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in AUPR, but low in other metrics compared to

the other methods.
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Summary

Recently there has been a big focus on being able to predict interactions between proteins and

molecules. Finding these interactions the traditional way is both very costly, but also very expensive.

Therefore, new methods are constantly being developed that attempt to help find these interactions.

There are multiple different ”groups” of algorithms that attempt to accomplish this. Due to data

scarcity there is a need for deep learning frameworks that can learn representations with less labelled

data. Therefore, we instead utilized autoencoders in our framework.

We try 3 different setups for encoding and decoding which are: CNN for encoding and CNN for

decoding. CNN for encoding, and with DNN for decoding. And lastly, RNN for encoding, and DNN

for decoding.

We then compared our 3 approaches with both older methods to find interactions, but also with

state-of-the-art methods and found out that our 3 approaches underperformed on all metrics for both

datasets that we tested them on, except for a better AUPR on the davis dataset. In addition to

this, we also created our own base model which instead relied on featurization of the molecules and

proteins into vectors before applying a basic neural network and found out that this basic model also

performed better than our 3 approaches using autoencoders.

A strong point of autoencoders, however, is that they do not need to have their data labelled, so

we created a dataset with reduced labels and compared our best variant (AUEN CNN-CNN) with

DeepDTA which is the best performing model, but in this setting DeepDTA still performed better,

which was not surprising because it also relies on autoencoders.

Lastly, we compared our best variant (CNN-CNN) with our own base model, with our own base

model only relying on one-hot encoding and once again we used the data that had reduced labels.

This time, however, our best variant performed better than the base model, especially in terms of

MSE. From this, we concluded that our approach could potentially be used for binary classification

as our AUPR metric was good, but that in general, the state-of-the-art methods achieve better scores

in our metrics.
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Chapter 1

Introduction

Drug discovery is a time consuming and expensive process of finding new medication by probing a

drug-target pair for interaction, where the target is a protein, and the drug is a molecule that either

inhibits or stimulates the protein’s function [1]. Finding new medication is important to help hu-

mankind overcome diseases and illnesses.

Discovering drugs was originally done manually by finding which drugs had interactions with which

targets, but machine learning has provided a more precise and focused approach, accelerating the

speed of finding these interactions. Because the interactions are vital to drug discovery, increasing

the efficiency and accuracy of finding them holds the potential to allow for faster drug design. For

example each year, only about 50 new molecular entities are approved by the U.S. Food and Drug

Administration [2], and 39 new active substances by the European Medicines Agency [3]. Molecular

entities and active substances are similar terms and describe active ingredients, which are responsible

for the activity of medicine.

Computer scientists have tried to reduce the weak points of the drug discovery process by using

machine learning approaches for Drug-Target Interaction (DTI) prediction [4]. As drug discovery has

advanced, new machine learning techniques have been explored and developed to predict interactions

that matter for the production of new drugs. Popular methods include similarity or distance-based

methods, deep learning methods and hybrid methods [5]. Each category has associated benefits and

drawbacks, but as more and more data is becoming available, deep learning methods have risen in

popularity, as one of the main issues with deep learning, data availability, though still a challenge, has

become less impactful [5]. Moreover, deep learning approaches have proven efficient, while offering

high accuracy in predicting interactions and a low error rate [6], resulting in fewer interactions being

false positives and false negatives. These approaches also manage to reduce the loss of information

when predicting DTIs, overcoming limitations of other approaches [5].
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However, most approaches to predicting DTIs rely on an end-to-end learning style. Contrary to this

our approach involves pre-training two autoencoders. Autoencoders are neural networks that com-

press the original input using an encoder and then reconstruct it through a decoder. The main idea

is that the decoder output aims to be as similar to the input as possible, and as such, it is the en-

coder that is interesting in the drug discovery setting, because it learns a compressed encoding of the

input while retaining the necessary information. This is called unsupervised learning meaning that

no labelled data is required to train these networks. This, in turn, means that the frameworks that

are comprised of multiple neural networks, some of which are autoencoders require less labelled data

for training. And since labelled data is a scarce resource in DTI prediction, we find it fitting to use

autoencoders to combat it.

It is the goal of the project to develop an advanced algorithm that can produce desirable results for

DTI prediction. To achieve this, we propose a framework for drug-target interaction prediction using

autoencoders to provide feature extraction and dimensionality reduction for both drugs and targets.

This would allow the interaction prediction network to learn predicting interactions with less labelled

data than usual.

This report is structured into six sections; this introduction (chapter 1), related work (chapter 2), pre-

liminaries (chapter 3), framework (chapter 4), experiments (chapter 5), and conclusion (chapter 6).

Related work goes through papers that have been relevant for this project, covering papers especially

about DTI prediction involving binding affinity and autoencoders. Preliminaries contain introductory

information and go into detail about the tools and methods used in our approach. The framework

presents the specifics behind the design of our model. Experiments present our setup and metrics

that enable comparison with this project to existing approaches. Finally, the conclusion offers some

finalizing words on the project, including potential future work.

This project builds on a previous project carried out by the same team. The goal of the previous

project was to build a framework for drug discovery, including a database, interface, and algorithm.

The algorithm was a distance-based method tested on the framework to produce results for discussion

and improvement. Inspired by the future work leftover from the previous project, this project dives

deeper into drug discovery. The previous project and the accompanying software package are available

here [7]
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Chapter 2

Related Work

In this section, we detail several relevant papers that have influenced this project and led to the

solution we propose in this project. These are various methods and approaches to drug discovery.

With many approaches already existing, we look to existing papers to find out where we can improve

something or where we can find a niche within this project to not just replicate existing results but

add to the domain.

One approach to drug discovery is proposed by SimBoost [8]. In this, the goal was to provide inter-

action data that is non-binary and results that are not based on binarization thresholds. To do this,

they use a Kronecker Regularized Least Squares method (KronRLS) [9] as a baseline for drug-target

interaction. They take data from enzymes, ion channels, nuclear receptor and G Protein-Coupled

Receptor datasets for featurization. They then create a matrix of the binding affinities of drugs and

targets, which is used as a feature extraction step where they balance the binding affinities to prevent

overfitting. They feed this matrix to a gradient boosting regression tree, which has been trained on

their dataset. This tree generates a score based on their algorithm.

Another approach that is also non-binary is the DeepDTA [10] paper approach, which uses a deep

learning-based convolutional neural network in two blocks. One block takes sequences, and the other

block takes SMILES strings. Each sequence or string goes through three consecutive one-dimensional

convolutional layers with filters that doubles and triples in the second and third layers respectively.

Finally, it goes through a max-pool layer where a representation of a sequence or string is output and

concatenated into a combined representation that is put through three fully connected layers where

they employ a dropout regularization technique to avoid over-fitting.

A different non-binary approach is employed in the DeepGS paper [6], which tries to consider the

local chemical context of amino acids and SMILES strings along with a method that considers the

molecular structure. They consider both because the topological structure of molecules provides in-

formation as to how the atoms are connected, while the chemical context reveals the functionality of

atoms. They obtain one drug embedding from the graph of the molecule as a fingerprint and the other

is obtained directly from SMILES strings by using Smi2Vec which produces a 100-dimensional ma-
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trix. Similarly, the protein embedding also produces a 100-dimensional matrix with Prot2Vec. They

put this information through three different neural networks (Convolutional Neural Network, Graph

Attention Network, and Bi-directional Gated Recurrent Unit) that outputs one protein and two drug

representations. They concatenate this output and input it into a feed-forward neural network to

make predictions based on binding affinities.

One issue with these non-binary approaches is that they introduce a need for interpretation of data

which become a challenge of this approach. Especially the neural network part of the DeepDTA

approach also shows poor performance for representation of proteins specifically. This indicates an

additional challenge to get decent results. A problem with binary approaches is, however, that they

do not include binding affinity data where it is relevant. This data is vital for providing information

on the strength of a given interaction between a drug and a target. These approaches generate more

realistic results, that uses binding affinity scores directly, negating the need for generation of synthetic

negative samples [10]. Generally, this means that binary approaches have the benefit of less complex-

ity, but non-binary approaches can achieve results that are better suited for real world applications.

Other models have been presented which utilize autoencoder neural networks to generate deep repre-

sentations for datasets and for prediction of DTI [11][12][13][14].

In FRnet-DTI [11], two autoencoder neural networks are proposed. The first one, FRnet-Encode, han-

dles feature generation and manipulation and the second one, FRnet-Predict, handles classification

and prediction. This means that they use an autoencoder for both feature generation and another

autoencoder for prediction. They employ an architectural structure from a successful classification

network called GoogleNet [15] which also includes an inception module where convolution operations

with various filtering sizes are done in parallel with the pooling operation. This allows them to not

have to find proper filter sizes or operation types between the pooling and convolution part of their

model. One issue with their double autoencoder approach is the amount of hyperparameters available

for tuning is even higher, and while exhaustingly tuning the parameters would provide better results,

it also comes with a heavy computational cost and more risks of overfitting.

Another autoencoder approach is seen in [12] where a multimodal deep autoencoder (MDA) is em-

ployed to fuse multiple topological similarity matrices of drugs and targets which automatically learns

the low-dimensional features of drugs and targets. They then apply a deep neural network to pre-

dict the drug-target interactions. The autoencoder in this paper is used in the feature learning step

only, FRnet-DTI used two autoencoders. The MDA autoencoder reduces the dimensionality of their

dataset which speeds up the training of their model. Like other autoencoder approaches, it achieves

significant results in the AUC and AUPR metrics. They do use a binary approach, however, which

they plan to change with future work.
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Chapter 3

Preliminaries

3.1 Drug discovery process

This section goes into detail about the process of drug discovery, starting from the original manual

process and where machine learning can be applied to help and speed up the process. Following this,

a short section will detail the general categories of machine learning approaches in drug discovery

3.1.1 Interactions and the process to achieve them

Firstly, to explain the general process, the following section goes into detail about interactions between

molecules and proteins and how this is important for drug discovery. Secondly, the general process of

drug discovery is explained.

The interactions of molecules and proteins are noted in DTI and refers to the binding of a drug to a

target location which results in a change to its behavior or its function. The drugs mentioned here are

defined as any chemical compound consisting of molecules that bring physiological change in a human

body when injected, consumed, or absorbed. The targets in the definition of DTI refers to entities

like proteins and the target, specifically, is a biological target which is any part of living organisms

that the drug can bind to for the physiological changes [16].
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Figure 3.1: The interaction of a molecule with a protein [16]

The figure above shows how the chemical compound finds an active site in a target and then binds to

the target temporarily. This forces a change physiologically, and the drug then leaves the biological

target.

Prediction based on DTI can be approached as either a regression problem or a binary classification

problem. Binary approaches look for a simple yes or no answer to the question “is there an interaction

between this ’drug’ and this ’target’?”. Non-binary approaches look at the binding affinity to provide

information on the interaction and can be used to see the strength of this interaction. Something

which has proven to be more applicable in real world scenarios [17]. Through the papers in the re-

lated work section, it was investigated what the values of each approach are. We will go into detail

on this later and what it means for our project.

The process behind DTI is presented in the following figure, which is a simplified drug discovery

process. It is simplified to avoid a hugely detailed model, with a lot of parts that are less relevant to

this project. Certain parts of the process have been left out like reproducibility (where experiments

are reproduced to confirm results) and general testing of the drug, including clinical trials, that comes

after discovery and development of the drug.

Figure 3.2: The drug discovery process simplified.
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Drug discovery generally starts with target identification and validation [1]. It is here that the bio-

logical origin of a disease and its potential targets are identified. The molecule or protein is isolated

and its role in the disease is determined. As part of this step, High-Throughput Screenings (HTS)

are performed, where large libraries of chemicals are tested for their ability to modify the target [18].

This is a tedious process, which originally had a human screening large amount of data, involving a

lot of information processing to estimate potential targets with desirable interactions. Today, robots

handle this step, by screening faster than a human could. As part of this, pan-assay interference

compounds are tested which are compounds that are generally observed to have common degrees of

interaction with many targets. Through this part of the process, the molecular features that the

pan-assay interference compounds have in common, while also interacting with the target, can be

used to narrow potential targets. For validation purposes, structure-activity relationships (SAR) are

determined from potential targets. SAR is also used to identify the lead compound in the next step.

In the lead identification step, a chemical lead is found. A lead is a synthetically stable, feasible,

drug-like molecule. To identify this lead, SAR is used as preliminary evidence of target engagement.

It is here that the lead is assessed. It should be able to bind to a specific target, but there is also other

important profiling regarding absorption, distribution, metabolism, and excretion that are important

to assess before continuing to the next step.

The next step is lead optimization, where a lead compound has been identified, and an iterative pro-

cess starts where medical chemists can attempt to increase activity against chosen targets or reduce

activity against other unrelated targets. This process requires many iterations that will (hopefully)

result in a drug candidate being developed that is feasible for drug development [1].

3.1.2 Applying machine learning

There are multiple parts of the entire process where machine learning can be applied [19], but our focus

is mainly around the second part, HTS, where large libraries of chemical compounds are investigated

to find potential interactions. In part, machine learning could help the discovering process where

molecule compounds that are likely to have a degree of interaction with the target protein are found.

Furthermore, during the iteration where the desired chemical features are pinpointed, machine learning

approaches can be used to more quickly find the chemical compounds that are sought after. This is

also shown on the figure below.
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Figure 3.3: The drug discovery process with applied machine learning.

By providing the medical chemists with an automated source of information, including making pre-

dictions, the chemist will not have to rely on their own ability to go through the datasets, looking for

the right compounds. Instead, they can receive a likely prediction (or several) and start from there,

possibly skipping a lengthy process of going through data. It is here that machine learning approaches

can aid drug discovery, and by predicting accurately potentially find more likely interactions and do

so more effectively.

3.1.3 Representation of molecules

Molecules are represented in a format called SMILES (simplified molecular-input line-entry system).

It represents the structure and chemical composition of a molecule using an ASCII string

3.1.4 Representation proteins

Proteins are represented in a format called FASTA (fast-all). It uses a string to represent the proteins

using the amino acids single letter code. As an example, alanine would be represented using the

capital letter A.
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3.2 Datasets

Just like with every other machine learning project, a huge amount of data is needed to train and

test the networks. The whole framework will be explained in detail in a chapter 4 but for now the

important thing to note is that the system is made up of three networks, a molecule autoencoder, a

protein autoencoder, and an interaction prediction network. These three networks operate on three

different sets of data, and so to train and test all of them we used four publicly available and well-

known datasets: DrugBank, UniProt, KIBA and Davis.

DrugBank is an online database that contains comprehensive information on drugs and targets [20].

It is constantly being updated with new information and the current version 5.1.8. which was released

03. January 2021. consists of 14,548 drug entries [21], of which we have extracted 10,763 in SMILES

string format. We used these molecules to train our molecule autoencoder.

UniProt is also an online database but it contains sequences and annotations for more than 120 million

proteins [22]. We have managed to extract 10,504 proteins in the FASTA string format. We used

these proteins to train our protein autoencoder.

KIBA dataset was first introduced in the paper [23]. In the scope of this paper, the authors carried

out a systematic evaluation of drug-target interaction and then compared their results to the data re-

ported in the widely used databases, specifically ChEMBL and STITCH. The result of their work was

an integrated drug-target bioactivity matrix across 52,498 drugs and 467 targets, including 246,088

KIBA scores, all of which has been made freely available. From this freely available dataset the paper

[8] filtered it to contain only drugs and targets with at least 10 interactions yielding a total of 229

unique proteins and 2,111 unique drugs, producing 118,254 interactions pairs. These interactions are

measured with KIBA scores, and while usually a lower the KIBA score suggests a stronger the inter-

action, the dataset available through SimBoost [8] was pre-processed so that the KIBA indication of

binding affinity was reversed. This also means that the threshold for decision of whether an interaction

exists was changed to be 12.1. This is needed when calculating AUPR metric explained in chapter 5.

Davis dataset was introduced in the paper Davis et. al. [24]. It has 442 proteins and 68 compounds,

which yield 30,056 total interactions. This dataset used the Kd value (kinase dissociation constant)

which basically is a measure of interaction strength between a drug and a protein. Following prior

work we have transformed these values into log space using:

pKd = − log 10(
Kd

1e9
)

This gives a more readable value range to us and is more comparable to KIBA scores. Now, to measure

AUPR metric in chapter 5 the threshold value of 7 was used.

We used Davis and KIBA datasets to train and test our interaction prediction network, though we

didn’t combine the datasets, rather passed them through the network separately. We did this because

the values used to measure binding affinity scores for the two datasets are not the same. Moreover,
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DeepDTA and DeepGS which are projects that we want to compare our framework to did the same,

experimenting and presenting findings for the datasets separately.

3.3 One hot encoding

Since neural networks can’t function with anything but numerical data input, the molecules and

proteins from all four datasets need to be ”transformed” into a suitable representation. This is where

one-hot encoding comes in. In this project it is an algorithm used to turn characters into arrays,

comprised of bits where only one bit is set to 1 (hot bit) and the rest to 0 (inactive bits). The index

at which this single hot bit resides in the array indicates the character the array is representing. The

transformation of characters to indices is done through a dictionary. If one needs to encode a sequence

of characters then a matrix is created where each row represents a character in the sequence and that

row contains the array encoding. This is best visualised using an example:

Figure 3.4: The process of encoding SMILES strings

Figure 3.5: The process of encoding FASTA strings

Let’s look at figures 3.4 and 3.5. On the first step we see a SMILES string representing a molecule

and a FASTA string representing a protein, respectively. The process of creating a one-hot encoding

for both a SMILES and a FASTA string is the same. The difference is in the dictionary used to

achieve the encoding, because for FASTA strings in Davis and KIBA there are only 25 characters that

15



can appear in the string, while for SMILES strings there are 64 possible characters. The second step

shows samples of these dictionaries, respectively.

On the last step the way that the encoding is achieved is by initializing a matrix, fully populated with

zeros, of shape 100 by 64 and 1,000 by 25 for molecules and proteins, respectively. The reasoning

behind the number of rows for both matrices is that those are the average lengths of SMILES and

FASTA strings in KIBA and Davis datasets [10]. If the sequence is longer than the average it is cut

to match the number of rows while if it’s shorter there won’t be a ”hot” bit in the row. After matrix

initialization the algorithm loops through each character in the respective sequence and notes it’s

position in the string which corresponds to a row number. Then, a lookup in the dictionary, for the

observed character is performed, and the column number is noted. These two indexes specify which

cell in the matrix will contain the ”hot” bit. That way first two rows of one-hot encoding in figure 3.4

have ”hot” bits on position 5 while first two rows of one-hot encoding in figure 3.5 have ”hot” bits on

position 0.
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3.4 Autoencoders

Autoencoders are networks that are conceptually composed from two parts, an encoder and a decoder

as can be seen in figure 3.6.

Figure 3.6: An example of a simple autoencoder [25].

The idea, at least behind the training of autoencoders, is to compress the input into latent space

with the encoder, then, using the decoder, reconstruct the encoded data as similar to the input data

as possible [26]. This is called unsupervised learning, because there aren’t any labels to guide the

learning process, which is the main advantage of using autoencoders in DTI since there is a scarcity

of labelled data. Once the autoencoder is trained, depending on the use case the user would use just

the encoder or both the encoder and decoder, together. The use cases are reducing the dimensionality

of the input, feature extraction, denoising the input data, classification and even image generation.
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3.5 Binding affinity or binary interactions

In this section, we briefly present the differences between treating DTI prediction as a regression

problem and a classification problem.

3.5.1 Binary interactions

For binary interactions, interactions are defined by either happening, which is presented as a 1, or

as not happening, which is presented as a 0. The datasets we use include the binding affinity of

molecule-protein combinations.

The benefit of using binary interactions is that it reduces the complexity, but the downside is that it

also reduces the expressiveness. This reduces the amount of information given by the network, and

might be a problem for real-world applications, as explained in chapter 2.

3.5.2 Binding affinity

Unlike with binary interactions, it is also possible to use the values for binding affinities as is, without

binarization thresholds. The benefit of doing this is that valuable information is preserved at the cost

of increasing complexity.

Let us say that the binding affinity between a protein and a molecule is 10, while for another protein

and molecule it is 15. The last protein and molecule couple would have a binding affinity value that is

50% greater than the first couple, which is valuable information, because if a protein-molecule inter-

action is very strong, then it is likely that a similar protein-molecule interaction would have at least

a somewhat good binding affinity. When both of them are simply converted to a 1 as with binary

interactions, this information is lost [10]. This is the main weakness of threshold binarization, which

was also detailed in chapter 2.

The approach detailed here provides a valuable benefit, trading complexity for better real-world

results. With the added complexity not being an issue, prediction using this approach is preferable

for this project.
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3.6 Neural networks in general

Neural Networks (NN) are machine learning approaches that are important to deep learning [27]. It

gets its name because the network resembles the structure of neurons in the brain, sending signals

between each other. The networks consist of input layers, one or more hidden layers and output layers.

Each layer consists of neurons that are connected to form the network. The neurons, depicted in 3.7,

can be considered a node which takes in a sum of multiple inputs each multiplied by an accompany-

ing weight, adding to that sum a threshold value. Then this value is pushed through an activation

function producing the output of the node.

Figure 3.7: An artificial neuron

Training of the neural network is done in epochs, where all training data are used for one cycle. The

number of epochs is set as a parameter before training is started.

To evaluate the network, loss functions can be used to measure the accuracy of the network and train

it. The loss function calculates the error between the resulting outputs of a network and the target

outputs. The goal is to minimize this loss, or rather, minimize the loss function by finding the ap-

propriate values for the weights used in the network. This can be done by means of gradient descent.

That is, we calculate the gradient of the loss function and move in the opposite direction of it which

is the direction of the local minimum. We repeat this process until we calculate the gradient that is

0 meaning we found the local minimum. When the loss value has been calculated using the values

from the output layer, we can see that to correct that loss, we would need to correct the activations

of the neurons in the previous layer until the input layer is reached. This is due to the weights of the

previous layer, that are influencing the activation of the neurons in the current layer. To deal with

this, backpropagation can be used. Backpropagation is an algorithm for calculating the local error val-

ues of the hidden nodes and adjusting the corresponding weights until the input layer has been reached.
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3.7 Convolutional neural networks

A convolutional neural network (CNN) is a class of deep neural networks. As with all neural net-

works, it consists of an input layer, one or more hidden layers, and an output layer. The input in a

CNN is a tensor with a certain shape. After being encoded in the input layer, hidden layers are used

to perform convolutions. The name “convolutional neural network” was given because the network

employs a mathematical operation called convolution [28]. These convolutions are sets of filters. The

goal of the convolutional layer is the extraction of high-level features from the input. An example

of this process can be seen on figure 3.8. There we have a 6 by 6 matrix as an input with a 3 by

3 matrix as a filter. Stride here is 1 which means that each step window slides 1 cell to the right

(or down) thus our output will be a 4 by 4 matrix. When we overlay the filter on the first step

we see that it is over a 3 by 3 segment filled with 10s. We multiply each cell of the segment by

the appropriate (overlaying) cell of the filter and then we sum the results. It our case it will be

(10 ∗ 1) + (10 ∗ 0) + (10 ∗−1) + (10 ∗ 1) + (10 ∗ 0) + (10 ∗−1) + (10 ∗ 1) + (10 ∗ 0) + (10 ∗−1) = 0. Thus

we place a 0 on the first cell of the first row of the output. Then we move to the next segment, the

first two columns of which are 10s and the third column are 0s. We perform the same operation and

get (10 ∗ 1) + (10 ∗ 0) + (0 ∗−1) + (10 ∗ 1) + (10 ∗ 0) + (0 ∗−1) + (10 ∗ 1) + (10 ∗ 0) + (0 ∗−1) = 30. That

will be the second cell of the first row of the output. We keep repeating the same operation until we

fill out the output matrix.

Figure 3.8: Visual representation of convolution [29].

Following convolutional layers, the results are sent to the next layer. The next layer may be a pooling

layer which goes along with the convolutional layer and aims to reduce the dimensions of the data

by combining the outputs of neurons in one layer into a single neuron in the next layer. Basically it

reduces the number of parameters of the input tensor and thus helps to reduce overfitting as well as to

extract representative features from the input tensor and to reduce the amount of computations (thus

increasing efficiency). There are three main ways of pooling that extract different features. These are

Max pooling, Min pooling and Avg pooling. For example, like we see on figure 3.9 the ”2x2” Max

pooling takes the largest value from the ”2x2” squares while the Avg pooling takes the average. Pool

sizes can also vary in order to reduce the dimensionality more drastically. Following this, the data is
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flattened and then sent to the fully connected layers in which every neuron in one layer is connected

to every neuron in another layer.

Figure 3.9: Visual representation of Max pooling and Avg pooling [30].

This fully-connected layer then takes in the result of the pooling layer and produces the result based

on the features that were extracted during the previous steps.
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Chapter 4

Framework

a This section will demonstrate and explain the structure of the AUEN framework. Since the frame-

work supports different architectures, we present our three different variants of the framework and

subsequently inspect them. They are:

1. AUEN CNN-CNN

2. AUEN CNN-DNN

3. AUEN RNN-DNN

The variants differ in the composition of the autoencoders, mainly the encoder and decoder, with each

one being noted in the variant’s name. Consequently, AUEN CNN-CNN means that both the encoder

and decoder are a Convolutional Neural Network. AUEN CNN-DNN means that the encoder is a

Convolutional Neural Network while the decoder is a Deep Neural Network (DNN). Finally, AUEN

RNN-DNN means the encoder is a Recurrent Neural Network (RNN) and the decoder is a Deep Neural

Network (DNN). To clarify, a DNN is a simple neural network (NN) without any modifications, and

a RNN is a class of NN’s that, as output, yield the prediction as well as their internal state, allowing

them to operate on a sequence of data. All of these networks will be explained in more detail in

the following sections where we present the variants that utilize them. The variants share the same

interaction prediction network. Our main variant is the AUEN CNN-CNN variant and it is the focus

of this report. The other two variants will be used for comparison with AUEN CNN-CNN and show

the difference in performance.
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4.1 Framework architecture

Figure 4.1: The architecture of AUEN framework with CNN-CNN

As can be seen in figure 4.1, the AUEN framework consists of three neural networks, the molecule

autoencoder, the protein autoencoder, and the interaction prediction network. In the figure, the au-

toencoders are shown to have two outputs. This indicates that the framework has two operational

settings: pre-training the autoencoders, and predicting binding affinity with the framework. To be

able to do the latter, the former must be done in advance, hence the name pre-training.
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4.1.1 Autoencoder pre-training

The molecules and proteins from DrugBank and UniProt datasets are first transformed into one-hot

encodings. One thing to note is that one-hot encoding has two benefits. Firstly, this method ensures

that machine learning does not assume that certain parts of FASTA and SMILES strings are more

important than others. Secondly, due to how we use convolutional neural networks as the first part

of our autoencoders, we expect them to extract information about the neighbours of ”hot bits” in

the encoding to discern patterns in SMILES and FASTA strings. To continue, the encodings are

used as input to the molecule and protein autoencoders which are pre-trained in the same fashion as

explained in chapter 3. This can be seen in figure 4.1 following the path from inputs A and B, through

the encoder and decoder, to outputs A1 and B1. These outputs are the ones guiding this training

process and if they are reconstructed as close to the original input as possible, the autoencoders in the

framework learn to retain the information from the input while decreasing its dimensionality. This

is the completion of the pre-training operational setting, and from now on the framework only uses

the encoder segment of the autoencoders meaning there won’t be A1 and B1 outputs anymore, rather

outputs A2 and B2.

4.1.2 Predicting binding affinity with the framework

In this operational setting there are three steps the framework goes through.

1. Encode the symbols in SMILES or FASTA sequences into one-hot encodings.

2. Compress the encodings to vectors in latent space.

3. Predict the binding affinity based on the concatenated drug and target latent representations.

The first step is necessary because the autoencoders were trained on DrugBank and UniProt datasets,

but now the KIBA and Davis datasets are used. For the second step the encoded molecules and

proteins are then fed into their respective autoencoders. This action compresses the original input

into latent vectors meaning that these vectors hold all the information from the input without large

dimensional taxation. Due to this, the interaction prediction network has less work to overcome to

converge on a minimum loss value. This allows our framework to be trained on less labelled data

than usual and achieve good performance. The latent vectors representing the molecule and protein

are then concatenated and fed to the interaction prediction network to predict binding affinity of the

pair. The network is first trained on one part of a dataset and then tested on a part of the dataset it

has not been trained on. The results of the tests are shown in chapter 5.
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4.1.3 Interaction prediction network

Since all three variants share the same interaction prediction network we would like to explain it here.

The network consists of 7 fully connected dense layers with 700, 500, 300, 100, 50, 25, and 1 as the

number of neurons in each layer, from the front of the network to the back. The last layer needs to

have a single neuron since this network needs to predict a single number (binding affinity). To avoid

over-fitting, between each layer sits a dropout layer with a 0.1 rate which sets the activation of some

neurons to 0. The activation function used throughout the network is Rectified Linear Unit (ReLU).

Predicting a single continuous number as output also means the appropriate loss function is Mean

Squared Error (MSE) with Adam optimizer and a default learning rate of 0.01.

In the next few sections we will showcase the different variants of the framework and their character-

istics.

4.2 AUEN CNN-CNN variant

The AUEN CNN-CNN is our main variant and its architecture is displayed in figure 4.1 in the previous

section. The molecule and protein autoencoders are made up of a convolutional neural network as an

encoder and decoder.

Since CNNs were explained in chapter 3 we will directly dive into how they’re used here.

A convolution can capture spatial features between molecule’s atoms and protein’s acids. We hoped

to utilize this characteristic and created an encoder with with three one dimensional convolutional

layers with double and triple the number of filters in each of the subsequent layers. Following each

convolutional layer is a max-pooling layer, decreasing dimensionality by one half each time, and after

the last one, a dense layer finishes the compression and produces the 50- and 250-dimensional vector

for the molecule and protein, respectively.

We tried to make the decoder mirror the encoder as much as possible. So first, a dense layer ups

the number of dimensions to 2,976 for the molecule and 864 for the protein. Then, a Reshaping

layer reshapes the input to be two dimensional since the following convolutional layer only accepts

that kind of input. The convolutional layers are again one dimensional and each is followed with an

up-sampling layer which is the opposite of a max-pooling layer and doubles the number of dimensions

except in the last one where it quadruples them. The final layer needed to be a dense one produc-

ing a vector with 6,400 and 25,000 dimensions for the molecule and protein, respectively. In the

end a Reshape layer reshapes the output to match the input and a softmax layer finalizes the decom-

pression operation by turning the numbers of each row in the matrix to probabilities that sum up to 1.

All convolutional and dense layers use Rectified Linear Unit (ReLU) as an activation function. Cate-

gorical Crossentropy was used as the loss function to calculate the error rate when training the model,

and Adam optimizer with a default learning rate of 0.01 was used to minimize the loss.
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4.3 AUEN CNN-DNN variant

The AUEN CNN-DNN is our second variant and its architecture very close to AUEN CNN-CNN

described in the previous section. The only difference between them is that for both the molecule

decoder and protein decoder the structure is not CNN but rather a DNN which is just a basic fully-

connected neural network.

The idea behind that variant of the model was to check the difference the produced in the results of

autoencoder training based on the structure of the decoder portion of the autoencoder. The encoder

part for both molecules and proteins is identical to that of AUEN CNN-CNN. Only difference between

two models is the decoder part for both molecules and proteins. For molecules autoencoder the decoder

portion consists of 3 fully connected layers with dimensions of 1920, 2560 and 6400. The expected

output of the decoder in our case is a 2 by 2 one-hot encoding matrix, thus we reshape the output

of the last layer to 100 by 64 matrix (same as the input). For proteins the general structure looks

the same, but the layer sizes are different, with 3 fully-connected layers having dimensions of 1000,

10000 and 25000. The expected output for the protein’s decoder is 1000 by 25 matrix thus we also

reshape the output of the last layer to fit these dimensions. In both models after the Reshape layer a

softmax layer finalizes the decompression operation by turning the numbers of each row in the matrix

to probabilities that sum up to 1.

First dense layers of the decoder for both molecules and proteins decoders use sigmoid activation

function. The following to layers for both molecules and proteins decoders use ReLU activation

function. Categorical Crossentropy was used as the loss function to calculate the error rate when

training the model, and Adam optimizer with a default learning rate of 0.01 was used to minimized

the loss.

4.4 AUEN RNN-DNN variant

The RNN-DNN framework builds on the general AUEN framework architecture. Where it differs is

that this variant uses a Recurrent Neural Network (RNN) for encoding, and a Deep Neural Network

(DNN) for decoding. This is the same for both autoencoders, one handling proteins (FASTA) and

the other handling molecules (SMILES). A recurrent neural networks output depends on prior ele-

ments within the sequence. For a given string “MDSKGSSQKGSRL” the order is important, like with

SMILES and FASTA strings. Inputting this into a recurrent neural network, means that the network

needs to account for the order of the input on top of the given input. The figure below shows a simple

recurrent neural network with three input layers at the bottom, three hidden layers in the middle and

three output layers at the top. The order (i.e. the prior input) would be preserved in hidden states

between layers.
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Figure 4.2: A simple RNN [31].

Furthermore, recurrent neural networks also share parameters across the layers of the network. They

also utilize Backpropagation Through Time (BPTT) to determine gradients. This, in simple terms,

means applying a backpropagation algorithm to train the recurrent neural network for each time step

in a sequence.

For the decoder, a DNN was used, which is a basic form of a neural network.

The AUEN RNN-DNN variant has multiple layers. The RNN uses two bidirectional consecutive Long

Short-Term Memory (LSTM) layers with 64 and 32 output neurons and two dense layers of shape

128 and 50 for encoding of molecules. For proteins, the variant has two consecutive LSTM layers

with 64 and 32 output neurons, and a dense layer which takes a shape of 250. The LSTM layers are

a unique layer variant to the RNN, which have three gates; input, output and forget. These gates

control the flow of information to address a problem of long-term dependency. The DNN uses three

dense layers of shapes 1000, 3200 and 6400 for molecules, and 10000 and 25000 for proteins and a

reshape layer down to a 100, 64 shape to match the input for decoding. We also add a softmax layer

as the last activation function, which generalizes a function to multiple dimensions. The two latent

vector outputs are then fed to the prediction network, as they are in all AUEN variants.
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4.5 Base model

In addition to AUEN framework we created a base model with the intention of checking if more

complex networks were even needed in order to predict molecule protein interactions. This model

utilized the same network architecture as the interaction prediction network of the framework. The

same KIBA and Davis datasets were used but with two encoding styles, one being one-hot encoding

and the other Mol2Vec and ProtVec featuirzers. The results for both versions of the base model can

be found in chapter 5.

4.5.1 Featurizers

The reason for using a featurizer is to convert information about the molecules and proteins into

something that is more easily digested by a neural network and to improve performance. Featurizers

work in different ways but, usually, they either featurize the string representation of the molecule or

the protein, or they featurize the 3D structure. Some featurizers also only look for specific things that

relate to the binding of the molecules and proteins while omitting other parts entirely.

Mol2Vec

Mol2Vec [32] is a molecule featurizer. It takes the SMILES string of a molecule and creates a vector

from it. Mol2vec is an unsupervised model. The user can either train it themselves or use the pre-

trained model, which is what we have chosen to do. Mol2Vec is inspired by word2Vec [33] which is a

model that can process natural languages.

ProtVec

ProtVec [34] featurizes protein input in the form of a FASTA string and outputs vectors. ProtVec

is similar to Mol2Vec [32] in the sense that they are both based on Word2Vec [33], which makes it

possible to concatenate the resulting vectors.
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Chapter 5

Experiments

5.1 Methodology

We will now go into the methodology before going into our results. We will start out by going through

the hyperparameter settings that were used for getting our results. For the most part, the variants

have been trained with 100 epochs, as well as the base models, with the exception of subset testing

which was trained with 200 epochs. The batch size was always set to 256.

We use 84% of the dataset for training and the remaining 16% for testing

To run the tests we used a local desktop with the following hardware:

• OS: Windows 10 home build: 19042.1052

• CPU: i5-6600K, 4 core / 4 threads, running at 4.1GHz

• GPU: Nvidia gtx 1070, founder’s edition

• RAM: 16 GB running at 2400 MHz in dual channel

• Motherboard: Z170

• Storage: NVMe ADATA SX8200PNP

The runtime for doing all tests in a row is about 18 hours with the biggest limiting factor being the

GPU.
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5.2 Metrics

To measure the performance of our system we have used several widely accepted metrics. Same met-

rics were used in papers DeepDTA and DeepGS, which means we can easily compare our results to

their results.

The First measure is the loss function, MSE, which is mean square error sometimes also called mean

square deviation. MSE is the average squared difference between the estimated values (predicted

values) and the actual value (ground truth). This metric is defined by a following formula:

MSE =
1

N

N∑
i=1

(ŷi − yi)2

Where ŷi is the predicted value, yi is the ground-truth value, and N represents the number of drug-

target pairs. Main feature of mean squared error is that it is always non-negative, and values closer to

zero are better. Zero MSE would mean that there is no difference between prediction and the ground

truth.

Concordance index is a metric to evaluate the predictions made by an algorithm. It is defined as

the proportion of concordant pairs divided by the total number of possible evaluation pairs. CI is

defined by a following formula:

CI =
1

Z

∑
yi<yj

ζ(fi − fj)

ζ(x) is a step function defined like this: ζ(x) = {1, x > 0; 0.5, x = 0; 0, x < 0}. ”Z is a normal-

ization constant that equals the number of drug-target pairs with different binding affinity values.

More specifically, when yi > yj , a positive score is given if and only if the predicted fi > fj” [6].

In other words the CI measures whether the predicted binding affinity values rank the corresponding

drug-target interactions in the same order as the ground-truth does.

”The metric r2m is used to evaluate the external prediction performance of QSAR (Quantitative

Structure-Activity Relationship) models” [6]. It is defined by the following formula

r2m = r2(1−
√
r2 − r20)

”and a model is acceptable if and only if r2m ≥ 0.5. r2 and r20 represent the squared correlation

coefficient values between the observed and predicted values with and without intercept, respectively”

[6]. The correlation coefficient always takes a value between -1 and 1, with -1 or 1 indicating perfect

correlation (all points would lie along a straight line in this case). A positive correlation indicates a

positive association between the variables (increasing values in one variable corresponds to increasing

values in the other variable), while a negative correlation indicates a negative association between the

variables (increasing values in one variable corresponds to decreasing values in the other variable). A

correlation value close to 0 indicates no association between the variables. The square of the correlation

coefficient, r2 represents the fraction of the variation in one variable that may be explained by the

other variable. The intercept of the fitted line is a value such that the line passes through the center
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of mass (x, y) of the data points.

AUPR or area under the precision-recall curve (sometimes also referred to as AUCPR). AUPR is

defined as an actual area under the curve and thus is not easy to define with a formula. The precision-

recall curve shows the trade-off between precision and recall for different thresholds. A high area

under the curve represents both high recall and high precision, where high precision relates to a

low false positive rate, and high recall relates to a low false negative rate. High scores for both

show that the classifier is returning accurate results (high precision), as well as returning a majority

of all positive results (high recall). Precision-recall (PR) curves, like the closely related receiver

operating characteristic (ROC) curves, are an evaluation tool for binary classification that allows the

visualization of performance at a range of thresholds. PR curves are increasingly used in the machine

learning community, particularly for imbalanced data sets where one class is observed more frequently

than the other class

31



5.3 Results

5.3.1 Comparison to other models

To determine whether our framework is performing well or not we have found several other models

for binding affinity prediction. KronRLS and SimBoost are older systems that are frequently used

as a baseline. DeepCPI [35] is a model that uses a graph neural network for molecules and a convo-

lutional neural network to produce embeddings for the proteins. It also is an older model but more

successful than KronRLS and SimBoost. DeepDTA and DeepGS are current state-of-the-art systems

that produce the best results and the ones we took inspiration from thus we mainly are going to

compare the results of our framework to their results. As can be seen from tables 5.1 and 5.2 none of

our variants actually perform better than the baseline. On CI, MSE and r2m metrics, our framework

performs worse, however our AUPR score is much better. That means that while our variants do not

produce precise binding affinity scores, they are very good at actually predicting interaction or lack

of interaction between the molecules and the proteins in a binary fashion.

Model name Molecules Proteins CI MSE r2m AUPR

KronRLS Pubchem S-W 0,782 0,411 0,342 0,635

SimBoost Pubchem S-W 0,836 0,222 0,629 0,76

DeepCPI GNN CNN(Embedding) 0,852 0,211 0,657 0,782

DeepDTA CNN CNN(One-hot) 0,863 0,194 0,673 0,788

DeepGS GAT+Smi2Vec CNN(Prot2Vec) 0,86 0,193 0,684 0,801

Base model Mol2Vec ProtVec 0.8 0.332 0.49 0.782

AUEN CNN-CNN CNN CNN 0.633 0.629 0.107 0.760

AUEN CNN-DNN CNN DNN 0.717 0.508 0.245 0.749

AUEN RNN-DNN RNN DNN 0.533 0.661 0.03 0.759

Table 5.1: Metrics for our variants compared to the baseline models for the KIBA dataset

Model name Molecules Proteins CI MSE r2m AUPR

KronRLS Pubchem S-W 0,871 0,379 0,407 0,661

SimBoost Pubchem S-W 0,872 0,282 0,644 0,709

DeepCPI GNN CNN(Embedding) 0,867 0,293 0,607 0,705

DeepDTA CNN CNN(One-hot) 0,878 0,261 0,63 0,714

DeepGS GAT+Smi2Vec CNN(Prot2Vec) 0,882 0,252 0,686 0,763

Base model Mol2Vec ProtVec 0.846 0.333 0.498 0.929

AUEN CNN-CNN CNN CNN 0.723 0.588 0.261 0.905

AUEN CNN-DNN CNN DNN 0.686 0.663 0.146 0.897

AUEN RNN-DNN RNN DNN 0.608 0.745 0.036 0.897

Table 5.2: Metrics for our variants compared to the baseline models for the Davis dataset
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5.3.2 KIBA and Davis Subset Testing

After all the experiments on full datasets were finished and the conclusion was drawn from the results,

we decided to attempt to leverage another strength of the autoencoders. The fact that they do not

need labelled data to train which is great when labeled data is sparse or unavailable. Due to the way

autoencoders are built into our framework we can train them separately on lots of unlabelled data

to refine the representations they produce and then hopefully obtain better results than the baseline

models on reduced KIBA and Davis datasets.

The DeepDTA paper [10] also employs a similar technique, where they partition their dataset into

six subsets and one part is chosen as an independent test set. They do this to learn a generalized

model. We employ a similar technique with our framework to utilize a strength of autoencoders.

We took ten thousand interactions from both KIBA and Davis and trained the DeepDTA model

on those interactions. For our framework, we pre-trained the autoencoders on 10,504 proteins and

10,763 molecules and then at the second stage passed the same ten thousand interactions from each

dataset. As can be concluded from the results in tables 5.3 and 5.4 our framework is still beaten by

DeepDTA by a sizable margin. The lower performance hints at an issue with the representations that

our autoencoders produced and suggests that they need improvement to reach better scores in the

metrics we use.

Model name Molecules Proteins CI MSE r2m AUPR

AUEN CNN-CNN CNN CNN 0.696 0.567 0.189 0.754

DeepDTA Reduced Dataset CNN CNN(One-hot) 0.772 0.371 N/A N/A

Table 5.3: Metrics for our framework compared to the DeepDTA trained on reduced KIBA dataset

Model name Molecules Proteins CI MSE r2m AUPR

AUEN CNN-CNN CNN CNN 0.722 0.637 0.215 0.902

DeepDTA Reduced Dataset CNN CNN(One-hot) 0.772 0.371 N/A N/A

Table 5.4: Metrics for our framework compared to DeepDTA. Both trained on reduced Davis dataset

As mentioned in the methodology section of this chapter, this reduced version of our AUEN CNN-

CNN variant was trained using 200 epochs instead of 100 used for the full set. The reason behind this

was that the loss for especially molecules had not converged yet and was still dropping at a good rate

at 100 epochs. This can also be seen in figure 5.1 and figure 5.2
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Figure 5.1: Comparison of the loss for molecules with 100 epochs in the figure to the left and 200

epochs in the figure to the right

Figure 5.2: Comparison of the loss for proteins with 100 epochs in the figure to the left and 200 epochs

in the figure to the right

In addition to this, going from 100 to 200 epochs also proved beneficial to the CI score and loss of the

interaction model. Especially for the kiba dataset as can be seen in figure 5.3 and figure 5.4
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Figure 5.3: Cindex and loss of the interaction model with 200 epochs on the KIBA dataset

Figure 5.4: Cindex and loss of the interaction model with 200 epochs on the Davis dataset

5.3.3 Base model testing

From here, we decided to investigate the reasons behind low performance of the system and we started

with checking how good the representations produced by the autoencoders actually are. We did this

by comparing our AUEN CNN-CNN variant with our baseline model with both of them using the

same data with reduced labels, the results of which can be seen in table 5.5 and table 5.6. From these

tables, we can see that using fewer labels has a large impact on the performance of the base model,

while the negative impact on the AUEN CNN-CNN variant is not nearly as bad. This is especially

noticeable when comparing the MSE between the AUEN CNN-CNN variant and our baseline model.
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Model name Molecules Proteins CI MSE r2m AUPR

AUEN CNN-CNN CNN CNN 0.696 0.567 0.189 0.754

Base Model One-Hot Encoding One-Hot Encoding 0.670 5.956 0.181 0.756

Table 5.5: Table comparing AUEN CNN-CNN to base model on KIBA dataset

Model name Molecules Proteins CI MSE r2m AUPR

AUEN CNN-CNN CNN CNN 0.722 0.637 0.215 0.902

Base Model One-Hot Encoding One-Hot Encoding 0.724 1.726 0.175 0.897

Table 5.6: Table comparing AUEN CNN-CNN to base model on Davis dataset

5.4 Discussion

Overall, we can draw several conclusions from the results of our experiments. Firstly, the autoencoders

show feature quality comparable to plain one-hot encoding which means that the representations they

produce are not very useful. Secondly, their features are not good for prediction of continuous value

(in our case the binding affinity) as with their features as input our framework produces high mean

squared error. That means they are not good for regression tasks. However, when less labelled data

is used our framework starts outperforming the plain one-hot encoding meaning that auto-encoders

could prove useful in the case where labelled data is not available as could also been seen by DeepDTA

still having good performance even with less labels. Lastly, an unlikely occurrence is that the AUPR

score of our framework is very good, occasionally surpassing the DeepDTA and DeepGS models. That

means that the features extracted by the autoencoders work well for classification tasks due to the

binary nature of the problem. Another thing to note is that the hardware requirements for this type

of modelling are rather high. As an example, we looked at implementing BERT [36], however, upon

doing a bit of research we found out that the GPU were are using would not be powerful enough

as it simply did not have enough VRAM, and even if that hadn’t been an issue it would have been

running very slowly. While it was not quite as severe for our framework, we still used up almost all

the VRAM that our GPU had to offer. One potential solution to this problem, however, could be

cloud computing, although that requires more funding.
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Chapter 6

Conclusion

We have proposed a drug discovery framework, that utilizes autoencoder neural networks and a pre-

diction neural network to predict binding affinity for molecules and proteins. By predicting binding

affinity, our predictions provide more information about the bindings, which brings better real-world

application. We have implemented and tested multiple classes of autoencoders, including a CNN

encoder with a CNN decoder, CNN encoder with a DNN decoder and RNN encoder with a DNN

decoder. We also utilized Mol2Vec and ProtVec to assist with featurizing the molecules and proteins,

respectively in one of our base models. Kiba and davis datasets were used for our project. We com-

pare this framework to existing state-of-the-art approaches in drug discovery, including DeepDTA,

DeepGS, DeepCPI, SimBoost and KronRLS. We have found that our model does not produce results

that were comparable or better than the models that we compared it to. Generally, with the autoen-

coder approach, we found that autoencoders did not provide a boost in general performance across

the metrics for this implementation. However, the AUPR score of the base model proved to be higher

than the competition in general with scores 0.897 and 0.902 for our model, specifically for the Davis

dataset, proving that the proposed framework did achieve good precision for binary classification.

In contribution to the field, our project shows an implementation of an autoencoder neural network in

drug discovery, that provided good AUPR scores, but otherwise was unable to compete with existing

state-of-the-art models.
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6.1 Future work

For future work we leave further experimentation with the whole framework, by trying out different

compression ratios, and fine-tuning of all hyper parameters to improve the results, implement ”early

stopping” to dynamically stop the training when the system reaches an optimal number of epochs.

We also need to investigate the exact reason for all of our variants scoring poorly on some metrics.

In particular, the MSE is rather high (compared to the models presented in related works) for all

of our framework variants. To address that we would like to try different internal designs of the

autoencoders. One other possible area where we can improve is encoding. Instead of using one-hot

encoding for molecules and proteins there is an option of utilizing specialised dictionaries, in the same

way as DeepGS did [6], to produce different encoding which might affect feature extraction by the

autoencoders. Lastly we would like to try using transformers instead of autoencoders, specifically

Bidirectional Encoder Representations from Transformers (BERT). BERT is a new ”state of the art”

Natural Language Processing (NLP) model that showed great results surpassing the competition [36].

We hypothesise that if BERT is implemented properly it might give good results for representation

learning.
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