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Summary

OpenTitan is an open-source project for designing root-of-trust chips. OpenTitan chips perform safety-critical
operations for a host and are a single point of failure for the host’s security. Verifying the correctness and safety of
OpenTitan chips is therefore of utmost importance. Due to the complexity and comprehensiveness of the OpenTi-
tan chip, we narrowed down the considered system to only include the mask_ROM boot code, which is the initial
boot stage of the OpenTitan chip. The main goal of the mask_ROM boot stage is to load in a ROM_EXT from flash,
validate it, and then transfer execution to it.

Based on an extensive analysis of the OpenTitan project, we, together with SV106f21, developed C code that cor-
respond to the mask_ROM boot stage. In our previous work, we established 13 security goals for the OpenTitan
boot stages [1]. In this work, we derive 11 security properties from four of the security goals. Our goal is to prove
the adherence of these security properties and investigate possible attacks and their implication on the security
properties.

We decided to use the CBMC (C Bounded Model Checker) tool to perform formal verification of the developed
boot code. CBMC is based on the formal verification technique called bounded model checking and provides
guarantees for the exploration of the entire program’s state space. As part of our work, we have created a theoreti-
cal and architectural overview of the CBMC tool. In addition, we have created a CBMC tutorial that describes how
to annotate and verify C code using the CBMC constructs. CBMC allows expressing nondeterministic behavior,
which we use to create a C model of the initial boot stage’s hardware environment. Based on this, we used CBMC
to successfully and formally verify that the developed C code of the mask_ROM boot stage satisfies the 11 security
properties under reasonable assumptions. We conclude that the developed C code adheres fully to one of the four
selected security goals and partially to the three others.

We also used CBMC to model potential attacks to the developed boot code to formally verify if it still adheres
to the 11 security properties while being attacked. We model a total of six attacks which all can be considered
hardware/physical attacks. We discover that the boot code is vulnerable to attacks on the flash, ROM, and OTBN.
The consequences of these attacks are either execution of malicious code or crashing. Thus we find that the
security of the developed boot code for the OpenTitan mask_ROM boot stage could be improved by e.g. verifying
the integrity of the boot policy.
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Introduction

The correctness and safety of the widely used and heavily relied upon software in our society depend on the cor-
rectness and safety of the underlying software and hardware responsible for booting it. Therefore, it is crucial
to establish trust in the correctness and safety of the underlying booting process, both in terms of software and
hardware.

We will, in our work, verify the correctness and safety of low-level C code using CBMC [2]. CBMC is a bounded
model checker for static analysis of ANSI-C programs. CBMC can verify, among others, properties regarding
pointer safety, array bounds, division by zero, and user-defined properties expressed as assertions. As a verifica-
tion case, we will verify low-level C code from OpenTitan. Although, our findings should apply to all low-level C
code.

OpenTitan is the first open-source project for designing a silicon root-of-trust (RoT) chip [3]. The purpose is to
make the design and implementation of RoT chips more transparent, secure, and trustworthy [4]. The OpenTitan
chip is essentially a microcontroller that performs safety-critical operations for a host device [5]. It has its own
boot sequence, kernel, hardware security modules, and application layer [6] [7]. The OpenTitan chip is trusted by
design and acts as a single point of failure for the host’s security.

The verification case we will look into, specifically, is the code that constitutes the OpenTitan mask_ROM stage,
which is the initial boot stage responsible for verifying and transferring execution to the subsequent boot stage
ROM_EXT . This code is challenging to verify due to its complexity and dependency on external functionality. A

simplified snippet of the mask_ROM boot code that we want to verify can be seen below in Listing 1. Due to
OpenTitan being an ongoing unfinished project, the code is written by us and SV106f21, based on the OpenTitan
documentation, pseudocode, and unfinished implementation (cf. Appendix A for the complete developed boot
code). The group SV106f21 is doing similar work with the verification tool UPPAAL instead of CBMC [8].

typedef void(rom_ext_entry)(void);

extern int OTBN_RSA_VERIFY(pub_key_t pub_key, int* message, signature_t signature);

int verify_rom_ext_signature(pub_key_t rom_ext_pub_key , rom_ext_manifest_t manifest){

return OTBN_RSA_VERIFY(rom_ext_pub_key , manifest.image_code , manifest.signature);

}

int final_jump_to_rom_ext(rom_ext_mf_t cur_rom_ext_mf){

rom_ext_entry *rom_ext_entry = (rom_ext_entry*) cur_rom_ext_mf.entry_point;

rom_ext_entry();

return 0;

}

Listing 1: Simplified snippet of the low level C code that we will verify.

This leads to the problem statement:

Is the mask_ROM code correct and safe?

1



Chapter 1

CBMC Theory

CBMC is based on the formal verification technique called bounded model checking and uses it to formally verify
properties of ANSI-C programs [2] [9]. Bounded model checking is, briefly explained, a verification technique
that reduces the state space by only analyzing the subset of states reachable by a bounded number of transitions
[10]. The primary technique for doing bounded model checking in CBMC is loop bounds. Loop bounds specify
the max number of performed loop unrolls. CBMC can assert properties regarding pointer safety, array bounds,
memory leakage, division by zero, overflow, underflow, and properties expressed as assertions by the user [2] [9].
In addition, CBMC provides guarantees that the entire state space of the ANSI-C program is explored. We define
the definition of soundness and completeness for CBMC as the following [11]:

Soundness: That a tool such as CBMC is sound means that whatever it can prove for an ANSI-C program is true.

Completeness: That a tool such as CBMC is complete means that whatever is true for an ANSI-C program, it can
prove.

1.1 Overall Architecture

This section is based on [12]. The general approach in CBMC is "to reduce the Model Checking Problem of C
programs to determining the validity of a bit-vector equation" [9]. That is, to determine whether a model of a
C program satisfies certain properties by determining the unsatisfiability of a bit-vector equation. A bit-vector
equation is an equation where each variable is a bit-vector. In this case, a bit-vector represents a variable in the C
program.

Figure 1.1.1: Overall architecture of CBMC.

The overall architecture of CBMC is illustrated in Fig. 1.1.1. We divide CBMC verification of a C program into
seven steps:

1. Preliminary: First, the CBMC command is parsed and interpreted. Then the given program is parsed into
a parse tree while creating an initial symbol table containing the identifiers.

2. Type Checking: Type checks the given program against type rules while decorating a symbol table with
the derived type information.

2



1.2. GOTO CONVERSION AND INSTRUMENTATION

3. GOTO Conversion: Translates the program into an equivalent GOTO program represented as an abstract
syntax tree (AST) where conditional and iterative constructs are replaced by semantically equivalent GOTO
statements [13].

4. Instrumentation: Additional transformations of the GOTO program. CBMC inserts assertions and replaces
return statements with variable assignments and GOTO statements. Also, function pointer invocation is
substituted by a call to the function pointed to.

5. Symbolic Execution: The GOTO program is unwounded and transformed into SSA form. The SSA pro-
gram is then used to create two bit-vector equations denoted C and P. C expresses the constraints on the
variables in the program, and P expresses the properties that should be asserted.

6. SAT/SMT Encoding: The equation C AND !P is converted to conjunctive normal form (CNF). CBMC
uses SAT by default but can also support SMT. Given a SAT/SMT formula on CNF form, a solver proves
whether the properties expressed by P are satisfied under the constraints expressed by C.

7. Decision Procedure: Solve C AND !P using a SAT/SMT third-party solver that requires input on CNF
form. The default solver is MiniSAT. If a solution exists, then the assertions do not hold for all paths. If no
solution exists, then all assertions hold under the specified unwinding bounds.

In the following sections, we will detail steps 3-7 of the CBMC verification.

1.2 GOTO Conversion and Instrumentation

This section is written based on [12] and [14]. In the GOTO Conversion step, a C program is taken as input and
transformed into a GOTO program represented as an AST. A GOTO program is a program that only contains func-
tion definitions (can be recursive), function calls, return statements, assertions, variable declarations, assignments,
labels, and guarded GOTO statements (i.e. GOTO statements which execution depends on a Boolean expres-
sion)1. This means that constructs such as if, switch, loops (for, while, do-while), and what they call “jumps”2

are replaced by semantically equivalent guarded GOTO statements. In addition, a new main function is generated
that; initializes CBMC and global variables, calls the original main function, and contains automatically generated
postconditions (e.g. assertions for memory leaks).

After the GOTO Conversion step, additional transformations are done as part of the Instrumentation step. In this
step, return statements are replaced with assignments to variables that the caller then accesses. A return statement
in the middle of the function also requires a GOTO to the end of the function. The possible target of a function
pointer is deduced and substituted at the place of invocation. In practice, CBMC creates if-else conditional state-
ments that compare the function pointer to the address of the matching function definitions. Each conditional case
contains a GOTO to the matching function. If the function pointer does not match a function definition, then an
ASSERT FALSE statement is reached. That is to say that no function matches what the function pointer points

to. Lastly, if specified by the user, assertions related to e.g. invalid pointers, array-out-of-bounds-access, and
memory leaks are inserted (cf. Section 2.3.1 for the complete list of non-user-defined assertions). Thus, the final
GOTO program, which is the output of this step, contains only function definitions (can be recursive), function
calls, variable declarations, variable assignments, assertions, labels, and guarded GOTO statements that can be
both forward and backward.

Example
The --show-goto-functions option shows the result of the GOTO Conversion and Instrumentation steps.
Listing 1.1 and Listing 1.2 show an example of a transformation of a C program to a GOTO program. On the left
are the C program and the associated GOTO program on the right.

1The GOTO program can contain other statements as well, such as dead and END_FUNCTION .
2Unclear what this is, as it is not function calls.
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1 int main()

2 {

3 int x = 0;

4 if (x == 0)

5 x = 20;

6 else

7 x = 10;

8 return x;

9 }

Listing 1.1: A C program.

1 main /* main */

2 signed int x;

3 x = 0;

4 IF !(x == 0) THEN GOTO 1

5 x = 20;

6 GOTO 2

7 1: x = 10;

8 2: main#return_value = x;

9 dead x;

10 END_FUNCTION

Listing 1.2: A GOTO program.

1.3 Symbolic Execution

This section is written based on [15]. In the Symbolic Execution step, a GOTO program is taken as input together
with a symbol table and converted to static single assignment (SSA) form. The output of the step is a set of equa-
tions in terms of constraints (denoted C) and properties (denoted P) that represents all statements and assertions
in the program, respectively.

The process of performing symbolic execution consists of traversing the GOTO program, statement by statement.
For each statement that is reached, initial transformations are performed and pointer deferences are removed.
The transformed statement is then further transformed to SSA form. Lastly, C and P are calculated for the SSA
statement. When all statements have been traversed, the resulting C and P equations are outputted.

1.3.1 Program Transformation

This section is written based on [2] [16]. The goal of the program transformation is to convert the program to SSA
form as this allow for deduction of C and P.

Initial Program Transformation

The current program, namely the GOTO program, contains function definitions (can be recursive), function calls,
variable declarations, variable assignments, assertions, labels, and guarded forward and backward GOTO state-
ments, which model if statements, switch statements, and loops. The following transformations are performed for
each statement in the GOTO program, if relevant:

• Loops expressed using GOTO statements are unrolled by duplicating the body n times (the bounded aspect
of CBMC), where each body duplication is guarded with an if statement containing the loop condition.
After unrolling n times, an assertion is inserted to assert whether enough unrolling was done. This assertion
is denoted the unwinding assertion and it asserts whether the loop condition is false. Unwinding assertions
are needed to prove that the analysis covers the entire state space of the program.

• Function definitions and calls are removed by replacing all function calls with the body of the function.
Formal and actual parameters are handled by simply declaring the formal parameters as normal variables
and assigning them the values of the actual parameters. This is known as function expansion or function
inlining. An example is seen in Listing 1.3 and Listing 1.4.
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1 int z = 0;

2

3 int foo(int x)

4 {

5 int y = 10;

6 x = y * 2;

7 return x;

8 }

9

10 int main()

11 {

12 int a = 10;

13 int y = foo(a);

14 return y + z;

15 }

16

Listing 1.3: Example of a C program before function
inlining.

1 signed int foo(signed int x);

2

3 signed int z=0;

4

5 void main(void)

6 {

7 z = 0;

8 signed int a=10;

9 signed int y;

10 signed int return_value_foo;

11 signed int x=a;

12 signed int y=10;

13 x = y * 2;

14 return_value_foo = x;

15 y = return_value_foo;

16 return' = y + z;

17 }

18

Listing 1.4: Resulting program with functions
inlined.

• Recursive function calls are unrolled, similar to loops, by duplicating the body n times and inserting an
unwinding assertion asserting that no further unrolling of the recursive function is needed.

Transformation to SSA

When a program is on SSA form, each variable is assigned to only once, and all variables are defined before use.
The transformation into SSA is done by creating a new version of a variable each time the variable is assigned to.
SSA form allows to keep a history of the values of variables and access them by referencing the different versions
of the variables. SSA form also eliminates the need for data flow analysis as the information flows directly from
the SSA statements.

After the transformations above, the program consists of only variable declarations, variable assignments, for-
ward GOTO statements, labels, and assertions. At this point, all pointer dereferences must be removed before
proceeding with the transformation (cf. Section 1.3.3). After that, each statement is transformed as below:

• Variables are renamed. This step brings the statement on SSA form. It is done by introducing a new version
of a variable each time it is assigned to.

• Side effects are removed from the statement. Side effects occur when using the assignment operators (+=,
-=, etc.) and the pre- and post-increment/decrement operators. The side effects are removed by introducing
temporary variables to “store” the side effect.

• Forward GOTO statements are expressed as equivalent if statements. This transformation step happens after
the variable renaming step.

After all the statements are transformed, the final program is on SSA form and consists of only if statements,
variable declarations, variable assignments, and assertions. Based on this program, C and P are computed.

1.3.2 Computing C and P

This section is written based on [16]. Given a program on SSA form, C(p, g) and P(p, g) are computed, where p
is a statement and g is the conditions that need to be true for p to be executed/reachable. C and P are defined by
the following rules based on the content of p (note that r : S −→ S defines the rename function which renames a
statement S ):
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1. Skip: If the statement p is empty or a skip statement there are no constraint or property, it always evaluates
to true.

C(”skip”, g) := true (1.1)

P(”skip”, g) := true (1.2)

2. Conditional: If the statement p is a conditional of the form i f (c) I else I′ :

C(”i f (c) I else I′”, g) := C(I, g ∧ r(c)) ∧C(I′, g ∧ ¬r(c)) (1.3)

P(”i f (c) I else I′”, g) := P(I, g ∧ r(c)) ∧ P(I′, g ∧ ¬r(c)) (1.4)

3. Sequential Composition: If the statement p is a sequential composition of two code blocks I and I’:

C(”I; I′”, g) := C(I, g) ∧C(I′, g) (1.5)

P(”I; I′”; g) := P(I, g) ∧ P(I′, g) (1.6)

4. Assertion: If the statement p is an assertion:

P(”assert(a)”, g) := g =⇒ r(a) (1.7)

5. Assignment: If p is an assignment and the LHS is not an array or a struct, but simply a variable, C is
calculated as:

C(”v = e”, g) := (va = (g ? r(e) : va−1) (1.8)

It says that v becomes equal to the renamed RHS if the guard holds. Otherwise, it becomes equal to the
previous version of v.

6. Array: Arrays are modeled as functions using lambda notation. The function takes a single parameter and
returns the value at the index equal to the parameter. If p is equal to v[a] = e, where v is the array and a is
the index, C is computed in the following way:

C(”v[a] = e”, g) := va = λi : ((g ∧ i = r(a)) ? (r(e)) : (va−1[i])) (1.9)

The constraint says that the array v is now equal to the function that, given an index i, will return the value of
e if the guard for executing the assignment is true and i matches the index assigned to, namely a. Otherwise,
the function for the array should return what the previous array function did.

They do not explain how assignments to structs are handled but hint that it is done similarly.

Example
To give an example of how C and P are computed, consider the following program:

1 int x = 10;

2 if(x < 10){

3 x = 2;

4 }

5 else{

6 x = 3;

7 }

8 assert(x != 2);
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For one statement at a time, the transformations in Section 1.3.1 are performed on the statement, bringing the
program on SSA form. After, the rules for C and P are applied to the statements and the assertion, respectively.
This results in the following C and P:

C := x1 = 10 ∧ Line 1 and Eq. (1.8)
x2 = (x1 < 10) ? 2 : x1 ∧ Line 3 and Eq. (1.3) followed by Eq. (1.8)
x3 = (x1 ≥ 10) ? 3 : x2 Line 6 and Eq. (1.3) followed by Eq. (1.8)

P := x3 , 2 Line 8 and Eq. (1.7)

1.3.3 Removal of Pointer Deferences

This section is written based on [16]. The removal of pointer dereferences is performed after the program has been
unwounded but before variables are renamed during translation to SSA.

SSA form and SAT problems do not support pointers. Pointers point to the address of other objects and exist as an
“intermediary link” to something concrete. In the case of CBMC, it is desired to be as concrete as possible. Thus
pointers are replaced with the objects/values pointed to. This process consists of replacing pointer derferences
with equivalent expressions. E.g. the following program: int i; int* pi = &i; *pi = 2; is replaced with
int i; i = 2; . The process is done by first replacing all instances of &*p with p , as they are semantically

equivalent. Next, the removal of dereferencing of pointers is done by removing them from sub-expressions before
removing them from the parent expressions. There are two ways of dereferencing in C, namely *p and p[i] .

The removal of pointer dereferences is done using the function φ(e, g, o), replacing pointer dereferences with the
expression pointed to. e is the expression being dereferenced, g is the guard for executing e, and o is the pointer’s
offset. The following cases define φ. There is a case for φ for each type of expression found in the program. In
this way, φ can be seen as parsing/traversing the entire program and removing all pointer dereferences.

∗e −→ φ(e, g, 0) (1.10)

e[o] −→ φ(e, g, o) (1.11)

1. If expression e is equal to a pointer p, and the C generated so far contains a constraint saying that r(p) = e′.
Then derefencing p (i.e. applying φ to p) is the same as applying φ to e′:

φ(p, g, o) := φ(e′, g, o) (1.12)

2. If expression e is equal to a symbol of array type, a, then e is treated as the address of the first element of a:

φ(e, g, o) = φ(&a[0], g, o) (1.13)

3. If expression e is equal to the address of a symbol, i.e. e = &s. Then dereferencing &s with offset 0 is equal
to accessing the symbol s:

φ(&s, g, 0) := s (1.14)
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4. If expression e is equal to the address of an array index, i.e. e = &a[i], with a given offset. Then deferencing
e is equal to accessing the array at the total offset:

φ(&a[i], g, o) := a[i + o] (1.15)

This rule does not detail how to replace a pointer dereference. There is no rule for replacing an array
indexing. However, this is not an issue, as the array indexing can be replaced with lambda expressions in C
and P (cf. Eq. (1.9) in Section 1.3.2).

5. If expression e is equal to a conditional expression, φ is applied to each branch:

φ(c ? e′ : e′′, g, o) := c ? φ(e′, g ∧ c, o) : φ(e′′, g ∧ ¬c, o) (1.16)

6. If expression e is equal to the product of a pointer, e′, and an integer, i, dereferencing e is calculated as
applying φ to e′ and adding i to the total offset:

φ(e′ + i, g, o) := φ(e′, g, o + i) (1.17)

7. If expression e is equal to a pointer typecast, i.e. e = (Q∗)e′, then dereferencing e is done by calculating φ
of e′:

φ((Q∗)e′, g, o) := φ(e′, g, o) (1.18)

8. If e does not match the rules above, the ANSI-C standard does not specify the semantic behavior. Thus the
behavior of dereferencing e is undefined. CBMC inserts an assertion to assert that e is never dereferenced.
This is to prevent undefined behavior.

φ(e, g, o) := ⊥ (1.19)

Example
To illustrate the application of φ, consider the following program, where the pointer dereference on line 6 (i.e.
*p ) and array index of pointer on line 9 (i.e. p[1] ) are removed during symbolic execution.

1 int x = 10;

2 int a[n], *p;

3 p = &a[5];

4

5 if(x < 10){

6 x = *p;

7 }

8 else{

9 x = p[1];

10 }

11 assert(x != 10);

When reaching the pointer dereference (line 6), the dereference *p must be transformed into something equiva-
lent. The C constraints build until this point are as follow:
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C := x1 = 10 ∧
a0 = λi : 0 ∧
p1 = &a0[5]

Dereference *p is removed in the following way:

∗p = φ(p, x1 < 10, 0) Eq. (1.10)
= φ(&a0[5], x1 < 10, 0) Eq. (1.12) and r(p) = p1

= a0[5 + 0] Eq. (1.15)

After this, the constraint for x2 can be added to C. Note that a0[n] is a call to the lambda function a0 as described
in the rule to transform an array (cf. Eq. (1.9)):

C := x1 = 10 ∧
a0 = λi : 0 ∧
p1 = &a0[5] ∧
x2 = x1 < 10 ? a0[5 + 0] : x1

Similarly, the array index p[1] at line 9 is translated in the following way:

p[1] = φ(p, x1 ≥ 10, 1) Eq. (1.11)
= φ(&a0[5], x1 ≥ 10, 1) Eq. (1.12) and r(p) = p1

= a0[5 + 1] Eq. (1.15)

After this, the constraint for x3 can be added to C:

C := x1 = 10 ∧
a0 = λi : 0 ∧
p1 = &a0[5] ∧
x2 = x1 < 10 ? a0[5 + 0] : x1 ∧

x3 = x1 ≥ 10 ? a0[5 + 1] : x2

The constraint for p1 is now unnecessary. The final C and P are thus:

C := x1 = 10 ∧
a0 = λi : 0 ∧
x2 = x1 < 10 ? a0[5 + 0] : x1 ∧

x3 = x1 ≥ 10 ? a0[5 + 1] : x2

P := x3 , 10

1.3.4 __CPROVER_assume

__CPROVER_assume is a CBMC construct that is used to make assumptions about data. CBMC uses it during
verification to reason about possible values and thus possible program paths. When performing symbolic exe-
cution, a statement in the GOTO program is only symbolically executed if the current state of the program is
reachable (cf. the switch at line 623 in [17]). In addition, a statement is symbolically executed under the assump-
tions gathered during the symbolical execution of prior statements. We have found no documentation for how
CBMC handles assumptions other than they affect future assertions. However, the option --program-only
prints the statements that were symbolically executed, on SSA form [15]. Thus we use the --program-only
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option to gain an insight into how the __CPROVER_assume statements are handled during symbolic execution.

If a __CPROVER_assume is symbolically executed and evaluates to false, the current state is set to be unreachable
(cf. line 227 in [17]) and all later statements are therefore not symbolically executed. This is illustrated with the
example in Listing 1.5. All statements after the non-true assumption, on line 4, are not included in the output of
--program-only seen in Listing 1.6.

1 int main()

2 {

3 int x = 0;

4 __CPROVER_assume(x == 1);

5 if (x == 0)

6 x = 20;

7 else

8 x = 10;

9 return x;

10 }

Listing 1.5: Example of program with non-true
assumption.

1 (32) x!0@1#2 == 0

2 (33) ASSUME(FALSE)

Listing 1.6: Output of --program-only. The program is
on SSA form.

An example of where a statement is symbolically executed under a certain assumption is seen in Listing 1.7 and
Listing 1.8. In the example, x is nondeterministically initialized but is assumed to be 1 and thus, when executing
y = x + 1 , y becomes 2. In this case, where the assumption restricts x to a single value, the assumption

provides the same functionality as simply assigning x to 1.

1 int main()

2 {

3 int x;

4 __CPROVER_assume(x == 1);

5

6 int y = x + 1;

7

8 return y;

9 }

Listing 1.7: Example of program with a true
assumption.

1 (32) ASSUME(x!0@1#1 == 1)

2 (33) y!0@1#2 == 2

3 (34) main#return_value!0#1 == 2

4 (35) return '!0#1 == 2

Listing 1.8: Output of --program-only . The
program is on SSA form.

Listing 1.9 shows the case where an assumption specifies a range for the variable x which is used in a loop
condition. In this case, CBMC cannot automatically determine the unwinding bound and it must be supplied in
the CBMC command. Contrarily, if the assumption specified x to a specific value, as seen in Listing 1.10, CBMC
can automatically determine the unwinding bound.

1 int main()

2 {

3 int x;

4 __CPROVER_assume(x > 0);

5

6 while (x < 2)

7 {

8 x = x + 1;

9 }

10

11 return x;

12 }

Listing 1.9: Program with a while-loop that
depends on an assume.

1 int main()

2 {

3 int x;

4 __CPROVER_assume(x == 1);

5

6 while (x < 2)

7 {

8 x = x + 1;

9 }

10

11 return x;

12 }

Listing 1.10: Program with a while-loop that depends
on an assume.
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1.4 SAT/SMT Encoding

The Boolean satisfiability problem (SAT) is the problem of determining if a model of value assignments exists
that satisfies a given propositional logic formula [18]. Solving a SAT problem is proven to be NP-complete [19].
However, certain families of SAT problems are solvable in polynomial time and SAT-solver heuristics are often
effective in practice [20]. The satisfiability modulus problem (SMT) is the problem of determining if a model of
value assignments exists that satisfies a given first-order logic formula [21]. In short, SMT formulas allow for a
much higher level modeling language. As the CBMC papers [2] [12] [16] only describe SAT encoding we will
not go into detail about SMT encoding.

The input for this step is the C and P bit-vector equations from the symbolic execution step. Before beginning the
translation of the equation into a SAT problem, we simplify using the following rule:

(λi : e)[x] −→ e[substitute i/x]

The rule denotes i as the formal parameter, e as the function body, and x as the actual parameter. By applying this
rule, we substitute function calls (for array indexing) with their function body, where all instances of i are replaced
with x. This substitution allows CBMC to eliminate the variables for the formal parameters and thus reduce the
resulting CNF equation.

As an example consider the following C and P:

C := n0 = 10 ∧
a0 = λi : 0 ∧
a1 = λi : i = (5 + 3) ? 1 : a0[i]

P := a1(5 + 3) > 0

Using the simplification rule above, the C and P becomes:

C := n0 = 10
P := ((5 + 3) = (5 + 3) ? 1 : 0) > 0

Which can be further simplified to:

C := n0 = 10
P := 1 > 0

The actual translation from C and P into the SAT problem on CNF form is not very well documented but is briefly
mentioned in [16, p. 26]. The translation of the bit-vector Boolean operators is stated to be done by adding
variables instead of applying the law of distribution. Bit-vector addition, subtraction, and relational operators are
translated using a carry chain adder. Multiplication is translated into an optimized multiplication circuit. Shifting
operations are translated into shifting circuits. Any remaining lambda expressions for arrays are expanded. In
short, the translation into SAT is done by applying techniques from computer arithmetic.

In the end, we negate the SAT problem (corresponding to C AND !P) since we are more interested in validity
rather than satisfiability. We are less interested in finding a model of variable assignments that can satisfy our
assertions. Instead, we want to find the model of value assignment that breaks the assertions or proves that no
such model exists.
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1.5 Decision Procedure

CBMC uses third-party SAT/SMT solvers. By default CBMC uses the MiniSAT solver [22]. The MiniSAT solver
takes as input a SAT problem on CNF form and tries to determine if the SAT problem is satisfiable.

If C AND !P is satisfiable, then the SAT solver returns a model that satisfies the problem [12]. The returned
model can be considered mathematical proof that the assertions do not hold. Alternatively, if no satisfying solu-
tion (model) is found, then no assertion can be violated within the specified unwinding bounds [12].

Note that the proofs can only be considered sound if the underlying translation of the code is sound. The docu-
mentation does not go into detail about the soundness nor completeness of the translations. As far as we know,
there are no guarantees of either.
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Chapter 2

CBMC Tutorial

This chapter is written based on [22]. The content will serve as an introduction to verification with CBMC. It
covers writing annotations, generating verification properties, nondeterminism, and some best modeling practices.

2.1 About and Releases

We are using release 5.28 of CBMC [23]. Note that the official page for CBMC denotes the newest CBMC release
wrongfully as being 5.11 [24]. It is, in our experience, beneficial to use the newer releases of CBMC as there have
been some frustrating bugs (indicating impossible errors) that have been resolved. CBMC supports “C89, C99,
most of C11 and most compiler extensions provided by GCC and Visual Studio” [24]. CBMC is available for
Windows, Linux, and MacOS.

The team behind CBMC has developed a CPROVER Eclipse plugin. The plugin should be beneficial to use for,
among others, visualizing counterexamples. The official site states that the plugin requires Eclipse CDT Luna or
newer. The plugin is, however, in our experience, incompatible with most (if not all) newer versions of Eclipse.

2.2 Annotations

Annotations are used to describe expected program behavior and to instruct the verification tool on how to verify
the program. The annotations are written in the .c file. In this section, we will present a select few annotations.

2.2.1 Constraints

__CPROVER_assume(cond)

Assume annotations restrict the considered nondeterministic values. If values are met that do not satisfy the as-
sumption, then these corresponding states are restricted from the search space for assertions that follow. This can
result in an empty state space. Assumptions are added to the constraints C during verification. Note that assump-
tions are not asserted. An assumption may be illogical and never hold, but it will not fail verification.

__CPROVER_assert(cond, mes)

This annotation specifies an assertion. The verification will fail if the assertion does not hold for all program paths
and CBMC will notify that this assertion does not hold. The assertion may take any Boolean expression as input
and can consist of other CPROVER annotations. Other than the Boolean condition, it also takes a message that is
used to describe the assertion. An assertion in a loop must hold for all iterations.

assert(cond)

The CPROVER tool can also recognize C assertions from assert.h . Assertions on the form assert are
equivalent to __CPROVER_assert in what they can verify. CPROVER annotations may also be included in the
condition.

__CPROVER_precondition(cond, mes)

A precondition specifies a condition that must hold at the beginning of a function body. Currently, a precondition
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is simply translated into an assertion during verification. Note that a precondition must have a message describing
the assertion.

__CPROVER_postcondition(cond, mes)

Postcondition is used to specify a condition that must hold at the end of a function body. A postcondition is
translated into an assertion during verification. The postcondition must also have a descriptive message.

2.2.2 Pointers

__CPROVER_POINTER_OBJECT(ptr)

This annotation returns the ID of the object that the pointer points to. The CPROVER tool assigns a unique ID to
each active object during verification.

__CPROVER_POINTER_OFFSET(ptr)

This annotation returns the offset of a pointer relative to the base offset of the respective object that is pointed at.

__CPROVER_same_object(ptr1, ptr2)

This annotation returns true if the two pointers point to the same object.

__CPROVER_OBJECT_SIZE(ptr)

This annotation returns the size of the object pointed to. Note that if the pointer points to a nested object it will
return the size of the parent object.

__CPROVER_DYNAMIC_OBJECT(ptr)

This annotation returns true if the pointer points to memory allocated on the heap.

__CPROVER_r_ok(ptr, size)

This returns true if the memory in the range ptr to ptr + size is allocated.

__CPROVER_w_ok(ptr, size)

This returns true if the memory in the range ptr to ptr + size is allocated. Note that this is the exact same

behavior as __CPROVER_r_ok(ptr, size) .

2.3 Verification

Verification is initiated by executing a command in CBMC. The commands are on the form cbmc filename.c
--arguments . Note that multiple arguments can be applied together.

2.3.1 Properties

The automatically generated assertions that are verified can be seen as assertions that specify the absence of er-
rors. If they fail, there is e.g. an out-of-bounds error. We will go into detail about some of the underlying Boolean
expressions that are evaluated for some of the generated assertions that we deem most interesting. Note that the
generated Boolean expressions may differ depending on the CBMC version. Although we do not expect huge
differentiations.

--bounds-check

Generate checks related to array out-of-bounds errors. Each occurrence of an array access arr[e] which has
array size SIZE results in two generated properties, as shown in Listing 2.1.
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1 //array upper bound

2 !((signed long int)e >= arr$array_size0)

3

4 //array lower bound

5 (signed long int)e >= 0l

Listing 2.1: The CBMC (5.11) generated bounds checks for array accesses.

--pointer-check

Generate properties related to pointer errors. Each occurrence of a dereference *ptr results in seven generated
properties, as shown in Listing 2.2.

1 //Pointer NULL

2 !(POINTER_OBJECT(ptr) == POINTER_OBJECT(((const char *)NULL)))

3

4 //Pointer invalid

5 !INVALID-POINTER(ptr)

6

7 //Deallocated dynamic object

8 !(POINTER_OBJECT(ptr) == POINTER_OBJECT(__CPROVER_deallocated))

9

10 //Dead object in *ptr

11 !(POINTER_OBJECT(ptr) == POINTER_OBJECT(__CPROVER_dead_object))

12

13 //pointer outside dynamic object bounds

14 POINTER_OFFSET(ptr) >= 0l && __CPROVER_malloc_size >= 1ul + (unsigned long int)

↪→ POINTER_OFFSET(ptr) || !(POINTER_OBJECT(ptr) == POINTER_OBJECT(

↪→ __CPROVER_malloc_object))

15

16 //pointer outside object bounds

17 OBJECT_SIZE(ptr) >= 1ul + (unsigned long int)POINTER_OFFSET(ptr) && POINTER_OFFSET(ptr) >=

↪→ 0l || DYNAMIC_OBJECT(ptr)

18

19 //Invalid integer address

20 ptr == ((const char *)NULL) || !(POINTER_OBJECT(((const char *)NULL)) == POINTER_OBJECT(

↪→ ptr))

Listing 2.2: The CBMC (version 5.11) generated pointer checks for pointer dereferences.

--signed-overflow-check

Generates assertions related to signed arithmetic leading to overflow or underflow.

--unsigned-overflow-check

Generates assertions related to unsigned arithmetic leading to overflow or underflow.

--float-overflow-check

Generates assertions that check whether floating point numbers overflow.

--undefined-shift-check

Generates range checks for shift distances.

--div-by-zero-check

Generates division by zero checks.

--nan-check

Generates floating point NaN (not a number) checks.
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--pointer-primitive-check

Generates assertions that check that the pointers given as input to the pointer annotations such as
__CPROVER_OBJECT_SIZE(ptr) (cf. Section 2.2.2) are null or valid. The pointer is invalid if it points outside

of a valid memory object and will then cause undefined behavior of the CBMC pointer annotations.

--memory-leak-check

Generates assertions that check that all heap allocated memory are freed before the program terminates.

--pointer-overflow-check

Generates assertions that check that a pointer never exceeds the bounds of the memory object it points to.

--conversion-check

Generates assertions that check that variables can fit the values they are assigned.

--enum-range-check

Generates assertions that check that values of an enum type are in the range of the enum type.

2.3.2 Execution

There are numerous execution options for verification. These options may be applied together. Again, the com-
mands are on the form cbmc filename.c --arguments .

--function some_function

Specifies a function as the entry point for the verification.

--unwind n

The bound n specifies the maximum amount of loop unwinds. This bound is “global” for all occurring loops.
--unwind n is a useful option when dealing with non-terminating verification due to seemingly endless loops.

Unwinding is done in accordance with the loop unrolling described in Chapter 1.

--depth n

Depth limits the number of program steps to be processed for each program path. The depth n species how far
we will search in the CFG. Note that the step criterion specifies steps in the CFG and not instructions in the source
program. This option depth together with the option unwind is what makes CBMC bounded.

--unwinding-assertions

The --unwinding-assertions argument is used together with the unwind argument. It generates a check at
the end of each unrolled loop to verify that no more loop iterations can occur. If the check fails, then subsequent
checks may be based on a spurious program path.

--unwindset L:B

L denotes the loop ID and B denotes the bound for the loop. E.g. --unwindset main.0:10 --unwindset
main.1:20 specifies a loop bound of 10 for the first loop in main ( main.0 ) and a loop bound of 20 for the

second loop in main ( main.1 ).

--partial-loops

Allows for partial execution of loops. The disadvantage of this approach is that the resulting program paths may
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not exist in the actual program.

--show-loops

Prints a list of all loop IDs and their respective line number in the source code.

--trace

Prints counterexample traces. The trace describes the state numbers, the respective line numbers, and the variable
values. Note that the states correspond to SSA formatted code.

--show-properties

Prints out all properties that are verified. An example of a property is seen in Listing 2.3.

1 Property arrayMax.assertion.1:

2 file arrayMax.c line 44 function arrayMax

3 Postcondition: result greater than

4 result >= arr[(signed long int)n]

Listing 2.3: --show-properties output

--no-assertions

Ignore all user assertions during verification.

--no-assumption

Ignore all user assumptions during verification.

--no-built-in-assertions

Ignore all assertions in built-in libraries during verification.

--assert-to-assume

Converts all user assertions to assumptions.

2.4 Nondeterminism

It is common for programs to rely on input from an environment. The source of the input can be a file, keyboard,
or network socket. To model multiple possible inputs, CBMC uses nondeterminism. This means that CBMC will
consider all possible values and their respective program paths.

A function that reads from a file, keyboard, etc., is automatically treated as a source of nondeterminism. Extern
variables, memory allocated with malloc, and nondeterministic functions (functions without a body) are valid
sources of nondeterminism. Variables (e.g. formal parameters) that are uninitialized are also nondeterministic. As
an example consider Listing 2.4. Analysis of foo as the verification entry point will consider all possible integer
values for the formal parameter size and array arr . Note that variable i and function bar are also sources
of nondeterminism.

1 int foo(int* arr, int size) { //nondeterministic formal parameters

2 int result = arr[0];

3 int i; // nondeterministic

4 int j = bar(); //nondeterministic

5

6 while (i < size) {

7 if (arr[i] > result)

8 result = arr[i];

9 i += j;

10 }
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11 return result;

12 }

13

14 int bar(); //returns a nondeterministic integer

Listing 2.4: Examples of source of nondeterminism.

2.5 Loops and Boundedness

CBMC does not guarantee verification termination. CBMC is sometimes unable to determine when a loop will
end if the loop condition relies on something data specific. Here, specifying a loop bound is necessary otherwise
CBMC will endlessly try to verify the program.

It would seem obvious to restrict the range of the variables in the loop condition to guarantee loop termination.
However, __CPROVER_assume will not influence the transformation of loop unrolls. Instead, it only influ-
ences the SSA program and thus the C and P equation. As a result __CPROVER_assume affects the succeeding
state space and assertions. As an example Listing 2.5 will verify in seemingly endless time when executing
cbmc arrayMax.c --bounds-check --pointer-check .

1 int arrayMax(int* arr, int size) {

2 __CPROVER_assume(5 > size && size > 0);

3 int result = arr[0];

4 int i = 0;

5

6 while (i < size) {

7 if (arr[i] > result)

8 result = arr[i];

9 i++;

10 }

11 return result;

12 }

Listing 2.5: Restriction of the nondeterministic size valuations by use of __CPROVER_assume .

Instead we need to use --unwind (or --unwindset ) to specify a loop bound when verifying. Loop bounds
should always be paired with --unwinding-assertions to determine if the succeeding assertions may be spu-
rious. If we only want to consider a set of possible inputs instead of all possible inputs, we may combine loop
bounds with assumptions. Executing the verification of Listing 2.5 with cbmc arrayMax.c --bounds-check

--pointer-check --unwind 5 --unwinding-assertions resolves the termination issue.

Another solution could be to orchestrate the main function to call the function under verification with explicit
input and then set the entry point of the verification to main . CBMC will then not verify the function for all inputs
but only the specified input. Which is simpler to identify a loop bound for. An example is shown in Listing 2.6.

1 int main(int argc, char** argv){

2 int arr[6] = {1,2,3,4,5,6};

3 arrayMax(arr, 6);

4 }

Listing 2.6: Explicit input makes identifying loop bounds simpler for CMBC.
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2.6 How to Structure a Proof

This section is based on [25]. A proof harness is the constructed verification environment that calls the function
under verification. We will go into detail on how to write a perfect proof harness. It is ideal, if possible, not to
alter the function under verification. To set up the data structures, nondeterminism, and assumptions, we create
a proof harness function called PROOF_HARNESS() . Additionally, we also want to verify that our postcondition
holds after the function has returned. An example of a proof harness function is seen in Listing 2.7.

1 void PROOF_HARNESS(){

2 unsigned int size;

3 int arr[size];

4

5 __CPROVER_assume(5 > size && size > 0);

6

7 int max = arrayMax(arr, size);

8

9 __CPROVER_postcondition(HELP_exists_in_arr(arr, size, max), "Postcondition: returned

↪→ max exists in array");

10 __CPROVER_postcondition(HELP_element_greater_than_or_eq(arr, size, max), "

↪→ Postcondition: returned max greater than");

11

12 }

Listing 2.7: Proof harness function for arrayMax

The PROOF_HARNESS function first initializes the needed data. As can be seen in Listing 2.7, size and arr
are both left uninitialized and will therefore be assigned a nondeterministic value by CBMC. We then restrict
the possible size values by stating assumptions about the data. All assumptions should be moved to the
PROOF_HARNESS if convenient and possible. The PROOF_HARNESS function then makes a function call to
arrayMax , i.e. the function we want to verify. After the function has returned, we want to verify that the

returned max value satisfies our postconditions. The arrayMax function can be seen in Listing 2.8.

1 int arrayMax(int* arr, const unsigned int size) {

2 __CPROVER_precondition(5 > size && size > 0, "Precondition: assumes 5 > size > 0");

3 int result = arr[0];

4 int i = 0;

5

6 while (i < size) {

7 if (arr[i] > result)

8 result = arr[i];

9 i++;

10 }

11

12 __CPROVER_postcondition(HELP_exists_in_arr(arr, size, result), "Postcondition: result

↪→ exists in array");

13 __CPROVER_postcondition(HELP_element_greater_than_or_eq(arr, size, result), "

↪→ Postcondition: result greater than");

14

15 return result;

16 }

Listing 2.8: The arrayMax function that is being verified.

Note that there is a correspondence between the PROOF_HARNESS assumption and the arrayMax precondition.
We assert that our assumptions hold. Firstly, this is done to ensure that CBMC has the expected behavior. All of
these preconditions should, in the context of the PROOF_HARNESS , arbitrarily succeed. Secondly, if we verify
arrayMax out of this particular PROOF_HARNESS context, we still want to assert that the preconditions hold. If

they do not hold, we have no formal guarantees for the function properties.
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Similarly, there is a correspondence between the PROOF_HARNESS postcondition and the arrayMax postcon-
dition. This is because we want to verify both that the resulting behavior within the function’s body is correct
and that the function result is correct after its termination. In this particular case, they both succeed. However,
as an example, if a pointer is returned to some local variable within the function body, both postconditions in the
PROOF_HARNESS will fail.

We group assertions into three categories:

• Assertions that make sense to have as both a postcondition in the PROOF_HARNESS and an assertion in the
underlying function.

• Assertions that are only correct as a postcondition in the PROOF_HARNESS . E.g. postconditions that verify
that calls occurred in a particular order.

• Assertions that are only correct as an assertion in the underlying function. E.g. assertions that verify that
the given input is ok.

When choosing where to place assertions, it is crucial to consider a number of things. First and foremost, the
correctness of the placement. If both an assertion and a postcondition may be correct, then consider having both
as it will provide a stronger proof as seen in the arrayMax case above. CBMC annotated C code can quickly
become complex. Therefore similar assertions or postconditions should be grouped to improve the readability.

2.7 Guarantees

The properties that are verified are only shown when one or more fails. If all succeed, CBMC will state the number
of assertions and that SAT checker: instance is UNSATISFIABLE meaning that no proof exists where the
properties do not hold. An assertion fails if it is not satisfiable. An assertion succeeds if it is satisfied or if the
assertion is unreachable.

Succeeding unwinding assertions guarantee that the verified properties apply for all possible program paths. Fail-
ing properties under a failing unwinding assertion may be used for bug hunting, but the failing properties are not
guaranteed to exist in a “real” program path.

CBMC cannot guarantee the “total correctness” (absence of all bugs) of all programs [22]. CBMC is useful for
proving specific behaviors, such as the absence of specific flaws/bugs. These guarantees for specific behaviors can
contribute to the reasoning about the safety and correctness of a program. However, CBMC is not guaranteed to
be without errors itself.

We have encountered properties that, in our opinion, should not fail but did. After a discussion with the developers
behind CBMC, we found that there indeed was a bug in CBMC and subsequently found that it was resolved in a
newer release [26]. That is to say that false negatives and false positives are not impossible in CBMC, although
we have not found any in release 5.28.

2.8 Debugging CBMC

This section covers best practices for debugging errors found by CBMC. These recommendations are based on
AWSLabs’s findings (cf. [27]) as well as our own experiences.
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2.8.1 Prioritization of Errors

We recommend the following approach on how to choose which errors to solve first: Try and fix the error discov-
ered earliest in the CBMC verification. The reason is that the trace leading to the error is short and that fixing it
could fix other errors found by CBMC. Prioritize fixing the errors found in code one understands. Since it is easier
to debug known functionality. Start by fixing simple errors. The error trace for a simple error is often easier to
understand than for complex errors. Solving simple errors may also fix other more complex errors.

2.8.2 Debugging Assertions

The trace provided by CBMC displays the line number and the value for each assignment, leading up to an error.
However, the trace does not display the value of variables read. This means that if an error happens in a statement
using variables assigned a long time ago, it can be challenging to comprehend the input to the statement. A solu-
tion is to create dummy variables before the statement and assign the input of the statement to them. In this way,
it is easier to view the values going into the statement.

A practical assertion that may seem redundant at first is to introduce __CPROVER_asssert(0) statements. If
the assertion fails, it implies that the particular line is reachable. If the assertion succeeds, the assertion has not
been reached, and the line is thus unreachable.

Similarly, it may also be beneficial to introduce assert statements into the code that does not relate to a program
property of interest. The assertions can test one’s understanding of the program’s behavior. E.g. have an assertion
that asserts that a given variable is never higher than 10. This facilitates easier detection of bugs that may cause
the CBMC errors.

2.8.3 Still Errors?

Lastly, if debugging is unsuccessful, the error might be due to an error in CBMC. In this case, look for issues on
GitHub to see if the problem is known, create an issue, or try new/other releases.

2.9 Function Contracts

The feature for defining function contracts for functions and verify them is still under development at the time of
writing (CBMC version 5.28). As there are still known bugs (cf. [28] [29] [30] [31]) we will not be using function
contracts to verify the mask_ROM boot stage. Therefore, we will not document the use of function contracts here
(cf. Appendix D for details about function contracts).
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Chapter 3

Cryptographic Concepts

This chapter gives an introduction to cryptographic concepts used in OpenTitan. Among the concepts introduced
are the process of creating digital signatures, verifying digital signatures, RSA encryption, HMAC, and crypto-
graphic hash functions.

3.1 Keys, Signing, Verification, and Hash Functions

This section is written based on [32], [33], and [34]. A digital signature is data, e.g. a number, that can be dis-
tributed together with a message. The signature allows the recipients to verify the authenticity and integrity of
the message. Digital signatures are based on asymmetric keys and asymmetric signing and verification algorithms.

An asymmetric key pair consists of two cryptographic keys known as the private and public key. A cryptographic
key is data, such as a number, that influences the result of e.g. signing and verification algorithms [35]. The private
key is used together with a message and a signing algorithm to produce a signature for that message. The public
key is used together with the signature and the message to verify the signature. Thereby verifying the integrity
and authenticity of the message. A signature produced by the private key should only be possible to verify by
using the associated public key. In addition, it should be computationally infeasible to forge a correct signature
without having the private key. Also, it should be computationally infeasible to deduce the private key based on
the message, signature, and public key.

To allow the recipients to verify the authenticity and integrity of a message m (a number) digital signatures are
utilized in the following way. The sender owns a public and a private key. The recipients know the public key. The
sender signs the message using the private key and a signing function. The message is then distributed with the
signature. The recipients can verify the signature using the public key and a verification function. Verifying the
signature is done by applying the public key to the signature and asserting if the output is equal to the message.
If that is the case, the recipients know that the message is from the sender associated with the public key and that
the message has not been tampered during distribution.

When signing a message, the signature is often not created by signing the message but the hash of the message.
The message is still distributed in its original format, but now, together with the signature of the hash instead. In
this case, the recipients also have to use the same hash function on the message when verifying it. A cryptographic
hash function computes the hash. A hash function takes some data as input, such as text, and outputs a value of
a specific size measured in bits. A reason for using hash functions when signing is to decrease the size of the
message being signed. Decreasing the input’s size is of interest since asymmetric operations are computationally
demanding [36].

3.2 RSA

This section is written based on [37]. OpenTitan utilizes RSA algorithms for signing and verifying the signature
of the ROM_EXT boot stage [38]. RSA is an asymmetric encryption algorithm. This section will focus on the RSA
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algorithm’s use in creating and verifying digital signatures.

In RSA, the private key consists of two numbers, n and d. Likewise, the public key consists of the two numbers,
n and e. n is known as the modulus and is the product of two large prime numbers. e is known as the public
exponent and d is known as the private exponent. The details of how n, d, and e are computed will not be covered.
The relationship between the values is that for a message (a number) m that is 0 or above and less than n (i.e.
0 ≤ m < n), the following holds:

m = (me)d mod n

When RSA is used in relation to digital signatures, the signing function S ign is defined as:

S ign(message, d, n) = HAS H(message)d mod n

The HAS H function is a hash function that is known and used both by the sender and recipients. The verification
function Veri f y is defined as:

Veri f y(message, signature, e, n) = signaturee mod n == HAS H(message)

It outputs true or f alse, indicating whether the signature matches the hashed message when applying the sender’s
public key to the signature. If the output is true, the recipient has verified the authenticity and integrity of the
message.

3.3 HMAC

A HMAC hash, also known as hash-based message authentication code, is the result of an intricate procedure for
hashing a padded HMAC private key and message pair [39]. The padding is done so that it is difficult to retrieve
both the message and key from the HMAC hash. HMAC provides both data integrity and data authenticity. The
hash is usually computed by a SHA2 or SHA3 hash function. HMAC pesudocode can be seen below.

Algorithm 1: HMAC [39]
Input:

key: Bytes
message: Bytes
hash: Function
blockSize: Integer
outputSize: Integer

1 // Keys longer than blockSize are shortened by hashing them
2 if length(key) > blockSize then
3 key ← hash(key) // key is outputSize bytes long
4 end
5

6 // Keys shorter than blockSize are padded to blockSize by padding with zeros on the right
7 if length(key) < blockSize then
8 key ← Pad(key, blockSize) // Pad key with zeros to make it blockSize bytes long
9 end

10

11 o_key_pad ← key xor [0x5c blockSize] // Outer padded key
12 i_key_pad ← key xor [0x36 blockSize] // Inner padded key
13

14 return hash(o_key_pad || hash(i_key_pad || message))
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Chapter 4

System Under Verification

This chapter covers the mask_ROM boot stage of OpenTitan in terms of functionality, external hardware modules,
and the associated boot code seen in Appendix B. Note that this source code is based on the boot code developed
with SV106f21 with some slight modifications to facilitate CBMC verification. The system we are verifying is
only the mask_ROM boot code excluding the external hardware modules such as OTBN, HMAC, etc. In addition,
we present the program properties we have deduced for the mask_ROM boot stage and that we want to verify using
CBMC.

4.1 mask_ROM

mask_ROM is the first boot stage in OpenTitan. The main purpose of the mask_ROM boot stage is to validate
and transfer execution to a ROM_EXT . The succeeding boot stages are ROM_EXT , BL0 (the initial boot loader),
and Kernel [40]. There are four entities in the logical security model of OpenTitan: End User, Silicon Creator,
Silicon Owner, and Application Provider [7]. The last three entities are responsible for supplying and signing the
software for their respective stages. This is illustrated in Fig. 4.1.1, taken from [1]. The dotted line indicates that
a BL0 is not mandatory.

Figure 4.1.1: Stages of OpenTitan [1].

The actions performed by mask_ROM during secure boot is documented in [40] and [41]. The former describes
the secure boot process from Power On to mask_ROM to ROM_EXT . The latter describes the implementation
of mask_ROM that adheres to the description of the secure boot process for mask_ROM . Not all steps of the
mask_ROM stage are mentioned here, only the ones relevant for verifying the boot code seen in Appendix B.

The first action of the mask_ROM is to set up the environment by disabling interrupts, cleaning the device state,
and reading the boot reason [41]. Then the mask_ROM reads the boot policy from flash. The boot policy con-
tains, among others, the ROM_EXT manifests for the ROM_EXTs that can be booted from. Essentially defining the
ROM_EXTs that mask_ROM should try and boot from. The boot policy does also define what to do if a ROM_EXT
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cannot be booted from. A ROM_EXT manifest contains e.g. a manifest identifier, ROM_EXT image code, a signa-
ture, and the public key used for verifying the signature (cf. [38] for the complete specification).

The second action consists of iterating through the different ROM_EXT manifests. For each manifest, the following
is done:

1. Validate the manifest by checking the manifest identifier and if the signature is nonzero [38].

2. Retrieve the public key stored in the manifest and verify its validity against a whitelist stored in mask_ROM
[42].

3. Use the RSASSA-PKCS1-V1_5-VERIFY verification function to verify the signature based on the public
key and an expected message to ensure authenticity and integrity. The expected message is
system_state_value || device_usage_value || signed_area(rom_ext) [38].

4. PMP region #0 is created and covers the memory where the ROM_EXT image code is stored. The PMP
region is locked and permits reading and execution.

5. If all the above are successful, the execution is transferred from mask_ROM to the ROM_EXT entry point.

6. If the ROM_EXT returns execution to mask_ROM , then a fail function from the boot policy is executed.

7. If all ROM_EXT manifests are invalid, then a fail function from the boot policy is executed.

4.1.1 Context of System

The main hardware components used in the mask_ROM stage are shown in Fig. 4.1.2. Note that we do not
verify the hardware components as they are not part of the considered system. Instead, we will be verifying the
mask_ROM boot code’s correct use and interaction with these.

Figure 4.1.2: Overview of the hardware components related to the mask_ROM stage.
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mask_ROM depends on the following hardware/software modules:

• Flash/SRAM/ROM Controller: The three controllers are responsible for defining an interface for access-
ing the associated memory.

• HMAC: The HMAC module is used within OpenTitan to compute the HMAC hash of a message and a
256-bit secret key [43]. The hash is computed as a SHA-256 hash.

• OTBN: The OpenTitan Big Number Accelerator (OTBN) is used within OpenTitan to perform asymmetric
cryptographic operations [44]. The asymmetric cryptographic operations could be the RSA signing and
verification algorithms used for signing and verifying the ROM_EXT stage.

• PMP: A hardware module used to restrict memory, such as flash, in terms of read, write, and execution
rights [41]. When PMP restricts a memory region, it is said that a PMP region covers that memory region.
A PMP region can also be locked, meaning that it can only be removed by doing a system restart.

• Silicon Creator Public/Private keys: There is an asymmetric key pair for each boot stage. Each pair is
used for signing and verifying a stage [45]. The Silicon Creator has two asymmetric key pairs used for
signing and verifying the mask_ROM and ROM_EXT stages. The keys are, at minimum, 3072-bit keys
and are used together with an RSA signing and verification function [38]. Verification of the signatures is
done on the OpenTitan chip. For security reasons, the private key is never stored on the OpenTitan chip.
Therefore, signing is done during manufacturing and not on the OpenTitan chip itself.

4.2 mask_ROM Boot Code

This section explains the boot code in Appendix B. This is the boot code that is being verified along this report.
The boot code is written based on the documentation of OpenTitan found in [38], [40], [41], and [46]. The call
graph of the boot code is seen Fig. 4.2.1. The circles indicate functions and the arrows indicate function calls. The
boxes indicate groups of functionality.

• mask_rom_boot : This is the entry point of the mask_ROM boot stage. It is responsible for trying to
validate ROM_EXTs and upon a valid ROM_EXT it transfers execution to it [40] [41].

• FLASH_CTRL_read_boot_policy : This Flash Controller function reads the boot policy from flash [41].

• FLASH_CTRL_rom_ext_manifests_to_try : This Flash Controller function reads the ROM_EXT manifests
from the boot policy stored in flash [41].

• PMP_enable_memory_protection : Calls PMP_WRITE_REGION to apply PMP region #15 which covers
the entire flash, is locked, and allows for read access [40] [41].

• PMP_WRITE_REGION : This PMP function creates a PMP region based on the inputs: region ID and read,
write, execute, and locked bits.

• check_rom_ext_manifest : Checks that the signature is non zero and that the identifier is non zero.

• read_pub_key : Simply retrieves the RSA-3072 public key (exponent and modulus part) from a ROM_EXT
manifest [38].

• check_pub_key_valid : Verifies that a RSA-3072 public key is whitelisted, based on a whitelist stored

in mask_ROM [42] [38].

• ROM_CTRL_get_whitelist : Retrieves the public key whitelist stored in mask_ROM .

• verify_rom_ext_signature : Supplies the OTBN_RSASSA_PKCS1_V1_5_VERIFY function with the
RSA public key, message, and signature.
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• OTBN_RSASSA_PKCS1_V1_5_VERIFY : This OTBN function verifies a RSA-3072 signature. It follows the
RSASSA_PKCS1_V1_5_VERIFY specification. The supplied signature is checked to be of the correct size.

The signature is then decrypted using the OTBN_RSA_3072_DECRYPT function. Then, the supplied data is
hashed using the HMAC_SHA2_256 function. The hash and the decrypted signature are then compared. If
they are equivalent the signature is verified [38].

• OTBN_RSA_3072_DECRYPT : This OTBN function implements a RSA_3072_DECRYPT algorithm to de-
crypt a signature with a supplied RSA public key.

• HMAC_SHA2_256 : This HMAC function computes a HMAC hash from a HMAC key and message. It
returns the SHA2_256 hash of a padded concatenation of the key and message.

• PMP_unlock_rom_ext : Calls PMP_WRITE_REGION to create PMP region #0 which covers the ROM_EXT
image, is locked, and allows for reads and execution [40] [41].

• final_jump_to_rom_ext : Is only called if all previous verification, for the given ROM_EXT , passed.
Transfers execution to the ROM_EXT entry point from the supplied ROM_EXT manifest [40] [41].

• boot_failed : Is only called if all ROM_EXTs fail verification. Executes a fail function supplied by the
boot policy [41].

• boot_failed_rom_ext_terminated : Is only called if a ROM_EXT terminates. Executes a fail function
supplied by the boot policy and supplies it with the terminated ROM_EXT ’s manifest [40] [41].
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4.3 Program Properties

One of the results generated from our P9 project [1] was a security analysis of OpenTitan. The security ana-
lysis contained security policies, security goals, and security mechanisms for the OpenTitan initial boot code
( mask_ROM and ROM_EXT ). The security policies and security goals relevant to the mask_ROM stage are cited
below (directly taken from [1]). We will, in this section, present new program properties that are more refined
and specific to the implementation level code of the mask_ROM stage and thus easier to translate into CBMC
assertions. These program properties are derived from their respective security goal/policy. PROPERTY 0 is the
exception to this as it has no direct parent goal/policy but is still fundamental for overall program correctness and
safety.

“No parent policy or goal”

• PROPERTY 0: The mask_ROM boot code must be free of bugs.

“P1: It should only be possible to execute code that has been validated (authenticity/integrity)”

“G1: The hash of the ROM_EXT image and the signature of the hash must be validated by
mask_ROM before it is executed to ensure authenticity and integrity of the image.”

• PROPERTY 1: The ROM_EXT manifest for a ROM_EXT must be signed with a RSA-3072 signature. If a
ROM_EXT manifest for a ROM_EXT is unsigned (i.e. the signature is a sequence of zeros) the ROM_EXT is

considered invalid to boot from.

• PROPERTY 2: The public RSA-3072 key used for the signature contained in the ROM_EXT manifest must
be valid in order to be valid to boot from.

• PROPERTY 3: The HMAC hash must be calculated by either a SHA2-256, SHA3-256, SHA3-384, or
SHA3-512 hash function.

• PROPERTY 4: The computed HMAC hash message must be calculated from system_state_value

|| device_usage_value || signed_area(rom_ext) [38].

• PROPERTY 5: The signature in the ROM_EXT manifest must be validated using the RSASSA-PKCS1-V1_5-
VERIFY [47] function with inputs: public RSA-3072 key, appended message ( system_state_value ||

device_usage_value || signed_area(rom_ext) ), and RSA-3072 signature. If the function returns
false the ROM_EXT is invalid to boot from.

• PROPERTY 6: If all validation steps have succeeded, then transfer execution to ROM_EXT by starting execu-
tion at the entry point of the ROM_EXT image code. If execution returns, execute the fail_rom_ext_retur
ned function provided by the boot policy.

• PROPERTY 7: If at any point a ROM_EXT is invalidated, the ROM_EXT is considered unsafe to boot from
and the mask_ROM must proceed to validate the next ROM_EXT .
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4.3. PROGRAM PROPERTIES

• PROPERTY 8: If validation fails for all the ROM_EXTs , mask_ROM must execute the fail function pro-
vided by the boot policy.

“P4: There is a privilege hierarchy that is respected (i.e. access rights: read, write,
and execute)”

“G10, G11, G12: Only software with write/read/execute access to some memory section may
modify/read/execute it.”

• PROPERTY 9: The entire flash must be covered by a PMP region at the initialization of mask_ROM .
The PMP region must be locked and restricted to read-only access.

• PROPERTY 10: If a ROM_EXT is validated, then mask_ROM must create a PMP region covering the
ROM_EXT memory that is locked and allows for read and execution access.
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Chapter 5

Verification of System

In this chapter we describe the verification and the process of verifying the program properties that we specified
for the OpenTitan mask_ROM boot stage, described in Section 4.3. As mentioned in Section 4.1.1, we do not
intend to verify the implementation of the hardware components used by mask_ROM . We intent to verify that
the developed mask_ROM boot code satisfies the program properties and interacts correctly with the hardware
components. The CBMC annotated boot code referenced in this chapter can be seen in full in Appendix C and on
GitHub at [48].

5.1 Model of the Boot Code

This section describes the changes we have made to the boot code and how we have modeled data and hardware
to verify it using CBMC and argumentation of whether these changes and models are valid.

5.1.1 Hardware and External Functionality

We have modeled most of the hardware dependencies (i.e. HMAC, OTBN, ROM Controller, and Flash Controller)
depicted in Fig. 4.1.2. The functions that model the hardware are prefixed with the name of the hardware. A
general approach that we have used for modeling hardware is to use nondeterminism. As a nondeterministic
model is at least an over-approximation of the output, we consider it a reasonable abstraction as we only verify
the use of hardware. The following functions are functions from Section 4.2 that have been modeled. The call
graph of the modeled boot code is seen in Fig. 5.1.1 (Note that several of the functions are marked in red. This is
to denote that they are modeled.)

• FLASH_CTRL_read_boot_policy : Instead of reading a boot policy from flash by interacting with the
Flash Controller, it returns a nondeterministic boot policy. This model can return all possible boot policies.

• FLASH_CTRL_rom_ext_manifest_to_try : Instead of returning a list of ROM_EXT manifests from flash
by interacting with the Flash Controller it returns a list of nondeterministic ROM_EXT manifests. This model
can return all possible ROM_EXTs .

• PMP_WRITE_REGION : This function has no actual PMP like functionality, but a call to it is assumed to
correctly apply a PMP region based on the inputs given to it.

• ROM_CTRL_get_whitelist : Instead of returning the whitelist of valid public keys from ROM, by inter-
acting with the ROM Controller, it returns a list of nondeterministic public keys. This model can return all
possible public keys.

• OTBN_RSA_3072_DECRYPT : Instead of implementing RSA-3072 decryption, it returns a nondeterministic
256-bit sized string representing the HMAC hash that was encrypted. This model can return all possible
256-bit sized strings.

• HMAC_SHA2_256 : We have implemented a version of HMAC which uses SHA2-256. However, we also
have a modeled version which returns a nondeterministic 256-bit sized string representing the hash. This
model can return all possible 256-bit sized strings.
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5.1. MODEL OF THE BOOT CODE

• image_code : The image_code of a ROM_EXT is modeled as an empty function that always returns.
The aspect of having no functionality is a reasonable model considering that ROM_EXT is out of the scope
of mask_ROM . The aspect of always returning is also reasonable as a real ROM_EXT will return eventually.
It is also necessary for CBMC to terminate.

• fail and fail_rom_ext_termininated : The failure functions defined in the boot policy is model as
empty functions that always return. The aspect of having no functionality is a reasonable model considering
the lack of documentation and since the implementation is supplied by the boot policy.
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5.2. CONSTRAINTS AND ASSUMPTIONS

5.1.2 Data Structures

The most relevant data used in the mask_ROM boot code are the RSA-3072 key, RSA-3072 signature, SHA2-256
hash, boot policy, and ROM_EXT manifest. We have modeled a RSA-3072 key as a struct in C. It contains an
exponent, represented as an int32_t . The modulus is represented as int32_t[96] . A RSA signature is also
represented as int32_t[96] . A SHA2-256 hash is represented as char[256] . We believe these to all be
reasonable representations.

The boot policy and the ROM_EXT manifest are modeled as structs in C. The content of the modeled boot policy
and ROM_EXT manifest is shown in Listing 5.1 and Listing 5.2, respectively1.

53 typedef struct boot_policy_t {

54 int identifier;

55

56 //which rom_ext_slot to boot

57 int rom_ext_slot;

58

59 //what to do if all ROM Ext are

↪→ invalid

60 char* fail;

61

62 //what to do if the ROM Ext

↪→ unexpectedly returns

63 char* fail_rom_ext_terminated;

64

65 } boot_policy_t;

Listing 5.1: Model of a boot policy in mask_rom.h .

33 typedef struct rom_ext_manifest_t{

34 uint32_t identifier;

35

36 signature_t signature;

37

38 //public part of signature key

39 pub_key_t pub_signature_key;

40 uint32_t image_length;

41 char* image_code;

42 } rom_ext_manifest_t;

Listing 5.2: Model of a ROM_EXT manifest in
mask_rom.h .

We also believe the representations of the boot policy and ROM_EXT manifest to be reasonable, based on the
documented content of the boot policy and ROM_EXT manifest (cf. Section 4.1 and [41], [38]).

5.2 Constraints and Assumptions

This section covers the constraints that apply to the system and the assumptions made to facilitate the verification
process.

System Constraints

• There is a bound to the maximum size of the ROM_EXT manifest. All fields are of a fixed size except the
image code [38].

• The number of ROM_EXTs to try and boot from are bounded.

Assumptions to Facilitate Verification

• No physical attacks to the mask_ROM boot code.

– Why is it necessary: If we model for all possible physical attacks to the mask_ROM boot code then the
number of program paths increase exponentially rendering verification as computationally impossible.

Another reason not to model all attacks is that this chapter aims to verify if the boot code even adheres
to the security properties by default.

– What to make it not hold: Perform any physical attack that tampers with the memory where the
mask_ROM boot code is stored. This form of attack is looked into in Chapter 6.

1In Listings that show the source code, the line numbers will match the source code.
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5.3. PROOF HARNESS

– What if it does not hold: Then malicious code can be executed.

• The image_length field in the ROM_EXT manifest corresponds to the actual image size.

– Why is it necessary: This is what the boot code expects. The boot code cannot verify the correctness
of the image length variable due to how the manifest is designed.

– What to make it not hold: An error by the software writing the ROM_EXT manifest or by the people
developing the ROM_EXT manifest. A physical attack could also alter it.

– What if it does not hold: It could lead to memory errors, invalidation of a valid ROM_EXT , or execution
of unverified code. We investigate this further in Section 6.6.

• The image_length field in the ROM_EXT manifest is assumed to be at max 10 and greater than 0.

– Why is it necessary: The assumption that the image_length is maximum 10 and greater than 0 is
necessary for decreasing the state space to facilitate faster verification.

– What to make it not hold: Perform a physical attack or flash a ROM_EXT manifest with an image_

length greater than 10 or less than 0.

– What if it does not hold: Then the verification will require unroll loop bounds equal to the maximum
positive value of an integer (because we do memcmp and memcpy of the image code), which is
computationally impossible.

• The ROM_EXT image code always returns execution to mask_ROM .

– Why is it necessary: This assumption is necessary to enable CBMC to terminate verification.

– What to make it not hold: A ROM_EXT only returns if there occurs an error while booting the BL0 or
any subsequent stage. So by default, a successful boot sequence will not comply with this assumption.
It can also be broken by creating a ROM_EXT image code that does not return or by performing a
physical attack that overwrites the return address of the ROM_EXT image code.

– What if it does not hold: Then CBMC will never terminate verification and the ROM_EXT will run
forever.

5.3 Proof Harness

We have one proof harness, called PROOF_HARNESS , for verifying all the properties. The properties can be
verified using a mocked SHA-256 and with an implementation of a SHA-256. Using an implementation of a
SHA-256 is only necessary for properties 3 and 4 and not for the rest. It should be noted that the verification time
is significantly increased when using the implementation of SHA-256. Therefore, when verifying the other prop-
erties, a mocked SHA-256 is used to decrease verification time. A call graph for PROOF_HARNESS can be seen in
Fig. 5.3.1. Most functions are decorated with CBMC annotations. Also note that FLASH_CTRL_boot_policy

and FLASH_CTRL_rom_ext_manifests_to_try is moved outside of mask_rom_boot . This makes the boot
code deviate from the boot code in Section 4.2 but will not affect the verification as the call order and supplied
arguments are equivalent. It is necessary because we make CBMC assumptions about the policy and manifests as
part of our setup and we want to, if possible, move assumptions into the proof harness, as described in Section 2.6.
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5.3. PROOF HARNESS

The C code for the PROOF_HARNESS can be seen in Listing 5.3. Note that parts of the proof harness have been
left out for simplicity (denoted with three dots). The full code can be seen in Appendix C.

The setup part of the PROOF_HARNESS can be seen from lines 411 to 423 in Listing 5.3. The call to mask_rom_
boot is done at line 425. All the code from line 428 to 505 is postconditions. The entire proof harness can be

seen on line 411 in Appendix C.2.

411 void PROOF_HARNESS() {

412 boot_policy_t boot_policy = FLASH_CTRL_read_boot_policy();

413 rom_exts_manifests_t rom_exts_to_try = FLASH_CTRL_rom_ext_manifests_to_try(boot_policy

↪→ );

414

415 __CPROVER_assume(rom_exts_to_try.size <= MAX_ROM_EXTS && rom_exts_to_try.size > 0);

416

417 __CPROVER_assume(boot_policy.fail == &__func_fail);

418 __CPROVER_assume(boot_policy.fail_rom_ext_terminated == &__func_fail_rom_ext);

419

420 for(int i = 0; i < rom_exts_to_try.size; i++){

421 __CPROVER_assume(MAX_IMAGE_LENGTH >= rom_exts_to_try.rom_exts_mfs[i].image_length

↪→ && rom_exts_to_try.rom_exts_mfs[i].image_length > 0);

422 rom_exts_to_try.rom_exts_mfs[i].image_code = malloc(sizeof(char) * rom_exts_to_try

↪→ .rom_exts_mfs[i].image_length);

423 }

424

425 mask_rom_boot(boot_policy , rom_exts_to_try);

426

427

428 __CPROVER_postcondition(__current_rom_ext + 1 <= rom_exts_to_try.size,

429 "Postcondition: Should never check more rom_ext than there exist");

430

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

432 __CPROVER_postcondition(. . .);

. . . . . . //more postconditions

442

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

445

446 __CPROVER_postcondition(. . .);

. . . . . . //more postconditions

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

476

477 __CPROVER_postcondition(. . .);

. . . . . . //more postconditions

505 }

506 }

507 __REACHABILITY_CHECK

508 }

Listing 5.3: Proof harness for all properties in mask_rom.c .

On a laptop with an Intel Core i7-4600U CPU, it takes 25 minutes to verify PROPERTY 0 and 24 minutes to
verify PROPERTY 1-10. This verification time is inappropriate for developing and debugging. Therefore, when
developing and debugging, we decreased RSA keys and signatures from 3072-bits to 160-bits.

Reachability Checks: We aim at having a reachability check for each branch in the execution. The goal is to en-
sure that the properties we verify do not just succeed because they are unreachable. The __REACHABILITY_CHECK
is a macro for a __CPROVER_assert(0, "message") statement. This works, as this assertion should always
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5.4. PROPERTY 0

fail. Thus, if it succeeds, it means that the assertion is not reachable and instead succeeds by default (cf. Sec-
tion 2.8.2).

Note: All constructs in the code that are prefixed with “__” are only used in relation to CBMC and are not part
of the actual boot code. These “__” prefixed constructs are either variables to capture the internal state of the
program or helper functions to aid verification.

5.4 PROPERTY 0

“The mask_ROM boot code must be free of bugs.”

5.4.1 Assumptions

• CBMC is, as far as we know, not guaranteed to be sound nor complete. We do, however, assume that CBMC
is complete and sound in relation to the built in property checks. This also reflects what we have experienced
in practice.

Verification

In order to prove the absence of bugs in the mask_ROM boot code we use the following CBMC property generating
arguments:

• --bounds-check

• --pointer-check

• --memory-leak-check

• --div-by-zero-check

• --signed-overflow-check

• --unsigned-overflow-check

• --pointer-overflow-check

• --conversion-check

• --undefined-shift-check

• --float-overflow-check

• --nan-check

• --enum-range-check

• --pointer-primitive-check

• --unwinding-assertions

In total, CBMC generated 655 assertions for the mask_ROM boot code, where 1 out of the 655 assertions fails.
This is caused by a memory leak of dynamically allocated memory that is never freed. However, the malloc
allocation in question is used to model nondeterministic readable memory for CBMC verification and is not part
of the boot code itself. As such, the failing assertion can be disregarded.
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5.5. PROPERTY 1

5.4.2 Results

All of the generated assertions for the boot code pass. This means that:

CBMC is unable to prove the presence of any bugs in the mask_ROM boot code.

Thus the mask_ROM boot code is likely to be bug free given our assumptions about CBMC being sound and
complete in relation to the built in property checks. This is, however, not guaranteed and cannot be considered
proof.

5.5 PROPERTY 1

“The ROM_EXT manifest for a ROM_EXT must be signed with a RSA-3072 signature. If a
ROM_EXT manifest for a ROM_EXT is unsigned (i.e. the signature is a sequence of zeros) the

ROM_EXT is considered invalid to boot from.”

5.5.1 Assumptions

• A RSA-3072 signature can be any given value as long as it is 3072-bits large.

5.5.2 Verification

Line 326 in mask_rom.c :

326 int __help_check_rom_ext_manifest(rom_ext_manifest_t manifest) { //used for CBMC assertion

↪→ + postcondition

327 if (manifest.identifier == 0)

328 return 0;

329

330 signature_t signature = manifest.signature; //needed to take object size of signature

↪→ and not entire manifest

331

332 if (__CPROVER_OBJECT_SIZE(signature.value) != 3072 / 8) //Signature must be 3072-bits

333 return 0;

334

335 for (int i = 0; i < RSA_SIZE; i++) {

336 if (manifest.signature.value[i] != 0)

337 return 1;

338 }

339 return 0;

340 }

The __check_rom_ext_manifest function is used in relation to CBMC to assert whether the identifier is
nonzero and that the signature is of the correct size and nonzero. Note that the size check is trivial and could
easily be done by code review. Nevertheless, we consider it good practice to verify anyway as a change to the
code might break this.

Line 560 and 568 in mask_rom.c :

529 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try){

. . . . . .

546 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

557 if (!check_rom_ext_manifest(__current_rom_ext_manifest)) {

558 __REACHABILITY_CHECK

559
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560 __CPROVER_assert(!__help_check_rom_ext_manifest(current_rom_ext_manifest),

561 "PROPERTY 1: Stop verification if signature or identifier is invalid");

562

563 continue;

564 }

565

566 __REACHABILITY_CHECK

567

568 __CPROVER_assert(__help_check_rom_ext_manifest(current_rom_ext_manifest),

569 "PROPERTY 1: Continue verification if signature and identifier are valid");

. . . . . .

After the call to check_rom_ext_manifest , a __CPROVER_assert , at line 560, is used to assert that, if the
function returns false, the signature or the identifier is invalid. Likewise, the __CPROVER_assert at line 568
asserts that if the function returns true, the signature and the identifier are valid. Both of these assertions succeed.

Line 446 in mask_rom.c :

411 void PROOF_HARNESS(){

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

445

446 __CPROVER_postcondition(__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]),

447 "Postcondition PROPERTY 1: rom_ext VALIDATED => valid signature");

. . . . . .

The __CPROVER_postcondition at line 446 succeeds and asserts that if the ROM_EXT was validated, then the
signature and identifier of the related ROM_EXT manifest must be valid.

5.5.3 Results

The CBMC results state that all of the three user-defined assertions pass. The reachability checks ensure that the
assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

If the ROM_EXT signature is valid, it is always exactly 3072-bits.

Verification stops if the ROM_EXT manifest is unsigned (equal to 0).

Verification stops if the ROM_EXT manifest has an invalid identifier.

Verification continues if the ROM_EXT manifest is signed (not equal to 0) and the identifier is valid.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 1 under the assumptions listed in Sec-
tion 5.5.1.

40



5.6. PROPERTY 2

5.6 PROPERTY 2

“The public RSA-3072 key used for the signature contained in the ROM_EXT manifest, must be valid
in order for the ROM_EXT to be considered valid to boot from.”

5.6.1 Assumptions

• A public key is considered valid if it matches a key in the list of known good keys (whitelist) stored in
mask_ROM .

• For a public key to be valid, its exponent part must be exactly 32-bits.

• For a public key to be valid, its modulus part must be exactly 3072-bits.

5.6.2 Verification

Line 343 in mask_rom.c :

343 int __help_pkey_valid(pub_key_t pkey) { //used for CBMC assertion + postcondition

344 // Public key exponent must be 32 bits.");

345 if(sizeof(pkey.exponent) * 8 != 32)

346 return 0;

347 // Public key modulus must be 3072-bits.");

348 if((sizeof(pkey) - sizeof(pkey.exponent)) * 8 != 3072)

349 return 0;

350

351 pub_key_t* pkey_whitelist = ROM_CTRL_get_whitelist();

352

353 for (int i = 0; i < __PKEY_WHITELIST_SIZE; i++) {

354 if (pkey_whitelist[i].exponent != pkey.exponent)

355 continue;

356

357 int j = 0;

358 for (j = 0; j < RSA_SIZE; j++) {

359 if (pkey_whitelist[i].modulus[j] != pkey.modulus[j])

360 break;

361 }

362

363 //if j == RSA_SIZE , then loop ran to completion and all entries were equal

364 if (j == RSA_SIZE)

365 return 1;

366 }

367

368 return 0;

369 }

The __help_pkey_valid function is used in relation to CBMC to assert whether a public key is valid. Note

that at line 348, we exploit the fact that the pub_key_t structure only has two members: exponent and modulus.
If this struct were to be extended, the expression at line 348 would have to be changed.

Line 578 and 586 in mask_rom.c :

529 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try){

. . . . . .

546 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

572 pub_key_t rom_ext_pub_key = read_pub_key(current_rom_ext_manifest);

573

574 //Step 2.iii.b
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575 if (!check_pub_key_valid(rom_ext_pub_key)) {

576 __REACHABILITY_CHECK

577

578 __CPROVER_assert(!__help_pkey_valid(rom_ext_pub_key),

579 "PROPERTY 2: Stop verification if key is invalid");

580

581 continue;

582 }

583

584 __REACHABILITY_CHECK

585

586 __CPROVER_assert(__help_pkey_valid(rom_ext_pub_key),

587 "PROPERTY 2: Continue verification if key is valid");

. . . . . .

The check_pub_key_valid function returns false if the public key does not match a key in the known good

key list (whitelist) stored in mask_ROM . If check_pub_key_valid returns false, it is asserted at line 578 that
the public key was indeed invalid. Likewise, if it returns true, it is asserted at line 586 that the public key was
valid. Both of these assertions succeed.

Line 449 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

. . . . . .

449 __CPROVER_postcondition(__help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key),

450 "Postcondition PROPERTY 2: rom_ext VALIDATED => valid key");

. . . . . .

As part of the PROOF_HARNESS , there is a __CPROVER_postcondition at line 449 that succeeds and asserts
that if a ROM_EXT is validated, then the public key in the respective ROM_EXT manifest must be valid.

5.6.3 Results

The CBMC results state that all of the three user-defined assertions pass. The reachability checks ensure that the
assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

If the ROM_EXT was validated, the public key exponent is exactly 32-bits.

If the ROM_EXT was validated, the public key modulus is exactly 3072-bits.

Verification stops if the public key in the ROM_EXT manifest is invalid.

Verification continues if the public key in the ROM_EXT manifest is valid.

If a ROM_EXT is fully validated, then the associated ROM_EXT manifest contains a valid public key.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 2 under the assumptions listed in Sec-
tion 5.6.1.
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5.7 PROPERTY 3

“The HMAC hash must be calculated by either a SHA2-256, SHA3-256, SHA3-384, or SHA3-512
hash function.”

5.7.1 Assumptions

• It is unclear how the hash in OpenTitan is implemented. For simplicity, we assume that a SHA2-256 hash
function must always be used to calculate the HMAC hash.

5.7.2 Verification

It is not possible to assert that the correct hash is calculated for each input. The reason is that a mapping of input
to output of the SHA2-256 function does not exist and verifying for such a mapping would be computationally
impossible. However, it is possible to assert properties of the input and output. Verifying that the correct hash
function is used should, however, be done through a code review.

Line 36 and 39 in mock_hmac.c . Equivalent assertions are also present in hmac.c :

5 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int size, rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

. . . . . .

34 char* hash = malloc(256 / 8); //model it to be ok for PROPERTY 5

35

36 __CPROVER_assert(__CPROVER_OBJECT_SIZE(hash) == 256 / 8,

37 "PROPERTY 3: Hash is 256 bits");

38

39 __CPROVER_assert(__CPROVER_r_ok(hash, 256 / 8),

40 "PROPERTY 3: hash is in readable address");

41

42 __REACHABILITY_CHECK

43

44 return hash;

45 }

The HMAC_SHA2_256 is responsible for calculating the hash of a message using external functionality. The
__CPROVER_assert on line 36 verifies that the hash object returned from the HMAC_SHA2_256 function is

256-bits. The __CPROVER_assert on line 39 verifies that the hash is in a readable address space. Both of the
assertions succeed.

Line 176 and 179 in mask_rom.c :

130 int OTBN_RSASSA_PKCS1_V1_5_VERIFY(int32_t exponent , int32_t* modulus, char* message, int

↪→ message_len , int32_t* signature , int signature_len , rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

. . . . . .

161 char* decrypt = OTBN_RSA_3072_DECRYPT(signature , signature_len , exponent , modulus);

162 char* hash = HMAC_SHA2_256(__hmac_key , message, message_len , __current_rom_ext_mf); //

↪→ message_len in bytes

. . . . . .

176 __CPROVER_assert(__CPROVER_OBJECT_SIZE(hash) == 256 / 8,

177 "PROPERTY 3: Hash is 256 bits");

178

179 __CPROVER_assert(__CPROVER_r_ok(hash, 256 / 8),

180 "PROPERTY 3: hash is in readable address");

. . . . . .
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The OTBN_RSASSA_PKCS1_V1_5_VERIFY is responsible for verifying a signature. It uses the HMAC_SHA2_256
internally to compute the hash. Thus, lines 176 and 179 assert that the output of HMAC_SHA2_256 is 256-bits and
readable. Both of these assertions succeed.

5.7.3 Results

The CBMC results state that the four user-defined assertions pass. The reachability checks ensure that the asser-
tions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire reachable
state space. This means that:

The HMAC hash computed by the HMAC_SHA2_256 function is always exactly 256 bits.

The HMAC hash computed by the HMAC_SHA2_256 function is always in a readable address space.

The HMAC hash returned by the HMAC_SHA2_256 function is always exactly 256 bits.

The HMAC hash returned by the HMAC_SHA2_256 function is always in a readable address space.

There is no guarantee that the mapping from input to SHA2-256 output is correct. The mapping is not possible
to verify using CBMC verification as this is computationally impossible. Note that this is not an issue for this
property as the system under consideration is specific to how the boot code interfaces with the HMAC and not to
the correctness of the modeled external hardware module.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 3 under the assumptions listed in Sec-
tion 5.7.1.

5.8 PROPERTY 4

“The computed HMAC hash message must be calculated from system_state_value ||

device_usage_value || signed_area(rom_ext) [38].”

5.8.1 Assumptions

• The HMAC is simply computed by hashing the appended HMAC key and message. There is no intricate
padding scheme as is common in HMAC implementations. This is for simplicity.

• The message to be hashed will only be computed from the signed_area(rom_ext) and will not include
system_state_value and device_usage_value .

• The signed_area(rom_ext) is restricted to only include the public key , image_length , and
image_code for simplicity.

5.8.2 Verification

Line 10, 16, 22, 28, and 31 in mock_hmac.c . Equivalent assertions are present in hmac.c :

5 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int size, rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

6

7 int __expected_size =

8 sizeof(__current_rom_ext_mf.pub_signature_key) + sizeof(__current_rom_ext_mf.

↪→ image_length) + __current_rom_ext_mf.image_length;
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9

10 __CPROVER_assert(cmp_key(

11 mes,

12 &__current_rom_ext_mf.pub_signature_key ,

13 sizeof(__current_rom_ext_mf.pub_signature_key)) == 0,

14 "PROPERTY 4: Message contains the key");

15

16 __CPROVER_assert(cmp_image_len(

17 mes + sizeof(__current_rom_ext_mf.pub_signature_key),

18 &__current_rom_ext_mf.image_length ,

19 sizeof(__current_rom_ext_mf.image_length)) == 0,

20 "PROPERTY 4: Message contains the Image length");

21

22 __CPROVER_assert(cmp_image_code(

23 mes + sizeof(__current_rom_ext_mf.pub_signature_key) + sizeof(__current_rom_ext_mf

↪→ .image_length),

24 __current_rom_ext_mf.image_code ,

25 __current_rom_ext_mf.image_length) == 0,

26 "PROPERTY 4: Message contains the Image code");

27

28 __CPROVER_assert(size == __expected_size ,

29 "PROPERTY 4: Message size parameter is as expected.");

30

31 __CPROVER_assert(__CPROVER_OBJECT_SIZE(mes) == __expected_size ,

32 "PROPERTY 4: Size of message is as expected.");

33

34 char* hash = malloc(256 / 8); //model it to be ok for PROPERTY 5

. . . . . .

The assertions essentially verify that the external HMAC_SHA2_256 function is only called with an input message
that constitutes the respective public key, image length, and image code. All of these five assertions succeed.
The __CPROVER_assert at line 10 verifies that the first n bytes of the message (with n being the length
of the key) is equal to the public key in the manifest. At line 16, the __CPROVER_assert verifies that the
subsequent n bytes of the message (where n is the size of the image_length value type) is equal to the

image_length field in the manifest. At line 22, the __CPROVER_assert verifies that the next subsequent n
bytes of the message (where n is the length of the image code) is equal to the image code in the manifest. The
__CPROVER_assert at line 28 verifies that the size provided in the formal parameter is equal to the expected

size. At line 31, the __CPROVER_assert verifies that the size of the message object pointed to is of equal size to
the expected size.

5.8.3 Results

The CBMC results state that all of the five user-defined assertions pass. The reachability checks ensure that the
assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

The formal parameter mes that the hash is computed from is an appended string with the first element
always being the public key exponent and modulus part.

The second element of the appended mes is always the image length.

The third element of the appended mes is always the image code.

The formal parameter size corresponds exactly to the size of the given message and the expected size.
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Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 4 under the assumptions listed in Sec-
tion 5.8.1.

5.9 PROPERTY 5

“The signature in the ROM_EXT manifest must be validated using the
RSASSA-PKCS1-V1_5-VERIFY [47] function with inputs: public RSA-3072 key, appended message

( system_state_value || device_usage_value || signed_area(rom_ext) ), and
RSA-3072 signature. If the function returns false the ROM_EXT is invalid to boot from.”

5.9.1 SUBPROPERTY 5.1

The signature in the ROM_EXT manifest must be validated using the
RSASSA-PKCS1-V1_5-VERIFY [47] function.

Assumptions

• The RSASSA-PKCS1-V1_5-VERIFY function follows the alternative implementation specified at [47] which
verifies by first decoding the signature and then compares the decoded to a freshly computed hash.

• The RSASSA-PKCS1-V1_5-VERIFY decoding only decrypts the signature and does not do any unpadding
or other decoding operations. This is done for simplicity.

• The nondeterministic signature is decrypted nondeterministically by a modeled RSA-3072-DECRYPT func-
tion. A RSA-3072-DECRYPT function is out of scope for this project and infeasible to verify using CBMC.

• The HMAC hash is calculated from a modeled SHA2-256 hash function. We choose a modeled version
because it reduces verification time and in this particular case, it does not change our verification results as
the RSA-3072-DECRYPT is also mocked.

Verification

The main function being verified in relation to PROPERTY 5 is the verify_rom_ext_signature function. It is
not possible to assert that the verification is performed using a correct implementation of RSASSA-PKCS1-V1_5-
VERIFY . However, it is possible to assert that the signature verification function is called when it should be.

Through a code review, it would also be possible to verify that it is the correct implementation of RSASSA-PKCS1-
V1_5-VERIFY that is called.

Line 48 in mask_rom.c :

48 int verify_rom_ext_signature(pub_key_t rom_ext_pub_key , rom_ext_manifest_t manifest) {

. . . . . .

55 __verify_signature_called[__current_rom_ext] = 1;

. . . . . .

81 int result = OTBN_RSASSA_PKCS1_V1_5_VERIFY(rom_ext_pub_key.exponent , rom_ext_pub_key.

↪→ modulus, message, bytes, signature.value, RSA_SIZE, manifest);

82

83 return result; //0 or 1

84 }

The verify_rom_ext_signature function prepares the input to the OTBN_RSASSA_PKCS1_V1_5_VERIFY

and calls it on line 81. In addition, __verify_signature_called registers that verify_rom_ext_signature

is called while verifying the given ROM_EXT manifest on line 55. __verify_signature_called is an array

of size MAX_ROM_EXTS , it documents whether the verify_rom_ext_signature function was called from
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mask_ROM when validating the ith ROM_EXT . An array is necessary to allow us to track, for each ROM_EXT , if
the verify_rom_ext_signature function was called or not while mask_ROM processed the given ROM_EXT .

Line 164, 167, 170, and 173 in mask_rom.c

130 int OTBN_RSASSA_PKCS1_V1_5_VERIFY(int32_t exponent , int32_t* modulus, char* message, int

↪→ message_len , int32_t* signature , int signature_len , rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

. . . . . .

161 char* decrypt = OTBN_RSA_3072_DECRYPT(signature , signature_len , exponent , modulus);

162 char* hash = HMAC_SHA2_256(__hmac_key , message, message_len , __current_rom_ext_mf); //

↪→ message_len in bytes

163

164 __CPROVER_assert(!__CPROVER_array_equal(decrypt, signature),

165 "PROPERTY 5: Decrypted signature is different from signature");

166

167 __CPROVER_assert(!__CPROVER_array_equal(hash, message),

168 "PROPERTY 5: Hash is different from original message");

169

170 __CPROVER_assert(__CPROVER_OBJECT_SIZE(decrypt) == 256 / 8,

171 "PROPERTY 5: Decrypted message is 256 bits");

172

173 __CPROVER_assert(__CPROVER_r_ok(decrypt, 256 / 8),

174 "PROPERTY 5: Decrypted message is in readable address");

. . . . . .

The __CPROVER_assert on line 164 succeeds and asserts that the RSA decryption algorithm used by OTBN_RSA
SSA_PKCS1_V1_5_VERIFY returns something different from the decrypted signature. The __CPROVER_assert

on line 167 succeeds and asserts that the used hash algorithm returns something different from the message being
hashed. Lastly, the assertions on lines 170 and 173 succeed and assert, respectively, that the decrypted signature
is 256-bits and in a readable address space.

Line 433, 438, and 452 in mask_rom.c :

411 void PROOF_HARNESS()

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

432

433 __CPROVER_postcondition(__imply(!__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]) ||

434 !__help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key),

435 !__verify_signature_called[i]),

436 "Postcondition PROPERTY 5: If identifier , sign, or key is invalid then verify

↪→ signature function is not called");

437

438 __CPROVER_postcondition(__imply(__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]) &&

439 __help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key),

440 __verify_signature_called[i]),

441 "Postcondition PROPERTY 5: If identifier , sign, and key are valid then the

↪→ signature verification function is called");

442

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

. . . . . .

452 __CPROVER_postcondition(__verify_signature_called[i],

453 "Postcondition PROPERTY 5: iff sign and key is valid then verify signature

↪→ function is called");
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. . . . . .

The postconditions on lines 433 and 438 succeed and are checked for all ROM_EXT manifests. The __CRPOVER_
postcondition on line 433 asserts that the signature verification function is not called if the identifier, signa-

ture, or key in the manifest are invalid. The __CPROVER_postcondition on line 438 asserts that the signature
verification function should have been called if the ROM_EXT manifest has a valid identifier, signature, and key.
The __CPROVER_postcondition on line 452 succeeds and asserts that the signature verification function was
called if the ROM_EXT manifest was fully validated.

5.9.2 SUBPROPERTY 5.2

The input to the RSASSA-PKCS1-V1_5-VERIFY [47] function must be:
public RSA-3072 key, appended message ( system_state_value || device_usage_value

|| signed_area(rom_ext) ), and RSA-3072 signature.

Assumptions

• A RSA-3072 key is a pair of a 32-bit exponent and a 3072-bit modulus.

• A RSA-3072 signature can be any given value as long as it is 3072-bits large.

• The signature in the ROM_EXT manifest computed by the Silicon Creator is only computed from the signed

_area(rom_ext) and does not include system_state_value and device_usage_value .

• The HMAC hash of the ROM_EXT manifest will only be computed from the signed_area(rom_ext) .

• The signed_area(rom_ext) is restricted to only include the public key , image_length , and
image_code for simplicity.

Verification

Line 131, 134, 137, 140, 143, and 146 in mask_rom.c :

130 int OTBN_RSASSA_PKCS1_V1_5_VERIFY(int32_t exponent , int32_t* modulus, char* message, int

↪→ message_len , int32_t* signature , int signature_len , rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

131 __CPROVER_assert(__CPROVER_OBJECT_SIZE(message) == message_len ,

132 "PROPERTY 5: Formal parameter message_len lenght matches actual message length.");

133

134 __CPROVER_assert(__CPROVER_OBJECT_SIZE(signature) == 3072 / 8,

135 "PROPERTY 5: Signature to be verified is 3072-bits.");

136

137 __CPROVER_assert(__CPROVER_OBJECT_SIZE(signature) == signature_len * sizeof(int32_t),

138 "PROPERTY 5: Formal parameter signature lenght matches actual signature length.");

139

140 __CPROVER_assert(sizeof(exponent) == 32 / 8,

141 "PROPERTY 5: Public key exponent is 32 bits.");

142

143 __CPROVER_assert((sizeof(pub_key_t) - sizeof(exponent)) == 3072 / 8,

144 "PROPERTY 5: Public key modulus is 3072-bits.");

145

146 __CPROVER_assert(__is_valid_params(exponent, modulus, message, message_len , signature ,

147 signature_len , __current_rom_ext_mf),

148 "PROPERTY 5: Check that key, signature , and message matches those from the

↪→ manifest.");

149

150 __REACHABILITY_CHECK

. . . . . .
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The assertions on lines 131, 134, 137, 140, and 143 succeed and assert that the parameters match the expected
size. The __CPROVER_assert on line 146 succeeds and asserts that RSASSA-PKCS1-V1_5-VERIFY is called
with the correct parameters. This is done by checking that the parameters match the content of the manifest that
is currently being processed. The current manifest is accessible since it is passed through the parameter named
__current_rom_ext_mf . As the parameter is only used for CBMC purposes, we evaluate that this additional

parameter does not alter the validity of the RSASSA-PKCS1-V1_5-VERIFY function.

5.9.3 SUBPROPERTY 5.3

If the RSASSA-PKCS1-V1_5-VERIFY returns false the ROM_EXT is invalid to boot from.

Assumptions

• The RSASSA-PKCS1-V1_5-VERIFY function follows the alternative implementation specified at [47].

Verification

Line 482 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

482 __CPROVER_postcondition(!__valid_signature[i],

483 "Postcondition PROPERTY 5: rom_ext INVALIDATED => signature invalid or not

↪→ checked");

. . . . . .

The __CPROVER_postcondition on line 482 succeeds. It asserts that if a ROM_EXT is invalidated, then either
the signature is invalid or some validation check before the signature check failed.

5.9.4 Results

The CBMC results state that all of the 14 user-defined assertions pass. The reachability checks ensure that the
assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

The OTBN_RSA_3072_DECRYPT function returns a 256-bit value in a readable address space that is dif-
ferent from the value being decrypted.

The HMAC_SHA2_256 function returns a 256-bit hash that is different from the value being hashed.

If the ROM_EXT manifest has a valid identifier, key, and signature, the verify_rom_ext_signature
function is called.

If the ROM_EXT manifest has an invalid identifier, key, or signature, the verify_rom_ext_signature
function is not called.
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If a ROM_EXT manifest is successfully validated, the verify_rom_ext_signature function is called.

If a ROM_EXT manifest is invalidated, the verify_rom_ext_signature function is not called.

The OTBN_RSASSA_PKCS1_V1_5_VERIFY function’s parameters are always of the expected sizes.

The OTBN_RSASSA_PKCS1_V1_5_VERIFY function’s parameters are always the expected values. I.e. the
parameters correspond correctly to the current ROM_EXT manifest.

The mapping from input to RSASSA-PKCS1-V1_5-VERIFY output is not guaranteed to be correct. We will
not determine the correctness of the mapping using verification as this is impossible with a mocked RSA-3072
decrypt function. Even if we used a real implementation of RSA-3072 decrypt, we believe it would be computa-
tionally impossible to verify the correctness of the RSASSA-PKCS1-V1_5-VERIFY output. Note that this is not
an issue for this property as the system under consideration is specific to how the boot code interfaces with the
RSASSA-PKCS1-V1_5-VERIFY function and not to the correctness of this modeled external hardware module.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 5, as it satisfies SUBPROPERTY 5.1, SUB-
PROPERTY 5.2, and SUBPROPERTY 5.3 under the associated assumptions.

5.10 PROPERTY 6

“If all validation steps have succeeded then transfer execution to ROM_EXT by starting execution at
the entry point of the ROM_EXT image code. If execution returns, execute the

fail_rom_ext_returned function provided by the boot policy.”

5.10.1 PROPERTY 6.1

If all validation steps have succeeded then transfer execution to ROM_EXT by starting execution at
the entry point of the ROM_EXT image code.

Assumptions

• A ROM_EXT is valid if the associated ROM_EXT manifest contains an identifier that is nonzero, a valid signa-
ture, a valid public key, and if the verification of the signature succeeds using the RSASSA-PKCS1-V1_5-
VERIFY function.

• The entry point of the ROM_EXT image code is equal to the __some_entry_func function.

• __some_entry_func is a reasonable abstraction of an actual ROM_EXT entry point function considering
that the execution of the ROM_EXT is out of scope of this project.

Verification

Line 286 in mask_rom.c :

276 void __some_entry_func() { __rom_ext_called[__current_rom_ext] = 1; /*for CBMC PROPERTY 6

↪→ */ }

277

278

279 int final_jump_to_rom_ext(rom_ext_manifest_t current_rom_ext_manifest) { // Returns a

↪→ boolean value.

. . . . . .
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282 current_rom_ext_manifest.image_code = &__some_entry_func;

283 //Execute rom ext code step 2.iii.e

284 rom_ext_boot_func* rom_ext_entry = (rom_ext_boot_func*)current_rom_ext_manifest.

↪→ image_code;

285

286 __CPROVER_assert(rom_ext_entry == current_rom_ext_manifest.image_code ,

287 "PROPERTY 6: Correct entry point address.");

288

289 __REACHABILITY_CHECK

290

291 rom_ext_entry();

292

293 __rom_ext_returned[__current_rom_ext] = 1; //for CBMC PROPERTY 6

294

295 //if rom_ext returns, we should return false

296 //and execute step 2.iv.

297 return 0;

298 }

The __CPROVER_assert at line 286 succeeds and asserts that the entry point function is equivalent to the en-
try point of the ROM_EXT image code. In this case, it is always the __some_entry_func that is called. The

__rom_ext_called array is used to register if the ROM_EXT is called. In this case, __some_entry_func is
needed to model a potential entry point function for ROM_EXT , otherwise, CBMC will not accept line 284 as a
valid operation and the verification cannot register if the ROM_EXT is called.

Line 458 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

. . . . . .

458 __CPROVER_postcondition(__rom_ext_called[i],

459 "Postcondition PROPERTY 6: rom_ext VALIDATED => rom ext code inititated");

. . . . . .

The __CPROVER_postcondition at line 458 succeeds and asserts that if the ROM_EXT was validated, then it
was also called.

5.10.2 PROPERTY 6.2

If execution returns, execute the fail_rom_ext_returned function provided by the boot policy.

Assumptions

• The image code for the ROM_EXT always returns. Otherwise, CBMC is not able to verify the program.

• The fail_rom_ext_returned function in the boot policy is equal to the __func_fail_rom_ext .

• The __func_fail_rom_ext function is a reasonable abstraction of the fail_rom_ext_returned
function.

void __func_fail_rom_ext(rom_ext_manifest_t _) {

__rom_ext_fail_func[__current_rom_ext] = 1;

}
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Verification

Line 461 and 464 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

. . . . . .

461 __CPROVER_postcondition(__imply(__rom_ext_returned[i], __rom_ext_fail_func[i])

↪→ ,

462 "Postcondition PROPERTY 6: (valid rom _ext and rom_ext code return) => that

↪→ rom_ext term func is called");

463

464 __CPROVER_postcondition(__imply(!__rom_ext_returned[i], !__rom_ext_fail_func[i

↪→ ]),

465 "Postcondition PROPERTY 6: (valid rom _ext and rom_ext code !return) =>

↪→ that rom_ext term func not called");

. . . . . .

The __CPROVER_postcondition at line 461 succeeds and asserts that if the ROM_EXT was validated, called,

and returned, the fail_rom_ext_terminated function from the boot policy should have been called. The
__CPROVER_postcondition at line 464 succeeds and asserts that if the ROM_EXT was validated and did not re-

turn, then the fail function should not have been called. However, note that in the current model of the boot code,
the ROM_EXT is modeled to always return. This means that despite this postcondition succeeding, no guarantees
can be made about the behavior that should happen if ROM_EXT does not return. The postcondition succeeds by
default as !__rom_ext_returned[i] is false for all states.

Line 485 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

485 __CPROVER_postcondition(!__rom_ext_fail_func[i],

486 "Postcondition PROPERTY 6: invalid rom_ext => that rom_ext term func not

↪→ called");

. . . . . .

The __CPROVER_postcondition at line 485 succeeds and asserts that if the ROM_EXT was not validated then

the fail_rom_ext_terminated function from the boot policy should also not have been called.

5.10.3 Results

The CBMC results state that all of the five user-defined assertions succeed. The reachability checks ensure that
the assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

If the ROM_EXT is successfully validated, in terms of signature and public key, then execution is transferred
from mask_ROM to ROM_EXT .
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The correct entry point function is called when executing the ROM_EXT .

If a ROM_EXT is invalidated then the fail_rom_ext_terminated function is not called for the respec-
tive ROM_EXT .

The fail_rom_ext_terminated function in the boot policy is called when a validated ROM_EXT returns
after being called.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 6, as it satisfies SUBPROPERTY 6.1 and
SUBPROPERTY 6.2 under the associated assumptions.

5.11 PROPERTY 7

“If at any point a ROM_EXT is invalidated the ROM_EXT is considered unsafe to boot from and the
mask_ROM must proceed to validate the next ROM_EXT .”

5.11.1 SUBPROPERTY 7.1

If at any point a ROM_EXT is invalidated the ROM_EXT is considered unsafe to boot.

Assumptions

• A ROM_EXT is valid if the associated ROM_EXT manifest contains an identifier that is nonzero, a valid signa-
ture, a valid public key, and if the verification of the signature succeeds using the RSASSA-PKCS1-V1_5-
VERIFY function.

Verification

Line 488 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

488 __CPROVER_postcondition(!__rom_ext_called[i],

489 "Postcondition PROPERTY 7: rom_ext INVALIDATED => rom ext code not executed");

. . . . . .

The __CPROVER_postcondition at line 488 succeeds and asserts that if the ROM_EXT was invalid, then the
ROM_EXT was not executed.
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5.11.2 SUBPROPERTY 7.2

If at any point a ROM_EXT is invalidated the mask_ROM must proceed to validate the next
ROM_EXT .

Assumptions

• A ROM_EXT is valid if the associated ROM_EXT manifest contains an identifier that is nonzero, a valid signa-
ture, a valid public key, and if the verification of the signature succeeds using the RSASSA-PKCS1-V1_5-
VERIFY function.

• If a ROM_EXT is validated, executed, and then returns, mask_ROM does not try to validate and execute
another ROM_EXT . Instead mask_ROM executes the fail_rom_ext_terminated function in the boot
policy and then terminates.

Verification

Line 491 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

491 __CPROVER_postcondition(__current_rom_ext > i || (i + 1) == rom_exts_to_try.

↪→ size || __boot_policy_stop ,

492 "Postcondition PROPERTY 7: rom_ext INVALIDATED => we check the next rom_ext if

↪→ any left and no boot policy instructed stop");

. . . . . .

The __current_rom_ext is the ROM_EXT that was last tried to be validated by mask_ROM . The __boot_
policy_stop (set at line 614 in mask_rom.c ) is a Boolean indicating whether a ROM_EXT was validated,

called, and then returned, resulting in mask_ROM returning as well.

The __CPROVER_postcondition succeeds and asserts that if the ith ROM_EXT was invalid, then mask_ROM tried

to validate a later ROM_EXT (this is the first clause). However, mask_ROM did not have to try and validate a later
ROM_EXT if all ROM_EXT were invalid (i.e. the ith ROM_EXT is the last and is invalid) since that is not possible

(this is the second clause). But mask_ROM should also not continue and try to validate a later ROM_EXT if some
earlier ROM_EXT was validated, called, and returned since mask_ROM should then return (this is the last clause).

5.11.3 Results

The CBMC results state that the two user-defined assertions succeed. The reachability checks ensure that the
assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

An invalidated ROM_EXT is never called.

mask_ROM will proceed to validate the next ROM_EXT if the current is invalid and it is not the last
ROM_EXT .
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mask_ROM does not try to validate the next ROM_EXT if the current was validated and called. Even if the
ROM_EXT returns.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 7, as it satisfies SUBPROPERTY 7.1 and
SUBPROPERTY 7.2 under the associated assumptions.

5.12 PROPERTY 8

“If validation fails for all the ROM_EXTs , mask_ROM must execute the fail function provided by
the boot policy.”

5.12.1 Assumptions

• A ROM_EXT is valid if the associated ROM_EXT manifest contains an identifier that is nonzero, a valid signa-
ture, a valid public key, and if the verification of the signature succeeds using the RSASSA-PKCS1-V1_5-
VERIFY function.

• The fail function in the boot policy is equal to the __func_fail .

• The __func_fail function is a reasonable abstraction of the fail function.

void __func_fail() {

__boot_failed_called[__current_rom_ext] = 1;

} //used for CBMC

5.12.2 Verification

Line 494 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

494 __CPROVER_postcondition(__imply(i < __current_rom_ext , !__boot_failed_called[i

↪→ ]),

495 "Postcondition PROPERTY 8: A rom_ext (not the last one) fails => fail func is

↪→ not called");

. . . . . .

The __CPROVER_postcondition at line 494 succeeds and asserts that if the ROM_EXT is invalidated, and the

ROM_EXT is not the last ROM_EXT being processed by mask_ROM , then the fail function in the boot policy
should not have been called, as a later ROM_EXT might succeed validation. __boot_failed_called is an array
of size MAX_ROM_EXTS , it documents whether the fail function was called from mask_ROM when validating the
ith ROM_EXT .

Line 497 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

55



5.13. PROPERTY 9

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

497 __CPROVER_postcondition(__imply(i == __current_rom_ext , __boot_failed_called[i

↪→ ]),

498 "Postcondition PROPERTY 8: Last rom_ext fail => fail func has been called");

. . . . . .

The __CPROVER_postcondition at line 497 succeeds and asserts that if the last ROM_EXT being processed by

mask_ROM was invalidated, the fail function in the boot policy was called after mask_ROM processed that
ROM_EXT .

5.12.3 Results

The CBMC results state that all of the two user-defined assertions succeed. The reachability checks show that all
of the assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the
entire reachable state space. This means that:

The fail function in the boot policy is guaranteed to be executed when all ROM_EXTs are invalidated.

The fail function in the boot policy is guaranteed to only be executed when all ROM_EXTs are invali-
dated.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 8 under the assumptions in Section 5.12.1.

5.13 PROPERTY 9

“The entire flash must be covered by a PMP region at the initialization of mask_ROM . The PMP
region must be locked and restricted to read-only access.”

5.13.1 Assumptions

• The external PMP_WRITE_REGION function is out of scope of the mask_ROM boot code and thus we model
it to mock a PMP region based on the inputs given.

• If PMP_WRITE_REGION is called with 15 as the first parameter, it will create a PMP region covering the
entire flash.

5.13.2 Verification

Line 245 in mask_rom.c :

245 void PMP_enable_memory_protection() {

246 //Apply PMP region 15 to cover entire flash

247 PMP_WRITE_REGION( 15, 1, 0, 0, 1);

248 // Region Read Write Execute Locked

249

250 __register_pmp_region(-1, 15, 1, 0, 0, 1);

251 __REACHABILITY_CHECK

252 }
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The PMP_enable_memory_protection function applies PMP region #15 that is read-only and locked and cov-

ers the entire flash. When it is called by mask_ROM , it is registered that PMP region #15 has been applied in the
process of validating a given ROM_EXT (line 250). The applied PMP regions are registered in an array.

Line 540 in mask_rom.c :

529 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try){

. . . . . .

540 __CPROVER_precondition(__help_all_pmp_inactive(),

541 "Precondition PROPERTY 9: All PMP regions should be unset at beginning of mask_rom.");

. . . . . .

The __CPROVER_precondition at line 540 succeeds and asserts that at the initialization of mask_ROM before
it begins validating ROM_EXTs , no PMP regions have been applied.

Line 548 in mask_rom.c :

529 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try){

. . . . . .

543 PMP_enable_memory_protection();

544

545 //Step 2.iii

546 for (int i = 0; i < rom_exts_to_try.size; i++) {

547

548 __CPROVER_assert(__help_check_pmp_region(i, 15, 1, 0, 0, 1),

549 "PROPERTY 9: PMP region 15 should be R and L.");

. . . . . .

The __CPROVER_assert at line 548 succeeds and asserts that before mask_ROM starts validating ROM_EXTs ,
PMP region #15 has been applied correctly.

Line 467 and 500, in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

. . . . . .

467 __CPROVER_postcondition(__help_check_pmp_region(i, 15, 1, 0, 0, 1),

468 "Postcondition PROPERTY 9: PMP region 15 should be R and L, when rom_ext was

↪→ validated.");

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

500 __CPROVER_postcondition(__help_check_pmp_region(i, 15, 1, 0, 0, 1),

501 "Postcondition PROPERTY 9: PMP region 15 should be R and L. Even if rom_ext

↪→ was invalidated.");

. . . . . .

The postconditions at line 467 and 500 assert that independently of the ROM_EXT being validated or not, PMP
region #15 should have been applied in the process of validating them. Both of these succeed.
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5.13.3 Results

The CBMC results state that all of the four user-defined assertions pass. The reachability checks ensure that the
assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

No PMP regions are applied before executing mask_ROM .

PMP region #15 is applied correctly to be locked and only facilitates reading before starting to validate
ROM_EXT manifests.

PMP region #15 is applied correctly to be locked and only facilitates reading in the process of validating
all ROM_EXT manifest, independently of their validity.

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 9 under the assumptions in Section 5.13.1.

5.14 PROPERTY 10

“If a ROM_EXT is validated then mask_ROM must create a PMP region covering the
ROM_EXT memory, that is locked and that allows for read and execution access.”

5.14.1 Assumptions

• A ROM_EXT is valid if the associated ROM_EXT manifest contains an identifier that is nonzero, a valid signa-
ture, a valid public key, and if the verification of the signature succeeds using the RSASSA-PKCS1-V1_5-
VERIFY function.

• The external PMP_WRITE_REGION function is out of scope of the mask_ROM boot code and thus we model
it to mock a PMP region based on the inputs given.

• If PMP_WRITE_REGION is called with 0 as the first parameter, it will create a PMP region covering the
memory of the ROM_EXT image.

5.14.2 Verification

Line 236 in mask_rom.c :

236 void PMP_unlock_rom_ext() {

237 //Read, Execute, Locked the address space of the ROM extension image

238 PMP_WRITE_REGION( 0, 1, 0, 1, 1);

239 // Region Read Write Execute Locked

240 __register_pmp_region(__current_rom_ext , 0, 1, 0, 1, 1);

241 __REACHABILITY_CHECK

242 }

The PMP_unlock_rom_ext function applies PMP region #0 that is read-only, executable, and locked and covers
the ROM_EXT image. When it is called by mask_ROM , it is registered that PMP region #0 has been applied in the
process of validating a given ROM_EXT . This happens at line 240.

Line 605 in mask_rom.c :

529 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try){

. . . . . .

546 for (int i = 0; i < rom_exts_to_try.size; i++) {
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. . . . . .

600 __validated_rom_exts[i] = 1; //for CBMC

601

602 //Step 2.iii.d

603 PMP_unlock_rom_ext();

604

605 __CPROVER_assert(__help_check_pmp_region(i, 0, 1, 0, 1, 1),

606 "PROPERTY 10: PMP region 0 should be R, E, and L.");

. . . . . .

The __CPROVER_assert at line 605 succeeds and asserts that when the given ROM_EXT has been validated and
PMP_unlock_rom_ext has been called, PMP region #0 has been applied correctly.

Line 470 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

. . . . . .

470 __CPROVER_postcondition(__help_check_pmp_region(i, 0, 1, 0, 1, 1),

471 "Postcondition PROPERTY 10: If rom_ext was valided, then PMP region 0 should

↪→ be R, E, and L.");

. . . . . .

The __CPROVER_postcondition at line 470 succeeds and asserts that if the given ROM_EXT was validated, then
PMP region #0 has been applied correctly.

Line 503 in mask_rom.c :

411 void PROOF_HARNESS() {

. . . . . .

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

. . . . . .

443 if (__validated_rom_exts[i]) { //validated - try to boot from

. . . . . .

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

. . . . . .

503 __CPROVER_postcondition(__help_check_pmp_region(i, 0, 0, 0, 0, 0),

504 "Postcondition PROPERTY 10: If rom_ext was invalid, PMP region 0 should not be

↪→ R, E, W, and L.");

. . . . . .

The __CPROVER_postcondition at line 503 succeeds and asserts that if the given ROM_EXT was invalidated,
PMP region #0 was not applied in the process of verifying that ROM_EXT .

5.14.3 Results

The CBMC results state that all of the three user-defined assertions succeed. The reachability checks ensure that
the assertions are indeed reachable. All of the unwinding assertions pass, meaning that CBMC searches the entire
reachable state space. This means that:

PMP region #0 is applied correctly by mask_ROM to be locked and only allow for read and execution if
the validation of the given ROM_EXT succeeds.
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PMP region #0 is not applied in the process of validating an invalid ROM_EXT .

Thus the mask_ROM boot code is proven to fully satisfy PROPERTY 10 under the assumptions in Section 5.14.1.

5.15 Conclusion

The verification results apply to the model of the boot code described in Section 5.1 and under the assumptions
listed throughout Chapter 5. First of all, the results show that the mask_ROM boot code is free of bugs that can
be automatically detected by CBMC (PROPERTY 0). Note that this cannot be considered proof as it does not
guarantee the absence of all bugs. In addition, the results show that PROPERTY 1-10 listed in Section 4.3 are
verified to be satisfied.

The goal “G1: The hash of the ROM_EXT image and the signature of the hash must be validated by mask_ROM
before it is executed to ensure authenticity and integrity of the image.” can be considered satisfied as all the deriv-
able security properties (PROPERTY 1-8) are proven to be satisfied.

The goals “G10, G11, G12: Only software with write/read/execute access to some memory section may modi-
fy/read/execute it.” cannot be considered fully satisfied as the derived properties (PROPERTY 9 and 10) are not
exhaustive but those relevant to the system under verification. We believe that full verification of G10, G11, and
G12, must take into consideration a larger system under verification that requires a detailed model of the memory,
CPU, and PMP hardware component.
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Chapter 6

System Attacks

A part of our P9 project [1] was to create a threat analysis of OpenTitan based on the STRIDE model [49]. In this
chapter, we will enumerate potential attacks on the mask_ROM boot code and model them in CBMC to see their
implication on the security properties.

We will only consider attacks that require physical access to the OpenTitan chip. We assume that while the
mask_ROM boot code is executed, the OpenTitan chip cannot be accessed by other means than physical. We

consider it to be impossible to replace hardware components of the OpenTitan chip with malicious hardware
components. The attacks considered are only the attacks that are possible by reading memory, modifying memory,
exploiting a backdoor, or by affecting the hardware modules. The physical attacks could be performed by alpha
particle blasting, hitting the device, heating, etc.

6.1 Attack on the HMAC Module

The HMAC module is responsible for calculating the hash used during the signature verification process performed
by the OTBN module. In this section, we will investigate the consequences of a successful attack on the HMAC
module that results in wrong outputs. The means of such an attack could be physical attacks or exploitation of a
backdoor. Such an attack requires physical access to the OpenTitan at some point. Additionally, it would require
knowing how and where to attack the HMAC physically or how to exploit a possible backdoor. The consequence
of such an attack could be that it returns, wrongfully, what corresponds to the decrypted signature. In order to
succeed, the HMAC must be altered to return precisely the value of the decrypted signature. However, acquiring
a valid key and signature pair is not impossible, as it is present in all of OpenTitan’s ROM_EXT manifest stored in
flash. Additionally, for malicious code to be executed, it requires flashing a malicious ROM_EXT with a valid pub-
lic key. If the attacker succeeds in making the HMAC module return a hash that matches the decrypted signature,
it is possible to make a ROM_EXT manifest with an incorrect signature pass the signature verification step.

The attack is modeled by having the HMAC return either a nondeterministic hash or the decrypted signature. The
model of the attack is seen in Listing 6.1.

char* __compromised_decrypt;

char* OTBN_RSA_3072_DECRYPT(int32_t* signature , int signature_len , int32_t exponent ,

↪→ int32_t* modulus) {

char* decrypt = malloc(256 / 8); //model it to be ok for PROPERTY 5

__compromised_decrypt = decrypt;

return decrypt;

}

BYTE* HMAC_SHA2_256(BYTE mes[], int size, rom_ext_manifest_t __current_rom_ext_mf) {

int __nondet_int;

switch (__nondet_int)

{

case 1:

return malloc(256 / 8);

default:
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return __compromised_decrypt; //Attacker spoofs the hash, knowing the public key (

↪→ and thus target decrypt)

}

}

Listing 6.1: Model of HMAC occasionally returning the decrypted signature.

Results: Verifying the attacked mask_ROM boot code produces the same CBMC output as verifying the non-
attacked mask_ROM boot code. Thus, the assertions we have included so far do not detect such an attack on the
HMAC nor indicate a change in functionality of the mask_ROM boot code. This is because we have no assertions
about the correctness of the hash (as those would be computationally impossible) and are thus unable to prove or
disprove the correctness of the HMAC output with CBMC (cf. PROPERTY 3).

6.2 Attack on the OTBN Module

The OTBN is responsible for verifying the signature in the ROM_EXT manifest against a public key and an ex-
pected message. In this section, we will investigate the consequences of a successful attack on the OTBN module
that results in wrong outputs. The means of such an attack could be physical attacks or exploitation of a backdoor.
Such an attack requires physical access to the OpenTitan at some point. The likeliness of such an attack to be
successful is low since it would require knowing how and where to attack the OTBN physically or how to exploit
a possible backdoor. The consequence of this attack could be that it falsely validates an invalid ROM_EXT manifest
or invalidates a valid ROM_EXT manifest.

This attack is modeled by having the OTBN module occasionally validate an invalid ROM_EXT manifest and
occasionally invalidate a valid ROM_EXT manifest. The model of the attack is seen in Listing 6.2.

1 int OTBN_RSASSA_PKCS1_V1_5_VERIFY(int32_t exponent , int32_t* modulus, char* message, int

↪→ message_len , int32_t* signature , int signature_len , rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

. . . . . .

3 if (cmp_hash_decrypt(hash, decrypt, 256 / 8) == 0){

4 __valid_signature[__current_rom_ext] = 1;

5 int __nondet_int;

6 switch (__nondet_int)

7 {

8 case 1:

9 return 0;

10 default:

11 return 1;

12 }

13 }

14 else{

15 __valid_signature[__current_rom_ext] = 0;

16 int __nondet_int;

17 switch (__nondet_int)

18 {

19 case 1:

20 return 0;

21 default:

22 return 1;

23 }

24 }

25 }

Listing 6.2: Model of Faulty OTBN.
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Results: When verifying the attacked mask_ROM boot code, the following assertions now fail:

• Postcondition PROPERTY 5: rom_ext VALIDATED => signature valid

• Postcondition: rom_ext INVALIDATED => signature or key is invalid

• Postcondition PROPERTY 5: rom_ext INVALIDATED => signature invalid or not checked

• PROPERTY 5: Stop verification if signature is invalid

• PROPERTY 5: Continue verification if signature is valid

Thus, when the OTBN can falsely invalidate a valid ROM_EXT manifest and falsely validate an invalid ROM_EXT
manifest, the CBMC verification shows that:

A validated ROM_EXT manifest can have an invalid signature.

A ROM_EXT manifest can be invalidated even though it has a valid key and a valid signature.

Verification may continue even if a ROM_EXT manifest has an invalid signature.

Verification may stop even if the signature in the ROM_EXT manifest is valid.

Thus, according to our assertions, the mask_ROM boot code is vulnerable to an attack on the OTBN module that
would compromise PROPERTY 5.

6.3 Attack on the Whitelist

This attack consists of adding a key to the whitelist defining the set of valid public keys. The consequence of this
attack is that it is possible to execute a malicious ROM_EXT that is signed with the new key. To successfully per-
form this attack would require physical access to the OpenTitan chip, knowledge of where the whitelist is stored,
and being able to flash a new ROM_EXT manifest.

The attack is modeled by creating a new tampered whitelist which the boot code uses for verification. This
whitelist is modeled to always contain the public key for a given ROM_EXT manifest. In this way, both malicious
and benevolent ROM_EXTs pass the whitelist check. The CBMC assertions will, however, still use the original
whitelist. The model of the attack is seen in Listing 6.3.

1 static pub_key_t __pkey_whitelist[MAX_ROM_EXTS];

2 static pub_key_t __tampered_pkey_whitelist[MAX_ROM_EXTS];

. . . . . .

4

5 pub_key_t* ROM_CTRL_get_whitelist() {

6 return __tampered_pkey_whitelist;

7 }

. . . . . .

9

10 extern int check_pub_key_valid(pub_key_t rom_ext_pub_key){ //assumed behavior behavior of

↪→ check func

11 pub_key_t* pkey_whitelist = ROM_CTRL_get_whitelist();

. . . . . .

13 }

14

15 int __help_pkey_valid(pub_key_t pkey) {

. . . . . .
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17 pub_key_t* pkey_whitelist = __pkey_whitelist; //Note it uses the original whitelist (

↪→ untampered)

. . . . . .

19 }

. . . . . .

21

22 void PROOF_HARNESS() {

23 boot_policy_t boot_policy = FLASH_CTRL_read_boot_policy();

24 rom_exts_manifests_t rom_exts_to_try = FLASH_CTRL_rom_ext_manifests_to_try(boot_policy

↪→ );

. . . . . .

26 for(int i = 0; i < MAX_ROM_EXTS; i++){

27 __tampered_pkey_whitelist[i] = rom_exts_to_try.rom_exts_mfs[i].pub_signature_key;

↪→ //WHITELIST TAMPERING ATTACK

28 }

. . . . . .

Listing 6.3: Model of the tampered whitelist attack.

Results:
When verifying the attacked mask_ROM boot code, the following assertions fail:

• PROPERTY 2: Continue verification if key is valid

• Postcondition PROPERTY 2: rom_ext VALIDATED => valid key

• Postcondition PROPERTY 5: If sign or key is invalid then verify signature function is not called

In addition, the check_pub_key_valid function never returns false. Therefore, the assertion: “PROPERTY 2:
Stop verification if key is invalid”, is never reached and succeeds by default.

This means that when the whitelist has been tampered, the CBMC verification shows that:

It is not guaranteed that verification is only continued if the key in the ROM_EXT manifest is valid.

It is not guaranteed that verification is not stopped if a ROM_EXT manifest contains an invalid key.

It is not guaranteed that all validated ROM_EXT manifest contains a valid key.

It is not guaranteed that the signature verification function is only called if the signature and key of a
ROM_EXT manifest are valid.

Thus, according to our assertions, the mask_ROM boot code is vulnerable to an attack on the whitelist, which
would compromise PROPERTY 2 and 5.

6.4 Attack on the Boot Policy Failure Functions

The failure functions in the boot policy define the functionality that should be executed if all ROM_EXT manifests
fail validation or if a ROM_EXT returns. The first fail function is called fail , the second is called fail_rom_
ext_terminated . Modifying the failure functions could lead to executing malicious code. Below is a list of

reasonable ways of guaranteeing that the validation process always fails for all ROM_EXT manifests. Thereby
guaranteeing that the fail is always executed:

• Overwriting the whitelist in mask ROM. This way, none of the ROM_EXT will contain a valid public key.

• Change the public key in all ROM_EXT manifests to an invalid key.
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• Change the signature in all ROM_EXT manifests to an invalid signature.

For performing any of these attacks, the attacker needs physical access to the OpenTitan chip, knowledge of where
to flash a new boot policy to, and be able to alter the whitelist or the ROM_EXT manifests.

Note that the fact that a malicious boot policy can go undetected is a security risk in itself. The reason is that even
without performing any of the three attacks mentioned above, the failure functions could be executed, leading to
the execution of malicious code.

The fail functions attack is modeled by making fail point to dangerFunctionALL and fail_rom_ext_
terminated point to dangerFunctionRETURN . The danger functions represent malicious code.

The consequence of this attack is that if all ROM_EXT manifest naturally fail validation or a validated ROM_EXT
returns, then malicious code will be executed. The model of the attack is seen in Listing 6.4.

1 void dangerFunctionALL() {

2 __REACHABILITY_CHECK

3 }

4

5 void dangerFunctionRETURN(rom_ext_manifest_t _) {

6 __REACHABILITY_CHECK

7 }

8

9 void PROOF_HARNESS() {

10 boot_policy_t boot_policy = FLASH_CTRL_read_boot_policy();

11 rom_exts_manifests_t rom_exts_to_try = FLASH_CTRL_rom_ext_manifests_to_try(boot_policy

↪→ );

. . . . . .

13 __CPROVER_assume(boot_policy.fail == &dangerFunctionALL);

14 __CPROVER_assume(boot_policy.fail_rom_ext_terminated == &dangerFunctionRETURN);

. . . . . .

16 mask_rom_boot(boot_policy , rom_exts_to_try);

. . . . . .

Listing 6.4: Overwriting failure functions in boot policy.

Results: When verifying the attacked mask_ROM boot code, the following assertions fail:

• Precondition: Assumes boot_policy.fail has ok address

• Precondition: Assumes boot_policy.fail_rom_ext_terminated has ok address

• Postcondition PROPERTY 6: (valid rom_ext and rom_ext code return) => that rom_ext term func is called

• Postcondition PROPERTY 8: Last rom_ext fail => fail func has been called

All of these assertions fail for trivial reasons. They all assert for a hardcoded address value, which we now have
changed by assumption.

The reachability checks in dangerFunctionALL and dangerFunctionRETURN are triggered. Thus the tam-
pered fail functions can be executed. An important thing to note is the absence of failing reachability checks in
the boot code. This means that the attack is not caught by the boot code. This verifies that the boot policy can be
altered without the boot code halting verification.

When the failure functions in the boot policy have been attacked, the CBMC verification shows that:
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If all ROM_EXT manifests fail validation or a ROM_EXT returns, then malicious code is executed.

A tampered boot policy is not caught by any boot code integrity checks.

Thus, according to our assertions, the mask_ROM boot code is vulnerable to an attack on the boot policy, which
compromises the security of the OpenTitan chip and PROPERTY 6 and 8.

6.5 Attack on the PMP Module

An attack on the PMP module would consist of making it malfunction by performing a physical attack on it. A
possible consequence of such an attack would be to alter the PMP regions to have other properties than originally,
e.g. to wrongly allow for execution. The current abstraction level of the boot code is not affected by the PMP
regions. Therefore, the effect of modeling a PMP module attack is not detectable. For this reason, the attack is not
modeled.

6.6 Attack on the Image Code Length

This attack consists of tampering the ROM_EXT manifest by modifying the image_length variable. This could
lead to e.g. loading more than the ROM_EXT image code resulting in executing malicious code or making all
ROM_EXT manifests fail validation.

There are two different scenarios when tampering the image_length variable:

• If the ROM_EXT manifest is signed with an image_length greater than the actual length of the image_

code then the mask_ROM boot code will access memory out of image_code bounds but may still suc-
ceed verification. It may however cause some memory errors.

• If the ROM_EXT manifest is signed with an image_length less than the actual length of the image_code
then the message to be verified against the signature will exclude the last part of the image_code . This
will allow the last part of the image_code to be altered and still pass verification.

The attack is modeled in the PROOF_HARNESS by allocating image code memory of length __image_actual_

size which can be different from the image_length field in the manifest. We will first consider the case

where the image_length is greater than the actual image_code length in Listing 6.5.

1 void PROOF_HARNESS() {

. . . . . .

3 for(int i = 0; i < rom_exts_to_try.size; i++){

4 __CPROVER_assume(MAX_IMAGE_LENGTH >= rom_exts_to_try.rom_exts_mfs[i].image_length

↪→ && rom_exts_to_try.rom_exts_mfs[i].image_length > 0);

5

6 int __image_actual_size;

7

8 __CPROVER_assume(__image_actual_size <= MAX_IMAGE_LENGTH);

9

10 __CPROVER_assume(__image_actual_size < rom_exts_to_try.rom_exts_mfs[i].

↪→ image_length);

11

12 rom_exts_to_try.rom_exts_mfs[i].image_code = malloc(sizeof(char) *

↪→ __image_actual_size);

. . . . . .

Listing 6.5: Model of image_length attack where image_length is greater than the actual size.
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Results: When verifying the attacked mask_ROM boot code the following assertions fail:

• Precondition: Assumes rom ext image code is readable

• memcpy source region readable

• pointer outside dynamic object bounds

The last two of these assertions are automatically generated as part of PROPERTY 0. The precondition is the only
user-defined assertion that fails. CBMC only captures this attack as giving memory errors.

When the image_length is greater than the actual length of the image_code , the CBMC verification shows
that:

An image length greater than the actual size of the image code causes memory errors.

We will now consider the case where image_length is less than the actual image_code length in Listing 6.6.

1 void PROOF_HARNESS() {

. . . . . .

3 for(int i = 0; i < rom_exts_to_try.size; i++){

4 __CPROVER_assume(MAX_IMAGE_LENGTH >= rom_exts_to_try.rom_exts_mfs[i].image_length

↪→ && rom_exts_to_try.rom_exts_mfs[i].image_length > 0);

5

6 int __image_actual_size;

7

8 __CPROVER_assume(__image_actual_size <= MAX_IMAGE_LENGTH);

9

10 __CPROVER_assume(__image_actual_size > rom_exts_to_try.rom_exts_mfs[i].

↪→ image_length);

11

12 rom_exts_to_try.rom_exts_mfs[i].image_code = malloc(sizeof(char) *

↪→ __image_actual_size);

. . . . . .

Listing 6.6: Model of image_length attack where image_length is less than the actual size.

Results: When verifying the attacked mask_ROM boot code with image_length less than the actual image_
code length no assertions fail.

None of our assertions fail because the reachability has not changed and because our model does not label image
code as either benevolent or malicious. The image code, signature, hash, and decrypt are all nondeterministic and
thus, all values are considered. Therefore, we can not distinguish malicious data from benevolent data and asser-
tion checking for this case of malicious code execution is not possible with our model. Note that none of the reach-
ability checks are unreachable as a result of the attack. Therefore the boot code can validate a ROM_EXT manifest
with tampered image code and image length.

When the image_length is less than the actual length of the image_code , the CBMC verification shows that:

A ROM_EXT manifest with tampered image code and with image length less than the actual size of the
image code can pass verification.

The mask_ROM boot code is unable to validate the image code length.

Thus, according to our assertions, the mask_ROM boot code is vulnerable to an attack on the ROM_EXT manifests’
image_length .
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Chapter 7

Discussion

In this chapter, we present a discussion of the CBMC tool and the CBMC verification. In addition we will compare
our work with CBMC to SV106f21’s work with UPPAAL.

7.1 Verifying C using C

We have previously worked with the tool UPPAAL. In UPPAAL, a system is verified by expressing it in terms of a
timed automata, that is, in a language different from the one used to implement the system. It is usually desirable
that the verification should be easier or less error prone than implementing the system. However, in CBMC, the
verification of C code often requires adding C code. We have experienced issues with this. As an example, we
have a function named __help_check_rom_ext_manifest which purpose is to help verify the correctness of

check_rom_ext_manifest . The case is that the code constituting the check_rom_ext_manifest function
is a subset of the code that constitutes __help_check_rom_ext_manifest . This means that we verify if
unverified code works by asserting if it behaves the same as a, more or less, copy of itself. A solution could be
that a function such as check_rom_ext_manifest is verified against a function contract instead, as this would
require writing the expected behavior with a different syntax/semantic1.

7.2 Modeling of Hardware and Co-verification

Co-verification of software and hardware is about verifying software and hardware together [50]. The purpose
is to verify that the implementation of the software and the hardware works as expected when running together.
Co-verification is achieved by creating a software model of the hardware and running the software together with
that.

There is a significant difference in the necessary degree of detail for verifying the use of hardware versus the hard-
ware implementation. If the goal is to verify the use of hardware, like it is in our case, then the best approach is to
abstract away most hardware details. In our experience, it is beneficial to use nondeterminism as an abstraction for
hardware functionality. Nondeterminism allows for an over-approximation of the output. This means that if the
software satisfies the properties using this model of a hardware component, then it should also do it using a more
detailed model with a “narrower output range”. Thus a more detailed model would not create a stronger proof for
this case. Instead, it would increase the verification complexity and increase the risk of modeling errors.

If the goal is to verify meaningful properties for a hardware component, the model must be precise and accurately
represent the implementation. I.e. there should be a small modeling gap to create a strong proof. To create such
a model it is necessary to know possible inputs, outputs, and internal implementation. In reality, hardware is very
complex as its domain is within the physical world. As an example, consider the notion of bits. In the digital
world, a bit is either 0 or 1. In the world of transistor-transistor logic, a bit is either no higher than 0.4 volts (rep-
resents 0) or no less than 2.6 volts (represents 1) [51]. This is not to say that modeling of hardware is impossible
and should never be done. Instead, we argue that modeling of hardware is difficult, and one needs first to consider

1Function contracts is, however, not fully implemented in CBMC
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what needs to be verified and then determine what is necessary to detail and what can be abstracted away.

We have in our work experimented with two different approaches for hardware modeling. These are by CBMC
nondeterminism and by creating a C model. Most models of hardware will require both approaches to some
degree. CBMC nondeterminism is fast to implement, creates an over-approximation, and does not require any
implementation knowledge. It does, however, inhibit verifying any properties about the hardware itself. It should
be possible to model most hardware (if not all) as a C model. C models are of varying detail in our experience and
it is difficult to determine if the model is correct. C models allow for both over-, under-, and exact-approximation.
Under-approximation should be avoided as this allows for false negatives. In retrospect, our C models abstract
away all hardware details and most of them include some nondeterminism.

An approach that we have not tried is to create a model from the hardware Verilog or SystemVerilog. The Open-
Titan GitHub consists of 65.2% SystemVerilog and is thus assumed to have a considerable part of the hardware
implementation in SystemVerilog.

A tool such as v2c [52] or Verilator [53] can generate a C/C++ model of the SystemVerilog code. The v2c tool
(developed by the people behind EBMC/CBMC) converts Verilog into ANSI-C. The Verilator tool converts Ver-
ilog into C++. We have no experience ourselves with the output of these tools but the authors of [52] denote that
the Verilator output code is large. A concern could be that this auto generated code is complex and unreadable
making it unsuited for manual integration into the model of the software.

The EBMC verification tool takes either Verilog or SystemVerilog as input and computes a C model from it using
v2c. The EBMC input can be decorated with C code to model higher level abstractions as well. The EBMC engine
uses the CBMC engine for SAT encoding and satisfiability checking [54]. We have no experience with EBMC but
the tool sounds promising for co-verification of hardware properties.

7.3 Modeling Cryptographic Functionality

Cryptographic functions like hashing, encryption, and decryption are particularly difficult functions to verify. Most
cryptographic functions that are used for security are computationally heavy. The set of possible inputs can be
enormous. As an example, the HMAC hash in OpenTitan takes as input the entire image code. Thus the possible
inputs that verification needs to consider can create a large state space.

In order to verify that the cryptographic functions are correct, we would need to verify that the mapping of input
to output is correct. Verifying that a cryptographic output is correct is hard. Cryptographic functions used for
security purposes are designed to have an unpredictable mathematical link between input and output. So in order
to verify the output, one would need to compare it to the output of a function guaranteed to be correct. For such a
function to exist, it would need to be verified to be correct, which is just as hard to verify.

Another approach to verify a cryptographic function would be to verify the output against a known valid test
vector. This approach is closer to testing than verification. For a cryptographic function to be considered correct
with this approach, the test vector will need to be complete. For most cryptographic functions, such a test vector
does not exist as the existence of such would be in direct conflict with the general design goals of cryptographic
functions.

69



7.4. CORRECTNESS OF CBMC

7.4 Correctness of CBMC

CBMC’s internal representation of the C code can be considered a model. The model is either incorrect or more
abstract if, at any point, the translation to or verification of this internal model is incorrect or loses detail. As
mentioned in Section 1.5, the verification performed by CBMC is only valid as long as the transformation from C
code to GOTO, SSA, and SAT instance is correct. In addition, the used SAT solver (currently MiniSAT) also has
to be correct in order for the verification results to be considered proof. We have not found any documentation
containing proof of the correctness of CBMC.

7.5 Our Experience with CBMC

In the previous semester, we worked with Frama-C to verify C programs. We experienced that there was a steep
learning curve for learning how to properly use Frama-C. We believe this to be caused by how detailed function
contracts and loop invariants must be for Frama-C to perform meaningful verification. In contrast, we experienced
that it was relatively easy to verify the same or similar properties using CBMC. This might be attributed to either
that assertions are easier to express in CBMC, that CBMC does not need loop invariants to perform verification,
or that the experience gained from Frama-C made it easier to use CBMC.

There are still some difficult parts of using CBMC and certain things to be aware of. It was not easy to fully un-
derstand how all constructs work in CBMC, e.g. precisely what effects __CPROVER_assume has. Documentation
about the underlying CBMC theory is, in our opinion, lackluster or in some cases nonexistent. When performing
verification, it takes some effort to understand the output of --trace when debugging errors. It is important to
have a reachability check on all branches with assertions to avoid false negatives (false assertions that succeed).
Also, certain constructs do not behave intuitively, e.g. the output of __CPROVER_OBJECT_SIZE on a pointer
inside a struct will return the size of the struct and not the memory object pointed to by the pointer.

Lastly, we lacked the feature to individually specify loop bounds for different executions of the same loop. E.g.
consider the case where a program calls memcmp 10 times. In 9 of the cases, it is enough to unroll the loop in
memcmp 10 times, but it requires 700 unrolls in 1 of the cases. This results in that all 10 cases have to be unrolled

700 times, significantly increasing the verification time. What we did to solve this was that we created our own
memcmp functions, a version for each call to memcmp (cf. memory_compare.c in Appendix C.7). This allowed

us to individually specify a bound for each comparison.

7.6 Comparison with SV106f21

SV106f21 has also been working on formally verifying the security and correctness of the co-developed C boot
code for the mask_ROM boot stage [8]. In this section, we will compare our results to theirs in terms of the overall
model of the system and verification results.

UPPAAL is a tool that is arguably easier to use for abstract modeling. This can be seen in the work of the
SV106f21 group who have modeled a substantially larger part of the hardware components used in relation to the
mask_ROM boot stage than we have.

As mentioned in Section 5.15 we have been able to fully verify G1 and partially G10, G11, and G12. Compared
to SV106f21, they have been able to fully verify G1 and G9 and partially G3, G8, G10, G11, and G12. We believe
that this is in part due to their modeled system being larger as it includes more hardware components.
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CBMC verification is done directly on the C code. This suggests that there is less of a modeling gap compared to
a more abstract UPPAAL model. This allows us to consider more security properties and attacks concerning G1,
suggesting that our verification is in a smaller scope but in greater detail. In addition, we are also able to verify
the absence of software bugs.
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Chapter 8

Conclusion

In this chapter, we will conclude on our work with verifying the developed OpenTitan mask_ROM boot code seen
in Appendix B using the formal verification tool CBMC. The conclusions are made with the problem statement in
mind:

Is the mask_ROM code correct and safe?

To solve this problem, we first investigated the formal verification tool CBMC. The documentation of CBMC is
sparse. As part of our project, we have made efforts to formalize a near complete description of all the theoretical
steps of CBMC verification, which can be seen in Chapter 1. We go into detail about the GOTO conversions,
translation of CBMC constructs, unwinding, SSA transformation, computation of bit-vector equation C and P,
removal of pointer dereferences, conversion to SAT formula on CNF form, and solving of SAT problems.

We created a tutorial describing the practical aspect of CBMC in Chapter 2. In the tutorial, we cover CBMC
annotations, verification arguments, execution arguments, CBMC modeling techniques, best practices, etc.

To evaluate the safety and correctness of the OpenTitan mask_ROM boot code, we specified 11 security properties
(PROPERTIES 0-10 cf. Section 4.3) derived from the security goals from our previous work [1]. These security
properties cover various aspects of safety and correctness, such as the absence of errors and compliance to the
OpenTitan design. Note that these properties are not exhaustive for the security goals.

To verify the mask_ROM boot code, we make a set of assumptions that allow us to verify these security proper-
ties. Under these assumptions, we find that all of the security properties (PROPERTIES 0-10) are satisfied. Thus
by CBMC proof, we can state that the mask_ROM boot code fully satisfies security goal “G1: The hash of the
ROM_EXT image and the signature of the hash must be validated by mask_ROM before it is executed to ensure

authenticity and integrity of the image.” and partly satisfies security goals “G10, G11, G12: Only software with
write/read/execute access to some memory section may modify/read/execute it.”.

In order to further evaluate the safety of the mask_ROM boot code, we investigate the implications of a series of
hardware/physical attacks. As a result, we found four vulnerabilities in the boot code. An attack on the OTBN
module can comprise PROPERTY 5. An attack on the whitelist can compromise PROPERTY 2 and 5. An attack
on the boot policy failure functions can compromise PROPERTY 6 and 8. An attack on the ROM_EXT manifest
image length can compromise PROPERTY 0 and can lead to the execution of malicious code, but this is not caught
by any of the security properties.

In conclusion, we find CBMC to be an adequate tool for verifying security properties of low level C code even
though we found no proof of the soundness and completeness. We find that improvements can be made to the
OpenTitan mask_ROM boot code to mitigate the implications of the hardware/physical attacks investigated.
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Chapter 9

Future Work

At the time of writing, the OpenTitan project is not finished. The current model of the mask_ROM boot code is
mainly based on a pseudo code implementation of the mask_ROM boot code created by OpenTitan. As with other
aspects of OpenTitan, the mask_ROM boot code is subject to change. This means that if the documentation about
the mask_ROM boot code is significantly changed, our model and the verification results become outdated. Despite
this, we believe that it would be interesting and beneficial to keep a model of OpenTitan up to date. The reason is
that OpenTitan is not a simple project and such a model could be beneficial to detect bugs. E.g. we detected the
need to validate the boot policy, which is not done in the current version of the boot code. The end goal would be
to have a model of the finished OpenTitan chip and thereby be able to formally verify properties about the final
version of OpenTitan. Verifying a model of the entire OpenTitan chip could lead to scalability/performance issues
as the produced SAT instance becomes large. A possible solution would be to try out an experimental but scalable
version of CBMC [55, app. 1].

The OpenTitan project consists of 65.2% SystemVerilog. We therefore also believe that a reasonable activity could
be to try and use the EBMC tool to formally verify properties about the SystemVerilog code. Another approach for
verifying the SystemVerilog code, could be to write C models of the SystemVerilog programs, test the C models,
and verify if the C models and SystemVerilog programs are consistent, using CBMC [16]. The EBMC tool uses
the tool v2c to make a trustworthy translation of Verilog or SystemVerilog code to ANSI-C code [52]. Therefore,
an approach could also be to use the v2c tool on the SystemVerilog code of OpenTitan and verify the output
ANSI-C code together with the developed boot code.

As mentioned in Appendix D, the CBMC team is in the process of developing the feature to write function con-
tracts. When that feature is finished, the current C code should be annotated. There are certain clauses of the
function contract that cannot easily be asserted using standard assertions, e.g. the __CPROVER_assigns clause.
Using function contracts could also alleviate the problem of verifying C code using C code, mentioned in Sec-
tion 7.1. In addition, there are other features of CBMC that we have not explored, such as options for specifying
details about the platform in terms of architecture and operating system and a feature for generating a test-suite.
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Appendix A

Developed Boot Code

The entire C code for the mask_ROM boot stage, developed by us and group SV106f21, can be seen below in
Listing A.1. The boot code is based on information found in [38], [41], [40], [46] . The code can also be found on
GitHub at [56].

1 /*

2 EARLY DRAFT

3 Not compiled or otherwise tested for ANSI C compliance

4

5 Written based on:

6 sw/device/rom_ext/docs/manifest.md

7 sw/device/mask_rom/mask_rom.c

8 sw/device/mask_rom/docs/index.md

9 doc/security/specs/secure_boot/index.md

10

11 */

12 #include <string.h>

13 #include <stdint.h>

14

15 // The identifier that a correct manifest must contain.

16 // Based on https://github.com/lowRISC/opentitan/blob/master/sw/device/silicon_creator/

↪→ mask_rom/mask_rom.c

17 static const uint_32 expectedRomExtIdentifier = 0x4552544F;

18

19 //Represents a public key

20 typedef struct pub_key_t{

21 int32_t modulus[96];

22 int32_t exponent;

23 //something else

24 } pub_key_t;

25

26 //Struct representing rom_ext_manifest

27 typedef struct rom_ext_manifest_t{

28 uint32_t identifier;

29

30 //address of entry point

31 //note: not part of the doc on the rom_ext_manifest , but included based on code seen

↪→ in mask_rom.c

32 int* entry_point;

33

34 int32_t signature[96];

35

36 //public part of signature key

37 pub_key_t pub_signature_key;

38 char image_code[];

39 } rom_ext_manifest_t;

40

41

42 //Returned by rom_ext_manifests_to_try

43 typedef struct rom_exts_manifests_t{

44 int size;
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45 rom_ext_manifest_t rom_exts_mfs[];

46 } rom_exts_manifests_t;

47

48

49 //Represents boot policy

50 typedef struct boot_policy_t{

51 int identifier;

52

53 //which rom_ext_slot to boot

54 int rom_ext_slot;

55

56 //what to do if all ROM Ext are invalid

57 void (*fail) ();

58

59 //what to do if the ROM Ext unexpectedly returns

60 void (*fail_rom_ext_terminated) (rom_ext_manifest_t);

61

62 } boot_policy_t;

63

64

65

66 typedef void(rom_ext_boot_func)(void); // Function type used to define function pointer to

↪→ the entry of the ROM_EXT stage.

67

68

69 extern int* READ_FLASH(int start, int end);

70

71 boot_policy_t read_boot_policy()

72 {

73 int* data = READ_FLASH(0, sizeof(boot_policy_t));

74

75 boot_policy_t boot_policy;

76

77 memcpy(&boot_policy.identifier , data, sizeof(boot_policy.identifier));

78 memcpy(&boot_policy.rom_ext_slot , data + 1, sizeof(boot_policy.rom_ext_slot));

79 memcpy(&boot_policy.fail, data + 2, sizeof(boot_policy.fail));

80

81 return boot_policy;

82 }

83

84 rom_exts_manifests_t rom_ext_manifests_to_try(boot_policy_t boot_policy) {}

85

86 pub_key_t read_pub_key(rom_ext_manifest_t current_rom_ext_manifest) {

87 return current_rom_ext_manifest.pub_signature_key;

88 }

89

90 int check_pub_key_valid(pub_key_t rom_ext_pub_key); // returns a boolean value

91

92 extern char* HASH(char* message);

93

94 extern int RSA_VERIFY(pub_key_t pub_key, char* message, int32_t* signature);

95

96 int verify_rom_ext_signature(pub_key_t rom_ext_pub_key , rom_ext_manifest_t manifest) {

97 return RSA_VERIFY(rom_ext_pub_key , HASH(manifest.image_code), manifest.signature); //0

↪→ or 1

98 }

99

100 extern void WRITE_PMP_REGION(uint8_t reg, uint8_t r, uint8_t w, uint8_t e, uint8_t l);

101

102 void pmp_unlock_rom_ext() {

103 //Read, Execute, Locked the address space of the ROM extension image
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104 WRITE_PMP_REGION( 0, 1, 0, 1, 1);

105 // Region Read Write Execute Locked

106 }

107

108 int final_jump_to_rom_ext(rom_ext_manifest_t current_rom_ext_manifest) { // Returns a

↪→ boolean value.

109 //Execute rom ext code step 2.iii.e

110 rom_ext_boot_func* rom_ext_entry = (rom_ext_boot_func*)current_rom_ext_manifest.

↪→ entry_point;

111

112 rom_ext_entry();

113

114 //if rom_ext returns, we should return false

115 //and execute step 2.iv.

116 return 0;

117 }

118

119 void boot_failed(boot_policy_t boot_policy) {

120 boot_policy.fail();

121 }

122

123 void boot_failed_rom_ext_terminated(boot_policy_t boot_policy , rom_ext_manifest_t

↪→ current_rom_ext_manifest) {

124 boot_policy.fail_rom_ext_terminated(current_rom_ext_manifest);

125 }

126

127

128 int check_rom_ext_manifest(rom_ext_manifest_t manifest) {

129 return manifest.identifier == expectedRomExtIdentifier; // If the identifier !=

↪→ expectedRomExtIdentifier , the manifest is invalid.

130 }

131

132 void mask_rom_boot(void)

133 {

134 boot_policy_t boot_policy = read_boot_policy();

135

136 rom_exts_manifests_t rom_exts_to_try = rom_ext_manifests_to_try(boot_policy);

137

138 //MÃěske step 2.iii

139 for (int i = 0; i < rom_exts_to_try.size; i++)

140 {

141 rom_ext_manifest_t current_rom_ext_manifest = rom_exts_to_try.rom_exts_mfs[i];

142

143 if (!check_rom_ext_manifest(current_rom_ext_manifest)) {

144 continue;

145 }

146

147 //Step 2.iii.b

148 pub_key_t rom_ext_pub_key = read_pub_key(current_rom_ext_manifest);

149

150 //Step 2.iii.b

151 if (!check_pub_key_valid(rom_ext_pub_key)) {

152 continue;

153 }

154

155 //Step 2.iii.b

156 if (!verify_rom_ext_signature(rom_ext_pub_key , current_rom_ext_manifest)) {

157 continue;

158 }

159

160 //Step 2.iii.d
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161 pmp_unlock_rom_ext();

162

163 //Step 2.iii.e

164 if (!final_jump_to_rom_ext(current_rom_ext_manifest)) {

165 //Step 2.iv

166 boot_failed_rom_ext_terminated(boot_policy , current_rom_ext_manifest);

167 }

168 } // End for

169

170 //Step 2.iv

171 boot_failed(boot_policy);

172 }

Listing A.1: The code corresponds to the mask_ROM stage.
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Appendix B

Developed Boot Code for CBMC Verifica-
tion

This chapter contains the boot code we verify in this report. It can be found at [48] on the branch “base-boot-
code”. This boot code is based on the boot code developed by us and SV106f21 described in Appendix A. The
boot code that is verified in this report is contained in the following four files: mask_rom.h , mask_rom.c ,
hmac.h , and hmac.c .

B.1 mask_rom.h

1 #ifndef MASK_ROM_H

2 #define MASK_ROM_H

3

4 #include <string.h>

5 #include <stdint.h>

6 #include <malloc.h>

7 #include <stdlib.h>

8 #include <memory.h>

9

10 #define MAX_ROM_EXTS 1

11 #define RSA_SIZE 96

12 #define PMP_REGIONS 16

13 #define MAX_IMAGE_LENGTH 2

14

15

16 //Represents a signature.

17 typedef struct signature_t{

18 int32_t value[RSA_SIZE];

19 //something else

20 } signature_t;

21

22

23 //Represents a public key

24 typedef struct pub_key_t{

25 int32_t exponent;

26 int32_t modulus[RSA_SIZE];

27 //something else

28 } pub_key_t;

29

30

31 //Struct representing rom_ext_manifest

32 typedef struct rom_ext_manifest_t{

33 uint32_t identifier;

34

35 signature_t signature;

36

37 //public part of signature key

38 pub_key_t pub_signature_key;
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B.2. MASK_ROM.C

39 uint32_t image_length;

40 char* image_code;

41 } rom_ext_manifest_t;

42

43

44 //Returned by rom_ext_manifests_to_try

45 typedef struct rom_exts_manifests_t {

46 int size;

47 rom_ext_manifest_t rom_exts_mfs[MAX_ROM_EXTS];

48 } rom_exts_manifests_t;

49

50

51 //Represents boot policy

52 typedef struct boot_policy_t {

53 int identifier;

54

55 //which rom_ext_slot to boot

56 int rom_ext_slot;

57

58 //what to do if all ROM Ext are invalid

59 char* fail;

60

61 //what to do if the ROM Ext unexpectedly returns

62 char* fail_rom_ext_terminated;

63

64 } boot_policy_t;

65

66 #endif

Listing B.1: The content of the mask_rom.h file

B.2 mask_rom.c

1 /*

2 OpenTitan bootcode,

3 written based on:

4 sw/device/rom_ext/docs/manifest.md

5 sw/device/mask_rom/mask_rom.c

6 sw/device/mask_rom/docs/index.md

7 doc/security/specs/secure_boot/index.md

8 */

9

10 #include "hmac.h"

11 #include "mask_rom.h"

12

13 #define PKEY_WHITELIST_SIZE 5

14

15 BYTE hmac_key[HMAC_KEY_SIZE];

16

17 // Function type used to define function pointer to the entry of the ROM_EXT stage.

18 typedef void(rom_ext_boot_func)(void);

19

20 // Function type for entry point of boot policy fail function

21 typedef void(fail_func)(void);

22

23 // Function type for entry point of boot policy fail rom ext terminated function.

24 typedef void(fail_rom_ext_terminated_func)(rom_ext_manifest_t);

25

26
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B.2. MASK_ROM.C

27 extern boot_policy_t FLASH_CTRL_read_boot_policy();

28

29

30 extern rom_exts_manifests_t FLASH_CTRL_rom_ext_manifests_to_try(boot_policy_t boot_policy)

↪→ ;

31

32

33 extern char* OTBN_RSA_3072_DECRYPT(int32_t* signature , int signature_len , int32_t exponent

↪→ , int32_t* modulus);

34

35

36 extern pub_key_t* ROM_CTRL_get_whitelist();

37

38

39 extern void PMP_WRITE_REGION(uint8_t reg, uint8_t r, uint8_t w, uint8_t e, uint8_t l);

40

41

42 int verify_rom_ext_signature(pub_key_t rom_ext_pub_key , rom_ext_manifest_t manifest) {

43

44 int bytes =

45 sizeof(manifest.pub_signature_key) + sizeof(manifest.image_length) + manifest.

↪→ image_length;

46

47 char message[bytes];

48

49 memcpy(

50 message,

51 &manifest.pub_signature_key ,

52 sizeof(manifest.pub_signature_key)

53 );

54 memcpy(

55 message + sizeof(manifest.pub_signature_key),

56 &manifest.image_length ,

57 sizeof(manifest.image_length)

58 );

59 memcpy(

60 message + sizeof(manifest.pub_signature_key) + sizeof(manifest.image_length),

61 manifest.image_code ,

62 manifest.image_length

63 );

64

65 signature_t signature = manifest.signature;

66

67 int result = OTBN_RSASSA_PKCS1_V1_5_VERIFY(rom_ext_pub_key.exponent , rom_ext_pub_key.

↪→ modulus, message, bytes, signature.value, RSA_SIZE, manifest);

68

69 return result; //0 or 1

70 }

71

72

73 int OTBN_RSASSA_PKCS1_V1_5_VERIFY(int32_t exponent , int32_t* modulus, char* message, int

↪→ message_len , int32_t* signature , int signature_len) {

74

75 if (signature_len != RSA_SIZE) {

76 return 0;

77 }

78

79 char* decrypt = OTBN_RSA_3072_DECRYPT(signature , signature_len , exponent , modulus);

80 char* hash = HMAC_SHA2_256(hmac_key , message, message_len); //message_len in bytes

81

82

83



B.2. MASK_ROM.C

83 if (memcmp(hash, decrypt, 256 / 8) == 0){

84 return 1; //verified

85 }

86 else{

87 return 0;

88 }

89 }

90

91

92 pub_key_t read_pub_key(rom_ext_manifest_t current_rom_ext_manifest) {

93 return current_rom_ext_manifest.pub_signature_key;

94 }

95

96

97 int check_pub_key_valid(pub_key_t rom_ext_pub_key){ //assumed behavior behavior of check

↪→ func

98 pub_key_t* pkey_whitelist = ROM_CTRL_get_whitelist();

99

100 for (int i = 0; i < PKEY_WHITELIST_SIZE; i++) {

101 if (pkey_whitelist[i].exponent != rom_ext_pub_key.exponent)

102 continue;

103

104 int j = 0;

105 for (j = 0; j < RSA_SIZE; j++) {

106 if (pkey_whitelist[i].modulus[j] != rom_ext_pub_key.modulus[j])

107 break;

108 }

109

110 //if j == RSA_SIZE , then loop ran to completion and all entries were equal

111 if (j == RSA_SIZE)

112 return 1;

113 }

114

115 return 0;

116 }

117

118

119 void PMP_unlock_rom_ext() {

120 //Read, Execute, Locked the address space of the ROM extension image

121 PMP_WRITE_REGION( 0, 1, 0, 1, 1);

122 // Region Read Write Execute Locked

123 }

124

125

126 void PMP_enable_memory_protection() {

127 //Apply PMP region 15 to cover entire flash

128 PMP_WRITE_REGION( 15, 1, 0, 0, 1);

129 // Region Read Write Execute Locked

130 }

131

132

133 int final_jump_to_rom_ext(rom_ext_manifest_t current_rom_ext_manifest) { // Returns a

↪→ boolean value.

134 //Execute rom ext code step 2.iii.e

135 rom_ext_boot_func* rom_ext_entry = (rom_ext_boot_func*)current_rom_ext_manifest.

↪→ image_code;

136

137 rom_ext_entry();

138

139 //if rom_ext returns, we should return false

140 //and execute step 2.iv.
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141 return 0;

142 }

143

144

145 void boot_failed(boot_policy_t boot_policy) {

146 fail_func* fail_func_entry = (fail_func*)boot_policy.fail;

147 fail_func_entry();

148 }

149

150

151 void boot_failed_rom_ext_terminated(boot_policy_t boot_policy , rom_ext_manifest_t

↪→ current_rom_ext_manifest) {

152 fail_rom_ext_terminated_func* fail_func_entry = (fail_rom_ext_terminated_func*)

↪→ boot_policy.fail_rom_ext_terminated;

153 fail_func_entry(current_rom_ext_manifest);

154 }

155

156

157 int check_rom_ext_manifest(rom_ext_manifest_t manifest) {

158 if (manifest.identifier == 0)

159 return 0;

160 for (int i = 0; i < RSA_SIZE; i++) {

161 if (manifest.signature.value[i] != 0)

162 return 1; // If the signature[i] != 0 for one i, the manifest is valid.

163 }

164 return 0;

165 }

166

167

168 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try ){

169

170 boot_policy_t boot_policy = FLASH_CTRL_read_boot_policy();

171 rom_exts_manifests_t rom_exts_to_try = FLASH_CTRL_rom_ext_manifests_to_try(boot_policy

↪→ );

172

173 PMP_enable_memory_protection();

174

175 //Step 2.iii

176 for (int i = 0; i < rom_exts_to_try.size; i++) {

177

178 rom_ext_manifest_t current_rom_ext_manifest = rom_exts_to_try.rom_exts_mfs[i];

179

180 signature_t signature = current_rom_ext_manifest.signature;

181

182 if (!check_rom_ext_manifest(current_rom_ext_manifest)) {

183 continue;

184 }

185

186 //Step 2.iii.b

187 pub_key_t rom_ext_pub_key = read_pub_key(current_rom_ext_manifest);

188

189 //Step 2.iii.b

190 if (!check_pub_key_valid(rom_ext_pub_key)) {

191 continue;

192 }

193

194 //Step 2.iii.b

195 if (!verify_rom_ext_signature(rom_ext_pub_key , current_rom_ext_manifest)) {

196 continue;

197 }

198

85



B.3. HMAC.H

199 //Step 2.iii.d

200 PMP_unlock_rom_ext();

201

202 //Step 2.iii.e

203 if (!final_jump_to_rom_ext(current_rom_ext_manifest)) {

204

205 //Step 2.iv

206 boot_failed_rom_ext_terminated(boot_policy , current_rom_ext_manifest);

207 return;

208 }

209 } // End for

210

211 //Step 2.iv

212 boot_failed(boot_policy);

213 }

Listing B.2: The content of the mask_rom.c file

B.3 hmac.h

1 /*********************************************************************

2 * Filename: sha256.h

3 * Author: Brad Conte (brad AT bradconte.com)

4 * Copyright:

5 * Disclaimer: This code is presented "as is" without any guarantees.

6 * Details: Defines the API for the corresponding SHA1 implementation.

7 *********************************************************************/

8

9 #ifndef SHA256_H

10 #define SHA256_H

11

12 /*************************** HEADER FILES ***************************/

13 #include <stddef.h>

14 #include "mask_rom.h"

15

16 /****************************** MACROS ******************************/

17 #define SHA2_256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest

18 #define HMAC_KEY_SIZE 32 // HMAC key is 32 bytes

19 /**************************** DATA TYPES ****************************/

20 typedef unsigned char BYTE; // 8-bit byte

21 typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit

↪→ machines

22

23 typedef struct {

24 BYTE data[64];

25 WORD datalen;

26 unsigned long long bitlen;

27 WORD state[8];

28 } SHA2_256_CTX;

29

30 /*********************** FUNCTION DECLARATIONS **********************/

31 void HMAC_SHA2_256_init(SHA2_256_CTX *ctx);

32 void HMAC_SHA2_256_update(SHA2_256_CTX *ctx, const BYTE data[], size_t len);

33 void HMAC_SHA2_256_final(SHA2_256_CTX *ctx, BYTE hash[]);

34 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int size);

35

36 #endif // SHA256_H

Listing B.3: The content of the hmac.h file
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B.4 hmac.c

1 /*********************************************************************

2 //////////////////////// ORIGINAL FILE ///////////////////////////////

3 * Filename: sha2_256.c

4 * Original

5 Author: Brad Conte (brad AT bradconte.com)

6 * Copyright:

7 * Disclaimer: This code is presented "as is" without any guarantees.

8 * Details: Implementation of the SHA-256 hashing algorithm.

9 SHA-256 is one of the three algorithms in the SHA2

10 specification. The others, SHA-384 and SHA-512, are not

11 offered in this implementation.

12 Algorithm specification can be found here:

13 * http://csrc.nist.gov/publications/fips/fips180 -2/fips180 -2

↪→ withchangenotice.pdf

14 This implementation uses little endian byte order.

15

16 * Modified By: Jacob Gosch and Kristoffer Jensen

17 *********************************************************************/

18

19 /*************************** HEADER FILES ***************************/

20 #include <stdlib.h>

21 #include <memory.h>

22 #include "hmac.h"

23 #include "memory_compare.h"

24 /****************************** MACROS ******************************/

25 #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))

26 #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

27

28 #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))

29 #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

30 #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))

31 #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))

32 #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

33 #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

34

35 /**************************** VARIABLES *****************************/

36 static const WORD k[64] = {

37 0x428a2f98 ,0x71374491 ,0xb5c0fbcf ,0xe9b5dba5 ,0x3956c25b ,0x59f111f1 ,0x923f82a4 ,0

↪→ xab1c5ed5 ,

38 0xd807aa98 ,0x12835b01 ,0x243185be ,0x550c7dc3 ,0x72be5d74 ,0x80deb1fe ,0x9bdc06a7 ,0

↪→ xc19bf174 ,

39 0xe49b69c1 ,0xefbe4786 ,0x0fc19dc6 ,0x240ca1cc ,0x2de92c6f ,0x4a7484aa ,0x5cb0a9dc ,0

↪→ x76f988da ,

40 0x983e5152 ,0xa831c66d ,0xb00327c8 ,0xbf597fc7 ,0xc6e00bf3 ,0xd5a79147 ,0x06ca6351 ,0

↪→ x14292967 ,

41 0x27b70a85 ,0x2e1b2138 ,0x4d2c6dfc ,0x53380d13 ,0x650a7354 ,0x766a0abb ,0x81c2c92e ,0

↪→ x92722c85 ,

42 0xa2bfe8a1 ,0xa81a664b ,0xc24b8b70 ,0xc76c51a3 ,0xd192e819 ,0xd6990624 ,0xf40e3585 ,0

↪→ x106aa070 ,

43 0x19a4c116 ,0x1e376c08 ,0x2748774c ,0x34b0bcb5 ,0x391c0cb3 ,0x4ed8aa4a ,0x5b9cca4f ,0

↪→ x682e6ff3 ,

44 0x748f82ee ,0x78a5636f ,0x84c87814 ,0x8cc70208 ,0x90befffa ,0xa4506ceb ,0xbef9a3f7 ,0

↪→ xc67178f2

45 };

46

47 /*********************** FUNCTION DEFINITIONS ***********************/

48 void HMAC_SHA2_256_transform(SHA2_256_CTX *ctx, const BYTE data[])

49 {
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50 WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];

51

52 for (i = 0, j = 0; i < 16; ++i, j += 4)

53 m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);

54 for ( ; i < 64; ++i)

55 m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];

56

57 a = ctx->state[0];

58 b = ctx->state[1];

59 c = ctx->state[2];

60 d = ctx->state[3];

61 e = ctx->state[4];

62 f = ctx->state[5];

63 g = ctx->state[6];

64 h = ctx->state[7];

65

66 for (i = 0; i < 64; ++i) {

67 t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];

68 t2 = EP0(a) + MAJ(a,b,c);

69 h = g;

70 g = f;

71 f = e;

72 e = d + t1;

73 d = c;

74 c = b;

75 b = a;

76 a = t1 + t2;

77 }

78

79 ctx->state[0] += a;

80 ctx->state[1] += b;

81 ctx->state[2] += c;

82 ctx->state[3] += d;

83 ctx->state[4] += e;

84 ctx->state[5] += f;

85 ctx->state[6] += g;

86 ctx->state[7] += h;

87 }

88

89 void HMAC_SHA2_256_init(SHA2_256_CTX *ctx)

90 {

91 ctx->datalen = 0;

92 ctx->bitlen = 0;

93 ctx->state[0] = 0x6a09e667;

94 ctx->state[1] = 0xbb67ae85;

95 ctx->state[2] = 0x3c6ef372;

96 ctx->state[3] = 0xa54ff53a;

97 ctx->state[4] = 0x510e527f;

98 ctx->state[5] = 0x9b05688c;

99 ctx->state[6] = 0x1f83d9ab;

100 ctx->state[7] = 0x5be0cd19;

101 }

102

103 void HMAC_SHA2_256_update(SHA2_256_CTX *ctx, const BYTE data[], size_t len)

104 {

105 WORD i;

106

107 for (i = 0; i < len; ++i) {

108 ctx->data[ctx->datalen] = data[i];

109 ctx->datalen++;

110 if (ctx->datalen == 64) {
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111 HMAC_SHA2_256_transform(ctx, ctx->data);

112 ctx->bitlen += 512;

113 ctx->datalen = 0;

114 }

115 }

116 }

117

118 void HMAC_SHA2_256_final(SHA2_256_CTX *ctx, BYTE hash[])

119 {

120 WORD i;

121

122 i = ctx->datalen;

123

124 // Pad whatever data is left in the buffer.

125 if (ctx->datalen < 56) {

126 ctx->data[i++] = 0x80;

127 while (i < 56)

128 ctx->data[i++] = 0x00;

129 }

130 else {

131 ctx->data[i++] = 0x80;

132 while (i < 64)

133 ctx->data[i++] = 0x00;

134 HMAC_SHA2_256_transform(ctx, ctx->data);

135 memset(ctx->data, 0, 56);

136 }

137

138 // Append to the padding the total message's length in bits and transform.

139 ctx->bitlen += ctx->datalen * 8;

140 ctx->data[63] = ctx->bitlen;

141 ctx->data[62] = ctx->bitlen >> 8;

142 ctx->data[61] = ctx->bitlen >> 16;

143 ctx->data[60] = ctx->bitlen >> 24;

144 ctx->data[59] = ctx->bitlen >> 32;

145 ctx->data[58] = ctx->bitlen >> 40;

146 ctx->data[57] = ctx->bitlen >> 48;

147 ctx->data[56] = ctx->bitlen >> 56;

148 HMAC_SHA2_256_transform(ctx, ctx->data);

149

150 // Since this implementation uses little endian byte ordering and SHA uses big endian,

151 // reverse all the bytes when copying the final state to the output hash.

152 for (i = 0; i < 4; ++i) {

153 hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;

154 hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;

155 hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;

156 hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;

157 hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;

158 hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;

159 hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;

160 hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;

161 }

162 }

163

164 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int mes_size){

165

166 BYTE* buff = malloc(SHA2_256_BLOCK_SIZE * sizeof(BYTE));

167 SHA2_256_CTX ctx;

168

169 BYTE* key_mes_pad = malloc(HMAC_KEY_SIZE * sizeof(BYTE) + mes_size * sizeof(BYTE)); //

↪→ key âĹě mes

170 memcpy(
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171 key_mes_pad ,

172 key,

173 HMAC_KEY_SIZE

174 );

175 memcpy(

176 key_mes_pad + HMAC_KEY_SIZE ,

177 mes,

178 mes_size

179 );

180

181 HMAC_SHA2_256_init(&ctx);

182 HMAC_SHA2_256_update(&ctx, key_mes_pad , HMAC_KEY_SIZE + mes_size);

183 HMAC_SHA2_256_final(&ctx, buff);

184

185 return buff;

186 }

Listing B.4: The content of the hmac.c file
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Appendix C

CBMC Annotated Boot Code

This chapter contains the boot code, CBMC annotations, and proof harness used for verifying property 0-10
mentioned in Section 4.3. It is based on the boot code in Appendix A. The content of this chapter is the files found
on GitHub at [48].

C.1 mask_rom.h

1 #ifndef MASK_ROM_H

2 #define MASK_ROM_H

3

4 #include <string.h>

5 #include <stdint.h>

6 #include <malloc.h>

7 #include <stdlib.h>

8 #include <memory.h>

9

10 #define __REACHABILITY_CHECK __CPROVER_assert(0, "Reachability check, should always

↪→ \033[0;31mFAIL\033[0m");

11 #define MAX_ROM_EXTS 1

12 #define RSA_SIZE 96

13 #define PMP_REGIONS 16

14 #define MAX_IMAGE_LENGTH 2 //necessary constraint in order to terminate CBMC verification

15

16

17 //Represents a signature. Needed for CBMC OBJECT_SIZE to see if signature is of ok size

18 typedef struct signature_t{

19 int32_t value[RSA_SIZE];

20 //something else

21 } signature_t;

22

23

24 //Represents a public key

25 typedef struct pub_key_t{

26 int32_t exponent;

27 int32_t modulus[RSA_SIZE];

28 //something else

29 } pub_key_t;

30

31

32 //Struct representing rom_ext_manifest

33 typedef struct rom_ext_manifest_t{

34 uint32_t identifier;

35

36 signature_t signature;

37

38 //public part of signature key

39 pub_key_t pub_signature_key;

40 uint32_t image_length;

41 char* image_code;

42 } rom_ext_manifest_t;
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43

44

45 //Returned by rom_ext_manifests_to_try

46 typedef struct rom_exts_manifests_t {

47 int size;

48 rom_ext_manifest_t rom_exts_mfs[MAX_ROM_EXTS];

49 } rom_exts_manifests_t;

50

51

52 //Represents boot policy

53 typedef struct boot_policy_t {

54 int identifier;

55

56 //which rom_ext_slot to boot

57 int rom_ext_slot;

58

59 //what to do if all ROM Ext are invalid

60 char* fail;

61

62 //what to do if the ROM Ext unexpectedly returns

63 char* fail_rom_ext_terminated;

64

65 } boot_policy_t;

66

67

68

69 //Represents a pmp region

70 typedef struct __PMP_region_t {

71 int identifier;

72

73 //Locked, Read, Write, Execute

74 int R;

75 int W;

76 int E;

77 int L;

78

79 } __PMP_region_t;

80

81

82 typedef struct __PMP_regions_t {

83 //There are 16 PMP regions (0...15)

84 __PMP_region_t pmp_regions[PMP_REGIONS];

85 } __PMP_regions_t;

86

87 #endif

Listing C.1: The content of the mask_rom.h file

C.2 mask_rom.c

1 /*

2 CBMC Verification of OpenTitan bootcode ,

3 written based on:

4 sw/device/rom_ext/docs/manifest.md

5 sw/device/mask_rom/mask_rom.c

6 sw/device/mask_rom/docs/index.md

7 doc/security/specs/secure_boot/index.md

8 */

9
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10 #include "hmac.h"

11 #include "mask_rom.h"

12 #include "memory_compare.h"

13

14 //HMAC key in OTP/Keymanager

15 BYTE __hmac_key[HMAC_KEY_SIZE];

16

17 //Whitelist in ROM

18 #define __PKEY_WHITELIST_SIZE 1

19 pub_key_t __pkey_whitelist[__PKEY_WHITELIST_SIZE];

20

21 //for CBMC

22 int __current_rom_ext = 0;

23 rom_ext_manifest_t __current_rom_ext_mf;

24 int __boot_policy_stop = 0;

25 int __rom_ext_called[MAX_ROM_EXTS] = { }; //used for CBMC postcondition

26 int __rom_ext_fail_func[MAX_ROM_EXTS] = { }; //for CBMC PROPERTY 6

27 int __boot_failed_called[MAX_ROM_EXTS] = { };

28 int __validated_rom_exts[MAX_ROM_EXTS] = { }; //used for CBMC postcondition

29 int __rom_ext_returned[MAX_ROM_EXTS] = { }; //used for CBMC postcondition

30 int __verify_signature_called[MAX_ROM_EXTS] = { };

31 int __imply(int a, int b) { return a ? b : 1; }

32 int __valid_signature[MAX_ROM_EXTS] = { }; //result of verify_rom_ext_signature

33

34

35 //The configured PMP regions for each rom ext.

36 __PMP_regions_t __rom_ext_pmp_region[MAX_ROM_EXTS];

37

38 // Function type used to define function pointer to the entry of the ROM_EXT stage.

39 typedef void(rom_ext_boot_func)(void);

40

41 // Function type for entry point of boot policy fail function

42 typedef void(fail_func)(void);

43

44 // Function type for entry point of boot policy fail rom ext terminated function.

45 typedef void(fail_rom_ext_terminated_func)(rom_ext_manifest_t);

46

47

48 int verify_rom_ext_signature(pub_key_t rom_ext_pub_key , rom_ext_manifest_t manifest) {

49 __CPROVER_precondition(MAX_IMAGE_LENGTH >= manifest.image_length && manifest.

↪→ image_length > 0,

50 "Precondition: Assumes rom ext image code is < 10 and > 0");

51

52 __CPROVER_precondition(__CPROVER_r_ok(manifest.image_code , manifest.image_length),

53 "Precondition: Assumes rom ext image code is readable");

54

55 __verify_signature_called[__current_rom_ext] = 1;

56

57 int bytes =

58 sizeof(manifest.pub_signature_key) + sizeof(manifest.image_length) + manifest.

↪→ image_length;

59

60 char message[bytes];

61

62 memcpy(

63 message,

64 &manifest.pub_signature_key ,

65 sizeof(manifest.pub_signature_key)

66 );

67 memcpy(

68 message + sizeof(manifest.pub_signature_key),
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69 &manifest.image_length ,

70 sizeof(manifest.image_length)

71 );

72 memcpy(

73 message + sizeof(manifest.pub_signature_key) + sizeof(manifest.image_length),

74 manifest.image_code ,

75 manifest.image_length

76 );

77

78 //Otherwise OBJECT_SIZE returns size of manifest and not signature.

79 signature_t signature = manifest.signature;

80

81 int result = OTBN_RSASSA_PKCS1_V1_5_VERIFY(rom_ext_pub_key.exponent , rom_ext_pub_key.

↪→ modulus, message, bytes, signature.value, RSA_SIZE, manifest);

82

83 return result; //0 or 1

84 }

85

86

87 int __is_valid_params(int32_t exponent, int32_t* modulus, char* message, int message_len ,

↪→ int32_t* signature , int signature_len , rom_ext_manifest_t __current_rom_ext_mf) {

88

89 if (exponent != __current_rom_ext_mf.pub_signature_key.exponent)

90 return 0;

91

92 if (cmp_modulus(modulus,

93 __current_rom_ext_mf.pub_signature_key.modulus,

94 RSA_SIZE*sizeof(int32_t)) != 0)

95 return 0;

96

97 if (cmp_signature(signature ,

98 __current_rom_ext_mf.signature.value,

99 RSA_SIZE * sizeof(int32_t)) != 0)

100 return 0;

101

102 //Message is: pkey+image_length+image_code

103 if (cmp_key(message,

104 &__current_rom_ext_mf.pub_signature_key ,

105 sizeof(__current_rom_ext_mf.pub_signature_key)) != 0)

106 return 0;

107

108 if (cmp_image_len(

109 message + sizeof(__current_rom_ext_mf.pub_signature_key),

110 &__current_rom_ext_mf.image_length ,

111 sizeof(__current_rom_ext_mf.image_length)) != 0)

112 return 0;

113

114 if (cmp_image_code(

115 message + sizeof(__current_rom_ext_mf.pub_signature_key) + sizeof(

↪→ __current_rom_ext_mf.image_length),

116 __current_rom_ext_mf.image_code ,

117 __current_rom_ext_mf.image_length) != 0)

118 return 0;

119

120

121 return 1;

122 }

123

124

125 char* OTBN_RSA_3072_DECRYPT(int32_t* signature , int signature_len , int32_t exponent ,

↪→ int32_t* modulus) {
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126 char* decrypt = malloc(256 / 8); //model it to be ok for PROPERTY 5

127 return decrypt;

128 }

129

130 int OTBN_RSASSA_PKCS1_V1_5_VERIFY(int32_t exponent , int32_t* modulus, char* message, int

↪→ message_len , int32_t* signature , int signature_len , rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

131 __CPROVER_assert(__CPROVER_OBJECT_SIZE(message) == message_len ,

132 "PROPERTY 5: Formal parameter message_len lenght matches actual message length.");

133

134 __CPROVER_assert(__CPROVER_OBJECT_SIZE(signature) == 3072 / 8,

135 "PROPERTY 5: Signature to be verified is 3072-bits.");

136

137 __CPROVER_assert(__CPROVER_OBJECT_SIZE(signature) == signature_len * sizeof(int32_t),

138 "PROPERTY 5: Formal parameter signature lenght matches actual signature length.");

139

140 __CPROVER_assert(sizeof(exponent) == 32 / 8,

141 "PROPERTY 5: Public key exponent is 32 bits.");

142

143 __CPROVER_assert((sizeof(pub_key_t) - sizeof(exponent)) == 3072 / 8,

144 "PROPERTY 5: Public key modulus is 3072-bits.");

145

146 __CPROVER_assert(__is_valid_params(exponent, modulus, message, message_len , signature ,

147 signature_len , __current_rom_ext_mf),

148 "PROPERTY 5: Check that key, signature , and message matches those from the

↪→ manifest.");

149

150 __REACHABILITY_CHECK

151

152 if (signature_len != RSA_SIZE) {

153 __CPROVER_assert(signature_len * 32 != 3072,

154 "PROPERTY 5: Length checking: If the length of the signature is not 3072-bits,

↪→ stop.");

155 __REACHABILITY_CHECK // Not reachable atm

156

157 return 0;

158 }

159 __REACHABILITY_CHECK

160

161 char* decrypt = OTBN_RSA_3072_DECRYPT(signature , signature_len , exponent , modulus);

162 char* hash = HMAC_SHA2_256(__hmac_key , message, message_len , __current_rom_ext_mf); //

↪→ message_len in bytes

163

164 __CPROVER_assert(!__CPROVER_array_equal(decrypt, signature),

165 "PROPERTY 5: Decrypted signature is different from signature");

166

167 __CPROVER_assert(!__CPROVER_array_equal(hash, message),

168 "PROPERTY 5: Hash is different from original message");

169

170 __CPROVER_assert(__CPROVER_OBJECT_SIZE(decrypt) == 256 / 8,

171 "PROPERTY 5: Decrypted message is 256 bits");

172

173 __CPROVER_assert(__CPROVER_r_ok(decrypt, 256 / 8),

174 "PROPERTY 5: Decrypted message is in readable address");

175

176 __CPROVER_assert(__CPROVER_OBJECT_SIZE(hash) == 256 / 8,

177 "PROPERTY 3: Hash is 256 bits");

178

179 __CPROVER_assert(__CPROVER_r_ok(hash, 256 / 8),

180 "PROPERTY 3: hash is in readable address");

181
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182 if (cmp_hash_decrypt(hash, decrypt, 256 / 8) == 0){

183 __valid_signature[__current_rom_ext] = 1;

184 return 1; //verified

185 }

186 else{

187 __valid_signature[__current_rom_ext] = 0;

188 return 0;

189 }

190 }

191

192

193 boot_policy_t FLASH_CTRL_read_boot_policy() {}

194

195

196 rom_exts_manifests_t FLASH_CTRL_rom_ext_manifests_to_try(boot_policy_t boot_policy) {}

197

198

199 pub_key_t read_pub_key(rom_ext_manifest_t current_rom_ext_manifest) {

200 return current_rom_ext_manifest.pub_signature_key;

201 }

202

203 //Mocked function for reading pkey whitelist from maskrom.

204 pub_key_t* ROM_CTRL_get_whitelist() {

205 return __pkey_whitelist;

206 }

207

208

209 extern int check_pub_key_valid(pub_key_t rom_ext_pub_key){ //assumed behavior behavior of

↪→ check func

210 pub_key_t* pkey_whitelist = ROM_CTRL_get_whitelist();

211

212 for (int i = 0; i < __PKEY_WHITELIST_SIZE; i++) {

213 if (pkey_whitelist[i].exponent != rom_ext_pub_key.exponent)

214 continue;

215

216 int j = 0;

217 for (j = 0; j < RSA_SIZE; j++) {

218 if (pkey_whitelist[i].modulus[j] != rom_ext_pub_key.modulus[j])

219 break;

220 }

221

222 //if j == RSA_SIZE , then loop ran to completion and all entries were equal

223 if (j == RSA_SIZE)

224 return 1;

225 }

226

227 return 0;

228 }

229

230

231 extern void PMP_WRITE_REGION(uint8_t reg, uint8_t r, uint8_t w, uint8_t e, uint8_t l){

232 __REACHABILITY_CHECK

233 }

234

235

236 void PMP_unlock_rom_ext() {

237 //Read, Execute, Locked the address space of the ROM extension image

238 PMP_WRITE_REGION( 0, 1, 0, 1, 1);

239 // Region Read Write Execute Locked

240 __register_pmp_region(__current_rom_ext , 0, 1, 0, 1, 1);

241 __REACHABILITY_CHECK

96



C.2. MASK_ROM.C

242 }

243

244

245 void PMP_enable_memory_protection() {

246 //Apply PMP region 15 to cover entire flash

247 PMP_WRITE_REGION( 15, 1, 0, 0, 1);

248 // Region Read Write Execute Locked

249

250 __register_pmp_region(-1, 15, 1, 0, 0, 1);

251 __REACHABILITY_CHECK

252 }

253

254

255 void __register_pmp_region(int rom_ext, int pmp_id, int r, int w, int e, int l){

256 if (rom_ext == -1) {

257 //register PMP region for all rom exts.

258 for (int i = 0; i < MAX_ROM_EXTS; i++) {

259 __rom_ext_pmp_region[i].pmp_regions[pmp_id].identifier = pmp_id;

260 __rom_ext_pmp_region[i].pmp_regions[pmp_id].R = r;

261 __rom_ext_pmp_region[i].pmp_regions[pmp_id].W = w;

262 __rom_ext_pmp_region[i].pmp_regions[pmp_id].E = e;

263 __rom_ext_pmp_region[i].pmp_regions[pmp_id].L = l;

264 }

265 }

266 else {

267 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].identifier = pmp_id;

268 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].R = r;

269 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].W = w;

270 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].E = e;

271 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].L = l;

272 }

273 }

274

275

276 void __some_entry_func() { __rom_ext_called[__current_rom_ext] = 1; /*for CBMC PROPERTY 6

↪→ */ }

277

278

279 int final_jump_to_rom_ext(rom_ext_manifest_t current_rom_ext_manifest) { // Returns a

↪→ boolean value.

280 //This assumption causes reachability checks to succeed. If == is =, then they fail.

281 //__CPROVER_assume(current_rom_ext_manifest.image_code == &__some_entry_func); //for

↪→ cbmc

282 current_rom_ext_manifest.image_code = &__some_entry_func;

283 //Execute rom ext code step 2.iii.e

284 rom_ext_boot_func* rom_ext_entry = (rom_ext_boot_func*)current_rom_ext_manifest.

↪→ image_code;

285

286 __CPROVER_assert(rom_ext_entry == current_rom_ext_manifest.image_code ,

287 "PROPERTY 6: Correct entry point address.");

288

289 __REACHABILITY_CHECK

290

291 rom_ext_entry();

292

293 __rom_ext_returned[__current_rom_ext] = 1; //for CBMC PROPERTY 6

294

295 //if rom_ext returns, we should return false

296 //and execute step 2.iv.

297 return 0;

298 }
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299

300

301 void boot_failed(boot_policy_t boot_policy) {

302 __REACHABILITY_CHECK

303 fail_func* fail_func_entry = (fail_func*)boot_policy.fail;

304 fail_func_entry();

305 }

306

307

308 void boot_failed_rom_ext_terminated(boot_policy_t boot_policy , rom_ext_manifest_t

↪→ current_rom_ext_manifest) {

309 __REACHABILITY_CHECK

310 fail_rom_ext_terminated_func* fail_func_entry = (fail_rom_ext_terminated_func*)

↪→ boot_policy.fail_rom_ext_terminated;

311 fail_func_entry(current_rom_ext_manifest);

312 }

313

314

315 int check_rom_ext_manifest(rom_ext_manifest_t manifest) {

316 if (manifest.identifier == 0)

317 return 0;

318 for (int i = 0; i < RSA_SIZE; i++) {

319 if (manifest.signature.value[i] != 0)

320 return 1; // If the signature[i] != 0 for one i, the manifest is valid.

321 }

322 return 0;

323 }

324

325

326 int __help_check_rom_ext_manifest(rom_ext_manifest_t manifest) { //used for CBMC assertion

↪→ + postcondition

327 if (manifest.identifier == 0)

328 return 0;

329

330 signature_t signature = manifest.signature; //needed to take object size of signature

↪→ and not entire manifest

331

332 if (__CPROVER_OBJECT_SIZE(signature.value) != 3072 / 8) //Signature must be 3072-bits

333 return 0;

334

335 for (int i = 0; i < RSA_SIZE; i++) {

336 if (manifest.signature.value[i] != 0)

337 return 1;

338 }

339 return 0;

340 }

341

342

343 int __help_pkey_valid(pub_key_t pkey) { //used for CBMC assertion + postcondition

344 // Public key exponent must be 32 bits.");

345 if(sizeof(pkey.exponent) * 8 != 32)

346 return 0;

347 // Public key modulus must be 3072-bits.");

348 if((sizeof(pkey) - sizeof(pkey.exponent)) * 8 != 3072)

349 return 0;

350

351 pub_key_t* pkey_whitelist = ROM_CTRL_get_whitelist();

352

353 for (int i = 0; i < __PKEY_WHITELIST_SIZE; i++) {

354 if (pkey_whitelist[i].exponent != pkey.exponent)

355 continue;
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356

357 int j = 0;

358 for (j = 0; j < RSA_SIZE; j++) {

359 if (pkey_whitelist[i].modulus[j] != pkey.modulus[j])

360 break;

361 }

362

363 //if j == RSA_SIZE , then loop ran to completion and all entries were equal

364 if (j == RSA_SIZE)

365 return 1;

366 }

367

368 return 0;

369 }

370

371

372 int __help_check_pmp_region(int rom_ext, int pmp_id, int r, int w, int e, int l) {

373 if (rom_ext == -1) {

374 //When we need to check a PMP region for all rom exts

375 for (int i = 0; i < MAX_ROM_EXTS; i++) {

376 // If something is wrong return 0

377 if (__rom_ext_pmp_region[i].pmp_regions[pmp_id].R != r ||

378 __rom_ext_pmp_region[i].pmp_regions[pmp_id].W != w ||

379 __rom_ext_pmp_region[i].pmp_regions[pmp_id].E != e ||

380 __rom_ext_pmp_region[i].pmp_regions[pmp_id].L != l)

381 return 0;

382 }

383 return 1;

384 }

385 else {

386 return __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].R == r &&

387 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].W == w &&

388 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].E == e &&

389 __rom_ext_pmp_region[rom_ext].pmp_regions[pmp_id].L == l;

390 }

391 }

392

393

394 int __help_all_pmp_inactive(){

395 //Inactive if all fields are 0.

396 for (int i = 0; i < MAX_ROM_EXTS; i++) {

397 for (int j = 0; j < PMP_REGIONS; j++) {

398 if (__rom_ext_pmp_region[i].pmp_regions[j].R != 0 ||

399 __rom_ext_pmp_region[i].pmp_regions[j].W != 0 ||

400 __rom_ext_pmp_region[i].pmp_regions[j].E != 0 ||

401 __rom_ext_pmp_region[i].pmp_regions[j].L != 0)

402 return 0;

403 }

404 }

405 return 1;

406 }

407

408 void __func_fail() { __boot_failed_called[__current_rom_ext] = 1; } //used for CBMC

409 void __func_fail_rom_ext(rom_ext_manifest_t _) { __rom_ext_fail_func[__current_rom_ext] =

↪→ 1; } //used for CBMC

410

411 void PROOF_HARNESS() {

412 boot_policy_t boot_policy = FLASH_CTRL_read_boot_policy();

413 rom_exts_manifests_t rom_exts_to_try = FLASH_CTRL_rom_ext_manifests_to_try(boot_policy

↪→ );

414
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415 __CPROVER_assume(rom_exts_to_try.size <= MAX_ROM_EXTS && rom_exts_to_try.size > 0);

416

417 __CPROVER_assume(boot_policy.fail == &__func_fail);

418 __CPROVER_assume(boot_policy.fail_rom_ext_terminated == &__func_fail_rom_ext);

419

420 for(int i = 0; i < rom_exts_to_try.size; i++){

421 __CPROVER_assume(MAX_IMAGE_LENGTH >= rom_exts_to_try.rom_exts_mfs[i].image_length

↪→ && rom_exts_to_try.rom_exts_mfs[i].image_length > 0);

422 rom_exts_to_try.rom_exts_mfs[i].image_code = malloc(sizeof(char) * rom_exts_to_try

↪→ .rom_exts_mfs[i].image_length);

423 }

424

425 mask_rom_boot(boot_policy , rom_exts_to_try);

426

427

428 __CPROVER_postcondition(__current_rom_ext + 1 <= rom_exts_to_try.size,

429 "Postcondition: Should never check more rom_ext than there exist");

430

431 for (int i = 0; i < rom_exts_to_try.size; i++) {

432

433 __CPROVER_postcondition(__imply(!__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]) ||

434 !__help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key),

435 !__verify_signature_called[i]),

436 "Postcondition PROPERTY 5: If identifier , sign, or key is invalid then verify

↪→ signature function is not called");

437

438 __CPROVER_postcondition(__imply(__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]) &&

439 __help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key),

440 __verify_signature_called[i]),

441 "Postcondition PROPERTY 5: If identifier , sign, and key are valid then the

↪→ signature verification function is called");

442

443 if (__validated_rom_exts[i]) { //validated - try to boot from

444 __REACHABILITY_CHECK

445

446 __CPROVER_postcondition(__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]),

447 "Postcondition PROPERTY 1: rom_ext VALIDATED => valid signature");

448

449 __CPROVER_postcondition(__help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key),

450 "Postcondition PROPERTY 2: rom_ext VALIDATED => valid key");

451

452 __CPROVER_postcondition(__verify_signature_called[i],

453 "Postcondition PROPERTY 5: iff manifest is valid then verify signature

↪→ function is called");

454

455 __CPROVER_postcondition(__valid_signature[i],

456 "Postcondition PROPERTY 5: rom_ext VALIDATED => signature valid");

457

458 __CPROVER_postcondition(__rom_ext_called[i],

459 "Postcondition PROPERTY 6: rom_ext VALIDATED => rom ext code inititated");

460

461 __CPROVER_postcondition(__imply(__rom_ext_returned[i], __rom_ext_fail_func[i])

↪→ ,

462 "Postcondition PROPERTY 6: (valid rom _ext and rom_ext code return) => that

↪→ rom_ext term func is called");
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463

464 __CPROVER_postcondition(__imply(!__rom_ext_returned[i], !__rom_ext_fail_func[i

↪→ ]),

465 "Postcondition PROPERTY 6: (valid rom _ext and rom_ext code !return) => that

↪→ rom_ext term func not called");

466

467 __CPROVER_postcondition(__help_check_pmp_region(i, 15, 1, 0, 0, 1),

468 "Postcondition PROPERTY 9: PMP region 15 should be R and L, when rom_ext was

↪→ validated.");

469

470 __CPROVER_postcondition(__help_check_pmp_region(i, 0, 1, 0, 1, 1),

471 "Postcondition PROPERTY 10: If rom_ext was valided, then PMP region 0 should

↪→ be R, E, and L.");

472

473 }

474 else { //invalidated - unsafe to boot from

475 __REACHABILITY_CHECK

476

477 __CPROVER_postcondition(!__help_check_rom_ext_manifest(rom_exts_to_try.

↪→ rom_exts_mfs[i]) ||

478 !__help_pkey_valid(rom_exts_to_try.rom_exts_mfs[i].

↪→ pub_signature_key) ||

479 !__valid_signature[i],

480 "Postcondition: rom_ext INVALIDATED => identifier , signature , or key is

↪→ invalid");

481

482 __CPROVER_postcondition(!__valid_signature[i],

483 "Postcondition PROPERTY 5: rom_ext INVALIDATED => signature invalid or not

↪→ checked");

484

485 __CPROVER_postcondition(!__rom_ext_fail_func[i],

486 "Postcondition PROPERTY 6: invalid rom_ext => that rom_ext term func not

↪→ called");

487

488 __CPROVER_postcondition(!__rom_ext_called[i],

489 "Postcondition PROPERTY 7: rom_ext INVALIDATED => rom ext code not executed");

490

491 __CPROVER_postcondition(__current_rom_ext > i || (i + 1) == rom_exts_to_try.

↪→ size || __boot_policy_stop ,

492 "Postcondition PROPERTY 7: rom_ext INVALIDATED => we check the next rom_ext if

↪→ any left and no boot policy instructed stop");

493

494 __CPROVER_postcondition(__imply(i < __current_rom_ext , !__boot_failed_called[i

↪→ ]),

495 "Postcondition PROPERTY 8: A rom_ext (not the last one) fails => fail func is

↪→ not called");

496

497 __CPROVER_postcondition(__imply(i == __current_rom_ext , __boot_failed_called[i

↪→ ]),

498 "Postcondition PROPERTY 8: Last rom_ext fail => fail func has been called");

499

500 __CPROVER_postcondition(__help_check_pmp_region(i, 15, 1, 0, 0, 1),

501 "Postcondition PROPERTY 9: PMP region 15 should be R and L. Even if rom_ext

↪→ was invalidated.");

502

503 __CPROVER_postcondition(__help_check_pmp_region(i, 0, 0, 0, 0, 0),

504 "Postcondition PROPERTY 10: If rom_ext was invalid, PMP region 0 should not be

↪→ R, E, W, and L.");

505 }

506 }

507 __REACHABILITY_CHECK
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508 }

509

510 /*

511 PROPERTY 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (mocked hmac)

512

513 RSA_SIZE = 96

514 Run:

515 cbmc mask_rom.c mock_hmac.c memory_compare.c --function PROOF_HARNESS --unwind 97 --

↪→ unwindset cmp_key.0:390 --unwindset cmp_image_len.0:5 --unwindset cmp_image_code

↪→ .0:3 --unwindset cmp_modulus.0:385 --unwindset cmp_signature.0:385 --unwindset

↪→ cmp_has_decrypt.0:33 --unwindset mask_rom_boot.0:2 --unwindset PROOF_HARNESS.0:2 --

↪→ unwinding -assertions --pointer-check --bounds-check --object-bits 9

516

517 RSA_SIZE = 5 (SPEEDS UP VERIFICAITON) (note. remember to set in mask_rom.h)

518 Run:

519 cbmc mask_rom.c mock_hmac.c memory_compare.c --function PROOF_HARNESS --unwind 33 --

↪→ unwindset memcmp.0:25 --unwindset mask_rom_boot.0:2 --unwindset PROOF_HARNESS.0:2

↪→ --unwinding -assertions --pointer-check --bounds-check

520

521

522 PROPERTY 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

523 RSA_SIZE = 96

524 Run:

525 cbmc mask_rom.c hmac.c memory_compare.c --function PROOF_HARNESS --unwind 97 --unwindset

↪→ cmp_key.0:390 --unwindset cmp_image_len.0:5 --unwindset cmp_image_code.0:3 --

↪→ unwindset cmp_modulus.0:385 --unwindset cmp_signature.0:385 --unwindset

↪→ cmp_has_decrypt.0:33 --unwindset mask_rom_boot.0:2 --unwindset HMAC_SHA2_256_update

↪→ .0:431 --unwindset PROOF_HARNESS.0:2 --unwinding -assertions --pointer-check --

↪→ bounds-check --object-bits 9

526 */

527

528

529 void mask_rom_boot(boot_policy_t boot_policy , rom_exts_manifests_t rom_exts_to_try ){

530 __CPROVER_precondition(rom_exts_to_try.size <= MAX_ROM_EXTS && rom_exts_to_try.size >

↪→ 0,

531 "Precondition: Assumes MAX_ROM_EXTS >= rom_exts > 0");

532

533 __CPROVER_precondition(boot_policy.fail == &__func_fail ,

534 "Precondition: Assumes boot_policy.fail has ok address");

535

536 __CPROVER_precondition(boot_policy.fail_rom_ext_terminated == &__func_fail_rom_ext ,

537 "Precondition: Assumes boot_policy.fail_rom_ext_terminated has ok address");

538

539 //All pmp regions should be inactive at this point

540 __CPROVER_precondition(__help_all_pmp_inactive(),

541 "Precondition PROPERTY 9: All PMP regions should be unset at beginning of mask_rom.");

542

543 PMP_enable_memory_protection();

544

545 //Step 2.iii

546 for (int i = 0; i < rom_exts_to_try.size; i++) {

547

548 __CPROVER_assert(__help_check_pmp_region(i, 15, 1, 0, 0, 1),

549 "PROPERTY 9: PMP region 15 should be R and L.");

550

551 __current_rom_ext = i;

552 rom_ext_manifest_t current_rom_ext_manifest = rom_exts_to_try.rom_exts_mfs[i];

553

554 signature_t __signature = current_rom_ext_manifest.signature; //needed for

↪→ __CPROVER_OBJECT_SIZE

555
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556

557 if (!check_rom_ext_manifest(current_rom_ext_manifest)) {

558 __REACHABILITY_CHECK

559

560 __CPROVER_assert(!__help_check_rom_ext_manifest(current_rom_ext_manifest),

561 "PROPERTY 1: Stop verification if signature or identifier is invalid");

562

563 continue;

564 }

565

566 __REACHABILITY_CHECK

567

568 __CPROVER_assert(__help_check_rom_ext_manifest(current_rom_ext_manifest),

569 "PROPERTY 1: Continue verification if signature and identifier are valid");

570

571 //Step 2.iii.b

572 pub_key_t rom_ext_pub_key = read_pub_key(current_rom_ext_manifest);

573

574 //Step 2.iii.b

575 if (!check_pub_key_valid(rom_ext_pub_key)) {

576 __REACHABILITY_CHECK

577

578 __CPROVER_assert(!__help_pkey_valid(rom_ext_pub_key),

579 "PROPERTY 2: Stop verification if key is invalid");

580

581 continue;

582 }

583

584 __REACHABILITY_CHECK

585

586 __CPROVER_assert(__help_pkey_valid(rom_ext_pub_key),

587 "PROPERTY 2: Continue verification if key is valid");

588

589 //Step 2.iii.b

590 if (!verify_rom_ext_signature(rom_ext_pub_key , current_rom_ext_manifest)) {

591 __REACHABILITY_CHECK

592 __CPROVER_assert(!__valid_signature[i],

593 "PROPERTY 5: Stop verification if signature is invalid");

594 continue;

595 }

596 __REACHABILITY_CHECK

597

598 __CPROVER_assert(__valid_signature[i],

599 "PROPERTY 5: Continue verification if signature is valid");

600 __validated_rom_exts[i] = 1; //for CBMC

601

602 //Step 2.iii.d

603 PMP_unlock_rom_ext();

604

605 __CPROVER_assert(__help_check_pmp_region(i, 0, 1, 0, 1, 1),

606 "PROPERTY 10: PMP region 0 should be R, E, and L.");

607

608 //Step 2.iii.e

609 if (!final_jump_to_rom_ext(current_rom_ext_manifest)) {

610 __REACHABILITY_CHECK

611

612 //Step 2.iv

613 boot_failed_rom_ext_terminated(boot_policy , current_rom_ext_manifest);

614 __boot_policy_stop = 1;

615 return;

616 }
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617 } // End for

618

619 __REACHABILITY_CHECK

620

621 //Step 2.iv

622 boot_failed(boot_policy);

623 }

Listing C.2: The content of the mask_rom.c file

C.3 hmac.h

1 /*********************************************************************

2 * Filename: sha256.h

3 * Author: Brad Conte (brad AT bradconte.com)

4 * Copyright:

5 * Disclaimer: This code is presented "as is" without any guarantees.

6 * Details: Defines the API for the corresponding SHA1 implementation.

7 *********************************************************************/

8

9 #ifndef SHA256_H

10 #define SHA256_H

11

12 /*************************** HEADER FILES ***************************/

13 #include <stddef.h>

14 #include "mask_rom.h"

15

16 /****************************** MACROS ******************************/

17 #define SHA2_256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest

18 #define HMAC_KEY_SIZE 32 // HMAC key is 32 bytes

19 /**************************** DATA TYPES ****************************/

20 typedef unsigned char BYTE; // 8-bit byte

21 typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit

↪→ machines

22

23 typedef struct {

24 BYTE data[64];

25 WORD datalen;

26 unsigned long long bitlen;

27 WORD state[8];

28 } SHA2_256_CTX;

29

30 /*********************** FUNCTION DECLARATIONS **********************/

31 void HMAC_SHA2_256_init(SHA2_256_CTX *ctx);

32 void HMAC_SHA2_256_update(SHA2_256_CTX *ctx, const BYTE data[], size_t len);

33 void HMAC_SHA2_256_final(SHA2_256_CTX *ctx, BYTE hash[]);

34 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int size, rom_ext_manifest_t

↪→ __current_rom_ext_mf);

35

36 #endif // SHA256_H

Listing C.3: The content of the hmac.h file

C.4 hmac.c

1 /*********************************************************************

2 //////////////////////// ORIGINAL FILE ///////////////////////////////
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3 * Filename: sha2_256.c

4 * Original

5 Author: Brad Conte (brad AT bradconte.com)

6 * Copyright:

7 * Disclaimer: This code is presented "as is" without any guarantees.

8 * Details: Implementation of the SHA-256 hashing algorithm.

9 SHA-256 is one of the three algorithms in the SHA2

10 specification. The others, SHA-384 and SHA-512, are not

11 offered in this implementation.

12 Algorithm specification can be found here:

13 * http://csrc.nist.gov/publications/fips/fips180 -2/fips180 -2

↪→ withchangenotice.pdf

14 This implementation uses little endian byte order.

15

16 * Modified By: Jacob Gosch and Kristoffer Jensen

17 *********************************************************************/

18

19 /*************************** HEADER FILES ***************************/

20 #include <stdlib.h>

21 #include <memory.h>

22 #include "hmac.h"

23 #include "memory_compare.h"

24 /****************************** MACROS ******************************/

25 #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))

26 #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

27

28 #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))

29 #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

30 #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))

31 #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))

32 #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))

33 #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

34

35 /**************************** VARIABLES *****************************/

36 static const WORD k[64] = {

37 0x428a2f98 ,0x71374491 ,0xb5c0fbcf ,0xe9b5dba5 ,0x3956c25b ,0x59f111f1 ,0x923f82a4 ,0

↪→ xab1c5ed5 ,

38 0xd807aa98 ,0x12835b01 ,0x243185be ,0x550c7dc3 ,0x72be5d74 ,0x80deb1fe ,0x9bdc06a7 ,0

↪→ xc19bf174 ,

39 0xe49b69c1 ,0xefbe4786 ,0x0fc19dc6 ,0x240ca1cc ,0x2de92c6f ,0x4a7484aa ,0x5cb0a9dc ,0

↪→ x76f988da ,

40 0x983e5152 ,0xa831c66d ,0xb00327c8 ,0xbf597fc7 ,0xc6e00bf3 ,0xd5a79147 ,0x06ca6351 ,0

↪→ x14292967 ,

41 0x27b70a85 ,0x2e1b2138 ,0x4d2c6dfc ,0x53380d13 ,0x650a7354 ,0x766a0abb ,0x81c2c92e ,0

↪→ x92722c85 ,

42 0xa2bfe8a1 ,0xa81a664b ,0xc24b8b70 ,0xc76c51a3 ,0xd192e819 ,0xd6990624 ,0xf40e3585 ,0

↪→ x106aa070 ,

43 0x19a4c116 ,0x1e376c08 ,0x2748774c ,0x34b0bcb5 ,0x391c0cb3 ,0x4ed8aa4a ,0x5b9cca4f ,0

↪→ x682e6ff3 ,

44 0x748f82ee ,0x78a5636f ,0x84c87814 ,0x8cc70208 ,0x90befffa ,0xa4506ceb ,0xbef9a3f7 ,0

↪→ xc67178f2

45 };

46

47 /*********************** FUNCTION DEFINITIONS ***********************/

48 void HMAC_SHA2_256_transform(SHA2_256_CTX *ctx, const BYTE data[])

49 {

50 WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];

51

52 for (i = 0, j = 0; i < 16; ++i, j += 4)

53 m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);

54 for ( ; i < 64; ++i)
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55 m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];

56

57 a = ctx->state[0];

58 b = ctx->state[1];

59 c = ctx->state[2];

60 d = ctx->state[3];

61 e = ctx->state[4];

62 f = ctx->state[5];

63 g = ctx->state[6];

64 h = ctx->state[7];

65

66 for (i = 0; i < 64; ++i) {

67 t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];

68 t2 = EP0(a) + MAJ(a,b,c);

69 h = g;

70 g = f;

71 f = e;

72 e = d + t1;

73 d = c;

74 c = b;

75 b = a;

76 a = t1 + t2;

77 }

78

79 ctx->state[0] += a;

80 ctx->state[1] += b;

81 ctx->state[2] += c;

82 ctx->state[3] += d;

83 ctx->state[4] += e;

84 ctx->state[5] += f;

85 ctx->state[6] += g;

86 ctx->state[7] += h;

87 }

88

89 void HMAC_SHA2_256_init(SHA2_256_CTX *ctx)

90 {

91 ctx->datalen = 0;

92 ctx->bitlen = 0;

93 ctx->state[0] = 0x6a09e667;

94 ctx->state[1] = 0xbb67ae85;

95 ctx->state[2] = 0x3c6ef372;

96 ctx->state[3] = 0xa54ff53a;

97 ctx->state[4] = 0x510e527f;

98 ctx->state[5] = 0x9b05688c;

99 ctx->state[6] = 0x1f83d9ab;

100 ctx->state[7] = 0x5be0cd19;

101 }

102

103 void HMAC_SHA2_256_update(SHA2_256_CTX *ctx, const BYTE data[], size_t len)

104 {

105 WORD i;

106

107 for (i = 0; i < len; ++i) {

108 ctx->data[ctx->datalen] = data[i];

109 ctx->datalen++;

110 if (ctx->datalen == 64) {

111 HMAC_SHA2_256_transform(ctx, ctx->data);

112 ctx->bitlen += 512;

113 ctx->datalen = 0;

114 }

115 }
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116 }

117

118 void HMAC_SHA2_256_final(SHA2_256_CTX *ctx, BYTE hash[])

119 {

120 WORD i;

121

122 i = ctx->datalen;

123

124 // Pad whatever data is left in the buffer.

125 if (ctx->datalen < 56) {

126 ctx->data[i++] = 0x80;

127 while (i < 56)

128 ctx->data[i++] = 0x00;

129 }

130 else {

131 ctx->data[i++] = 0x80;

132 while (i < 64)

133 ctx->data[i++] = 0x00;

134 HMAC_SHA2_256_transform(ctx, ctx->data);

135 memset(ctx->data, 0, 56);

136 }

137

138 // Append to the padding the total message's length in bits and transform.

139 ctx->bitlen += ctx->datalen * 8;

140 ctx->data[63] = ctx->bitlen;

141 ctx->data[62] = ctx->bitlen >> 8;

142 ctx->data[61] = ctx->bitlen >> 16;

143 ctx->data[60] = ctx->bitlen >> 24;

144 ctx->data[59] = ctx->bitlen >> 32;

145 ctx->data[58] = ctx->bitlen >> 40;

146 ctx->data[57] = ctx->bitlen >> 48;

147 ctx->data[56] = ctx->bitlen >> 56;

148 HMAC_SHA2_256_transform(ctx, ctx->data);

149

150 // Since this implementation uses little endian byte ordering and SHA uses big endian,

151 // reverse all the bytes when copying the final state to the output hash.

152 for (i = 0; i < 4; ++i) {

153 hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;

154 hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;

155 hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;

156 hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;

157 hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;

158 hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;

159 hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;

160 hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;

161 }

162 }

163

164 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int mes_size , rom_ext_manifest_t

↪→ __current_rom_ext_mf){

165 int __expected_size =

166 sizeof(__current_rom_ext_mf.pub_signature_key)+sizeof(__current_rom_ext_mf.

↪→ image_length)+__current_rom_ext_mf.image_length;

167

168 __CPROVER_assert(cmp_key(

169 mes,

170 &__current_rom_ext_mf.pub_signature_key ,

171 sizeof(__current_rom_ext_mf.pub_signature_key)) == 0,

172 "PROPERTY 4: Message contains the key");

173

174 __CPROVER_assert(cmp_image_len(
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175 mes + sizeof(__current_rom_ext_mf.pub_signature_key),

176 &__current_rom_ext_mf.image_length ,

177 sizeof(__current_rom_ext_mf.image_length)) == 0,

178 "PROPERTY 4: Message contains the Image length");

179

180 __CPROVER_assert(cmp_image_code(

181 mes + sizeof(__current_rom_ext_mf.pub_signature_key) + sizeof(__current_rom_ext_mf

↪→ .image_length),

182 __current_rom_ext_mf.image_code ,

183 __current_rom_ext_mf.image_length) == 0,

184 "PROPERTY 4: Message contains the Image code");

185

186 __CPROVER_assert(mes_size == __expected_size ,

187 "PROPERTY 4: Message size parameter is as expected.");

188

189 __CPROVER_assert(__CPROVER_OBJECT_SIZE(mes) == __expected_size ,

190 "PROPERTY 4: Size of message is as expected.");

191

192

193 BYTE* buff = malloc(SHA2_256_BLOCK_SIZE * sizeof(BYTE));

194 SHA2_256_CTX ctx;

195

196 BYTE* key_mes_pad = malloc(HMAC_KEY_SIZE * sizeof(BYTE) + mes_size * sizeof(BYTE)); //

↪→ key âĹě mes

197 memcpy(

198 key_mes_pad ,

199 key,

200 HMAC_KEY_SIZE

201 );

202 memcpy(

203 key_mes_pad + HMAC_KEY_SIZE ,

204 mes,

205 mes_size

206 );

207

208 HMAC_SHA2_256_init(&ctx);

209 HMAC_SHA2_256_update(&ctx, key_mes_pad , HMAC_KEY_SIZE + mes_size);

210 HMAC_SHA2_256_final(&ctx, buff);

211

212

213 __CPROVER_assert(__CPROVER_OBJECT_SIZE(buff)==256/8,

214 "PROPERTY 3: Hash is 256 bits");

215

216 __CPROVER_assert(__CPROVER_r_ok(buff, 256/8),

217 "PROPERTY 3: hash is in readable address");

218

219 __REACHABILITY_CHECK

220

221 return buff;

222 }

Listing C.4: The content of the hmac.c file

C.5 mock_hmac.c

1 #include "hmac.h"

2 #include "memory_compare.h"

3

4
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5 BYTE* HMAC_SHA2_256(BYTE key[], BYTE mes[], int size, rom_ext_manifest_t

↪→ __current_rom_ext_mf) {

6

7 int __expected_size =

8 sizeof(__current_rom_ext_mf.pub_signature_key) + sizeof(__current_rom_ext_mf.

↪→ image_length) + __current_rom_ext_mf.image_length;

9

10 __CPROVER_assert(cmp_key(

11 mes,

12 &__current_rom_ext_mf.pub_signature_key ,

13 sizeof(__current_rom_ext_mf.pub_signature_key)) == 0,

14 "PROPERTY 4: Message contains the key");

15

16 __CPROVER_assert(cmp_image_len(

17 mes + sizeof(__current_rom_ext_mf.pub_signature_key),

18 &__current_rom_ext_mf.image_length ,

19 sizeof(__current_rom_ext_mf.image_length)) == 0,

20 "PROPERTY 4: Message contains the Image length");

21

22 __CPROVER_assert(cmp_image_code(

23 mes + sizeof(__current_rom_ext_mf.pub_signature_key) + sizeof(__current_rom_ext_mf

↪→ .image_length),

24 __current_rom_ext_mf.image_code ,

25 __current_rom_ext_mf.image_length) == 0,

26 "PROPERTY 4: Message contains the Image code");

27

28 __CPROVER_assert(size == __expected_size ,

29 "PROPERTY 4: Message size parameter is as expected.");

30

31 __CPROVER_assert(__CPROVER_OBJECT_SIZE(mes) == __expected_size ,

32 "PROPERTY 4: Size of message is as expected.");

33

34 char* hash = malloc(256 / 8); //model it to be ok for PROPERTY 5

35

36 __CPROVER_assert(__CPROVER_OBJECT_SIZE(hash) == 256 / 8,

37 "PROPERTY 3: Hash is 256 bits");

38

39 __CPROVER_assert(__CPROVER_r_ok(hash, 256 / 8),

40 "PROPERTY 3: hash is in readable address");

41

42 __REACHABILITY_CHECK

43

44 return hash;

45 }

Listing C.5: The content of the mock_hmac.c file

C.6 memory_compare.h

1 #ifndef MEMORY_COMPARE_H

2 #define MEMORY_COMPARE_H

3

4 int cmp_key(const void* buf1, const void* buf2, unsigned int size);

5

6 int cmp_image_len(const void* buf1, const void* buf2, unsigned int size);

7

8 int cmp_image_code(const void* buf1, const void* buf2, unsigned int size);

9

10 int cmp_modulus(const void* buf1, const void* buf2, unsigned int size);
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11

12 int cmp_signature(const void* buf1, const void* buf2, unsigned int size);

13

14 int cmp_hash_decrypt(const void* buf1, const void* buf2, unsigned int size);

15

16 #endif // MEMORY_COMPARE_H

Listing C.6: The content of the memory_compare.h file

C.7 memory_compare.c

1 #include "mask_rom.h"

2

3 int cmp_key(const void* buf1, const void* buf2, unsigned int size) {

4

5 __CPROVER_assert(size == (3072 + 32)/8,

6 "Assert: Size should be equal to size of modulus and exponent");

7

8 const char* cbuf1 = (char*)buf1;

9 const char* cbuf2 = (char*)buf2;

10

11 int mismatch = 0;

12 for (int i = 0; i < size; i++)

13 {

14 if (*cbuf1 != *cbuf2)

15 {

16 mismatch = 1;

17 break;

18 }

19 cbuf1++;

20 cbuf2++;

21 }

22

23 return mismatch; //0 is equal, 1 is not equal.

24 }

25

26

27 int cmp_image_len(const void* buf1, const void* buf2, unsigned int size) {

28

29 __CPROVER_assert(size == 4,

30 "Assert: Size should be equal to size of image_len variable type");

31

32 const char* cbuf1 = (char*)buf1;

33 const char* cbuf2 = (char*)buf2;

34

35 int mismatch = 0;

36 for (int i = 0; i < size; i++)

37 {

38 if (*cbuf1 != *cbuf2)

39 {

40 mismatch = 1;

41 break;

42 }

43 cbuf1++;

44 cbuf2++;

45 }

46

47 return mismatch; //0 is equal, 1 is not equal.

48 }
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49

50 int cmp_image_code(const void* buf1, const void* buf2, unsigned int size) {

51

52 __CPROVER_assert(size <= MAX_IMAGE_LENGTH && size > 0,

53 "Assert: Size should be less than or equal to MAX_IMAGE_LENGTH");

54 const char* cbuf1 = (char*)buf1;

55 const char* cbuf2 = (char*)buf2;

56

57 int mismatch = 0;

58 for (int i = 0; i < size; i++)

59 {

60 if (*cbuf1 != *cbuf2)

61 {

62 mismatch = 1;

63 break;

64 }

65 cbuf1++;

66 cbuf2++;

67 }

68

69 return mismatch; //0 is equal, 1 is not equal.

70 }

71

72

73 int cmp_modulus(const void* buf1, const void* buf2, unsigned int size) {

74

75 __CPROVER_assert(size == 3072/8,

76 "Assert: Size should be equal to size of modulus");

77

78 const char* cbuf1 = (char*)buf1;

79 const char* cbuf2 = (char*)buf2;

80

81 int mismatch = 0;

82 for (int i = 0; i < size; i++)

83 {

84 if (*cbuf1 != *cbuf2)

85 {

86 mismatch = 1;

87 break;

88 }

89 cbuf1++;

90 cbuf2++;

91 }

92

93 return mismatch; //0 is equal, 1 is not equal.

94 }

95

96

97 int cmp_signature(const void* buf1, const void* buf2, unsigned int size) {

98

99 __CPROVER_assert(size == 3072/8,

100 "Assert: Size should be equal to size of signature");

101

102 const char* cbuf1 = (char*)buf1;

103 const char* cbuf2 = (char*)buf2;

104

105 int mismatch = 0;

106 for (int i = 0; i < size; i++)

107 {

108 if (*cbuf1 != *cbuf2)

109 {
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110 mismatch = 1;

111 break;

112 }

113 cbuf1++;

114 cbuf2++;

115 }

116

117 return mismatch; //0 is equal, 1 is not equal.

118 }

119

120

121 int cmp_hash_decrypt(const void* buf1, const void* buf2, unsigned int size) {

122

123 __CPROVER_assert(size == 256/8,

124 "Assert: Size should be equal to size of hash");

125

126 const char* cbuf1 = (char*)buf1;

127 const char* cbuf2 = (char*)buf2;

128

129 int mismatch = 0;

130 for (int i = 0; i < size; i++)

131 {

132 if (*cbuf1 != *cbuf2)

133 {

134 mismatch = 1;

135 break;

136 }

137 cbuf1++;

138 cbuf2++;

139 }

140

141 return mismatch; //0 is equal, 1 is not equal.

142 }

Listing C.7: The content of the memory_compare.c file
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Appendix D

Function Contracts

This chapter is based on the test cases found in [57] and the insights gained from using the --show-goto-

functions and --program-only flags. The implementation of function contracts is not finished at the time
of writing (CBMC version 5.28). However, we still believe it to be relevant to document the use of function con-
tracts. For each of the different constructs, we will mention whether or not they work as expected.

A function contract can contain the following three constructs:

• __CPROVER_assigns(params) : This construct asserts that the function assigns to the variables in params.
__CPROVER_assigns is used on global variables and pointers. Including local parameters in params do

not have any effect.

• __CPROVER_ensures(cond) : This construct is used to assert if a Boolean condition is met at the end of
a function. E.g. that the function returns a specific value.

• __CPROVER_requires(cond) : This is used to define assumptions about variables at the entry of the
function in terms of a Boolean condition.

It is possible to use constructs such as __CPROVER_exists and __CPROVER_forall in __CPROVER_ensures
and __CPROVER_requires clauses. They have the following format:

1 __CPROVER_ensures(__CPROVER_forall{

2 int i;

3 (0 <= i && i < 5) ==> Boolean Expression

4 })

However, there are known bugs with the __CPROVER_exists and __CPROVER_forall constructs (cf. [28] [29]
[30] [31]) and they will therefore not be covered further. But, a __CPROVER_requires or __CPROVER_ensures

clause that use either a __CPROVER_exists or a __CPROVER_forall construct can also be modeled equiva-
lently as a for-loop with __CPROVER_assume or __CPROVER_assert .

Normally, when performing verification using CBMC, the command is on the following form: cbmc file.c
--flags . However, the flags for verifying function contracts are not implemented in the cbmc command. There-

fore, when verifying the function contracts in a file called file.c the build process, for Windows, is:

• goto-cl file.c

• goto-instrument --flags file.exe outputfile

• cbmc outputfile

And for Linux:

• goto-cc file.c -o file.gb

• goto-instrument --flags file.gb file2.gb

• cbmc file2.gb
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The two flags used when verifying function contracts are the --enforce-all-contracts and the replace-

all-calls-with-contracts flag. The two flags has the following functionality:

• --enforce-all-contracts : In this case assumptions and assertions are inserted in all functions with
contracts. The assertions assert whether the function contracts is satisfied by the functions.

• --replace-all-calls-with-contracts : All calls to functions with function contracts are replaced
with behavior matching the function contracts. Such as __CPROVER_assume , __CPROVER_assert , or
nondeterministic values.

Thus, the --enforce-all-contracts flag (which has a singular version) is used when the goal is to as-
sert whether the functions adhere to their function contracts. The --replace-all-calls-with-contracts
(which also has a singular version) is used when e.g. verifying a program containing a computationally demanding
function. In this case, all calls to the demanding function can be replaced by its contract and thereby speed up the
verification process.

D.0.1 __CPROVER_assigns

For illustrating the __CPROVER_assigns construct consider the program in Listing D.1 below:

1 int global_var = 0;

2

3 int foo(int* ptr1, int *ptr2)

4 __CPROVER_assigns(global_var , *ptr2)

5 {

6 global_var = 2;

7 *ptr2 = 5;

8 return *ptr1 * global_var;

9 }

10

11 int main()

12 {

13 int i = 10;

14 int j = 10;

15 int p = foo(&i, &j);

16 return 0;

17 }

Listing D.1: Example with __CPROVER_assigns .

When verified using the --enforce-all-contracts flag the verification succeeds as foo only assigns to the
variables global_var and *ptr2 . Essentially, it means that the function may or may not assign to any of the
variables in the assigns clause, but if it assigns to a global variable or a pointer which is not part of the assigns
clause then the verification fails.

The --enforce-all-contracts flag inserts assertions in foo asserting whether the addresses of the global
variables and pointers that are assigned to is equal to any of the addresses of the variables in the assign clause.

Below is a list of examples for the assigns clause and outcome:

• __CPROVER_assigns(*ptr1) : Verification fails as expected. foo does not assign to *ptr1 but foo
does assign to other variables than *ptr1 .

• __CPROVER_assigns(global_var) : This fails as expected, as foo also assigns to *ptr2 , which is
not in the __CPROVER_assigns clause.
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• __CPROVER_assigns(global_var, *ptr2, *ptr1) : This succeeds as expected as foo only assigns
to the global variables and pointers listed in the __CPROVER_assigns clause. It is not mandatory to assign
to all the variables in the __CPROVER_assigns clause.

When verified using the --replace-all-calls-with-constracts flag no assertions nor assumptions are

generated. The call to foo is replaced by assigning global_var , j and p to a nondeterministic integer value.
As i is not in the __CPROVER_assigns is remains equal to 10. On CBMC’s GitHub there have been doc-
umented bugs with using __CPROVER_assigns together with __CPROVER_ensures when verifying using the

--replace-all-calls-with-constracts flag (cf. [58]).

In conclusion, the functionality of __CPROVER_assigns is that:

• It fails if a global variable or pointer not in the __CPROVER_assigns clause is assigned to.

• It does not fail if a variable in the __CPROVER_assigns clause is not assigned to.

To our knowledge, there is not a build-in way of saying that a function does not assign anything. However, it
could be done by having a dummy global variable named “nothing”. Then have the function assign to that and
the function contract to contain __CPROVER_assign(nothing) . In this way, if the function assigns to other
variables (global variables or pointers) the function does not adhere to function contract and CBMC will indicate
so.

D.0.2 __CPROVER_ensures

For illustrating the __CPROVER_ensures construct consider the program in Listing D.2 below:

1 int foo(int var1, int var2, int* ptr3)

2 __CPROVER_ensures(__CPROVER_return_value == var1 * var2)

3 {

4 *ptr3 = var1;

5 return var1 * var2;

6 }

7

8

9 int main()

10 {

11 int i = 5;

12 int j = foo(10, 10, &i);

13 __CPROVER_assert(j == 100, "Expected behavior of foo.");

14 __CPROVER_assert(i == 10, "Expected behavior of foo.");

15 }

Listing D.2: Example with __CPROVER_ensures .

The __CPROVER_return_value is equal to the return value of the function. When verified using the
--enforce-all-contracts flag the verification succeeds as expected. The fulfillment of the function contract

does not influence the value of i and j in main . The use of the --enforce-all-contracts flag inserts an

assertion before the return statement in foo , asserting whether the temporary variable storing the return value is
equal to var1 * var2 .

Below is a list of examples for the ensures clause and outcome:

• __CPROVER_ensures(__CPROVER_return_value == var1 * var2 && *ptr3 == var1) : Succeeds
as expected.

• __CPROVER_ensures(__CPROVER_return_value == var1) : The function contract fails as expected
and the assertions in main still succeeds.
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• __CPROVER_ensures(__CPROVER_return_value == var1 && *ptr3 == var1) : The function con-
tract fails as expected and the assertions in main still succeeds.

When verified using the --replace-all-calls-with-contracts flag, the verification fails. The reason is
that the call to foo is replaced by a __CPROVER_assume assuming the function contract, namely that the return
value of foo is 10 * 10. j is asserted to be 100, which succeeds. However, as the function contract did not

describe what foo did to i , the assertion of whether i is 10 fails, as i is still 5. If the ensure clause is
__CPROVER_ensures(__CPROVER_return_value == var1 * var2 && *ptr3 == var1) the verification

succeeds as the __CPROVER_assume also assumes that i is 10.

D.0.3 __CPROVER_requires

A __CPROVER_requires clause can only be used if a __CPROVER_assigns or a __CPROVER_ensures clause
is in the function contract as well. For illustrating the __CPROVER_requires construct consider the program in
Listing D.3 below:

1 int foo(int var1, int var2)

2 __CPROVER_requires(var1 > 0 && var1 > 0)

3 __CPROVER_ensures(__CPROVER_return_value == var1*var2 && __CPROVER_return_value > 0)

4 {

5 __CPROVER_assert(0, "Reachability Check");

6 return var1 * var2;

7 }

8

9

10 int main()

11 {

12 int j = foo(10, 10);

13 __CPROVER_assert(j == 100, "Expected behavior of foo.");

14 __CPROVER_assert(0, "Reachability Check");

15 }

Listing D.3: Example with __CPROVER_requires and __CPROVER_ensures .

When verified using the --enforce-all-contracts flag the verification succeeds. When using the
--enforce-all-contracts flag the __CPROVER_requires clause is transformed into an __CPROVER _

assume in foo , assuming that var1 > 0 && var2 > 0 and the __CPROVER_ensures clause (which is
transformed to an assertion) is evaluated under that assumption. However, as with normal assumptions, if the
assumption cannot be true, e.g. that it assumed that var1 > 0 && var2 < 0 , then all future assertions will
succeed by default.

When the above code is verified using the --replace-all-calls-with-contracts the call to foo is re-
placed with its contract. The __CPROVER_requires clause is transformed into an __CPROVER_assert which
asserts that the actual parameters are above 0. The __CPROVER_ensures is transformed into a __CPROVER_
assume as described earlier. Do note that the reachability check in foo fails as foo is never called.

D.0.4 Loop Invariants

It is also possible annotate loops with loop invariants and verify whether the loops adhere to them, using the
--enforce-all-contracts flag. A loop invariant is a condition that should hold before the loop is entered

and after each iteration of the loop. However, the feature for loop invariants is faulty. To illustrate, consider the
example in Listing D.4 below:

1 int main()

2 {

3 int r = 10;
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4 while (r > 0)

5 __CPROVER_loop_invariant(r > 9);

6 {

7 r--;

8 }

9 }

Listing D.4: Example of a loop invarant.

The verification of the loop invariant succeeds, which should not be the case as r > 9 does not hold after each
iteration of the loop.

While the __CPROVER_loop_invariant does not work, it is possible to achieve the same functionality by
having an assertion before the loop, at the end of the loop body, and after the loop.
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