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Summary

In this project, we work with co-verification i.e. verification of software, and the hardware that is running
it. Our case is the OpenTitan project. OpenTitan is an open-source chip design based on the Titan project
by Google. For this project we are only interested in verifying the ROM stage of the OpenTitan chip
design. During the previous semester, we have made a security analysis of OpenTitan, which resulted in
a list of security policies and security goals that should be verified for the system to be considered secure.
The security policies are:

1. Only code that has been validated can be executed.

2. Validation of a boot stage must only succeed if the boot environment is safe.

3. Cryptographic key leakage can not happen.

4. All data access rights follow a privilege hierarchy.

The security policies are further divided into 14 security goals. The security policies and security goals are
relevant for the entire boot process. Since we choose to only look at the boot of the ROM stage, six of the
security goals (G2, G4, G6, G7, G13, and G14) are not relevant for our project, so we will not try to verify
them.

To verify the security goals, we have modeled the system in Uppaal. Uppaal is a verification tool that
allows the user to make templates that correspond to the components in the real system. Uppaal has its own
verification engine that allows its users to make queries and thus verify properties about the model.
We have modeled hardware and firmware components of the OpenTitan design in the Uppaal model.
We have modeled the ROM stage like the ROM stage described in the OpenTitan documentation. The
ROM stage is responsible for validating ROM_ext manifests and only transfer control to the next stage
(ROM_ext) upon successful validation. The components are modeled with varying levels of abstraction.
The components that are not directly related to our security goals, are modeled more abstractly. This is
because a more detailed implementation would drag out the verification process, while at the same time
only marginally impacting the results of the verification. For some of the aforementioned security goals
we have made queries that verify them. Specifically, we were able to fully verify five security goals (G1,
G9, G10, G11, and G12), partially verify two security goals (G3 and G8), and not able to verify one goal
(G5) out of the security goals that we did not deem to be out of scope for the project.

To make sure that the Uppaal model works correctly, we have validated the model. This means that we
have tested our assumptions about the model using Uppaal’s verification tool. We have also introduced
some errors in the model to see whether those errors can be seen in the results of our queries. These errors
can be seen as potential bugs in the system. We introduced errors to crucial functions used for validation
of the ROM_ext manifest. This includes the hashing function, the function that calculates the public key
IDs, and the function responsible for validating signatures.

We reflect on our use of the Uppaal tool and OpenTitan as a case. We think that Uppaal is very well suited
tool for co-verification. It might have been beneficial for us to use another chip design than OpenTitan as
our case because OpenTitan is not yet fully designed.



There is another group that works with the same case as we do, but they use the C Bounded Model Checker
(CBMC) tool instead. They have been able to verify properties that are roughly equivalent to four of the
security goals that we have been able to verify. To do co-verification they have made C functions for the
other components that are relevant for their security goals.
In the end we conclude that we have been able to verify some of the security goals with Uppaal. We are
overall satisfied with the number of security goals we have been able to verify and their importance.
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Chapter 1

Introduction

The security of computer systems is of high importance. Now, in a world where more and more of our daily
lives is digitalized, this becomes truer by the day. The cost of security breaches can be devastating, as seen
by the NotPetya attack on Maersk in 2017 [1] which was estimated to have cost them 300 million dollars.
With so much money on the line, attackers have the potential to strike gold if they succeed in ransomware
attacks. Even worse for many people are data breaches, which can expose sensitive personal data from
citizens who have no chance to protect themselves. An example of this is an incident with Zoom where
half a million user accounts were put up for sale on the dark web [2]. One way an attacker can infiltrate
an IT system is to do it during the booting process. If an attacker can somehow gain access to a system
during boot, they can control what runs on the system. Such vulnerabilities in the booting process of IT
systems are not just theory. In 2020 a vulnerability was reported by researchers at Eclypsium in the secure
boot of the GRUB2 boot loader used by most Linux distributions. This vulnerability, dubbed “the boothole
vulnerability”, exploited a buffer overflow to allow for any arbitrary code to run the booting process [3].
The discovery of this vulnerability lead to similar vulnerabilities being discovered in similar types of code
[4].

To ensure that newly developed systems do not suffer from such vulnerabilities, developers can thoroughly
test code. However, as famously stated by E. W. Dijkstra in his Notes On Structured Programming: “Pro-
gram testing can be used to show the presence of bugs, but never to show their absence!” [5]. So while
testing is undoubtedly worth the effort, especially with the increasing quality and ease of using automated
testing suites, we cannot guarantee that a program is free of errors based simply on testing.
A company named MAXSYT is currently working on a project where program correctness is at the fore-
front. For this, testing is not enough. They need proofs and guarantees on the correctness of their system.
Inspired by this project, we propose to use formal methods for verification to ensure that such a system
meets these standards. These formal methods, unlike tests, give mathematical guarantees regarding the
properties of IT systems. This means that if an applied formal method says that a given property of a
system holds, it is mathematically guaranteed to hold. This makes formal methods a powerful tool that can
be used to ensure the security of a system where normal testing cannot. However, there are many types
(static analysis, theorem proving, model checking, etc.). Unlike testing, they require very diligent and
time-consuming efforts to work correctly as such testing is by no means made obsolete by formal methods.
However, if program correctness is of the highest priority, then formal methods are almost guaranteed to
be needed during the development of a system.
In this report, we show how we can apply formal methods in the form of model checking to the case of
boot code security. For this purpose, we use the model checking tool Uppaal, which is one of the leading
tools within the field. We use the OpenTitan platform as a case, which is an open-source Root of Trust chip
design based on Google’s Titan project [6] [7]. We model a part of OpenTitan’s boot process and show
how such a model can verify security goals.
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However, since the OpenTitan platform is still under heavy development, we have to make assumptions
about some design parts. Furthermore, we have created our own boot code that takes inspiration from the
available code in the OpenTitan documentation. This means that there might be slight deviations between
our modeled system and the intended OpenTitan implementation.

We choose to limit the scope of the project such that we are only interested in the first stage of the OpenTi-
tan boot process and its immediate impact on the next stage. This is done to ensure that we can give useful
results in the time allotted for the project. OpenTitan is a large and complex system, and therefore we can-
not realistically create a model of the entire boot process in five months. Furthermore, OpenTitan is still
under development, which means that the entire chip system and the corresponding software are subject to
change at any point in time. This is problematic, and the problem is exaggerated if we build a model of
a larger part of the system. However, we hope to show how the fundamental process of model checking,
as presented in this report, can be applied to further parts of the OpenTitan design or other systems. This
leads to the following problem statement:

How can Uppaal be used to verify the security of selected parts of the OpenTitan boot process?

2



Chapter 2

OpenTitan

OpenTitan is an open source reference design project of Root of Trust chips. According to [8], a Root
of Trust is “A system element that provides services, including verification of system, software & data
integrity and confidentiality, and data (software and information) integrity attestation between other trusted
devices in a system or network.”
The intention of the OpenTitan project is to make the implementation and development of Root of Trust
chips more transparent, trustworthy, and secure [6]. The OpenTitan project is a collaboration between
multiple tech-companies, including Google and Western Digital. The OpenTitan chip is built on a RISC-V
Instruction Set Architecture[9].
The OpenTitan project is still in development. Therefore software and hardware are subject to change. The
boot code that we have developed for this project (cf. section 3.1) is inspired by the booting process and
software presented in the OpenTitan project[6]. Because the project is still in development, the boot code
for this project will take inspiration from the boot code of the OpenTitan project available at the time of
writing.
Based on [10] we define boot code to be the code that is run from the point the power on is initiated and
until a boot loader takes control over the booting process.

2.1 The OpenTitan Software Stack

The OpenTitan design contains a logical security model which describes four entities: the silicon creator,
the silicon owner, the application provider, and the end user. These entities all have responsibilities and
roles in regards to an OpenTitan chip. E.g., the silicon creator creates the chip and provides ROM (also
known as mask_ROM) and ROM_ext firmware for the chip, while the silicon owner owns the chip and
provisions the boot loader and kernel. In this report, we focus primarily on the silicon creator as this entity
creates the boot code for the OpenTitan chip. Information on the other entities can be found at [11].
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2.1. THE OPENTITAN SOFTWARE STACK

Figure 2.1.1: A graphical representation of the software stages and their owners in OpenTitan [11].

The software stack for the OpenTitan chip can be seen in Fig. 2.1.1. This figure shows the logical flow of
execution for the software stages of the OpenTitan design. There are some assumptions about the execution
of these stages:

• From the ROM stage until the kernel stage, the execution is one way. This means that once a stage
is left, it cannot be re-executed until a system reset. Furthermore, code used during the stage can be
locked through the use of PMP to ensure that it cannot be used during a later stage[11].

• When the chip has entered the kernel stage, the execution can optionally become two-way. This
means that it is possible to switch between the kernel and the applications. It does not mean that the
previous boot stages can be re-executed[11].

This project is concerned with the verification of security properties of boot code. Therefore we will go
in-depth with ROM and ROM_ext of the OpenTitan design to describe how this boot code works.

2.1.1 ROM

This section is based on [12, Ch. 5]. ROM cannot be changed once the chip containing it has been created.
The ROM is the first code that runs on startup of the system. ROM is mainly focused on finding a valid
ROM_ext manifest and transferring execution to it. A ROM_ext manifest is a block of data that contains
(among other things) an identifier, an image signature, the image code for the corresponding ROM_ext,
and the public key that should be used to verify the signature. A more detailed description of ROM_ext
manifests can be seen in appendix A.
Firstly, during the ROM stage, the Static Random Access Memory (SRAM) of the chip is cleared except
for retention SRAM. After the non-retention SRAM is cleared, an initial PMP region is created (cf. sec-
tion 2.6 for more on PMP). This PMP region disables writing to or executing anything in flash memory1.
Then the boot policy is read from Flash Info. After these initial steps, ROM must decide which ROM_ext
manifest it should try to boot first. To make this decision, the prioritized ROM_ext slot is derived from

1As of writing this report, it is not certain by looking at the documentation for OpenTitan whether this PMP region is created by
hardware or ROM.
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2.1. THE OPENTITAN SOFTWARE STACK

the boot policy. However, if the prioritized slot fails to load or cannot be validated, ROM can try to load
another ROM_ext manifest if instructed to do so by the boot policy.

When ROM tries to validate a ROM_ext slot, the first check it performs is to see whether the slot is empty
or not. Afterward, a public key ID is generated from the ROM_ext manifest’s public key and checked. We
could not find any documentation for how the public key ID is generated and how the ID is checked, so we
opened an issue on the OpenTitan GitHub page. The respondent told us that the function for generating a
public key ID does not necessitate strong cryptographic functionality, and the function is an implementation
detail. He also told us that the device should have a list of trusted public keys, which is used to validate the
ROM_ext manifest’s public key[13]. If the slot is not empty, the manifest ID is valid, and the public key
ID is valid, then ROM tries to validate the signature of the ROM_ext. If this validation succeeds then, it
must hold that the Silicon Creator has created the ROM_ext image. The next step in execution is for ROM
to measure system states (this process is not documented for OpenTitan as of writing this). Furthermore,
ROM uses the Key Manager to derive the CreatorRootKey and locks down the Key Manager so no new
key can be derived during the current session. This key is used at later stages of the boot process. The
ROM_ext manifest is also used to lock down peripherals of the system at this point. Then, a new PMP
region is formed for the ROM_ext that covers the ROM_ext image code. This PMP region is set to allow for
the image to be read and executed and is set to be locked. With all of this done, ROM transfers execution to
the newly validated ROM_ext manifest. If any of the checks or validations mentioned fail, ROM performs
boot failure policy as determined by the boot policy. If the ROM_ext fails to boot correctly, then execution
likewise returns to ROM so that it can perform a boot failure policy function 2. This is because the execution
before the kernel stage is one-way as described in section 2.1. If the execution returns to the ROM, the
booting process has failed.

2.1.2 ROM_ext

The ROM_ext stands for Read-Only Memory extensions. This stage contains code that extends the func-
tionality of the initial ROM. ROM_ext has several responsibilities. It must be able to apply any patches that
correct critical issues in the hardware. ROM_ext also performs the remaining security configuration that
was not done by ROM. This includes comparing the hashed Silicon Owner image to the hash in the Silicon
Owner manifest and verifying the hash in the manifest. The hash in the manifest is verified by verifying
its signature with the Owner Identity public key. Lastly, it performs Silicon Creator Identity provision and
attestation. After ROM_ext has performed these tasks, it (like ROM) makes a PMP region that covers the
executable region of the Silicon Owner software. This region only allows for reading and executing the
covered code. The ROM_ext then transfers control to the boot loader (BL0) [11] [12].

2.1.3 Memory

The OpenTitan chips’ current memory layout is illustrated in Fig. 2.1.2. The memory is split into four parts:
ROM, Flash Info, Flash Bank 0, and Flash Bank 1. ROM, Flash Info, ROM_ext, and creator_cert are fixed
size and are owned by the Silicon Creator. The Flash Banks are divided into six sections: ROM_ext, cre-
ator_cert, owner_cert, BL0, Kernel Apps, and Data. ROM_ext contains the ROM_ext manifests and other
information related to booting the ROM_ext. creator_cert and owner_cert likely contain the certificates
for the silicon creator and silicon owner, respectively. However, this is speculation on our part and is not
clearly stated in the documentation. BL0 contains the first boot loader that is run after the ROM_ext has

2It is unclear whether there are two different boot failure policy functions or if the same is used for ROM_ext failure and not
finding a valid ROM_ext.
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2.2. ALGORITHMS USED BY OPENTITAN

been booted. Kernel Apps contains the programs and applications that are run in User mode. Data is used
for additional storage by the Silicon Owner [14].

Figure 2.1.2: OpenTitan’s memory layout[14].

2.2 Algorithms Used by OpenTitan

The OpenTitan design uses different algorithms for hashing, encryption, and verification. Some of these
are used during the secure boot stage of the chip, and therefore, they are an important part of the booting
process. According to [15] the following algorithms are used with for the purposes3:

• SHA256 is used as a hash algorithm.

• RSA-3072 is an asymmetric key algorithm used for signature verification during secure boot.

• ECDSA P-256 is another asymmetric key algorithm used for signature and verification handling for
identity and attestation keys.

• HMAC-SHA256 (NIST FIPS 180-4 compliant) is a symmetric key algorithm used to measure the
integrity of storage and in-transit data. It is also used for secure boot of the chip.

• AES (AES-CTR NIST 800-38A) is a symmetric key algorithm used to encrypt data and wrap keys
stored in flash.

3Note that these algorithms are for the use case of the OpenTitan chip being a platform integrity module. There are slight
variations in the algorithms for using it as a universal 2nd-factor security key.
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2.2. ALGORITHMS USED BY OPENTITAN

Since it is stated in [15] that both RSA-3072 and HMAC-SHA256 are used during secure boot, these are
explained in the following sections. RSA-3072 and HMAC-SHA256 are variations of the RSA and HMAC
algorithms. As such, we try to explain the underlying structure of these algorithms.

2.2.1 The RSA Algorithm

This section is based on [16] unless otherwise stated. The RSA algorithm was invented by Ron Rivest,
Adi Shamir, and Leonard Adleman. It is an asymmetric cryptography algorithm which means that it uses
two keys (known as a public key and a private key) that are linked mathematically. Normally one of these
keys would be used for encryption, with the other being used for decryption. However, the RSA algorithm
allows for both keys to be used for both purposes. This means that the private key and the public key can
both be used for encryption and decryption. In the RSA algorithm, these keys are constructed based on
two prime numbers. This is because the RSA algorithm hinges on the fact that it is difficult to factor large
integers that are a product of two prime numbers. If the product of the prime numbers is large enough
(meaning that the prime numbers themselves are also large), then figuring out the original prime numbers
from the product of them is considered infeasible.
Therefore, the first step of the algorithm is to generate these two large prime numbers (often referred to
as p and q). Once this has been done, their product is also calculated. This is called the modulus (often
written as n) and is used by both the public and private keys and serves as the mathematical link between
the two keys. The length of the modulus in bits is called the key length. As an example, RSA-3072 is an
RSA algorithm that has a key length of 3072 bits. The keys are as follows:

• The public key uses the modulus (n) and a public exponent (e) that is often set to 65537. This is
often chosen due to it being a prime number that is not overly large. e can be set publicly because the
public key is typically shared with everyone, thus making it unnecessary to hide the prime number.
If the key is not shared with everyone, then e can be selected secretly to be some other large prime
number.

• The private key uses the modulus (n) as well as a private exponent (d). d is calculated using the
Extended Euclidean algorithm to find the multiplicative inverse such that e·d ≡ 1 mod (p−1)·(q−1)
[17]. Note that (p − 1) · (q − 1) is the totient of the modulus4.

The RSA algorithm can be used for both encryption, decryption, signing, and signature verification. The
following describes signing and signature verification as these are the use cases that the RSA algorithm is
used for in OpenTitan.

Digital signing with the RSA algorithm can be seen in Algorithm 1. When a sender wants to sign a mes-
sage digitally and send it to someone, they have to hash their message with a hashing function. Then, the
sender has to represent the hashed result as an integer v between 1 and n − 1, where n is the modulus. The
sender then uses their private key to compute the signature s with the following formula: s ≡ md mod n.
The sender then sends s, and the original message to the receiver [18].

4Euler’s totient function to any prime number x is equal to x − 1. Furthermore, the function is multiplicative which means that
the function Φ(x · y) = Φ(x) · Φ(y).
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2.2. ALGORITHMS USED BY OPENTITAN

Algorithm 1: RSA signing algorithm [18]
1: input: Message M, private key (n, d), hashing function F.
2: output: A valid signature for the message M.
3: H ← F(M);
4: Represent H as an integer v between 1 and n − 1;
5: s← vd mod n;
6: return s;

Signature verification with the RSA algorithm can be seen in Algorithm 2. When a receiver wants to verify
a signature, they must first decrypt the signature using the sender’s public key. This results in a hashed
version of the original message encoded as an integer. Then the receiver hashes the original message that
they received from the sender and encodes the resulting digest as an integer. The signature is valid iff the
two encoded hashed messages are the same. This only works if the sender and the receiver use the same
methods for hashing and encoding the messages as integers. If the receiver of the message confirms the
signature, then they can be certain that the message is the original message that the expected sender has
sent [18].

Algorithm 2: RSA signature verification algorithm [18]
1: input: Message M, signature s, sender’s public key (n, e), hashing function F.
2: output: A boolean value signifying whether the signature is valid.
3: v← se mod n;
4: H′ ← F(M);
5: v′ ← Represent H′ as an integer between 1 and n − 1;
6: return v = v′;

2.2.2 The HMAC Algorithm

HMAC is an abbreviation of Hash-based Message Authentication Code. The HMAC algorithm is a sym-
metric encryption algorithm used to ensure that a received message has not been tampered with. It uses
a secret key and a hashing function to hash the key and the message first, and then hash the now hashed
output and the secret key again. To use the HMAC algorithm for authentication, the secret key must be
shared between the sender and the receiver of the message [19].

The algorithm can be seen in Algorithm 3 and follows the approach described in [20]. The algorithm needs
a message M and secret key K as input. M consists of blocks of length b. The key must have a length
of b. Therefore, it is padded with zeros, as described in lines 2 and 3 of the algorithm. This results in
the padded key called K+. In line 6, S ignature1 is calculated based on the padded key and the bit string
00110110. The bit string must, if necessary, be repeated to also have a length of b (this is done by the
function repeatedToLengthb). S ignature1 is then concatenated with M and given as input to a hashing
algorithm, here SHA256. The Temp variable of line 7 is used along with a new signature, S ignature2,
which is calculated as seen in line 8. Thus, line 9 gives the final result by concatenating S ignature2 and
Temp and giving it to the SHA256 hashing algorithm.
The output of the algorithm is a hashed message authentication code. Once a receiver receives an HMAC,
it will use the secret key and the algorithm to hopefully deduce an identical hash from the message to
the received hash. If the receiver succeeds in doing this, the message has not been tampered with. If the
message does not match the hash computed by the receiver, some change has been made to the message
between the message being sent and arriving at the receiver.
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Algorithm 3: HMAC algorithm
1: input: Message M consisting of blocks of length b, Key K with length 0 < |K| < b.
2: output: The hash authentication code for the message M
3: while |K| < b do
4: K ← 0 ◦ K;
5: end while
6: K+ ← K;
7: S ignature1← K+ ⊕ RepeatedToLengthb(00110110);
8: Temp← S HA256(S ignature1 ◦ M);
9: S ignature2← K+ ⊕ RepeatedToLengthb(01011100);

10: Result ← S HA256(S ignature2 ◦ Temp);
11: return Result;

2.3 OpenTitan Hardware Components

The OpenTitan chip contains many hardware components. In this section, we will go through some of the
components we find the most central for the overall design.

2.3.1 The HMAC Module

The Hash-based Message Authentication Code (HMAC) Module is an authentication code generator. Its
purpose is to check the validity of signed messages. It uses a 256-bit secret key to generate the authenti-
cation codes. The resulting authentication code will be different if the secret key is different, even if the
message is the same. The secret key is obtained from the key manager component (see section 2.3.3).
The HMAC module executes the HMAC algorithm (described later in Algorithm 3) when called by other
components. The HMAC module uses the SHA-256 hash algorithm for hashing [21].

2.3.2 The KMAC module

The Keccak Message Authentication Code (KMAC) module is similar to the HMAC module since it is
also used to check the validity of signed messages. Unlike the HMAC module, the KMAC module sup-
ports SHA-224, SHA-256, SHA-384, and SHA-512, which are SHA3 algorithms. The KMAC module
receives the secret key and the message needed for its computation from the key manager component (see
section 2.3.3). The KMAC module implements Domain-Oriented Masking (DOM)5 logic to protect itself
against certain attacks like Side-Channel Attacks (SCA) [23].

2.3.3 Key Manager

This section is written based on [24, 25]. To transition through the boot stages in OpenTitan, a Key Manager
component is needed to manage the necessary cryptographic keys. The Key Manager’s responsibility
is to control what software accesses critical assets and allow the software to access derived keys when
necessary. The Key Manager can be in different internal states. The internal states are Reset, Initialized,
CreatorRootKey, OwnerIntermediateKey, OwnerRootKey, or Disabled, which is the order in which the
states are reached. Some of the states are named after their respective internal key. From the Initialized
state, advancement of the stages is done through the KMAC component as described in section 2.3.2.

5Domain-oriented masking is explained in [22].
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Advancement through the states is irreversible. Thus the only way to reach a previous state is by resetting
the system. Following the Initialized state is the CreatorRootKey state. The key manager transitions to the
CreatorRootKey state at the end of the ROM stage so that the Key Manager is in this state during most of
the ROM_ext stage. The state contains an internal key that is essential to the other operations performed
in a given state. The internal key is hidden from software and cannot be accessed by hardware controlled
by software. However, other hardware, such as the KMAC module, is supplied with the internal key. In a
given internal state, the key manager can generate output keys and identities. The output keys are visible
by software and are needed, e.g., as an input to the HMAC module. The following internal states are only
used after the booting process is in the ROM_ext phase.
To reach the CreatorRootKey state, the KMAC module is supplied with a RootKey. The RootKey is in
One Time Programmable memory and is therefore read-only. The other necessary input data is Health-
Measurements, supplied by the lifecycle controller described in section 2.3.4, a DiversificationKey, a De-
viceIdentifier, and a HardwareRevisionSecret. The only secret data is the DiversificationKey, although
HardwareRevisionSecret has “secret” in its name. The DiversificationKey is stored in flash. The DeviceI-
dentifier is a unique device id. The HardwareRevisionSecret is a constant set at design time.

2.3.4 Life Cycle Controller

The Life Cycle Controller is responsible for managing the life cycle state from the point of booting. When
the OpenTitan chip is powered on, the Life Cycle Controller will measure the life cycle state. Once the life
cycle state is measured, the state’s values are broadcast to the rest of the device. The life cycle state is, e.g.,
used by the Key Manager to generate keys. When running the life cycle controller can take requests from
software or other hardware components to change the life cycle state[26].

2.3.5 The Big Number Accelerator Module

The OpenTitan Big Number accelerator (OTBN) is a processor that is responsible for executing crypto-
graphic operations like RSA and Elliptic Curve Cryptography (ECC). Because the domain of cryptographic
operations is typically big numbers, the OTBN module uses registers of 256 bits and instructions that can
operate on words of that size. The OTBN is designed to be very secure and to avoid data leakage. This is
done by separating the control flow from the data and by simplifying the design of the module[27].

2.3.6 SRAM Controller

The SRAM Controller is directly responsible for managing the SRAM, which is the volatile storage unit
of the OpenTitan design. At the time of writing this report, the SRAM Controller [28] is not well docu-
mented. The documentation describes that the SRAM Controller requests scrambling keys from OTP to
scramble SRAM data. It also reports SRAM integrity errors as well as hardening security when such errors
are detected. We also expect that it, similarly to the Flash Controller section 2.3.7, acts as an interface
between software/hardware and SRAM. However, it is not clear to us whether this is the case based on the
documentation. It is stated in [28] that “The memory inside the SRAM controller can be used right away
after a system reset.”, but this does not explicitly say whether the SRAM Controller handles SRAM access.
[28] also includes a set of steps for initializing the SRAM Controller so that the scrambling key is correctly
set. These steps include requesting a key from OTP, checking if the received key is valid, (optionally)
locking down the option for requesting a new scrambling key, etc. It is also stated that these steps should
be performed as early in the boot process as possible by software.
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2.3.7 Flash Controller

The Flash Controller can be seen as an interface between flash memory (which is the permanent storage
of the OpenTitan design) and other components. It consists of both a Flash Protocol Controller and a
Flash Physical Controller. The Flash Protocol Controller acts as an interface between the Key Manager,
Life Cycle Controller, software, and the Flash physical controller. Therefore, the Flash Protocol Controller
translates requests made by software to something understood by the Flash Physical Controller. The Flash
Physical Controller is a wrapper around the actual flash. Therefore, it is responsible for dealing with scram-
bling as well as translating the requests made by the Flash Protocol Controller to vendor-specific signals
[29]. The scrambling performed by the Flash Physical Controller does not use a scrambling history; thus, if
scrambling is enabled when writing but not when reading or vice versa, the result will be incomprehensible.

2.3.8 OTP Controller

This section is based on [30]. The OTP Controller is responsible for handling the One Time Programmable
memory (OTP) that is part of the OpenTitan design. The controller provides an interface between hard-
ware/software and the OTP. Specific components such as the Life Cycle Controller (cf. section 2.3.4) and
the Key Manager (cf. section 2.3.3) can directly interface with the OTP controller. It also provides soft-
ware isolation if the contents of the OTP are programmable and readable and incorporates logical security
protection at a high level (e.g., integrity checks and scrambling). Furthermore, the OTP controller has the
following features:

• The OTP controller maintains multiple logical partitions of the OTP memory.

• The OTP controller provides persistent and periodic checks of values stored in OTP.

• The OTP controller scrambles secret partitions via a lightweight scrambling method that uses a global
netlist constant.

• The OTP controller contains lightweight key derivation functions for deriving scrambling keys for
the SRAM and Flash scrambling mechanisms.

The partitions into which the OTP are separated represent different functions. The isolation between these
is virtual and is maintained by the OTP Controller. Each partition has certain properties that are enforce-
able: Confidentiality via secret partitions, Read lockability, Write lockability, and Integrity verification.
Confidentiality via secret partitions pertains mostly to the fact that a partition can be marked as secret. If
a partition is marked as secret, it is not readable by software when locked, and it is scrambled in storage.
Read lockability is the ability to control whether a partition is readable via software. Write lockability
means that a partition can be locked so that it cannot be updated in the future. Furthermore, such partitions
are stored alongside digests to be used for integrity verification at a later point.

2.3.9 Entropy Source

This section is based on [31]. The Entropy Source is a noise-generating component. The generated noise
is represented as bits, and these bits are used as seeds by other components. Both hardware components
and firmware components can use the seeds generated by the Entropy Source component. Among the com-
ponents using these seeds is the CSRNG as described in section 2.3.10. The Entropy Source component
provides two sources of entropy, the first being a pseudo-random digital entropy source, Linear Feedback
Shift Register. The second source of entropy is a true random number generator source, Physical True
Random Number Generator, which is provided by an external interface. [31]
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2.3.10 CSRNG

This section is written based on [32]. CSRNG is an abbreviation for Cryptographically Secure Random
Number Generator. The component will, based on the seeds provided by the Entropy Source module
described in section 2.3.9, compute random values. In combination with the Entropy Source, the CSRNG
can provide deterministic random number generation and true random number generation. To perform the
random number generation, the component relies on the entropy from the Entropy Source module.

2.3.11 Entropy Distribution Network

The section is written based on [33]. When random numbers have been generated by the CSRNG as
described in section 2.3.10, the Entropy Distribution Network (EDN) is used to distribute the numbers to
the other components in the system. Furthermore, the EDN is also responsible for managing requests to
the CSRNG. Whenever a component issues a request for a random number, the EDN is used. The EDN
relies on four request/acknowledge hardware interfaces to communicate with the components making the
requests. The EDN uses two FIFOs to deal with commands for generating numbers and for reseeding to
manage requests.

2.4 OpenTitan Scrambling

As mentioned in section 2.3.6 and section 2.3.7 OpenTitan utilizes scrambling for several components in-
cluding SRAM and Flash. The scrambling performed in both components uses a PRINCE block cipher
to perform the scrambling. The purpose of scrambling is to prevent leakage of secrets in the system since
sensitive data can reside in both the SRAM and the Flash. Each of the respective storage components
has a controller which manages the scrambling, while the PRINCE Block Cipher component performs the
scrambling.

The Flash Controller does not keep any record of which addresses are scrambled. Since scrambling is not
enabled for all addresses in Flash, misreading unscrambled data as scrambled will result in gibberish (cf.
section 2.3.7). The same goes the other way around [29]. The SRAM controller always has scrambling
enabled, and therefore it does not have the same potential for an incorrect read. The SRAM Controller and
Flash Controller rely on the OTP Controller to provide them with a scrambling key. The SRAM controller
is, however, provided with a predefined scrambling key used just after a reset. It will use the key until
software has requested another key from the OTP Controller [28].

2.5 OpenTitan Structure

To give an overview of how the parts of the OpenTitan platform (hardware and software) interact, we
have created the diagram seen in Fig. 2.5.1. This diagram shows the flow of data between some of the
more prevalent hardware modules along with how they interact with the ROM boot stage described in
section 2.1. As a disclaimer, it is important to note that this diagram is not complete. It does not contain
all the hardware modules of OpenTitan. This is because we have tried to only show the more interesting
modules and because we have tried to only show things in the diagram that we have a high degree of
certainty about. We have created the diagram by reading through the available OpenTitan documentation.
Furthermore, since OpenTitan is still in development, how the modules interact might change compared to
how they are presented in the diagram.
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Figure 2.5.1: A diagram of how some of the modules interact in OpenTitan.

The arrows seen in Fig. 2.5.1 show the direction of communication between the modules. The numbers
seen on the arrows are used to refer to specific lines of communication further into this section to describe
why the modules communicate as they do. The numbers do not represent any order in which the modules
communicate. Boxes with soft edges represent firmware/software, and boxes with hard edges represent
hardware. Lastly, we have made a box (drawn in red) that encapsulates ROM_ext, BL0, Kernel, and
Apps seen at the bottom left of the figure. We do not show how the firmware/software interacts with the
hardware components outside the box because we are only interested in the ROM stage of the booting
process. The following list describes the communication in the figure (item 1 describes the arrows in the
figure labeled with 1, etc.). In this section, we do not describe each module in detail but focus on why the
modules interact. A more in-depth description of some of the modules shown in Fig. 2.5.1 can be seen in
section 2.3.

1. The AON (Always-ON) Timer contains two timers that count up from zero: the AON Wakeup timer
and the AON Watchdog timer. It communicates to the power manager by pinging it regularly when
these timers reach a threshold. Once the AON pings the power manager, it waits for acknowledgment
and resets its timers [34].

2. The Power Manager initializes the Life Cycle Controller and gets an acknowledgment back that the
initialization is complete [35].

3. The Power Manager initializes the OTP Controller and gets an acknowledgment back that the ini-
tialization is complete [35].
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4. There are two purposes for the communication between the Flash Controller and the Life Cycle
controller [29]:

• The Life Cycle Manager can send a return material authorization (RMA) request to the Flash
Controller. When the RMA entry process is complete, the Flash Controller notifies the Life
Cycle Controller.

• The Life Cycle Controller can enable an information page that holds secret seeds for the key
manager.

5. It can be seen from [35] that the Power Manager communicates with the Clock Manager. However,
the exact reason why is not documented.

6. The Power Manager powers up flash, but does not initialize it (this is done by ROM)[35].

7. The OTP Controller provides keys for scrambling to the Flash Controller. The OTP Controller can
also enable information partition pages in flash that contain secret seeds for the Key Manager [29,
30, 36].

8. The Life Cycle Controller reads the contents of the life cycle partition in OTP and decodes the life
cycle state [26].

9. The Power Manager communicates reset requests to the Reset Manager. The Reset Manager com-
municates reset requests from the AST to the Power Manager [35].

10. The ROM stage of the boot process starts after the system powers up (when the Power Manager
starts the system).[14, 37]

11. ROM initializes flash before using it. ROM reads, writes, and executes flash [35, 38].

12. The OTP Controller derives a scrambling key that it gives to the SRAM Controller [30, 36].

13. The Flash Controller provides secret seeds to the Key Manager if the OTP Controller enables the
pages containing the seeds and Life Cycle Controller [29, 24].

14. The OTP Controller provides a root key to the Key Manager [30, 36].

15. The Life Cycle Controller provides the Key Manager with health measurements (which is the current
life cycle state) [24].

16. ROM transfers execution to a validated ROM_ext as described in section 2.1.

17. The ROM (mask_ROM) communicates with the OTBN to do signature verification. The OTBN is
the module used to do calculations needed for the RSA algorithm [27, 38].

18. The OTP Controller derives and gives a scrambling key to the OTBN [30, 36].

19. To perform the HMAC algorithm, the HMAC module needs a key to use. This key is provided by
the Key Manager [21, 24]. It is not clear to us exactly where the HMAC module is used. It is stated
in [38] that it is used during signature verification, but this might not yet be implemented.

20. When a key is requested by software or hardware, the Key Manager takes the current secret key and
does a KMAC operation on it. It then exposes the output of the KMAC operation as the requested
key [24].

21. The Key Manager gets entropy (randomness) from the EDN when it goes from the Reset state to the
Initialized state [24].

22. The OTP Controller requests entropy from the CSRNG (via the EDN) when deriving the SRAM
scrambling key [30].
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23. The EDN acts as an interface for the CSRNG [39].

24. The CSRNG generates random numbers with entropy from the Entropy_Src Module [40, 41].

The following is a list of hardware modules that are mentioned by OpenTitan but that we could not fit into
the diagram due to not knowing where exactly they are used:

• AES [42].

• Alert Handler [43].

• NMI Generator [44].

• Interrupt Controller [45].

• Timer [46].

There are more modules described in the OpenTitan documentation that are not mentioned here. This is
because we assume these modules to be basic computer components that are not exclusive to OpenTitan
(GPIO, USB 2.0, etc.).

While we have added the SRAM Controller to the figure seen in Fig. 2.5.1, we cannot find any concrete
documentation that gives an exhaustive overview of components that communicate with the SRAM Con-
troller. Furthermore, the OpenTitan SRAM Controller documentation page [28] does not spend much time
in explaining the fundamentals of the module or the underlying SRAM. We assume that SRAM is used
like regular working memory in the system with the added feature that the SRAM Controller can scramble
SRAM. This is an assumption that we use in the model of ROM stage presented in chapter 5.

2.6 Physical Memory Protection

This section is based on [47]. The OpenTitan system builds upon a RISC-V architecture. RISC is an
abbreviation of Reduced Instruction Set Computer. RISC-V is also an open-source standard Instruction
Set Architecture (ISA)[48].
The RISC-V ISA supports a hardware unit that limits the access that processes have to physical memory
regions. The unit is called the Physical Memory Protection (PMP) unit. The PMP unit can specify whether
a memory region can be accessed (i.e., read, written, or executed). Utilizing the PMP functionality allows
for more secure processing. If a memory region is locked by the PMP unit, then Machine mode must also
respect the access rights set in that memory region. Unlocking locked memory requires a system reset.
User and Supervisor mode software cannot access the region if no fields are set in a given memory region.
Thus the PMP unit can also give various access permissions to User and Supervisor modes by setting the
read, write and execute bits of an unlocked region. If a process tries to access memory that will violate the
restrictions set by the PMP unit, an exception will be thrown.
RISC-V allows up to 16 PMP entries of 8-bit configuration registers, and an MXLEN6-bit address register.
The configuration registers are stored in Control State Registers (CSR’s). If one of these PMP entries is
implemented, then all 16 need to be implemented. However, the CSR’s can be hard-coded to zero if not all
need to be used. The configuration register contains parameters for whether and how the memory can be
accessed. A graphical representation of the contents of the configuration register can be seen in Fig. 2.6.1.
Each box in the figure corresponds to one bit. The L bit signifies whether the region is locked or unlocked.
Locked regions also apply to Machine mode. 00 and 01 are unused, which means that the values are always

6MXLEN is the width of a register in Machine mode.
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0. The A bits are used for address matching. Address matching is explained later. The X, R, and W bits
are used to allow execution, reading, and writing, respectively.

Figure 2.6.1: Format of a PMP configuration register.

Whenever memory access is necessary, the PMP component must check the access right for the specific
memory location. The 16 PMP entries are prioritized in numerical order. Thus PMP entry N will always
have precedence over entry N + 1. If memory access is issued to a range of addresses, then for each PMP
entry, if that PMP entry covers the whole range, that region’s X, R, and L bits determine the access rights.
Otherwise, the next PMP entry is queried, and so on. If access issued from Machine mode has no matching
PMP region, the access will still succeed. This is not the case for User/Supervisor mode, for which access
will fail if the PMP is implemented and a matching region is not found.

The range of a PMP entry can be expressed in three different address matching modes: Top of Range
(TOR), Naturally Aligned four-byte (NA4), or Naturally aligned Power-Of-Two (NAPOT). This is ex-
pressed in the ’A’ region in Fig. 2.6.1. A TOR region works by using the previous PMP-region’s top
address element as the bottom element of the range for the current region and uses the address in its ad-
dress register as its top element. TOR PMP regions ensure that they do not overlap with the previous region
and that there is no gap in memory after the previous PMP region. An NA4 region is consistently a 4-byte
region, whereas the range of a NAPOT region is expressed as a power of 2 based on the address. The
NAPOT region’s smallest possible range is 8 bytes, and the largest range possible is 2XLEN+3, where XLEN
is the register width of the machine. The smallest possible region size across the different address matching
modes is 4 bytes.
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Chapter 3

Our Boot Code

In this chapter, we describe the boot code that we have created to mimic the OpenTitan design as closely
as we can. Furthermore, we describe the security policies and goals that we want to verify about the
OpenTitan system. This can be seen as the concrete case that we intend to model.

3.1 Boot Code Description

The work of this project builds on the boot code described in appendix B. The boot code is developed with
the project group SV107f21. The developed boot code is inspired by the work of OpenTitan’s open source
ROM boot code available at [38]. The purpose of the ROM code is as presented in section 2.1. An excerpt
of the code found in appendix B can be seen in listing 3.1.

The listing contains the mask_rom_boot function. This function corresponds to the ROM Boot process
implemented in OpenTitan. The mask_rom_boot function can be thought of as the main function for the
ROM stage of OpenTitan. It has the responsibility of initiating the call to all the other functions. The
first task of mask_rom_boot is to read a boot policy from flash via the read_boot_policy function as
seen in line 3. The boot policy will contain information necessary to determine in what way the boot shall
proceed and what should happen upon failure[38]. The call to read_boot_policy will find the manifest
in the device’s flash. Accessing the flash happens through the flash controller section 2.3.7. The flash
controller uses the PMP module to determine if the address is allowed to be read. If the address is not
allowed to be read, an exception will be thrown. Once the boot policy is read, the next step is to find a
valid ROM_ext manifest to boot. For this the function rom_ext_manifests_to_try is used in line 5
which takes a boot policy as input. As described in section 2.1.3, the ROM_ext manifests are to be found
in the flash banks section of flash. Thus, the boot_policy determines which flash bank to investigate first
and whether validating the ROM_ext manifest found in the other flash bank should be attempted.
The mask_rom_boot function will perform several checks for the found manifest, and it must pass all
checks to take control of the boot process. The first check is done by check_rom_ext_manifest in line
12. This function is used to check the manifest for a specific identifier[14].

Next, we need to read the public key in line 17. The second check is done by the check_pub_key_valid
function, which takes the public key as input. The check_pub_key_valid function checks if the public
key in the manifest that is currently being validated is a trusted public key. This is done by checking that
the key of the manifest is contained in an immutable list of trusted public keys stored in ROM. If the key is
trusted and enabled, it can be used to verify the signature in the manifest. If the key is not found in the list
of trusted keys, the check will fail, and the next ROM_ext manifest will be investigated. On the hardware
level, the function check_pub_key_valid will also use the flash controller to access the flash and have
the address for the access checked by the PMP module.
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If the previous checks have both succeeded, the final necessary check to perform is to verify that the
signature of the manifest is correct. This is done by the function verify_rom_ext_signature. The
function relies on the OTBN to perform the RSA verification algorithm mentioned in section 2.2.1. If
the signature is correct, the verification succeeds, and the ROM_ext image code is trusted. Then the
PMP module must update the first PMP-region (PMP-region 0) so that addresses containing the ROM_ext
image code are allowed to be executed. This is done with the call to the pmp_unlock_rom_ext function
in line 30. In line 33 the current manifest will be used to start the next stage of the booting sequence,
ROM_ext. If the function returns, the booting process has failed, which will get handled by the function
boot_failed_rom_ext_terminated in line 35. If all the ROM_ext manifests to be tried by the boot
policy failed the validation, the booting process has failed. This is handled by the function boot_failed.

1 vo id mask_rom_boot ( vo id )
2 {
3 b o o t _ p o l i c y _ t b o o t _ p o l i c y = r e a d _ b o o t _ p o l i c y ( ) ;
4

5 r o m _ e x t s _ m a n i f e s t s _ t r o m _ e x t s _ t o _ t r y = r o m _ e x t _ m a n i f e s t s _ t o _ t r y ( b o o t _ p o l i c y ) ;
6

7 / / Maybe s t e p 2 . i i i
8 f o r ( i n t i = 0 ; i < r o m _ e x t s _ t o _ t r y . s i z e ; i ++)
9 {

10 r o m _ e x t _ m a n i f e s t _ t c u r r e n t _ r o m _ e x t _ m a n i f e s t = r o m _ e x t s _ t o _ t r y . rom_exts_mfs [ i ] ;
11

12 i f ( ! c h e c k _ r o m _ e x t _ m a n i f e s t ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ) {
13 c o n t i n u e ;
14 }
15

16 / / Step 2 . i i i . b
17 pub_key_ t rom_ext_pub_key = r ead_pub_key ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ;
18

19 / / Step 2 . i i i . b
20 i f ( ! c h e c k _ p u b _ k e y _ v a l i d ( rom_ext_pub_key ) ) {
21 c o n t i n u e ;
22 }
23

24 / / Step 2 . i i i . b
25 i f ( ! v e r i f y _ r o m _ e x t _ s i g n a t u r e ( rom_ext_pub_key , c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ) {
26 c o n t i n u e ;
27 }
28

29 / / Step 2 . i i i . d
30 pmp_unlock_rom_ext ( ) ;
31

32 / / Step 2 . i i i . e
33 i f ( ! f i n a l _ j u m p _ t o _ r o m _ e x t ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ) {
34 / / Step 2 . i v
35 b o o t _ f a i l e d _ r o m _ e x t _ t e r m i n a t e d ( b o o t _ p o l i c y , c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ;
36 }
37 } / / End f o r
38

39 / / Step 2 . i v
40 b o o t _ f a i l e d ( b o o t _ p o l i c y ) ;
41

42 }

Listing 3.1: Our mask_rom_boot function responsible for booting rom.
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3.2 What we Want to Verify

To figure out the exact security properties that we want to verify about our boot code (cf. appendix B), we
refer to the security analysis that we did on OpenTitan during our P9 project. This security analysis can
be seen in [12, Ch. 5]. We made the security analysis to define the system and its context. It also defines
several security policies and expands these policies into several smaller and verifiable goals. Lastly, it
also defines a threat model for the system to gain an insight into how different kinds of attacks (spoofing,
tampering, etc.) might affect the system and how likely these attacks are.
To define realistic properties that we want to verify about our boot code, we have looked at the security
policies defined in [12, Ch. 5]. These policies and their individual goals are:

• P1 Only code that has been validated can be executed.

– G1: Before the ROM_ext image code is executed, the signature of the ROM_ext manifest must
be validated by ROM.

– G2: Before a BL0 image is executed, the signature of the BL0 must be validated by ROM_ext.

– G3: The ROM_ext image signature must not change and must be signed by the Silicon Creator.

– G4: The BL0 image signature must only change upon ownership transfer, and it must only be
done by the Silicon Owner.

• P2 Validation of a boot stage must only succeed if the boot environment is safe.

– G5: ROM must use a key dependent on the environment to validate ROM_ext. The validation
must fail if the environment has changed since the code was signed.

– G6: ROM_ext must use a key dependent on the environment to validate BL0. The validation
must fail if the environment has changed since the code was signed.

• P3 Cryptography key leakage cannot happen.

– G7: Keys must be managed by a dedicated hardware component.

– G8: Correct keys are only accessible to intended receivers.

– G9: Secret information stored in memory must be cleared or scrambled after the termination
of the respective boot stage.

• P4 All data access rights follow a privilege hierarchy.

– G10: Writing to a memory section requires writing privilege.

– G11: Reading from a memory section requires reading privilege.

– G12: Execution of a memory section requires execution privilege.

– G13: Downstream software cannot re-execute a previous boot stage.

– G14: Downstream software cannot modify code of previously executed boot stages.

3.2.1 P1

The goals of the P1 security policy covers multiple stages of the boot process. The security goals in P1 that
do not fit within the scope of this project are G2 and G4. This is based on the limitation of the scope made
in chapter 1. Thus the goals that we want to verify about the ROM stage are G1 and G3. Verifying G1 will
ensure that the code to be executed in the following stage is the code signed by the Silicon Creator, which
is a trusted entity. Goal G1 is only valid under the assumption that G3 is also fulfilled, namely that it is, in
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fact, the Silicon Creator that has signed the ROM_ext image. Therefore as stated in G3, it is necessary to
know that the signature must not be changed.

3.2.2 P2

The goals of the P2 security policy also cover multiple stages of the boot process. The G6 security goal
falls outside the scope of the project since it concerns the BL0 stage in the boot process. However, the
G5 security goal falls within the scope of our project, so we will want to verify it. When the ROM_ext
manifest image code is hashed during signing, multiple register values are appended before hashing. When
the signature of the ROM_ext manifest is verified, the values from the same registers are appended before
hashing. If the environment is different, then the verification of the signature should fail. This means that
the verification will not succeed if the environment has changed.

3.2.3 P3

For the P3 security goals, we will verify G8 and G9. While we should be able to model a key manager
component that manages any cryptographic keys, it is not really used until the system begins to enter the
ROM_ext stage (when it enters the CreatorRootKey state cf. section 2.3.3). As such, G7 is out of the scope
of this project since we are only looking at the ROM stage. The G8 security goal states that cryptographic
keys should only be received by intended receivers. This will be limited to only be considered for the ROM
stage. Lastly, it should be possible to verify that any secret information in memory is wiped once ROM
transfers execution to the next stage.

3.2.4 P4

Goals 10-12 should be somewhat easily verifiable with Uppaal by including a model of a PMP module (cf.
section 2.6) that keeps track of the rights assigned to parts of a memory model. Likewise, we can potentially
“lock down” the ROM stage so that further execution cannot execute or change it without incurring fatal
boot exceptions. However, since we do not intend to model more stages than the ROM stage, it will be
difficult to realistically model downstream software trying to modify or execute previous code. Therefore
we believe G13 and G14 to be out of scope for this project.

3.2.5 Security Mechanisms

Now that we have selected which of the goals from the security analysis in [12, Ch. 5] that we want
to verify, we can look into the part of the security analysis that concerns security mechanisms. [12, Ch.
5] mentions several security mechanisms that OpenTitan employs to ensure the outlined security goals.
The rest of this section will describe the security mechanisms mentioned in [12, Ch. 5] for each of the
goals that we have chosen to include. While we do not intend to model OpenTitan one-to-one, we do, to
some extend, base our model on the design of OpenTitan. Therefore, most, if not all, of these security
mechanisms should be represented in the developed model (or have logical equivalents) to give an accurate
representation of a system similar to that of OpenTitan.

20



3.2. WHAT WE WANT TO VERIFY

G1: Before the ROM_ext image code is executed, the signature of the ROM_ext manifest must be
validated by ROM.

To ensure G1, a hashing algorithm is used to compute the digest of the ROM_ext image. The OpenTitan
Big Number Accelerator (OTBN) is used to verify the signature of the ROM_ext image. This is done with
the RSA-3072 algorithm and the creator identity public key. OpenTitan Secure Boot HW Support requires
that the ROM_ext manifest must be validated before leaving the ROM stage[15].

G3: The ROM_ext image signature must not change and must be signed by the Silicon Creator.

The security mechanisms needed for G3 are creator identity private key, which is used when computing the
signature via the RSA-3072 algorithm. The PMP is also a security mechanism for this security goal since
it limits the possibility of performing any writes to manifests’ signatures.

G5: ROM must use a key dependent on the environment to validate ROM_ext. The validation must
fail if the environment has changed since the code was signed.

The Key Manager hardware component derives keys throughout the booting process from the RootKey,
HardwareRevisionSecret, and other information (i.e., the environment) [15].

G7: Keys must be managed by a dedicated hardware component.

The G7 security goal relies on the Key Manager, which controls what software can access the generated
keys. The key manager is also responsible for deriving the keys.

G8: Correct keys are only accessible to intended receivers.

OpenTitan’s key derivation scheme is designed such that it is only possible for the intended entities to have
access to the correct inputs to the key derivation function.

G9: Secret information stored in memory must be cleared or scrambled after the termination of the
respective boot stage.

Two security mechanisms ensure that G9 is upheld. First off, the SRAM controller is used to scramble
SRAM. This controller gets a new key for scrambling at each system reset. Secondly, software registers
are cleared, and flash is scrambled to erase keys after the ROM_ext stage. However, the second of these
mechanisms is not in the scope of our model (since we model the ROM stage).

G10, G11, G12: Only software with write/read/execute access to some memory section may modi-
fy/read/execute it.

To ensure these goals, OpenTitan uses the RISC-V PMP feature. This allows for the system to create PMP
regions that indicate the access rights for different parts of memory (cf. section 2.6). With the built-in PMP
hardware module, the system can make sure that read, write, and execute privileges are handled correctly.

We believe that we can model our boot code in a way that lets us verify some, if not all, of the policies
mentioned in this section.
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Chapter 4

Model Checking

This section uses [49] as the primary source. [49] describes model checking as “(...) a computer-assisted
method for the analysis of dynamical systems that can be modeled by state-transition systems.” One of
the more prominent methodologies within model checking for verification purposes is to establish some
model P of a system in the form of a state-transition graph (also known as a Kripke structure) along with a
separate specification φ of the system such that P |= φ. A Kripke structure is a finite directed labeled graph
with vertices representing states and edges representing transitions. A Kripke structure is formally defined
in [49] as a triple K = 〈S ,R, L〉 where:

• S is a finite set of states also known as the state space.

• R ⊆ S × S is a set of transitions also known as the transition relation.

• L : S → 2A is a function that assigns a set of atomic propositions to states. If s is a state in S , then
L(s) is the set of all atomic propositions that evaluate to true in s.

A path through the graph of the Kripke structure can be seen as the behavior of a dynamic system. An
example of a Kripke structure for a lamp can be seen in 4.0.1.

Figure 4.0.1: A simple Kripke structure for a lamp.

Early model checking was mostly done by graph algorithms that worked on these kinds of Kripke struc-
tures. However, as computer systems became more and more advanced, the gap between this approach and
the systems that needed to be modeled grew. Advances within the field of model checking have helped to
reduce the size of this gap. These advances can roughly be grouped into the following categories:

• The algorithmic challenge, which is concerned with designing algorithms for model checking so that
they might scale to real problems.

• The modeling challenge, which is concerned with the extension of the framework of model checking
so that it may go beyond Kripke structures and temporal logic.

The field of model checking encompasses many variations of the technique to deal with these challenges.
Some variations are tailored for real-time systems, while others may include probability theory to better
model uncertainty. Uppaal [50], PRISM [51], and Storm [52] are model checking tools that can be used to
check properties about models.
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Some of the more significant issues within model checking that are pervasive through all of these variants
are those of “state space explosion” and what is known as “the modeling gap”. State space explosion is
the issue that the number of states in a model increases exponentially with its size. Therefore running out
of memory becomes an issue on models of larger systems. The modeling gap refers to the fact that model
checking, by its nature, uses models of systems instead of the actual systems. Therefore, the modeler of
a system needs to be careful that their model carefully represents the actual system. If the gap between a
model and its implementation is too large, then the model cannot be used to say anything useful/meaningful
about the system.
Even with these problems and challenges, model checking is a powerful method for verification that pro-
vides a systematic approach that can potentially be fully automated. The method of model checking can
also be used at different points throughout the development process. E.g., on abstract designs of the system
or implemented code. Model checking also handles the concurrency of systems well due to how networks
of models interact.

4.1 Timed Automata

To define timed automata we look at the definition found in [53]. In this they define a timed automaton as
a quadruple of the following format:

(L, l0, E, I)

With each of of the elements of the quadruple having the following meaning:

• L is a finite set of locations,

• l0 ∈ L, is the initial location,

• E is a finite set of edges and is defined as: E ⊆ L × B(C) × Act × 2C × L,

• I is a function that assigns invariants to the locations, defined as: I : L→ B(C),

• C is a finite set of clocks, and B(C) is a set of guards over the set of clocks,

• Act is a set of actions.

Figure 4.1.1: An example of a timed automaton in Uppaal.

An example of a timed automaton can be seen in Fig. 4.1.1. A state of a timed automaton is a pair (l, v)
where l is a location and v is a clock evaluation. A clock evaluation (v) is a function v : C → R≥0

that evaluates the values of clocks. Increasing a clock valuation by a given non-negative real number d
is expressed by v + d. Formally this is defined by (v + d)(x) = v(x) + d for each x ∈ C. Resetting a
subset of clocks r to 0 is expressed by v[r]. Formally v[r](x) is defined as 0 if x ∈ r, and simply v(x)
otherwise. A timed automaton can change its current state either by firing an edge to go to a new location l
and potentially resetting a number of clocks, or by delaying for a real number of time units. The transition
relation is in [53] defined as:
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(l, v)
a
−→ (l′, v′) if an edge l

a g r
−−−−→ l′ ∈ E exists such that v |= g, v′ = v[r], and v′ |= I(l′)

(l, v)
d
−→ (l, v + d) for all d ∈ R≥0 so that v |= I(l) and ∀d′ : 0 ≤ d′ ≤ d =⇒ v + d′ |= I(l).

As an example, the initial state of the automaton in Fig. 4.1.1 is the pair (L0, x 7→ 0). Since the state does
not satisfy the guard (x > 10), the edge to location L1 cannot be taken. However, since the location of the
state does not have an invariant, then all delays are possible. By delaying for 15 time units, the state is then
(L0, x 7→ 15). From this state, the guard of the edge to L1 is satisfied (i.e. (L0, x 7→ 15) |= x > 10), and
the invariant of the destination location (which is simply true for any clock valuation) is also satisfied. By
taking that edge, the state becomes (L1, x 7→ 0). From this state the automaton can wait e.g. 3.2 time units
to satisfy the guard of the next transition, and go back to the initial location. The following is the sequence

of states above: (L0, x 7→ 0)
15
−−→ (L0, x 7→ 15) → (L1, x 7→ 0)

3.2
−−→ (L1, x 7→ 3.2) → (L0, x 7→ 0). Note that

the last state in the sequence is the same as the first one, which implies that the sequence can technically
repeat infinitely.

4.1.1 Networks of Timed Automata

This section is based on [54]. Networks of timed automata are compositions of timed automata over
a common set of clocks and actions. A network of timed automata can be defined as a sextuple Ai =

(Li, l0i ,C, A, Ei, Ii), where 1 ≤ i ≤ n. A location vector is a vector l = (l1, . . . , ln). We use l[ l′i / li ] to
express l where li has been replaced by l′i . The invariant functions are composed into a function over
location vectors I(l) =

∧
i Ii(li). The semantics of timed automaton networks is defined as a transition

system. A state of this transition system is of the form S = (L1× . . .×Ln)×RC . Initially the location vector
is (l01, . . . , l

0
n), and all clocks evaluate to 0 (i.e. v(x) = 0 for each x ∈ C). The transition relation is defined

by the following:

(l, v)
d
−→ (l, v + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ v + d′ |= I(l).

(l, v)
a
−→ (l[ l′i / li ], v′) if there exists li

τ g r
−−−−→ l′i such that v |= g, v′ = v[r], and v′ |= I(l[ l′i / li] ).

(l, v)
a
−→ (l [ l′j / l j, l′i / li], v′) if there exist li

c? gi ri
−−−−−→ l′i and l j

c! g j r j
−−−−−→ l′j such that v |= gi ∧ g j,

v′ = v[ri ∪ r j], and v′ |= I(l [ l′j / l j, l′i / li]).

4.2 UPPAAL

Uppaal is a model checking tool used for the verification of real-time systems. The models in Uppaal are
developed as timed automata, or networks thereof, and are graphically represented in the tool. The Uppaal
model checker extends the standard definition of timed automata in section 4.1. The timed automata
utilized in the Uppaal tool is extended with bounded integers, urgency, broadcast channels, committed
locations, structured variables, user-defined types and functions, and more. The variables are part of the
model’s state. This means that two states are considered different, even if only their variables are different.
Discrete variables can be used in the expressions, guards, or invariants of the model. Urgency is introduced
both in terms of locations and channels.

4.2.1 UPPAAL Features

We have created a simple Uppaal model to illustrate some of the more prominent features of the Uppaal
formalism. This model can be seen in Fig. 4.2.2. It consists of three instances based on the two templates
seen in Fig. 4.2.1. The model represents a boss and two workers in an office with only one workspace. This
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means that the two workers cannot work at the same time. Furthermore, the two workers work differently.
One worker can work for 5 time units, and the other can work for 10 time units. This is captured by the
Worker’s only parameter workTime. Every time a worker works at the workspace, they generate some
value, which is represented by the value of v increasing by the value of i, which in turn is bounded by the
workers work time. The system stops when a sufficient amount of value is generated for the office, which
can be seen in the fact that the Boss template has a guard on its transition.

(a) The Worker template used in the example model. Note
the workTime parameter variable.

(b) The Boss template used in the example model.

Figure 4.2.1: The Worker and Boss templates.

Figure 4.2.2: Uppaal model containing three instances of templates.

Uppaal’s extension of timed automata means that guards and invariants can depend on variables and the
results of user-defined functions, as well as clock valuations. Clocks are types of variables, which means
that a template can have an arbitrary number of clocks. Each transition can update the variables. In the
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example, criticalSectionOccupied, v, and x are variables. An enabled transition is an edge transition
that is allowed to be fired in the current state concerning its guard, the invariant of the destination location,
and whether another instance in the current state is in a committed location. Locations in Uppaal tem-
plates can be marked as urgent or committed (marked with a U or C, respectively). In the example, the
Controller’s Idle location is committed. As long as a template instance is in an urgent location, delay
transitions cannot be performed. This means that only edge transitions can be taken. As long as a template
instance is in a committed location, delay transitions cannot be performed (like with urgent), and the next
edge transition must be taken from a location that is committed. It is allowed to take a transition from a
committed location to another committed location or even back to the same location.

For templates to communicate with each other, they use channels. Channels can be broadcast or binary, and
they can be urgent or not. Binary channels have exactly one “sender” also called an “initiator” that initiates
the communication, and exactly one receiver that is the recipient of the communication. An edge transition
can only synchronize over one channel. A template cannot skip synchronizing if an edge synchronizes
over a channel. If an urgent synchronization is enabled, the system cannot delay until the template moves
to another location that does not have an enabled urgent synchronization. Broadcast channels have exactly
one sender and an arbitrary number of receivers. When an edge that synchronizes over a broadcast channel
fires, all potential receiving templates take the appropriate transition if the guard is satisfied. If one of
these templates would enter a location whose invariant is not satisfied, none of the sending and receiving
transitions can be fired. In Fig. 4.2.2 Action is a broadcast channel, and reset is a binary channel.

Transitions can have select clauses, which are used to simulate many similar edges. Select clauses generate
variables to be used in a transition. Those variables exist only for the duration of the transition. The
select clause generates a unique transition for each combination of values in the clause. This means that a
number of transitions equal to the product of the sizes of the variable ranges are created. This means that for
queries that search the state space, they will also have to check each branch of any select clause transitions.
In Fig. 4.2.2, a select clause can be seen as the yellow text by the transition between the CriticalSection
and Idle locations. Templates can take parameters, which are typically integers within a bound. When
the templates are included in Uppaal, a unique template is generated for each possible value and included
in the model. In this example, there are two worker template instances with different values for workTime
thanks to this feature.

4.2.2 UPPAAL Queries

To verify properties of developed models in Uppaal, a subset of Timed Computation Tree Logic (TCTL)
is used to formulate queries. TCTL specification requirements are written as either state formulae or
path formulae, describing either a single state or the transition paths of the transition system, respectively.
Single state formulae are basic expressions stating, e.g., which location a process is in. Path formulae are
categorized as being either reachability, safety, or liveness properties [54]. Uppaal queries can be in one of
five forms:

• E<> phi searches the state space for a state that satisfies phi.

• E[] phi searches for a trace of transitions leading out of the initial state that all satisfy phi. The
trace can either end in a deadlock or end in a loop to satisfy this.

• A<> phi searches each branch of the state space for whether phi is eventually satisfied.

• A[] phi looks through all states in the state space and returns whether all satisfy phi.
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• phi −− > psi Looks through the state space and returns whether whenever phi is satisfied, then
psi is eventually satisfied during all following traces. It is equivalent to A[] phi imply A<> psi.

Reachability properties check if it is possible to satisfy phi at any point during any trace. A reachabil-
ity property in Uppaal is expressed as E<> phi [54]. An example of a transition system that satisfies a
reachability property can be seen in Fig. 4.2.3.

Figure 4.2.3: A transition system that satisfies the reachability property.

For the Uppaal model shown in Fig. 4.2.2, we have made written a reachability query: E<> v > 30. In
other words, is it possible to reach a state where the value of the variable v is greater than 30. By running
the query, Uppaal concludes that it is possible and gives a proof trace. The trace is that the Worker2 in-
stance can go into the critical section and increase v by 10 four times.

E[] queries check whether a property is always satisfied in at least one trace leading out of the initial state.
An example of a transition system that satisfies a liveness property can be seen in Fig. 4.2.4.

Figure 4.2.4: A transition system that satisfies an E[] property.

We have written an E[] query for the model in Fig. 4.2.2: E[] v % 7 == 0. The query asks whether there
is a trace leading out of the initial state, such that the value of v is always a multiple of 7. Uppaal provides
a proof trace, which consists of taking the first transition and then waiting in that state infinitely. The value
of v is 0 infinitely, which satisfies the query.
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Liveness properties guarantee that phi is satisfied at some point along every path. In Uppaal the liveness
property is expressed as A<> phi. An example of a transition system that satisfies a liveness property can
be seen in Fig. 4.2.5.

Figure 4.2.5: A transition system that satisfies the simple liveness property.

We have written the following simple liveness query for the model example in Fig. 4.2.2: A<> Worker2.x

↪→ == Worker2.workTime, which asks whether Worker2’s clock x will ever be equal to the workTime

parameter, which represents the clock’s maximum value. Uppaal concludes that the property is eventually
true for any trace.
Safety properties check if some property phi is always satisfied during all traces. Thus all paths of the
model must be checked if phi is always satisfied. If phi denotes a desirable property of the system,
the safety property intuitively verifies whether something contradicting phi will ever happen. The safety
property in Uppaal is expressed as A[] phi. If one is only interested in ensuring that at least one path
always satisfies phi, the syntax E[] phi can be used [54]. An example of a transition system that satisfies
a safety property can be seen in Fig. 4.2.6.

Figure 4.2.6: A transition system that satisfies the safety property.

For the model example, we have made written a safety property: A[] not (Worker1.CriticalSection

↪→ && Worker2.CriticalSection), that checks whether the two workers are ever in the critical section
at the same time. This query is important to prove from a modeling perspective since violating the property
means that there is a problem with the model. Uppaal concludes that the property is satisfied, but is not
able to provide a proof trace because the property concerns every trace, and not any trace in particular.
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Uppaal also supports an extension of the liveness property called leads to, expressing that if phi holds then
another state formulae psi holds afterwards. The leads to property is expressed as phi −− > psi [54].
An example of a transition system that satisfies a leads to property can be seen in Fig. 4.2.7.

Figure 4.2.7: A transition system that satisfies the leads to property.

Our leads to property for the Uppaal model example is the following: Worker1.CriticalSection −− >
↪→ Worker1.Idle. This query asks whether Worker1 will always go to the Idle location whenever it
enters the CriticalSection location. Uppaal concludes that the property is satisfied.
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Chapter 5

Modeling Boot Code in UPPAAL

In this chapter, we explain and show how we have modeled the boot code (cf. chapter 3) along with
relevant OpenTitan modules in Uppaal. All modeling and verification are done using Uppaal version 4.1.24.
The OpenTitan hardware components included in this model are listed below. We do not include all the
components in OpenTitan due to not getting a coherent overview of how all the components interact in the
first boot stage. The reason for this is the state of the documentation.

• OTP

• OTP Controller

• Flash

• Flash Controller

• SRAM

• SRAM Controller

• Entropy Source

• EDN

• CSRNG

• OTBN

• PMP

• Life Cycle Controller

Each function from the written boot code is represented as a separate template in the model. Thus
channels are used to synchronize to other templates to emulate a function call and a function return.
Channel names ending in “BC” are broadcast channels. In the model, we have a global variable called
NumberOfFlashBanks which is a value that we can change to accommodate various numbers of flash
banks. It is set to 1 in the current model. This is contrary to the OpenTitan design, which implements
two flash banks. We have chosen to go with only having one since we want to reduce the state space of
the model. Furthermore, the model generates all possible permutations of a manifest even though we only
have one flash bank. Therefore we think that this abstraction is valid. However, by only having one flash
bank, we will not be able to verify any of the combinations of rom_ext manifests or whether the model
is suited to check the second manifest if the first one does not pass all the checks. The Uppaal model
primarily passes information through global variables, but there are cases where channels are used instead
(such as for reading from the Flash template). Global variable passing can be done atomically by setting
the global variable to the value to be sent on the initiating transition (i.e., the transition with the “!”), and
setting the local variable on the receiving transition (i.e., the transition with the “?”). This works because
the update of the transition that initiates synchronization is executed before the update of the transition
that accepts that synchronization. In the model, we clear variables regularly. This is to mitigate the state
space explosion problem and should make the verification process faster. In the model, we have included a
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“Zeno” template, which has one urgent location. This makes delays impossible in our model, which helps
verification. This is because delays are considered a transition, and delaying infinitely is considered an in-
finite trace. This means that if delays are possible, then all A<> queries will fail because there is technically
a trace that does not satisfy the formula. In the following sections, we will describe the templates that the
model consists of rather than the instances. We do this because each template has exactly one instance in
the model, and the templates do not take any parameters1.

The figure presented in 5.0.1 displays which components interact with each other in the model and which
channels they use to do so. The channel names are presented on the arrows between templates. Since
the model is a representation of the OpenTitan ROM stage, this diagram resembles what is depicted in
Fig. 2.5.1. Despite the similarity between the diagrams, there are some differences. Some of the compo-
nents in the presented OpenTitan diagram are not incorporated in the Uppaal model. These components
are Clock Manager, Power Manager, AON Timer, Key Manager, KMAC module, HMAC module, Apps,
Kernel, BL0. These components are not included because they do not seem relevant for the ROM stage
and the security goals that we want to verify. Furthermore, the last three are not implemented because they
represent software stages that we do not model. The Uppaal model as seen in Fig. 5.0.1 also contains com-
ponents not mentioned in Fig. 2.5.1. These components correspond to functions in the ROM stage because
we have tried to divide the functions into different templates in the model. The reason for the deviations
is because not all components of the OpenTitan project are sufficiently documented. Thus it is not clear
how all of the components interact during the ROM stage. This has forced us to make assumptions about
component interactions in some cases.

1The RomExt template is an exception to this. There is one instance of this template for each flash bank.
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5.1 Manifest Layout

The manifest is modeled based on OpenTitan and follows the structure seen in Fig. 5.1.1. In order of
appearance in Fig. 5.1.1 the fields are:

• Identifier: The identifier is a string of data that identifies a given manifest. Currently in OpenTitan
this is a 32-bit enumeration value [55].

• Signature: The signature is an RSA-3072 signature that is created using a trusted entity’s private
key along with a hash of the image code also found in the manifest. If a signature is valid, the system
should always calculate the same signature using the public key in the manifest along with the hashed
image code. This ensures that the code has not been changed since it was signed. Furthermore, if the
signature is verified using a trusted public key, then the entity who created the manifest is trusted.
Therefore the image code is also trusted.

• Public Key: This is the RSA-3072 public key used during signature verification (cf. section 2.2.1).
It consists of two parts:

– Exponent: This is a publicly chosen prime number (often 65537 in the case of RSA-3072).

– Modulus: This is the product of two large prime numbers.

• Image code: The image code of the manifest is the executable ROM_ext that is associated with the
manifest. This is the code that ROM transfers control to, given that the manifest is validated during
ROM.

• Entry point: This field is one that we have added to the manifest in our model. It represents the
address in the image code that needs to be jumped to once ROM_ext takes control of the booting
process.

Figure 5.1.1: The modeled ROM_ext manifests.

All fields of the manifest are necessary to do the verification, except for the entry point. The entry point
is used after all the checks have passed when the PMP module unlocks the address at which the image
code starts to make it executable. The fields are not represented by actual values in the model, e.g., the
public key exponent used in RSA encryption is not a large prime number. Instead, we assign a value of 1 to
symbolize a correct value and a value of 2 to symbolize an incorrect value. The same principle goes for the
other fields of the manifest, except for the entry point. The domain of the variables is limited because it is
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not necessary to use realistic values for our verification. We only need to be able to classify the outcomes
of a trace. E.g., for a manifest, the signature can be either correct or incorrect, leading to two possible
outcomes. Furthermore, if we use large numbers and do complex calculations in the model, the state space
would quickly become too large to do any verification.
The values of the fields and their meaning can be seen in table 5.1.1.

Value
Field 1 2
Identifier Correct Incorrect
Signature Correct Incorrect
Public key: Exponent Correct Incorrect
Public key: Modulus Correct Incorrect
Image code Correct Incorrect
Entry point N/A (Address in the image code)

Table 5.1.1: Table showing the meaning of the values of the manifest in the model. N/A means not
applicable.

In the table, a correct value means that the value represents the value that is expected of that field in a valid
manifest. An incorrect value means that a given field’s value does not correspond to a valid manifest. E.g.,
a “correct” image code means that a trusted entity created the image code and that it has not been altered
since signing the manifest. Incorrect in the same scenario means that the image code has been altered since
signing (this is possibly done by an attacker).

We believe that the level of abstraction presented in table 5.1.1 is suitable for our model. We focus on how
the correct and incorrect values impact the system. This means that we can verify the effect on the system
of the manifest having been tampered with. The same goes for the other fields of the manifest. We are not
interested in implementing actual values for keys and identifiers. It would dramatically increase the state
space if actual keys and RSA algorithms were used and would not benefit the verification that we want to
do. We are not interested in verifying the implementation of the algorithms. Furthermore, in the design
of the checks, there are only two outcomes. E.g., the signature is either incorrect or correct (1 or 2). As
of now, we have not found a need for more categorization of the values. If the design was made to handle
signatures that are too long or too short differently, then this could also be encoded as 1 (correct), 2 (too
short), and 3 (too long). However, this would require a lot of restructuring of the model. The structs that
are used throughout the model, including the manifest, can be seen in appendix C.

5.2 Software Templates

The templates described in this section are all templates that correspond to functions in the boot code
described in chapter 3.

5.2.1 The ROMStage Template

The most central template in our model is the ROMStage template as seen in Fig. 5.2.1. This template can be
seen as a control flow graph (CFG) of the boot code described in section 3.1. The ROMStage template can be
considered to be the mask_rom_boot function in listing 3.1. Each of the functions from the boot code de-
scribed in section 3.1 are represented as separate templates, with the exceptions of pmp_unlock_rom_ext,
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and boot_failed. The ROMStage template is connected to all the other templates that correspond to
function calls and the SystemReset template.

Figure 5.2.1: The ROMStage template in Uppaal.

Variables & Functions Descriptions

boot_policy_t bootPolicy
Stores the boot policy used to locate the manifests in
Flash.

rom_exts_manifests_t romExtsManifests
Stores the manifests listed in the boot policy that
the model should try to validate in order.

rom_ext_manifest_t currentManifest The manifest that is currently being checked.
pub_key_t key Holds the public key read from Flash.
int loopIndex Index of the currentManifest.
void pmpUnlockRomExt() Unlocks the rom ext to allow execution of it.

Table 5.2.1: The functions and variables for the ROMStage template.

The flow of the ROMStage template is initiated by synchronization over the StartRomStage channel. This
leads the template to a Started location. From here, the template flow resembles that of the written boot
code. The synchronizations on the edges will initiate the templates corresponding to a function from the
boot code seen in section 3.1. Thereby the ROMStage template emulates a CFG where the locations are
states of the boot code, and the edges are function calls. Before the StartOfLoop location is reached,
the ROMStage template synchronizes with the ReadBootPolicy and RomExtManifestsToTry templates.
This is done to firstly get the boot policy, and then use the boot policy to get the rom_exts_manifests_t
from the RomExtManifestsToTry template. From the StartOfLoop all the manifests found will be it-
erated over until a valid manifest is found. A manifest is valid if it passes the checks that are performed
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in the loop. The templates activated in the loop correspond to the checks described in section 3.1. The
checks are: Validating the identifier, validating the public key, and validating the signature. First, we
check the identifier, which must contain a “Magic value”. This happens in the CheckIdentifier lo-
cation. The next synchronization ReadPublicKeyCall will activate a template to read the public key
from the current manifest and write it to SRAM. The synchronization initiates the public key check on the
CheckPublicKeyValidCallBC channel. The signature check is done while in the SignatureCheck loca-
tion. The signature is checked by several other templates. These are the VerifyRomExtSignature, HASH,
and OTBN templates described in section 5.4. If any of the checks fail, the StartLoop is reached again.
Otherwise the function pmpUnlockRomExt is called. Finally, the FinalJumpCall synchronization is fired
to initiate the next stage of the boot process by synchronizing with the FinalJumpToRomExt template. For
a description of the local functions and variables associated with ROMStage see table 5.2.1.

5.2.2 The ReadBootPolicy Template

The ReadBootPolicy template can be seen in Fig. 5.2.2. The template does not have any local variables or
functions therefore there is no table associated with this template. The template is “called” by the ROMStage
template and will synchronize with the MemoryHandling template. When the ReadBootPolicy template
is in the Called location it will synchronize via the ReadMemory channel to read the given memory range
[21; 29]. This is done to read a boot policy from the Flash template which is stored at those indices. The
template is a simple representation of the Read_boot_policy function in section 3.1.

Figure 5.2.2: The ReadBootPolicy template in Uppaal.

5.2.3 The RomExtManifestsToTry Template

The template seen in Fig. 5.2.3 is responsible for finding the manifests at the addresses contained in the
boot policy. These manifests must be validated by the ROMStage template to continue the booting pro-
cess. The template is modeled as a representation of the function called in line 5 of listing 3.1. After
synchronization over the REMTTCall channel, the template is ready to check whether the boot policy is
in SRAM to get the boot policy from which the manifests can be found. This happens by synchroniz-
ing with CheckSRAM[0]. After receiving the boot policy through global parameters, the template is in
the StartOfLoop location, which will loop until loopIndex == NumberOfFlashBanks. In the loop the
synchronization to ReadMemory will synchronize with the MemoryHandling template. As a part of this
interaction with the memory handler, the manifests will later be stored in the SRAM template. The variables
used in the RomExtManifestsToTry template can be seen in table 5.2.2.
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Figure 5.2.3: The RomExtManifestsToTry template.

Variables & Functions Descriptions
boot_policy_t bootPolicy Used to hold the local boot policy.
int loopIndex Used to iterate through manifests.

Table 5.2.2: The variables for the RomExtManifestsToTry template.

5.2.4 The CheckRomExtManifest Template

The CheckRomExtManifest template can be seen in Fig. 5.2.4. This template models the check_rom_ext-
_manifest function in the boot code shown in section 3.1. The purpose of this template is to check the
identifier of a given manifest. The local variables and functions used by the CheckRomExtManifest tem-
plate can be seen in table 5.2.3.

Figure 5.2.4: The CheckRomExtManifest template in Uppaal.
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Variables & Functions Descriptions

rom_ext_manifest_t manifest
Variable used to hold the
local manifest.

bool checkRomExtManifest()

Function used to check if
the manifest’s identifier is
correct (has a value of 1).

Table 5.2.3: The variables and functions that are locally declared in the CheckRomExtManifest template.

The CheckRomExtManifest template stays in the Idle location until the ROMStage template synchronizes
via the CheckRomExtManifestCallBC channel. This template receives the currentManifest from the
ROMStage template via global variable value passing. From the Called location, there are two transitions
which both lead back to the Idle location. Only one of these transitions is active at a time, since their
guards are negations of each other. The choice depends on the result of calling the checkRomExtManifest
function, which returns a boolean value. In the OpenTitan context, the function returns whether the mani-
fest’s identifier contains some magic header value[14]. In our implementation, the checkRomExtManifest
function returns whether the manifest’s identifier is equal to 1. If the checkRomExtManifest function re-
turns true, then this template synchronizes with the ROMStage template via the CheckRomExtManifestVa-
lid channel. Otherwise, it does so via the CheckRomExtManifestNotValid channel. The ROMStage tem-
plate takes different transitions based on the channel.

5.2.5 The ReadPublicKey Template

The ReadPublicKey template can be seen in Fig. 5.2.5. This template is responsible for reading the public
key of a given manifest and putting this public key into SRAM so that it can be used by CheckPubKeyValid
(cf. section 5.2.6). ReadPublicKey synchronizes with the ROMStage template, which “starts” the func-
tionality in the template, and MemoryHandling which is used to write a public key to SRAM. The template
is made to model the function read_pub_key in the boot code described in section 3.1. table 5.2.4 shows
the locally used variable.

Figure 5.2.5: The ReadPublicKey template in UPPAAL.
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Variables & Functions Description

rom_ext_manifest_t manifest
Used to keep a local copy of the
current manifest.

Table 5.2.4: Local variables and functions used in the ReadPublicKey template.

The template starts in the Idle location and waits for ROMStage to synchronize with it over the ReadPublic-
KeyCall channel. Once this synchronization happens, the GlobalManifest (which is set to be the
current manifest by the ROMStage template) is copied into the local variable called manifest. Next,
ReadPublicKey initiates synchronization with MemoryHandling via the WriteMemory channel and puts
the current manifest’s public key into the GlobalPublicKey variable and moves to the WritingSRAM lo-
cation. The template stays in this location until MemoryHandling has written the public key of the current
manifest to SRAM. Once MemoryHandling has done this, it initiates synchronization to ReadPublicKey

over the WriteMemoryReturn channel. Once this synchronization is complete, ReadPublicKey synchro-
nizes with the ROMStage template over the ReadPublicKeyReturn channel to indicate that it has success-
fully completed its tasks and moves back to the Idle location.

5.2.6 The CheckPubKeyValid Template

The CheckPubKeyValid template can be seen in Fig. 5.2.6. It corresponds to the function check_pub_key-
_valid described in section 3.1. This template is responsible for checking that the public key of the cur-
rent manifest is a valid public key. In this case, a valid public key refers to a key for which the calculated
ID can be found in a whitelist in immutable memory. The CheckPubKeyValid template synchronizes with
the ROMStage, and MemoryHandling templates. The local variables and functions used in the template can
be seen in table 5.2.5.
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Figure 5.2.6: The CheckPubKeyValid template in Uppaal.

Variables & Functions Description

pub_key_t publicKey
Used to keep a local copy of the
current public key

int[0,NumberOfKeysInWhitelist]

pubKeyIdList[NumberOfKeysInWhitelist]
Used to keep a local copy of the
key ID whitelist from flash.

int[0,1] currentPubKeyId
Used to keep the resulting ID
from a public key.

void calculateKeyId()

Function for calculating ID for a locally stored
public key. Implemented to set currentPubKeyId
to 1 if the publicKey modulus and exponent are
both 1 and 0 otherwise.

bool checkPublicKey()

Function for checking if the publicKey is valid.
Returns true if the calculated currentPubKeyId

is in the pubKeyIdList. False otherwise.

Table 5.2.5: Local variables and functions used in the CheckPubKeyValid template.

The CheckPubKeyValid template is in the Idle location until the ROMStage template synchronizes with
it over the CheckPubKeyValidBC channel. Once this happens, CheckPubKeyValid synchronizes with
MemoryHandling to read a public key from SRAM. While it waits for the public key to be available it is
in the RetrievingKey location. Once MemoryHandling synchronizes over the CheckSRAMReturn chan-
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nel, CheckPubKeyValid stores the given public key locally. After this, it once again synchronizes with
MemoryHandling (over a different channel) to read the whitelist of key ID’s from flash and moves to
the RetrievingWhitelist location. When MemoryHandling synchronizes over the ReadMemoryReturn
channel to signal that the whitelist is ready to be read CheckPubKeyValid stores the whitelist locally, cal-
culates the ID for the current public key2, and moves to the CheckingKey location. From this location
there is only one enabled transition back to Idle. This is achieved with the guard checkPubKeyValid()

on one transition and its negation on the other. This function returns true if the calculated ID for the current
public key is in the whitelist and false otherwise. If the function evaluates to true then CheckPubKeyValid

initiates synchronization over the PubKeyValidBC channel and moves back to the Idle. If not then it
synchronizes over PubKeyNotValidBC and moves to the Idle location.

5.2.7 The VerifyRomExtSignature Template

The VerifyRomExtSignature template, seen in Fig. 5.2.7, models the function verify_rom_ext_signa-
ture in the boot code described in section 3.1. This function in the boot code simply returns the output
of the RSA_VERIFY function on the current manifest’s public key, hashed image code (the hashing is done
just before evaluating RSA_VERIFY), and signature. The VerifySignature template synchronizes with
the ROMStage, HASH, and OTBN templates. The template only implements one local variable. This can be
seen in table 5.2.6.

Figure 5.2.7: The VerifyRomExtSignature template in Uppaal.

Variables & Functions Description
rom_ext_manifest_t manifest Used to keep a local copy of the current manifest.

Table 5.2.6: The local variables and functions for the VerifyRomExtSignature template.

The template is in the Idle location until it is “called” by the ROMStage template via synchronization
over the VerifyRomExtSignatureCall channel. Once this happens, the VerifyRomExtSignature tem-
plate takes what is in the GlobalManifest variable and copies it into the manifest local variable. While
we normally go through SRAM to get such data, we have decided that the currentManifest found in
the ROMStage template can be sent to other software templates via global variables. This can happen
when ROMStage itself has read it from SRAM via other functions, and only when passing data between
software templates as parameters. After this, the VerifyRomExtSignature template requests to write

2This is only done symbolically. If the public key exponent and modulus are both 1 then the ID will be set to 1. If not then it is
set to 0.
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the image code of the current manifest to SRAM. This is done by synchronizing over the WriteMemory

channel and setting the GlobalImageCode to be equal to manifest.image_code and then moving to the
WritingImageCode location. Once the MemoryHandling template signals that the image code has been
successfully written to SRAM by synchronizing over the WriteMemoryReturn channel, VerifyRomExtSig-
nature signals to the HASH template that it should start hashing. This is done by synchronizing over
the HashCalled channel and moving to the WaitingForHash location. Once HASH signals that it has
hashed the image code by synchronizing over the HashReturn channel, VerifyRomExtSignature writes
the signature of the current manifest to SRAM in the same manner as it does with image code. Lastly,
VerifyRomExtSignature signals to the OTBN that it needs to perform RSA signature verification by syn-
chronizing over the CheckSignatureBC channel and moves to the WaitingForOTBN location. Once the
OTBN has performed verification it synchronizes over either the RSAValidBC or RSANotValidBC channels
depending on whether the signature is correct or not respectively. Then the VerifyRomExtSignature

forwards this response to the ROMStage template and moves back to the Idle location.

5.2.8 The FinalJumpToRomExt template

The FinalJumpToRomExt template models the final_jump_to_rom_ext function seen in section 3.1. In
a successful booting path, the last synchronization the ROMStage template will make is FinalJumpCall,
this synchronizes with the FinalJumpToRomExt template. The template will receive the current manifest
through a global parameter. The manifest contains an entry point to the image code, which is checked
by the PMP module via the synchronization over TryExecuteMemory. If the execution is allowed, no
exception is thrown. The next task is to start the ROM_ext stage. This happen with the synchronization
RomExtStart. If a failure should happen while in the ROMExtRunning location, the ROM_ext stage will
return with RomExtFail and then FinalJumpToRomExt can synchronize over FinalJumpReturn. The
return FinalJumpReturn is used to emulate the behavior of the boot code described in section 3.1. It does
so by having the ROMStage, described in section 5.2.1, go to its final failure state via the synchronization.

Figure 5.2.8: The template for FinalJumpToRomExt

5.2.9 The RomExt Template

The RomExt template is a placeholder for a given ROM_ext. Since the ROM_ext boot stage is out of scope
for this project, we only model the ROM_ext to transfer execution to it. The template does not model
anything from the OpenTitan ROM_ext boot stage.

Figure 5.2.9: The RomExt template in Uppaal.

The template has no functions or variables; thus, we do not present a table for it. The template symbolizes
the stage after the ROMStage. The template is included to mark the end of the first part of the booting
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process. The only template that RomExt communicates with is the FinalJumpToRomExt template. The id
parameter is a template parameter, indicating the ID of the manifest. The value of the identifier is multiplied
by 35 due to the way we have modeled the memory where the beginning of each manifest resides 35 indices
apart.

5.3 Memory Templates

The templates described in this section have to do with the memory-related aspects of the OpenTitan
design. These are flash, SRAM, and OTP memory. Furthermore, their controllers are also described in this
section. The PMP module is also described here as it sits between flash and the flash controller. We have
also included a special template called MemoryHandling in this section which acts as an interface between
memory-related operations and any template attempting to perform it.

5.3.1 The MemoryHandling Template

The MemoryHandling template (seen in Fig. 5.3.1) is a special template. It is one of few templates that
does not have a direct counterpart in either our boot code (cf. chapter 3) or the OpenTitan design (cf.
chapter 2). The other examples are the Zeno and SystemReset templates. We have created this tem-
plate to centralize all memory operations in the model. In theory we could eliminate this template and
move the functionalities of it out to other templates. However, this would create redundancy as we would
need to have the functionality for reading and writing seen in Fig. 5.3.1 in multiple templates. We have
chosen to avoid this redundancy so that changing how memory operations are done is easier. However,
this limits the number of interleavings that are possible in the model since every memory operation is
bottle-necked by the MemoryHandling template. The MemoryHandling template is responsible for han-
dling flash reads, SRAM reads, and SRAM writes. It synchronizes with the ROMStage, ReadBootPolicy,
RomExtManifestsToTry, CheckPubKeyValid, VerifyRomExtSignature, HASH, OTBN, FlashControl-
ler, and SRAMController templates. The local variables and functions used in this template can be seen
in table 5.3.1.

Figure 5.3.1: The MemoryHandling template in Uppaal.
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Variables & Functions Description

int s
Used to indicate the starting index for
a flash read operation.

int e
Used to indicate the end index for a
flash read operation.

int fieldToCheck
Used to indicate which data field in SRAM
that needs to be read.

bool writingSRAM
Used to indicate whether we need to write
to SRAM or not.

bool skipWriteToSRAM()

Used to check if all global placeholder variables
are empty. If true, then we need to skip writing
to SRAM.

Table 5.3.1: Local variables and functions used in the MemoryHandling template.

Since the MemoryHandling template has multiple responsibilities, we have tried to partition it into its three
main functions with colored locations. Reading flash uses the gray and yellow locations, reading SRAM
uses the white locations, and writing SRAM uses the black and yellow locations.

Reading Flash

If the MemoryHandling template is in the Idle location and receives a synchronization over the ReadMemory
[startIndex][endIndex] channel, it will initiate reading from flash memory. This is done by initiat-
ing synchronization with the FlashController over the FlashRead[s][e] channel3 and moving to the
ReadingFlash location. Once the FlashController initiates synchronization over FlashReadReturn
we know that there should be a read response ready. After this, the model chooses to either put the read data
into SRAM or circumvent this process. The template only circumvents writing to SRAM, if there is nothing
in the global placeholder variables that can be written to SRAM. In the current model the template always
writes the response from the FlashController template to the SRAM template.

Reading SRAM

MemoryHandling can handle read requests for the SRAM template as well as the Flash template. When in
the Idle location it is possible for another template to initiate synchronization over the CheckSRAM[i]

channel. Here i indicates the data field in SRAM that is supposed to be read. Once such a synchro-
nization happens, the MemoryHandling template signals to the SRAMController that it wants to read
from SRAM along with what it wants to read by synchronizing over the SignalSRAMRead[fieldToCheck]
channel and moving to the ReadingSRAM location. In this location the MemoryHandling template waits for
the SRAMController template to synchronize over the SignalSRAMReadReturn channel which indicates
that the read request has been processed. After this the MemoryHandling template synchronizes over the
CheckSRAMReturn channel to indicate to the initiator of the read request that it has been processed and
returns to the Idle location.

3In this case startIndex = s and endIndex = e. This means that we forward the indexes that we need to read to the
FlashController.
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Writing SRAM

As mentioned in the previous section the MemoryHandling template normally writes something to the SRAM
template when it has been read from the Flash template. Once MemoryHandling has received synchroniza-
tion over the FlashReadReturn channel as described in the previous section and the skipWriteToSRAM()
guard evaluates to false, MemoryHandling synchronizes with the SRAMController template. This is done
over the SignalSRAMWrite channel. Afterwards, MemoryHandling moves to the DecidingWriteType

location. From this location there is one transition for each possible data type that can be written to the
SRAM template in the model. Only one of these transitions is active when MemoryHandling is in the
DecidingWriteType location due to the guards that state that the global placeholder variables used for
passing values may not be 0 (or an equivalent empty value for structs). E.g. if what we are trying to write
to the SRAM template is a boot policy, then the global variable called GlobalBootPolicy should be set
to a non-empty boot policy. This enables the top-most transition which means that the MemoryHandling

template will synchronize with the SRAMController template over the WriteBootPolicy channel and
write the boot policy into SRAM. Once such a transition is fired, the MemoryHandling template moves to the
WritingSRAM location and waits for the FlashController to synchronize over the SignalSRAMWriteRe-
turn channel, which indicates that the data has been written to the SRAM template. Lastly, the MemoryHand-
ling template synchronizes over the ReadMemoryReturn channel indicating to the template that initiated
reading from flash that the process is complete.
It is also possible to write to SRAM without reading from Flash from the Idle location. This happens if
another template initiates synchronization over the WriteMemory channel. After this synchronization the
process of writing to the SRAM template is the same as already described in this section. The only excep-
tion is that the MemoryHandling template initiates synchronization over the WriteMemoryReturn channel
instead of ReadMemoryReturn.

5.3.2 The Flash Controller Template

The FlashController template is as seen in Fig. 5.3.2. It resembles the OpenTitan Flash controller de-
scribed in section 2.3.7 but does so at a high level of abstraction. It is not divided into two controllers
(protocol and physical), but it interfaces with the same components in the model that it does in the Open-
Titan system. Furthermore, it contains functionality needed during the ROM stage of the booting process
that is similar to what is described in section 2.3.7. The local variables and functions used in the template
can be seen in table 5.3.2. The template is responsible for managing all requests to read/write to and from
the flash. Besides managing the requests to the Flash template, the FlashController template is also re-
sponsible for performing scrambling of data in the Flash template. The FlashController template needs
a scrambling key, which it requests from the OTPController via the RequestScramblingKey channel.
The process of getting the scrambling key starts in the initial location and ends at the Idle location. The
FlashController template will forward all the requests it gets from the MemoryHandling template to
the Flash template. From the Reading location, one of two edges is fired. The guard controlling this is
GlobalMemoryIsScrambled. This variable is a bool indicating whether the FlashController template
scrambled the most recently read value or not.
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Figure 5.3.2: The FlashController template in Uppaal.

Variables & Functions Descriptions

int startIndex
Used as first index
of a flash read.

int endIndex
Used as last index
of a flash read.

int scramblingKey
Used to hold the scrambling
key received from OTP.

void unscramble()
Function used to unscramble data
if the scrambling key is provided.

Table 5.3.2: Functions and variables in the FlashController template.

5.3.3 The Flash Template

The Flash template is triggered by the SystemReset template synchronizing via the PowerOnBC channel.
The DecideManifests location is included in the Flash template to allow for the “generation” of different
manifests. To do this we use the select statements for choosing a value for i, j, k, l, m, which are assigned
to fields of a manifest. This gives us the opportunity to try different combinations of field values in a
manifest, without making any changes in the model. This models the rom_ext_manifest_ts already
being in the Flash when the system starts. An alternative would be to have a specific manifest hard coded
in the declarations of the Flash template. But this would require changing the code if different values
should be verified. Once the guard loopIndex >= NumberOfFlashBanks holds, the Flash template gets
to the final location. From this location the template receives reading and writing requests exclusively from
the PmpModule template. This is done via the PmpReadMemory and PmpWriteMemory channels.
The OpenTitan memory layout (which can be seen in section 2.1.3) can be compared to the layout in
Fig. 5.3.4a. A precise layout of the fields of the ROM_ext manifests can be seen in Fig. 5.3.4b.
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Figure 5.3.3: The Flash template in Uppaal.

Variables & Functions Descriptions

rom_exts_manifests_t manifests

This variable holds the
manifest generated in this
template.

int[0, NumberOfKeysInWhitelist]

pubKeyWhitelist[NumberOfKeysInWhitelist]

This array holds the valid
public key IDs.

void InitializeMemory()

This function is called in
the first transition. It loads
the pubKeyWhitelist and it
loads a new manifest into
manifests.

void readMemory(int startIndex, int endIndex)

This function copies hard
coded values into the global
variables depending on the
parameters.

void writeMemory(int startIndex, int endIndex)

This function is supposed to
write data passed from other
templates to its internal
memory, but for now it is just
for show.

Table 5.3.3: A list of the functions and variables local to the Flash template.

The Flash template works as a secondary memory for the model. It contains and exposes data that is used
by the other templates.

The first transition in this template is responsible for generating the manifest that is checked in the ROMStage
template. The transition contains five select clauses that decide the manifest’s image code, signature, public
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(a) The layout of memory in the Flash template. The
numbers on the right of sections denote indices.

(b) The layout of a ROM_ext manifest in Uppaal. The num-
bers to the right of sections denote index offsets.

Figure 5.3.4: Layout of flash memory in the Uppaal model.

key, and identifier. We chose to model it like this to reflect that the manifest values can have many different
combinations of values (as shown in section 5.1), and only one combination of these values should be able
to pass all the checks. From the Idle location, the Flash template can accept read and write requests made
from the PmpModule template and react to them. The parameters s and e correspond to the start and end
indices, respectively, of the memory range to be read or written.

5.3.4 The PmpModule Template

The PmpModule template represents the PMP hardware module that exists on RISC-V platforms. It is
responsible for checking whether a memory region can be read, written, or executed. This means that
every time something in the model needs to access flash memory, it has to go through the PMP module.
The UPPAAL template can be seen in Fig. 5.3.5.
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Figure 5.3.5: The PmpModule template in Uppaal.

Variables & Functions Descriptions

int start

This variable temporarily
holds the beginning index
for the read / write / execute
request.

int end

This variable temporarily
holds the ending index for
the read / write / execute
request.

void initializePmp()

This function is used on the
first transition. It sets the last
PMP region to allow reading
the entire flash memory.

bool canRead(int startIndex, int endIndex)

This function returns whether
the memory in the specified
range is allowed to be read
according to the PMP regions.

bool canWrite(int startIndex, int endIndex)

This function returns whether
the memory in the specified
range is allowed to be written
according to the PMP regions.

bool canExecute(int startIndex, int endIndex)

This function returns whether
the memory in the specified
range is allowed to be executed
according to the PMP regions.

Table 5.3.4: A list of the functions and variables local to the PmpModule template.
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The PmpModule template initializes when a synchronization on the PowerOnBC channel is made. This
happens upon system boot. The initializePmp() function sets the 16th PMP region (the last PMP region
as described in section 2.6) to cover all of memory with the flags set so that the memory is readable and
locked. The code for the initializePmp function can be seen in listing 5.1. This is done to adhere to the
description of the OpenTitan boot process [14]. Once this is done, the template goes to the Idle location,
where it can handle requests to read, write, and execute parts of memory. The PmpModule template only
receives requests from the FlashController. If the PMP regions validate the request, the PmpModule

template forwards the request to the Flash template. Otherwise, this template communicates with the
ExceptionHandler template. The following sections will describe how the template handles the types of
requests.

1 void initializePmp(){

2 PmpRegions[15].startAddress = 0;

3 PmpRegions[15].endAddress = MemoryMaxIndex;

4 PmpRegions[15].write = false;

5 PmpRegions[15].read = true;

6 PmpRegions[15].execute = false;

7 PmpRegions[15].locked = true;

8 }

Listing 5.1: The code for initializing the PMP module.

Reading Memory

The left part of the template seen in Fig. 5.3.5 is the part that deals with read requests. When the
FlashController forwards a reading request by synchronizing over the TryReadMemory[s][e] chan-
nel, then the template goes to the ReadingMemory location. The s and e indices in the channel indicate the
start and the end indices of the memory range which the read request concerns. s and e are locally saved
during the transition to the ReadingMemory location. This is another way of passing values over channels.
The ReadingMemory location is committed to make an atomic operation over multiple locations. Once
in the ReadingMemory location, there are two transitions. Only one of these will be able to fire at a time
since the guard on the transitions is the evaluation of the canRead function and its negation, respectively.
The code for this function can be seen in listing 5.2. If the memory can be read, then the template takes
the transition that synchronizes over the PmpReadMemory[start][end] to the GoodRead location. If the
memory cannot be read, then this template takes the transition that synchronizes over the RaiseException
channel to the BadRead location.

1 bool canRead(int startIndex, int endIndex){

2 int i;

3 for(i = 0; i < 16;i++)

4 if (PmpRegions[i].startAddress <= startIndex &&

↪→ PmpRegions[i].endAddress >= endIndex)

5 if (PmpRegions[i].read)

6 return true;

7 return false;

8 }

Listing 5.2: The code for the canRead function.
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Writing Memory

The right part of the template seen in Fig. 5.3.5 deals with write requests. This part works almost entirely
similar to the one for reading memory. The difference is that it uses the relevant channels and functions for
writing instead of reading. Furthermore, the guards on the transitions from the WritingMemory location
to GoodWrite is a function that checks whether the memory range from start to end can be written. The
only difference between the functions canRead, canWrite and canExecute is the field that is checked in
line 5 in listing 5.2.

Executing Memory

The middle-bottom part of the template seen in Fig. 5.3.5 handles execute requests. While this part looks
different from the ones handling read and write requests, it works very similarly to them. Here the guard
over the transitions is the function canExecute and its negation, respectively. This function checks that
the memory range from s to e can be executed. The reason that this part of the template looks different
from the other two is that this template does not need to synchronize with the Flash template.

5.3.5 The OTPController Template

The OTPController template is depicted in Fig. 5.3.6. As described in section 2.3.8 the template is re-
sponsible for managing all the requests to the OTP template. However, in this template, we have only
implemented the features of the OTP Controller that pertain to deriving scrambling keys for SRAM and
Flash as well as a readable life cycle partition (which is read by the Life Cycle Controller as described
in section 5.5.2). This is because the other features are not necessary for the verification that we need
to perform. From the initial location the edge with the channel OTPRead[RootKeyIndex] is fired. This
synchronization is necessary to give the KeyManager template the rootKey. Once the GetRootKey syn-
chronization is done, the OTPController template is ready to handle requests for flash scrambling keys
and SRAM scrambling keys. Each key is derived from the respective key seed in OTP. When requesting an
SRAM scrambling key, the OTPController template receives a source of entropy from the EDN template.
The variables and functions of the OTPController is described in table 5.3.5.

Figure 5.3.6: The OTPController template in Uppaal.
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Variables & Functions Descriptions

int OTPvalue
Variable is used to store a seed
that can be incremented to a key.

int entropy
Variable used to hold entropy used
when generating SRAM scrambling key.

void derive()

Function used to derive a key from a
seed. This is done by incrementing
the OTP value representing a seed
by 1.

Table 5.3.5: Functions and variables in the OTPController template.

5.3.6 The OTP Template

The OTP template can be seen in Fig. 5.3.7. It is the memory component that is controlled by the OTP
Controller (cf. section 2.3.8). Since OTP is One Time Programmable memory, the template does not have
any write functionality and all the local variables are declared as being const as depicted in table 5.3.6. All
the interactions to the OTP template go through the OTPController template. It passes the read values via
global variables back to OTPController.

Figure 5.3.7: The template for OTP template in Uppaal.

Variables & Functions Descriptions

const int rootKey
Variable used to symbolize
the rootKey stored in OTP.

const int sramScramblingKeySeed
Variable used as seed for generating
SRAM scramble key.

const int flashScramblingKeySeed
Variable used as seed for generating
flash Scrambling key.

void readOTP(int index)

Function with index parameter to
read a specific address in OTP.
The variables that can be read
are the ones mentioned in this table.
The implementation can be seen in listing 5.3.

Table 5.3.6: Functions and variables in the OTP template.
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1 void readOTP(int index){

2 if (index == RootKeyIndex)

3 GlobalOTPStorage = rootKey;

4 if (index == SramSeedIndex)

5 GlobalOTPStorage = sramScramblingKeySeed;

6 if (index == FlashSeedIndex)

7 GlobalOTPStorage = flashScramblingKeySeed;

8 if (index == LifeCycleIndex)

9 GlobalOTPStorage = lifeCycleState;

10 }

Listing 5.3: The implementation of the readOTP function.

5.3.7 The SRAMController Template

The SRAMController as seen in Fig. 5.3.8 is responsible for managing all the read/write requests for-
warded to it by MemoryHandling and pass them to the SRAM template via channels. All read/write requests
are initiated from the MemoryHandling template. The SRAMController template is also responsible for
managing the scrambling of the SRAM template. From the Initial location the SRAMController template
can request a key to use for scrambling. The scrambling key is gathered via the OTPController. This
key is used to scramble data before storing it in the SRAM template as well as unscrambling data after a
read from the SRAM template. In the Idle location, this template can receive either a signal to write to the
SRAM template or to read from it. A signal to write to the SRAM template will enable a choice of one of eight
transitions, each corresponding to one of the possible values which can be stored in the SRAM template, e.g.,
the boot policy. If a read request is issued while SRAMController is in the Idle location, the Reading

location is reached. From here, the read will be performed as a scrambled read or unscrambled depending
on whether the data being read from the SRAM template is scrambled. This choice is controlled by a guard
in the SRAM template. Once in the HitOrMiss location, either a transition will be fired to symbolize that the
content was not to be found in the SRAM template or that the content was there by the channels NotInSRAM
and SignalSRAMReadReturn respectively. The guards that control which edge is fired take into account
the contents of the global variables. If one of the global variables is not 0, the SignalSRAMReadReturn is
fired. If all the variables are zero, the content is not in the SRAM template. The functions and variables used
in the SRAMController are described in table 5.3.7.
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Figure 5.3.8: The template for the SRAMController template in Uppaal

Variables & Functions Descriptions
int scrambleKey Used to hold the key acquired from OTP.
int index Used to control what memory in SRAM is read.
bool manifestEquals(
rom_ext_manifest_t m1,
rom_ext_manifest_t m2)

Used to compare each field of two manifests with respect to equality.

bool bootPolicyEquals(
boot_policy_t bp1,
boot_policy_t bp2)

Used to compare each field of two boot policies with respect to equality.

bool publicKeyEquals(
pub_key_t key1,
pub_key_t key2)

Used to compare each field of two public keys with respect to equality.

Table 5.3.7: Functions and variables in the SRAMController template.

5.3.8 The SRAM Template

The SRAM template is seen in Fig. 5.3.9. The template is responsible for storing the variables described
in table 5.3.8. The SRAM template can perform a total of eight different write requests, one for each of
the variables. Additionally, it can take two different read transitions; either a scrambled read with chan-
nel ReadSRAMScrambled or a not scrambled read with ReadSRAM. Which of these edges is fired depends
on the local array scrambled which denotes for each of the variables in table 5.3.8 whether it is scram-
bled. The template only synchronizes with SRAMController. Thus the template is used whenever the
SRAMController forwards a request to it. Initially, the SRAM template is empty, however as the software
makes requests of data stored in Flash this data is put into the SRAM template.
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Figure 5.3.9: The template for the SRAM in Uppaal.
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Variables & Functions Descriptions
int publicKey Used to store the public key.
int privateKey Used to store a private key.
int[-1,1] publicKeyIdWhitelist[1] Stores the whitelist of key IDs.
int digest Used to store the digest.
int imageCode Used to store the image code.
boot_policy_t bootPolicy Used to store the boot policy.

rom_exts_manifests_t manifests
Used to store the
manifests.

int signature Used to store the signature.

bool scrambled[8]
Array used to keep track of which
fields are scrambled.

void readSRAM(int i)
Function used to read the i’th element
in the modeled SRAM.

void returnManifests()

Function used to assign the
GlobalRomExtsManifests the value of
the local manifests variable.

void storeManifest(rom_ext_manifest_t manifest)
Function used to store the manifest in
the SRAM template.

void updateScramble(int i)
Function used to set the i’th value of
the scrambled array to true.

bool indexIsEmpty(int i)
Function used to tell whether the i’th value of
the array is empty.

Table 5.3.8: Functions and variables in the SRAM template.

The way SRAM is modeled, it is only able to hold data in the specified local fields. This choice is made to
give a simple implementation of SRAM. It abstracts the usage of addresses which is otherwise ubiquitous
in computer memory. However, for our model, we do not necessarily care about where in SRAM things
are placed. We just care about what is in SRAM. Therefore, abstracting away from addresses and having
variables that represent what is in SRAM and not an array to say where they are should be sufficient. Fur-
thermore, when passing variables between templates in Uppaal, we need to know exactly which data type
is sent. Therefore, it is challenging to create a generic array of addresses to store any data. A disadvantage
of this solution is that edges have to be added for each of the fields in SRAM. This effect carries over to
other templates as well. Thus both MemoryHandling and SRAMController also have several edges, each
corresponding only to one variable in SRAM.

5.4 Cryptographic Templates

This section is used to describe the templates of the model used for cryptographic operations or are strongly
tied to cryptographic components of the system.

5.4.1 The HASH Template

The HASH template, seen in section 5.4.1, models the hashing function that is used during signature verifica-
tion in the boot code described in section 3.1. We have modeled it to be a simple abstraction of a SHA-256
algorithm which takes a message from SRAM and hashes it. The digest is then put into SRAM so that it can
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be used by the OTBN template. The HASH template synchronizes with the VerifyRomExtSignature and
MemoryHandling templates. The local variables and functions used by the HASH template can be seen in
table 5.4.1.

Figure 5.4.1: The HASH template in Uppaal.

Variables & Functions Description
int message Used to keep a local copy of the message that needs to be hashed.
int digest Used to keep a local copy of the digest.
int SHA(int msg) Used to hash a given message.

Table 5.4.1: Functions and variables in the HASH template.

The HASH template is in the Idle location until synchronization over the HashCalled channel is initi-
ated by the VerifyRomExtSignature template. Once this happens, the HASH template tries to read a
message from SRAM that needs to be hashed and moves to the ReadingSRAM location until SRAM returns
the message. Afterwards, HASH hashes the message by calling the local function SHA with the message
as parameter. Once this is done, HASH initiates a write to put the digest into SRAM and moves to the
WritingDigestToSRAM location. Once this write operation is completed, as signaled by synchronization
over the WriteMemoryReturn channel, the HASH template initiates synchronization over the HashReturn

channel to signal that it has completed its task.

5.4.2 The OTBN Template

The OTBN template can be seen in Fig. 5.4.2. It is meant to model the RSA-3072 signature verification
portion of the OTBN module found in OpenTitan (cf. section 2.3.5). This means that the OTBN that is
responsible for checking whether a given ROM_ext manifest’s signature is valid. The OTBN synchronizes
with the VerifyRomExtSignature, MemoryHandling, and ROMStage templates. The local variables and
functions used by the OTBN can be seen in table 5.4.2.
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Figure 5.4.2: The OTBN template in Uppaal.

Variables & Functions Description
int signature Stores a local copy of the signature of the current manifest.

int digest
Stores a local copy of the image code digest for the
current manifest.

pub_key_t Key Stores a local copy of the public key of the current manifest.

bool checkSignature()

Used to perform an abstracted version of the RSA-3072 algorithm
on the signature, digest, and public key. Outputs true if the signature,
digest, and public key are the expected values (signature = 1,
digest = 3, key.modulus = 1, key.exponent = 1).

void clear() Used to clear the local variables.

Table 5.4.2: Functions and variables in the OTBN template.

In the Idle location the OTBN waits for synchronization from the VerifyRomExtSignature over the
CheckSignatureBC channel. Once this happens, the OTBN starts to read the data needed for signature
verification from SRAM (via the MemoryHandling template). First, the OTBN reads the signature for the cur-
rent manifest while in the GettingSignature location. After this is done, it reads the digest and the public
key by moving to the GettingDigest and GettingPubKey locations respectively. Once all the data has
been collected into local variables the OTBN moves to the CheckingSignature location. Here it synchro-
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nizes with ROMStage using either the RSAValidBC or the RSANotValidBC channel depending on whether
the signature is correct or not. To decide whether the signature is correct we use the checkSignature()

function which evaluates to a boolean value. This function is used as a guard on the transitions (seen as
the checkSignature() on the transition that synchronizes over the RSAValidBC channel and the negated
guard on the other transition). Once the validation of the signature passes or fails the OTBN moves back to
the Idle location.

5.4.3 The EDN Template

The EDN template, as seen in Fig. 5.4.3, only has a single local variable. Therefore it will not be presented
as a table. The local variable is an int called entropy used for storing the entropy. The EDN template
is responsible for managing requests for entropy. Therefore from the Initial location, the template will
synchronize and afterward forward the request for entropy to the CSRNG template. When in the Awaiting

location, the entropy will get passed back to the EDN template once the synchronization is made. Finally the
template will initiate the synchronization over ReturnEDN to the OTPController template. The template
only communicates with the CSRNG and OTPController templates. The template resembles the design of
the EDN described in section 2.3.11 in that it communicates with the same components (OTP Controller
and CSRNG) and that all requests must go through this template.

Figure 5.4.3: The EDN template in Uppaal.

5.4.4 The CSRNG Template

The CSRNG template as depicted in Fig. 5.4.4 is responsible for generating random numbers based on the
seed provided to it from the EntropySource template. It does so with the RNG function described in
table 5.4.3. From the initial location the template awaits a request for entropy from EDN, once received it
fires a GetEntropy request to the EntropySource. The final edge also calls the function that computes a
random number from a seed. The template only communicates with EDN and EntropySource.
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Figure 5.4.4: The CSRNG template in Uppaal.

Variables & Functions Descriptions

void RNG()

Used to increment the GlobalEntropy variable
by 1. Thus symbolizing the generation of a random
number from the previous value, a seed.

Table 5.4.3: The function for the CSRNG template.

5.4.5 The Entropy Source Template

The entropy source template (seen in Fig. 5.4.5) will upon synchronization over GetEntropy assign
GlobalEntropy = 1. The assignment correspond to a seed, which the CSRNG (as described in sec-
tion 5.4.4) will increment to emulate it becoming a random number. The template does not have any
local variables or functions, therefore no table is presented.

Figure 5.4.5: The EntropySource template in Uppaal.
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5.5 Miscellaneous Templates

The templates described in this section are templates that do not clearly fall under one of the other cate-
gories mentioned in this chapter.

5.5.1 System Reset

The SystemReset template is used to initiate the booting process. Therefore the first edge initiates a
synchronization which is used to initiate the PMP module and the key manager via the PowerOnBC channel.
The last task of system reset is to synchronize with ROMStage via StartRomStage.

Figure 5.5.1: The template for the SystemReset.

5.5.2 The LifeCycleController Template

The LifeCycleController template as seen in Fig. 5.5.2 is responsible for providing measurement of
the system’s state to the other components. This template is modeled to imitate the Life Cycle Con-
troller found in OpenTitan as described in section 2.3.4. The model is first interacted with by syn-
chronizing over PowerOnBC, which brings the template to its RAW location. From this location the tem-
plate fires an edge to synchronize over RequestLifeCyclePartition with the OTPController tem-
plate, which is the only template that the LifeCycleController communicates with. When request-
ing the life cycle partition from the OTPController the template will receive a value representing the
partition. The LifeCycleController will then derive a specific system state from the value with the
deriveLifeCycleState function described in table 5.5.1. In the model, this function simply checks if
the LifeCycleController has received data from the OTPController when it tries to derive the Life-
CycleState. If data has been received, then it derives the correct state (by assigning the currentState

to be correctState), if not then nothing happens and the state remains empty. From the Idle location
the template can accept and return incoming requests for life cycle states. These requests will come from
the Key Manager, despite it not currently being a part of our model. The synchronizations are kept in the
template so that few to no changes are needed in the LifeCycleController template if a Key Manager is
implemented during future work.
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Figure 5.5.2: The template for the LifeCycleController.

Variables & Functions Descriptions
life_cycle_state_t currentState Used as a representation for the current life cycle state.

life_cycle_state_t correctState

A hard coded representation of the life cycle state.
The variable is only used in the deriveLifeCycleState
function. Multiple values constitute the state.

int lifeCycleValue Value used to derive the correctState.

void deriveLifeCycleState()

Will assign the currentState variable the value stored in
the correctState variable, based on the value of
lifeCycleValue.

Table 5.5.1: The functions and variables for the LifeCycleController template.

5.5.3 The ExceptionHandler Template

The ExceptionHandler template, seen in Fig. 5.5.3, is not something that we have found directly in the
OpenTitan documentation. However, some components can fail in some way. E.g., if a piece of flash
memory is read without the PMP module allowing for such an action, then the PMP module must express
this violation somehow. Because of this, we have modeled a simple exception handler that stops the
execution of the model if an exception is raised. The ExceptionHandler template communicates with the
PmpModule and SRAMController templates. These two templates are the only ones we have modeled to
potentially throw exceptions. This is an arbitrary choice and could be expanded to other templates in future
work if needed. The ExceptionHandler template does not have any local variables or functions.

Figure 5.5.3: The template for the ExceptionHandler in Uppaal.
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As can be seen from Fig. 5.5.3, the ExceptionHandler template is a simple template. It moves from the
Idle location to the ExceptionRaised location if any template synchronizes via the RaiseExceptionBC
or NotInSRAM channel. Since the ExceptionRaised location is committed, any of these synchronizations
effectively stop any other transition in the model from happening. This models that the system halts or
breaks in some fashion due to an exception.

5.6 Deviations and Assumptions

During the building of the model based on the OpenTitan project, we have made certain assumptions about
how OpenTitan works based on vague or missing documentation. The assumptions are made to ease the
modeling task.

Another assumption about the model is regarding the manifests. We have assumed that each manifest has
the same size. The components of a manifest can also be found at the same offset from the manifest’s start
index. Furthermore, we have also assumed that each of the manifest fields has the same size across mani-
fests. E.g., the image code will always have a size of four entries in our modeled memory (cf. section 5.3.3).

Another important assumption we have made is regarding the scrambling of SRAM and memory. The
documentation clearly states that the flash is scrambled [29]. We assumed that the scrambling that is done
on the flash is reversible, and therefore that it is more like encrypting the memory rather than wiping the
memory.

In the OpenTitan system, a system reset will clear all the contents of SRAM, except for some retention
SRAM which will not be cleared[14]. This is a feature not incorporated in our model. The SRAM template
in our model is always empty from the initial model state. Therefore we do not incorporate this clearing
in our model and thus deviate from the actual booting process. It should not be challenging to implement
clearing of memory in future work if we feel that it is necessary for the model.

The documentation states that the ROM_ext manifest is used to lock down certain peripherals of the system.
Although we have modeled some of the peripherals, we have not implemented any lockdown functionality
of these components. This is because it was not clear from the documentation which peripherals would be
locked by the manifest. Also, how a peripheral is locked is not stated.
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Chapter 6

Verification and Results

This chapter presents the verification that we have done on the model described in chapter 5. We present
the individual goals as they are described in section 3.2 and show the queries that we have made to verify
those goals. We then discuss whether or not we see the goals as fulfilled in the model. If a query fails, we
use the built-in feature of Uppaal to get a diagnostic trace whenever possible that shows why a property
does not hold by providing a counterexample consisting of a trace where the property is not upheld1. These
traces are too large to feasibly show in this report, but we document how we use them to figure out exactly
why queries fail as this is an essential part of verification with Uppaal.
We have chosen not to include the amount of time each query takes in the tables presented throughout this
chapter. This is because most of our queries are A[] queries, which take roughly the same amount of time
to verify given that they pass (due to the same state space having to be calculated). If an A[] property fails,
then it does so in at most the same time as if it were to pass, and we are primarily interested in documenting
how long verification potentially takes. Since we have designed most of our A[] queries to pass, we think
that the inclusion of verification time in the tables would be mostly redundant.
Running the queries on an AMD Ryzen 3700x CPU in Uppaalmeans that each A[] query that passes takes
around 12 minutes and 37 seconds to verify. We have included a table in appendix E which includes the
time it takes to verify queries that are not passing A[] queries. In this table, it can be seen that our overall
longest verification time for any query is roughly 35 minutes. All of the verification done for the model is
done with one flash bank (cf. chapter 5). Running the command line version of Uppaal via the verifyta.exe
file, we have performed an A[] true query to compute the total state space of the model. We use A[]

↪→ true because the query will force Uppaal to calculate the entire state space. Using the -u option in the
command line, we can see that the total number of possible states in the model is 26,474.
The verification results in this chapter depend upon the fact that the boot code is compiled with a correct C
compiler that does not introduce any errors or malignant code.

In the tables throughout this chapter, we denote a query that passes in Uppaal with a . Conversely, we
denote a query that does not pass with a ×. A table containing all queries can be seen in appendix D.

6.1 Model Validation

Before we start verifying the security goal described in section 3.2 we want to ensure that the model
functions as we expect it to. For this, we can use the verification tool in Uppaal. We believe that this form
of validation is crucial to ensure that the model is “correct” in terms of our modeling practices. Like with
any piece of code, we might have introduced errors in the model that is not due to the design of OpenTitan.
In this section, we describe the queries that are used to validate the model. A list of all queries used for
model validation can be seen in table 6.1.1. These queries are not necessarily a complete list of queries
that we could use to validate the model. However, we believe that it is sufficient when taken together with

1Unless otherwise stated we use the option to get “some trace” when finding a diagnostic trace.
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the rest of the queries in this chapter. Furthermore, this section highlights how model validation is done in
general so that the method can be applied elsewhere.

ID Name Query Passes?

D1
Possibly
Never Fail

E[] not( ROMStage.BootFailed

|| ROMStage.RomExtTerminated)

D2
Guaranteed
Never Fail

A[] not( ROMStage.BootFailed

|| ROMStage.RomExtTerminated)
×

D3
Success
Possible

E<> FinalJumpToRomExt.ROMExtRunning

D4
Success
Guaranteed

A<> FinalJumpToRomExt.ROMExtRunning ×

D5
Exception
Never Raised

A[] !ExceptionHandler.ExceptionRaised

D6
Memory
Unscramble
Urgent

A[] FinalJumpToRomExt.ROMExtRunning

imply GlobalMemoryIsScrambled == false

D7
Flash
Immediately
Unscrambled

A[] FlashController.ScrambleCheck

imply !GlobalMemoryIsScrambled

D8
SRAM
Immediately
Unscrambled

A[] SRAMController.ScrambleCheck

imply !GlobalMemoryIsScrambled

D9
Exactly
One Choice

A[]MemoryHandling.ChooseType imply

(((GlobalBootPolicy != GlobalEmptyBootPolicy) +

(GlobalImageCode != 0) +

(GlobalDigest != 0) +

(GlobalPublicKey != GlobalEmptyPublicKey) +

(GlobalManifest != GlobalEmptyManifest) +

(GlobalSignature != 0) +

(GlobalPrivateKey != GlobalEmptyPublicKey) +

(GlobalPublicKeyIdWhitelist[0] != -1)) == 1)

D10
Writing
Manifest
is Disallowed

A[] !PmpModule.canWrite

(30 + 35 * ROMStage.loopIndex,

41 + 35 * ROMStage.loopIndex)

Table 6.1.1: Queries for validating that the model functions as expected.

6.1.1 D1: Possibly Never Fail

E[] not( ROMStage.BootFailed || ROMStage.RomExtTerminated)

This query states that there exists a path such that it always holds that the ROMStage template never enters
one of the two failure locations: BootFailed or RomExtTerminated. When run on the current model, it
passes, which we expect of a correct model.
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6.1.2 D2: Guaranteed Never Fail

A[] not( ROMStage.BootFailed || ROMStage.RomExtTerminated)

This query states the same as D1, except that for this query to be true, it must hold for all paths due to
the use of A[]. This query does not pass in the current model, which we expect since not all ROM_ext
manifests should be valid. When we ask for a diagnostic trace in Uppaal, we get a counterexample in the
form of a trace where the ROMStage template ends in the BootFailed location due to an invalid manifest.

6.1.3 D3: Success Possible

E<> FinalJumpToRomExt.ROMExtRunning

While D1 and D2 together state that some but not all traces through the model should lead to a failure state,
they do not express that any traces should lead to a success state. For this, we use D3 and D4. D3 is a
reachability property that states that there exists a path such that the state of the system eventually contains
the ROMExtRunning location of the FinalJumpToRomExt template. This is a state where ROMStage has
successfully transferred execution to the RomExt template. This query passes for the current model, which
we expect because there should be a valid manifest leading to this outcome.

6.1.4 D4: Success Guaranteed

A<> FinalJumpToRomExt.ROMExtRunning

This is a simple liveness property. It says that independently of which transitions are taken, the FinalJump-
ToRomExt template will eventually be in the ROMExtRunning location, which is our version of our success
state. This query does not pass, which means that the model does not always reach this state. This is what
we expect, as not all manifests are valid. The diagnostic trace that we can get from Uppaal confirms that
there is indeed a counterexample trace, which leads to the BootFailed location in the ROMStage template.

6.1.5 D5: Exception Never Raised

A[] !ExceptionHandler.ExceptionRaised

This is a safety property. It says that the ExceptionHandler is never able to reach the ExceptionRaised
location. This will happen if the PmpModule template receives a bad request for reading, writing, or
executing, or if the SRAMController template receives a read request for something that is not in SRAM.
The query passes, which means that the current model never raises an exception. This is what we expect
of the model.

6.1.6 D6: Memory Unscramble Urgent

A[] FinalJumpToRomExt.ROMExtRunning imply GlobalMemoryIsScrambled == false

This is a safety property. It says that whenever the FinalJumpToRomExt template is in the ROMExtRunning
location, then the global variable GlobalMemoryIsScrambled must be false. This query passes for the
current model, which means that unscrambling memory that has been read cannot be delayed until the end
of the ROMStage template. This is the result that we expect to see.
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6.1.7 D7: Flash Immediately Unscrambled

A[] FlashController.ScrambleCheck imply !GlobalMemoryIsScrambled

This is a safety property. It says that whenever the FlashController template is in the ScrambleCheck

location, then the global variable GlobalMemoryIsScrambled must be false. The query passes as ex-
pected, which further validates that the flash memory that is read is unscrambled immediately.

6.1.8 D8: SRAM Immediately Unscrambled

A[] SRAMController.ScrambleCheck imply !GlobalMemoryIsScrambled

This is a safety property very similar to D7. This query checks whether the SRAM memory that is read is
immediately unscrambled. This query passes, which means that the model behaves as expected.

6.1.9 D9: Exactly One Choice

A[] MemoryHandling.ChooseType imply

(((GlobalBootPolicy != GlobalEmptyBootPolicy) +

(GlobalImageCode != 0) +

(GlobalDigest != 0) +

(GlobalPublicKey != GlobalEmptyPublicKey) +

(GlobalManifest != GlobalEmptyManifest) +

(GlobalSignature != 0) +

(GlobalPrivateKey != GlobalEmptyPublicKey) +

(GlobalPublicKeyIdWhitelist[0] != -1)) == 1)

This safety property says that whenever the MemoryHandling template is in the ChooseType location, then
exactly one of the eight transitions must be active. We have made this query to verify that it is only possible
to choose a single transition when reading from the SRAM. To verify this, we sum the guards and check
whether it is equal to 1. The guards are boolean, but their values are represented as 0 or 1. If their sum is
equal to one, then exactly one of the guards must be true. Running this query on the model, we can see
that it is indeed the case that only one of the transitions is active at once. This is because it passes. This is
the behavior that we want so that there is no nondeterminism in this part of the model.

6.1.10 D10: Writing Manifest Is Disallowed

A[] !PmpModule.canWrite(30 + 35 * ROMStage.loopIndex, 41 + 35 * ROMStage.loopIndex)

This is a safety property. It says that according to the PmpModule template, it is never possible to write
anything to the specific range of memory where the currentManifest is placed. This query passes, which
verifies that it is impossible to change the manifests by writing to flash. This is the intended behavior.
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6.2 Verifying P1

The P1 security goal ensures that only code that has been validated can be executed. This means that it
should not be possible to execute a ROM_ext manifest that has not passed the three validation checks made
in the ROM stage. The P1 security policy contains the two security goals G1, G2, G3, and G4. Because of
the limitation of scope mentioned in section 3.2, we are only interested in verifying G1 and G3.

6.2.1 Verifying G1

G1 states that “Before the ROM_ext image code is executed, the signature of the ROM_ext manifest must
be validated by ROM.”
This goal concerns the three checks on the manifests that are made in the boot code (cf. section 3.1) and
the ROMStage template: The identifier must be correct, the public key in the manifest must be a trusted
key, and the manifest’s signature must be correct with respect to the manifest’s image code and public
key. These checks can be seen in the ROMStage template (cf. section 5.2.1). If the three checks pass, the
manifest must be valid. In this section, we verify that the checks work as intended and are modeled such
that an invalid manifest cannot be executed by the ROMStage template.

Queries

To verify G1, we have created the queries that can be seen in table 6.2.1.

ID Name Query Passes?

Q1
Checking
Manifest
Identifier

A[] ROMStage.IdentifierChecked imply

ROMStage.currentManifest.identifier == 1

Q2
Checking Valid
Manifest Identifier

A[]

(CheckRomExtManifest.manifest.identifier

== 1) ==

CheckRomExtManifest.checkRomExtManifest()

Q3
Checking Public
Key

A[]

ROMStage.CheckingSignature imply

(ROMStage.currentManifest.identifier

== 1 &&

ROMStage.currentManifest.publicKey.modulus

== 1 &&

ROMStage.currentManifest.publicKey.exponent

== 1)

Q4
Checking
Signature

A[] ROMStage.CheckedSignature imply

(ROMStage.currentManifest.identifier

== 1 &&

ROMStage.currentManifest.publicKey.modulus

== 1 &&

ROMStage.currentManifest.publicKey.exponent

== 1 &&

ROMStage.currentManifest.signature == 1)
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ID Name Query Passes?

Q5 PMP Execute

A[] ROMStage.ReadyToRunROMExt

imply (PmpRegions[0].execute &&

PmpRegions[0].startAddress <=

ROMStage.currentManifest.entryPoint &&

PmpRegions[0].endAddress >=

ROMStage.currentManifest.entryPoint + 4)

Q6 Valid Key ID

A[]

(CheckPubKeyValid.currentPubKeyId

== 1) ==

CheckPubKeyValid.checkPublicKey()

Q7
Valid Key
Leads to
Valid Key ID

(CheckPubKeyValid.publicKey.exponent

== 1 &&

CheckPubKeyValid.publicKey.modulus

== 1) −− >

CheckPubKeyValid.currentPubKeyId == 1

Q8 Valid Signature

A[] (OTBN.signature == 1 &&

OTBN.digest == 3 &&

OTBN.key.modulus == 1 &&

OTBN.key.exponent == 1)

== OTBN.checkSignature()

Q9
Valid Manifest
Leads to
Rom Ext Running

EqualManifestContents(validManifest,

ROMStage.currentManifest) −− >

(FinalJumpToRomExt.ROMExtRunning &&

EqualManifestContents(validManifest,

ROMStage.currentManifest))

Q10
Invalid Manifest
Leads to Failure

!EqualManifestContents(validManifest,

ROMStage.currentManifest) −− >

(ROMStage.StartOfLoop ||

ROMStage.BootFailed)

Q11
Invalid Key
Leads To
Invalid Key ID

(CheckPubKeyValid.publicKey.exponent

!= 1 ||

CheckPubKeyValid.publicKey.modulus

!= 1) −− >

CheckPubKeyValid.currentPubKeyId == 0

Table 6.2.1: The queries associated with the G1 security goal.

Q1: Checking Manifest Identifier
A[] ROMStage.IdentifierChecked imply ROMStage.currentManifest.identifier == 1

This query is a safety property that verifies that the ROMStage template can only enter the IdentifierCheck-
ed location if the identifier of the current manifest is valid (a valid identifier in the model is represented
with a 1). This query passes, which is what we expect.

69



6.2. VERIFYING P1

Q2: Checking valid manifest identifier
A[] (CheckRomExtManifest.manifest.identifier == 1) ==

CheckRomExtManifest.checkRomExtManifest()

This safety property says that the locally defined checkRomExtManifest function will return true, if and
only if the CheckRomExtManifest template’s local manifest has an identifier of 1. This query verifies
the checkRomExtManifest function. The query passes, which means that the function behaves as ex-
pected. Furthermore, the query also verifies that 1 is a correct value for the ROM_ext manifest’s identi-
fier. This is verified by the fact that the query uses boolean equivalence to conclude that the result of the
checkRomExtManifest function is dependent on the value of the manifest’s identifier.

Q3: Checking Public Key
A[] ROMStage.CheckingSignature imply

(ROMStage.currentManifest.identifier == 1 &&

ROMStage.currentManifest.publicKey.modulus == 1 &&

ROMStage.currentManifest.publicKey.exponent == 1)

This query is a safety property that works similarly to the one described before. The difference here is that
we add another part to the query regarding checking the public key of the manifest. Here we state that
if the ROMStage template is in the CheckingSignature location, then the current manifest must have a
valid identifier and a valid public key. Note that a valid public key in the model is represented as having its
modulus and exponent equal to 1. For the current model, this query passes, which is the desired result.

Q4: Checking Signature
A[] ROMStage.CheckedSignature imply

(ROMStage.currentManifest.identifier == 1 &&

ROMStage.currentManifest.publicKey.modulus == 1 &&

ROMStage.currentManifest.publicKey.exponent == 1 &&

ROMStage.currentManifest.signature == 1)

This query is also a safety property that is similar to the two previous ones. This one adds that if the
ROMStage template is in the CheckedSignature location, then the signature of the current manifest must
be valid as well as the identifier and public key (a valid signature is represented as 1 in the model). This
query also passes for the current model as expected.

Q5: PMP Execute
A[] ROMStage.ReadyToRunROMExt imply

(PmpRegions[0].execute &&

PmpRegions[0].startAddress <= ROMStage.currentManifest.entryPoint &&

PmpRegions[0].endAddress >= ROMStage.currentManifest.entryPoint + 4)

This query is a safety property that states that if the ROMStage template is in the ReadyToRunROMExt lo-
cation, then the first PMP region must allow for the ROM_ext manifest image code to be executed (cf.
section 3.1). This query passes, which means that we never execute something that is not allowed to be
executed. This is the desired result.
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Q6: Valid Key ID
A[] (CheckPubKeyValid.currentPubKeyId == 1) ==

CheckPubKeyValid.checkPublicKey()

This safety property states that whenever the CheckPubKeyValid’s currentPubKeyId is equal to 1 (i.e.
a correct public key ID), then the locally declared checkPublicKey will return true. This query passes,
which verifies the checkPublicKey function, so we know it behaves like we expect it to behave.

Q7: Valid Key Leads to Valid Key ID
(CheckPubKeyValid.publicKey.exponent == 1 &&

CheckPubKeyValid.publicKey.modulus == 1) −− >

CheckPubKeyValid.currentPubKeyId == 1

This is a liveness property. It says that whenever the public key is correct (i.e., both fields in the struct
are equal to 1), the system eventually reaches a state where the ID is equal to 1. This query passes, which
verifies the calculateKeyId function that is responsible for calculating the public key ID.

Q8 : Valid Signature
A[] (OTBN.signature == 1 && OTBN.digest == 3 &&

OTBN.key.modulus == 1 && OTBN.key.exponent == 1) ==

OTBN.checkSignature()

This is a safety property. It says that the OTBN template has the correct signature, key, and digest values, if
and only if the locally declared checkSignature function will evaluate to true. This query passes, which
verifies the checkSignature function in the positive and negative case.

Q9: Valid Manifest Leads to Rom Ext Running
EqualManifestContents(validManifest,ROMStage.currentManifest) −− >

(FinalJumpToRomExt.ROMExtRunning &&

EqualManifestContents(validManifest,ROMStage.currentManifest))

This query is a liveness query. It says that whenever the current manifest in the ROMStage template is
equal to a hypothetically correct manifest, then the FinalJumpToRomExt template will eventually be in
the ROMExtRunning location, and the current manifest in the ROMStage template will still be equal to the
correct manifest. The variable validManifest is a global variable of the type rom_ext_manifest_t,
which is considered correct with respect to the three checks made by the ROMStage template. The func-
tion EqualManifestContents is a globally defined boolean function that returns whether two given
rom_ext_manifest_ts have the same identifier, public key, and signature. This query passes as expected.

Q10: Invalid Manifest Leads to Failure
!EqualManifestContents(validManifest,ROMStage.currentManifest) −− >

(ROMStage.StartOfLoop || ROMStage.BootFailed)

This liveness property says that if the current manifest in the ROMStage template is different from validMa-

nifest, which is the only values of manifests that can pass all the checks in the ROMStage template, then
the ROMStage template will eventually go back to the StartOfLoop or BootFailed locations. This means
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that the manifest has failed at least one check. With the current model, this query passes, which is what we
expect.

Q11: Invalid key Leads to Invalid Key ID
(CheckPubKeyValid.publicKey.exponent != 1 ||

CheckPubKeyValid.publicKey.modulus != 1) −− >

CheckPubKeyValid.currentPubKeyId == 0

This liveness property can be seen as a complement to Q7. It says that whenever the public key has a
public key where either the modulus or the exponent is different from 0, then the resulting public key ID
will be 0. Q11 passes as expected when run on the current model. Together with Q7, this query says that
the calculated public key ID depends on the value of the given public key.

Results

Q1, Q3, and Q4 together show that values of the manifest are what we expect them to be throughout
the locations in the ROMStage template. Q2, Q6, and Q8 verify that the values we define as correct are
considered correct values in the model. Q5 shows that our PMP regions are correctly updated if we get
to a point where we have verified a manifest and are ready to transfer execution to the next stage. Q7
and Q11 show that we calculate a correct key ID from a given public key. Q9 and Q10 show that we can
successfully initiate the next stage (ROM_ext) and that not every manifest allows us to do this. Running
Q1-Q11 through the verification tool in Uppaal on the model as described in chapter 5 shows that they all
pass. We believe that these queries combined show that the current model satisfies G1 fully.

6.2.2 Verifying G3

G3 states that “The ROM_ext image signature must not change and must be signed by the Silicon Creator”.
The signing by the Silicon creator is not in the scope of this project, but we can verify that the ROM_ext im-
age signature does not change during the boot of the ROM stage. To verify this, we have made an observer
template called the ManifestObserver template. The template can be seen in Fig. 6.2.1. The observer
template reacts to broadcast synchronizations made by the ROMStage template. The ManifestObserver

template verifies that the current manifest does not change between checks made by the ROMStage template.

In the transition from the Initial location, this template copies and saves the manifest that the ROMStage
template has just passed to the CheckRomExtManifest template. When the ROMStage template is about to
check the manifest’s key, the observer template copies the key and checks whether that key is the same as
the key in the manifest that was copied in the first transition. If it is not, the observer template goes to the
Failure location. When the ROMStage template is about to check the manifest’s image code signature, the
observer template copies the image code and signature. It then checks whether those values are equal to
the corresponding values in the original manifest copied in the first transition. If at least one of them is not
equal, the observer template goes to the Failure location. If both are equal, the observer template goes
to the AwaitingManifest location. From there, the ManifestObserver waits for the ROMStage template
to hopefully pass the last check. When it does, it passes the manifest to the FinalJumpToRomExt and
ManifestObserver templates. If the manifest that the ManifestObserver template receives is different
from the one it received in the first transition, this template goes to the Failure location. Otherwise, it
goes to the Success location.
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If the currentManifest in the ROMStage template fails any of the checks and is therefore not vali-
dated, then this template returns to the Initial location. In case there is more than one flash bank,
the ManifestObserver can be used to verify that none of the manifests change.

The ManifestObserver template being in the Failure location means that between the ROMStage receiv-
ing the manifest from the RomExtManifestsToTry template to passing the manifest to the FinalJumpTo-
RomExt template, the manifest has changed. The ManifestObserver template being in the Success lo-
cation means that in that same time frame, the manifest in the ROMStage template has not changed. It also
means that all three checks performed in the ROMStage have passed.

Figure 6.2.1: The ManifestOberver template in Uppaal.

Queries

To verify G3, we have created two queries which can be seen in table 6.2.2.

ID Name Query Passes?
Q12 Never Failure A[] !ManifestObserver.Failure

Q13 Verify Observer
A[] FinalJumpToRomExt.ROMExtRunning imply

ManifestObserver.Success

Table 6.2.2: The queries relevant for the G3 security goal.

Q12: Never Failure
A[] !ManifestObserver.Failure

This query says that the ManifestObserver template never reaches the Failure location. This query
passes, which means that we know that the manifest (including its signature and image code fields) never
changes between passed checks. This property does not verify that the FinalJumpToRomExt template re-
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ceives the same manifest, since there might be a deadlock before ManifestObserver template reaches the
Failure location.

Q13: Verify Observer
A[] FinalJumpToRomExt.ROMExtRunning imply ManifestObserver.Success

This query says that as long as the FinalJumpToRomExt template is in the ROMExtRunning location,
then the ManifestObserver template must be in the Success location. This query passes, meaning that
whenever the ROM_ext is running, then the three checks required for the ROM to boot are passed, and the
manifest has not changed in the process.

Results

The results of queries Q12 and Q13 verify that the manifest in the ROMStage never changes between checks
or before executing the ROM_ext image. This verifies the part of the security goal that says that the image
signature must not change. The part of the security goal that says that the image signature must be signed
by the Silicon Creator is not verified since it is not in the scope of this project. For these reasons, this
security goal is partially verified.

6.3 Verifying P2

The security policy P2 states that “Validation of a boot stage must only succeed if the boot environment is
safe”. It contains the security goal G5.

6.3.1 Verifying G5

The security goal G5 states that “ROM must use a key dependent on the environment to validate ROM_ext.
The validation must fail if the environment has changed since the code was signed”.
Verifying this goal proved to be more difficult than anticipated. Reading through the documentation, it is
difficult to discern if this environment check happens at this point in the design (at least for the ROM stage).
We know that the Key Manager (cf. section 2.3.3) derives keys also by using system state measurements
as input. However, as far as we can tell, the Key Manager is not used until after validation of the ROM_ext
manifests is complete. This means that it cannot be the Key Manager that is used during ROM_ext manifest
validation. Because of this, along with the fact that we cannot figure out if there are any other cases of keys
being dependent on the environment from the documentation, we have chosen not to verify this goal.

6.4 Verifying P3

The security policy P3 states that “Cryptography key leakage cannot happen”. It includes security goals
G7, G8, and G9. Given the limitation of scope (cf. section 3.2), we are only interested in verifying G8 and
G9.

6.4.1 Verifying G8

The security goal G8 states that “Correct keys are only accessible to intended receivers”. Some templates
need secret keys to do various actions, like scrambling parts of memory. Passing secret keys to these
templates is necessary for them to work properly. Due to the way we have modeled value passing, variables
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should only be passed between components that communicate according to the OpenTitan documentation
or by passing the data through SRAM. Passing secret keys to other templates presents a security risk. In our
Uppaal model, it is infeasible to write queries for whether a secret key is passed between two templates
by mistake. Instead, we try to partially verify this goal by checking whether secret keys are ever stored in
SRAM. If a secret key is put into SRAM, then it is publicly available to the whole system, which violates
G8.

Queries

To verify G8, we have created one query which can be seen in table 6.4.1.

ID Name Query Passes?
Q14 Never in SRAM A[] SRAM.indexIsEmpty(6)

Table 6.4.1: The query used to verify G8.

Q14: Never in SRAM
A[] SRAM.indexIsEmpty(6)

This query is a safety property. It says that the sixth index in the SRAM is always empty. That index is
exclusively used for private and secret keys. This query passes, which verifies that secret keys and private
keys are never stored in the SRAM. The SRAM template and the indexIsEmpty function are described in
section 5.3.8.

Results

Knowing that the secret keys are never stored in SRAM is not enough to conclude whether all keys are
only accessible to their intended receivers. The SRAM is a way for the templates to share data with every
other template. Knowing that the secret keys are never stored in the SRAM only means that the secret keys
are never made public to the whole system. It would be interesting to verify that the components that use
secret keys do not expose them to the other components that they communicate with. Given that we have
been able to verify that secret keys are not stored in SRAM, we conclude that we have partially verified
G8.

6.4.2 Verifying G9

The security goal G9 states that “Secret information stored in memory must be cleared or scrambled after
the termination of the respective boot stage”.
For this goal, we look specifically at the SRAM template of the model described in section 5.3.8. We want
to ensure that everything stored in SRAM is either scrambled or wiped after the ROM transfers execution to
the ROM_ext stage. In this section, we verify that SRAM is scrambled but not cleared after the ROM stage
is done.
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Queries

To verify G9, we have created three queries which can be seen in table 6.4.2.

ID Name Query Passes?

Q15 Check SRAM Scrambled

A[]

FinalJumpToRomExt.ROMExtRunning

imply forall (i : int[0, 7])

(SRAM.scrambled[i] ||

SRAM.indexIsEmpty(i))

Q16 Check SRAM Wiped

A[]

FinalJumpToRomExt.ROMExtRunning

imply forall (i : int[0,7])

SRAM.indexIsEmpty(i)

×

Q17 Check Some of SRAM Wiped

A[]

FinalJumpToRomExt.ROMExtRunning

imply ((exists (i : int[0,5])

SRAM.indexIsEmpty(i))

|| SRAM.indexIsEmpty(7))

×

Table 6.4.2: Queries associated with G9.

Q15: Check SRAM Scrambled
A[] FinalJumpToRomExt.ROMExtRunning imply

forall (i : int[0, 7]) (SRAM.scrambled[i] || SRAM.indexIsEmpty(i))

This query is a safety property that uses local variables and functions in the SRAM template to check that all
fields of SRAM are either scrambled or empty when the model is in a state that contains the ROMExtRunning
location of the FinalJumpToRomExt template. The query passes, which is also the expected behavior.

Q16: Check SRAM Wiped
A[] FinalJumpToRomExt.ROMExtRunning imply forall (i : int[0,7]) SRAM.indexIsEmpty(i)

This query is almost identical to Q14. However, this query only passes if every field of SRAM is empty, i.e.,
wiped. This property does not pass, which means that not all of the data in the SRAM is wiped. Q11 tells
us that the data that is not wiped is scrambled. An error trace of the property shows that the fields of the
SRAM template are not wiped. All of the fields in the template have values different from 0, when in the
ROMExtRunning location in the FinalJumpToRomExt template. The only exception to this is the private
key field. This property failing is, however, the excepted result.

Q17: Check Some of SRAM wiped
A[] FinalJumpToRomExt.ROMExtRunning imply

((exists (i : int[0,5]) SRAM.indexIsEmpty(i)) || SRAM.indexIsEmpty(7))

This safety query says that whenever the FinalJumpToRomExt is in the ROMExtRunning location (i.e.,
what we consider a successful boot of the ROM stage), then some of the SRAM contents between indices
0 and 5 or index 7 must be empty. Since we know that all of the indices are set during the ROM stage,
we know that they must have been cleared if they are empty. The query does not pass. Using a diagnostic
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trace, we can see that there exists a trace where index 0-5 and index 7 of the SRAM template is not empty,
while the FinalJumpToRomExt template is in the ROMExtRunning location. Since this query fails, we
know that none of the contents are cleared. This query excludes index 6 because we know that index 6 is
never written to given the result of Q14 and will therefore always appear empty.

Results

For this goal, we have taken memory to only mean SRAM, as this seems logical. We could potentially
include flash, but that is not what is meant by this goal. As such, with the three queries seen in table 6.4.2,
we can see that nothing in SRAM is wiped after the termination of the ROM stage. But the data stored
in SRAM at that time is scrambled. This can be seen in the fact that Q15 passes while Q16 and Q17 fail.
As such, we believe that the goal is fulfilled. However, it would be better for the security of the design if
SRAM was wiped after a boot stage. That way, an attacker that somehow gets hold of the scrambling key
for SRAM would not be able to extract information from SRAM after a boot stage is complete.

6.5 Verifying P4

As mentioned in section 3.2, P4 states that “All data access rights follow a privilege hierarchy”. This
means that the PmpModule template allows reading, writing, and executing a given memory section if and
only if a PMP region that allows that operation for that memory section exists. If an invalid request is
made, the system deadlocks.

6.5.1 Verifying G10, G11, G12

G10 says only software with write access to some section of memory may write to it. G11 and G12 say
the same but are concerned with reading and executing, respectively, rather than writing. The PmpModule

template (cf. section 5.3.4) is responsible for enforcing these security goals. The PmpModule template takes
requests from the FlashController template to read, write to, or execute certain sections of memory. As
mentioned in section 5.3.4, the PmpModule template checks the PmpRegions to compute whether reading,
writing, or executing a specific range is allowed. If a read or write request is allowed, then the PmpModule
template communicates with the Flash template to read from or write to flash memory. If a request is
not allowed, then the PmpModule template synchronizes with the ExceptionHandler template via the
RaiseException channel.
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Queries

To verify G10, 11, and 12, we have created 13 queries which can be seen in table 6.5.1.

ID Name Query Passes?
Q18 Exception Raised A[] !ExceptionHandler.ExceptionRaised

Q19
Never negative
case - read

A[] !PmpModule.BadRead

Q20
Never negative
case - write

A[] !PmpModule.BadWrite

Q21
Never negative
case - execute

A[] !PmpModule.BadExecute

Q22
Positive case
- read

A[] PmpModule.GoodRead imply

(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].read)

Q23
Positive case
- write

A[] PmpModule.GoodWrite imply

(exists (pmpIndex : int[0, 15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].write)

Q24
Positive case
- execute

A[] PmpModule.GoodExecute imply

(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].execute)

Q25
Negative case
- read

A[] PmpModule.BadRead imply

(!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].read))

Q26
Negative case
- write

A[] PmpModule.BadWrite imply

(!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].write))
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ID Name Query Passes?

Q27
Negative case
- execute

A[] PmpModule.BadExecute imply

(!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].execute))

Q28
Positive case
possible - read

E<> PmpModule.GoodRead

Q29
Positive case
possible - write

E<> PmpModule.GoodWrite ×

Q30
Positive case
possible - execute

E<> PmpModule.GoodExecute

Table 6.5.1: The queries relevant for the G10, G11, and G12 security goals.

Q18: Exception Raised
A[] !ExceptionHandler.ExceptionRaised

If the ExceptionHandler template reaches the ExceptionRaised location, then either an invalid read,
write, or execute request has been issued, or the SRAM template has been requested to read something that
is not in SRAM. We believe that the query is partially relevant for these security goals, which is why it is
included here. This query passes as expected, which means that we have verified that no invalid requests
are made.

Q19-Q21: Never negative case
A[] !PmpModule.BadRead

These queries state that if the PmpModule template is ever in one of the “Bad” locations (i.e. BadRead,
BadWrite, or BadExecute), then an invalid read request has been issued. These queries pass, which
means that it is verified that such requests are never made. This is the expected behavior of the queries.

Q22-Q24: Positive case
A[] PmpModule.GoodRead imply (exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <= PmpModule.start &&

PmpRegions[pmpIndex].endAddress >= PmpModule.end &&

PmpRegions[pmpIndex].read)

These queries say that whenever the PmpModule template reaches any of the “Good” locations (i.e. GoodRead,
GoodWrite, or GoodExecute), then there is a PMP region that allows for reading, writing, or executing
that section of memory. Q22, Q23, and Q24 all pass. These are also the expected results.

Q25-Q27: Negative case
A[] PmpModule.BadRead imply (!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex]. startAddress <= PmpModule.start &&

PmpRegions[pmpIndex].endAddress >= PmpModule.end &&

PmpRegions[pmpIndex].read))
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These queries say that whenever the PmpModule template reaches a “bad” location (i.e. BadRead, BadWrite,
or BadExecute), then a PMP region that allows for reading, writing, or executing that section of memory
does not exist. E.g., suppose the PmpModule template reaches the BadRead location. In that case, the
PmpModule template will reject the request and will not communicate with the Flash template. These
queries pass because the left-hand sides of the implication in the queries are always false. Q19-Q21 guar-
antee this. We have chosen to include them due to the fact that if the model is to be further developed,
then these locations (i.e. BadRead, BadWrite, BadExecute) might become reachable. In that case, these
properties must be upheld by the model.

Q28-Q30: Positive case possible
E<> PmpModule.GoodRead

These queries say that a path from the initial location to a state where the PmpModule template is in a
“good” location exists (e.g. GoodRead). They are used to make sure that some of the other queries that
imply something based on whether the PmpModule template is in this location do not succeed simply
because the location is never reached. We have also verified this for writing and executing. Notably, the
query for GoodWrite (Q29) fails, meaning that a valid writing request is never made. We cannot get a
diagnostic trace from Uppaal for this query because it is an E<> property. This means that the proof is that
all traces do not uphold the property, making it meaningless to only show one trace. Q28 and Q30 both
succeed. The results from the three queries are all what we expect.

Results

Q18 verifies that the ExceptionHandler template never goes to the ExceptionRaised location. Q19-
Q21 verify that the PmpModule never reaches any of the “Bad” locations. This verifies that the reason Q18
passes is not due to faulty communication between the PmpModule and ExceptionHandler templates.
Q22-Q27 verify the functions canRead, canWrite, canExecute. This means that we have verified that
the PmpModule template correctly determines whether a request is valid or invalid. Q28-Q30 verify that
the left-hand side of the implications in Q22-Q24 are eventually true, so the queries are not trivially true
because the left-hand sides of the implications are always false. Ultimately, we believe that the queries
(especially Q22-Q27) prove that the model satisfies the security goals G10, G11, and G12. Because our
model only models the ROM stage of the boot process, G10, G11, and G12 are only verified for the ROM
stage of the actual system. This means that we have not verified the goals for the subsequent boot stages.

6.6 Summary

Following the verification of the model, we have fully verified security goals G1, G9, G10, G11, and
G12, and partially verified security goals G3 and G8. However, since we are only modeling the ROM
stage, our results only pertain to the ROM stage of the system. Overall, we are satisfied with the number
of fully verified goals, especially given the current state of the OpenTitan system and its documentation.
Furthermore, we believe G1 to be one of the most critical security goals for the ROM stage. Therefore,
being able to fully verify this goal is a good result on its own. To fully verify G3, we need to verify that the
silicon creator signs the ROM_ext manifest, but we cannot guarantee that the Silicon Creator is the entity
who signed the signature using the current Uppaal model. To fully verify G8, we would need more details
about the implementation of OpenTitan.
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Chapter 7

Introducing Errors in the Model

In this chapter, we introduce errors in the model to show that we can use our queries to detect potential
errors in the model or OpenTitan design. This chapter should give an idea of how these errors are caught
using the Uppaal tool. In the tables throughout this chapter, we denote a query that passes in Uppaal with
a . Conversely, we denote a query that does not pass with a ×. Furthermore, we have included two
columns for each query in each table. These are “Results without Error” and “Results with Error”. The
“Results without Error” column denotes whether the queries pass in the correct model (as it is described in
chapter 5). The “Results with Error” column denotes whether the queries pass for the model with the given
error in it. The queries are the same as mentioned in chapter 6. A full table of all the queries can be found
in appendix D.

7.1 Faulty Hashing

To induce an error into the signature verification, we have tried to make a change to the HASH template
shown in section 5.4.1. In this modified version of the HASH template, we have changed the local SHA
function. The new implementation of the SHA function can be seen in listing 7.1.

1 int SHA(int msg){

2 return msg;

3 //return msg + 2;

4 }

Listing 7.1: The new erroneous implementation of SHA.

In this version of this function, we make it so that the SHA function does nothing to its input parameter.
This means that the function returns its input without modifying it. This symbolizes an error where the
hashing does not occur in the system, leading to no possible manifests being considered valid. To catch the
error, we run the queries seen in table 7.1.1.

Query ID Results without Error Results with Error
Q4
Q9 ×

Q10
D1 ×

D3 ×

Table 7.1.1: Table with results of queries done on the model with and without a faulty hashing algorithm.
The IDs of queries correspond to the IDs of the queries in chapter 6 (for a table with all queries see
table D.0.1).
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7.1.1 Q4: Checking Signature

It is easy to look at Q4 and think that it should fail given the faulty hashing. However, due to the use
of “imply” and the fact that the left-hand side of the implication is always false, the property always
holds. This is because the model cannot reach the CheckedSignature location in the ROMStage template
with the faulty hashing implemented. To confirm this, we created and processed the following query: E<>
↪→ ROMStage.CheckedSignature. This query does not pass, which means that our assumption is correct.

7.1.2 Q9: Valid Manifest Leads to Running Rom Ext

Q9 does not hold with the implementation of the faulty hashing. Using Uppaal to give a diagnostic trace of
why this fails, we can see that there exists a trace where a valid manifest ends in the BootFailed location
of the ROMStage template. This is incorrect behavior as a valid manifest should lead to ROM transferring
control over to ROM_ext.

7.1.3 Q10: Invalid Manifest Leads to Failure

Q10 shows that it still holds that invalid manifests lead to the ROMStage template either going back to the
StartOfLoop location or the BootFailed location. This means that we at least do not validate incorrect
manifests.

7.1.4 D1: Possibly Never Fail

D1 fails, which means that all paths lead to either the BootFailed or RomExtTerminated location in
ROMStage. This is in line with what we see by Q9 failing because there should not be any trace that leads
to a success state with the faulty hashing implemented. For this query, we cannot get a diagnostic trace
from Uppaal. This is because no trace upholds the property. It is difficult to give a single counterexample
trace when the counterexample is the collection of all possible traces where no trace always upholds the
property.

7.1.5 D3: Success Possible

D3 also fails, which means that there is no path through the system, which leads to the FinalJumpToRomExt
template being in the ROMExtRunning location. This means that we cannot get to a success state. Similar
to the case for D1, we cannot get a single diagnostic trace from Uppaal to show why this property fails.
This is because the proof is that the set of all possible traces for the system does not contain a trace that
eventually contains the ROMExtRunning location.

7.2 Faulty Signature Verification

To investigate how the system acts if the verification of the signature is faultily implemented, we have made
a change to the function in the OTBN template that is responsible for validating the signature. Based on the
change in the checkSignature function seen in listing 7.2, all signatures will now be validated by the
function. This error symbolizes what happens if attackers have found a way to make an invalid signature
appear correct.
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1 bool checkSignature(){

2 return true;

3 //return signature == 1 && digest == 3 &&

4 //key.modulus == 1 && key.exponent == 1;

5 }

Listing 7.2: The new erroneous implementation of checkSignature.

7.2.1 Results

Some of the queries that are affected by the change are shown in table 7.2.1. The results after making the
change are as expected. The diagnostic trace backs this for each query.

Variables & Functions Results without Error Results with Error
Q4 ×

Q8 ×

Q10 ×

Table 7.2.1: Table with results of queries done on the model with and without a faulty checkSignature

function. The IDs of queries correspond to the IDs of the queries in chapter 6 (for a table with all queries
see table D.0.1).

The change introduced in the model shows that manifests with incorrect signature values will be accepted
as correct. These manifests are the ones that are initialized with a signature value that is different from
1. The other fields in the manifests will still have their intended value when in the CheckedSignature

location since the previous checks (the identifier and public key checks) are not erroneous.

7.2.2 Q4: Checking Signature

With the error introduced in the model, this query now fails. Based on an error trace provided by the
UPPAAL verification tool, it shows that Q4 fails because the model can get to the CheckedSignature

location in the ROMStage template, while the current manifest has a value different from 1 in the signature
field. This makes sense since if the ROMStage is in the CheckedSignature location, it is no longer a
guarantee that the manifest will contain fields all assigned to 1.

7.2.3 Q8: Valid Signature

Q8 fails instantly. This is expected behavior since a valid signature now has other correct values than
the ones listed in Q8. Trying to get a diagnostic trace for this query will result in a trace with only a
single state. That is because from the first state, the values in the OTBN component will all be zero, yet the
checkSignature function will return true. Thus Q8 will state that something false equals something true,
which is false.
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7.2.4 Q10: Invalid Manifest Leads to Failure

Q10 also fails. This is because a manifest that differs from a valid manifest will not necessarily end up in
the BootFailed or StartOfLoop location. This is backed by the verification tool where a trace display
that a manifest that differs from the valid manifest, with, e.g., a value of the image_code being 2, will end
up in the ROMExtRunning location in the ROMStage template.

7.3 Faulty Calculation of Public Key ID

We have tried to introduce an error to the function that validates the public key found in the rom_ext_mani-
fest_t structs. We changed the function calculateKeyId so that it always sets the ID to 1, regardless
of the validity of the key. The new implementation of the function can be seen in listing 7.3. This error
symbolizes a bug in the algorithm or implementation for calculating the key ID. We introduce this error to
see whether it can be seen in the results of the queries we have used to verify the model so far. It would
be interesting to see whether a manifest with an incorrect public key could be validated by the ROMStage

template with this change. To catch the error, we run the queries seen in table 7.3.1.

1 void calculateKeyId(){

2 currentPubKeyId = 1;

3 return;

4

5 //if(publicKey.exponent == 1 && publicKey.modulus == 1)

6 // currentPubKeyId = 1;

7 //else

8 // currentPubKeyId = 0;

9 }

Listing 7.3: The new erroneous implementation of calculatePubKeyId.

Query ID Results without Error Results with Error
Q3 ×

Q4
Q7
Q11 ×

Table 7.3.1: Table with results of queries done on the model with and without a faulty calculateKeyId

function. The IDs of queries correspond to the IDs of the queries in chapter 6 (for a table with all queries
see table D.0.1).

7.3.1 Q3: Checking Public Key

Q3 verifies that when the currentManifest has passed the first two checks in the ROMStage template,
then the currentManifest’s identifier, public key exponent, and public key modulus are all equal to 1.
This query verifies that the checks work correctly. By introducing the error discussed in this section, this
query fails, meaning that it is possible to have a “wrong” identifier or public key and still pass the second
check. This makes sense since the error allows the CheckPubKeyValid template to validate keys that are
not valid. The error trace Uppaal provides shows that the manifest in Flash could have an invalid key. That
manifest is then validated by the CheckPublicKey template. This leads to a state that violates the Q3.
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7.3.2 Q4: Checking Signature

Q4 verifies that when the currentManifest has passed all the checks, then its identifier, public key expo-
nent, public key modulus, image code, and signature are all equal to 1. Because this query passes, we know
that the only situation where the third check is passed is when all the fields are valid, i.e., equal to 1. If the
query had failed, we would know that it was possible to pass all three checks with an invalid key provided
that the implementation of the key id was faulty. The third check does not pass because it checks whether
the signature is correct, and to do that, the signature must be decrypted by the correct public key. Since
the key is wrong, the decrypted signature does not correspond to the image code, and signature verification
will fail. This means that even though the key ID is correct by mistake, the manifest cannot be validated
by the ROMStage template without additional errors.

7.3.3 Q7: Valid Key Leads To Valid Key ID

This query verifies that whenever the key in the CheckPubKeyValid template is valid (i.e., its modulus and
exponent are equal to 1), then the public key ID calculated based on the ID will be equal to 1. This query
passes with the error and without. This makes sense since the added error means that the public key ID is
always calculated to be equal to 1.

7.3.4 Q11: Invalid key Leads To invalid Key ID

This query verifies that whenever the key is invalid (i.e., either its modulus or exponent are not equal to
1), then the public key ID will be equal to 0. Since this query and Q7 pass without the error in the correct
model, we have verified that the value of the currentManifest’s public key affects the calculation of
the public key ID. However, the query fails after having introduced the error. This means that an invalid
public key does not lead to an invalid public key ID, which means that we have found the error. The
trace that Uppaal generates shows that the manifest with an invalid public key can be validated by the
CheckPubKeyValid template and advance to the next check in the ROMStage template. Interestingly, the
trace continues to the signature check, which fails (cf. section 7.3.2), and then goes to the BootFailed

location afterward. The reason the trace is so long is that the states in the trace satisfy the left-hand side
of the “leads to” in the query. To disprove the property Uppaal needs to prove that it can always perform
an infinitely repeatable sequence of transitions or reach a deadlock before the right-hand side of the “leads
to” is satisfied.

85



Chapter 8

Reflections

In this chapter, we reflect upon the project and some of the choices we have made.

8.1 Reflections on the UPPAAL Tool

The Uppaal tool is a powerful model checking tool. In this section, we reflect on the use of Uppaal for this
project.

8.1.1 Ease of Use

One of the significant strengths of the Uppaal tool is its ease of use. The tool uses a subset of C, which helps
new users quickly grasp the syntax. Furthermore, the verification tool in Uppaal allows for easy verification
of properties using a subset of TCTL. This makes verification easy, although it might not always be quick.
For a query whose failure or success can be proven with one trace, Uppaal can compute and display a trace
to prove how and why it fails or succeeds. This is extremely useful in debugging the model or finding
errors in the design of the modeled system. This feature is not always given in formal verification tools.
For example, Frama-C’s WP plugin has little to no hand-holding when tracing errors, which makes it much
more challenging to work with.

8.1.2 Expressiveness

The formalism of Uppaal allows for the user to be very expressive in their modeling. Throughout this
project, we have taken advantage of the fact that Uppaal allows for the creation of code in a subset of C.
We have used this feature to create variables and functions throughout the templates of the model described
in chapter 5. The ability to declare structs has been particularly useful as this has allowed us to create types
(e.g., for manifests) that make creating and handling the model simpler. Furthermore, the ability to use
C code in addition to timed automata means that we have a lot of control regarding the granularity of
abstraction that we use throughout the modeling. This allows us to fine-tune the model to both enhance the
model itself and adjust the state space. At this point, we believe that this feature has been invaluable to the
results of this project.

8.1.3 UPPAAL Verification Time

As described in chapter 6 the time it took us to verify our A[] queries was around 13 minutes each. While
this might seem like a long time for a single query, it is worth noting that we are not just running tests
or doing bug hunting. By running such a query through Uppaal, we are getting mathematical guarantees
on the properties of the model. These properties are guaranteed to hold (or not, depending on the result)
for the model as a whole. This is much more powerful than testing, which cannot give such guarantees.
With this in mind, 13 minutes should not seem overwhelming. Furthermore, we would argue that even if
the verification time increases by a large margin, as long as the verification succeeds, then the resulting
guarantees should make up for the time spent verifying. However, if we want to change the model and
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run the query several times, there are a few ways to mitigate the amount of time spent on a single query.
We can run the query on better hardware since a faster processor helps with a shorter verification time.
Another way is to combine several A[] queries into one. The reason behind the amount of time it takes
to run A[] queries (if they pass) is that Uppaal has to calculate the entire state space to verify them each
time a query is verified. However, if we combine A[] queries Uppaal only has to calculate the state space
once for all of the combined properties. E.g., combining two A[] queries in the current model takes the
verification time from around 26 minutes down to 13 minutes. The downside of this is that if a combined
property fails, then it is harder to figure out which part of the query failed immediately. However, at that
point, we can either get a counterexample trace from the verification tool or split the query at the cost of
longer verification time.
Uppaal does support a feature for reusing the state space when verifying multiple queries. However, this
feature does not seem to work in Uppaal 4.1.241. It would be nice if Uppaal itself reused the calculated
state space between verifying queries. That way, the state space would only have to be calculated for one
query, and then every subsequent query could be checked against the already computed state space instead
of re-calculating it.

8.2 Validity of the Model

The following sections describe reflections that we have regarding the model shown in chapter 5. We reflect
upon OpenTitan as the chosen case for this project and the level of abstraction found in the model.

8.2.1 OpenTitan as a Case

For this project, we chose to use OpenTitan as a case. However, this has not been the easiest case to work
with. This is because OpenTitan is still under heavy development, which means that much of the design
is not yet complete or is subject to change. Furthermore, the design being under constant change means
that the documentation leaves a lot to be desired. While we have worked to try and replicate the OpenTitan
design as best as we can, there have been times where we have had to deviate from the design or make
a decision on something because it is not yet documented precisely how it is supposed to work. As an
example of how the lacking documentation has affected the project, we had a hard time understanding how
the HMAC, KMAC, and Key Manager components fit into the ROM stage. It was only late into the project
period that we figured out that they are not used during manifest validation (at least at the time of writing).
Furthermore, we had a hard time understanding exactly how public key IDs are stored. This was, however,
alleviated by contacting the OpenTitan developers. These uncertainties and deviations mean that the mod-
eling gap (cf. chapter 4) between our model and OpenTitan is noticeable in some places. Furthermore, as
the OpenTitan design changes going forward, this gap will only become more significant. While this is
undesirable in general, we believe that this project is still valuable to show just how Uppaal can be applied
to this type of verification. Even with these discrepancies between the OpenTitan design and the model, the
fundamental process of using model checking as described in this report does not change. Furthermore,
we still model very close to how OpenTitan functions at this point wherever possible. To minimize the
modeling gap, we have tried to keep each of the components in the model to the responsibilities described
in their respective documentation pages. When the documentation was lackluster, we have used the Open-
Titan Github repository to ask our questions to the OpenTitan team and tried to incorporate the answers
in the model design. This means that the model is still useful to show that the overall design of the ROM
stage is correct. Another thing to note is that our current model can be used to document how the parts

1There seems to be some reuse happening in certain cases, but we do not know exactly when this happens.
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of the OpenTitan design interact. Furthermore, if this model was to be continuously developed alongside
OpenTitan, we might detect if errors are introduced in the design in the future.

If we had used another case that was not under development, we might have had a more concrete model,
but this does not detract from the results of this project. The best-case scenario for a project such as this
would be to develop the model along with the system from the inside rather than as a spectator of the
system design process. This would mean that we could test the design step by step through a developing
model. Results from this model could then influence the design as well.

8.2.2 Abstraction in the Model

For the model of the OpenTitan ROM stage, we have abstracted away from a lot of detail. This is done
because we wanted to model the flow between the software and the hardware components. If we had tried
to model the system so broadly without a high level of abstraction, we would undoubtedly have run into
the state space explosion problem. The current level of abstraction means that we sometimes are not as
near to the actual implementation as could be desired. However, if it is necessary to remove some of the
abstraction we have made, it should be done only in the parts of the model that need it and not the whole
model. We might be able to reduce abstraction in parts of the model and still be able to avoid the state space
explosion problem. E.g., if we wanted to verify something regarding the implementation of the hashing
algorithm, we could try to model this more closely to an actual implementation without changing other
parts of the model.
With the current level of abstraction, we show how components in the system interact instead of verifying
that their implementations are correct. For the results from our model to be correct, it is assumed that the
individual hardware components and algorithms are correctly implemented. If we wanted to test that an
algorithm is correct, we could create a separate model for this algorithm to verify it without increasing the
state space of our current model.

8.2.3 Scalability of the Model

Currently it takes roughly 13 minutes to verify a single A[] property as described in chapter 6. This is
using a high level of abstraction and running one flash bank (cf. chapter 6) as opposed to the two that
are currently in place in the OpenTitan design. If we add more complexity to the model, the verification
time increases. As an example, at one point during this project, we had another value to the manifest IDs
(cf. section 5.1) so that we had three possible values (0 - missing, 1 - valid, 2 - invalid). Having only two
values decreased the verification time of A[] queries by roughly 3 minutes, meaning that the verification
time went from around 16 minutes to almost 13 minutes. Running the command line version of Uppaal
with verifyta to check the state space decrease from this change, we can see that the size of the state space
decreases from 35,386 states (when we have three values for IDs) to 26,474 states (two values).
The size of the state space should increase exponentially as we add more possible values to the manifests.
We also tried to run the model with two flash banks. This made a single A[] query run for about 16 hours,
at which point we stopped verification. These examples show that the state space grows quickly. It is
important for the scalability of the model that we maintain control of the state space to ensure that we do
not end up with an unusable model.
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8.2.4 Modeling the Pipeline Architecture

During this project, we have not modeled any CPU architecture, e.g., pipelines and caches. We could do
this following the METAMOC approach [56]. However, we believe that we do not need to model this level
of detail for this project. We are not interested in worst-case execution time, as is the case with METAMOC.
We are interested in how the parts of OpenTitan (software and hardware) interact. Furthermore, if we try
to model the CPU to that level of detail, we would probably encounter the state space explosion problem.
The case of OpenTitan does not lend itself to modeling specific architecture either. OpenTitan is still very
much a work in progress, meaning that we know only little about the specifics of the architecture, although
we know that it is a RISC-V chip. Furthermore, we do not even have finished OpenTitan boot code.

8.2.5 Parallelism in the Model

The use of synchronizations has heavily restricted the number of possible interleavings in the model. We
have made it so that a function or hardware template that initiates another template waits for a return from
that template before continuing. Since we are modeling hardware and low-level code, this might not be
how the system works in reality. The amount of parallelism that can occur in the OpenTitan hardware might
be more than what we allow. However, we believe that the ROM code description that OpenTitan has is
designed to limit the amount of parallelism that can occur. This limits the potential for race conditions in
the final system, making it easier to ensure that the system works correctly. Therefore, we believe that our
choice to limit the number of possible interleavings in the model is well-founded.

8.3 Boot Policy Failure Functions

In the model, the boot policies contain fields that represent addresses of failure functions. These func-
tions are supposed to be executed if no valid ROM_ext manifests are found or if ROM_ext fails during
execution. This functionality is part of the OpenTitan design (cf. [38]), but they are not implemented in
the model as of yet. However, an interesting thing to note about these functions is that we cannot find
any documentation stating that validation is done for these functions. This means that an attacker could
potentially run arbitrary and malicious code by changing where these addresses in the boot policy point
to. This seems like a significant oversight in the current design. We expect that this is something that the
developers of OpenTitan know and that validation of the boot policy is just not yet implemented. Once the
design is adjusted to also include validation of the boot policies and these addresses, it could be interesting
to incorporate it into the model. Depending on how it is implemented, it should not be difficult to add to
the model.

8.4 ROM Controller

In the later part of the project period, the OpenTitan documentation added a webpage [57] describing the
ROM Controller component. The ROM Controller component would have been an interesting component
to implement in our modeled system based on the ROM Controller’s functionality. The ROM Controller is
responsible for validating the contents of ROM just after the boot is initiated. The validation is done with
the use of a cryptographic hash function. The benefit of validating the contents of ROM is to determine
whether the ROM has been tampered with while the system was turned off. Implementing the component
into the model could give valuable insights into physical attacks on the system. Since validation of the
ROM with the ROM Controller can prevent the subverting of the ROM by tampering with it, which is a
way of attacking the system [57]. The ROM Controller and its functionality are within the scope of the
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system. We did not include this component in the model due to the limited time left on the project after the
documentation was added.

8.5 UPPAAL vs. CBMC

During this project, we have worked side-by-side with SV107f21 that performed formal verification on the
same case and source code as us using the CBMC tool [58]. In this section, we briefly reflect on the CBMC
tool compared to Uppaal and the other group’s results compared to ours. This should give an idea of some
of the strengths and weaknesses of each tool.
CBMC stands for C Bounded Model Checker and is a tool that works directly on annotated C code to
perform formal verification [59]. This means that, compared to Uppaal, CBMC does not suffer as much
from the modeling gap (as a potential Uppaalmodel does) since it works on the actual code that needs to be
verified. However, it is still important to annotate the program correctly so that the tool gives the expected
results. This is similar to how we need to be careful when formulating our queries for the Uppaal model.

8.5.1 Result Comparison

Group SV107f21 has been working with CBMC and OpenTitan to verify a subset of the same security
policies as us, with their goals being very similar to ours (cf. section 3.2). By dividing their goals into
11 properties, they have been able to verify four goals successfully [58]. These correspond to our G1,
G10, G11, and G12. In comparison, we have fully verified these same goals along with G9. Furthermore,
we have partially verified two additional goals (G3 and G8). However, they have been able to verify their
goals with less abstraction than we have. For example, some of the properties they have regarding signature
verification checks that the RSA-3072 is exactly 3072 bits long. This is not something we can easily do
with Uppaal. Therefore, while we work on similar goals, the way that we achieve our outcome with the
tools is slightly different. However, it is interesting to note that our results are similar to the other group’s
results in their outcome. The fact that our verified goals are the same can be seen as strengthening the
results.
To do their verification in CBMC group SV107f21 has needed to incorporate hardware as well. When
working with CBMC, the model is built by the code and annotations. Therefore their modeled hardware
is represented by function calls in the code. The performance they experience when verifying properties
is superior to what we experience when verifying our queries in Uppaal [58]. They can verify all of
their properties in around 16 minutes, whereas we can run a single A[] query in roughly 13 minutes. In
addition, the guarantees generated by CBMC might also be stronger than our guarantees from Uppaal. This
is because CBMC works directly on the code and does not need as much abstraction. However, it is not
easy to directly compare their code to our model as the levels of abstraction vary a lot.
What we consider one of Uppaal’s greatest strengths is the flexibility it provides in terms of modeling. As
a tool, it is easy to switch between levels of abstraction due to both having the possibility of writing code
and building graphical models. Because Uppaal uses a subset of C, its users can model many different
abstraction levels, which leads to a rich formalism. The modeling formalisms supported in UPPAAL are
also easily applicable to building both hardware and software models. The flexibility of UPPAAL is what
we believe, in a case like this, can make it advantageous compared to a tool like CBMC.
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Chapter 9

Conclusion

To conclude on the work made in this project, we first look at the security goals we have tried to verify
using the Uppaal model checking tool. The goals are G1, G3, G5, G8, G9, G10, G11, and G12. The
remaining goals have been deemed out of the scope of this project. The description for each goal is found
in section 3.2. As already mentioned in section 6.6 the goals have the following statuses. The fully ver-
ified goals are G1, G9, G10, G11, and G12. These are considered fully verified based on the results of
the queries presented in chapter 6. Their combined results show that the model behaves in accordance
with these goals. The remaining goals, G3 and G8, are only considered partially verified. These goals are
only partially verified because we do not think that we can show enough through our model to fully verify
them (cf. section 6.6). We have not been able to verify G5. This is because the documentation does not
specifically state how the environment is validated. Furthermore, the Key Manager is the only component
we could find that derives keys based on the environment. However, the Key Manager is not used for
ROM_ext manifest validation as far as we can tell. We consider it a success that we have fully verified
G1, G9, G10, G11, and G12. These goals constitute essential security aspects of the OpenTitan design.
However, the guarantees given by the verification are only applicable to a system that corresponds to the
model that we have built. Based on the deviations and assumptions we have had to make (as described
in section 5.6) and OpenTitan not being fully designed, there is a modeling gap between our model and
the OpenTitan design. We believe that if the model is not maintained, the modeling gap will eventually
become so large that the results of this project will become obsolete as the OpenTitan project advances.
However, the results documented in this report indicate that the OpenTitan project is heading in the right
direction, at least in terms of its documented design.

We have previous experience with Uppaal. However, not on a case as comprehensive as this. The Up-
paal model checking tool has been an excellent choice for this project. Modeling software and hardware
together and the communication between those components have been a central and straightforward task.
The only challenge we have encountered with the tool has been to limit the complexity of the model to
avoid state space explosion. By using abstraction and careful manipulation of variable ranges, we have
been able to reduce the state space to a point where we can still do meaningful verification without encoun-
tering the state space explosion problem. Furthermore, the tool has provided all the needed functionality in
terms of modeling and verification. Both relying on timed automata to build a graphical model and express
functionality in the subset of C often provides multiple satisfactory solutions when faced with a modeling
problem. As the model became more and more complex, the error trace functionality has become more
valuable. It drastically eases finding bugs in the model and the design, thus improving the validity of what
we have modeled.

It has been challenging to work with the case chosen for this project. The documentation is often lackluster
and difficult to understand while also being in a constant state of change. Getting an overview of how the
components interact is a daunting task. The components that have had the most description overall have
been the hardware components. The software does not yet have a corresponding degree of documentation.
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Lack of documentation has caused trouble understanding both storage of public keys and the inclusion of
HMAC, KMAC, and Key Manager components. Furthermore, understanding the derivation of keys and
seeds and how this influences the ROM stage has been particularly difficult. Once faced with some issues,
we have consulted the Github repository. Luckily we got some answers, but they more or less reflected the
documentation; namely that there is still a lot to be decided and implemented in the system.

Since we have been working on the same case as SV107f21, we have compared some of our work. They
have to a large extent, been able to verify the same properties as us. We consider it a good sign that two
groups using different tools on the same case can end up with similar results. It aids the trust we have in
our results that we, independently of each other, can draw the same conclusions about OpenTitan.

Finally, we will conclude on the problem statement that we have presented in chapter 1. This project has
shown how the Uppaal model checking tool can be used to model a selected part of the booting process
of the OpenTitan system. The project has also demonstrated that the tool is a suitable tool for modeling
a boot process through a combination of hardware and software. Furthermore, we have used different
modeling patterns and techniques to represent the OpenTitan system, e.g., using templates as functions
and synchronizations as function calls. The selected parts of the security verified with Uppaal are related
to the first part of the booting process. For this, we have been able to prove that the OpenTitan design
upholds the properties described in G1, G9, G10, G11, and G12 of this report (cf. section 3.2). We have
not experienced any times where Uppaal has come short in terms of the provided functionality or lack of
expressivity. If more detailed C code was available for the OpenTitan design, it could be interesting to see
if Uppaal could scale to incorporate this level of detail. If not, then we could use a tool such as CBMC in
addition to Uppaal to have a model that is closer to the implementation level.
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Chapter 10

Future Work

Based on chapter 9 and the current state of the OpenTitan project, an obvious angle on future work would
be to continue work on the model as the OpenTitan project and documentation advances. If the model is
continually developed alongside OpenTitan, we could use it to make sure that errors are not introduced in
the design further down the line.

10.1 Continued Development of OpenTitan

It would be interesting to see if we can find new security flaws as the development advances. Once Open-
Titan reaches a state where the software is no longer just pseudocode, our boot code and the corresponding
template will need a rework. This could benefit the model by reducing the modeling gap since the ROM
stage could then be modeled closer to the actual implementation.

Future work could also include the incorporation of the next boot stage, the ROM_ext stage. The work that
has been done in this project has revolved around the ROM stage. Since the ROM_ext stage has several
responsibilities and relies on other components than the ROM stage, there might be flaws related to security
in the ROM_ext stage. Following the ROM_ext is the boot loader stage for which security interests also
apply.

10.2 Different Component Versions

The Uppaal tool has a very rich modeling formalism that allows its users to model components in any
level of abstraction they prefer. We could take advantage of this and make multiple versions of every
template. E.g., one that is detailed and one that is abstract. This means if we wanted to run some queries
that center around a specific subset of templates, we could use the detailed version of those templates,
and the rest can be abstract. This could decrease verification time since the model will have a smaller state
space. It also makes the model more modular because we can focus on many different aspects and disregard
others. Having detailed versions of templates that are currently very abstract expands the model so that new
properties that may be relevant to later boot stages can also be queried. With so many component versions,
it makes sense to validate all the models that consist of relevant combinations of component versions.
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Appendix A

OpenTitan ROM_ext Manifest Descrip-
tion

The ROM_ext manifests in OpenTitan are blocks of data containing all necessary elements to validate and
boot a ROM_ext. These are the manifests that the ROM stage needs to validate before a ROM_ext can
take over. This section is used to describe the structure of these manifests in OpenTitan. For this, we
refer to [60] which details the format of manifests in OpenTitan. The layout of a manifest can be seen in
table A.0.1.

Field Name
manifest_identifier
image_signature

image_length
image_version

image_timestamp
signature_key_public_exponent

usage_constraints
peripheral_lockdown_info

signature_key_modulus
extension0_offset

extension0_checksum
extension1_offset

extension1_checksum
extension2_offset

extension2_checksum
extension3_offset

extension3_checksum
code image

Table A.0.1: The layout of an OpenTitan ROM_ext manifest as seen in [60]. We have excluded reserved
places.

Furthermore, the following list gives a brief description of each of the fields seen in table A.0.1.

• manifest_identifier: This is used by the ROM stage to check that the manifest is of the format
described in this section. It is a 32-bit enumeration value.

• image_signature: The signature takes as input the digest of all the following fields in the manifest.
With this digest and the silicon creator private key, the image_signature is calculated with the RSA-
3072 algorithm.
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• image_length: The image length is used to give the offset of the image code end so that its length
can be deduced.

• image_version: This is a 32-bit numeric value that denotes the ROM_ext image version number.

• image_timestamp: This is the Unix timestamp for when the ROM_ext image was created.

• signature_key_public_exponent: This is the RSA-3072 public exponent that is part of the public
key used for signature verification.

• usage_constraints: This is used to mark a ROM_ext as only being able to validate properly on one
or more devices.

• peripheral_lockdown_info: ROM uses the peripheral_lockdown_info to configure certain hard-
ware components so that later stages cannot modify them.

• signature_key_modulus: This is the second part of the RSA-3072 public key used for signature
verification.

• extension0-3: These extensions are made so that it is possible to extend the ROM_ext manifest
without completely changing the format.

• code image: This is the ROM_ext code and data.
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Appendix B

Our Boot Code

Listing B.1 shows the boot code that we have written in collaboration with group SV107f21.

1 / *
2 EARLY DRAFT
3 Not compi l ed o r o t h e r w i s e t e s t e d f o r ANSI C c o m p l i a n c e
4

5 W r i t t e n based on :
6 sw / d e v i c e / rom_ext / docs / m a n i f e s t . md
7 sw / d e v i c e / mask_rom / mask_rom . c
8 sw / d e v i c e / mask_rom / docs / i n d e x . md
9 doc / s e c u r i t y / s p e c s / s e c u r e _ b o o t / i n d e x . md

10

11 * /

12 # i n c l u d e < s t r i n g . h>

13 # i n c l u d e < s t d i n t . h>

14

15 / / The i d e n t i f i e r t h a t a c o r r e c t m a n i f e s t must c o n t a i n .
16 / / Based on h t t p s : / / g i t h u b . com / lowRISC / o p e n t i t a n / b lob / m a s t e r / sw / d e v i c e / s i l i c o n _ c r e a t o r /

↪→ mask_rom / mask_rom . c
17 s t a t i c c o n s t u i n t _ 3 2 e x p e c t e d R o m E x t I d e n t i f i e r = 0 x4552544F ;
18

19 / / R e p r e s e n t s a p u b l i c key
20 t y p e d e f s t r u c t pub_key_ t {
21 i n t 3 2 _ t modulus [ 9 6 ] ;
22 i n t 3 2 _ t e x p o n e n t ;
23 / / some th ing e l s e
24 } pub_key_ t ;
25

26 / / S t r u c t r e p r e s e n t i n g r o m _ e x t _ m a n i f e s t
27 t y p e d e f s t r u c t r o m _ e x t _ m a n i f e s t _ t {
28 u i n t 3 2 _ t i d e n t i f i e r ;
29

30 / / a d d r e s s o f e n t r y p o i n t
31 / / n o t e : n o t p a r t o f t h e doc on t h e r o m _ e x t _ m a n i f e s t , b u t i n c l u d e d based on code seen

↪→ i n mask_rom . c
32 i n t * e n t r y _ p o i n t ;
33

34 i n t 3 2 _ t s i g n a t u r e [ 9 6 ] ;
35

36 / / p u b l i c p a r t o f s i g n a t u r e key
37 pub_key_ t p u b _ s i g n a t u r e _ k e y ;
38 c h a r image_code [ ] ;
39 } r o m _ e x t _ m a n i f e s t _ t ;
40

41

42 / / R e t u r n e d by r o m _ e x t _ m a n i f e s t s _ t o _ t r y
43 t y p e d e f s t r u c t r o m _ e x t s _ m a n i f e s t s _ t {
44 i n t s i z e ;
45 r o m _ e x t _ m a n i f e s t _ t rom_exts_mfs [ ] ;
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46 } r o m _ e x t s _ m a n i f e s t s _ t ;
47

48

49 / / R e p r e s e n t s boo t p o l i c y
50 t y p e d e f s t r u c t b o o t _ p o l i c y _ t {
51 i n t i d e n t i f i e r ;
52

53 / / which r o m _ e x t _ s l o t t o boo t
54 i n t r o m _ e x t _ s l o t ;
55

56 / / what t o do i f a l l ROM Ext a r e i n v a l i d
57 vo id (* f a i l ) ( ) ;
58

59 / / what t o do i f t h e ROM Ext u n e x p e c t e d l y r e t u r n s
60 vo id (* f a i l _ r o m _ e x t _ t e r m i n a t e d ) ( r o m _ e x t _ m a n i f e s t _ t ) ;
61

62 } b o o t _ p o l i c y _ t ;
63

64

65

66 t y p e d e f vo id ( r o m _ e x t _ b o o t _ f u n c ) ( vo id ) ; / / F u n c t i o n t y p e used t o d e f i n e f u n c t i o n p o i n t e r
↪→ t o t h e e n t r y o f t h e ROM_EXT s t a g e .

67

68

69 e x t e r n i n t * READ_FLASH( i n t s t a r t , i n t end ) ;
70

71 b o o t _ p o l i c y _ t r e a d _ b o o t _ p o l i c y ( )
72 {
73 i n t * d a t a = READ_FLASH( 0 , s i z e o f ( b o o t _ p o l i c y _ t ) ) ;
74

75 b o o t _ p o l i c y _ t b o o t _ p o l i c y ;
76

77 memcpy(& b o o t _ p o l i c y . i d e n t i f i e r , da t a , s i z e o f ( b o o t _ p o l i c y . i d e n t i f i e r ) ) ;
78 memcpy(& b o o t _ p o l i c y . r o m _ e x t _ s l o t , d a t a + 1 , s i z e o f ( b o o t _ p o l i c y . r o m _ e x t _ s l o t ) ) ;
79 memcpy(& b o o t _ p o l i c y . f a i l , d a t a + 2 , s i z e o f ( b o o t _ p o l i c y . f a i l ) ) ;
80

81 r e t u r n b o o t _ p o l i c y ;
82 }
83

84 r o m _ e x t s _ m a n i f e s t s _ t r o m _ e x t _ m a n i f e s t s _ t o _ t r y ( b o o t _ p o l i c y _ t b o o t _ p o l i c y ) {}
85

86 pub_key_ t read_pub_key ( r o m _ e x t _ m a n i f e s t _ t c u r r e n t _ r o m _ e x t _ m a n i f e s t ) {
87 r e t u r n c u r r e n t _ r o m _ e x t _ m a n i f e s t . p u b _ s i g n a t u r e _ k e y ;
88 }
89

90 i n t c h e c k _ p u b _ k e y _ v a l i d ( pub_key_ t rom_ext_pub_key ) ; / / r e t u r n s a b o o l e a n v a l u e
91

92 e x t e r n c h a r * HASH( c h a r * message ) ;
93

94 e x t e r n i n t RSA_VERIFY ( pub_key_ t pub_key , c h a r * message , i n t 3 2 _ t * s i g n a t u r e ) ;
95

96 i n t v e r i f y _ r o m _ e x t _ s i g n a t u r e ( pub_key_ t rom_ext_pub_key , r o m _ e x t _ m a n i f e s t _ t m a n i f e s t ) {
97 r e t u r n RSA_VERIFY ( rom_ext_pub_key , HASH( m a n i f e s t . image_code ) , m a n i f e s t . s i g n a t u r e ) ;

↪→ / / 0 or 1
98 }
99

100 e x t e r n vo id WRITE_PMP_REGION( u i n t 8 _ t reg , u i n t 8 _ t r , u i n t 8 _ t w, u i n t 8 _ t e , u i n t 8 _ t l ) ;
101

102 vo id pmp_unlock_rom_ext ( ) {
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103 / / Read , Execute , Locked t h e a d d r e s s s p a c e o f t h e ROM e x t e n s i o n image
104 WRITE_PMP_REGION( 0 , 1 , 0 , 1 , 1 ) ;
105 / / Region Read Wri t e Execu te Locked
106 }
107

108 i n t f i n a l _ j u m p _ t o _ r o m _ e x t ( r o m _ e x t _ m a n i f e s t _ t c u r r e n t _ r o m _ e x t _ m a n i f e s t ) { / / R e t u r n s a
↪→ b o o l e a n v a l u e .

109 / / Execu te rom e x t code s t e p 2 . i i i . e
110 r o m _ e x t _ b o o t _ f u n c * r o m _ e x t _ e n t r y = ( r o m _ e x t _ b o o t _ f u n c * ) c u r r e n t _ r o m _ e x t _ m a n i f e s t .

↪→ e n t r y _ p o i n t ;
111

112 r o m _ e x t _ e n t r y ( ) ;
113

114 / / i f rom_ext r e t u r n s , we s h o u l d r e t u r n f a l s e
115 / / and e x e c u t e s t e p 2 . i v .
116 r e t u r n 0 ;
117 }
118

119 vo id b o o t _ f a i l e d ( b o o t _ p o l i c y _ t b o o t _ p o l i c y ) {
120 b o o t _ p o l i c y . f a i l ( ) ;
121 }
122

123 vo id b o o t _ f a i l e d _ r o m _ e x t _ t e r m i n a t e d ( b o o t _ p o l i c y _ t b o o t _ p o l i c y , r o m _ e x t _ m a n i f e s t _ t
↪→ c u r r e n t _ r o m _ e x t _ m a n i f e s t ) {

124 b o o t _ p o l i c y . f a i l _ r o m _ e x t _ t e r m i n a t e d ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ;
125 }
126

127

128 i n t c h e c k _ r o m _ e x t _ m a n i f e s t ( r o m _ e x t _ m a n i f e s t _ t m a n i f e s t ) {
129 r e t u r n m a n i f e s t . i d e n t i f i e r == e x p e c t e d R o m E x t I d e n t i f i e r ; / / I f t h e i d e n t i f i e r !=

↪→ e x p e c t e d R o m E x t I d e n t i f i e r , t h e m a n i f e s t i s i n v a l i d .
130 }
131

132 vo id mask_rom_boot ( vo id )
133 {
134 b o o t _ p o l i c y _ t b o o t _ p o l i c y = r e a d _ b o o t _ p o l i c y ( ) ;
135

136 r o m _ e x t s _ m a n i f e s t s _ t r o m _ e x t s _ t o _ t r y = r o m _ e x t _ m a n i f e s t s _ t o _ t r y ( b o o t _ p o l i c y ) ;
137

138 / / Maaske s t e p 2 . i i i
139 f o r ( i n t i = 0 ; i < r o m _ e x t s _ t o _ t r y . s i z e ; i ++)
140 {
141 r o m _ e x t _ m a n i f e s t _ t c u r r e n t _ r o m _ e x t _ m a n i f e s t = r o m _ e x t s _ t o _ t r y . rom_exts_mfs [ i ] ;
142

143 i f ( ! c h e c k _ r o m _ e x t _ m a n i f e s t ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ) {
144 c o n t i n u e ;
145 }
146

147 / / Step 2 . i i i . b
148 pub_key_ t rom_ext_pub_key = r ead_pub_key ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ;
149

150 / / Step 2 . i i i . b
151 i f ( ! c h e c k _ p u b _ k e y _ v a l i d ( rom_ext_pub_key ) ) {
152 c o n t i n u e ;
153 }
154

155 / / Step 2 . i i i . b
156 i f ( ! v e r i f y _ r o m _ e x t _ s i g n a t u r e ( rom_ext_pub_key , c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ) {
157 c o n t i n u e ;
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158 }
159

160 / / Step 2 . i i i . d
161 pmp_unlock_rom_ext ( ) ;
162

163 / / Step 2 . i i i . e
164 i f ( ! f i n a l _ j u m p _ t o _ r o m _ e x t ( c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ) {
165 / / Step 2 . i v
166 b o o t _ f a i l e d _ r o m _ e x t _ t e r m i n a t e d ( b o o t _ p o l i c y , c u r r e n t _ r o m _ e x t _ m a n i f e s t ) ;
167 }
168 } / / End f o r
169

170 / / Step 2 . i v
171 b o o t _ f a i l e d ( b o o t _ p o l i c y ) ;
172 }

Listing B.1: Boot code developed together with group SV107f21. The code is created to mimic how we
understand the OpenTitan ROM stage.
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Appendix C

Structs

The declarations for the structs used in the model can be seen in listing C.1. The boot_policy_t contains
information about an identifier, the rom_ext_slot, an address of a fail function, which should be called
upon boot failure. Also an address of another fail function, the rom_ext_failure function, which is
the one that should be called if the execution has been passed to the ROM_ext stage. An example of the
boot_failed_rom_ext_terminated function can be seen in line 35 in listing 3.1.
The pub_key_t struct contains an exponent and modulus. Both these values are limited to a range of
[0, 2] this gives us the possibility of having each being empty, correct, or incorrect, represented by 0, 1, 2,
respectively.
The rom_ext_manifest_t struct is explained in section 5.1. The rom_exts_manifests_t struct is only
used to contain the instances of rom_ext_manifest_t, since there can be multiple of these based on the
number of flash banks.
The PmpRegion_t struct is used to divide the memory into PMP regions, with different read, write, execu-
tion, and locked values. These fields correspond to fields described in section 2.6

1 typedef struct{

2 int identifier;

3 int rom_ext_slot[NumberOfFlashBanks];

4 int fail_function_address;

5 int rom_ext_failure_function_address;

6 } boot_policy_t;

7

8 typedef struct {

9 int[0,2] exponent;

10 int[0,2] modulus;

11 } pub_key_t;

12

13 typedef struct {

14 int[0,2] identifier;

15 int entryPoint;

16 pub_key_t publicKey;

17 int[0,2] signature;

18 int[0,2] image_code;

19 } rom_ext_manifest_t;

20

21 typedef struct {

22 int size;

23 rom_ext_manifest_t rom_exts_mfs[NumberOfFlashBanks];

24 } rom_exts_manifests_t;

25
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26 typedef struct{

27 int startAddress;

28 int endAddress;

29 bool read;

30 bool write;

31 bool execute;

32 bool locked;

33 } PmpRegion_t;

Listing C.1: The implementation of our structs.
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Appendix D

UPPAAL Queries

Table D.0.1 contains all the queries we use to validate the model and verify the security goals in chapter 6.
The queries with a Q identifier are used to verify the security goals, and the queries with a D identifier are
used to validate the model. In the tables throughout this appendix, we denote a query that passes in Uppaal
with a . Conversely, we denote a query that does not pass with a ×.

ID Name Query Passes?

Q1
Checking
Manifest
Identifier

A[] ROMStage.IdentifierChecked imply

ROMStage.currentManifest.identifier == 1

Q2
Checking Valid
Manifest Identifier

A[]

(CheckRomExtManifest.manifest.identifier

== 1) ==

CheckRomExtManifest.checkRomExtManifest()

Q3
Checking Public
Key

A[]

ROMStage.CheckingSignature imply

(ROMStage.currentManifest.identifier

== 1 &&

ROMStage.currentManifest.publicKey.modulus

== 1 &&

ROMStage.currentManifest.publicKey.exponent

== 1)

Q4
Checking
Signature

A[] ROMStage.CheckedSignature imply

(ROMStage.currentManifest.identifier

== 1 &&

ROMStage.currentManifest.publicKey.modulus

== 1 &&

ROMStage.currentManifest.publicKey.exponent

== 1 &&

ROMStage.currentManifest.signature == 1)

Q5 PMP Execute

A[] ROMStage.ReadyToRunROMExt

imply (PmpRegions[0].execute &&

PmpRegions[0].startAddress <=

ROMStage.currentManifest.entryPoint &&

PmpRegions[0].endAddress >=

ROMStage.currentManifest.entryPoint + 4)
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Id Name Query Passes?

Q6 Valid Key ID

A[]

(CheckPubKeyValid.currentPubKeyId

== 1) ==

CheckPubKeyValid.checkPublicKey()

Q7
Valid Key
Leads To
Valid Key ID

(CheckPubKeyValid.publicKey.exponent

== 1 &&

CheckPubKeyValid.publicKey.modulus

== 1) −− >

CheckPubKeyValid.currentPubKeyId == 1

Q8 Valid Signature

A[] (OTBN.signature == 1 &&

OTBN.digest == 3 &&

OTBN.key.modulus == 1 &&

OTBN.key.exponent == 1)

== OTBN.checkSignature()

Q9
Valid Manifest
leads to
running Rom Ext

EqualManifestContents(validManifest,

ROMStage.currentManifest) −− >

(FinalJumpToRomExt.ROMExtRunning &&

EqualManifestContents(validManifest,

ROMStage.currentManifest))

Q10
Invalid Manifest
Leads to Failure

!EqualManifestContents(validManifest,

ROMStage.currentManifest) −− >

(ROMStage.StartOfLoop ||

ROMStage.BootFailed)

Q11
Invalid Key
Leads To
Invalid Key ID

(CheckPubKeyValid.publicKey.exponent

!= 1 ||

CheckPubKeyValid.publicKey.modulus

!= 1) −− >

CheckPubKeyValid.currentPubKeyId == 0

Q12 Never Failure A[] !ManifestObserver.Failure

Q13 Verify Observer
A[] FinalJumpToRomExt.ROMExtRunning imply

ManifestObserver.Success

Q14 Never in SRAM A[] SRAM.indexIsEmpty(6)

Q15 Check SRAM Scrambled

A[]

FinalJumpToRomExt.ROMExtRunning

imply forall (i : int[0, 7])

(SRAM.scrambled[i] ||

SRAM.indexIsEmpty(i))

Q16 Check SRAM Wiped

A[]

FinalJumpToRomExt.ROMExtRunning

imply forall (i : int[0,7])

SRAM.indexIsEmpty(i)

×

Q17 Check Some of SRAM Wiped

A[]

FinalJumpToRomExt.ROMExtRunning

imply ((exists (i : int[0,5])

SRAM.indexIsEmpty(i)) ||

SRAM.indexIsEmpty(7))

×
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Id Name Query Passes?
Q18 Exception Raised A[] !ExceptionHandler.ExceptionRaised

Q19
Never negative
case - read

A[] !PmpModule.BadRead

Q20
Never negative
case - write

A[] !PmpModule.BadWrite

Q21
Never negative
case - execute

A[] !PmpModule.BadExecute

Q22
Positive case
- read

A[] PmpModule.GoodRead imply

(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].read)

Q23
Positive case
- write

A[] PmpModule.GoodWrite imply

(exists (pmpIndex : int[0, 15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].write)

Q24
Positive case
- execute

A[] PmpModule.GoodExecute imply

(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].execute)

Q25
Negative case
- read

A[] PmpModule.BadRead imply

(!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].read))

Q26
Negative case
- write

A[] PmpModule.BadWrite imply

(!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].write))
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Id Name Query Passes?

Q27
Negative case
- execute

A[] PmpModule.BadExecute imply

(!(exists (pmpIndex : int[0,15])

PmpRegions[pmpIndex].startAddress <=

PmpModule.start &&

PmpRegions[pmpIndex].endAddress >=

PmpModule.end &&

PmpRegions[pmpIndex].execute))

Q28
Positive case
possible - read

E<> PmpModule.GoodRead

Q29
Positive case
possible - write

E<> PmpModule.GoodWrite ×

Q30
Positive case
possible - execute

E<> PmpModule.GoodExecute

D1
Possibly
Never Fail

E[] not( ROMStage.BootFailed

|| ROMStage.RomExtTerminated)

D2
Guaranteed
Never Fail

A[] not( ROMStage.BootFailed

|| ROMStage.RomExtTerminated)
×

D3
Success
Possible

E<>

FinalJumpToRomExt.ROMExtRunning

D4
Success
Guaranteed

A<>

FinalJumpToRomExt.ROMExtRunning
×

D5
Exception
Never Raised

A[] !ExceptionHandler.ExceptionRaised

D6
Memory
Unscrable
Urgent

A[]

FinalJumpToRomExt.ROMExtRunning

imply GlobalMemoryIsScrambled == false

D7
Flash
Immediately
Unscrambled

A[] FlashController.ScrambleCheck

imply !GlobalMemoryIsScrambled

D8
SRAM
Immediately
Unscrambled

A[] SRAMController.ScrambleCheck

imply !GlobalMemoryIsScrambled

D9
Exactly
One Choice

A[]MemoryHandling.ChooseType imply

(((GlobalBootPolicy != GlobalEmptyBootPolicy) +

(GlobalImageCode != 0) +

(GlobalDigest != 0) +

(GlobalPublicKey != GlobalEmptyPublicKey) +

(GlobalManifest != GlobalEmptyManifest) +

(GlobalSignature != 0) +

(GlobalPrivateKey != GlobalEmptyPublicKey)) == 1)

D10
Writing
Manifest
is Disallowed

A[]

!PmpModule.canWrite

(30 + 35 * ROMStage.loopIndex,

41 + 35 * ROMStage.loopIndex)

Table D.0.1: All the queries used in verification and validation of the model described in chapter 5.
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Appendix E

Query Times

Table E.0.1 contains all queries that are not A[] queries that pass. Furthermore, we have included the time
it takes to verify each query running a breadth-first strategy on a Ryzen 3700x processor.

ID Name Query Time Passes?

Q7
Valid Key
Leads to
Valid Key ID

(CheckPubKeyValid.publicKey.exponent

== 1 &&

CheckPubKeyValid.publicKey.modulus

== 1) −− >

CheckPubKeyValid.currentPubKeyId == 1

12:57

Q9
Valid Manifest
Leads to
Running Rom Ext

EqualManifestContents(validManifest,

ROMStage.currentManifest) −− >

(FinalJumpToRomExt.ROMExtRunning &&

EqualManifestContents(validManifest,

ROMStage.currentManifest))

13:10

Q10
Invalid Manifest
Leads to Failure

!EqualManifestContents(validManifest,

ROMStage.currentManifest) −− >

(ROMStage.StartOfLoop ||

ROMStage.BootFailed)

35:31

Q11
Invalid Key
Leads to
Invalid Key ID

(CheckPubKeyValid.publicKey.exponent != 1

|| CheckPubKeyValid.publicKey.modulus != 1)

−− > CheckPubKeyValid.currentPubKeyId == 0

12:19

Q16 Check SRAM Wiped

A[]

FinalJumpToRomExt.ROMExtRunning

imply forall (i : int[0,7])

SRAM.indexIsEmpty(i)

12:37 ×

Q17
Check Some of
SRAM Wiped

A[]

FinalJumpToRomExt.ROMExtRunning

imply forall (i : int[0,5])

SRAM.indexIsEmpty(i) ||

SRAM.indexIsEmpty(7)

12:36 ×

Q28
Positive Case
Possible - Read

E<> PmpModule.GoodRead 01:25

Q29
Positive Case
Possible - Write

E<> PmpModule.GoodWrite 12:36 ×

Q30
Positive Case
Possible - Execute

E<> PmpModule.GoodExecute 12:17
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Id Name Query Time Passes?

D1
Possibly
Never Fail

E[] not( ROMStage.BootFailed

|| ROMStage.RomExtTerminated)
23:22

D2
Guaranteed
Never Fail

A[] not( ROMStage.BootFailed

|| ROMStage.RomExtTerminated)
00:03 ×

D3 Success Possible
E<>

FinalJumpToRomExt.ROMExtRunning
12:29

D4 Success Guaranteed
A<>

FinalJumpToRomExt.ROMExtRunning
00:05 ×

Table E.0.1: Queries and the time it takes to verify them (denoted in minutes and seconds). Passing A[]

queries are excluded since these all take the same time.
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