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In this project, we attempt to create a neu-

ral network model, which outperforms an

XGBoost model for predicting sepsis. The

data, we have available is highly imbal-

anced, multivariate time series data with

high missing rates. In order to mitigate

the problems that arise from this type of

data, we experiment with modifications of

the following time series models: LSTM,

TCN, BRITS, and GRU-D. We propose a

neural network architecture, which utilizes

extracted features from the data while in-

corporating the time series models. We ex-

periment with the following: class weighted

loss function, demographics extracted fea-

tures, missingness representations, observa-

tion rates extracted features, and delta rep-

resentation extracted features. Through our

experiments, we observe that the neural net-

work models benefit from the observation

rate, and BRITS and GRU-D show the best

results on separate datasets. We also ob-

serve that the missingness representations

are beneficial as inputs to the models. Fi-

nally, we conclude that for one dataset, our

model is preferable in a clinical setting com-

pared to XGBoost, due to its calibration, de-

spite XGBoost’s superior performance met-

rics.
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Preface

This report is the specialization report done by three 4th semester masters students of Software

Civil Engineering from Aalborg University. We investigate how to improve neural network

models’ performance for sepsis predictions while also considering model calibration. We eval-

uate the models on two datasets created from electronic health records: PhysioNet Computing

in Cardiology Challenge 2019 dataset , which is publicly available [1], and Processed CROSS-

TRACKS dataset, which we have access to through our employment and tasks at Enversion

A/S. As part of our terms of employment, we have signed a non-disclosure agreement as

well as received the appropriate data protection training. All data presented in this report is

anonymous. We want to thank our supervisor Thomas Dyhre Nielsen for his feedback and

guidance throughout this project. We also want to thank Enversion A/S for giving us access to

Processed CROSS-TRACKS dataset, especially Bo Thiesson and Mads Kristensen for helping

us get started on their systems, and Simon Lauritsen for preparing the data for us.

Aalborg University, June 17, 2021
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Readers Guide

The target group for this report is Software master students with specialization within ma-

chine learning. We use the IEEE citation style, where a citation is a number within square

brackets, where the number refers to the entry in the bibliography.

We refer to chapters as "Chapter #", where # is the chapter number, and to sections as

"Section #.#", where the first # is the chapter and the second # is the section number in the

chapter. Figures, tables, equations are referred to as "Figure #.#", "Table #.#", and "Equation

#.#" respectively, where "#.#" follow the same convention as for sections, where the first # is

the chapter and the second is the figure/table/equation number in the chapter. If a letter is

used as # in a reference it is a reference to the appendix.

Since this is based on our previous semester, some section in this report is a copy of a

section from our previous semester report with some minor adjustments. The sections that

are copied from our previous semester report are marked with a number on the heading

that corresponds to a footnote, which says "This section is a slightly modified version of #

from our previous semester report [2].", where # is the section it is copied from. If a section

is marked with such a footnote, the section and all of its subsections are copied from our

previous semester report.
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Summary

In recent years the amount of data from electronic health records has increased dramatically.

This has led to a large amount of research applying deep learning methods to this data, in

order to solve real-world problems. One of these problems is the prediction of sepsis in

patients admitted to a hospital.

This report is written in collaboration with Enversion A/S, a company that develops deep

learning solutions to assist medical professionals. One area they develop solutions for is

predicting sepsis in patients. Their current best performing model for this task is a gradient

boosted decision tree model called XGBoost. However, they prefer a neural network based

model. In this project, we attempt to create a neural network based model, that is better than

XGBoost at predicting sepsis.

We start by analyzing the data we have available, a publicly available dataset, which we

refer to as PhysioNet Computing in Cardiology Challenge 2019 dataset , and a dataset not

publicly available from the CROSS-TRACKS cohort, which we refer to as Processed CROSS-

TRACKS dataset. We find that both of these datasets are highly class imbalanced and have

high missing rates. We also find that framing the data properly to fit the real-world usage is

important.

We then form a problem statement, which defines the purpose of this project: to find a

well-performing, well-calibrated neural network model for predicting sepsis.

We then begin designing the model, where we start by listing the most important charac-

teristics of our model. Here we choose that our model must be able to take advantage of the

temporal aspect of the time series aspect. The model must also handle the missing values in

the dataset.

From this, we find two models, GRU-D and BRITS, and also two models from our previous

semester report, LSTM and TCN, which we build on top of in our experiments. Additionally,

we consider a model architecture, which can utilize some extracted features from the data and

use that data as an additional input to the model.

We then perform a set of experiments on these models and determine how different ap-

proaches affected the models. From these experiments, we found that using an observation

rate as an extracted feature helped the models better predict sepsis. We also found that for

LSTM, adding the same missingness representations as those used by GRU-D and BRITS

benefitted it.

Since we saw a great performance increase by adding the observation rate as an extracted

feature, we experiment with adding the data representation XGBoost uses as another extracted

feature to the neural network models. This did not improve performance, but it shows some

potential.
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We conclude that using the observation rates as an extracted feature improved perfor-

mance. Additionally, the missingness representations used by GRU-D and BRITS are useful

inputs to other neural networks as well.

We conclude that BRITS is the best performing neural network model on PhysioNet Com-

puting in Cardiology Challenge 2019 dataset , however it was still inferior to XGBoost. We

also conclude that GRU-D is the best performing neural network model on Processed CROSS-

TRACKS dataset, and on this dataset, it is preferable over XGBoost due to its better calibration,

despite its lower performance.

Finally, we conclude that all of the models we consider in this project need to be researched

further before they can be used in a real-world clinical setting.
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Problem Analysis
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Chapter 1

Introduction

In the past decade, the amount of data from Electronic Health Records (EHR) has increased

dramatically. This increase has resulted in a large amount of research attempting to apply

deep learning methods to EHR data to assist in a clinical setting [3]. The prediction of sepsis

(described in Appendix B) is one area many researchers attempts solve by using deep learning

[4][5]. The fatality rate of sepsis is high and around 31.5 million cases of sepsis are found each

year worldwide [4]. Sepsis is hard to diagnose and starting treatment early significantly

reduces the mortality rate [4].

In our previous project [2], we investigated how the calibration and performance of state

of the art models for predicting sepsis were affected by various factors. One thing we found

was, that predicting whether a patient develops sepsis within the next 24 hours is a difficult

task for the deep learning approaches we tested.

One reason for this is that creating a well-calibrated model is difficult. Calibration (de-

scribed in Section 8.2) is important in areas such as healthcare, where a wrong decision can

lead to serious injury or even death. Many modern neural networks are poorly calibrated

even though they achieve good performance [6]. Many factors can affect calibration such as

the size of the model, whether batch normalization is used, and more [2][6], and we need to

consider these aspects when we design our model. Another aspect we need to consider is the

relationship between calibration and performance. Both our previous report and [6] find that

in general, when the model performs better, the calibration gets worse. This hints towards a

trade-off between performance and calibration.

One of the challenges we had with creating a well-performing model was the class imbal-

ance between the sepsis-positive and -negative patients. We found that changing the ratio of

the classes by undersampling the negative cases in the training set negatively affected both

performance and calibration, while oversampling had no significant effect. Therefore, we have

to try other approaches that could make the performance of the models better when using a

class imbalanced dataset.

Another challenge in EHR data is that the measurements of e.g. heart rate or SaO2 content

in the blood are taken irregularly, which means that a lot of the time we do not have data

for these measurements and is therefore missing. In our previous project, we briefly tested

simple imputation methods to handle the missing values, but further design considerations

are required to get as much information out of the patterns in the missing data.

This project is written in collaboration with Enversion A/S (Enversion). Enversion re-

searches how to apply machine learning methods to EHR data, and develops products to

assist medical professionals. One area Enversion researches is deep learning models for early
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detection of sepsis in patients. Their current best performing model is based on the Python

library "XGBoost", which we refer to as XGBoost. XGBoost is a gradient boosted decision trees

model, which is currently Enversion’s best performing model, but it suffers from poor cali-

bration. Enversion is interested in a well-calibrated deep neural network model with equal or

better performance than their XGBoost model. Neural networks are desirable for Enversion as

they are well-researched, and a lot of tools and methods for analyzing them exist. One of these

tools is used for explaining which features in the data that the model received contributed the

most to the model’s prediction. This is useful information for the medical staff as it tells them

which measurements the prediction is based on and does therefore make them more likely to

trust the model’s prediction.

In order to determine the best approach to develop a model for predicting sepsis, we start

by examining the data that is available for sepsis prediction in the following chapter.

3



Chapter 2

Description of Data

In this chapter, we describe and analyze the datasets we use in this project. We start by

providing a general overview of the datasets, before individually describing them in more

detail. We then describe the data representation Enversion uses for their XGBoost model.

After this, we describe and analyze different framings for representing the data and choose

one that reflects the real-world usage the most. Finally, we analyze the missing values and the

ratio of sepsis-positive to sepsis-negative admissions.

2.1 Overview

In this section, we provide a brief overview of the two datasets. The first dataset is from "Early
Prediction of Sepsis from Clinical Data – the PhysioNet Computing in Cardiology Challenge 2019" [7],

which consists of EHR data, where the goal is to predict sepsis. We refer to this dataset as

PhysioNet Computing in Cardiology Challenge 2019 dataset or CinC2019 for short.

The second dataset consists of EHR data from the CROSS-TRACKS cohort, which has been

preprocessed by Enversion [8]. We refer to this as Processed CROSS-TRACKS dataset or PCT

for short. PCT has been accessible to us through our employment and tasks at Enversion A/S,

through a virtual environment on their servers. As part of our terms of employment, we have

signed a non-disclosure agreement as well as received the appropriate data protection training.

All data presented in the report is anonymous and the dataset is not publicly available.

By using two datasets, we can:

• Evaluate how well our models generalize due to the different characteristics of the

datasets.

• Allow others to reproduce the results of this report for CinC2019.

• Run experiments on CinC2019 locally, which is often quicker and easier, allowing for

more exploration and experimentation in this project.

Both datasets consist of clinically relevant measurements collected over time for patients ad-

mitted to a hospital. An event is created every time a new measurement is recorded. These

events are processed such that each clinically relevant measurements have one value for each

hour. If no measurements occurred with the hour, the value is missing and stored as NaN.

The data for a patient’s admission is represented as one-hour timesteps, where each timestep

contains all the clinically relevant measurements. We refer to these clinically relevant mea-

surements as features.
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Both datasets have vital sign features and laboratory value features. The vital sign features

consist of values for monitoring the health of patients, e.g. heart rate, temperature, and blood

pressure. The laboratory value features consist of values from laboratory experiments, e.g.

the content of a certain substance in the blood. See Appendix A for a complete description of

the vital signs and laboratory values in CinC2019 and PCT. In the following two sections, we

describe CinC2019 and PCT in more detail.

2.2 PhysioNet Computing in Cardiology Challenge 2019

dataset

CinC2019 consists of two datasets with around 20, 000 EHRs each. We refer to these two

datasets as dataset CinC2019A and CinC2019B, where the data in CinC2019A comes from Beth

Israel Deaconess Medical Center and the data in CinC2019B comes from Emory University

Hospital [1]. Each EHR contains data for a patient admitted to the intensive care unit (ICU) at

that hospital. The EHR contains a total of 40 features and a sepsis label at each timestep, and

are sorted according to the following categories:

• 1− 8: Vital Signs.

• 9− 34: Laboratory Values.

• 35− 40: Demographics - General information about the patient, such as age and gender.

• 41: Sepsis Label - Boolean label which indicates whether the patient is diagnosed with

sepsis. The label changes from 0 to 1, six hours before the patient develops sepsis.

Figure 2.1 shows an illustration of the data for a patient’s admission.

1 2 3 4 5 6 7 8 9 10 32 33 34 35 36 37 38 39 40 41
time = 1

2
3
4
5
6
7

Vital Signs Laboratory Values
Demographic

values

Sepsis Label

Figure 2.1: Data structure for the data of a patient’s admission for a patient in CinC2019.
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Additionally, admissions of less than eight hours are not included in the dataset, and ad-

missions, where the patient develops sepsis before the fourth hour, are also not included.

Admissions longer than two weeks are truncated to two weeks.

2.2.1 Distribution of Samples

Since CinC2019 admissions can have arbitrary length, we analyze the distribution of positive

and negative samples given their admission time.

Figure 2.2 shows this distribution by plotting the number of sepsis-positive and -negative

patients with respect to their admission length. Figure 2.2a and Figure 2.2b show the distri-

bution of positive and negative samples with an admission length < 60 hours, for CinC2019A

and CinC2019B respectively. Figure 2.2c and Figure 2.2d show the same, but with an admis-

sion length ≥ 60 hours. They are split like this, due to the significant drop in negative cases

with admission lengths ≥ 60 hours. There is no indication in [1] why this occurs.

(a) Distribution for CinC2019A < 60 hours. (b) Distribution for CinC2019B < 60 hours.

(c) Distribution for CinC2019A ≥ 60 hours. (d) Distribution for CinC2019B ≥ 60 hours.

Figure 2.2: Distribution of positive and negative admissions given the length of admission for CinC2019A and
CinC2019B.

The percentile of patients with an admission < 60 is shown in Table 2.1. This shows that the

positive samples are more evenly spread out across the above and below the 60 hour mark,

whereas the admission lengths for the negative samples are primarily < 60 hours. We also

see that the positive to negative ratio changes for admission lengths ≥ 60 hours.
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CinC2019A CinC2019B

% of all samples < 60 96.86% 96.95%

% of negative samples < 60 99.97% 98.82%

% of positive samples < 60 64.69% 66.11%

positive to negative ratio < 60 1 : 16 1 : 25

positive to negative ratio ≥ 60 105 : 1 1.7 : 1

Table 2.1: Percentile of samples < 60 hours admission length, and positive to negative ratio for admission lengths
< 60 or ≥ 60.

Another interesting observation is how the positive samples are distributed. From Figure 2.3,

we see the positive samples are more likely to have shorter admission lengths. In Figure 2.2a

and Figure 2.2b, we even see that positive samples outnumber the negative samples for the

first few admission lengths.

Figure 2.3: Distribution of positive samples from CinC2019A and CinC2019B given admission length.

The shortest admission length in CinC2019 is eight hours. When we write "a% and b%" in

this paragraph, we refer to CinC2019A and CinC2019B respectively. Looking at the positive

samples, we see that 5.1% and 13.5% of these samples have this exact admission length. This

is in contrast to the negative samples, where it is only 0.2% and 0.3%. Considering admission

lengths ≤ 16 hours we see that 25% and 29.9% of positive samples lies within this range,

however, only 5.2% and 7.6% of negative samples lies within this range.

In summary, the negative samples vastly outnumber the positive samples. However, for

admission lengths ≥ 60 hours, positive samples outnumber the negative samples. Addition-

ally, there are far fewer negative samples for admission lengths ≥ 60 hours than < 60 hours.

We also see that the shortest admission length is eight hours, and it is the most common

admission length for the positive samples. Finally, we see that positive samples tend to have

short admission lengths.
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2.2.2 Short Admissions

During our analysis of the distribution of samples, we find that CinC2019 has some short

admissions, where all the sepsis labels are 1. Therefore, we do not exactly know, when these

patients developed sepsis. This is because the sepsis labels are set to 1 six hours before sepsis

onset, and when all sepsis labels are 1, sepsis onset could be at any of the first six timesteps.

However, patients, where sepsis onset occurs before the fourth hour, are not included in

CinC2019 [1]. Therefore, we know sepsis onset is 4-6 hours after admission start in these

cases. To avoid using data after sepsis onset, we only include the first four hours of the data

for the short admissions where all the sepsis labels are 1.

2.3 Processed CROSS-TRACKS dataset

The population of patients in PCT is described as follows [9]:

• Hospitalized in a general ward at Horsens Regional Hospital from September 1, 2012 to

December 12, 2018.

• 18 years old or older.

• Admission length is between 24 hours and 50 days.

• 19, 976 admissions at the hospital.

• 6.25% sepsis prevalence of admissions.

• 13, 134 unique residents.

PCT consists of data Enversion has processed from this population. The data is processed

such that, a patient is evaluated one or more times during the admission. A sample is created

each time the patient is evaluated for sepsis development. From the time of this evaluation,

the sample contains the previous 24 hours up to this point. This data is used to predict

whether the patient develops sepsis within some time frame, called the prediction window.

The prediction window is 24 hours, meaning that if the patient develops sepsis within 24

hours, this sample is positive. This is described in more detail in Section 2.4 and Section 2.5.

PCT consists of 25 features, which are split into the following categories:

• 1− 6: Vital Signs.

• 7− 25: Laboratory Values.

An illustration of a sample from PCT can be seen in Figure 2.4.
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1 2 3 4 5 6 7 8 9 10 23 24 25
time = 1

2
3
4
5
6
7

23
24

Vital Signs Laboratory Values

Sepsis Label

Figure 2.4: Data structure of a sample in PCT.

2.4 Delta Representation

The datasets we describe in Section 2.2 and Section 2.3 are time series, as they are made of

measurements for each hour. Since XGBoost does not directly embed the temporal aspect of

the time series data, Enversion has created a data representation, where the temporal aspect

is encoded into the data, referred to as the delta representation.

If we wish to predict, at time t, whether a patient develops sepsis within some time span in

the future, then we need to define how much data before t we consider, called the observation

window, and how large this future time span is, called the prediction window. An example of

an observation and prediction window can be seen in Figure 2.5.

The delta representation can be made by transforming the time series data we have from

CinC2019 and PCT. This is done by splitting the observation window into two sections of the

same length and aggregating them into two timesteps, as shown in Figure 2.5.
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5 4 5443211211

Observation window Prediction window

Timestep 1 = 1.25 Timestep 2 = 3.25

7 61 5

Prediction time

Sepsis onset,
therefore sample

is positive∆ = 3.25 - 1.25 = 2

Figure 2.5: Timesteps used for the delta representation for one feature, where the patient develops sepsis within
the prediction window (indicated by the red square). Each square represents an hour and if they contain a number
there is a measurement for the given feature.

All the measured values within the timesteps are aggregated using the mean value, but other

aggregation methods, such as min and max, can also be used. If only one of the two timesteps

for a given feature has a value, the aggregated value for that timestep is assigned to both

timesteps. For each feature in the time series representation, we make two features for the

delta representation, one with the value of the last timestep and one with the difference

between the two timesteps as shown in Figure 2.6. If we consider the example in Figure 2.5 as

data for feature 1, then the value of F1 and ∆F1 in Figure 2.6 will be 3.25 and 2 respectively.

Figure 2.6: Feature vector for the delta representation.

2.5 Framing the Data to Fit the Problem

In this section, we describe different ways to frame the problem of sepsis detection, based

on [9]. We define framing as how the model will be used in the real world, which includes

aspects such as at which times in the admission the model makes an evaluation, and how the

prediction of the model is supposed to be interpreted.

Choosing the right framing is important such that it reflects the real-world usage of the

model. If the framing significantly differs from the real-world use case, then the model might

not be applicable in the real world. Additionally, when comparing models, it is important

to compare them using the same framing. If we do not use the same framing, metrics can

become incomparable due to various factors, e.g. the difference in positive to negative class

ratio.

The framing of choice can impact the model in various ways. Lauritsen et al. [9] show

that a model can interpret a feature differently depending on the framing. For one framing,
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a higher value of the feature correlates with a higher chance of sepsis. For another framing,

this relationship is inverted, where a higher value correlates to a lower chance of sepsis. This

is problematic as a feature should hold the same meaning across different framings.

Another problem is that different framings almost always have different positive to neg-

ative ratios. In our previous project [2], we saw that changing the positive to negative ratio

of the training data affected the calibration of models when evaluated on data with the orig-

inal positive to negative ratio. It is important that a model is well-calibrated when used in

safety-critical settings, like in a hospital [6]. We describe calibration of models in more detail

in Section 8.2.

Figure 2.7 illustrates the four framings used in [9], which we describe in the following sections.

2.5.1 Fixed Time to Onset

For the fixed time to onset framing, we have one sample per admission. If the patient develops

sepsis and we use a prediction window of 12 hours, the sample is taken 12 hours before the

time of sepsis onset. If the patient does not develop sepsis, the sample is taken at a random

time during the admission.

2.5.2 Sliding Window

In the sliding window framing, we have multiple samples per patient, each starting with

a fixed interval between them (e.g. one hour). If the patient develops sepsis within the

prediction window, it is a positive sample and negative otherwise.

2.5.3 Sliding window with dynamic inclusion

The sliding window with dynamic inclusion is similar to the sliding window framing, but

samples only start getting collected when some criteria are met. In Figure 2.7, we see the

sliding window first starts when the SOFA score is above 0, which is a score used when

diagnosing patients with sepsis. For more information about the SOFA score, see Appendix B.

2.5.4 On clinical demand

For the on clinical demand framing, we also have multiple samples per patient. Here, each

sample is taken when the clinical staff performs an early warning score (EWS) assessment. The

sample is positive if the patient develops sepsis within the prediction window and negative

otherwise.
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Figure 2.7: Visualization of the four framings. The * on fixed time to onset indicates that each sample is from
different admissions. This figure is based on Figure 2 from [9]

.

2.5.5 Choice of Framings

In this section, we discuss the four framings, and how they reflect the real-world usage for

CinC2019 and PCT. From this discussion, we choose one framing for CinC2019 and one fram-

ing for PCT. We start by discussing framings for CinC2019.

PhysioNet Computing in Cardiology Challenge 2019 dataset

As CinC2019 does not have data for EWS assessments, we discard on clinical demand. We

also discard sliding window with dynamic inclusion as we consider it important to evaluate

sepsis over the entire admission as patients admitted to an ICU are in a critical condition.

As mentioned in Section 2.2, CinC2019 consists of data from ICUs. In ICUs, data is collected

more frequently by the clinical staff than in the general wards [9].

Fixed time to onset does not capture this aspect very well, as we only have a single sample

per admission. Essentially, the clinical staff is expected to randomly evaluate the patient once

during the admission and then never again, regardless of how the patient’s condition evolves

during the admission.

Sliding window captures this aspect well by providing a sample regularly (e.g. every

hour) from the admission. In this framing, the patient is continuously evaluated at regular

intervals. We argue that regularly sampling data during an admission matches well with con-

tinuously evaluating a patient’s condition, and therefore choose the sliding window framing

for CinC2019. As the data is aggregated over one hour, one hour is the shortest interval we
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can use. Since the patients are at an ICU, using longer intervals than one hour might not be

frequent enough. Therefore, we use one-hour intervals for the sliding windows framing.

Processed CROSS-TRACKS dataset

As mentioned in Section 2.3, the data from PCT is collected from general wards. Due to

this, the data is collected less frequently than at ICUs and with more random intervals [9].

Therefore, we need to consider a framing that fits well with these circumstances.

We choose to discard fixed time to onset due to the same points as mentioned for CinC2019.

Especially due to the restriction of only evaluating a patient once during the admission.

Sliding window and sliding window with dynamic inclusion are decent candidates. Since

patients are not evaluated as frequently as in CinC2019, we can simply increase the interval

between samples, which simulates this. However, we have data for when EWS assessments

were performed for PCT. The time these assessments were performed directly correlates to

when the clinical staff considered it important to evaluate the status of the patient. The sliding

window framings only provide multiple samples at arbitrary points. Since we know when the

EWS assessments are performed, and we want to limit the number of framings we have to

consider, we argue that on clinical demand most closely reflects the real-world usage. Due to

this, we choose on clinical demand as the framing for PCT.

2.6 Prediction Window Details

We have now presented a general description of CinC2019 and PCT and chosen the framings.

We want to analyze the characteristics of the datasets with the applied framings. However,

there are still some details regarding the prediction window which can affect these analyses.

Due to this, we start by choosing the size of the prediction windows.

Processed CROSS-TRACKS dataset

Enversion has prepared PCT with a 24-hour prediction window. Because changing the pre-

diction window size for PCT is not easily done, and we do not have the domain knowledge to

suggest a better prediction window size for a real-world use-case, we use a 24-hour prediction

window for PCT.

PhysioNet Computing in Cardiology Challenge 2019 dataset

As we have access to the raw CinC2019 time series data, we need to make more considerations

of how to handle the data. In [1], they describe a utility function for sepsis-positive patients for

CinC2019, which describes the utility of predicting true positives and false negatives at time t
in relation to sepsis onset. Here they define that predicting a true positive more than 12 hours

before sepsis onset has negative utility. 12 to 6 hours before onset has a positive increasing

utility, which peaks at 6 hours. The utility then decreases after 6 hours before sepsis onset

and is negative again at 3 hours after sepsis onset. Since we use the sliding window framing

for CinC2019, we evaluate the patient at every timestep. Based on this, we decide to use a
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12-hour prediction window as there is some utility for predicting sepsis correctly at every

timestep from 12 hours before sepsis onset.

2.7 Missing Values Analysis

In this section, we analyze the missing values in CinC2019 and PCT both as time series and

after converting that data to the delta representation.

2.7.1 Time Series 1

When analyzing CinC2019, we use the raw time series data, before the sliding window fram-

ing is applied. As we do not have the raw data available for time series PCT, we analyze it

with the on clinical demand framing.

PhysioNet Computing in Cardiology Challenge 2019 dataset

We find the missing rate for each feature, by counting the number of missing values and actual

values for each feature in the timesteps, for each dataset, which is displayed in Figure 2.8. Both

datasets in Figure 2.8 show that some features are missing values more frequently than others.

The observation rate is often related to its category, described in Section 2.2.

(a) Missing values in CinC2019A. (b) Missing values in CinC2019B.

Figure 2.8: Illustration of the observation rate in blue and missing rate in orange for CinC2019.

6 out of 8 features in the Vital Signs category include measurements for over 80% of the data

points. The third feature, which is temperature, is missing over 60% of the values in both

CinC2019A and CinC2019B, despite being a vital sign. The eighth feature, which is end-tidal

carbon dioxide, has 100% missing values in CinC2019A and around 95% missing values in

CinC2019B. Features within the laboratory values category are very sparse and close to all

features are missing 90% of the values. Missing values in the demographic features are only

present in the features indicating which ICU the patient is located at. The only demographic

feature that changes value over time is the length of admission feature (called ICULOS), which

is increased by one at every hour. The other demographic features: age, gender, ICU, and

admission time remain the same.
1This section is a slightly modified version of section 2.2 and 2.3 from our previous semester report [2].
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To find out how the frequency of measurements changes over time, we find the percentage

of patients with measurements for each lab value at every timestep. In Figure 2.9a, we plot

the average percentage over all the lab values to get one point for each timestep. Figure 2.9a

shows that CinC2019 has a few more measurements in the beginning, and seems to peak every

24 hours.

Figure 2.9b shows the frequency of vital sign measurements. The frequency is high and

stays consistent across the admission.

(a) Lab values. (b) Vital signs.

Figure 2.9: Frequency of measurements over time in CinC2019.

Concerning the sparsity of the data, we examine how frequently each of the measurements

occur by taking the average time between the measurements of each patient’s features, and

plot the average value for each feature, as seen in Figure 2.10. Here we see that most vital

signs are measured hourly, while lab values are measured between every 3 hours to once a

day.

Figure 2.10: Average time between measurements for each feature.

Processed CROSS-TRACKS dataset

The missing rate for PCT is around 90% for the vital signs and more than 97% for laboratory

values, which is significantly higher than for CinC2019.
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Figure 2.11: Illustration of the observation rate in blue and missing rate in orange with orange in PCT.

If we look at how the frequency of measurements change over time, as shown in Figure 2.12a

and Figure 2.12b, we see that there are more measurements at the beginning of the sample,

and for vital signs, there is a spike in the last timestep. We suspect that there are more

vital sign measurements in the last hour because the clinical staff is preparing to perform the

EWS assessment. We see that the frequency of measurements are much lower compared to

CinC2019, which supports our assumption that data from general wards is more sparse than

data from ICUs.

(a) Vital signs. (b) laboratory values.

Figure 2.12: Frequency of vital sign- and laboratory value measurements over time in PCT.

For CinC2019, we did an "average time between measurements"-analysis. However, we do not

do this for PCT, as we do not have data for the entire admission. This makes the time between

measurements uncertain for samples with no or one value for a feature.

2.7.2 Delta Representation

As the values for samples in the delta representation are aggregated, we analyze the missing

values for the delta representation. While we have a timestep feature and a delta feature in the

delta representation for each feature in the time series representation, we consider the missing

rate for the timestep feature and delta feature as one in this section. This is because the delta

feature is only missing if the timestep feature is missing and vice versa. We generally expect to

see lower missing rates for the delta representation compared to the time series representation,
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due to the aggregation step when creating the delta representation. The analysis for CinC2019

is done with the sliding window framing and an observation window of 12 hours. For PCT,

we use the on clinical demand framing with an observation window of 24 hours. We describe

the reason for these observation window sizes in Chapter 9.

PhysioNet Computing in Cardiology Challenge 2019 dataset

Figure 2.13 shows the missing rates for each feature in the CinC2019 delta representation.

Compared to the missing rates shown in Figure 2.8, the missing rates for the delta represen-

tation are generally lower.

(a) Missing values in CinC2019A. (b) Missing values in CinC2019B.

Figure 2.13: Illustration of the frequency of missing values in CinC2019 with the sliding window framing and
delta representation.

We see the most significant change in missing rates for the laboratory values. On the time se-

ries representation, the laboratory values’ missing rates are around 90%. However, Figure 2.13

shows multiple laboratory values have missing rates as low as 40%. In Figure 2.13b, we even

see feature 22 with a missing rate slightly above 20%. Overall, we generally see lower missing

rates for vital signs and laboratory values compared to the time series representation

Processed CROSS-TRACKS dataset

The missing rates of each feature of PCT’s delta representation are shown in Figure 2.14. Com-

pared to the missing rates of the time series representation (Figure 2.11), we see significantly

lower missing rates for vital signs. In the time series representation, the vital signs consist of

around 90% missing values, whereas they are close to 0% missing values for the delta repre-

sentation, with the exception of feature 1. In the delta representation, the laboratory values

have between 90% to 75% missing values, as opposed to the time series representation with

97% missing values.
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Figure 2.14: Illustration of the frequency of missing values in PCT with the delta representation.

Similarly to CinC2019, we see that the missing rates are significantly lower for the delta rep-

resentation compared to the time series representation.

2.8 Patient Count & Positive to Negative Ratio

In this section, we describe the ratio between positive and negative samples in CinC2019 and

PCT. Table 2.2 shows the number of positive and negative samples, and the ratio between

them, for the raw data and the selected framings chosen in Section 2.5.5.

Dataset Framing Positive Negative Total Positive to negative ratio

CinC2019A None 1,790 18,546 20,336 1:11

CinC2019B None 1,142 18,858 20,000 1:18

CinC2019 None 2,932 37,404 40,336 1:13

CinC2019A Sliding window 19,228 764,185 783,413 1:41

CinC2019B Sliding window 11,591 746,030 757,621 1:65

CinC2019 Sliding window 30,819 1,510,215 1,541,034 1:49

PCT On clinical demand 2,636 337,814 340,450 1:128

Table 2.2: Counts and ratios of positive and negative samples of the datasets given their framings.

For CinC2019, we can see that applying the sliding window framing to raw data makes the

imbalance of the positive and negative class larger. However, PCT is still more imbalanced

than CinC2019 with the sliding window framing.

2.9 Summary

In this section, we summarize our choices and analyses from this chapter. We present our

main findings in Table 2.3.

A major characteristic of CinC2019 and PCT is a large number of missing values. For

the time series representation, we tend to see higher missing rates compared to the delta

representation. PCT tends to have higher missing rates than CinC2019. Vital signs in both

datasets tend to have lower missing rates compared to the laboratory values. Additionally, we
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have to take the positive to negative ratio into account. Both datasets are imbalanced, with a

majority of samples being negative. This provides a challenge since it can be difficult to train a

model on imbalanced data [10]. However, attempting to balance this can affect the calibration

of a model [2]. We need to consider these aspects when we create our model.

Attribute CinC2019A CinC2019B PCT

Selected framing Sliding window On clinical demand

Vital signs 8 6

Laboratory-categories (e.g. Blood

tests)

25 19

Average time between vital signs

(hours)

1.4 1.6 N/A

Average time between laboratory

measurements (hours)

11 13 N/A

Missing rate vital (Time series) 34% 32% 90%

Missing rate lab (Time series) 93% 96% 97%

Missing rate vital (Delta) 21% 15% 1%

Missing rate lab (Delta) 59% 73% 82%

Demographic features Yes No

Aggregation time One hour

Number of samples 783, 413 757, 621 340, 450

Positive to negative ratio 1:41 1:65 1:128

Country USA Denmark

Sepsis definition Sepsis-3 definition

Table 2.3: Comparison between the datasets from PhysioNet and Enversion.2

2This table is a slightly modified version of Table 2.3 from our previous semester report [2].
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Chapter 3

Problem Statement

In this chapter, we summarize our findings from our introduction (Chapter 1) and data de-

scription (Chapter 2) and from that propose a problem statement. From Chapter 2, we found

that CinC2019 and PCT have relevant characteristics, which are worth considering when ad-

dressing the problem of sepsis prediction.

In Section 2.5, we found that framing the data correctly to fit the problem is an important

aspect, and therefore chose separate framings for CinC2019 and PCT, which we considered

best reflects the real-world usage. It is important to use the correct framing, as it affects how

the model understands the data and the calibration of the model. We saw in Table 2.2, that

applying the chosen framings on the two datasets results in more class imbalance. From our

previous semester project, we found that it can be difficult to train a model when the datasets

are very imbalanced [2]. Therefore it is something, that we have to consider during our model

development.

We considered how the missing values are represented in CinC2019 and PCT in Section 2.7.

Here we saw that PCT has significantly higher missing rates for the time series representation

than CinC2019. We also compared the features and saw that there is a significant difference

between the missing rates of the vital signs and the laboratory values for both CinC2019 and

PCT. Because the missing rate is a significant aspect of CinC2019 and PCT, we have to address

it when creating a model for sepsis prediction.

From our previous semester project, we also found the importance of calibration when

creating models used in healthcare [2]. Both the performance and calibration of the model are

important, and we note that better performance often results in worse calibration. Therefore,

we consider this trade-off between performance and calibration.

From this, we construct the following problem statement:

How can we create a well-performing, well-calibrated neural network model for
predicting sepsis from high missing rate EHR data?

• How should the missing values be handled?

• Which evaluation criteria should be used to evaluate the models’ performance and cali-

bration?

• How do we balance the trade-off between performance and calibration?

• How does our model compare to Enversion’s existing model (XGBoost)?
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Part II

Model Design
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Chapter 4

Characteristics

In this chapter, we describe the relevant characteristic we consider when designing models for

CinC2019 and PCT. These characteristics are based on our problem statement and findings in

our data analysis (Chapter 2). In the following sections, we describe the characteristics, which

we have separated into two groups of importance: required and preferred.

4.1 Required

Model type

As mentioned in our problem statement, we only consider neural networks, due to the many

tools and methods for analyzing them.

Time Series

The models must also be able to operate on CinC2019 and PCT, which are time series datasets.

In Section 2.4, we describe that models that are not designed for time series data can use the

delta representation. However, information is lost when creating the delta representation from

the time series representation. Due to this, and to limit the scope of this project, we only focus

on creating models that is designed to capture the temporal aspect of the data.

Missing rate

In Section 2.7, we see that the missing rate in CinC2019 and PCT typically is above 80%,

except for vital signs in CinC2019, where it is between 10% to 60%. We addressed this

problem in our problem statement, and therefore require the missing values to be handled.

We see two ways to handle them: 1) Replacing the missing values with an estimate before

giving the model the data (imputation). 2) Making a model that can handle data with the

missing values. We used simple imputation methods in our previous semester project [2]

to handle the missing values. Therefore, in this semester, we attempt to handle the missing

values as an integrated part of the model development.

4.2 Preferred

Simplicity

It is easier to explain a simpler model compared to a complex one, where "explain" both refer

to explaining how the model works to the medical staff and model explainability, which is how
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much each input feature contributed to the model’s prediction. While simplicity is a preferable

characteristic it is not strictly necessary, as we are more interested in a well-performing and

well-calibrated model.

Not Recurrent

Enversion uses tools for explaining the impact that each feature has on the prediction of the

neural network. These tools do not work well with RNNs, which makes RNNs less desirable

to use. Despite this, RNNs are one of the most common types of neural networks for time

series data [2], and discarding them limits the types of models we can create, and also how

well they can perform. For these reasons, it is preferable to create a non-RNN model, but this

is not required.

Handle Class Imbalance

The imbalance of positive and negative class ratio in data can hinder a model from learning,

and thus reduce its performance [11]. This problem is known as the class imbalance problem

(CIP). Due to the imbalanced class ratio in PCT and CinC2019, it is preferred that the model

addresses the CIP.
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Chapter 5

State of the Art

In this chapter, we present models and ideas which can help create a model that has the

described characteristics from Chapter 4. We base this chapter on papers that describe state

of the art methods tested on similar datasets to CinC2019 and PCT. We separate this into

two parts, one that focuses on models and one that focuses on ideas that can be added to an

existing model.

5.1 Models

To get an overview of state of the art models for datasets similar to CinC2019 and PCT, we read

the papers about the models described in the review "A Review of Deep Learning Methods for
Irregularly Sampled Medical Time Series Data" [12], which compares state of the art methods for

time series classification on multiple datasets, including PhysioNet’s Challenge 2012 dataset

(CinC2012) and CinC2019. CinC2012 is used for mortality prediction, where CinC2019 is used

for predicting sepsis, but they are otherwise similar, as both are time series data and share

many of the same features [13]. To not only base our research on one source, we also include

other papers we found during our research. From this research, we found that most of the

models, used on the datasets similar to CinC2019 and PCT, were recurrent neural networks

(RNN). As we do not have time to experiment with the aspects of all of the models, we select

the two models that we deem most suitable to build on top of to achieve most of the desired

characteristics from Chapter 4. The models we choose are GRU-D and BRITS. As we do not

consider the other models further, we give an overview of them and a short description of

why we did not choose them in Appendix D.

GRU-D and BRITS use two representations to exploit the missing patterns in multivariate

time series data. The first representation indicates when a measurement is observed, called

mask, and the second representation indicates when a measurement was last observed, called

time interval. These representations are collectively referred to as the missingness representa-

tions. We argue GRU-D and BRITS are the best candidate models, as they use the missingness

representations to handle the missing values, and achieve better performance. While GRU-

D and BRITS both use the missingness representations, they attempt to solve the problem

of missing values in two different ways. GRU-D focuses on weighing the importance of the

last observed measurement based on the missingness representation and the mean value for

the given feature. BRITS focuses on handling the missing values with imputation, based on

the observed measurements and the missingness representations. BRITS attempt to achieve
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a more accurate imputation by using a bidirectional approach, which means that it considers

the time series data going forward and backward in time. Another reason to consider GRU-D

is because it is often used as a baseline in comparisons with other models and often performs

well in these comparisons [12][14][15][16]. We describe the missingness representations and

the models in further detail in Section 6.4 and Section 6.5.

5.2 Ideas

Besides finding relevant models, we also describe ideas that might be a useful addition to the

models we design. From our research on how to handle the characteristics of CinC2019 and

PCT (e.g. imbalanced classes, high missing rate, and multivariate time series) we find the

following:

LSTM-CNN

As Long short-term memory (LSTM) networks and convolutional neural networks (CNN) find

different characteristics in the data, Li et al. [17] suggest that combining them may give better

results than choosing one of them. Li et al. [17] combine the two types of architectures by

giving them the same input and concatenates their output as shown in Figure 5.1.

LSTM

CNN
Concat OutputInput

Figure 5.1: LSTM-CNN.

This is a simple idea that is easy to implement, but it does not address the challenges for our

data (CIP and high missing rate). Therefore, we choose not to experiment with this idea.

Weighting Positive and Negative samples

Both CinC2019 and PCT have imbalanced classes, which is problematic due to frequency bias

[10]. In our previous semester, we tried to solve the CIP by sampling the data, but found

that it worsens the calibration and performance of the models [2]. Geng et al. [18] suggest

using a loss function that weighs the classes differently, to mitigate the CIP. They found that

a weighted loss function improved the performance of most of their models, but they did not

address how it affected the models’ calibration. Fernando et al. [10] also used a weighted loss

function, which improved the performance and calibration of their models.

As the classes in the datasets are imbalanced, the CIP is something we have to consider.

Therefore, we experiment with weighting the classes in the loss function. We describe how

we are going to weigh the classes in the loss function in Section 11.1.

Extracting Additional Features

Singh et al. [19] found that the observation rate of different measurements is higher for
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sepsis-positive patients compared to sepsis-negative patients. FiO2, EtCO2, and Lactate are

examples of features, that on average have an observation rate 2-4 times higher for sepsis-

positive patients than sepsis-negative patients for CinC2019 [19]. The observation rate of the

features is something that we can extract from CinC2019 and PCT.

Extracting additional features from the data is something that we want to experiment

with, as we have seen multiple papers describing additional data representations that could

improve a model’s performance [20][19][21]. Besides the observation rate feature, we might

also consider extracting other features from CinC2019 and PCT. However, as models for time

series data do not have a direct way of using tabular features (features with a single value,

that do not change over time), we discuss possible solutions to this problem in Section 7.6.
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Chapter 6

Neural Network Theory

In this chapter, we establish the theory underlying the state of art architectures we chose to

build on top on in Section 5.1. We do not describe the fundamental neural network theory

here, but we have included the fundamental theory description from our previous semester

project [2] in Appendix C.1.

As the state of the art methods we have chosen are recurrent, we start by given an intro-

duction to RNNs. We then describe the theory of LSTMs, as we use it as the recurrent network

in BRITS. Before describing the theory of GRU-D, we establish the concepts of GRU, which is

a specialization of RNN, from which we extend the GRU-D concepts. Lastly, we describe the

theory of BRITS.

Before describing the underlying theory for these models, we introduce the syntax that we

use in this chapter:

• Vectors are lowercase boldface like x.

• Matrices are uppercase boldface like X.

• For matrix multiplication and addition we use · and + respectively.

• � refers to element-wise multiplication.

• ◦ refers to concatenation.

The syntax for multivariate time series data with D features and τ timesteps is denoted as

X = (x(1), x(2), ..., x(τ)) ∈ Rτ×D, where x(t)d is the value for feature d at timestep t.

6.1 Recurrent Neural Networks 1

This section is based on information from [22]. As neural networks are fixed in the number

of inputs, they are not able to handle the processing of sequential data of variable length,

for example in the form of EHRs. Sequential data is data where one value comes before

another. For our case, it relates to time, as we have time series data. Conceptually, an RNN is

a cell composed of a number of units/hidden states; one state for each timestep in the input

sequence. Each state propagates information to the state of the following timestep, which is

where the recurrence occurs in an RNN. The states of the RNN shares a set of parameters,

meaning that an RNN cell has a fixed number of parameters independent of the length of the

input sequence. This independence allows an RNN to take input sequences of variable length.

A general representation of an RNN cell can be seen in Figure 6.1, where:

1This section is a slightly modified version of Section 4.2 from our previous semester report [2].

27



• x is an input vector containing sequential data.

• o is an output vector containing outputs for each hidden state. However, this can also

be modeled as a single output from the last hidden state.

• h is a hidden state that is updated through each recurrence step. The cyclic arrow on h

represents the recurrence, and that information from one hidden state can be propagated

to the following hidden state.

x

h

o

Figure 6.1: Cyclic representa-
tion of RNN cell. Figure 6.2: Representation of a single hidden state in an RNN cell.

Figure 6.1 shows the general structure of an RNN cell, however, it is not visible which param-

eters are shared between the hidden states (across the network). Therefore, Figure 6.2 shows

a more detailed representation of a single recurrent step of an RNN cell.

• t is the current timestep, where t ∈ [1..τ] and τ is the number of timesteps.

• h(t−1) is the previous hidden state, from which information is propagated.

• h(t) is the current hidden state, from which information is propagated to the subsequent

hidden state h(t+1).

• x(t) is the input at timestep t from the input sequence x.

• o(t) is the output at timestep t. Here, we have the two possibilities for outputs, either

the RNN cell outputs at each timestep, as shown in Figure 6.2, or it omits all outputs

besides the one at timestep τ.

• W , V , and U are weight matrices, which are used to parameterize inputs and outputs

of the RNN cell. The dimensionality of the matrices are: W ∈ Rm×m, V ∈ R|x|×m, and

U ∈ Rm×|x|, where m is the number of features in the hidden state.

• a and b are biases. These biases are vectors of length m.

• σ1 is an activation function.

The weight matrices and biases are shared between hidden states. This parameter sharing

means that however many recurrent steps are performed, the number of network parameters

stays the same.
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Forward propagation in an RNN is done through Equation 6.1a, and Equation 6.1b, which

is directly related to the representation in Figure 6.2. Equation 6.1c is used to compute pre-

dictions, where a second activation function (σ2) is used.

h(t) = σ1

(
W · h(t−1) + a + U · x(t)

)
(6.1a)

o(t) = V · h(t) + b (6.1b)

ŷ(t) = σ2

(
o(t)
)

(6.1c)

Equation 6.1 can be adjusted to only output once, if only o(τ) is calculated, omitting all other

timesteps.

In Figure 6.2 the information propagated to the following hidden state is the output of

activation function σ1. However, it is also possible to model the information propagated as

the output ot. In that case, Equation 6.2 is used.

o(t) = σ1

(
W · o(t−1) + a + U · x(t)

)
V + b (6.2)

6.1.1 Backpropagation Through Time

The gradients for optimizing an RNN are calculated following the same procedure as for

finding gradients using backpropagation (see Section C.1). This means that we want to find

the partial derivatives of the loss function C with respect to each of the parameters, W , V , U,

a, and b. When looking at the recurrent representation at Figure 6.1, it can be problematic

to see, how gradients are calculated. If the RNN is instead unfolded as shown in Figure 6.3,

it resembles a neural network, which makes it more clear, how the gradients are calculated.

As the gradients are calculated in relation to timesteps, this form of backpropagation is called

backpropagation through time (BPTT).

In Figure 6.3, and in the following description of BPTT, we consider an RNN with a single

output at h(τ).

Figure 6.3: Unfolded RNN cell where information is propagated from the hidden state directly, and where the cell
has a single output.
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When considering V or b, the gradient is calculated as:

∂C
∂V

=
∂C
∂o
· ∂o

∂V
(6.3a)

∂C
∂b

=
∂C
∂o
· ∂o

∂b
(6.3b)

As o is directly dependent on V and b, no hidden state needs to be considered when cal-

culating the gradients. This makes the gradients more trivial to calculate, compared to the

gradients related to W , U, and a.

As C depends on W multiple times in a forward propagation of an RNN, the partial

derivative of C with respect to W , shown in Equation 6.4a, is more complex. This is also

the case for the gradients with respect to U and a, which are calculated with Equation 6.4b

and Equation 6.4c respectively. To distinguish between gradients related to W , U, and a at

different timesteps, we subscript these with t of the hidden state. This means that if this

notation was introduced in Equation 6.1a, W , U, and a would be subscripted with t. It is

important to note that this is only a notation and does not mean that parameters are not

shared.

∂C
∂W

=
τ

∑
t=1

∂C
∂o
· ∂o

∂h(t)
· ∂h(t)

∂W (t)
(6.4a)

∂C
∂U

=
τ

∑
t=1

∂C
∂o
· ∂o

∂h(t)
· ∂h(t)

∂U(t)
(6.4b)

∂C
∂a

=
τ

∑
t=1

∂C
∂o
· ∂o

∂h(t)
· ∂h(t)

∂a(t)
(6.4c)

When training a neural network, the gradients related to the parameters are used in the

optimization step, to try to reach a local optimum, which is also the case for RNNs. This

means that the gradients calculated using Equation 6.3 and Equation 6.4, can be used to

optimize the RNN.

6.1.2 Vanishing/Exploding Gradient Problem

In deep neural networks it is possible that the problem of vanishing/exploding gradients

occurs [23], which is when the gradient becomes extremely small or extremely big. This

problem can occur when the output of a neural network is based on a parameter that is

shared through numerous layers.

It is more clear what the problem is if Equation 6.4a is expanded according to the chain

rule. If τ = 3, the expansion can be seen in Equation 6.5.

∂C
∂W

=
∂C
∂o
· ∂o

∂h(3)
· ∂h(3)

∂h(2)
· ∂h(2)

∂h(1)
· ∂h(1)

∂W (1)
+

∂C
∂o
· ∂o

∂h(3)
· ∂h(3)

∂h(2)
· ∂h(2)

∂W (2)
+

∂C
∂o
· ∂o

∂h(3)
· ∂h(3)

∂W (3)
(6.5)

From Equation 6.5 it can be seen that ∂C
W is a product of many gradients, and if τ increases,

the number of gradients also increases. If the gradients are below 1, the product diminishes
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towards 0, which can result in a vanishing gradient. Contrary to this, if the gradients are

above 1 it can result in an exploding gradient. Vanishing gradient is the most common case.

If the vanishing gradient occurs, early hidden states in an RNN end up having a little (near

to zero) effect on how the weights are updated using BPTT. Therefore, the RNN is less likely

to learn dependencies on information early in the input sequence.

6.2 Long Short-Term Memory 2

This section is based on information from [22] and [24]. Long short-term memory (LSTM) is

a variation of RNN. An LSTM additionally makes use of a previous cell state, forget-, input-

and output-gates encapsulated in a cell structure, seen in Figure 6.4. The gates are used to

restrict certain information from being propagated to the following states while letting other

information through.

In Figure 6.4 the forget-, input-, and output gates are denoted as σf , σi, and σo respectively.

The gates are used to proportionate how much information is propagated from the previous

cell state, the input, and the previous hidden state, to the following hidden state and output.

The σt activation functions are usually tanh functions, but can be interchanged with other

activation functions [25]. Some parameters seen in Section 6.1 are also applied inside the

gates of an LSTM, namely, the weight matrices U and W , and the bias vector a. These weights

and biases are not shown in Figure 6.4, but the application of these can be seen in Equation 6.6

- 6.8. These parameters exist for each of the gates. For example, W ( f ), U( f ) and a( f ) denote the

weight matrices, and the bias used by the forget gate. Aside from these, there is an additional

set of parameters U, W , and a for the cell.

h h

ss

x

o

Figure 6.4: An LSTM cell with forget, input and output gates denoted as σf , σi, and σo respectively.

2This section is a slightly modified version of section 4.2.1 from our previous semester report [2].
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Forward propagation in an LSTM is computed using Equation 6.6 - 6.8 which are related to

Figure 6.4.

f (t) = σf

(
a( f ) + U( f ) · x(t) + W ( f ) · h(t−1)

)
(6.6a)

i(t) = σi

(
a(i) + U(i) · x(t) + W (i) · h(t−1)

)
(6.6b)

Equation 6.7a shows how the σf and σi gates together with the previous cell state s(t−1) are

used to compute the new cell state s(t). Equation 6.7b shows how the output of σo is calculated,

denoted q(t).

s(t) = f (t)s(t−1) + i(t)σt

(
a + U · x(t) + W · h(t−1)

)
(6.7a)

q(t) = σo

(
a(o) + U(o) · x(t) + W (o) · h(t−1)

)
(6.7b)

The output of the cell and the information propagated to the following state are calculated

using Equation 6.8.

o(t) = h(t) = σt

(
s(t)
)

q(t) (6.8)

As for finding gradients in RNNs, gradients for LSTMs are also calculated using BPTT. So,

if an LSTM is unfolded as with an RNN, the gradients are also calculated according to back-

propagation, as we describe in Appendix C.1. In LSTMs, the cell state propagates two outputs

to the following cell state, one calculated using Equation 6.7a, denoted s(t), and the other

calculated using Equation 6.8, denoted h(t). From the equations and from Figure 6.4 we see

that information is propagated to s(t) from s(t−1) both directly, through the forget gate, and as

a product of the input gate and the output of activation function, σt. This means that when

backpropagating gradients from s(t) to s(t−1), the gradient is calculated as the sum of four

partial derivatives. If these gradients sum to around 1, the gradient ∂s(t)
∂s(t−1) does not necessarily

have to vanish towards 0. As the gradient does not necessarily diminish towards 0, it is pos-

sible that an LSTM can learn to use information from earlier timesteps, contrary to an RNN.

This is also evident from the case where the forget gate outputs 1, as information, thereby, is

propagated unrestricted from s(t−1) to s(t).

6.3 Gated Recurrent Unit

This section is based on information from [22] and [26]. Gated recurrent units (GRU) is a

variation of RNN. The motivation of creating GRU was to reduce the number of parameters

compared to LSTM without compromising performance. As described in Section 6.2, the

LSTM has three gates, forget-, input- and output-gates, and each of these has a unique weight

matrix and bias vector. GRU reduces the number of gates to two gates, the reset gate and the

update gate. The cell structure of a GRU cell is shown in Figure 6.5.
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Figure 6.5: Cell of a standard GRU.

While the reset gate is similar to the forget gate in an LSTM, the update gate functions as the

input- and output gate of the LSTM simultaneously, which reduces the number of parameters.

Both gates (σr and σu) use the sigmoid activation function. The output of the reset gate is

calculated with:

r(t) = σr

(
W r · x(t) + Ur · h(t−1) + br

)
(6.9)

which uses weight matrices for the input and the hidden state (W r and Ur) and a bias vector

(br), to determine the amount of information from the input and the hidden state, that is prop-

agated. The reset gate uses the input and previous hidden state and restricts the information

that is propagated to the subsequent hidden states, i.e. how much of the past information to

forget.

r(t) is used together with the input and previous hidden state, to calculate a candidate

activation, which represents a candidate hidden state, based on the current input and the

previous hidden state with some of its information forgotten, in:

h̃
(t)

= σt

(
W · x(t) + U

(
r(t) � h(t−1)

)
+ b

)
(6.10)

where σt uses the tanh activation function. As each value in r(t) gets closer to 0, the more

information in h(t−1) is forgotten.

The update gate is likewise used to proportionate how much of the previous information

is propagated forward, and is computed similarly to the reset gate:

z(t) = σu

(
W z · x(t) + Uz · h(t−1) + bz

)
(6.11)

The output of the update gate is applied to both the candidate activation h̃
(t)

, and previous

hidden state h(t−1), to calculate the current hidden state in:

h(t) = (1− z(t))� h(t−1) + z(t) � h̃
(t)

(6.12)

This way, z(t) is used to control how much of the previous state h(t−1) and the candidate

state h̃
(t)

is propagated forward. By adding the results together, the new hidden state h(t)
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has forgotten information about the values determined by the reset gate and highlighted the

values determined by the update gate.

Finding the gradients for a GRU is calculated using BPTT like for an RNN, which we have

described in Section 6.1.1. From Equation 6.9-6.12 and Figure 6.5, we see that information is

backpropagated directly from h(t) to h(t−1), through the reset gate, and through the update

gate. As there are three paths from h(t) to h(t−1) when backpropagating the gradients, the

gradients are calculated as the sum of the partial derivatives for each path. Similar to the

LSTM, GRU also mitigates the vanishing gradient problem with its gates. The case where the

update gate σu outputs 0 exemplifies this well, as all information is propagated from h(t−1) to

h(t).

6.4 GRU-D

In this section, we describe the deep learning model, GRU-D. The model is proposed by Che

et al. [20] and is based on GRU. GRU-D uses two data representations to capture missingness

patterns, called masking and time interval. The model architecture uses these representations

in order to utilize the missingness patterns to achieve more accurate predictions.

Before describing the GRU-D model, we describe the missingness representations.

6.4.1 Missingness Representations

There are two missingness representations, the masking representation, and time interval

representation.

The masking representation M for X is boolean and represents whether the value is miss-

ing or not. The value for the mask M for feature d at timestep t is given by:

m(t)
d =

1 i f x(t)d has a value

0 otherwise
(6.13)

The time interval representation ∆ for X represents the number of hours since a value was last

observed for each feature. As the measurements in CinC2019 and PCT are aggregated over

an hour, the value for the time interval ∆ for feature d at timestep t is given by:

δ
(t)
d =


1 + δ

(t−1)
d t > 1, m(t−1)

d = 0

1 t > 1, m(t−1)
d = 1

0 t = 1

(6.14)

An example of the missingness representations is shown in Figure 6.6.
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Figure 6.6: Example of representations of missing data.

Che et al. [20] propose concatenating these missingness representations with the time series

data as:

x(t) ←
[

x(t) ◦m(t) ◦ δ(t)
]

, (6.15)

and giving it to a standard GRU, where x(t) is imputed with zeros. They show this gives better

results when used as input to a standard GRU compared to only giving the time series data.

They also suggest x(t) can be imputed with other methods, such as mean or LOCF imputation.

However, the GRU-D model they propose utilizes these representations in the model to get

even better performance.

6.4.2 The GRU-D model

GRU-Decay (GRU-D) is a modification of a standard GRU, which uses the missingness rep-

resentations in a decay term for the GRU network’s hidden states and inputs. Besides the

addition of the decay, GRU-D is a standard GRU, which we described in Section 6.3.

Figure 6.7 shows a GRU-D cell, where the additions to the standard GRU cell are encapsu-

lated in the green and blue sections, which represent the input decay and hidden state decay

respectively.
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Figure 6.7: Cell of the GRU-D model. The modifications from a standard GRU are encapsulated in the green and
blue sections. To make the figure simpler, g represents Equation 6.18, which is used to calculate x̂(t). fh and fx

refers to Equation 6.17

GRU-D uses the decay term to reduce the impact of older information, due to the assumption

that recent observations are more relevant than earlier observations. The decay term gradually

reduces the impact of older observations, by using the missingness representations, where the

longer time since a value has been observed, the less impact the previous information has.

The decay term γ(t) is calculated based on δ(t) with:

γ(t) = f (Wγδ(t) + bγ) (6.16)

where f is a monotonically decreasing function bounded between 0 and 1 and Wγ and b(t)
γ are

the weights and biases for γ(t). γ(t) uses different weights and biases for the input and hidden

state decay, which is subscripted with x and h respectively. As with all the other parameters

of GRU-D, the weights and biases for the decay term are learned during training of the model.

GRU-D used the exponentiated negative rectifier for f :

f (·) = exp{−max(0, ·)} (6.17)

The decay is applied to the input, shown in the green section of Figure 6.7, with:

x̂(t)d = m(t)
d · x

(t)
d +

(
1−m(t)

d

)
·
(

γ
x(t)d
· x(t

′)
d + (1− γ

x(t)d
) · x̃d

)
(6.18)

where x(t
′)

d is the last observed value for feature d before the current timestep and x̃d is the

mean of the feature d. The masking representation is used to indicate whether a value for
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feature d is observed at timestep t. If a value is observed, then the current value is used

as input. If a value is not observed, the decay term is used to calculate a weighted average

between the last observed value x(t
′)

d and the mean of the feature d x̃d, which is used as the

input.

As the extracted features in the previous hidden state have information from earlier, GRU-

D also uses decay on the previous hidden state, shown in the green section of Figure 6.7,

with:

ĥ
(t−1)

= γh(t) � h(t−1) (6.19)

The formulas for a standard GRU (Equation 6.9 to 6.12) is updated with the decay, which

gives the formulas of GRU-D (Equation 6.20 to 6.23):

r(t) = σr

(
W r · x̂(t) + Ur · ĥ

(t−1)
+ V r ·m(t) + br

)
(6.20)

z(t) = σu

(
W z · x̂(t) + Uz · ĥ

(t−1)
+ V z ·m(t) + bz

)
(6.21)

h̃
(t)

= σt

(
W · x̂(t) + U

(
r(t) � ĥ

(t−1)
)
+ V ·m(t) + b

)
(6.22)

h(t) = (1− z(t))� ĥ
(t−1)

+ z(t) � h̃
(t)

(6.23)

The differences are that x(t) have been replaced with x̂(t) from Equation 6.18, h(t−1) have been

replaced with ĥ
(t−1)

from Equation 6.19, and the masking vector m(t) and its weights (V z, V r,

V ) have been added.

6.5 Bidirectional Recurrent Imputation for Time Series

In this section, we describe the theory of the imputation and classification method, BRITS [21].

BRITS is proposed as an effective multi-task learning algorithm for imputation of missing time

series data, and classification. To achieve this, BRITS uses several concepts which we cover in

this section.

6.5.1 General Architecture

BRITS adapts RNNs as its internal architecture and therefore extends some of the RNN con-

cepts we described in Section 6.1. Any recurrent model can be used in the internal architec-

ture. However, the description of BRITS is based on a regular RNN, as it is the simplest RNN,

which makes it easier to explain the intuition of BRITS. BRITS uses the recurrent architecture

to learn how to impute the missing values in the time series data, by estimating subsequent in-

put values based on previous observations and data representations indicating missing values

and their patterns.

We start by providing a simpler overview of BRITS based on Figure 6.8, which we extended

from the RNN cell from Figure 6.2. Note that this is a simplified representation of a BRITS cell,

and we describe the complete representation in Section 6.5.3. Besides the RNN components,
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the BRITS cell is split into three parts, visualized by the colored dotted sections. The green

section estimates the values of the subsequent input. The red section handles the missing

values in the input and creates an alternative representation. The blue section handles the

decay of previous states, based on how many timesteps it has been since a value has been

observed.

Figure 6.8: Representation of a simplified state in a BRITS cell. The additions are encapsulated in the color coded
sections. f refers to Equation 6.17.

We now provide a more in-depth explanation of how exactly these three components work.

Estimating input

In order to impute the missing values for the subsequent timestep t + 1, BRITS attempts to

estimate x(t+1). This estimation (x̂(t+1)) is calculated in the green section in Figure 6.8 from

the hidden state with:

x̂(t+1) = V · h(t) + b (6.24)

Imputing Missing Input

x̂(t) is used to impute the input with missing values. This is done by using the masking rep-

resentation, described in Section 6.4, to indicate which of the input values are missing. BRITS

imputes the input by replacing the missing values in the input x(t) with the corresponding

estimated values in x̂(t), which we refer to as a complement variable x(t)c .

x(t)c consists of values from either the estimated value (x̂(t)) or the input value (x(t)). x(t)c is

calculated as:

x(t)c = m(t) � x(t) + (1−m(t))� x̂(t) (6.25)
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which uses the masking representation, m(t), to specify whether a value is missing for timestep

t. This is done with elementwise multiplication, as m(t)
d is 0, when the value is missing and

1 when it is not. Additionally, the complement variable is concatenated with the masking

vector, which is then used as input in the RNN cell. All this is done in the red section of

Figure 6.8. An example of imputing the missing values with Equation 6.25 can be seen in

Figure 6.9.

3/ 4/

1 10 0

3 40 0

3 41 2 1 10 03 41 2
11 22

0 01 1

0 01 2

Figure 6.9: Example of the imputation section done in BRITS.

Temporal Decay

The purpose of the temporal decay term is to take the time since an input value has been

observed into account, and use this to reduce the magnitude of the values in h(t−1). The

longer time since a value has been observed, the more h(t−1) is decayed. The temporal decay

term is calculated the same way as the decay term used in GRU-D with Equation 6.16 and

Equation 6.17. The temporal decay term (γ(t)) is determined within the blue dotted marking

in Figure 6.8.

Hidden state

To incorporate the estimated input and the temporal decay in the calculation of h(t), the

equation for a regular RNN hidden state (Equation 6.1a) is extended to:

h(t) = σ1(W [h(t−1) � γ(t)] + U[x(t)c ◦m(t)] + a) (6.26)

First, it extends the calculation by decaying the previous hidden state h(t−1) with γ(t). Instead

of using x(t) as input (as in Equation 6.1a), Equation 6.26 concatenates the complement variable

x(t)c with the masking representation m(t) and uses that as input.

6.5.2 Calculating loss

In this section, we identify how the losses in BRITS are calculated. BRITS uses three types of

losses. The first loss is the error of how well x̂(t) estimated the missing values. The second

loss is the error of the predicted class label compared to the true class label. The third loss is
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the error of the consistency in the bidirectional estimation of input values. In the following

sections, we describe these losses in more detail.

Estimation loss

BRITS learns to better estimate the input values, based on the estimation loss:

`(t) = 〈m(t),Le(x(t), x̂(t))〉 (6.27)

which uses an estimation loss function Le between the estimated value and the input value,

for each time step, where m(t) is used to indicate whether a value is missing, and if so, the

estimated loss for that value does not contribute to the total loss. When a value in x(t) is

missing, x̂(t) is still used to estimate x̂(t+1). This is a problem, because the loss for x̂(t) cannot

be computed, it is unknown how well of an estimation it is. To better comprehend this

problem, we show an example in Figure 6.10 that traverses the recurrent states of BRITS, with

some missing values.

Estimated Values

Regression Layer

Recurrent Layer

Complement Variables

Input Values

Missing

Figure 6.10: An example of the information flow in the BRITS architecture, with three missing values input. The
content in the blue dotted square is an example of a simplified illustration of a single BRITS cell from Figure 6.8.
Therefore, all computations in the BRITS cell where timestep t = 4 are done within the blue dotted square. The
regression layer refers to Equation 6.24.

In this example, input values x(5), x(6), x(7) are missing. To simplify this example, we assume

that all values in these vectors are missing. This means that we cannot calculate the estimation

loss `(5) immediately, and have to delay the calculation until the next input value is observed,

which is x(8). Therefore, the estimation loss is delayed for t = 5, 6, 7, which makes the esti-

mated value of x̂(8) depend on the estimated values of x̂(5) to x̂(7). This results in a delayed

loss, which first is accounted for in `(8).

Classification loss

If the output from each timestep is used for the prediction, then the prediction label ŷ is

calculated with Equation 6.28,
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ŷ = fout(
τ

∑
t=1

α(t)h(t)) (6.28)

where fout is a fully connected layer, and α(t) is a weight, which for example can be 1/τ for all

timesteps, which results in the mean. BRITS is then optimized by minimizing the accumulated

loss:

1
τ

τ

∑
t=1

`(t) + Lout(y, ŷ) (6.29)

where Lout is the output loss between the predicted class label ŷ and the ground truth class

label y. As exemplified with Figure 6.10, BRITS backpropagates the gradients in the opposite

direction of the solid lines. Because x(5) to x(7) were missing, backpropagation through their

estimated values is done instead of to their corresponding inputs. This means that the delayed,

possibly accumulated, loss `(8) is backpropagated through several timesteps. The loss may

therefore be less meaningful for timesteps farther from the deriving timestep.

Consistency loss

BRITS attempts to reduce the problem caused by the delayed loss, by considering the time se-

ries data with a bidirectional recurrent approach. This means that the same approach is taken

but in the reverse direction of the time series data. This results in the forward estimation- and

loss sequence ({x̂(1), . . . , x̂(τ)} and {`(1), . . . , `(τ)}), and backward estimation and loss sequence

({x̂(1)′, . . . , x̂(τ)′} and {`(1)′, . . . , `(τ)′}).
To enforce consistency between the forward- and backward estimations, a consistency loss

is used:

`
(t)
cons = Discrepancy(x̂(t), x̂(t)′) (6.30)

where a discrepancy function, such as mean squared error, is used to determine the estimation

similarity. As Equation 6.29 is the loss function used to optimize BRITS, it is extended to

account for the backward loss and the consistency loss:

1
τ

τ

∑
t=1

(`(t) + `(t)′ + `
(t)
cons) + Lout(y, ŷ) (6.31)

where ŷ becomes the mean of the predicted class label in the forward and backward direction.

The final estimation that is used as the imputed value for each timestep t, is the mean of x̂(t)

and x̂(t)′.

6.5.3 Correlated features

So far we have described BRITS with the assumption that the estimation of a specific value

x̂(t)d is not influenced by any other features in the same timestep. A visualization of this can

be seen in Figure 6.11. Here, the estimation in the blue square is calculated based on previous

values indicated by green squares. The red squares indicate values of other features for the
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same timestep, which are not used in the estimation of the blue value, as they are assumed to

be uncorrelated.

3 51 2
3 41 1
3 /3 3
3 32 2

12 2
11 1
31 2
21 2

Feature 1

Feature 2

Feature ...

Feature n

Figure 6.11: Example of how features so far have been estimated.

The reason for this assumption was to simplify the concepts of BRITS, by introducing the fun-

damental concepts, which is then extended to capture the entirety of BRITS. In this section, we

relax this assumption and describe how it extends the concepts. To account for the correlation

between features in the same timestep, a new estimation vector is used:

ẑ(t) = W z · x(t)c + bz (6.32)

where x(t)c is the complement variable, from Equation 6.25, and W z, bz are feature weight

and bias parameters. Equation 6.33b is used to create a combined estimate between this new

estimate ẑ(t) and the previous estimate x̂(t), where the weight β(t) from Equation 6.33a is used

to weigh each of the estimates.

β(t) = σ(W β[γ
(t) ◦m(t)] + bβ) (6.33a)

ĉ(t) = β(t) � ẑ(t) + (1− β(t))� x̂(t) (6.33b)

The weight vector β(t) ∈ [0, 1]D is learned by using the masking vector m(t), and the temporal

decay term γ(t). This way, it learns how to weigh the estimations based on previous values

(x̂(t)), and estimations based on features from the same timestep (ẑ(t)), by considering whether

the values are missing, and the time since previous observation.

As the estimated value x̂(t) were used in Equation 6.25 to calculate the complement vari-

able, the combined estimate ĉ(t) is used to calculate a combined complement variable c(t)c with

the same approach, in Equation 6.34:

c(t)c = mt � x(t) + (1−m(t))� ĉ(t) (6.34)

This new variable functions as a replacement of x̂(t), as it is already derived by it. Notice

therefore that Equation 6.34 is simply an extension of Equation 6.25, which has replaced x̂(t)

with ĉ(t). This also applies to the hidden state h(t) in Equation 6.26, such that the combined

complement variable c(t)c replaces x(t)c in Equation 6.35:

h(t) = σ(W h[h
(t−1) � γ(t)] + Uh[c

(t)
c ◦m(t)] + a) (6.35)

42



These changes leads to the following extension from the loss function `(t) in Equation 6.27,

such that it also considers the estimation that were based on other features, and the combined

estimation:

`(t) = Le(x(t), x̂(t)) + Le(x(t), ẑ(t)) + Le(x(t), ĉ(t)) (6.36)

where BRITS uses mean squared error as the loss function for Le [21]. This loss is calculated

for all timesteps, both in the forward and backward direction of the time series data.
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Chapter 7

Model Designs

In this chapter, we describe the general architecture of the models we want to build on top

of in our experiments. In Chapter 5 we chose to build on top of GRU-D and BRITS. To see

how the explicit handling of missing values in these models compares to a model that gets

imputed data, we compare them to the two best performing models from our last project,

LSTM and TCN [2] and use these as baselines. As models can not handle the missing values

and therefore need imputed data, we start by describing the imputation method we use for

these baselines.

The figures in this chapter are based on an observation window of 24 hours and the hy-

perparameters we find in our preliminary hyperparameter tuning (described in Section E.5).

7.1 Imputation for Baselines

One of the imputation methods we used previous semester was mean/mode imputation,

which is a commonly used baseline [27]. Mean/mode imputation is an imputation method,

where the values are imputed with either the mean or mode (most common) value of all

observed values for that feature. The mean value is used for numeric features, e.g. heart rate,

and mode is used for class features, e.g. gender. As this imputation method introduces a bias

[28], we do not consider it further.

Instead, we consider imputation methods with relevant characteristics for CinC2019 and

PCT, i.e. they operate on time series data with a high missing rate. Forward Imputation, also

known as Last Observation Carried Forward (LOCF) imputation, is an imputation method

used on time series data [29], which sometimes is used as a baseline [20]. LOCF imputes a

missing value with the last observed value, hence its name, as previously observed values are

carried forward in the time series. Due to its simplicity and that it is made for time series

data, we use LOCF as a baseline method for handling missing values.

7.2 TCN

The TCN is one of the models that we chose to use as a baseline and it uses the same ar-

chitecture as the TCN from our previous semester [2]. One of the reasons why we want to

experiment with TCN, is that it is not recurrent. This is preferable for Enversion, as they use

a tool for explaining which features contributed most to the prediction, which does not work

with RNNs, but it does with TCNs.
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The architecture of TCN is shown in Figure 7.1.
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Time Series Input

Figure 7.1: General architecture of TCN.1

This description of the TCN architecture uses theoretical terms that are described in Appendix

C.2. The core part of the TCN is its temporal blocks, which contains two sequences of a dilated

casual convolutional layer, followed by layer normalization and spatial dropout. The number

of temporal blocks in a TCN can vary, with double the dilation rate for each consecutive

temporal block. The temporal blocks are followed by a global average pooling, a flatten layer,

and an output layer with a sigmoid function, resulting in the model’s probabilistic prediction

for whether the patient develops sepsis.

7.3 LSTM

LSTM is the second model that we chose to use as a baseline, which follows the same archi-

tecture as in our previous semester [2], shown in Figure 7.2.

1The TCN architecture is a slightly modified version of Figure 7.3 from our previous semester report [2].
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Time step 24
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(Sigmoid)
1
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Time Series Input

Figure 7.2: General architecture of LSTM.2

The LSTM model consists of an LSTM layer, with one cell state per timestep in the time series

input, and n units in each cell. Following the LSTM layer is a dense layer with a sigmoid

activation function. This gives a probabilistic output, which is the model’s prediction for

whether the patient develops sepsis.

7.4 GRU-D

GRU-D is another recurrent model, which is similar to the LSTM in design. The major dif-

ference between the LSTM and GRU-D in the general architecture is the input given to the

model. Alongside the time series data, GRU-D is given the missingness representations as

input. The architecture of GRU-D is shown in Figure 7.3.

2The LSTM architecture is a slightly modified version of Figure 7.2 from our previous semester report [2].
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Figure 7.3: General architecture of GRU-D.

As with the LSTM, GRU-D has a cell state for each of the time steps. Each cell is also given

the masking- and time interval representation, for the corresponding timestep. Following the

GRU-D is a dense layer with a sigmoid function, giving the model’s probabilistic prediction.

7.5 BRITS

BRITS is a model that uses a recurrent layer in its internal structure. In the official paper [21],

they state that they use an LSTM as the recurrent layer, but any recurrent layer can be used.

Therefore, we use LSTMs as the recurrent layer as well. The general architecture of BRITS is

seen in Figure 7.4.

Output/Dense Layer 
(Sigmoid)

1

Time Series, Masking 
and Time Interval input Reversed Input

Output/Dense Layer 
(Sigmoid)

1

Imputed
time series

data

Final prediction:
Mean of

predictions

LSTM Layer LSTM Layer

Figure 7.4: General architecture of BRITS.
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BRITS uses the same input as GRU-D, which is the time series data, masking- and time interval

representations. BRITS is a bidirectional recurrent approach, and therefore uses a second

LSTM, which operates on the time series data in reverse.

Each cell in the LSTM outputs the imputed data for the corresponding timestep. As the

cells in both recurrent layers output imputed data, the final imputation is the mean of each

output. All the imputed time steps are combined to form the time series with imputed values.

Following both LSTMs, a dense layer with a sigmoid function is used. This results in

two probabilistic predictions for whether the patient develops sepsis, one which is based on

normal time series, and one based on the reversed time series. The mean of each prediction is

used as BRITS’ final probabilistic prediction.

7.6 Extracted Features

One of the ideas that we described in Chapter 5, is to extract additional features from the time

series data and input this to the models. The features we extract are tabular, which means

that each feature has one value that do not change over time. However, as our models only

take time series data as input, the data or the model have to be modified to make the data and

model compatible. In this section, we describe multiple ways of doing this and then select

the approach we determine has the best potential. From our research, we found the following

four ways to do it:

Inserting the extracted feature at every timestep similarly to how the demographic features

are inserted in CinC2019. For example, if we extract the observation rate for a feature, then

that rate would simply be inserted as an additional constant feature for every timestep.

Using the extracted features to calculate the initial hidden state of an RNN as Horn et al.

did for the RNNs they compared their model to in [15]. They gave the demographics features

to a neural network with one hidden layer with the same number of hidden units as the RNN

and used it to calculate the initial hidden state of the RNN.

Use one model for predicting on time series data and another model to predict on the

extracted features and use both predictions to determine the final prediction. This approach

is called ensemble learning [30]. There exist many different ways to combine the predictions

where one of the simplest is to take the average prediction of the models.

Create a neural network with two sub-networks with separate inputs, and combine their

outputs before predicting which allows us to create a prediction based on both the time se-

ries information and the extracted features. An illustration of the architecture of this approach

is shown in Figure 7.5.
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Figure 7.5: Using extracted features as additional input to the network.

where the time series data is given to the time series model as usual, and the extracted features

are given to the first dense layer. The output of the second dense layer and the output of the

time series model are concatenated, and given to a dense layer, followed by another dense

layer with a sigmoid activation function, which gives the final probabilistic prediction.

Having neural networks with multiple inputs is not new and combining the outputs of

two networks have also been done as we exemplified with the LSTM-CNN in Section 5.2.

However combining neural networks in this way does not appear to be widely researched in

academia, as we only were able to find one paper that uses this concept, which only has two

citations [31].

7.6.1 Choice of Method

As extracting additional features is not the only thing we experiment with, we only select one

of the methods to use in our experiment. We discard the option of using the same value at

every timestep as we see it as a way to force the data to fit the model rather than making

a model that fits the data. Using the extracted features to calculate the initial hidden state

of the RNN cannot be used with the TCN. As all the hidden states in an RNN are based on

the previous hidden state, the last hidden state should have information from the extracted

features. However, at every timestep, some information from the previous hidden state is

forgotten, which may reduce the amount of information from the extracted features in the

initial hidden state. We, therefore, suspect that the amount of information from the extracted

features is diminished when the hidden state for the final timestep is calculated. Therefore,

we choose not to do it with the initial hidden state. The last two options, using an ensemble

and using a model with mixed inputs are a bit similar as they both combine the output of

two sub-models. The mixed input approach allows the model to consider the analysis from

the time series together with the additional features, whereas the ensemble approach analyzes

them separately. The ensemble approach does therefore not learn to consider the time series

data and extracted features in the same context. For this reason, we choose to use the mixed

input approach.
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Part III

Experiments
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Chapter 8

Evaluating Models

In this chapter, we describe how we evaluate our models. We state in our problem statement

that we want to create a well-performing and well-calibrated model. These concepts can be

measured using many different metrics, and therefore, we need to define how we measure

them. We start by defining the metrics we use to evaluate a model’s performance and calibra-

tion. Then we make some considerations we need to take into account when we compare the

results of different models.

8.1 Performance

We plan to use Area Under Receiver Operating Characteristic (AUROC), Area Under Preci-

sion Recall Curve (AURPC), and Decision Curves (DC) for evaluating the performance of the

models.

8.1.1 AUROC 1

When evaluating the performance of the models we use AUROC, which is a recognized metric

for evaluating medical diagnostic systems [32].

TPR =
TP

TP + FN
(8.1a)

FPR =
FP

FP + TN
(8.1b)

By evaluating a model by plotting true positive rate (TPR, Equation 8.1a) over the false positive

rate (FPR, Equation 8.1b) at different probability thresholds, we can generate a curve that

shows the relationship between TPR and FPR, also named ROC curve. The TPR is given by

the true positives (TP) and the false negatives (FN). The FPR is given by the false positives

(FP) and the true negatives (TN). An example of a ROC curve can be seen in Figure 8.1, where

the area under the ROC curve is the AUROC of a given model. A perfect model has a ROC

curve represented by the green line in Figure 8.1, and a model that makes random guesses is

represented by the red line in Figure 8.1.

A more likely outcome is the blue line, which represents a model that is somewhere in

between random and perfect.

1This section is a slightly modified version of Section 8.1.1 from our previous semester report [2].
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Figure 8.1: An ROC curve for a perfect model (green), random model (red), and a model somewhere in between
(blue).

8.1.2 AUPRC 2

Area under precision recall curve (AUPRC) is another metric for evaluating the performance

of the model. The metric works by plotting the precision over the recall of a model, with

different probability thresholds [33]. According to [34], if the data is imbalanced, AUPRC

should also be considered. If a dataset contains a high ratio of negative samples compared to

positive samples, a change in the number of false positives in Equation 8.1b will have a small

impact on the FPR. On the other hand, if the change in false positives is large, this will directly

affect the precision (Equation 8.2a), as false negatives are omitted. As the datasets we use in

the experiments are imbalanced, we choose to also use the AUPRC metric for evaluating the

performance of the models.

Precision =
TP

TP + FP
(8.2a)

Recall =
TP

TP + FN
(8.2b)

Figure 8.2 shows a perfect, random, and inbetween curve, in green, red, and blue respectively,

where the random or baseline model is determined by the class ratio in the dataset [35].

Random =
P

P + N
(8.3)

The AUPRC of a random model is computed as seen in Equation 8.3, where P and N is the

number of positive and negative data samples respectively. The random model shown in

Figure 8.2 is based on a dataset with a 1 : 9 ratio of positive to negative samples, resulting in

a baseline of 0.1.
2This section is a slightly modified version of Section 8.1.2 from our previous semester report [2].
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Figure 8.2: A PR curve for a perfect model (green), random model (red), and a model somewhere in between
(blue).

The AUPRC for a random model used on the dataset we use in this project is shown in

Table 8.1.

Dataset Positive Negative AUPRC for a random model (baseline)

CinC2019A 19,228 764,185 0.025

CinC2019B 11,591 746,030 0.015

CinC2019 30,819 1,510,215 0.020

PCT 2,636 337,814 0.008

Table 8.1: AUPRC for a random model for each dataset.

The more an AUPRC increases from the baseline value, the better, meaning that a dataset with

a low baseline has a lower threshold for what is considered a good AUPRC.

8.1.3 Net Benefit and Decision Curves

The consequence of misclassifying a sepsis-positive patient may be more severe compared to

misclassifying a sepsis-negative patient. One metric that takes this into account is net benefit

(NB), which can weigh true positives higher than false positives. Net benefit describes the

benefit of treating the sepsis-positive patients minus the harm of starting treatment on sepsis-

negative patients. NB is calculated as:

NB =
true-positive count

n
− f alse-positive count

n
·
(

pt

1− pt

)
(8.4)

where n is the total number of samples, and pt is the threshold probability for when the

model’s output should be interpreted as sepsis-positive [36]. As this threshold increases,

models generally make fewer positive predictions. Increasing the threshold also makes the

models weigh false positive predictions higher.

As we do not have the clinical expertise to know the optimal value for pt in a real-world

scenario, we make a decision curve (DC), which is the NB as a function of pt. The clinical staff
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can base pt on how many sepsis-negative patients they allow to treat compared to how many

sepsis-positive they treat. If they allow one false positive per true positive, then the threshold

is 0.5 and if they allow nine false positives per true negative, then the threshold is 0.1. If the

net benefit is positive for a model at the chosen threshold, then it is more beneficial for the

medical staff to treat patients based on the model’s predictions compared to not treating any

patients. Figure 8.3 is an illustration of the DC for the following models:

• A perfect model will always have the highest possible NB regardless of the threshold.

• Treat none will always have zero benefit as no samples are classified as positive regard-

less of the threshold.

• Treat all will have a high NB when the threshold is low. When the threshold is increased,

so is the weight of the false positive, which results in a drop in NB.

• The example model illustrates a more realistic DC for a real-world model.

0 1

0.6

0

Perfect 

Treat none
Example

0.3

0.5

Net benefit

Threshold propability

Treat all

Figure 8.3: A DC for a perfect model (green), treat none (red), treat all (dotted red), and an example model (blue).

As it can be hard to tell from the graph if the model makes too few true positive predictions or

too many false positive predictions, we also plot the true positive rate (TPR) and true negative

rate (TNR) over the threshold in a separate graph.

8.2 Calibration 3

The calibration of a model indicates how well the confidence output of a model fits with the

actual probability of an event. The confidence output corresponds to the model’s predicted

probability of the event, as a value between 0 and 1. If the model is well-calibrated, the higher

the confidence is, the more likely the event is, and vise versa.

If a neural network outputs ten predictions for the next ten days, where each prediction

has a confidence of 0.3 for rain, we expect it to rain on three out of ten days. This means that

the confidence output should be equal to the actual probability. However, this is not always

the case for neural networks, as proposed by the paper by Guo et al. [6], where they discover

that modern neural networks are often miscalibrated. This is problematic if such a network

3This section is a slightly modified version of Section 5.2 from our previous semester report [2].
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is used for high risk decision making, such as whether to brake in self driving cars, or as a

second opinion system for clinical use. For example, if a network has a low confidence of 0.1

that a patient gets sepsis, and 9
10 patients with similar symptoms get sepsis, we have a bad

calibration that might lead to a missed diagnosis. Perfect calibration can be formally defined

as [6]:

P(Ŷ = Y|P̂ = p) = p, ∀p ∈ [0, 1] (8.5)

Given P̂, the predicted confidence, we assess the probability of the predicted class label Ŷ
being equal to the actual ground truth class label Y. For a perfectly calibrated model, this

expression should be equal to the confidence for a specific prediction p. The left hand side of

Equation 8.5 corresponds to the accuracy of a model, and the right hand side corresponds to

the confidence of a model. Since perfect calibration cannot be measured with a finite dataset,

the accuracy and confidence are approximated by splitting the predictions into M bins, Bm,

and then calculated for each bin using Equation 8.6 and Equation 8.7.

acc(Bm) =
1
|Bm| ∑

i∈Bm

1(ŷi = yi) (8.6)

Equation 8.6 shows how to compute accuracy for a binary classifier. Here, ŷi is the predicted

class label for sample i, yi is the ground truth class label for sample i, and 1 is an indicator

function. The indicator function is used to determine whether the predicted label is equal

to the ground truth label, where 1 is returned if they are equal, and 0 is returned otherwise.

Note that each prediction is considered positive, such that x predictions with a confidence of

0.2 should achieve an accuracy of 0.2 to be perfectly calibrated.

con f (Bm) =
1
|Bm| ∑

i∈Bm

p̂i (8.7)

Equation 8.7 shows how to compute the confidence for a binary classifier. Here, p̂ is the pre-

dicted probability that sample i is positive, such that the confidence of a bin equals the average

predicted probability for that bin. By partitioning the predictions into bins, we can compute

the difference between accuracy and confidence for each bin as a measure for calibration error.

In the following sections, we describe three calibration metrics as well as the reasons for

using them when evaluating our models.

8.2.1 Expected Calibration Error

The calibration measure presented by Guo et al. [6] is called Expected Calibration Error (ECE),

and is defined as:

ECE =
M

∑
m=1

|Bm|
n
|acc(Bm)− con f (Bm)| (8.8)

Here, the predictions are partitioned into M bins, for a total number of n data samples across

all bins. Each bin includes the predictions from a specific prediction confidence interval, e.g.
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all predictions with confidence between 0 and 0.2. A perfectly calibrated model has an ECE

value of zero, and the higher the value the worse calibrated the model is.

The comparison between confidence and accuracy can be visualized in a reliability dia-

gram, as seen in Figure 8.4, with confidence on the x-axis and accuracy on the y-axis. As

mentioned earlier, perfect calibration is when the confidence is equal to the accuracy, which

can be seen as the diagonal line. The blue bars represent the average accuracy for a given

bin and the transparent red bars represent the difference between the calibration of the model

and perfect calibration. When the bar is above the diagonal, as with the sixth bin, it indicates

that the model is underconfident for that bin, since the accuracy is higher than the confidence.

Likewise, if the bar is below the diagonal, as with the last bin, it indicates that the model is

overconfident, since the confidence is higher than the accuracy.

Figure 8.4: Example reliability diagram for the ECE measure.

While ECE is widely used, Nixon et al. [37] explores some issues with it. We do not go into

great detail about them here, but only provide a short description:

• Generally, only a few bins contribute to the calibration error.

• There is a bias-variance trade-off relating to the number of bins. By increasing the

number of bins, the bias decreases due to the finer granularity, however, the bins will

have fewer samples, leading to higher variance in the bins.

• Overconfident and underconfident predictions in the same bin can cancel each other

out, resulting in a smaller error. While it (most likely) will not push a very uncalibrated

model to low calibration error, it can make it difficult to compare two models, and deter-

mine whether an improvement was due to the better calibration or a higher cancellation

effect.

Despite these issues, we still consider ECE a useful metric. Each bin can show where the

model might be poorly calibrated by creating a reliability diagram. However, in this case it

is important to consider the number of samples making up a bin. If a bin has high error, it

might simply be due to chance, if only a few samples makes up that bin.
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8.2.2 Adaptive Calibration Error

Nixon et al. [37] presents another calibration measure, called Adaptive Calibration Error

(ACE). ACE is adapted to consider all predictions in a multi-class classification setting, and at-

tempts to tackle the bias-variance trade-off, which it does by using a different binning scheme.

The equation for ACE is defined as:

ACE =
1

KR

K

∑
k=1

R

∑
r=1
|acc(r, k)− con f (r, k)| (8.9)

Here, K is the number of classes, R is the number of ranges, and acc(r, k) is the accuracy for

class k in range r. The ranges work similarly to bins, but rather than including an interval for

confidence, each range includes a specific number of the total predictions, sorted by confidence

value, such that all predictions are spread evenly across the R ranges. This prevents the cases

where the bins are imbalanced, meaning that some bins include the majority of predictions,

and other bins include only a small number of predictions.

Nixon et al. [37] motivates the use of adaptive calibration ranges by arguing that in order

to best estimate the calibration error, the metric should focus on the regions where predictions

are made. For these reasons, we consider ACE a valuable second calibration metric.

8.2.3 Maximum Calibration Error

Naeini et al. [38] presents the calibration measure Maximum Calibration Error (MCE). MCE

calculates the worst-case deviation between confidence and accuracy, which may be desirable

to minimize in high-risk applications, where reliable confidence is absolutely necessary [6].

MCE is given by Equation 8.10.

MCE = max
m∈1,...,M

|acc(Bm)− con f (Bm)| (8.10)

MCE is calculated similarly to ECE, but instead of calculating the weighted average of all the

bins, the error is simply the error of the bin with the highest error. Considering the reliability

diagram, this error corresponds to the bin that deviates the most from the diagonal. This

is useful when considering imbalanced datasets [39], which is the case for our datasets, as

discussed in Section 2.8. Since the majority of our data samples are negative, the majority of

prediction confidences may be in the lower interval bins, which means that higher interval

bins may be badly calibrated. However, since ECE uses a weighted average for each bin, a bin

with a very small number of predictions does not have a big impact on the overall ECE value.

In these cases, MCE is able to find badly calibrated bins, since it takes the bin with the highest

error regardless of the number of samples in the bin.

However, it is important to note that MCE is likely to be high for bins with very few

samples, due to the variance of these bins. It is therefore important to consider the number of

samples, which makes up that bin, when considering MCE.
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8.3 Comparing Models

We state in our problem statement (Chapter 3), that we want to compare our model to the

XGBoost model. As we suspect that one model does not dominate all the other models,

we describe important aspects on how to interpret the metrics (described in Section 8.1 and

Section 8.2), when we evaluate and compare models.

Regarding the performance metrics, we mention in Section 8.1 that AUROC is likely to be

high, due to a large number of negative samples in CinC2019 and PCT. This is because FPR

will be small if the number of TN is high. This problem is not present for AUPRC, since TN

is not included in the equation. AUPRC only considers TP, FP, and FN, which is useful when

we have a large number of negative cases. Therefore, the AUPRC considers how well a model

can predict the positive cases, which the clinical staff are likely to be more interested in, while

still considering when it is unable to predict the negative cases. AUROC tells us more about

how well a model predicts any of the classes (both positive and negative). For these reasons,

an increase in AUPRC is preferable even if it results in a small decrease in AUROC. However,

it is important to note that it is not preferable to get a small increase in AUPRC for a large

decrease in AUROC.

While AUPRC considers how well a model predicts positive samples, it does not consider

that the consequence of misclassifying a sepsis-positive patient may be more severe compared

to misclassifying a sepsis-negative patient. In this case, we consider NB and DC to evaluate the

model’s performance. Since we do not have the expertise to know what the correct threshold

value for NB is, our analysis focuses more on the DC, and we compare the performance of

models at different thresholds.

An important aspect of NB is that it depends on the model’s calibration, where miscalibra-

tion always results in worse NB [40]. As mentioned in Section 8.2, calibration is an important

metric for models in clinical settings, but if we want to interpret the NB and DC, we need to

have a well-calibrated model. To get a better understanding of the DC, we also consider the

TPR and TNR in relation to the DC.

ECE gives useful information about the calibration of the model by providing an overall

metric of how well-calibrated all the predictions are. However, one issue is that most of the

predictions tend to be in one or a few bins [37]. Therefore, when we evaluate a model on ECE,

we need to consider the distribution of the predictions making up the bins. For example,

a well-calibrated bin with 90% of the samples might result in a low ECE, regardless of the

remaining bins. A bin with few samples is likely to have high variance and the error for that

bin might not be representative of the actual error of the confidence range, as the calibration

error can not accurately be estimated from few samples. This also affects MCE, since MCE

is based on the bin with the highest error, which is likely to have a low number of samples.

This problem is not present for ACE, as each range consists of the same number of samples.

When estimating the calibration, it is important to consider all three selected metrics, as each

of them provides useful information.

58



Chapter 9

Observation Window Details

As a final consideration before we begin describing our experiments, we need to define the

observation window for the framings we chose for CinC2019 (sliding window) and PCT (on

clinical demand) in Section 2.5.

9.1 Observation Window Types

In this section, we describe different observation window types. As we describe in Section 2.4,

if we attempt to predict at time t, whether a patient develops sepsis, the number of hours of

previously observed data we use to make that prediction is called the observation window.

The observation window size can have two types: fixed size and variable size. The size

of the fixed size observation window is the same for all samples in the dataset, while the

size of the variable size observation window varies across samples. As each sample with a

fixed size observation window uses the same number of timesteps, it allows for more types of

neural networks to be used [22]. This has the effect of discarding data not in the observation

window, for samples with more timesteps than the length of the observation window, as seen

in Figure 9.1a. If the sample has fewer timesteps than the size of the observation window,

as in Figure 9.1b, it is necessary to handle this, such that every sample in the dataset has the

same number of timesteps.

Observation
Window

Discarded
Data

Data for
Patient

(a) Sample with excessive timesteps.

Observation
Window

Unavailable
Data

Data for
Patient

(b) Sample with insufficient timesteps.

Figure 9.1: Two data samples with different number of timesteps, and how fixed size observation window affects
them.

For the variable size observation window, all the timesteps can be used. Thus, it is unnecessary

to handle the case where there are too few timesteps for the observation window. However,
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using a variable size observation window limits the type of neural networks which can be

used [22].

We also introduce a variant to variable size observation window: max size observation

windows. The max size observation window is the same as variable size observation, but

with a limit to how big the observation window can be. This allows the window to be any

size up to and including the maximum window size. By doing this, we can limit the amount

of data we consider when making a prediction, which can be useful if we assume the most

recent data is most relevant.

9.2 Processed CROSS-TRACKS dataset

PCT is created by Enversion with a 24-hour prediction window and a fixed size observation

window, where all patients with admissions shorter than 24 hours have been discarded. The

maximum size of the observation window is therefore 24 hours. In our previous project [2], we

observed that models trained on PCT had slightly better calibration and performance metrics

with an observation window size of 24 compared to 12. Due to this, we choose a 24-hour

observation window for PCT.

9.3 PhysioNet Computing in Cardiology Challenge 2019

dataset

In order to choose the type of observation window for CinC2019, it is important to consider

how it affects the real-world use-case. For the fixed size observation window, we need to

handle the case where the size of the window is larger than the available data. One solution

is to make the observation window the size of the smallest input. We discard this option, as

the smallest input is four timesteps (see Section 2.2.2), which we consider insufficient data for

meaningful predictions, especially when we have many samples with more data.

Another solution is to simply discard the samples with insufficient data. There are two

problems with this approach. The first problem is that our positive samples are more repre-

sented at smaller admission lengths than negative samples are. Discarding these would result

in a different positive to negative ratio than for the real-world usage, which can lead to poor

calibration [2]. The second problem is that it would imply that the medical staff uses the

model only after a certain admission time. E.g. if the size of the observation window is 12

hours, then the model would only be useful after the patient has been admitted for 12 hours

or more. However, this does not correspond well to the real-world use-case, as the majority

of patients develop sepsis early in their admission (see Figure 2.3). Due to these problems, we

choose not to discard samples based on insufficient data.

As shown in Figure 9.1b, when we have insufficient data, this option requires some as-

sumptions on how to create the unavailable data. These assumptions introduce more com-
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plexity in our experiments. Therefore, in order to limit the scope of this project, we do not

choose this option.

Variable and max size observation window does not have these problems, as we can use

short samples without having to consider insufficient data. Additionally, all the models we

experiment with supports variable observation window size. In our previous project [2], we

observed that there was no considerable change in using 12, 24, 36, and 60 hours for the

observation window size. Therefore, in order to limit the computation time of our models,

we choose a max size observation window. We also note that 97.5% of the admissions have at

least 12 hours of data, where only 76% have at least 24 hours. For these reasons, we choose a

12-hour observation window for CinC2019.
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Chapter 10

Experiment Setup

In this section, we describe the experiment setup we use when we perform our experiments.

By using a common setup across all experiments, we can evaluate how well one change af-

fected the model compared to another, which is information we can use for further experi-

mentation.

10.1 Implementation Environment

We start by defining the environment we train and evaluate our models in. We use TensorFlow

2.4.1 as our machine learning framework [41], as this is the most recent version of TensorFlow

at the writing of this project. For the XGBoost model, we use the XGBoost Python library

version 1.3.3 [42]. We also use Python 3.7.x.

10.2 Data

CinC2019 uses the sliding window framing and PCT uses the on clinical demand framing. As

we describe in Section 2.6, we use a 12 hour prediction window for CinC2019 and 24 hour

for PCT. We use a 12-hour max size observation window for CinC2019 and a 24-hour fixed

size observation window for PCT, as we describe in Chapter 9. We also split the data into a

train, validation, and test set with 70%, 15%, and 15% of the data respectively. The data is

split such that data from one admission is only present in one of the sets. The training set is

used for training the model, the validation is used to determine whether the models overfit to

the training data and to evaluate the models between experiments, and the test set is used for

the final validation to ensure that we have not overfitted the models to the validation set.

The metrics we report for our experiments are from the validation set, and we use the

test set when we do the final evaluation of our models after the experiments. The data given

to the TCN and LSTM is imputed with LOCF imputation. For XGBoost we use the delta

representation, as we describe in Section 2.4.

As we describe in Section 2.2, CinC2019 consists of two datasets referred to as CinC2019A

and CinC2019B. The datasets has data from 1,790 and 1,142 positive admissions respectively,

which might be too few for the model to learn from [22]. Therefore, we conduct a preliminary

experiment where we evaluate how using the datasets separately affects the model perfor-

mance, which is described in further detail in Appendix E.1. From the result of this experi-

ment, we choose to use the data from the two hospitals combined as one dataset (CinC2019).
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10.3 Training the Model

In each experiment, we make one change for each model, using predefined values, e.g. the

number of layers in a model. For each of these changes, we train the model five times. As

the neural networks are initialized with random weight, we train each model five times to

determine if the change in performance is due to the changed factor in the experiment or the

random initialization of the weights.

After training the model, we calculate the AUROC and AUPRC and plot the DC and

graphs for TPR and TNR curves on the validation data. To consider the calibration of the

model, we calculate the value of the ECE, ACE, and MCE metrics on the validation data. For

ECE, we also show a reliability diagram and a histogram of the distribution of the confidences

on the validation data.

When training, one important aspect to consider is overfitting. Overfitting occurs when a

model makes predictions based on patterns that appear in the training data, but not in the

testing data. This can be observed when the value of a metric does not follow the same trend

for the training data compared to the testing data [43]. In order to evaluate whether the model

is overfitted to the training data, we plot the loss over epochs for both the training data and

the validation data. In order to avoid overfitting, we train the models with early stopping.

Early stopping is a technique, where we monitor the value of a metric, and if that metric gets

worse, we stop training [44]. The metric we monitor is the AUPRC of the validation set at the

end of each epoch. However, it is not guaranteed that the AUPRC will consistently increase

over each epoch. It can decrease for one or more epochs, even though it will increase in the

following epochs. In order to mitigate this problem, we use "patience" for early stopping.

Patience is a feature available in TensorFlow, which allows us to wait a specified number of

epochs before we stop training, even though the AUPRC gets worse [45]. We use a patience of

five epochs, which means that we continue training five epochs after our best observed value.

Additionally, the final model we save is the model with the best validation AUPRC.

Finally, the models we compare XGBoost to are based on TCN, LSTM, BRITS, GRU-D. We

use the Adam optimizer [46] for optimizing the NN models. We choose this as it worked well

in our previous project [2]. We use the parameters recommended by Kingma and Ba [46],

which is: α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. For the loss function, we use binary

cross entropy, as defined by Equation C.3.

For XGBoost, Enversion has already chosen the following hyperparameters for their use-

case, which we also use:

• Max depth: 7

• Learning rate: 0.15

• Number of rounds for boosting: 75

• Lambda: 8

• Minimum child weight: 7
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We treat XGBoost as a black box, as the purpose of this project is to create a better neu-

ral network model compared to Enversion’s XGBoost model. For more information on the

hyperparameters, see the XGBoost documentation [47].

As neural networks perform differently depending on their hyperparameters, we conduct

a preliminary experiment where we tune the models’ hyperparameters. For TCN, we tune

the type of activation function, number of temporal blocks, and number of filters. For LSTM,

BRITS and GRU-D, we tune the number of units. We describe why we decide to tune these

hyperparameters and how we choose their values in Appendix E.5. The hyperparameters we

choose to use in our experiments are:

• TCN: Relu Activation function, 2 temporal blocks, and 64 filters.

• LSTM: 64 Units.

• BRITS: 108 Units.

• GRU-D: 128 Units.

10.4 Summary

In summary, we use the following setup for our experiments:

• Python 3.7.x with TensorFlow 2.4.1 and XGBoost 1.3.3.

• Train each model five times.

• Early stopping with a patience of five epochs and save the best performing model.

• Loss over epochs for training and validation data.

• AUROC, AUPRC, ECE, ACE, and MCE values and DC plot from validation data after

training the model.

• On clinical demand for PCT, with fixed size observation window of 24 and prediction

window of 24 hours.

• Sliding window for CinC2019, with max size observation window of 12 hours and pre-

diction window of 12 hours.

• CinC2019 is used as the combined dataset of CinC2019A and CinC2019B.

• Train/validation/test set is 70%/15%/15% of the data respectively.

• We test on TCN, LSTM, BRITS, XGBoost, and GRU-D models.

• XGBoost uses the delta representation.

• XGBoost uses the same hyperparameters as those provided by Enversion.

• TCN, LSTM, BRITS and GRU-D uses the hyperparameters from our hyperparameter

tuning.

• LOCF imputation for TCN and LSTM.

• Adam as an optimizer (with parameters as recommended by Kingma and Ba [46]).

• Loss function: Binary Cross Entropy.
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Chapter 11

Description of Experiments

In this chapter, we describe the experiments we perform in Chapter 12. The experiments are

derived from the ideas we present in Chapter 5.

11.1 Class Weighted Loss Function

As CinC2019 and PCT are very imbalanced, we want to try to alleviate the problems that

result from the CIP. TensorFlow provides a simple approach to this problem, where the loss is

calculated differently depending on the class [48]. We use TensorFlow’s approach to assign a

higher weight to the minority class. We note that this is not the same approach used by Geng

and Luo [18], or Fernando et al. [10], which were the papers that initially inspired the idea

of weighing the classes differently. Simply multiplying the loss for the minority class with

a weighting factor would increase the magnitude of the total loss, which would cause larger

changes in the network weights than without it. However, changing the magnitude of the

total loss is avoided by calculating the weights for each class as:

wn =
t

n + p · r (11.1a)

wp = r · wn (11.1b)

where t is the total number of samples, p and n are the number of positive and negative

samples respectively, and r is the ratio of how much higher the loss should be for the samples

from the positive class compared to the negative class.

The purpose of this experiment is to test different values for r. As we show in Table 2.2, the

ratio of positive to negative samples for PCT is 1 : 128. Since we have combined CinC2019A

and CinC2019B, the ratio is 1 : 49 for CinC2019. We therefore experiment with r = 49 for

CinC2019 and r = 128 for PCT. Additionally, we also experiment with r = 4 and r = 16 to see

the results of placing the weighting in the middle.

11.2 Extracting Additional Features

In this section, we explore ideas about extracting different features from the data, as we

mention Chapter 5. We propose a model architecture in Section 7.6, that incorporates the idea

of including extracted features in the model, where the extracted features are represented as a
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vector to a separate network, which is then joined with the time series model. The first feature

we consider to extract is the demographics in CinC2019, as this easily can be represented as

a vector. Since all the demographics, except ICULOS, do not change over time steps, simply

extracting them as a separate input, might be beneficial for the model. ICULOS describes how

long the patient has been admitted to the ICU. To represent this as a single value, we use the

value at the first timestep in the observation window. Due to this, we choose to experiment

with demographics as a separate vector. We note that we do not perform this experiment on

PCT, as PCT contains no demographic features.

The second feature we wish to extract is the observation rate, as Singh et al. [19] reports

that sepsis-positive patients tend to have more measurements for certain features. We there-

fore also want to experiment with the observation rate as a separate vector input to the model,

with a value of the observation rate for each feature. We calculate the observation rate for a

feature f as n f
τ , where n f is the number of observed measurements for feature f and τ is

the number of timesteps in the observation window. For example, two measurements for a

12-hour observation window would result in an observation rate of 2
12 .

11.3 Missingness Representations

Che et al. [20] reports that using the missingness representations (described in Section 6.4) on

a regular GRU improves its performance. Due to this, we perform an experiment where we

add the missingness representations to the input of the LSTM and TCN. As neither the TCN

nor the LSTM has any specific way of handling this data, we concatenate the time series data

with the missingness representations along the feature axis using Equation 6.15 and gives this

as input to the models.
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Chapter 12

Experiments

In this chapter, we present the results from the experiments described in Chapter 11. To see

how the changes we make in the experiments affect the models’ performance and calibration,

we first evaluate the models without any changes. We use this as a reference point, and refer

to these models as baselines when we compare the experiment results to them.

The performance for CinC2019 and PCT is shown in Table 12.1. While the AUPRC of

the models is low, this is expected. As described in Section 8.1.2, the baseline AUPRC is de-

termined as the number of positive samples over the total number of samples, and because

CinC2019 and PCT have many negative samples compared to positive samples, the baseline

AUPRC is small (0.020 and 0.008 respectively). Lauritsen et al. [9] show the AUPRC of XG-

Boost with different data framings, where XGBoost had an AUPRC of 0.014 using the clinical

demand framing (with a 1 : 244 sepsis-positive to -negative ratio, and 0.004 baseline AUPRC).

The only difference between the data Lauritsen et al. used and PCT is the observation and

prediction window size, which is 12 hours in [9] and 24 hours in PCT. As the AUPRC baseline

for the data used in [9] is half of the AUPRC baseline for PCT, we expect the AUPRC of XG-

Boost to be higher than 0.014 in our experiments. Our XGBoost baseline show an AUPRC of

0.140, which is higher than we expected. However, it seems reasonable, as Lauritsen et al. get

an AUPRC of 0.385 when using the fixed time to onset framing with a 1 : 15 sepsis-positive to

-negative ratio.

Baseline CinC2019 PCT

Model AUROC AUPRC AUROC AUPRC

TCN 0.753± 0.011 0.083± 0.006 0.750± 0.007 0.032± 0.006

LSTM 0.764± 0.007 0.076± 0.003 0.746± 0.011 0.029± 0.004

BRITS 0.769± 0.012 0.089± 0.007 0.687± 0.052 0.020± 0.002

GRUD 0.731± 0.009 0.066± 0.001 0.741± 0.011 0.025± 0.002

XGBoost 0.816± 0.000 0.114± 0.000 0.831± 0.000 0.140± 0.000

Table 12.1: AUROC and AUPRC for all models on CinC2019 and PCT.

The ECE and ACE for all models on CinC2019 are around 0.007 except for TCN, which is

around 0.01. For PCT they are between 0.001 and 0.002. However, by looking at the reliability

diagrams and sample confidence distributions in Figure F.1 and Figure F.2 for CinC2019 and

Figure G.1 and Figure G.2 for PCT, we see almost all predictions are in the first bin and only

the first few bins are well calibrated. This shows that the models are badly calibrated, but ECE

is low, as it weighs the calibration error for each bin, based on the number of samples in each
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bin. Looking at the remaining nine bins, we see that the models either do not predict with high

confidence or are poorly calibrated in these bins. Therefore, we focus more on the diagrams

than on the calibration metrics when we compare how well the models are calibrated.

12.1 Class Weight Experiment Results

In this section, we describe the experiment of weighing the loss differently depending on the

class label. As described in Section 11.1, we experiment with different values of the ratio r
in Equation 11.1. The values that we use depend on the dataset, and are: 4, 16 and 49 for

CinC2019, and 4, 16 and 128 for PCT.

The most interesting points are as follows:

• For CinC2019, generally all models get worse calibration and performance, as the ratio

increases.

• The same applies for PCT, except for BRITS and GRU-D, which seem to receive slightly

better performance.

• Increasing the ratio results in more even distributions of predictions, but in turn, makes

the models more overconfident.

For CinC2019, the calibration and performance tend to get worse, the larger ratio we use. We

see the same trend for PCT, with some variation on GRU-D, BRITS, and XGBoost. GRU-D

has a slight increase in AUROC, but the best ratio is inconclusive, as they show results within

the error margins. BRITS shows an improvement in both AUROC and AUPRC. XGBoost

appears to become better calibrated with a ratio of 4 when looking at the reliability diagrams

in Figure 12.1.

(a) XGBoost baseline (b) Ratio: 4 (c) Ratio: 16 (d) Ratio: 128

Figure 12.1: Reliability diagrams for XGBoost for the class weight experiment with PCT.

However, the high confidence bins for XGBoost contain less than 10 predictions each, which

is too few predictions to determine whether these bins are well-calibrated. As the calibration

metrics of XGBoost are worse as a result of worse calibration in the first two bins, it is debat-

able if using a ratio of 4 improved the calibration. With class ratios higher than 4, XGBoost

becomes more overconfident.
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We observe that increasing the ratio results in higher confidence predictions, which are

more evenly distributed. Figure 12.2 shows an example of this, where we see the confidence

distribution changes as the ratio increases.

(a) LSTM baseline (b) Ratio: 4 (c) Ratio: 16 (d) Ratio: 49

Figure 12.2: Sample confidence distribution graph of LSTM for the class weight experiment with CinC2019.

Here we see that the LSTM makes more predictions with high confidence as the ratio increases.

While the models more often make high confidence predictions, we observe that the mod-

els become overconfident, as the ratio increases. We show an example of this with the LSTM

in Figure 12.3.

(a) LSTM baseline (b) Ratio: 4 (c) Ratio: 16 (d) Ratio: 49

Figure 12.3: Reliability diagrams of LSTM for the class weight experiment with CinC2019.

Here, we see a consistent pattern, where the model becomes more overconfident, as the ratio

increases.

12.2 Demographic Experiment Results

In this section, we describe how using the demographic features as a separate input to the

model, affects the calibration and performance. As described in Section 11.2, this experiment

is only performed on CinC2019, as PCT does not have demographic features.

The most interesting points are:

• Worse performance.

• The models predict with lower confidences.

• The models become more overconfident.
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We see that using the demographic features as a separate input to the model does not yield

any beneficial results. The calibration metrics seem unchanged to the baselines, but the per-

formance metrics are worse. We note that BRITS appear to have a significantly low MCE

(Table F.5), but this is due to the model only having 3 bins with low confidence predictions

(Figure F.12c). Compared to the baselines, all models predict with lower confidences, and are

more overconfident.

12.3 Missingness Representation Experiment Results

In this section, we describe how adding the missingness representations to the input of the

TCN and LSTM, affects the calibration and performance.

The most interesting points are:

• For CinC2019, the models have better performance.

• For PCT, similar results to the baselines, with the exception of larger error margins in

TCN’s performance.

The biggest difference in this experiment is in the performance of the models. The perfor-

mance metrics for the models and baseline models, for both CinC2019 and PCT, are shown in

Table 12.2.

Baseline Missingness Representation

Dataset Model AUROC AUPRC AUROC AUPRC

TCN 0.753± 0.011 0.083± 0.006 0.772± 0.016 0.087± 0.005
CinC2019

LSTM 0.764± 0.007 0.076± 0.003 0.779± 0.007 0.091± 0.003

TCN 0.750± 0.007 0.032± 0.006 0.747± 0.014 0.040± 0.020
PCT

LSTM 0.746± 0.011 0.029± 0.004 0.758± 0.006 0.031± 0.003

Table 12.2: AUROC and AUPRC for the TCN and LSTM for CinC2019 and PCT.

We observe that the models with CinC2019 generally improve by using the missingness rep-

resentations. The TCN seems to improve in both AUROC and AUPRC, but can still be in-

terpreted to be within the error margins of the baseline. It is more noticeable that the LSTM

benefits from the missingness representations, especially in AUPRC.

For PCT, we observe that the TCN results are inconclusive, as they seem to achieve similar

results, but have larger error margins compared to the other models and the baselines. The

LSTM with PCT however, seems to achieve slightly better performance, but nothing out of the

error margins. It is therefore difficult to determine whether the missingness representations

benefit the LSTM with PCT as well.
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12.4 Observation Rate Experiment Results

In this section, we describe how extracting the observation rate features from the time series

data, and giving it as a separate input to the models, affects their calibration and performance.

The most interesting points are:

• XGBoost, LSTM, and TCN either stay unchanged in their performance and calibration

or are slightly better.

• BRITS’ AUPRC improve.

• GRU-D on PCT has significantly better AUPRC and calibration, while the improvement

on CinC2019 is not as significant.

• The models seem to benefit more from the observation rate on PCT compared to CinC2019.

• On PCT: TCN, BRITS, and GRU-D make more high confidence predictions.

LSTM and XGBoost on both CinC2019 and PCT show no benefit on performance or calibration

TCN on CinC2019 also shows no benefit. The TCN on PCT appears to have an increase in

AUPRC, however, whether this is the case is difficult to determine due to the large error

margins. On both CinC2019 and PCT, BRITS’ AUPRC increases, while the AUROC remains

relatively unchanged.

We observe that the observation rate greatly benefits the GRU-D model, compared to the

other models. One benefit is in the performance metrics of the GRU-D models, which we

show in Table 12.3.

Dataset Model AUROC AUPRC

Baseline 0.731± 0.009 0.066± 0.001
CinC2019

GRU-D 0.767± 0.007 0.084± 0.003

Baseline 0.741± 0.011 0.025± 0.002
PCT

GRU-D 0.735± 0.016 0.126± 0.012

Table 12.3: Performance metrics of the baseline GRU-Ds and the GRU-Ds in this experiment

We observe here that for CinC2019, the GRU-D models show a consistent improvement in

both AUROC and AUPRC. For PCT, the AUROC remains relatively unchanged, while we see

a significant change in AUPRC.

Based on the calibration metrics for the models with PCT, it seems that the calibration

of the models is unaffected by the observation rate. However, by looking at the reliability

diagrams and prediction distributions, we observe that TCN, BRITS, and GRU-D make more

predictions with higher confidence.

To show this, we give an example in Figure 12.4, where we show the reliability diagrams

and prediction distributions for the GRU-D model.
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(a) Baseline Reliability dia-
gram.

(b) Observation rate reliability
diagram.

(c) Baseline prediction distri-
butions.

(d) Observation rate prediction
distributions.

Figure 12.4: Reliability diagrams and prediction distributions of GRU-D with PCT.

The models for CinC2019 do not make higher confidence predictions, but they already made

higher confidence predictions in the baseline compared to PCT, and while the models for PCT

benefit from the observation rate, we see that the GRU-D shows a significant benefit.

The significant benefit in GRU-D is also reflected in its DC and TPR-TNR graph, which we

show in Figure 12.5.

(a) Baseline DC (b) Observation rate DC

(c) Baseline TPR-TNR (d) Observation rate TPR-TNR

Figure 12.5: NB and TPR-TNR of GRU-D with PCT.
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Here, we see that the GRU-D has positive NB until a threshold of 0.4, which is an observation

that we have not made for any model in any of the other experiments excluding XGBoost,

which likewise achieves similar NB as the GRU-D in this experiment.

In the TPR-TNR graph, we observe that the values for the TPR curve are significantly

higher at all thresholds compared to the baseline experiment. If we look at the threshold

where the TNR curve crosses the TNR baseline for both experiments, then we see that the

TPR is significantly higher compared to the baseline. This indicates that the observation rate

helps the model find more positive samples. However, we still see a slightly worse TNR curve,

although it should be noted that the TNR curve is only shown between 0.985 to 1.0, which

can make the effect appear more exaggerated.
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Chapter 13

Follow-up Experiment

By analyzing our experiment results, we see that the experiment that resulted in the biggest

improvement was the observation rate experiment. In that experiment, the observation rate

of the features was extracted from the time series data, and given as separate input to the

models. GRU-D was the model that presented the biggest change in performance, with a

significant increase in AUPRC. It was also well-calibrated in comparison to the other models

in our experiments. However, it did not surpass the AUROC and AUPRC of XGBoost.

One of the differences between our models and XGBoost is that XGBoost uses the delta

representation, as we described in Section 2.4. The delta representation can be represented

as a vector, and therefore be fed to the network in a similar way as with the previously

extracted features. As XGBoost shows decent results with the delta representation, we want

to experiment how using the delta representation as an extracted feature, affects the neural

networks.

We base this new experiment on our previous observations and therefore use an architec-

ture that incorporates the parts of the experiments that we found beneficial. In the following

experiment, the TCN, LSTM, BRITS, and GRU-D are given the observation rate as part of its

standard architecture, as it either improved or did not change the results (Section 12.4). This

results in the architecture shown in Figure 13.1.

Time series
Model

Dense
layer

Dense
layer

Output/Dense Layer 
(Sigmoid)

1

Time series

Observation rate Dense
layer

C
oncatenate

Dense
layer

Dense
layerDelta

Figure 13.1: Using observation rate and delta as additional input to the network.

Additionally, as the LSTM showed a consistent improvement by using the missingness repre-

sentation in Section 12.3, the missingness representations are given as input to the LSTM as

well.

74



Due to these additional inputs, we compare the results of the delta representation experi-

ment to the results of the observation rate experiment and the missingness representation for

LSTM.

13.1 Delta Representation

In this section, we describe the delta experiment, where we use the delta representation as an

extracted feature.

The most interesting points are:

• For CinC2019, the TCN, LSTM, and GRU-D do not benefit from the delta representation.

• It is inconclusive whether BRITS trained on CinC2019 benefits from the delta represen-

tation.

• TCN, LSTM, and BRITS trained on PCT does not benefit from the delta representation.

• The GRU-D trained on PCT is worse at distributing its predictions, with an outlier in

the highest confidence prediction, where it has substantially more predictions.

In this experiment, we observe that on CinC2019 the TCN and LSTM do not benefit from the

delta representation. The LSTM has worse performance metrics and is less confident, while

TCN and GRU-D seem unchanged. For BRITS, we see more high confidence predictions.

However, at closer inspection, this only happen in one of the five runs, while the remaining

four did not have any high confidence predictions. The high confidence predictions are also

overconfident.

For PCT, we observe that the TCN, LSTM, and BRITS do not benefit from the delta rep-

resentation. These three models have very few predictions with high confidence, and it is,

therefore, difficult to interpret their calibration in the reliability diagrams.

On PCT, the GRU-D model changes significantly in its prediction. In the observation rate

experiment, the number of predictions in each bin consistently decreased according to the

confidence, as seen in Figure 13.2.
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(a) Observation rate reliability
diagram.

(b) Delta feature reliability di-
agram

(c) Observation rate prediction
distributions.

(d) Delta feature prediction
distributions.

Figure 13.2: Reliability diagrams and prediction distributions of GRU-D with PCT.

When the GRU-D is given the delta representation as an additional input, the number of pre-

dictions in the bins ranging from 0.3 to 0.9 significantly decreases, as seen in Figure 13.2d.

However, it also significantly increases the number of predictions in the 0.9 to 1.0 bin. Deter-

mining the calibration of the GRU-D model with the delta representation from the reliability

diagram (Figure 13.2b) is difficult, as most bins contain few predictions. In addition to this,

most bins have large error margins, which show large variation between runs.

AUROC and AUPRC of GRU-D are on average lower with the delta representation. How-

ever, both AUROC and AUPRC also have large error margins compared to the observation

rate experiment.

We observe that the delta representation affects training and validation loss of BRITS and

GRU-D in an incomprehensible way, for both CinC2019 and PCT (Figure 13.3).

(a) CinC2019 BRITS (b) CinC2019 GRU-D (c) PCT BRITS (d) PCT GRU-D

Figure 13.3: Training and validation loss for BRITS and GRU-D.
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Therefore, while there are problems with the delta representation, the large number of samples

in the 0.9-1.0 confidence range for GRU-D is an interesting observation. For these reasons, we

cannot conclude whether the delta representation helped GRU-D (or the other models), as

there could be potential for improvements with further research.
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Chapter 14

Final Experiment Results

Our previous experiments have focused on how we could improve upon the baseline ex-

periment on the validation set. In this experiment, we use our findings from the previous

experiments to create a set of the best performing and best calibrated models. We then eval-

uate the performance and calibration of these models on the test set. We found that using

the observation rate features gave the best result for the neural networks, and for LSTM we

also use the missingness representations. As we did not observe a clear improvement for

XGBoost over its baseline in any of the experiments, we decide to use the baseline XGBoost

configuration.

To verify that we did not overfit our models to the validation set, we compare the result

from this experiment with the results from the observation rate experiment, to see if we see

similar results. We see that all models achieve similar results except for a small change in

AUPRC, where it has dropped around 0.01 for most models on PCT and increased around

0.01 for most models on CinC2019. Since we see similar performance, we conclude that we

have not overfitted our models to the validation set.

On CinC2019 all of the models rarely make predictions with a confidence over 0.9 and are

in general overconfident as seen in Figure 14.1.

(a) Reliability diagram
for TCN.

(b) Reliability diagram
for LSTM.

(c) Reliability diagram
for BRITS.

(d) Reliability diagram
for GRU-D.

(e) Reliability diagram
for XGBoost.

Figure 14.1: Reliability diagrams for the final experiment.

When looking at the performance metrics in Table 14.1, we see that XGBoost is the best per-

forming model, but the BRITS model is relatively close to its performance on AUPRC.
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Final AUROC AUPRC

TCN 0.754± 0.024 0.081± 0.009

LSTM 0.774± 0.010 0.098± 0.003

BRITS 0.777± 0.007 0.113± 0.007

GRUD 0.761± 0.011 0.093± 0.006

XGBoost 0.818± 0.000 0.122± 0.000

Table 14.1: AUROC and AUPRC for CinC2019.

The reliability diagrams for PCT in Figure 14.2a show that GRU-D is close to well-calibrated

on all bins, but is a little overconfident. The other models primarily make predictions with

less than 0.2 confidence.

Looking at the AUPRC in Table 14.2, we see that it is a lot higher for GRU-D and XGBoost,

which is also reflected in the DC graphs in Figure G.29.

Final AUROC AUPRC

TCN 0.751± 0.014 0.040± 0.014

LSTM 0.743± 0.010 0.031± 0.006

BRITS 0.748± 0.009 0.028± 0.001

GRUD 0.730± 0.010 0.102± 0.008

XGBoost 0.820± 0.000 0.131± 0.000

Table 14.2: AUROC and AUPRC for PCT.

XGBoost has a higher AUPRC than GRU-D on PCT, but XGBoost appears to be worse cal-

ibrated. From the reliability diagrams and sample confidence distribution graphs in Fig-

ure 14.2, we see that GRU-D makes more high confidence predictions than XGBoost, which is

good as long as the confidence of the predictions matches the models’ accuracy. We also see

that XGBoost is underconfident, but due to the few samples in the bins with higher confidence

than 0.4, it is hard to conclude if these bins are well-calibrated.
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(a) Reliability diagram for
GRU-D

(b) Reliability diagram for XG-
BOOST

(c) Sample confidence distribu-
tion graph for GRU-D

(d) Sample confidence distri-
bution graph for XGBOOST

Figure 14.2: Reliability diagrams and sample confidence distribution graphs for GRU-D and XGBoost.
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Part IV

Discussion
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Chapter 15

Discussion

In this chapter, we discuss the choices we made during this project in the context of the results

from our experiments. As we described in Chapter 2, CinC2019 and PCT are both imbalanced

datasets with high missing rates. In the following sections, we discuss the CIP and high

missing rates in the context of the experiment results.

15.1 The Class Imbalance Problem

From our experiments, we see that the imbalanced data tend to make it very difficult for

the models to make high confidence predictions. The class weight experiment we described

in Section 12.1 was the primary experiment for attempting to solve the CIP. While we saw

that the models made higher confidence predictions, they also became very overconfident, for

higher ratios. As we did not see any conclusive performance gains or losses on the neural

network models, we suspect that the confidences of the predictions are simply spread more

evenly across the confidence ranges in this experiment, and not actually better at predicting

the samples. Due to this, we do not consider weighing the classes differently with the method

we described in Section 11.1 as a useful solution to the CIP. Despite this, there are still other

approaches to using weighted loss functions as those presented by Geng and Luo [18] and

Fernando et al. [10], which could be interesting to consider if we had more time.

However, we did see some improvement regarding the CIP with the observation rate ex-

periment we described in Section 12.4. The baselines for PCT generally predict with very low

confidences. However, when we introduced the observation rate, TCN, BRITS, and GRU-D

predicted a significantly larger number of predictions with higher confidences. This could

indicate that the neural network models cannot properly distinguish between the samples,

just by using the data in PCT. One reason for this could be that certain information is not

available or is too difficult to infer from the data. If we look at the delta experiment we de-

scribed in Section 13.1, we noted that GRU-D on PCT made the largest number of predictions

between 0.9-1.0 that we observed of any models (see Figure G.22d). While adding the delta

representation to the input of the GRU-D did not result in a better model, this could support

this notion that the models can benefit from additional information.

Due to this, we suspect that providing more useful information to the models can help

them overcome the CIP, as they could easier distinguish the positive and negative samples.

While our approach of weighing the loss function did not solve the CIP, there are still other
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weighted loss function approaches that attempt to solve this problem, such as those presented

by Geng and Luo [18] and Fernando et al. [10].

15.2 High Missing Rates

High missing rates were a prominent characteristic for both CinC2019 and PCT as we de-

scribed and analyzed in Section 2.7. BRITS and GRU-D both attempted to handle the missing

values of the data, but with two different approaches. BRITS attempted to impute the data,

and then use that data to predict, while GRU-D considered the last observed value along with

some decay towards the mean.

If we consider the final experiment we described in Chapter 14, we saw that BRITS had

higher AUPRC compared to the other neural network models on CinC2019, while GRU-D had

higher AUPRC on PCT. This was also a trend we saw in the observation rate (Section 12.4) and

delta representation (Section 13.1) experiments. Considering the missing rates we described

in Section 2.7, then the approach of BRITS might be better suited for CinC2019, while the

approach of GRU-D might be more suited to PCT. Our reasoning for this is that the higher

missing rates of PCT make the data more difficult to impute, as BRITS has less information to

base its imputation on. Since the missing rates for CinC2019 are lower, BRITS might be able to

more easily create reasonable imputation estimates on this dataset. For GRU-D, since it tries

to reduce the information that is carried forward based on the time since the last observation,

this might be a better approach for datasets with higher missing rates, like PCT.

If these assumptions are true, it might be beneficial to handle features with different miss-

ing rates differently in the models. For example, in CinC2019 and PCT, the laboratory values

had higher missing rates than the vital signs. If we apply these assumptions, it could be bene-

ficial to handle the missing values of the vital signs with a more imputation oriented approach,

and for the laboratory, values handle them with a "time since last observed"-approach.

As we saw in the missingness representations results we described in Section 12.3, the

LSTM appeared to benefit from these representations. While it was inconclusive for the TCN,

we argue that this representation is useful for all models working with this type of data.

The reason for this is that the representations introduce a way to explicitly represent missing

values in the data.

It can be difficult to determine why the TCN did not benefit from the missingness repre-

sentations the same way the LSTM did. One reason might be that the TCN’s first convolution

layer is likely to merge measurements with the missingness representation. Instead of merg-

ing all the information together at first, the TCN might benefit from analyzing the missingness

representations individually with more than one convolution layer and then later combine this

information with the time series. This was different from the LSTM, where the missingness

representations were available at every timestep, together with the analysis the model has

done so far (represented as the hidden state). We argue changing the TCN to address this

issue could make it benefit from the missingness representations. While the LSTM and TCN

83



do not have the functionality to directly handle this information, we still consider it useful

information for the models to have. Additionally, more considerations of how to handle these

representations in the TCN and LSTM could also be beneficial.

As BRITS and GRU-D both tended to perform better than LSTM and TCN, we consider it

important that the models need to incorporate the features of the data into their design. The

design choices made for BRITS and GRU-D make sense for handling missing data well, and

we argue that this is one of the reasons why they tended to perform better than LSTM and

TCN. If we were to experiment further, we would consider model designs that better utilizes

extracted information to improve the model’s prediction.

15.3 Overfitting

We often observed that the neural network models tended to overfit to the training data. It is

difficult to determine why overfitting often occurred, but one reason might be that many of

the samples could contain a lot of the same data. While we can not know this for the samples

in PCT, it is true for CinC2019 due to the sliding window framing, where only the first and

last timestep is different when the window is moved an hour. For CinC2019, the models are

trained on many samples that share a lot of the same data, which we suspect could lead to

quicker convergence.

Overfitting is a difficult problem to solve that needs to be addressed with further experi-

mentation. Some methods to address this problem already exists, such as dropout [49], weight

decay [50], changing the number of neurons in each layer or the number of layers [51].

15.4 Comparison with XGBoost

In this section, we describe how the TCN, LSTM, BRITS, and GRU-D compare to Enversion’s

XGBoost model. We start by evaluating the models’ performance on CinC2019. From our final

experiment (Chapter 14), we saw that none of the models outperformed XGBoost in AUROC

or AUPRC. BRITS was the model that showed the best performance, shown in Table 14.1.

While we saw low ECE and ACE, the reliability diagrams show that most of the models are

either overconfident or do not make many predictions with high confidences. As Figure 14.1c

shows, BRITS did not make any predictions above 0.6. While XGBoost appears to be the

best calibrated model, all the models are overconfident. We, therefore, argue that XGBoost

is superior to the models we have presented on CinC2019. However, XGBoost still has major

problems, such as calibration and distribution of confidences.

For PCT, GRU-D was the best performing neural network model as we showed in Ta-

ble 14.2, but it did still not surpass XGBoost in AUROC or AUPRC. However, here we can see

an interesting observation in the calibration and distribution of confidences of predictions on

Figure 14.2. GRU-D makes more higher confident predictions than XGBoost, and also appears

to be better calibrated. While GRU-D is still overconfident, we still consider the calibration
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more desirable than XGBoost, which does not have many predictions in the higher bins. De-

spite the worse performance metrics for GRU-D compared to XGBoost for PCT, we argue that

the better calibration makes GRU-D more desirable in a clinical setting. However, GRU-D still

needs further research before we consider it useful for real-world applications.

We see potential in the models we have proposed here, especially BRITS and GRU-D with

observation rates. We do not consider any of the models we investigated here ready for use

in a real hospital, due to the problem we have described in this chapter. However, we argue

that we have found some ideas that benefit the neural network models we tested that attempt

to predict sepsis from imbalanced data with high missing rates. In particular, we argue that

the observation rates and missingness representations are useful information as input to the

model. Therefore, we argue that designing models to handle these ideas as a part of their

design is a useful approach. However, further research on how to design models, that can

handle this information better, is needed.
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Chapter 16

Conclusion

In Chapter 1, we mentioned that there is an increasing amount of research concerning the

application of deep learning methods on EHR data, to assist in clinical settings. However,

many modern neural networks are not well-calibrated, which is necessary for real-world usage

in clinical settings. From Chapter 2, we presented two datasets: PhysioNet Computing in

Cardiology Challenge 2019 dataset (CinC2019) and Processed CROSS-TRACKS dataset (PCT),

both of which are highly imbalanced, multivariate time series data with high missing rates.

We also found that it was important to frame the data to reflect the real-world use case.

Based on this, we created the following problem statement in Chapter 3:

How can we create a well-performing, well-calibrated neural network model for
predicting sepsis from high missing rate EHR data?

To answer the problem statement, we searched for inspiration from state of the art model ar-

chitectures and ideas, particularly ones that could handle the high missing rates of CinC2019

and PCT. From this, we constructed our architectures that incorporated neural networks with

inputs of various types. We set up a series of experiments that tested these architectures on

two sepsis EHR datasets. In these experiments, we measured the performance and calibration

of our models with the AUROC, AUPRC, ECE, ACE, and MCE metrics. In addition to these

metrics, we used reliability diagrams, confidence distributions, and decision curves, to better

evaluate the performance and calibration of the models. These graphs were useful as they

allowed us to identify multiple cases where the models were not well-calibrated, despite their

low calibration metrics, as well as helping us determine how well the models were performing.

Based on our results, we conclude that the best neural network models were BRITS and

GRU-D with the observation rate as an extracted feature. We come to this conclusion as

BRITS performed the best on CinC2019, while GRU-D performed the best on PCT. The TCN

and LSTM were not the best performing neural network models on either dataset. However,

the LSTM showed that the missingness representations can be beneficial for models, that do

not have special design decisions to exploit these representations. Additionally, we conclude

that the observation rate as an extracted feature, was useful for our models as it provided

information, which was not available otherwise.

Despite BRITS being the best neural network model on CinC2019, we conclude that it

was still inferior to Enversion’s XGBoost. While XGBoost also suffered from poor calibration

on CinC2019, BRITS was also poorly calibrated and had overall worse performance and cal-

ibration than XGBoost. In the comparison of GRU-D and Enversion’s XGBoost on PCT, we
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saw that XGBoost was superior in performance, and GRU-D was superior in calibration. We

conclude that GRU-D is more desirable in a clinical setting compared to XGBoost, despite its

lower performance.

Finally, we conclude that all the models need to be researched further to be ready for use

in a real-world clinical setting.
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Chapter 17

Future Works

In this chapter, we discuss ideas on how to continue the work presented in this report.

As we saw the observation rate was a positive addition to our models, we argue that

further research on how best to incorporate this in the models is needed. We already explored

some ideas in Section 7.6, which could be useful. On top of how to handle the observation

rate, it could also be useful to consider more extracted features. As we saw in the delta

experiment (Section 13.1), the GRU-D model on PCT had a significant number of predictions

with a confidence between 0.9 and 1.0, despite performing poorly. This could mean that the

delta representation as an extracted feature could be beneficial to the neural network models

and needs further research to figure out the best way to handle the delta values in the models.

As we discussed in Chapter 15, the TCN did not benefit from the missingness representa-

tions. We suspect the reasoning for this is that only the first convolution layer has access to

the missingness data before it is merged with the time series data. One solution to this could

be to have three TCNs, two for each of the missingness representations and one for the time

series data, and then join their output when making a prediction. This way the model could

analyze the missingness representations without merging them with the time series data, yet

still utilize the missingness representations in the context of the time series data. BRITS and

GRU-D are the only two approaches we considered that were designed to handle the miss-

ingness representations. Therefore, it could be worth researching other model designs, that

handle these missingness representations differently.

The CIP is something that also needs to be addressed with datasets like CinC2019 and

PCT. We already proposed using other weighted loss functions in Section 15.1 to mitigate the

CIP, but different approaches could also be considered. As we discussed in Section 15.1, the

problem might be that the samples are too similar and it is too difficult for the models to

distinguish them. Therefore, extracting other useful features to distinguish the samples could

also be a promising approach to solve the CIP.

88



Bibliography

[1] M. A. Reyna, C. S. Josef, R. Jeter, S. P. Shashikumar, M. B. Westover, S. Nemati, G. D.

Clifford, and A. Sharma, “Early prediction of sepsis from clinical data: The

physionet/computing in cardiology challenge,” Critical Care Medicine, vol. 48, no. 2, p.

210–217, February 2020.

[2] M. H. Svendsen, M. Simonsen, S. D. Nielsen, M. N. Stenkær, L. Østergaard, and C. K.

Frydkjær, “Analyzing calibration of state of the art deep learning architectures for

electronic health records,” January 2020.

[3] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi, “Deep ehr: A survey of recent

advances in deep learning techniques for electronic health record (ehr) analysis,” IEEE
Journal of Biomedical and Health Informatics, vol. 22, no. 5, p. 1589–1604, Sep 2018.

[Online]. Available: http://dx.doi.org/10.1109/JBHI.2017.2767063

[4] J. Fagerström, M. Bång, D. Wilhelms, and M. S. Chew, “Lisep lstm: A machine learning

algorithm for early detection of septic shock,” Scientific Reports, vol. 9, no. 1, 2019.

[5] S. Lauritsen, M. Kalør, E. Kongsgaard, K. Lauritsen, M. Jørgensen, J. Lange, and

B. Thiesson, “Early detection of sepsis utilizing deep learning on electronic health

record event sequences,” Artificial Intelligence in Medicine, vol. 104, April 2020.

[6] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural

networks,” CoRR, vol. abs/1706.04599, December 2017. [Online]. Available:

http://arxiv.org/abs/1706.04599

[7] M. Reyna, C. Josef, R. Jeter, S. Shashikumar, B. Moody, M. B. Westover, A. Sharma,

S. Nemati, and G. Clifford, “Early prediction of sepsis from clinical data – the physionet

computing in cardiology challenge 2019,” August 2019. [Online]. Available:

https://physionet.org/content/challenge-2019/1.0.0/

[8] September 2020. [Online]. Available: https://www.tvaerspor.dk/

[9] S. M. Lauritsen, B. Thiesson, M. J. Jørgensen, A. H. Riis, U. S. Espelund, J. B. Weile, and

J. Lange, “The consequences of the framing of machine learning risk prediction models:

Evaluation of sepsis in general wards,” January 2021.

[10] K. R. M. Fernando and C. P. Tsokos, “Dynamically weighted balanced loss: Class

imbalanced learning and confidence calibration of deep neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–12, January 2021.

[11] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 9, p. 1263–1284, September 2009.

89

http://dx.doi.org/10.1109/JBHI.2017.2767063
http://arxiv.org/abs/1706.04599
https://physionet.org/content/challenge-2019/1.0.0/
https://www.tvaerspor.dk/


[12] C. Sun, S. Hong, M. Song, and H. Li, “A review of deep learning methods for

irregularly sampled medical time series data,” October 2020.

[13] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark, J. Mietus,

G. Moody, C. Peng, and H. Stanley, “Predicting in-hospital mortality of icu patients: The

physionet/computing in cardiology challenge 2012,” Artificial Intelligence Review, pp.

215–220, 2012.

[14] S. N. Shukla and B. M. Marlin, “Interpolation-prediction networks for irregularly

sampled time series,” arXiv preprint arXiv:1909.07782, September 2019.

[15] M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt, “Set functions for time series,”

in International Conference on Machine Learning. PMLR, September 2020, pp. 4353–4363.

[16] Q. Tan, M. Ye, B. Yang, S. Liu, A. J. Ma, T. C.-F. Yip, G. L.-H. Wong, and P. Yuen,

“Data-gru: Dual-attention time-aware gated recurrent unit for irregular multivariate

time series,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, p.

930–937, April 2020.

[17] P. Li, M. Abdel-Aty, and J. Yuan, “Real-time crash risk prediction on arterials based on

lstm-cnn,” Accident Analysis & Prevention, vol. 135, p. 105371, Febuary 2020. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0001457519311108

[18] Y. Geng and X. Luo, “Cost-sensitive convolutional neural networks for imbalanced time

series classification,” Intelligent Data Analysis, vol. 23, no. 2, p. 357–370, January 2019.

[19] J. Singh, K. Oshiro, R. Krishnan, M. Sato, T. Ohkuma, and N. Kato, “Utilizing

informative missingness for early prediction of sepsis,” 2019 Computing in Cardiology
Conference (CinC), September 2019.

[20] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural networks for

multivariate time series with missing values,” Scientific Reports, vol. 8, no. 1, April 2018.

[21] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional recurrent

imputation for time series,” in Advances in Neural Information Processing Systems,

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

Eds., vol. 31. Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.

neurips.cc/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[23] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradient

problem,” CoRR, vol. abs/1211.5063, November 2012. [Online]. Available:

http://arxiv.org/abs/1211.5063

90

https://www.sciencedirect.com/science/article/pii/S0001457519311108
https://proceedings.neurips.cc/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
http://www.deeplearningbook.org
http://arxiv.org/abs/1211.5063


[24] C. Olah, “Understanding lstm networks,” 2015, [Accessed 03-12-2020]. [Online].

Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[25] 2020, [Accessed 13-11-2020]. [Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM

[26] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent

neural networks on sequence modeling,” 2014.

[27] W.-C. Lin and C.-F. Tsai, “Missing value imputation: a review and analysis of the

literature (2006–2017),” Artificial Intelligence Review, vol. 53, no. 2, p. 1487–1509, 2019.

[28] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, and K. G. Moons, “Review: A gentle

introduction to imputation of missing values,” Journal of Clinical Epidemiology, vol. 59,

no. 10, pp. 1087–1091, 2006. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0895435606001971

[29] J. M. Lachin, “Fallacies of last observation carried forward analyses,” Clinical Trials,

vol. 13, no. 2, p. 161–168, 2015.

[30] T. G. Dietterich, “Ensemble methods in machine learning,” in International workshop on
multiple classifier systems. Springer, 2000, pp. 1–15.

[31] Z. Yuan, Y. Jiang, J. Li, and H. Huang, “Hybrid-dnns: Hybrid deep neural networks for

mixed inputs,” May 2020.

[32] K. Hajian-Tilaki, “Receiver operating characteristic (roc) curve analysis for medical

diagnostic test evaluation,” Caspian journal of internal medicine, vol. 4, pp. 627–635, 09

2013.

[33] B. Ozenne, F. Subtil, and D. Maucort-Boulch, “The precision–recall curve overcame the

optimism of the receiver operating characteristic curve in rare diseases,” Journal of
Clinical Epidemiology, vol. 68, no. 8, pp. 855 – 859, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0895435615001067

[34] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[35] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informative than the roc

plot when evaluating binary classifiers on imbalanced datasets,” PloS one, vol. 10, p.

e0118432, 03 2015.

[36] A. J. Vickers and E. B. Elkin, “Decision curve analysis: A novel method for evaluating

prediction models,” Medical Decision Making, vol. 26, no. 6, p. 565–574, December 2006.

[37] J. Nixon, M. Dusenberry, L. Zhang, G. Jerfel, and D. Tran, “Measuring calibration in

deep learning,” CoRR, vol. abs/1904.01685, April 2019. [Online]. Available:

http://arxiv.org/abs/1904.01685

91

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.sciencedirect.com/science/article/pii/S0895435606001971
http://www.sciencedirect.com/science/article/pii/S0895435615001067
http://arxiv.org/abs/1904.01685


[38] M. Pakdaman Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well calibrated

probabilities using bayesian binning,” Proceedings of the ... AAAI Conference on Artificial
Intelligence. AAAI Conference on Artificial Intelligence, vol. 2015, pp. 2901–2907, April 2015.

[39] L. Huang, J. Zhao, B. Zhu, H. Chen, and S. V. Broucke, “An experimental investigation

of calibration techniques for imbalanced data,” IEEE Access, vol. 8, pp. 127 343–127 352,

July 2020.

[40] B. Van Calster and A. J. Vickers, “Calibration of risk prediction models: impact on

decision-analytic performance,” Medical decision making : an international journal of the
Society for Medical Decision Making, vol. 35, no. 2, p. 162—169, February 2015. [Online].

Available: https://doi.org/10.1177/0272989X14547233

[41] “Tensorflow,” [Accessed 17-5-2021]. [Online]. Available:

https://www.tensorflow.org/versions/r2.4/api_docs/python/tf

[42] “Xgboost documentation,” [Accessed 18-5-2021]. [Online]. Available:

https://xgboost.readthedocs.io/en/latest/

[43] D. Poole and A. Mackworth, Artificial Intelligence: Foundations of Computational Agents,

2nd ed. Cambridge, UK: Cambridge University Press, 2017. [Online]. Available:

http://artint.info/2e/html/ArtInt2e.html

[44] L. Prechelt, Early Stopping - But When? Berlin, Heidelberg: Springer Berlin Heidelberg,

1998, pp. 55–69. [Online]. Available: https://doi.org/10.1007/3-540-49430-8_3

[45] TensorFlow, “tf.keras.callbacks.earlystopping,” [Accessed 03-06-2021]. [Online].

Available:

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

[46] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International
Conference on Learning Representations, December 2014.

[47] XGBoost, “Xgboost parameters,” [Accessed 03-06-2021]. [Online]. Available:

https://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-tree-booster

[48] TensorFlow, “Classification on imbalanced data,” [Accessed 26-5-2021]. [Online].

Available:

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data#class_weights

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[50] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part

1–learning rate, batch size, momentum, and weight decay,” arXiv preprint
arXiv:1803.09820, 2018.

92

https://doi.org/10.1177/0272989X14547233
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf
https://xgboost.readthedocs.io/en/latest/
http://artint.info/2e/html/ArtInt2e.html
https://doi.org/10.1007/3-540-49430-8_3
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-tree-booster
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data#class_weights


[51] H. Hippert, D. Bunn, and R. Souza, “Large neural networks for electricity load

forecasting: Are they overfitted?” International Journal of forecasting, vol. 21, no. 3, pp.

425–434, 2005.

[52] F. Gul, M. K. Arslantas, I. Cinel, and A. Kumar, “Changing definitions of sepsis,” June

2017, [Accessed 20-10-2020]. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512390/

[53] C. Nickson, “Pao2/fio2 ratio (p/f ratio),” April 2020, [Accessed 20-10-2020]. [Online].

Available: https://litfl.com/pao2-fio2-ratio/

[54] U. I. Services, “Basic laboratory tests complete blood counts (cbc),” 2015, [Accessed

20-10-2020]. [Online]. Available: https:

//www.uiservices.com/wp-content/uploads/2015/01/CompleteBloodCounts.pdf

[55] WebMD, “Understanding low blood pressure – the basics,” 2019, [Accessed 20-10-2020].

[Online]. Available:

https://www.webmd.com/heart/understanding-low-blood-pressure-basics#1

[56] W. M. Reference, “What is a bilirubin test?” 2019, [Accessed 20-10-2020]. [Online].

Available: https://www.webmd.com/a-to-z-guides/bilirubin-test#1

[57] N. K. Foundation, “Creatinine: What is it?” 2017, [Accessed 20-10-2020]. [Online].

Available: https://www.kidney.org/atoz/content/what-creatinine

[58] BrainLine, “What is the glasgow coma scale?” 2018, [Accessed 20-10-2020]. [Online].

Available: https://www.brainline.org/article/what-glasgow-coma-scale

[59] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[60] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional

networks for action segmentation and detection,” CoRR, vol. abs/1611.05267, November

2016. [Online]. Available: http://arxiv.org/abs/1611.05267

[61] Z. Zhang, “Derivation of backpropagation in convolutional neural network (cnn),”

University of Tennessee, Knoxville, TN, October 2016.

[62] J. Bouvrie, “Notes on convolutional neural networks,” November 2006.

[63] L. Boué, “Deep learning for pedestrians: backpropagation in cnns,” arXiv preprint
arXiv:1811.11987, November 2018.

[64] S. N. Shukla and B. M. Marlin, “Interpolation-prediction networks for irregularly

sampled time series,” 2019.

[65] “Papers with code - physionet challenge 2012 benchmark (time series classification),”

[Accessed 20-04-2021]. [Online]. Available:

https://paperswithcode.com/sota/time-series-classification-on-physionet

93

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512390/
https://litfl.com/pao2-fio2-ratio/
https://www.uiservices.com/wp-content/uploads/2015/01/CompleteBloodCounts.pdf
https://www.uiservices.com/wp-content/uploads/2015/01/CompleteBloodCounts.pdf
https://www.webmd.com/heart/understanding-low-blood-pressure-basics#1
https://www.webmd.com/a-to-z-guides/bilirubin-test#1
https://www.kidney.org/atoz/content/what-creatinine
https://www.brainline.org/article/what-glasgow-coma-scale
http://arxiv.org/abs/1611.05267
https://paperswithcode.com/sota/time-series-classification-on-physionet


[66] X. Tang, H. Yao, Y. Sun, C. Aggarwal, P. Mitra, and S. Wang, “Joint modeling of local

and global temporal dynamics for multivariate time series forecasting with missing

values,” November 2019.

[67] J. Yoon, W. R. Zame, and M. van der Schaar, “Estimating missing data in temporal data

streams using multi-directional recurrent neural networks,” November 2017.

[68] S. Yang, M. Dong, Y. Wang, and C. Xu, “Adversarial recurrent time series imputation,”

IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, August 2020.

[69] Q. Suo, W. Zhong, G. Xun, J. Sun, C. Chen, and A. Zhang, “Glima: Global and local time

series imputation with multi-directional attention learning,” in 2020 IEEE International
Conference on Big Data (Big Data), December 2020, pp. 798–807.

[70] Y. Lee, E. Jun, and H.-I. Suk, “Multi-view integration learning for irregularly-sampled

clinical time series,” January 2021.

[71] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Code of nips18 paper: Brits:

Bidirectional recurrent imputation for time series,” [Accessed 03-06-2020]. [Online].

Available: https://github.com/caow13/BRITS

94

https://github.com/caow13/BRITS


Part V

Appendix

95



Appendix A

Feature Description of Datasets 1

Feature number Measurement

1 Temperature

2 SpO2

3 Heart rate

4 Diastolic BP

5 Respiratory Frequency

6 Systolic BP

7 B-Leukocytes

8 B-Neutrophils

9 B-Platelets

10 eGFR

11 P-Albumin

12 P-Bilirubine

13 P-C-reactive protein

14 P-Glucose

15 P-Potassium

16 P-Creatinine

17 P-Sodium

18 P(aB)-Hydrogen carbonate

19 P(aB)-Potassium

20 P(aB)-Chloride

21 P(aB)-Lactate

22 P(aB)-Sodium

23 P(aB)-pCO2

24 P(aB)-pH

25 P(aB)-pO2

Table A.1: Features of dataset prepared by Enversion from Cross-Track’s dataset [8].

1This appendix is a slightly modified version of Appendix C from our previous semester report [2].
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Feature number Measurement Description

Vital signs (Feature 1-8)

1 HR Heart rate (beats per minute)

2 O2Sat Pulse oximetry (%)

3 Temp Temperature (Deg C)

4 SBP Systolic BP (mm Hg)

5 MAP Mean arterial pressure (mm Hg)

6 DBP Diastolic BP (mm Hg)

7 Resp Respiration rate (breaths per minute)

8 EtCO2 End-tidal carbon dioxide (mm Hg)

Laboratory values (Feature 9-34)

9 BaseExcess Measure of excess bicarbonate (mmol/L)

10 HCO3 Bicarbonate (mmol/L)

11 FiO2 Fraction of inspired oxygen (%)

12 pH N/A

13 PaCO2 Partial pressure of carbon dioxide from arterial blood

(mm Hg)

14 SaO2 Oxygen saturation from arterial blood (%)

15 AST Aspartate transaminase (IU/L)

16 BUN Blood urea nitrogen (mg/dL)

17 Alkalinephos Alkaline phosphatase (IU/L)

18 Calcium (mg/dL)

19 Chloride (mmol/L)

20 Creatinine (mg/dL)

21 Bilirubin_direct Bilirubin direct (mg/dL)

22 Glucose Serum glucose (mg/dL)

23 Lactate Lactic acid (mg/dL)

24 Magnesium (mmol/dL)

25 Phosphate (mg/dL)

26 Potassium (mmol/L)

27 Bilirubin_total Total bilirubin (mg/dL)

28 TroponinI Troponin I (ng/mL)

29 Hct Hematocrit (%)

30 Hgb Hemoglobin (g/dL)

31 PTT partial thromboplastin time (seconds)

32 WBC Leukocyte count (count · 103/µL)

33 Fibrinogen (mg/dL)

34 Platelets (count · 103/µL)

Demographics (Feature 35-40)
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35 Age Years (100 for patients 90 or above)

36 Gender Female (0) or Male (1)

37 Unit1 Administrative identifier for ICU unit (MICU)

38 Unit2 Administrative identifier for ICU unit (SICU)

39 HospAdmTime Hours between hospital admit and ICU admit

40 ICULOS ICU length-of-admission (hours since ICU admit)

Table A.2: Features of dataset from PhysioNet [7].
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Appendix B

Sepsis 1

In this section, we describe the disease sepsis, and how it is diagnosed, based on the article

[52]. Sepsis is a severe medical condition, where damage to tissue and organs is caused by

the immune system’s response to an infection. If bacteria from an infection spreads to the

bloodstreams, it might spread to other organs, which can be fatal. The immune system reacts

to the infection by lowering the blood pressure and thereby slowing down the blood flow,

making it harder for the bacteria to reach the organs. However, this reduces the oxygen flow

to the organs, which can cause them to fail, resulting in organ and tissue damage.

Sepsis is described as a life-threatening disease, as the mortality rate ranges between ∼
20% to ∼ 40%, and is one of the most common causes of death in intensive care units (ICUs).

The number of sepsis cases has doubled over the last 10 years, however, the overall mortality

rate has decreased due to advancements within health care. Early detection of sepsis can be

difficult, as the signs of the disease can be divergent.

As of the time of writing, there have been a total of three sepsis definitions. With the

sepsis-3 definition, the old criteria were replaced with a new system, Sequential Organ Failure

Assessment (SOFA). Now, sepsis is diagnosed with the SOFA scoring system, which evaluates

the condition of six organ systems. This score can be used to determine whether any of the

organ systems have reduced functionality, which may indicate that the patient has sepsis. The

six organ systems that the SOFA scoring system evaluate are:

• Respiratory System: By measuring the partial pressure of oxygen in the arterial blood

[53].

• Coagulation: By measuring the number of platelets in the blood. A higher number of

platelets results in a higher chance of blood clotting [54].

• Cardiovascular: By measuring hypotension, which is a low systolic blood pressure [55].

• Liver: By measuring the amount of bilirubin present in the liver. A high amount of

bilirubin is a sign of diseases [56].

• Renal: By measuring the amount of creatinine in the renal or urine output of the patient.

Creatinine is a waste product in the blood, and is the result of muscle attrition [57].

• Central Nervous System: By measuring disruptions in brain function with the Glasgow

Coma Scale (GCS). GCS analyses the mental status of the patient through a set of criteria

and assign points to the patient according to their brain functions. A lower GCS score

signifies less consciousness in the patient [58].

1This appendix is a slightly modified version of Appendix A from our previous semester report [2].
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A score of 0 to 4 can be assigned to each of the six evaluated organ systems, meaning that

the total score can be between 0 and 24. If a patient experiences symptoms that result in a

SOFA score with an increase of two, the patient is diagnosed with sepsis. The number of

points can reflect the mortality of the patient, as more points can indicate a more severe case

of sepsis. For example, with a score ranging between 0 and 6, the mortality of the patient can

be expected to be less than 10%, and with a score above 15, the expectation is 90%.
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Appendix C

Theory

C.1 Artificial Neural Networks 1

In this section, we give an introduction to artificial neural networks, based on information

from [22] and [59]. Artificial neural networks are a group of algorithms inspired by the

biological neural network, like the human brain. Throughout this report, we refer to artificial

neural networks as neural networks.

A neural network consists of an input layer, a number of hidden layers, and an output

layer, each containing a number of neurons. Between two consecutive layers, a number of

weights connect the neurons in layer l − 1 to neurons in layer l. The weights are denoted wl
jk,

where j is the index of the neuron in layer l and k is the index of the neuron in layer l − 1.

Each neuron contains an internal value, that we denote zl
j, and an output, denoted al

j. al
j is the

output of an activation function, σ, with input zl
j, as shown in Equation C.1b. zl

j is calculated

as the sum of products of all weights connected to the neuron and the output of the activation

function for the corresponding neuron from the previous layer, al−1
k , shown in Equation C.1a.

An activation function is used to make a neural network approximate nonlinear functions.

Without an activation function, a neural network is only able to approximate linear functions,

which is undesirable in many cases. An example of a nonlinear activation function is sigmoid(
1

1+exp(−x)

)
, which produces outputs between 0 and 1. Additionally, neural networks use

biases, which are used to shift the function of the neural network.

zl
j = ∑

k
wl

jk · al−1
k (C.1a)

al
j = σ(zl

j) (C.1b)

In the following description, the bias is augmented as an extra activation from the previous

layer, always having a value of 1, which is analogous to having a bias neuron with an output

of 1, connected with weights to all neurons in a layer. Additionally, we will only be using

σ to symbolize an activation function, although activation functions can be different between

layers.

Instead of representing the activations from a layer as individual scalars, the activations

can also be represented in the form of a vector, al , where the elements are each activation from

the layer. The weights for a layer l can be represented as a matrix W l , where index W l [2, 3]

1This section is a slightly modified version of Section 4.1 from our previous semester report [2].
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refers to wl
23. With this representation, we can calculate the activations of a layer al using

matrix multiplication as shown in Equation C.2:

zl = W l · al−1 (C.2a)

al = σ(zl) (C.2b)

These equations encapsulate the forward propagation of the neural network, from input to

output.

C.1.1 Training a Neural Network

In this section, we explain how a neural network is trained. The basic principle of training

a neural network is to update the parameters of the network based on the gradient of a loss

function, C, given a set of input-output pairs. C is a function that measures the correctness

of the prediction in relation to the ground truth labels. This measure is also known as the

loss or loss. One example of a loss function is cross-entropy, which can be used when doing

classification. In our case, we do binary classification when classifying whether a person gets

sepsis or not.

C = − 1
|D| ∑

(x,y)∈D
(y · log(ŷ(x)) + (1− y) · log(1− ŷ(x))) (C.3)

Equation C.3 calculates the loss for a neural network, in relation to a dataset D, where D
contains the input-output pairs (x, y). ŷ(x) is the output of the activation function of the

output layer in the network, aL.

C.1.1.1 Backpropagation

The purpose of backpropagation is to calculate the gradients of the loss function with respect

to the parameters of the neural network.

The gradients of the loss function are calculated as the partial derivatives of C with respect

to each weight in W , denoted as ∂C
∂wl

jk
. Using the chain rule, this can be rewritten as shown in

Equation C.4, where the partial derivatives on the right-hand side each represent a backward

step in the backpropagation.

∂C
∂wl

jk
=

∂C
∂al

j
·

∂al
j

∂zl
j
·

∂zl
j

∂wl
jk

(C.4)

As ∂C
∂al

j
· ∂al

j

∂zl
j

is used for calculating the gradients with respect to all weights to neuron j in layer

l, we introduce δl
j as an error term such that δl

j =
∂C
∂al

j
· ∂al

j

∂zl
j
.

If we introduce ∇aC as a vector of partial derivatives of C with respect to each activation

in the output layer, shown in Equation C.5a, then the error term of the output layer can be

calculated as shown in Equation C.9a. σ′ is the derivative of the activation function with
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respect to the inputs to that activation function, zL
j , such that the output of σ′ is the vector

shown in Equation C.5b.

∇aC =


∂C
∂aL

1
...

∂C
∂aL
|aL |

 (C.5a)

σ′(zL) =


∂aL

1
∂zL

1
...

∂aL
|aL |

∂zL
|aL |

 (C.5b)

The error term of the output layer is used to calculate the error term of the preceding layer,

using Equation C.9b, which is in turn used to further propagate the error term backward

through the network. This means that the error term has to include these extra backward steps,

which can be seen in the expansion of the chain rule (Equation C.4), shown in Equation C.6.

∂C
∂wl

jk
= ∑

i

(
∂C

∂al+1
i

·
∂al+1

i

∂zl+1
i

·
∂zl+1

i

∂zl
j

)
·

∂zl
j

∂wl
jk

(C.6)

The expansion introduces the term ∂zl+1
i

∂zl
j

shown in Equation C.7, where the right hand side is

derived from Equation C.1.

∂zl+1
i

∂zl
j

= wl+1
ij · σ

′(zl
j) (C.7)

In Equation C.8, the partial derivatives inside the summation in Equation C.6 is substituted

by the error term from the following layer and Equation C.7.

∂C
∂wl

jk
= ∑

i

(
δl+1

i · wl+1
ij · σ

′(zl
j)
)
·

∂zl
j

∂wl
jk

(C.8)

The summation in Equation C.6 can be expressed in the form of matrix-vector multiplication,

calculating all error terms for a layer, as shown in Equation C.9b.

δL = ∇aC� σ′(zL) =


∂C
∂zL

1
...

∂C
∂zL
|aL |

 =


δL

1
...

δL
|aL|

 (C.9a)

δl = ((W l+1)T · δl+1)� σ′(zl) =


∂C
∂zl

1
...

∂C
∂zl
|al |

 =


δl

1
...

δl
|al |

 (C.9b)
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Now that the error terms are introduced,
∂zl

j

∂wl
jk

from Equation C.4 and Equation C.6 is the

only additional term that needs to be considered.
∂zl

j

∂wl
jk

is calculated as the derivative of Equa-

tion C.1a with respect to wl
jk, which has the result: al−1

k . Therefore, the gradients of C with

respect to each parameter in the neural network are calculated as shown in Equation C.10.

∂C
∂wl

jk
= δl

j · al−1
k (C.10)

C.1.1.2 Optimization

When the gradients have been computed, they can be used to update the parameters of the

neural network. One way of doing this is through gradient descent, which updates the pa-

rameters along their gradients towards a local optimum for the loss function. Equation C.11

calculates the delta values for each weight, which is how much the weights are increased or

decreased in the optimization step.

∆wl
jk = −µ · 1

m
·

m

∑
i

∂Cxi

∂wl
jk

(C.11)

Here, µ is the learning rate, which is a small positive real number that adjusts how much the

parameters of the neural network are updated in a single training step. The delta values are

calculated as the learning rate multiplied by the average of the gradients for data samples

xi. If we consider simple gradient descend, the gradients are calculated for the entire dataset,

meaning that m denotes the total number of data samples in Equation C.11. This can be time

consuming for large datasets, but can be improved by using stochastic gradient descend. In

stochastic gradient descend, a randomly selected batch of training samples are considered at

a time, and the average gradient for the training samples are calculated. In this case, m in

Equation C.11 denotes the number of samples in the batch.

Choosing the value of the learning rate is important for the training of the network. A

high learning rate makes larger changes to the parameters and thus converges faster, whereas

a low learning rate makes smaller changes and is better at fine-tuning parameters. Therefore,

it is advantageous to have a high learning rate early in the training process, to converge faster,

and then change to a low learning rate later in the training process, to fine-tune parameters

closer to the optimum. Adam is a method that uses this concept of adaptive learning rate,

which finds individual learning rates for updating different parameters in the network.

C.2 Convolutional Neural Networks 2

In this section, we describe convolutional neural networks (CNNs) based on information from

[59]. The neural networks we describe in Section C.1 have layers, where every neuron in that

layer is connected to every neuron in the previous layer. This means that every neuron in layer

2This section is a slightly modified version of Section 4.3 from our previous semester report [2].
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l, considers every activation from layer l − 1, which might not be preferable for some types

of data. For example, the data for a patient in CinC2019 and PCT is represented as a number

of features for a series of timesteps. If we consider a neural network with f eatures · timesteps
neurons in its input layer, then the neurons in the hidden layer will consider every feature

for every timestep. The neurons ignore the temporal structure of the data, as it treats data

from early in the admission on the same basis as data in the final part of admission. The

temporal structure then has to be inferred from the data by the network. CNNs provide an

architecture, which, among others, tackle this issue, by introducing three ideas: local receptive

fields, shared weights, and pooling.

C.2.1 Local Receptive Fields

As opposed to a fully connected neural network, a neuron in a convolutional layer l is only

connected to some of the neurons in layer l− 1. Since we can consider the data we work with

to be two-dimensional, one axis for time and one axis for features, we can consider the input

as a grid of neurons of size h× i, where h is the number of timesteps and i is the number of

features. Considering layer l − 1 as a grid of neurons is useful for defining how the neurons

in layer l are connected to neurons in l − 1. Since we want to encode the temporal structure

of our data in the network architecture, each neuron in layer l is connected (by weights) to a

region of neurons in layer l− 1. This region of neurons is called the local receptive field (LRF)

for that convolutional neuron.

In our case, we want the LRFs for the neurons in layer l to be the neurons for t timesteps.

The LRF for the first neuron in layer l contains the neurons from position (1, 1) to (t, i) from

layer l− 1, the second contains the neurons from position (2, 1) to (t+ 1, i), and so forth. More

concisely, Equation C.12 defines the LRF for neuron j in layer l (LRFl
j ).

LRFl
j = {(j + 0, 1), . . . , (j + t− 1, 1), (j + 0, 2), . . . , (j + t− 1, i)}, (C.12)

The position on the form (x, y) denotes the neuron from layer l − 1 at position (x, y), when

representing layer l − 1 as a grid.

An alternative perspective is to consider the LRFs for the neurons in layer l to be moved

one value at a time along the time axis, which is illustrated in Figure C.1.

Figure C.1: The LRF for the three neurons in layer l.

In this case, we slide the LRFs by one, but it is also possible to slide them by any value. This

value is called the stride. Figure C.2 shows an example where the stride s = 2.
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Figure C.2: The LRF for the two neurons in layer l, with a stride s = 2.

The LRF definition can be expanded to account for stride as shown in Equation C.13.

LRFl
j =

{(
(j− 1) · s + 1, 1

)
, . . . ,

(
(j− 1) · s + t, 1

)
,
(
(j− 1) · s + 1, 2

)
, . . . ,

(
(j− 1) · s + t, i

)}
(C.13)

Consequently, layer l will have d h−t+1
s e neurons, as the stride affects how many neurons are

necessary to create the LRFs.

C.2.2 Shared Weights & Biases

CNNs use shared weights and biases, which means that some neurons share the same weights.

Equation C.14 shows the output of the jth neuron in a convolutional layer.

al
j = σ(bl +

t

∑
m=1

i

∑
n=1

wl
m,n · al−1

j+m,n) (C.14)

σ is the activation function, bl is the shared weight to the bias neuron, wl is the shared weights

arranged in an array of size t× i, and al−1
x,y is the activation from the previous layer at position

x, y. Since the weights are shared, we can say one layer finds one "feature" across the entire

input. This is useful, as one pattern (for example, an increase in heart rate) can be useful re-

gardless of its position in the sequence. This makes the convolution layer translation invariant,

as it does not matter where in the sequence the pattern is found.

The map from the input layer to the hidden layer is often called a feature map. The shared

weights and bias are often called the kernel or filter. Using shared weights also reduces the

number of weights to the size of the kernel.

So far, we have only described a convolutional layer with one feature map, but a convolu-

tional layer will often have many feature maps. Multiple feature maps can be implemented by

adding more neurons to the convolutional layer with the same LRFs, but using other kernels.

Therefore, the output can be considered two-dimensional, with the (convoluted) timesteps on

one axis and the feature maps for each kernel on the other.

C.2.3 Pooling Layers

Pooling layers are typically placed after a convolution layer and are used to condense the

output of the feature maps. A pooling layer consists of pooling units, and, similarly to con-

volutional layers, each unit has its own LRF. As opposed to convolutional neurons, a pooling
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unit’s LRF only contains neurons from one feature map from the previous layer. A pooling

layer attempts to summarize all the feature maps from the previous layer. While many types

of pooling exist, we describe max pooling, as it is commonly used. The activation of a max

pooling unit is simply the highest activation from its LRF.

Figure C.3 shows max pooling on an input layer of 4 timesteps with 2 features. The max

pooling layer has two max pooling units with a pooling size of 2 and a stride of s = 2. We

can see the values 3 and 7 being pooled from the first feature map and 4 and 8 for the second

feature map.

3

1
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7 8

6

4

2

8

43

7

Figure C.3: Max pooling with a pooling size of 2 and stride s = 2.

C.2.4 Padding

Padding allows the output of a convolutional or pooling layer to be calculated for positions

where the kernel or filter would otherwise include out of bounds values. As previously

mentioned, a convolutional layer with one kernel requires d h−t+1
s e neurons, assuming the

input layer is h× i. We describe a padding method often referred to as "same" padding, where

we add neurons to the previous layer such that our convolutional layer has d h
s e neurons.

Figure C.4 shows an example of padding a layer l − 1 such that the number of neurons in

layer l is 4 instead of 2. We can see that same padding places padding neurons both at the

beginning and the end of the feature maps.

Figure C.4: A layer l − 1 with 4× 2 neurons, with same padding. Layer l has one kernel and t = 3.

C.2.4.1 Causal Padding

Another type of padding is causal padding. Causal padding works similarly to same padding,

but instead of placing the padding neurons at the edges of the feature maps, it simply places
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all of them in the first indexes. This is useful for maintaining the causal ordering of the data.

For example, in the same padding example from Figure C.4, the first neuron in l considers the

first and second non-padding neuron in l − 1. Figure C.5 shows causal padding and how the

first neuron in l only considers the first non-padding neuron in l − 1.

Figure C.5: Example of causal padding of a layer l − 1 with 4× 2 neurons, where t = 3 for layer l.

C.2.5 Dilated Convolutions

Dilated convolutions are a type of convolutions, where the neurons in the LRF for a neuron

are spread out as opposed to adjacent to each other. This can be defined by the dilation rate

d. The LRF for a dilated convolutional neuron can be given by Equation C.15.

LRFl
j =

{(
(j− 1) · s + 1 + (0 · d), 1

)
, . . . ,

(
(j− 1) · s + 1 +

(
(t− 1) · d

)
, 1
)

,(
(j− 1) · s + 1 + (0 · d), 2

)
, . . . ,

(
(j− 1) · s + 1 +

(
(t− 1) · d

)
, i
)} (C.15)

Figure C.6 shows how the dilated convolutional layer l is connected to l − 1 with a stride

s = 1, dilation rate d = 2, and the size of the LRF t = 2. We can see how the first neuron in

layer l only considers the neurons on the first and third row in layer l − 1.

Figure C.6: Layer l, where t = 2 with a dilation rate d = 2 connected to a layer l − 1 with 4× 2 neurons.

C.2.6 Temporal Convolutional Networks

A Temporal Convolutional Network (TCN) is a network, which attempts to apply CNNs

to temporal data by utilizing causal dilated convolutions [60]. This is achieved by adding

multiple causal dilated convolutional layers after each other with increasing dilation rate. By

increasing the dilation rate of each layer, the values from the input that is needed to calculate
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the output increases, without increasing the size of the kernels. Assuming layer 0 is the first

dilated convolution layer and layer l is the lth, then layer l will have a dilation rate of d = tl .

Figure C.7 shows three causal dilated convolutional layers each with one kernel where

t = 2 and an increasing dilation rate. If we consider the LRF of the neuron τ, then its LRF

only contains two neurons from the previous layer, which also consider two neurons from the

layer before that, and so forth. As we get to the input layer, we can see that τ is reliant on 8

input values. We can double this amount by adding layer l = 3, which results in every output

considering 16 values from the input.

Figure C.7: A TCN with three dilated convolutional layers with an increasing dilation rate.

C.2.7 Training

Training a CNN follows the same procedure as described in Section C.1, but introduces two

new types of layers, convolutional layers and pooling layers. Therefore, we describe the train-

ing process for these two types of layers. The overall training process is the same, where we

find gradients through backpropagation and then update the weights. However, new equa-

tions are needed to find the gradients for convolutional and pooling layers.

Convolutional layers are trained by updating the weights in the kernels, with respect to the

gradients found using backpropagation. The gradients are found through Equation C.16 [61].

∂C
∂wx,y

= ∑
j

∂C
∂zl

j
·

∂zl
j

∂wx,y
(C.16)

We can derive the gradient ∂C
∂wx,y

in convolutional layer l by summing the gradients for every

output in zl . zl
j is the input to the activation function, same as in Section C.1. By updating the

weights in the kernel, instead of independently updating the weights between each neuron as

with a normal neural network, we maintain weight sharing between convolutional neurons.

Pooling layers do not have any parameters. Backpropagation through a pooling layer only

involves propagating the gradients. When backpropagating through a pooling layer, the gra-

dient to a pooling unit is upsampled to all the neurons in the pooling unit’s LRF [62]. The

specific method for upsampling a gradient depends on the type of pooling layer. For max
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pooling, the upsampling method propagates the gradient to the neuron with the highest ac-

tivation in the LRF of each pooling unit, and propagates a gradient of 0 to the remaining

neurons [63].
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Appendix D

State of the Art Models

D.1 Description of Models

In this section, we give a overview of the models, we have read papers about during research

for this project.

SeFT

[15] encodes the multivariate time series data into a set-encoding for their proposed Set Func-

tions for Time Series (SeFT) model architecture. The set-encoding consists of a set of tuples

on the form (t, v, f ) where v is the value of feature f at timestep t for each sample. They

summarize each set with a set function, which is given as input to an attention layer alongside

the set and two query vectors. The output of the attention layer is given to an FFNN for clas-

sification. On CinC2019 they report a better AUROC and a worse AUPRC on SeFT compared

to IP-NETS and GRU-D, which we describe in the following sections.

IP-NETS

IP-NETS is an Interpolation-Prediction network, which consists of two parts, an interpolation

network and a classification network [64]. The classification network can be changed to any

classification model, but a GRU is used in the paper. The interpolation network interpolates

the time series input and gives the interpolated time series data to the classification network.

IP-NETS is the second best performing network on Papers with Code on CinC2012 [65] and

the second best on CinC2019 in the review [12].

GRU-D

The GRU-D model is a GRU with input decay and hidden state decay, which uses a data

representation that indicates missing values in the time series data and a data representation

that indicates the time since the last observed value [20]. We refer to these data representa-

tions as the missingness representations. They show that the model performs better than a

standard GRU with multiple different imputation methods on CinC2012. They also show that

appending the missingness representations to the time series input improves the performance

of a standard GRU. Additionally, we found GRU-D is a commonly used model for compar-

ison in multiple papers, where it often performs well in comparison to the other models

[12][15][14][16].
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DATA-GRU

The Dual-Attention Time-Aware Gated Recurrent Unit (DATA-GRU) uses a GRU and two

attention mechanisms, an unreliability-aware attention, and a symptom-aware attention [16].

The unreliability-aware attention is based on the fact that imputed values are less reliable than

observed values, and the symptom-aware attention is used for learning information about how

the EHR data is sampled. DATA-GRU is the best performing model on CinC2019 and second

best on CinC2012 [12].

LGnet

LGnet is an LSTM with a memory module for generating global estimates for the missing

values [66]. The paper focuses more on forecasting rather than classification, but it is the third

best performing model for the classification task for CinC2019 and CinC2012 in [12].

BRITS

BRITS (Bidirectional Recurrent Imputation for Time Series) is a recurrent method, that heavily

focuses on imputation, which enhances its classification [21]. BRITS consists of two RNNs,

one which handles the standard time series (forwards in time) and one which handles the time

series data in reverse (going backward in time). Both RNNs predict the missing values and

classify the data. It, among others, uses the difference between the missing value estimations

to optimize the imputation for both RNNs. The model’s final classification prediction is the

average classification prediction from the two RNNs. The error in the classification is used to

optimize the classification for both RNNs.

M-RNN

The M-RNN paper [67] expresses a lack of methods that consider imputation across features

and time simultaneously. Therefore, they propose M-RNN, an RNN architecture with two

sequential blocks. The first block considers the features of the data separately across time,

which is given to the second block that considers the data across features. In its original paper,

the method is tested in a classification setting, with an RNN using the imputed data [67].

Despite the method showing the best AUROC of the presented methods in the paper, more

recent methods, such as BRITS, outperforms M-RNN in both imputation and classification

settings [21][68][69].

D.2 Selecting Models

In this section, we discuss which of the models we want to base the models we experiment

with on. As we do not have time for testing all the models, we choose the models that match

the desired characteristics the best. One of the important characteristics is that it should work

on time series data with a high missing rate. All of the models work with the missing rate

of CinC2019, but we do not have any information about how well the models will perform

with the higher missing rate of PCT. Singh et al. [19] show that there is a connection between
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the observation rate and whether the patient develops sepsis. Therefore, we choose to discard

the models that only replace the missing values and not actively uses the information in the

missingness. These discarded models are IP-NETS and LGnet.

SeFT is interesting because it uses a different data representation and is not recurrent like

the remaining models. However, SeFT performs worse than IP-NETS and GRU-D based on

the AUPRC in their experiment on CinC2019 [15]. Due to the worse performance, and because

SeFT requires a data representation conversion from time series, we limit the work load of the

project by narrowing our choices down to models which use time series data.

BRITS and M-RNN both focuses on imputation with RNNs, and show almost equal per-

formance in the review [12]. However, other sources show that BRITS outperforms M-RNN

in both imputation, and classification settings [21, 68, 69]. Due to their similar approach, we

choose to experiment with BRITS over M-RNN.

DATA-GRU is one of the best performing models according to [12], which makes it a

good candidate. However, we could only find one citation besides the review, which uses it

for performance comparison. This source shows GRU-D performs better than DATA-GRU for

MIMIC-III and CinC2012 [70] Because it is not a well-tested model and GRU-D might perform

better, we do not experiment with DATA-GRU.

As GRU-D is often used as a baseline in comparisons with other models and often per-

forms well in the comparisons [12][14][15][16], we also choose to experiment with GRU-D.

In summary, we choose to experiment with GRU-D and BRITS. To have a baseline, we also

choose to experiment with the TCN and LSTM model from our last project [2], and use LOCF

imputation for handling the missing values for these models.
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Appendix E

Preliminary Experiments

E.1 PhysioNet Computing in Cardiology Challenge 2019

dataset Experiment

As we describe in Section 2.2, CinC2019 consists of two datasets referred to as CinC2019A

and CinC2019B. This presents us with a choice of whether to combine the two datasets as one,

use them separately, or do both. We can also experiment on only one of the datasets, but this

would limit our ability to reason about how the model works on multiple hospitals. While

this results in less time spent per experiment, we do not consider this a good trade-off and do

therefore not consider it further. We start by outlining the pros and cons of each approach in

Table E.1.

Approach Pros Cons

CinC2019A and

CinC2019B as one

dataset

• Larger dataset.

• More positive samples (2,932).

• Better understanding about the

models’ ability to predict sepsis

across multiple hospitals.

• Data from multiple hospitals is

an additional variable.

• Longer training time per model.

CinC2019A and

CinC2019B as

separate datasets

• Able to evaluate models on

both hospitals separately.

• Avoids mixing hospital data.

• Smaller datasets.

• Smaller number of positive

samples (1,790 and 1,142).

• Train a model for each dataset.

CinC2019A and

CinC2019B both

as one dataset and

separate

• All the pros of the other ap-

proaches.

• More data.

• Longer training time.

• More time needed for analysis.

Table E.1: Table of pros and cons for the different approaches of handling CinC2019A and CinC2019B.

One of the major aspects to consider is the number of positive samples available in the

dataset(s), and whether or not the models can learn the positive samples. Goodfellow et
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al. argue (in 2016) a rough rule of thumb is to have 5,000 samples for each class in order

to achieve acceptable performance [22]. While the number of required samples can be de-

bated for different problems, it highlights the problem that too few samples in a class can be

problematic. We, therefore, need to consider whether the number of positive samples in our

datasets becomes a problem if we choose to consider them separately.

Evaluating our models on a dataset from two hospitals can provide us with insights into

how well they perform across hospitals. It can be preferable to remove that variable from

the dataset, and simply evaluate them separately. Using CinC2019A and CinC2019B as one

dataset and separately provides the most amount of data, but this data might also not ben-

efit us. Additionally, experiments will take longer to perform and analyze, which limits the

number of experiments we can do.

This is no easy choice, as all approaches have pros and cons. Due to this, we perform

a preliminary experiment, where we evaluate the consequences of these three approaches.

We choose to only run this experiment with the TCN and LSTM from our previous semester

report [2], as we are not attempting to do an exhaustive analysis. For the TCN, we use two

temporal blocks with 64 kernels. For the LSTM, we use 128 units. We use the setup we

describe in Chapter 10 on CinC2019A, CinC2019B and CinC2019A + CinC2019B with both the

TCN and the LSTM.

A general issue we observe is that the models tend to not make predictions with high

confidences. We see that there is a very small number of predictions above 0.3. Even though

we also see this when using CinC2019A and CinC2019B as one dataset, this problem may be

caused by having too few positive samples in the dataset. However, it is important to note

that we did not consider the hyperparameters for these models in great detail. Due to this,

better tuned models might alleviate this problem. Still, in order to maximize the number of

positive samples, we choose to combine CinC2019A and CinC2019B as one dataset, which

we simply refer to as CinC2019 from now on. Performance and calibration metrics and the

relevant graphs for this experiment can be seen in the following sections.

E.2 Preliminary Experiment CinC2019A

preliminary ECE ACE MCE

tcn 0.003± 0.004 0.004± 0.003 0.406± 0.275

lstm 0.005± 0.003 0.006± 0.002 0.453± 0.279

Table E.2: Calibration metrics
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preliminary AUROC AUPRC

tcn 0.744± 0.009 0.075± 0.002

lstm 0.747± 0.007 0.073± 0.002

Table E.3: Performance metrics

(a) reliability-diagram-dpa-
Preliminary-tcn

(b) reliability-diagram-dpa-
Preliminary-lstm

Figure E.1: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dpa-
Preliminary-tcn

(b) sample-confidence-
distribution-graph-dpa-
Preliminary-lstm

Figure E.2: Sample confidence distribution graph for the experiment.

(a) history-graph-dpa-
Preliminary-tcn

(b) history-graph-dpa-
Preliminary-lstm

Figure E.3: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dpa-Preliminary-
tcn

(b) dc-graph-dpa-Preliminary-
lstm

Figure E.4: DC.

(a) TPRTNR-graph-dpa-
Preliminary-tcn

(b) TPRTNR-graph-dpa-
Preliminary-lstm

Figure E.5: TPR and TNR.

E.3 Preliminary Experiment CinC2019B

preliminary ECE ACE MCE

tcn 0.005± 0.002 0.007± 0.003 0.768± 0.257

lstm 0.003± 0.001 0.005± 0.002 0.583± 0.143

Table E.4: Calibration metrics

preliminary AUROC AUPRC

tcn 0.716± 0.013 0.045± 0.005

lstm 0.737± 0.019 0.048± 0.002

Table E.5: Performance metrics
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(a) reliability-diagram-dpb-
Preliminary-tcn

(b) reliability-diagram-dpb-
Preliminary-lstm

Figure E.6: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dpb-
Preliminary-tcn

(b) sample-confidence-
distribution-graph-dpb-
Preliminary-lstm

Figure E.7: Sample confidence distribution graph for the experiment.

(a) history-graph-dpb-
Preliminary-tcn

(b) history-graph-dpb-
Preliminary-lstm

Figure E.8: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dpb-Preliminary-
tcn

(b) dc-graph-dpb-Preliminary-
lstm

Figure E.9: DC.

(a) TPRTNR-graph-dpb-
Preliminary-tcn

(b) TPRTNR-graph-dpb-
Preliminary-lstm

Figure E.10: TPR and TNR.

E.4 Preliminary Experiment CinC2019

preliminary ECE ACE MCE

tcn 0.009± 0.002 0.008± 0.003 0.828± 0.180

lstm 0.008± 0.003 0.007± 0.003 0.366± 0.440

Table E.6: Calibration metrics

preliminary AUROC AUPRC

tcn 0.729± 0.011 0.062± 0.004

lstm 0.745± 0.009 0.065± 0.002

Table E.7: Performance metrics
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(a) reliability-diagram-dp-
Preliminary-tcn

(b) reliability-diagram-dp-
Preliminary-lstm

Figure E.11: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-
Preliminary-tcn

(b) sample-confidence-
distribution-graph-dp-
Preliminary-lstm

Figure E.12: Sample confidence distribution graph for the experiment.

(a) history-graph-dp-
Preliminary-tcn

(b) history-graph-dp-
Preliminary-lstm

Figure E.13: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dp-Preliminary-
tcn

(b) dc-graph-dp-Preliminary-
lstm

Figure E.14: DC.

(a) TPRTNR-graph-dp-
Preliminary-tcn

(b) TPRTNR-graph-dp-
Preliminary-lstm

Figure E.15: TPR and TNR.

E.5 Hyperparameter Tuning

In this section, we find the baseline hyperparameters we use in our experiments. Before we

consider how we find the values for these hyperparameters, we need to establish which of the

hyperparameters we consider changing. Testing every possible combination can be done by

performing an exhaustive search for every combination of every hyperparameter. However,

the downside to this is that it is very time consuming. Therefore, we start by selecting the

hyperparameters we consider most relevant for each model.

As we describe in Section 7.2, the TCN is made of temporal blocks, consisting of causal,

dilated, convolution layers. We choose to tune the number of temporal blocks, the number

of filters, and the type of activation function. When we change the filters or the activation

function, this change is made to all the convolution layers.

As for LSTM, BRITS, and GRU-D, we choose to tune the number of units.

E.5.1 Tuning

In this section, we describe how we test the hyperparameters and how we evaluate their

effects on the models. The goal is not to do a comprehensive analysis of the effects of the

hyperparameters, as the optimal values for these hyperparameters might change as we make

changes to our models in our experiments. Instead, the goal is to provide a general idea of

how the hyperparameters affect our models.

In order to do this, we utilize a random search for the hyperparameters. Random search

randomly chooses a unique combination of hyperparameters, trains the model with these
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hyperparameters, and then shows the results, and repeats with another unique combination

of hyperparameters. To maximize the number of combinations of hyperparameters we test,

we only test each configuration once. Also, we only consider the AUPRC, AUROC, and ECE

on the validation data.

A minimum and maximum value, and the step size is defined for every numerical hyper-

parameter. For example, for the number of filters in the TCN, we choose a minimum value of

16 and a maximum value of 128 and a step size of 16. This results in the following possible

values for the number of filters: [16, 32, 48, . . . , 112, 128].

The tuning parameters are as follows:

• TCN

– Filters

* Min: 16

* Max: 128

* Step: 16

– Temporal Blocks

* Min: 1

* Max: 5

* Step: 1

– Activation

* ReLU

* TanH

• LSTM, BRITS, and GRU-D

– Units

* Min: 32

* Max: 512

* Step: 32

E.5.2 Results

For TCN, we saw that ReLU generally outperforms TanH as the activation function. Two

temporal blocks perform best. Changing the number of filters did not provide any meaningful

change. For these reasons, we choose to use ReLU, with two temporal blocks for TCN, and 64

filters.

For LSTM, we observe that 64 units performs the best, and therefore choose 64 units for

LSTM.

For BRITS, we see no difference in performance when changing units. Therefore, we

use 108 units for BRITS, as this is the number of units Cao et al. [21] uses in their original

implementation [71].
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For GRU-D, we generally see better performance when increasing the number of units, up

to 128 units. Using more than 128 units does not appear to benefit the model. For this reason,

we choose to use 128 units for GRU-D.
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Appendix F

PhysioNet Computing in Cardiology Chal-
lenge 2019 dataset

F.1 Baseline

baseline ECE ACE MCE

TCN 0.011± 0.002 0.010± 0.002 0.688± 0.279

LSTM 0.007± 0.001 0.006± 0.001 0.363± 0.236

BRITS 0.007± 0.002 0.007± 0.001 0.225± 0.182

GRUD 0.007± 0.001 0.006± 0.001 0.692± 0.174

XGBOOST 0.008± 0.000 0.007± 0.000 0.453± 0.000

Table F.1: Calibration metrics

baseline AUROC AUPRC

TCN 0.753± 0.011 0.083± 0.006

LSTM 0.764± 0.007 0.076± 0.003

BRITS 0.769± 0.012 0.089± 0.007

GRUD 0.731± 0.009 0.066± 0.001

XGBOOST 0.816± 0.000 0.114± 0.000

Table F.2: Performance metrics
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(a) reliability-diagram-dp-
baseline-TCN

(b) reliability-diagram-dp-
baseline-LSTM

(c) reliability-diagram-dp-
baseline-BRITS

(d) reliability-diagram-dp-
baseline-GRUD

(e) reliability-diagram-dp-
baseline-XGBOOST

Figure F.1: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-
baseline-TCN

(b) sample-confidence-
distribution-graph-dp-
baseline-LSTM

(c) sample-confidence-
distribution-graph-dp-
baseline-BRITS

(d) sample-confidence-
distribution-graph-dp-
baseline-GRUD

(e) sample-confidence-
distribution-graph-dp-
baseline-XGBOOST

Figure F.2: Sample confidence distribution graph for the experiment.
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(a) history-graph-dp-baseline-
TCN

(b) history-graph-dp-baseline-
LSTM

(c) history-graph-dp-baseline-
BRITS

(d) history-graph-dp-baseline-
GRUD

Figure F.3: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dp-baseline-TCN (b) dc-graph-dp-baseline-
LSTM

(c) dc-graph-dp-baseline-
BRITS

(d) dc-graph-dp-baseline-
GRUD

(e) dc-graph-dp-baseline-
XGBOOST

Figure F.4: DC.
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(a) TPRTNR-graph-dp-
baseline-TCN

(b) TPRTNR-graph-dp-
baseline-LSTM

(c) TPRTNR-graph-dp-
baseline-BRITS

(d) TPRTNR-graph-dp-
baseline-GRUD

(e) TPRTNR-graph-dp-
baseline-XGBOOST

Figure F.5: TPR and TNR.

F.2 Class Weight Experiment

class-weight ECE ACE MCE

4-TCN 0.029± 0.004 0.031± 0.001 0.738± 0.165

4-LSTM 0.030± 0.003 0.030± 0.003 0.454± 0.057

4-BRITS 0.035± 0.009 0.035± 0.009 0.536± 0.211

4-GRUD 0.041± 0.006 0.041± 0.006 0.762± 0.209

4-XGBOOST 0.024± 0.000 0.024± 0.000 0.506± 0.000

16-TCN 0.100± 0.014 0.102± 0.013 0.735± 0.049

16-LSTM 0.113± 0.020 0.113± 0.020 0.755± 0.120

16-BRITS 0.122± 0.021 0.122± 0.021 0.682± 0.162

16-GRUD 0.152± 0.014 0.152± 0.014 0.807± 0.048

16-XGBOOST 0.086± 0.000 0.086± 0.000 0.664± 0.000

49-TCN 0.166± 0.016 0.167± 0.015 0.796± 0.005

49-LSTM 0.231± 0.024 0.231± 0.024 0.799± 0.019

49-BRITS 0.288± 0.034 0.288± 0.034 0.778± 0.019

49-GRUD 0.338± 0.023 0.338± 0.023 0.831± 0.013

49-XGBOOST 0.172± 0.000 0.172± 0.000 0.752± 0.000

Table F.3: Calibration metrics
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class-weight AUROC AUPRC

4-TCN 0.778± 0.013 0.082± 0.004

4-LSTM 0.776± 0.007 0.076± 0.002

4-BRITS 0.775± 0.012 0.091± 0.005

4-GRUD 0.741± 0.013 0.068± 0.002

4-XGBOOST 0.812± 0.000 0.111± 0.000

16-TCN 0.775± 0.020 0.085± 0.003

16-LSTM 0.775± 0.012 0.078± 0.004

16-BRITS 0.793± 0.004 0.097± 0.004

16-GRUD 0.747± 0.008 0.068± 0.003

16-XGBOOST 0.805± 0.000 0.096± 0.000

49-TCN 0.776± 0.005 0.082± 0.003

49-LSTM 0.774± 0.004 0.075± 0.003

49-BRITS 0.790± 0.005 0.094± 0.005

49-GRUD 0.739± 0.010 0.068± 0.003

49-XGBOOST 0.783± 0.000 0.084± 0.000

Table F.4: Performance metrics
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(a) reliability-diagram-dp-
class-ratio-4-TCN

(b) reliability-diagram-dp-
class-ratio-4-LSTM

(c) reliability-diagram-dp-
class-ratio-4-BRITS

(d) reliability-diagram-dp-
class-ratio-4-GRUD

(e) reliability-diagram-dp-
class-ratio-4-XGBOOST

(f) reliability-diagram-dp-
class-ratio-16-TCN

(g) reliability-diagram-dp-
class-ratio-16-LSTM

(h) reliability-diagram-dp-
class-ratio-16-BRITS

(i) reliability-diagram-dp-
class-ratio-16-GRUD

(j) reliability-diagram-dp-
class-ratio-16-XGBOOST

(k) reliability-diagram-dp-
class-ratio-49-TCN

(l) reliability-diagram-dp-
class-ratio-49-LSTM

(m) reliability-diagram-dp-
class-ratio-49-BRITS

(n) reliability-diagram-dp-
class-ratio-49-GRUD

(o) reliability-diagram-dp-
class-ratio-49-XGBOOST

Figure F.6: Reliability diagrams for the experiment.
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(a) sample-confidence-
distribution-graph-dp-class-
ratio-4-TCN

(b) sample-confidence-
distribution-graph-dp-class-
ratio-4-LSTM

(c) sample-confidence-
distribution-graph-dp-class-
ratio-4-BRITS

(d) sample-confidence-
distribution-graph-dp-class-
ratio-4-GRUD

(e) sample-confidence-
distribution-graph-dp-class-
ratio-4-XGBOOST

(f) sample-confidence-
distribution-graph-dp-class-
ratio-16-TCN

(g) sample-confidence-
distribution-graph-dp-class-
ratio-16-LSTM

(h) sample-confidence-
distribution-graph-dp-class-
ratio-16-BRITS

(i) sample-confidence-
distribution-graph-dp-class-
ratio-16-GRUD

(j) sample-confidence-
distribution-graph-dp-class-
ratio-16-XGBOOST

(k) sample-confidence-
distribution-graph-dp-class-
ratio-49-TCN

(l) sample-confidence-
distribution-graph-dp-class-
ratio-49-LSTM

(m) sample-confidence-
distribution-graph-dp-class-
ratio-49-BRITS

(n) sample-confidence-
distribution-graph-dp-class-
ratio-49-GRUD

(o) sample-confidence-
distribution-graph-dp-class-
ratio-49-XGBOOST

Figure F.7: Sample confidence distribution graph for the experiment.
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(a) history-graph-dp-class-
ratio-4-TCN

(b) history-graph-dp-class-
ratio-4-LSTM

(c) history-graph-dp-class-
ratio-4-BRITS

(d) history-graph-dp-class-
ratio-4-GRUD

(e) history-graph-dp-class-
ratio-16-TCN

(f) history-graph-dp-class-
ratio-16-LSTM

(g) history-graph-dp-class-
ratio-16-BRITS

(h) history-graph-dp-class-
ratio-16-GRUD

(i) history-graph-dp-class-
ratio-49-TCN

(j) history-graph-dp-class-
ratio-49-LSTM

(k) history-graph-dp-class-
ratio-49-BRITS

(l) history-graph-dp-class-
ratio-49-GRUD

Figure F.8: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dp-class-ratio-4-
TCN

(b) dc-graph-dp-class-ratio-4-
LSTM

(c) dc-graph-dp-class-ratio-4-
BRITS

(d) dc-graph-dp-class-ratio-4-
GRUD

(e) dc-graph-dp-class-ratio-4-
XGBOOST

(f) dc-graph-dp-class-ratio-16-
TCN

(g) dc-graph-dp-class-ratio-16-
LSTM

(h) dc-graph-dp-class-ratio-16-
BRITS

(i) dc-graph-dp-class-ratio-16-
GRUD

(j) dc-graph-dp-class-ratio-16-
XGBOOST

(k) dc-graph-dp-class-ratio-49-
TCN

(l) dc-graph-dp-class-ratio-49-
LSTM

(m) dc-graph-dp-class-ratio-
49-BRITS

(n) dc-graph-dp-class-ratio-49-
GRUD

(o) dc-graph-dp-class-ratio-49-
XGBOOST

Figure F.9: DC.
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(a) TPRTNR-graph-dp-class-
ratio-4-TCN

(b) TPRTNR-graph-dp-class-
ratio-4-LSTM

(c) TPRTNR-graph-dp-class-
ratio-4-BRITS

(d) TPRTNR-graph-dp-class-
ratio-4-GRUD

(e) TPRTNR-graph-dp-class-
ratio-4-XGBOOST

(f) TPRTNR-graph-dp-class-
ratio-16-TCN

(g) TPRTNR-graph-dp-class-
ratio-16-LSTM

(h) TPRTNR-graph-dp-class-
ratio-16-BRITS

(i) TPRTNR-graph-dp-class-
ratio-16-GRUD

(j) TPRTNR-graph-dp-class-
ratio-16-XGBOOST

(k) TPRTNR-graph-dp-class-
ratio-49-TCN

(l) TPRTNR-graph-dp-class-
ratio-49-LSTM

(m) TPRTNR-graph-dp-class-
ratio-49-BRITS

(n) TPRTNR-graph-dp-class-
ratio-49-GRUD

(o) TPRTNR-graph-dp-class-
ratio-49-XGBOOST

Figure F.10: TPR and TNR.

F.3 Demographics Experiment

demographics ECE ACE MCE

TCN 0.007± 0.004 0.007± 0.002 0.654± 0.327

LSTM 0.007± 0.002 0.007± 0.002 0.278± 0.184

BRITS 0.005± 0.002 0.005± 0.002 0.066± 0.040

GRUD 0.008± 0.002 0.008± 0.002 0.425± 0.256

Table F.5: Calibration metrics
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demographics AUROC AUPRC

TCN 0.720± 0.016 0.053± 0.002

LSTM 0.737± 0.011 0.056± 0.002

BRITS 0.733± 0.037 0.070± 0.014

GRUD 0.663± 0.010 0.040± 0.003

Table F.6: Performance metrics

(a) reliability-diagram-dp-
demographics-TCN

(b) reliability-diagram-dp-
demographics-LSTM

(c) reliability-diagram-dp-
demographics-BRITS

(d) reliability-diagram-dp-
demographics-GRUD

Figure F.11: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-
demographics-TCN

(b) sample-confidence-
distribution-graph-dp-
demographics-LSTM

(c) sample-confidence-
distribution-graph-dp-
demographics-BRITS

(d) sample-confidence-
distribution-graph-dp-
demographics-GRUD

Figure F.12: Sample confidence distribution graph for the experiment.

(a) history-graph-dp-
demographics-TCN

(b) history-graph-dp-
demographics-LSTM

(c) history-graph-dp-
demographics-BRITS

(d) history-graph-dp-
demographics-GRUD

Figure F.13: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dp-
demographics-TCN

(b) dc-graph-dp-
demographics-LSTM

(c) dc-graph-dp-
demographics-BRITS

(d) dc-graph-dp-
demographics-GRUD

Figure F.14: DC.

(a) TPRTNR-graph-dp-
demographics-TCN

(b) TPRTNR-graph-dp-
demographics-LSTM

(c) TPRTNR-graph-dp-
demographics-BRITS

(d) TPRTNR-graph-dp-
demographics-GRUD

Figure F.15: TPR and TNR.

F.4 Missingness Data Representation Experiment

missingness-representation ECE ACE MCE

TCN 0.010± 0.003 0.008± 0.002 0.586± 0.322

LSTM 0.008± 0.002 0.007± 0.002 0.286± 0.225

Table F.7: Calibration metrics

missingness-representation AUROC AUPRC

TCN 0.772± 0.016 0.087± 0.005

LSTM 0.779± 0.007 0.091± 0.003

Table F.8: Performance metrics
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(a) reliability-diagram-dp-
missingness-representation-
TCN

(b) reliability-diagram-dp-
missingness-representation-
LSTM

Figure F.16: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-
missingness-representation-
TCN

(b) sample-confidence-
distribution-graph-dp-
missingness-representation-
LSTM

Figure F.17: Sample confidence distribution graph for the experiment.

(a) history-graph-dp-
missingness-representation-
TCN

(b) history-graph-dp-
missingness-representation-
LSTM

Figure F.18: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dp-missingness-
representation-TCN

(b) dc-graph-dp-missingness-
representation-LSTM

Figure F.19: DC.

(a) TPRTNR-graph-dp-
missingness-representation-
TCN

(b) TPRTNR-graph-dp-
missingness-representation-
LSTM

Figure F.20: TPR and TNR.

F.5 Observation Rate Experiment

observation-rate ECE ACE MCE

TCN 0.009± 0.001 0.009± 0.001 0.772± 0.106

LSTM 0.008± 0.001 0.008± 0.001 0.418± 0.258

BRITS 0.008± 0.003 0.008± 0.003 0.198± 0.335

GRUD 0.008± 0.004 0.007± 0.003 0.580± 0.302

XGBOOST 0.009± 0.000 0.008± 0.000 0.834± 0.000

Table F.9: Calibration metrics

observation-rate AUROC AUPRC

TCN 0.763± 0.008 0.083± 0.001

LSTM 0.775± 0.005 0.084± 0.003

BRITS 0.759± 0.007 0.097± 0.005

GRUD 0.767± 0.007 0.084± 0.003

XGBOOST 0.817± 0.000 0.110± 0.000

Table F.10: Performance metrics
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(a) reliability-diagram-dp-
observation-rate-TCN

(b) reliability-diagram-dp-
observation-rate-LSTM

(c) reliability-diagram-dp-
observation-rate-BRITS

(d) reliability-diagram-dp-
observation-rate-GRUD

(e) reliability-diagram-dp-
observation-rate-XGBOOST

Figure F.21: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-
observation-rate-TCN

(b) sample-confidence-
distribution-graph-dp-
observation-rate-LSTM

(c) sample-confidence-
distribution-graph-dp-
observation-rate-BRITS

(d) sample-confidence-
distribution-graph-dp-
observation-rate-GRUD

(e) sample-confidence-
distribution-graph-dp-
observation-rate-XGBOOST

Figure F.22: Sample confidence distribution graph for the experiment.
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(a) history-graph-dp-
observation-rate-TCN

(b) history-graph-dp-
observation-rate-LSTM

(c) history-graph-dp-
observation-rate-BRITS

(d) history-graph-dp-
observation-rate-GRUD

Figure F.23: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dp-observation-
rate-TCN

(b) dc-graph-dp-observation-
rate-LSTM

(c) dc-graph-dp-observation-
rate-BRITS

(d) dc-graph-dp-observation-
rate-GRUD

(e) dc-graph-dp-observation-
rate-XGBOOST

Figure F.24: DC.
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(a) TPRTNR-graph-dp-
observation-rate-TCN

(b) TPRTNR-graph-dp-
observation-rate-LSTM

(c) TPRTNR-graph-dp-
observation-rate-BRITS

(d) TPRTNR-graph-dp-
observation-rate-GRUD

(e) TPRTNR-graph-dp-
observation-rate-XGBOOST

Figure F.25: TPR and TNR.

F.6 Delta Experiment

delta ECE ACE MCE

TCN 0.008± 0.002 0.009± 0.001 0.702± 0.240

LSTM 0.009± 0.000 0.007± 0.000 0.480± 0.000

BRITS 0.008± 0.001 0.008± 0.001 0.638± 0.495

GRUD 0.009± 0.001 0.008± 0.001 0.667± 0.255

Table F.11: Calibration metrics

delta AUROC AUPRC

TCN 0.755± 0.012 0.073± 0.003

LSTM 0.748± 0.000 0.078± 0.000

BRITS 0.768± 0.009 0.096± 0.003

GRUD 0.767± 0.009 0.085± 0.003

Table F.12: Performance metrics
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(a) reliability-diagram-dp-
delta-TCN

(b) reliability-diagram-dp-
delta-LSTM

(c) reliability-diagram-dp-
delta-BRITS

(d) reliability-diagram-dp-
delta-GRUD

Figure F.26: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-delta-
TCN

(b) sample-confidence-
distribution-graph-dp-delta-
LSTM

(c) sample-confidence-
distribution-graph-dp-delta-
BRITS

(d) sample-confidence-
distribution-graph-dp-delta-
GRUD

Figure F.27: Sample confidence distribution graph for the experiment.

(a) history-graph-dp-delta-
TCN

(b) history-graph-dp-delta-
LSTM

(c) history-graph-dp-delta-
BRITS

(d) history-graph-dp-delta-
GRUD

Figure F.28: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dp-delta-TCN (b) dc-graph-dp-delta-LSTM (c) dc-graph-dp-delta-BRITS (d) dc-graph-dp-delta-GRUD

Figure F.29: DC.
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(a) TPRTNR-graph-dp-delta-
TCN

(b) TPRTNR-graph-dp-delta-
LSTM

(c) TPRTNR-graph-dp-delta-
BRITS

(d) TPRTNR-graph-dp-delta-
GRUD

Figure F.30: TPR and TNR.

F.7 Final Experiment

final ECE ACE MCE

TCN 0.009± 0.003 0.008± 0.002 0.445± 0.333

LSTM 0.010± 0.002 0.009± 0.002 0.492± 0.289

BRITS 0.008± 0.002 0.007± 0.002 0.276± 0.379

GRUD 0.010± 0.002 0.009± 0.002 0.556± 0.315

XGBOOST 0.008± 0.000 0.005± 0.000 0.524± 0.000

Table F.13: Calibration metrics

final AUROC AUPRC

TCN 0.754± 0.024 0.081± 0.009

LSTM 0.774± 0.010 0.098± 0.003

BRITS 0.777± 0.007 0.113± 0.007

GRUD 0.761± 0.011 0.093± 0.006

XGBOOST 0.818± 0.000 0.122± 0.000

Table F.14: Performance metrics
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(a) reliability-diagram-dp-
final-TCN

(b) reliability-diagram-dp-
final-LSTM

(c) reliability-diagram-dp-
final-BRITS

(d) reliability-diagram-dp-
final-GRUD

(e) reliability-diagram-dp-
final-XGBOOST

Figure F.31: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dp-final-
TCN

(b) sample-confidence-
distribution-graph-dp-final-
LSTM

(c) sample-confidence-
distribution-graph-dp-final-
BRITS

(d) sample-confidence-
distribution-graph-dp-final-
GRUD

(e) sample-confidence-
distribution-graph-dp-final-
XGBOOST

Figure F.32: Sample confidence distribution graph for the experiment.
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(a) history-graph-dp-final-
TCN

(b) history-graph-dp-final-
LSTM

(c) history-graph-dp-final-
BRITS

(d) history-graph-dp-final-
GRUD

Figure F.33: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dp-final-TCN (b) dc-graph-dp-final-LSTM (c) dc-graph-dp-final-BRITS (d) dc-graph-dp-final-GRUD

(e) dc-graph-dp-final-
XGBOOST

Figure F.34: DC.

(a) TPRTNR-graph-dp-final-
TCN

(b) TPRTNR-graph-dp-final-
LSTM

(c) TPRTNR-graph-dp-final-
BRITS

(d) TPRTNR-graph-dp-final-
GRUD

(e) TPRTNR-graph-dp-final-
XGBOOST

Figure F.35: TPR and TNR.
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Appendix G

Processed CROSS-TRACKS dataset

G.1 Baseline

baseline ECE ACE MCE

TCN 0.001± 0.000 0.001± 0.000 0.120± 0.155

LSTM 0.001± 0.001 0.001± 0.001 0.209± 0.475

BRITS 0.001± 0.001 0.002± 0.001 0.001± 0.001

GRUD 0.001± 0.001 0.002± 0.000 0.408± 0.262

XGBOOST 0.001± 0.000 0.002± 0.000 0.565± 0.000

Table G.1: Calibration metrics

baseline AUROC AUPRC

TCN 0.750± 0.007 0.032± 0.006

LSTM 0.746± 0.011 0.029± 0.004

BRITS 0.687± 0.052 0.020± 0.002

GRUD 0.741± 0.011 0.025± 0.002

XGBOOST 0.831± 0.000 0.140± 0.000

Table G.2: Performance metrics
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(a) reliability-diagram-dct-
baseline-TCN

(b) reliability-diagram-dct-
baseline-LSTM

(c) reliability-diagram-dct-
baseline-BRITS

(d) reliability-diagram-dct-
baseline-GRUD

(e) reliability-diagram-dct-
baseline-XGBOOST

Figure G.1: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dct-
baseline-TCN

(b) sample-confidence-
distribution-graph-dct-
baseline-LSTM

(c) sample-confidence-
distribution-graph-dct-
baseline-BRITS

(d) sample-confidence-
distribution-graph-dct-
baseline-GRUD

(e) sample-confidence-
distribution-graph-dct-
baseline-XGBOOST

Figure G.2: Sample confidence distribution graph for the experiment.
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(a) history-graph-dct-baseline-
TCN

(b) history-graph-dct-baseline-
LSTM

(c) history-graph-dct-baseline-
BRITS

(d) history-graph-dct-baseline-
GRUD

Figure G.3: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dct-baseline-TCN (b) dc-graph-dct-baseline-
LSTM

(c) dc-graph-dct-baseline-
BRITS

(d) dc-graph-dct-baseline-
GRUD

(e) dc-graph-dct-baseline-
XGBOOST

Figure G.4: DC.
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(a) TPRTNR-graph-dct-
baseline-TCN

(b) TPRTNR-graph-dct-
baseline-LSTM

(c) TPRTNR-graph-dct-
baseline-BRITS

(d) TPRTNR-graph-dct-
baseline-GRUD

(e) TPRTNR-graph-dct-
baseline-XGBOOST

Figure G.5: TPR and TNR.

G.2 Class Weight Experiment

class-weight ECE ACE MCE

4-TCN 0.020± 0.002 0.020± 0.002 0.449± 0.181

4-LSTM 0.023± 0.004 0.023± 0.004 0.198± 0.107

4-BRITS 0.024± 0.003 0.024± 0.003 0.133± 0.075

4-GRUD 0.023± 0.006 0.022± 0.006 0.588± 0.189

4-XGBOOST 0.015± 0.000 0.015± 0.000 0.246± 0.000

16-TCN 0.099± 0.010 0.099± 0.010 0.679± 0.172

16-LSTM 0.096± 0.011 0.096± 0.011 0.509± 0.091

16-BRITS 0.105± 0.030 0.105± 0.030 0.496± 0.054

16-GRUD 0.092± 0.009 0.092± 0.009 0.795± 0.132

16-XGBOOST 0.054± 0.000 0.054± 0.000 0.265± 0.000

128-TCN 0.394± 0.073 0.394± 0.073 0.881± 0.021

128-LSTM 0.390± 0.028 0.390± 0.028 0.809± 0.028

128-BRITS 0.403± 0.086 0.403± 0.086 0.842± 0.032

128-GRUD 0.367± 0.039 0.367± 0.039 0.891± 0.004

128-XGBOOST 0.216± 0.000 0.216± 0.000 0.678± 0.000

Table G.3: Calibration metrics
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class-weight AUROC AUPRC

4-TCN 0.773± 0.003 0.047± 0.020

4-LSTM 0.763± 0.007 0.028± 0.003

4-BRITS 0.750± 0.029 0.023± 0.002

4-GRUD 0.759± 0.003 0.027± 0.001

4-XGBOOST 0.844± 0.000 0.191± 0.000

16-TCN 0.770± 0.014 0.033± 0.004

16-LSTM 0.768± 0.007 0.030± 0.001

16-BRITS 0.756± 0.004 0.024± 0.002

16-GRUD 0.767± 0.010 0.027± 0.002

16-XGBOOST 0.834± 0.000 0.201± 0.000

128-TCN 0.765± 0.012 0.029± 0.004

128-LSTM 0.771± 0.007 0.027± 0.001

128-BRITS 0.776± 0.006 0.030± 0.002

128-GRUD 0.768± 0.009 0.024± 0.003

128-XGBOOST 0.801± 0.000 0.136± 0.000

Table G.4: Performance metrics

149



(a) reliability-diagram-dct-
class-ratio-4-TCN

(b) reliability-diagram-dct-
class-ratio-4-LSTM

(c) reliability-diagram-dct-
class-ratio-4-BRITS

(d) reliability-diagram-dct-
class-ratio-4-GRUD

(e) reliability-diagram-dct-
class-ratio-4-XGBOOST

(f) reliability-diagram-dct-
class-ratio-16-TCN

(g) reliability-diagram-dct-
class-ratio-16-LSTM

(h) reliability-diagram-dct-
class-ratio-16-BRITS

(i) reliability-diagram-dct-
class-ratio-16-GRUD

(j) reliability-diagram-dct-
class-ratio-16-XGBOOST

(k) reliability-diagram-dct-
class-ratio-128-TCN

(l) reliability-diagram-dct-
class-ratio-128-LSTM

(m) reliability-diagram-dct-
class-ratio-128-BRITS

(n) reliability-diagram-dct-
class-ratio-128-GRUD

(o) reliability-diagram-dct-
class-ratio-128-XGBOOST

Figure G.6: Reliability diagrams for the experiment.
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(a) sample-confidence-
distribution-graph-dct-class-
ratio-4-TCN

(b) sample-confidence-
distribution-graph-dct-class-
ratio-4-LSTM

(c) sample-confidence-
distribution-graph-dct-class-
ratio-4-BRITS

(d) sample-confidence-
distribution-graph-dct-class-
ratio-4-GRUD

(e) sample-confidence-
distribution-graph-dct-class-
ratio-4-XGBOOST

(f) sample-confidence-
distribution-graph-dct-class-
ratio-16-TCN

(g) sample-confidence-
distribution-graph-dct-class-
ratio-16-LSTM

(h) sample-confidence-
distribution-graph-dct-class-
ratio-16-BRITS

(i) sample-confidence-
distribution-graph-dct-class-
ratio-16-GRUD

(j) sample-confidence-
distribution-graph-dct-class-
ratio-16-XGBOOST

(k) sample-confidence-
distribution-graph-dct-class-
ratio-128-TCN

(l) sample-confidence-
distribution-graph-dct-class-
ratio-128-LSTM

(m) sample-confidence-
distribution-graph-dct-class-
ratio-128-BRITS

(n) sample-confidence-
distribution-graph-dct-class-
ratio-128-GRUD

(o) sample-confidence-
distribution-graph-dct-class-
ratio-128-XGBOOST

Figure G.7: Sample confidence distribution graph for the experiment.
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(a) history-graph-dct-class-
ratio-4-TCN

(b) history-graph-dct-class-
ratio-4-LSTM

(c) history-graph-dct-class-
ratio-4-BRITS

(d) history-graph-dct-class-
ratio-4-GRUD

(e) history-graph-dct-class-
ratio-16-TCN

(f) history-graph-dct-class-
ratio-16-LSTM

(g) history-graph-dct-class-
ratio-16-BRITS

(h) history-graph-dct-class-
ratio-16-GRUD

(i) history-graph-dct-class-
ratio-128-TCN

(j) history-graph-dct-class-
ratio-128-LSTM

(k) history-graph-dct-class-
ratio-128-BRITS

(l) history-graph-dct-class-
ratio-128-GRUD

Figure G.8: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dct-class-ratio-4-
TCN

(b) dc-graph-dct-class-ratio-4-
LSTM

(c) dc-graph-dct-class-ratio-4-
BRITS

(d) dc-graph-dct-class-ratio-4-
GRUD

(e) dc-graph-dct-class-ratio-4-
XGBOOST

(f) dc-graph-dct-class-ratio-16-
TCN

(g) dc-graph-dct-class-ratio-16-
LSTM

(h) dc-graph-dct-class-ratio-
16-BRITS

(i) dc-graph-dct-class-ratio-16-
GRUD

(j) dc-graph-dct-class-ratio-16-
XGBOOST

(k) dc-graph-dct-class-ratio-
128-TCN

(l) dc-graph-dct-class-ratio-
128-LSTM

(m) dc-graph-dct-class-ratio-
128-BRITS

(n) dc-graph-dct-class-ratio-
128-GRUD

(o) dc-graph-dct-class-ratio-
128-XGBOOST

Figure G.9: DC.
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(a) TPRTNR-graph-dct-class-
ratio-4-TCN

(b) TPRTNR-graph-dct-class-
ratio-4-LSTM

(c) TPRTNR-graph-dct-class-
ratio-4-BRITS

(d) TPRTNR-graph-dct-class-
ratio-4-GRUD

(e) TPRTNR-graph-dct-class-
ratio-4-XGBOOST

(f) TPRTNR-graph-dct-class-
ratio-16-TCN

(g) TPRTNR-graph-dct-class-
ratio-16-LSTM

(h) TPRTNR-graph-dct-class-
ratio-16-BRITS

(i) TPRTNR-graph-dct-class-
ratio-16-GRUD

(j) TPRTNR-graph-dct-class-
ratio-16-XGBOOST

(k) TPRTNR-graph-dct-class-
ratio-128-TCN

(l) TPRTNR-graph-dct-class-
ratio-128-LSTM

(m) TPRTNR-graph-dct-class-
ratio-128-BRITS

(n) TPRTNR-graph-dct-class-
ratio-128-GRUD

(o) TPRTNR-graph-dct-class-
ratio-128-XGBOOST

Figure G.10: TPR and TNR.

G.3 Missingness Data Representation Experiment

missingness-representation ECE ACE MCE

TCN 0.001± 0.001 0.001± 0.001 0.300± 0.372

LSTM 0.000± 0.000 0.001± 0.000 0.260± 0.449

Table G.5: Calibration metrics
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missingness-representation AUROC AUPRC

TCN 0.747± 0.014 0.040± 0.020

LSTM 0.758± 0.006 0.031± 0.003

Table G.6: Performance metrics

(a) reliability-diagram-dct-
missingness-representation-
TCN

(b) reliability-diagram-dct-
missingness-representation-
LSTM

Figure G.11: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dct-
missingness-representation-
TCN

(b) sample-confidence-
distribution-graph-dct-
missingness-representation-
LSTM

Figure G.12: Sample confidence distribution graph for the experiment.

(a) history-graph-dct-
missingness-representation-
TCN

(b) history-graph-dct-
missingness-representation-
LSTM

Figure G.13: Training and validation loss for each epoch for the experiment.
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(a) dc-graph-dct-missingness-
representation-TCN

(b) dc-graph-dct-missingness-
representation-LSTM

Figure G.14: DC.

(a) TPRTNR-graph-dct-
missingness-representation-
TCN

(b) TPRTNR-graph-dct-
missingness-representation-
LSTM

Figure G.15: TPR and TNR.

G.4 Observation Rate Experiment

observation-rate ECE ACE MCE

TCN 0.001± 0.001 0.001± 0.000 0.168± 0.189

LSTM 0.001± 0.001 0.001± 0.001 0.229± 0.411

BRITS 0.003± 0.002 0.003± 0.002 0.299± 0.139

GRUD 0.002± 0.001 0.004± 0.001 0.347± 0.112

XGBOOST 0.000± 0.000 0.001± 0.000 0.441± 0.000

Table G.7: Calibration metrics

observation-rate AUROC AUPRC

TCN 0.745± 0.014 0.047± 0.031

LSTM 0.746± 0.008 0.030± 0.002

BRITS 0.733± 0.007 0.034± 0.007

GRUD 0.735± 0.016 0.126± 0.012

XGBOOST 0.829± 0.000 0.142± 0.000

Table G.8: Performance metrics

156



(a) reliability-diagram-dct-
observation-rate-TCN

(b) reliability-diagram-dct-
observation-rate-LSTM

(c) reliability-diagram-dct-
observation-rate-BRITS

(d) reliability-diagram-dct-
observation-rate-GRUD

(e) reliability-diagram-dct-
observation-rate-XGBOOST

Figure G.16: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dct-
observation-rate-TCN

(b) sample-confidence-
distribution-graph-dct-
observation-rate-LSTM

(c) sample-confidence-
distribution-graph-dct-
observation-rate-BRITS

(d) sample-confidence-
distribution-graph-dct-
observation-rate-GRUD

(e) sample-confidence-
distribution-graph-dct-
observation-rate-XGBOOST

Figure G.17: Sample confidence distribution graph for the experiment.
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(a) history-graph-dct-
observation-rate-TCN

(b) history-graph-dct-
observation-rate-LSTM

(c) history-graph-dct-
observation-rate-BRITS

(d) history-graph-dct-
observation-rate-GRUD

Figure G.18: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dct-observation-
rate-TCN

(b) dc-graph-dct-observation-
rate-LSTM

(c) dc-graph-dct-observation-
rate-BRITS

(d) dc-graph-dct-observation-
rate-GRUD

(e) dc-graph-dct-observation-
rate-XGBOOST

Figure G.19: DC.
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(a) TPRTNR-graph-dct-
observation-rate-TCN

(b) TPRTNR-graph-dct-
observation-rate-LSTM

(c) TPRTNR-graph-dct-
observation-rate-BRITS

(d) TPRTNR-graph-dct-
observation-rate-GRUD

(e) TPRTNR-graph-dct-
observation-rate-XGBOOST

Figure G.20: TPR and TNR.

G.5 Delta Experiment

delta ECE ACE MCE

TCN 0.001± 0.001 0.002± 0.001 0.215± 0.379

LSTM 0.002± 0.002 0.002± 0.002 0.431± 0.219

BRITS 0.001± 0.001 0.001± 0.001 0.448± 0.396

GRUD 0.008± 0.021 0.009± 0.020 0.577± 0.293

Table G.9: Calibration metrics

delta AUROC AUPRC

TCN 0.740± 0.018 0.033± 0.004

LSTM 0.741± 0.014 0.034± 0.007

BRITS 0.726± 0.026 0.024± 0.004

GRUD 0.704± 0.127 0.078± 0.058

Table G.10: Performance metrics
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(a) reliability-diagram-dct-
delta-TCN

(b) reliability-diagram-dct-
delta-LSTM

(c) reliability-diagram-dct-
delta-BRITS

(d) reliability-diagram-dct-
delta-GRUD

Figure G.21: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dct-delta-
TCN

(b) sample-confidence-
distribution-graph-dct-delta-
LSTM

(c) sample-confidence-
distribution-graph-dct-delta-
BRITS

(d) sample-confidence-
distribution-graph-dct-delta-
GRUD

Figure G.22: Sample confidence distribution graph for the experiment.

(a) history-graph-dct-delta-
TCN

(b) history-graph-dct-delta-
LSTM

(c) history-graph-dct-delta-
BRITS

(d) history-graph-dct-delta-
GRUD

Figure G.23: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dct-delta-TCN (b) dc-graph-dct-delta-LSTM (c) dc-graph-dct-delta-BRITS (d) dc-graph-dct-delta-GRUD

Figure G.24: DC.
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(a) TPRTNR-graph-dct-delta-
TCN

(b) TPRTNR-graph-dct-delta-
LSTM

(c) TPRTNR-graph-dct-delta-
BRITS

(d) TPRTNR-graph-dct-delta-
GRUD

Figure G.25: TPR and TNR.

G.6 Final Experiment

final ECE ACE MCE

TCN 0.002± 0.002 0.002± 0.001 0.222± 0.183

LSTM 0.001± 0.001 0.001± 0.001 0.122± 0.103

BRITS 0.001± 0.001 0.001± 0.000 0.165± 0.159

GRUD 0.002± 0.001 0.004± 0.001 0.356± 0.093

XGBOOST 0.001± 0.000 0.001± 0.000 0.654± 0.000

Table G.11: Calibration metrics

final AUROC AUPRC

TCN 0.751± 0.014 0.040± 0.014

LSTM 0.743± 0.010 0.031± 0.006

BRITS 0.748± 0.009 0.028± 0.001

GRUD 0.730± 0.010 0.102± 0.008

XGBOOST 0.820± 0.000 0.131± 0.000

Table G.12: Performance metrics
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(a) reliability-diagram-dct-
final-TCN

(b) reliability-diagram-dct-
final-LSTM

(c) reliability-diagram-dct-
final-BRITS

(d) reliability-diagram-dct-
final-GRUD

(e) reliability-diagram-dct-
final-XGBOOST

Figure G.26: Reliability diagrams for the experiment.

(a) sample-confidence-
distribution-graph-dct-final-
TCN

(b) sample-confidence-
distribution-graph-dct-final-
LSTM

(c) sample-confidence-
distribution-graph-dct-final-
BRITS

(d) sample-confidence-
distribution-graph-dct-final-
GRUD

(e) sample-confidence-
distribution-graph-dct-final-
XGBOOST

Figure G.27: Sample confidence distribution graph for the experiment.
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(a) history-graph-dct-final-
TCN

(b) history-graph-dct-final-
LSTM

(c) history-graph-dct-final-
BRITS

(d) history-graph-dct-final-
GRUD

Figure G.28: Training and validation loss for each epoch for the experiment.

(a) dc-graph-dct-final-TCN (b) dc-graph-dct-final-LSTM (c) dc-graph-dct-final-BRITS (d) dc-graph-dct-final-GRUD

(e) dc-graph-dct-final-
XGBOOST

Figure G.29: DC.

(a) TPRTNR-graph-dct-final-
TCN

(b) TPRTNR-graph-dct-final-
LSTM

(c) TPRTNR-graph-dct-final-
BRITS

(d) TPRTNR-graph-dct-final-
GRUD

(e) TPRTNR-graph-dct-final-
XGBOOST

Figure G.30: TPR and TNR.
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