: Disagreement results where 5 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 175 2842 - 159 105 16 2737 0.7471 0.8827

0.1 0 (b0%c) 195 2570 252 172 69 23 2501 0.7829 0.8897

0.2 0 (b0%c) 170 2669 178 161 75 9 2594 0.7682 0.8825

0.3 0 (b0%c) 160 2719 138 154 81 6 2638 0.7562 0.8788

0.4 0 (b0%c) 150 2750 117 146 88 4 2662 0.7488 0.8765

0.5 0 (b0%c) 142 2776 99 140 90 2 2686 0.7375 0.8726

0.6 0 (b0%c) 135 2794 88 133 95 2 2699 0.7294 0.8702

0.7 0 (b0%c) 128 2814 75 126 103 2 2711 0.7234 0.8695

0.8 0 (b0%c) 120 2830 67 119 107 1 2723 0.7141 0.8667

0.9 0 (b0%c) 103 2854 60 102 116 1 2738 0.6901 0.8601

0.1 1 (b10%c) 212 2660 145 173 71 39 2589 0.7658 0.8841

0.2 1 (b10%c) 188 2737 92 167 82 21 2655 0.7607 0.8829

0.3 1 (b10%c) 170 2762 85 159 85 11 2677 0.7539 0.8797

0.4 1 (b10%c) 161 2788 68 155 91 6 2697 0.7508 0.8794

0.5 1 (b10%c) 153 2804 60 148 94 5 2710 0.7407 0.8763

0.6 1 (b10%c) 145 2827 45 141 104 4 2723 0.7395 0.8766

0.7 1 (b10%c) 138 2838 41 135 108 3 2730 0.7343 0.8750

0.8 1 (b10%c) 130 2852 35 128 114 2 2738 0.7288 0.8738

0.9 1 (b10%c) 111 2869 37 110 123 1 2746 0.7088 0.8680

0.1 2 (b20%c) 226 2688 103 175 74 51 2614 0.7607 0.8835

0.2 2 (b20%c) 198 2764 55 173 88 25 2676 0.7625 0.8860

0.3 2 (b20%c) 179 2794 44 162 93 17 2701 0.7526 0.8821

0.4 2 (b20%c) 168 2810 39 157 94 11 2716 0.7460 0.8795

0.5 2 (b20%c) 159 2823 35 152 98 7 2725 0.7432 0.8786

0.6 2 (b20%c) 150 2838 29 145 108 5 2730 0.7456 0.8797

0.7 2 (b20%c) 143 2850 24 138 113 5 2737 0.7388 0.8780

0.8 2 (b20%c) 134 2861 22 131 119 3 2742 0.7358 0.8772

0.9 2 (b20%c) 118 2875 24 116 129 2 2746 0.7256 0.8743

0.1 3 (b30%c) 239 2718 60 176 78 63 2640 0.7554 0.8828

0.2 3 (b30%c) 205 2783 29 173 91 32 2692 0.7564 0.8852

0.3 3 (b30%c) 192 2804 21 168 94 24 2710 0.7522 0.8836

0.4 3 (b30%c) 176 2819 22 160 96 16 2723 0.7458 0.8806

0.5 3 (b30%c) 164 2828 25 154 101 10 2727 0.7462 0.8804
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0.6 3 (b30%c) 154 2843 20 148 111 6 2732 0.7511 0.8821

0.7 3 (b30%c) 144 2856 17 139 115 5 2741 0.7401 0.8790

0.8 3 (b30%c) 138 2867 12 134 122 4 2745 0.7403 0.8795

0.9 3 (b30%c) 125 2879 13 122 131 3 2748 0.7343 0.8779

0.1 4 (b40%c) 254 2746 17 178 81 76 2665 0.7491 0.8819

0.2 4 (b40%c) 213 2791 13 173 91 40 2700 0.7509 0.8838

0.3 4 (b40%c) 199 2815 3 170 94 29 2721 0.7481 0.8830

0.4 4 (b40%c) 184 2826 7 163 97 21 2729 0.7450 0.8813

0.5 4 (b40%c) 171 2837 9 157 103 14 2734 0.7459 0.8815

0.6 4 (b40%c) 162 2849 6 150 113 12 2736 0.7492 0.8828

0.7 4 (b40%c) 149 2860 8 143 116 6 2744 0.7434 0.8808

0.8 4 (b40%c) 142 2873 2 137 125 5 2748 0.7446 0.8818

0.9 4 (b40%c) 131 2883 3 128 134 3 2749 0.7456 0.8819

Table K.2: PhysioNet: Disagreement results where 10 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 177 2840 - 161 103 16 2737 0.7487 0.8845

0.1 0 (b0%c) 172 2423 422 157 56 15 2367 0.7930 0.8900

0.2 0 (b0%c) 153 2580 284 147 71 6 2509 0.7600 0.8813

0.3 0 (b0%c) 145 2649 223 141 75 4 2574 0.7462 0.8757

0.4 0 (b0%c) 137 2688 192 135 78 2 2610 0.7353 0.8713

0.5 0 (b0%c) 126 2724 167 125 86 1 2638 0.7237 0.8678

0.6 0 (b0%c) 119 2756 142 118 88 1 2668 0.7052 0.8618

0.7 0 (b0%c) 115 2775 127 114 97 1 2678 0.7079 0.8640

0.8 0 (b0%c) 107 2803 107 106 104 1 2699 0.6923 0.8609

0.9 0 (b0%c) 92 2828 97 91 111 1 2717 0.6677 0.8535

0.1 5 (b10%c) 202 2627 188 173 70 29 2557 0.7726 0.8885

0.2 5 (b10%c) 176 2717 124 161 80 15 2637 0.7604 0.8831

0.3 5 (b10%c) 166 2760 91 155 88 11 2672 0.7536 0.8815

0.4 5 (b10%c) 153 2785 79 148 91 5 2694 0.7440 0.8782

0.5 5 (b10%c) 147 2795 75 144 93 3 2702 0.7384 0.8766

0.6 5 (b10%c) 139 2816 62 137 101 2 2715 0.7345 0.8759

0.7 5 (b10%c) 132 2829 56 131 104 1 2725 0.7263 0.8735

0.8 5 (b10%c) 123 2844 50 122 109 1 2735 0.7143 0.8702

0.9 5 (b10%c) 106 2860 51 105 118 1 2742 0.6953 0.8647

0.1 10 (b20%c) 218 2677 122 175 73 43 2604 0.7658 0.8865

0.2 10 (b20%c) 190 2751 76 169 85 21 2666 0.7619 0.8861
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0.3 10 (b20%c) 173 2782 62 161 89 12 2693 0.7533 0.8829

0.4 10 (b20%c) 162 2804 51 154 94 8 2710 0.7468 0.8808

0.5 10 (b20%c) 153 2818 46 148 98 5 2720 0.7419 0.8792

0.6 10 (b20%c) 146 2833 38 143 103 3 2730 0.7383 0.8784

0.7 10 (b20%c) 139 2841 37 137 106 2 2735 0.7324 0.8765

0.8 10 (b20%c) 132 2854 31 131 115 1 2739 0.7345 0.8777

0.9 10 (b20%c) 117 2870 30 116 125 1 2745 0.7222 0.8744

0.1 15 (b30%c) 231 2710 76 177 78 54 2632 0.7612 0.8864

0.2 15 (b30%c) 199 2777 41 172 89 27 2688 0.7582 0.8866

0.3 15 (b30%c) 183 2799 35 164 92 19 2707 0.7514 0.8836

0.4 15 (b30%c) 168 2816 33 158 95 10 2721 0.7473 0.8819

0.5 15 (b30%c) 159 2827 31 152 99 7 2728 0.7435 0.8806

0.6 15 (b30%c) 150 2838 29 146 104 4 2734 0.7411 0.8798

0.7 15 (b30%c) 144 2849 24 141 110 3 2739 0.7399 0.8799

0.8 15 (b30%c) 138 2864 15 136 119 2 2745 0.7420 0.8812

0.9 15 (b30%c) 125 2877 15 124 128 1 2749 0.7354 0.8794

0.1 20 (b40%c) 247 2734 36 179 79 68 2655 0.7543 0.8848

0.2 20 (b40%c) 206 2790 21 174 90 32 2700 0.7548 0.8863

0.3 20 (b40%c) 194 2810 13 169 92 25 2718 0.7499 0.8842

0.4 20 (b40%c) 179 2824 14 163 96 16 2728 0.7481 0.8833

0.5 20 (b40%c) 168 2838 11 157 102 11 2736 0.7467 0.8830

0.6 20 (b40%c) 156 2845 16 150 108 6 2737 0.7479 0.8830

0.7 20 (b40%c) 147 2860 10 144 115 3 2745 0.7465 0.8829

0.8 20 (b40%c) 142 2870 5 140 121 2 2749 0.7468 0.8834

0.9 20 (b40%c) 128 2883 6 127 132 1 2751 0.7434 0.8824

Table K.3: PhysioNet: Disagreement results where 50 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 176 2841 - 161 103 15 2738 0.7478 0.8833

0.1 0 (b0%c) 165 2334 518 155 53 10 2281 0.8054 0.8937

0.2 0 (b0%c) 144 2508 365 141 67 3 2441 0.7664 0.8797

0.3 0 (b0%c) 138 2580 299 136 71 2 2509 0.7487 0.8740

0.4 0 (b0%c) 125 2637 255 123 76 2 2561 0.7227 0.8646

0.5 0 (b0%c) 118 2677 222 117 81 1 2596 0.7136 0.8612

0.6 0 (b0%c) 116 2716 185 115 86 1 2630 0.7088 0.8604

0.7 0 (b0%c) 107 2749 161 106 90 1 2659 0.6901 0.8542

0.8 0 (b0%c) 99 2781 137 98 99 1 2682 0.6792 0.8525
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0.9 0 (b0%c) 88 2816 113 87 108 1 2708 0.6565 0.8478

0.1 15 (b10%c) 199 2626 192 172 70 27 2556 0.7738 0.8871

0.2 15 (b10%c) 175 2715 127 162 78 13 2637 0.7620 0.8817

0.3 15 (b10%c) 162 2760 95 153 89 9 2671 0.7525 0.8800

0.4 15 (b10%c) 151 2781 85 147 91 4 2690 0.7435 0.8769

0.5 15 (b10%c) 147 2796 74 144 95 3 2701 0.7408 0.8765

0.6 15 (b10%c) 140 2814 63 137 100 3 2714 0.7325 0.8742

0.7 15 (b10%c) 133 2827 57 132 104 1 2723 0.7280 0.8729

0.8 15 (b10%c) 120 2841 56 119 108 1 2733 0.7082 0.8668

0.9 15 (b10%c) 104 2860 53 103 120 1 2740 0.6959 0.8636

0.1 30 (b20%c) 214 2682 121 174 72 40 2610 0.7649 0.8843

0.2 30 (b20%c) 188 2756 73 169 86 19 2670 0.7623 0.8852

0.3 30 (b20%c) 175 2785 57 162 91 13 2694 0.7548 0.8828

0.4 30 (b20%c) 163 2802 52 154 94 9 2708 0.7462 0.8796

0.5 30 (b20%c) 152 2816 49 147 98 5 2718 0.7406 0.8776

0.6 30 (b20%c) 148 2831 38 144 103 4 2728 0.7394 0.8778

0.7 30 (b20%c) 137 2840 40 135 106 2 2734 0.7292 0.8743

0.8 30 (b20%c) 131 2856 30 130 116 1 2740 0.7330 0.8763

0.9 30 (b20%c) 117 2869 31 116 124 1 2745 0.7206 0.8727

0.1 45 (b30%c) 230 2713 74 176 79 54 2634 0.7603 0.8851

0.2 45 (b30%c) 197 2775 45 172 89 25 2686 0.7589 0.8858

0.3 45 (b30%c) 183 2799 35 165 92 18 2707 0.7519 0.8829

0.4 45 (b30%c) 170 2817 30 159 97 11 2720 0.7494 0.8820

0.5 45 (b30%c) 159 2830 28 151 100 8 2730 0.7412 0.8791

0.6 45 (b30%c) 150 2840 27 145 105 5 2735 0.7392 0.8784

0.7 45 (b30%c) 146 2848 23 142 109 4 2739 0.7388 0.8786

0.8 45 (b30%c) 137 2861 19 135 117 2 2744 0.7382 0.8787

0.9 45 (b30%c) 121 2877 19 120 128 1 2749 0.7288 0.8762

0.1 60 (b40%c) 241 2746 30 178 82 63 2664 0.7533 0.8840

0.2 60 (b40%c) 207 2791 19 173 90 34 2701 0.7524 0.8845

0.3 60 (b40%c) 192 2809 16 167 94 25 2715 0.7499 0.8833

0.4 60 (b40%c) 181 2825 11 164 97 17 2728 0.7483 0.8828

0.5 60 (b40%c) 167 2836 14 157 102 10 2734 0.7473 0.8821

0.6 60 (b40%c) 153 2845 19 148 106 5 2739 0.7421 0.8799

0.7 60 (b40%c) 147 2859 11 142 115 5 2744 0.7424 0.8807

0.8 60 (b40%c) 139 2869 9 137 122 2 2747 0.7449 0.8816

0.9 60 (b40%c) 127 2884 6 126 133 1 2751 0.7424 0.8812

Table K.4: PhysioNet: Disagreement results where 150 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.
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K.2 Standard Deviation Results (PhysioNet)

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 176 2841 - 160 104 16 2737 0.7424 0.8801

0.25 0.01 97 2404 516 96 62 1 2342 0.6979 0.8473

0.5 0.01 97 2404 516 96 62 1 2342 0.6979 0.8473

0.75 0.01 97 2404 516 96 62 1 2342 0.6979 0.8473

0.25 0.02 106 2546 365 105 67 1 2479 0.6948 0.8481

0.5 0.02 106 2546 365 105 67 1 2479 0.6948 0.8481

0.75 0.02 106 2546 365 105 67 1 2479 0.6948 0.8481

0.25 0.03 109 2618 290 108 72 1 2546 0.6938 0.8488

0.5 0.03 109 2618 290 108 72 1 2546 0.6938 0.8488

0.75 0.03 109 2618 290 108 72 1 2546 0.6938 0.8488

0.25 0.04 118 2664 235 116 77 2 2587 0.7019 0.8548

0.5 0.04 117 2665 235 116 77 1 2588 0.7019 0.8548

0.75 0.04 116 2666 235 115 78 1 2588 0.7019 0.8548

0.25 0.05 122 2684 211 120 78 2 2606 0.7069 0.8568

0.5 0.05 120 2686 211 119 79 1 2607 0.7069 0.8568

0.75 0.05 119 2687 211 118 80 1 2607 0.7069 0.8568

0.25 0.06 127 2714 176 125 83 2 2631 0.7144 0.8613

0.5 0.06 123 2718 176 122 86 1 2632 0.7144 0.8613

0.75 0.06 122 2719 176 121 87 1 2632 0.7144 0.8613

0.25 0.07 132 2725 160 130 85 2 2640 0.7212 0.8649

0.5 0.07 127 2730 160 126 89 1 2641 0.7212 0.8649

0.75 0.07 125 2732 160 124 91 1 2641 0.7212 0.8649

0.25 0.08 138 2740 139 135 86 3 2654 0.7259 0.8672

0.5 0.08 133 2745 139 131 90 2 2655 0.7259 0.8672

0.75 0.08 127 2751 139 126 95 1 2656 0.7259 0.8672

0.25 0.09 146 2748 123 143 87 3 2661 0.7360 0.8717

0.5 0.09 139 2755 123 137 93 2 2662 0.7360 0.8717

0.75 0.09 132 2762 123 131 99 1 2663 0.7360 0.8717

0.25 0.1 149 2757 111 145 87 4 2670 0.7358 0.8719

0.5 0.1 140 2766 111 138 94 2 2672 0.7358 0.8719

0.75 0.1 132 2774 111 131 101 1 2673 0.7358 0.8719

0.25 0.2 186 2789 42 161 90 25 2699 0.7396 0.8769

0.5 0.2 159 2816 42 150 101 9 2715 0.7396 0.8769

0.75 0.2 136 2839 42 134 117 2 2722 0.7396 0.8769

0.25 0.3 205 2798 14 170 90 35 2708 0.7431 0.8793
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0.5 0.3 169 2834 14 157 103 12 2731 0.7431 0.8793

0.75 0.3 140 2863 14 137 123 3 2740 0.7431 0.8793

0.25 0.4 217 2799 1 174 90 43 2709 0.7428 0.8802

0.5 0.4 176 2840 1 160 104 16 2736 0.7428 0.8802

0.75 0.4 140 2876 1 137 127 3 2749 0.7428 0.8802

0.25 0.5 218 2799 0 174 90 44 2709 0.7424 0.8801

0.5 0.5 176 2841 0 160 104 16 2737 0.7424 0.8801

0.75 0.5 140 2877 0 137 127 3 2750 0.7424 0.8801

0.25 0.6 218 2799 0 174 90 44 2709 0.7424 0.8801

0.5 0.6 176 2841 0 160 104 16 2737 0.7424 0.8801

0.75 0.6 140 2877 0 137 127 3 2750 0.7424 0.8801

Table K.5: PhysioNet: Standard deviation results where 5 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 173 2844 - 160 104 13 2740 0.7487 0.8844

0.25 0.01 92 2373 552 91 57 1 2316 0.6951 0.8465

0.5 0.01 92 2373 552 91 57 1 2316 0.6951 0.8465

0.75 0.01 92 2373 552 91 57 1 2316 0.6951 0.8465

0.25 0.02 103 2517 397 102 68 1 2449 0.6989 0.8540

0.5 0.02 103 2517 397 102 68 1 2449 0.6989 0.8540

0.75 0.02 103 2517 397 102 68 1 2449 0.6989 0.8540

0.25 0.03 110 2587 320 109 71 1 2516 0.7063 0.8566

0.5 0.03 110 2587 320 109 71 1 2516 0.7063 0.8566

0.75 0.03 110 2587 320 109 71 1 2516 0.7063 0.8566

0.25 0.04 113 2627 277 112 73 1 2554 0.7092 0.8574

0.5 0.04 113 2627 277 112 73 1 2554 0.7092 0.8574

0.75 0.04 111 2629 277 110 75 1 2554 0.7092 0.8574

0.25 0.05 116 2671 230 115 77 1 2594 0.7083 0.8588

0.5 0.05 116 2671 230 115 77 1 2594 0.7083 0.8588

0.75 0.05 114 2673 230 113 79 1 2594 0.7083 0.8588

0.25 0.06 121 2696 200 120 79 1 2617 0.7154 0.8619

0.5 0.06 119 2698 200 118 81 1 2617 0.7154 0.8619

0.75 0.06 117 2700 200 116 83 1 2617 0.7154 0.8619

0.25 0.07 125 2711 181 124 81 1 2630 0.7216 0.8648

0.5 0.07 122 2714 181 121 84 1 2630 0.7216 0.8648

0.75 0.07 119 2717 181 118 87 1 2630 0.7216 0.8648
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0.25 0.08 128 2726 163 127 81 1 2645 0.7228 0.8655

0.5 0.08 125 2729 163 124 84 1 2645 0.7228 0.8655

0.75 0.08 122 2732 163 121 87 1 2645 0.7228 0.8655

0.25 0.09 134 2740 143 133 82 1 2658 0.7293 0.8687

0.5 0.09 130 2744 143 129 86 1 2658 0.7293 0.8687

0.75 0.09 125 2749 143 124 91 1 2658 0.7293 0.8687

0.25 0.1 139 2745 133 137 82 2 2663 0.7334 0.8706

0.5 0.1 133 2751 133 132 87 1 2664 0.7334 0.8706

0.75 0.1 128 2756 133 127 92 1 2664 0.7334 0.8706

0.25 0.2 182 2790 45 160 89 22 2701 0.7458 0.8807

0.5 0.2 157 2815 45 150 99 7 2716 0.7458 0.8807

0.75 0.2 141 2831 45 137 112 4 2719 0.7458 0.8807

0.25 0.3 206 2800 11 172 91 34 2709 0.7530 0.8850

0.5 0.3 167 2839 11 159 104 8 2735 0.7530 0.8850

0.75 0.3 144 2862 11 140 123 4 2739 0.7530 0.8850

0.25 0.4 216 2801 0 173 91 43 2710 0.7487 0.8844

0.5 0.4 173 2844 0 160 104 13 2740 0.7487 0.8844

0.75 0.4 144 2873 0 140 124 4 2749 0.7487 0.8844

0.25 0.5 216 2801 0 173 91 43 2710 0.7487 0.8844

0.5 0.5 173 2844 0 160 104 13 2740 0.7487 0.8844

0.75 0.5 144 2873 0 140 124 4 2749 0.7487 0.8844

0.25 0.6 216 2801 0 173 91 43 2710 0.7487 0.8844

0.5 0.6 173 2844 0 160 104 13 2740 0.7487 0.8844

0.75 0.6 144 2873 0 140 124 4 2749 0.7487 0.8844

Table K.6: PhysioNet: Standard deviation results where 10 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 176 2841 - 161 103 15 2738 0.7464 0.8805

0.25 0.01 87 2270 660 86 54 1 2216 0.6960 0.8374

0.5 0.01 87 2270 660 86 54 1 2216 0.6960 0.8374

0.75 0.01 87 2270 660 86 54 1 2216 0.6960 0.8374

0.25 0.02 95 2452 470 94 61 1 2391 0.6891 0.8395

0.5 0.02 95 2452 470 94 61 1 2391 0.6891 0.8395

0.75 0.02 95 2452 470 94 61 1 2391 0.6891 0.8395

0.25 0.03 100 2539 378 99 66 1 2473 0.6905 0.8425

0.5 0.03 100 2539 378 99 66 1 2473 0.6905 0.8425
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0.75 0.03 100 2539 378 99 66 1 2473 0.6905 0.8425

0.25 0.04 105 2597 315 104 72 1 2525 0.6923 0.8468

0.5 0.04 105 2597 315 104 72 1 2525 0.6923 0.8468

0.75 0.04 105 2597 315 104 72 1 2525 0.6923 0.8468

0.25 0.05 110 2631 276 109 74 1 2557 0.6970 0.8498

0.5 0.05 110 2631 276 109 74 1 2557 0.6970 0.8498

0.75 0.05 109 2632 276 108 75 1 2557 0.6970 0.8498

0.25 0.06 116 2653 248 115 77 1 2576 0.7078 0.8551

0.5 0.06 116 2653 248 115 77 1 2576 0.7078 0.8551

0.75 0.06 114 2655 248 113 79 1 2576 0.7078 0.8551

0.25 0.07 124 2674 219 123 78 1 2596 0.7197 0.8600

0.5 0.07 122 2676 219 121 80 1 2596 0.7197 0.8600

0.75 0.07 118 2680 219 117 84 1 2596 0.7197 0.8600

0.25 0.08 130 2692 195 129 81 1 2611 0.7273 0.8645

0.5 0.08 127 2695 195 126 84 1 2611 0.7273 0.8645

0.75 0.08 123 2699 195 122 88 1 2611 0.7273 0.8645

0.25 0.09 132 2710 175 131 81 1 2629 0.7265 0.8643

0.5 0.09 127 2715 175 126 86 1 2629 0.7265 0.8643

0.75 0.09 123 2719 175 122 90 1 2629 0.7265 0.8643

0.25 0.1 135 2719 163 134 82 1 2637 0.7299 0.8661

0.5 0.1 130 2724 163 129 87 1 2637 0.7299 0.8661

0.75 0.1 125 2729 163 124 92 1 2637 0.7299 0.8661

0.25 0.2 179 2787 51 157 90 22 2697 0.7392 0.8757

0.5 0.2 155 2811 51 147 100 8 2711 0.7392 0.8757

0.75 0.2 141 2825 51 137 110 4 2715 0.7392 0.8757

0.25 0.3 207 2802 8 173 90 34 2712 0.7485 0.8808

0.5 0.3 172 2837 8 160 103 12 2734 0.7485 0.8808

0.75 0.3 146 2863 8 142 121 4 2742 0.7485 0.8808

0.25 0.4 214 2803 0 174 90 40 2713 0.7464 0.8805

0.5 0.4 176 2841 0 161 103 15 2738 0.7464 0.8805

0.75 0.4 146 2871 0 142 122 4 2749 0.7464 0.8805

0.25 0.5 214 2803 0 174 90 40 2713 0.7464 0.8805

0.5 0.5 176 2841 0 161 103 15 2738 0.7464 0.8805

0.75 0.5 146 2871 0 142 122 4 2749 0.7464 0.8805

0.25 0.6 214 2803 0 174 90 40 2713 0.7464 0.8805

0.5 0.6 176 2841 0 161 103 15 2738 0.7464 0.8805

0.75 0.6 146 2871 0 142 122 4 2749 0.7464 0.8805
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Table K.7: PhysioNet: Standard deviation results where 50 models are sampled. Std Threshold is an upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

K.3 Disagreement Results (Cross-Tracks)

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 58 5378 - 37 276 21 5102 0.3025 0.7858

0.1 0 (b0%c) 183 4246 1007 86 119 97 4127 0.3287 0.7792

0.2 0 (b0%c) 99 4918 419 60 179 39 4739 0.2770 0.7626

0.3 0 (b0%c) 69 5165 202 46 214 23 4951 0.2629 0.7617

0.4 0 (b0%c) 36 5269 131 24 237 12 5032 0.2260 0.7545

0.5 0 (b0%c) 7 5327 102 6 253 1 5074 0.1974 0.7486

0.6 0 (b0%c) 0 5351 85 0 262 0 5089 0 0

0.7 0 (b0%c) 0 5387 49 0 281 0 5106 0 0

0.8 0 (b0%c) 0 5419 17 0 304 0 5115 0 0

0.9 0 (b0%c) 0 5434 2 0 312 0 5122 0 0

0.1 1 (b10%c) 262 4543 631 107 139 155 4404 0.3292 0.7887

0.2 1 (b10%c) 123 5078 235 68 196 55 4882 0.2850 0.7693

0.3 1 (b10%c) 85 5254 97 54 228 31 5026 0.2781 0.7711

0.4 1 (b10%c) 54 5309 73 34 246 20 5063 0.2538 0.7663

0.5 1 (b10%c) 14 5345 77 10 257 4 5088 0.2046 0.7539

0.6 1 (b10%c) 2 5371 63 1 274 1 5097 0.2260 0.7602

0.7 1 (b10%c) 0 5411 25 0 295 0 5116 0 0

0.8 1 (b10%c) 0 5432 4 0 310 0 5122 0 0

0.9 1 (b10%c) 0 5436 0 0 313 0 5123 0 0

0.1 2 (b20%c) 335 4675 426 118 153 217 4522 0.3228 0.7914

0.2 2 (b20%c) 140 5154 142 71 207 69 4947 0.2842 0.7723

0.3 2 (b20%c) 96 5280 60 55 240 41 5040 0.2914 0.7782

0.4 2 (b20%c) 65 5330 41 42 251 23 5079 0.2734 0.7742

0.5 2 (b20%c) 27 5353 56 17 261 10 5092 0.2322 0.7622

0.6 2 (b20%c) 4 5390 42 2 286 2 5104 0.2554 0.7698

0.7 2 (b20%c) 1 5422 13 0 303 1 5119 0.2696 0.7792

0.8 2 (b20%c) 0 5435 1 0 313 0 5122 0 0

0.9 2 (b20%c) 0 5436 0 0 313 0 5123 0 0

0.1 3 (b30%c) 414 4795 227 126 163 288 4632 0.3117 0.7882

0.2 3 (b30%c) 155 5196 85 76 216 79 4980 0.2927 0.7782

0.3 3 (b30%c) 103 5298 35 58 245 45 5053 0.2974 0.7819

0.4 3 (b30%c) 75 5337 24 48 253 27 5084 0.2857 0.7790
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0.5 3 (b30%c) 41 5360 35 25 265 16 5095 0.2578 0.7708

0.6 3 (b30%c) 10 5406 20 8 296 2 5110 0.2985 0.7811

0.7 3 (b30%c) 1 5425 10 0 304 1 5121 0.2679 0.7796

0.8 3 (b30%c) 0 5435 1 0 313 0 5122 0 0

0.9 3 (b30%c) 0 5436 0 0 313 0 5123 0 0

0.1 4 (b40%c) 476 4885 75 136 168 340 4717 0.3052 0.7861

0.2 4 (b40%c) 174 5228 34 79 222 95 5006 0.2933 0.7802

0.3 4 (b40%c) 109 5309 18 61 248 48 5061 0.3024 0.7847

0.4 4 (b40%c) 82 5346 8 52 257 30 5089 0.2972 0.7836

0.5 4 (b40%c) 59 5365 12 34 270 25 5095 0.2847 0.7800

0.6 4 (b40%c) 13 5415 8 10 301 3 5114 0.3090 0.7853

0.7 4 (b40%c) 3 5432 1 2 311 1 5121 0.3090 0.7859

0.8 4 (b40%c) 0 5436 0 0 313 0 5123 0 0

0.9 4 (b40%c) 0 5436 0 0 313 0 5123 0 0

Table K.8: Cross-Tracks: Disagreement results where 10 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

Positive

Threshold
DL Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 67 5369 - 44 269 23 5100 0.3092 0.7879

0.1 0 (b0%c) 113 3505 1818 62 85 51 3420 0.3388 0.7741

0.2 0 (b0%c) 66 4562 808 45 150 21 4412 0.2750 0.7515

0.3 0 (b0%c) 34 4957 445 25 184 9 4773 0.2105 0.7319

0.4 0 (b0%c) 3 5171 262 3 217 0 4954 0.1536 0.7244

0.5 0 (b0%c) 0 5269 167 0 235 0 5034 0 0

0.6 0 (b0%c) 0 5315 121 0 248 0 5067 0 0

0.7 0 (b0%c) 0 5351 85 0 260 0 5091 0 0

0.8 0 (b0%c) 0 5395 41 0 290 0 5105 0 0

0.9 0 (b0%c) 0 5428 8 0 310 0 5118 0 0

0.1 10 (b10%c) 217 4417 802 96 129 121 4288 0.3416 0.7875

0.2 10 (b10%c) 107 5025 304 63 189 44 4836 0.2852 0.7672

0.3 10 (b10%c) 76 5237 123 50 224 26 5013 0.2765 0.7690

0.4 10 (b10%c) 53 5304 79 35 244 18 5060 0.2603 0.7684

0.5 10 (b10%c) 2 5336 98 1 251 1 5085 0.1524 0.7427

0.6 10 (b10%c) 0 5354 82 0 260 0 5094 0 0

0.7 10 (b10%c) 0 5402 34 0 293 0 5109 0 0

0.8 10 (b10%c) 0 5434 2 0 312 0 5122 0 0

0.9 10 (b10%c) 0 5436 0 0 313 0 5123 0 0

0.1 20 (b20%c) 291 4620 525 111 147 180 4473 0.3333 0.7923
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0.2 20 (b20%c) 127 5125 184 67 201 60 4924 0.2858 0.7701

0.3 20 (b20%c) 87 5273 76 56 232 31 5041 0.2897 0.7763

0.4 20 (b20%c) 66 5320 50 44 248 22 5072 0.2821 0.7766

0.5 20 (b20%c) 21 5349 66 14 256 7 5093 0.2125 0.7579

0.6 20 (b20%c) 0 5377 59 0 275 0 5102 0 0

0.7 20 (b20%c) 0 5421 15 0 303 0 5118 0 0

0.8 20 (b20%c) 0 5436 0 0 313 0 5123 0 0

0.9 20 (b20%c) 0 5436 0 0 313 0 5123 0 0

0.1 30 (b30%c) 364 4742 330 120 158 244 4584 0.3231 0.7911

0.2 30 (b30%c) 148 5174 114 74 210 74 4964 0.2952 0.7769

0.3 30 (b30%c) 97 5293 46 60 242 37 5051 0.3086 0.7845

0.4 30 (b30%c) 72 5333 31 48 250 24 5083 0.2873 0.7795

0.5 30 (b30%c) 38 5355 43 27 262 11 5093 0.2686 0.7731

0.6 30 (b30%c) 0 5396 40 0 288 0 5108 0 0

0.7 30 (b30%c) 0 5433 3 0 311 0 5122 0 0

0.8 30 (b30%c) 0 5436 0 0 313 0 5123 0 0

0.9 30 (b30%c) 0 5436 0 0 313 0 5123 0 0

0.1 40 (b40%c) 446 4844 146 132 166 314 4678 0.3154 0.7898

0.2 40 (b40%c) 167 5219 50 82 219 85 5000 0.3047 0.7840

0.3 40 (b40%c) 107 5312 17 63 246 44 5066 0.3090 0.7867

0.4 40 (b40%c) 83 5343 10 53 254 30 5089 0.2993 0.7843

0.5 40 (b40%c) 54 5362 20 37 265 17 5097 0.2916 0.7815

0.6 40 (b40%c) 5 5409 22 3 297 2 5112 0.2921 0.7801

0.7 40 (b40%c) 0 5435 1 0 313 0 5122 0 0

0.8 40 (b40%c) 0 5436 0 0 313 0 5123 0 0

0.9 40 (b40%c) 0 5436 0 0 313 0 5123 0 0

Table K.9: Cross-Tracks: Disagreement results where 100 models are sampled. DL is the disagreement limit specifying
how many predictions on the same data point can disagree before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the sampled models disagree.

K.4 Standard Deviation Results (Cross-Tracks)

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 60 5376 - 42 271 18 5105 0.3041 0.7850

0.25 0.01 0 2772 2664 0 64 0 2708 0 0

0.5 0.01 0 2772 2664 0 64 0 2708 0 0

0.75 0.01 0 2772 2664 0 64 0 2708 0 0

0.25 0.02 0 4188 1248 0 124 0 4064 0 0

0.5 0.02 0 4188 1248 0 124 0 4064 0 0
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0.75 0.02 0 4188 1248 0 124 0 4064 0 0

0.25 0.03 0 4622 814 0 157 0 4465 0 0

0.5 0.03 0 4622 814 0 157 0 4465 0 0

0.75 0.03 0 4622 814 0 157 0 4465 0 0

0.25 0.04 1 4827 608 1 174 0 4653 0.0909 0.6936

0.5 0.04 1 4827 608 1 174 0 4653 0.0909 0.6936

0.75 0.04 0 4828 608 0 175 0 4653 0 0

0.25 0.05 5 4995 436 3 190 2 4805 0.1126 0.7024

0.5 0.05 3 4997 436 3 190 0 4807 0.1126 0.7024

0.75 0.05 0 5000 436 0 193 0 4807 0 0

0.25 0.06 14 5116 306 8 213 6 4903 0.1649 0.7272

0.5 0.06 8 5122 306 7 214 1 4908 0.1649 0.7272

0.75 0.06 0 5130 306 0 221 0 4909 0 0

0.25 0.07 30 5182 224 18 220 12 4962 0.1939 0.7387

0.5 0.07 18 5194 224 14 224 4 4970 0.1939 0.7387

0.75 0.07 0 5212 224 0 238 0 4974 0 0

0.25 0.08 49 5235 152 27 227 22 5008 0.2220 0.7483

0.5 0.08 24 5260 152 19 235 5 5025 0.2220 0.7483

0.75 0.08 0 5284 152 0 254 0 5030 0 0

0.25 0.09 71 5262 103 35 230 36 5032 0.2381 0.7543

0.5 0.09 29 5304 103 23 242 6 5062 0.2381 0.7543

0.75 0.09 0 5333 103 0 265 0 5068 0 0

0.25 0.1 87 5273 76 43 233 44 5040 0.2591 0.7619

0.5 0.1 36 5324 76 28 248 8 5076 0.2591 0.7619

0.75 0.1 0 5360 76 0 276 0 5084 0 0

0.25 0.2 148 5287 1 75 238 73 5049 0.3047 0.7851

0.5 0.2 60 5375 1 42 271 18 5104 0.3047 0.7851

0.75 0.2 0 5435 1 0 313 0 5122 0 0

0.25 0.3 149 5287 0 75 238 74 5049 0.3041 0.7850

0.5 0.3 60 5376 0 42 271 18 5105 0.3041 0.7850

0.75 0.3 0 5436 0 0 313 0 5123 0 0

0.25 0.4 149 5287 0 75 238 74 5049 0.3041 0.7850

0.5 0.4 60 5376 0 42 271 18 5105 0.3041 0.7850

0.75 0.4 0 5436 0 0 313 0 5123 0 0

0.25 0.5 149 5287 0 75 238 74 5049 0.3041 0.7850

0.5 0.5 60 5376 0 42 271 18 5105 0.3041 0.7850

0.75 0.5 0 5436 0 0 313 0 5123 0 0

0.25 0.6 149 5287 0 75 238 74 5049 0.3041 0.7850
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0.5 0.6 60 5376 0 42 271 18 5105 0.3041 0.7850

0.75 0.6 0 5436 0 0 313 0 5123 0 0

Table K.10: Cross-Tracks: Standard deviation results where 10 models are sampled. Std Threshold is a upper limit on
standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK is
the number of data points for which the model express "i do not know".

Positive

Threshold

Std

Threshold
Pos Neg IDK TP FN FP TN AUPRC AUROC

0.5 (Baseline) - 62 5374 - 41 272 21 5102 0.3100 0.7880

0.25 0.01 0 2319 3117 0 58 0 2261 0 0

0.5 0.01 0 2319 3117 0 58 0 2261 0 0

0.75 0.01 0 2319 3117 0 58 0 2261 0 0

0.25 0.02 0 4021 1415 0 105 0 3916 0 0

0.5 0.02 0 4021 1415 0 105 0 3916 0 0

0.75 0.02 0 4021 1415 0 105 0 3916 0 0

0.25 0.03 0 4497 939 0 141 0 4356 0 0

0.5 0.03 0 4497 939 0 141 0 4356 0 0

0.75 0.03 0 4497 939 0 141 0 4356 0 0

0.25 0.04 0 4736 700 0 162 0 4574 0 0

0.5 0.04 0 4736 700 0 162 0 4574 0 0

0.75 0.04 0 4736 700 0 162 0 4574 0 0

0.25 0.05 0 4923 513 0 177 0 4746 0 0

0.5 0.05 0 4923 513 0 177 0 4746 0 0

0.75 0.05 0 4923 513 0 177 0 4746 0 0

0.25 0.06 0 5050 386 0 193 0 4857 0 0

0.5 0.06 0 5050 386 0 193 0 4857 0 0

0.75 0.06 0 5050 386 0 193 0 4857 0 0

0.25 0.07 3 5157 276 2 212 1 4945 0.1427 0.7185

0.5 0.07 3 5157 276 2 212 1 4945 0.1427 0.7185

0.75 0.07 0 5160 276 0 214 0 4946 0 0

0.25 0.08 15 5223 198 10 228 5 4995 0.1876 0.7397

0.5 0.08 12 5226 198 9 229 3 4997 0.1876 0.7397

0.75 0.08 0 5238 198 0 238 0 5000 0 0

0.25 0.09 29 5264 143 19 233 10 5031 0.2165 0.7489

0.5 0.09 18 5275 143 14 238 4 5037 0.2165 0.7489

0.75 0.09 0 5293 143 0 252 0 5041 0 0

0.25 0.1 56 5282 98 29 236 27 5046 0.2387 0.7572

0.5 0.1 24 5314 98 19 246 5 5068 0.2387 0.7572

0.75 0.1 0 5338 98 0 265 0 5073 0 0
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0.25 0.2 147 5289 0 74 239 73 5050 0.3100 0.7880

0.5 0.2 62 5374 0 41 272 21 5102 0.3100 0.7880

0.75 0.2 0 5436 0 0 313 0 5123 0 0

0.25 0.3 147 5289 0 74 239 73 5050 0.3100 0.7880

0.5 0.3 62 5374 0 41 272 21 5102 0.3100 0.7880

0.75 0.3 0 5436 0 0 313 0 5123 0 0

0.25 0.4 147 5289 0 74 239 73 5050 0.3100 0.7880

0.5 0.4 62 5374 0 41 272 21 5102 0.3100 0.7880

0.75 0.4 0 5436 0 0 313 0 5123 0 0

0.25 0.5 147 5289 0 74 239 73 5050 0.3100 0.7880

0.5 0.5 62 5374 0 41 272 21 5102 0.3100 0.7880

0.75 0.5 0 5436 0 0 313 0 5123 0 0

0.25 0.6 147 5289 0 74 239 73 5050 0.3100 0.7880

0.5 0.6 62 5374 0 41 272 21 5102 0.3100 0.7880

0.75 0.6 0 5436 0 0 313 0 5123 0 0

Table K.11: Cross-Tracks: Standard deviation results where 100 models are sampled. Std Threshold is a upper limit
on standard deviation in predictions on the same data point, before the model expresses "i do not know" (IDK). IDK
is the number of data points for which the model express "i do not know".
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Appendix L

LRP Relevance Diagrams

The most relevant results can be found in this chapter, and the full set of results can be found in

the Supplementary Appendix.
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Figure L.1: ∆DP-A POS8True.
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Figure L.2: ∆DP-A POS3True.
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Figure L.3: ∆DP-A NEG2False.
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Figure L.4: ∆DP-A POS9True.
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L.2 Cross-Tracks
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Figure L.5: ∆DCT POS11True.
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Appendix M

Weight Uncertainty in First Layer

M.1 Uncertainty In Fully a Bayesian Network

This section covers the results of inspecting the mean and standard deviation of the probability

distributions for weights in the first layer, in a fully Bayesian NN.
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Figure M.1
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M.1.2 Standard Deviation (∆DP-A)
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Figure M.2
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M.1.3 Mean (∆DCT)
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Figure M.3
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M.1.4 Standard Deviation (∆DCT)
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Figure M.4

M.2 Limiting Uncertainty To First Layer

This section covers the results of inspecting the mean and standard deviation of the probability

distributions for weights in the first layer, in a BNN where only the first layer is stochastic.
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M.2.1 Mean On ∆DP-A
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Figure M.5
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M.2.2 Standard Deviation On ∆DP-A
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Figure M.6
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M.2.3 Mean On ∆DCT

0.10 0.05 0.00 0.05 0.10 0.15
Mean

Temperature
SpO2

Heart rate
Diastolic BP

Respiratory Frequency
Systolic BP

B-Leukocytes
B-Neutrophils

B-Platelets
eGFR

P-Albumin
P-Bilirubine

P-C-reactive protein
P-Glucose

P-Potassium
P-Creatinine

P-Sodium
Temperature

SpO2
Heart rate

Diastolic BP
Respiratory Frequency

Systolic BP
B-Leukocytes
B-Neutrophils

B-Platelets
eGFR

P-Albumin
P-Bilirubine

P-C-reactive protein
P-Glucose

P-Potassium
P-Creatinine

P-Sodium
P(aB)-Hydrogen carbonate

P(aB)-Potassium
P(aB)-Chloride
P(aB)-Lactate
P(aB)-Sodium

P(aB)-pCO2
P(aB)-pH

P(aB)-pO2
P(aB)-Hydrogen carbonate

P(aB)-Potassium
P(aB)-Chloride
P(aB)-Lactate
P(aB)-Sodium

P(aB)-pCO2
P(aB)-pH

P(aB)-pO2

In
pu

t F
ea

tu
re

Figure M.7
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M.2.4 Standard Deviation On ∆DCT
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Figure M.8
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Appendix N

Evaluating LRP

The naming scheme for captions in the following figures is as follows: Figures starting with Neg

is for a data point with a sepsis negative label, and Pos is for a sepsis positive label. The following

integer is an index for the data point in the test set. Following is a parenthesis, containing either

"Original", if neither feature flipping nor feature exclusion is applied, "FF" if feature flipping is

applied for that feature, or "0" if the feature is excluded. Lastly, False means that relevance is

propagated from the output for the negative class, and True for the positive class.
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N.1 Originals (∆DP-A)
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Figure N.1: Neg0(Original)False
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N.1.2 POS8(Original)True
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Figure N.2: POS8(Original)True
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N.2 Originals (∆DCT)
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Figure N.3: Neg4(Original)False
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N.2.2 Neg6(Original)False
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Figure N.4: Neg6(Original)False
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N.2.3 Pos38(Original)True
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Figure N.5: Pos38(Original)True
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N.2.4 Pos48(Original)True
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Figure N.6: Pos48(Original)True
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N.3 Feature Flipping (∆DP-A)
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Figure N.7: Neg0(deltaRespirationRateFF)False
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N.3.2 Neg0(glucoseFF)False
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Figure N.8: Neg0(glucoseFF)False
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N.3.3 Neg0(iculosFF)False
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Figure N.9: Neg0(iculosFF)False
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N.3.4 POS8(baseExcessFF)True
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Figure N.10: POS8(baseExcessFF)True
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N.3.5 POS8(iculosFF)True
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Figure N.11: POS8(iculosFF)True
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N.3.6 POS8(o2satFF)True
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Figure N.12: POS8(o2satFF)True
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N.4 Feature Flipping (∆DCT)
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Figure N.13: Neg6(heartRateFF)False
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N.4.2 Neg6(systolicBPFF)False

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
+/- Relevance Score

Temperature (  36.5)

SpO2 (  98.0)

Heart rate ( 140.0)

Diastolic BP (  74.0)

Respiratory Frequency (  24.0)

Systolic BP (-154.0)

In
pu

t F
ea

tu
re

Relevance for Negative Class

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Max Prediction: 0.881     Mean Prediction: 0.717     Min Prediciton: 0.425

Figure N.14: Neg6(systolicBPFF)False
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N.4.3 Neg6(temperatureFF)False
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Figure N.15: Neg6(temperatureFF)False
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N.4.4 Pos38(pabChlorideFF)True
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Figure N.16: Pos38(pabChlorideFF)True
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N.4.5 Pos38(pabPotassiumFF)True
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Figure N.17: Pos38(pabPotassiumFF)True
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N.4.6 Pos38(systolicBPFF)True
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Figure N.18: Pos38(systolicBPFF)True
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N.5 Setting Value to 0 (∆DP-A)
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Figure N.19: Neg0(deltaRespirationRate0)False
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N.5.2 Neg0(glucose0)False
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Figure N.20: Neg0(glucose0)False
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N.5.3 Neg0(iculos0)False
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Figure N.21: Neg0(iculos0)False
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N.5.4 POS8(baseExcess0)True
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Figure N.22: POS8(baseExcess0)True
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N.5.5 POS8(iculos0)True
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Figure N.23: POS8(iculos0)True
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N.5.6 POS8(o2sat0)True

0.0 0.5 1.0 1.5 2.0
+/- Relevance Score

Heart Rate (  74.2)
Temperature (  38.1)

Systolic Blood Pressure ( 111.0)
Mean Arterial Pressure (  72.7)

Diastolic Blood Pressure (  54.8)
Respiration Rate (  16.9)

BaseExcess (   2.0)
HCO3 (  24.0)

FiO2 (   0.4)
pH (   7.4)

PaCO2 (  40.0)
Blood Urea Nitrogen (  23.0)

Calcium (   8.0)
Chloride ( 112.0)
Creatine (   1.0)

Glucose ( 118.0)
Magnesium (   2.4)
Phosphate (   3.5)
Potassium (   4.0)

Hematocrit (  31.2)
Hemoglobin (  10.8)

Partial Thromboplastin Time (  35.5)
Laukocyte Count (  11.7)

Platelets ( 180.0)
Heart Rate ( -12.9)

O2Sat (   2.8)
Temperature (  -1.1)

Systolic Blood Pressure (   1.3)
Mean Arterial Pressure (   0.3)

Diastolic Blood Pressure (  -0.6)
Respiration Rate (  -1.6)

Age (  62.2)
HospAdmTime (  -0.0)

ICULOS (  55.0)
Male (   1.0)

In
pu

t F
ea

tu
re

Relevance for Positive Class

Negative Relevance
Positive Relevance
Negative Mean Relevance
Positive Mean Relevance

Max Prediction: 0.996     Mean Prediction: 0.99     Min Prediciton: 0.98

Figure N.24: POS8(o2sat0)True
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N.6 Setting Value to 0 (∆DCT)
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Figure N.25: Neg4(heartRate0)False
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N.6.2 Neg4(spo20)False
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Figure N.26: Neg4(spo20)False
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N.6.3 Neg4(temperature0)False
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Figure N.27: Neg4(temperature0)False

172



N.6.4 Neg6(heartRate0)False
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Figure N.28: Neg6(heartRate0)False
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N.6.5 Neg6(systolicBP0)False
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Figure N.29: Neg6(systolicBP0)False
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N.6.6 Neg6(temperature0)False
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Figure N.30: Neg6(temperature0)False
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N.6.7 Pos38(pabChloride0)True
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Figure N.31: Pos38(pabChloride0)True
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N.6.8 Pos38(pabPotassium0)True
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Figure N.32: Pos38(pabPotassium0)True
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N.6.9 Pos38(systolicBP0)True
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Figure N.33: Pos38(systolicBP0)True
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N.6.10 Pos48(bLeukocytes0)True
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Figure N.34: Pos48(bLeukocytes0)True
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N.6.11 Pos48(pabChloride0)True
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Figure N.35: Pos48(pabChloride0)True

180



N.6.12 Pos48(pSodium0)True
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Figure N.36: Pos48(pSodium0)True
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