
An energy-oriented look into
memoizability, using static

analysis

Author:
Theodor Constantin

Supervisor:

Bent Thomsen

Aalborg University
Computer Science (IT)

This page was left intentionally blank

Computer Science (IT)
Aalborg University

http://www.aau.dk

Title:
An energy-oriented look into memoiz-
ability, using static analysis

Project Group:
pt105f21

Participant:
Theodor Constantin

Supervisor:
Bent Thomsen

Page Number:
56

Date of Completion:
June 14, 2021

Abstract:

Energy awareness has become a hot topic in soft-

ware development and computer science in recent

years, due to realizations concerning the amount of

energy consumed through ICT processes worldwide.

Practitioner-oriented research reveals that a recurring

problem in adopting energy-saving mentalities and

techniques for developers is the lack of supporting

tools in this area. In this paper, we go over the de-

velopment of ’grint’, a ’green linter’ for JavaScript

programs. ’grint’ is designed to detect functional pu-

rity in JavaScript functions, that can be optimized via

memoization, in order to improve the energy con-

sumption of the application. I test the efficacy of

’grint’ and memoization, as an energy optimization

technique, on two open-source projects by running

original and refactored versions, as part of an ex-

perimental suite, and comparing their energy con-

sumption. I use Intel’s RAPL to perform energy

measurements. Measurements show that the mem-

oized versions of the applications had consistently

worse energy consumption rates than the original.

This suggests that function memoizability is a more

complex aspect of JavaScript functions, that is only

conditioned by purity and not fully represented by

it.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

This page was left intentionally blank

Summary

This project ventures to assert the worth of memoization, as an optimization tech-
nique, from an energy-aware perspective, in JavaScript applications. Memoization
is a program optimization technique that involves recording function return values
into a memoization table, such that the values can be retrieved from the table, on
ulterior calls with the same set of arguments. This way, function computations
can be avoided and replaced by simple table lookups. However, in order to be
memoized, functions are required to be pure.

In order for a function to be pure, it must not cause side-effects in the program
and its return value must always be the same, for the same set of arguments.
Functional purity is innate to subroutines in functional programming languages.
However, in an imperative language such as JavaScript, functional purity must be
explicitly defined, before being used conceptually in a project such as this one.

In order to facilitate the project, and to put into perspective the meaning of
functional purity in JavaScript, I construct a static analysis tool, a linter, that can
scan a JavaScript project directory for functions, and assert their purity. In doing
so, I define JavaScript function purity as a composite of two perspectives: Inde-
pendent purity and contextual purity. Independent purity concerns aspects of
functional purity that can be decided simply by looking at the body of a function.
Independent purity assertion ensures that a function does not, in and of itself, di-
rectly perform any operations that cause side effects, is not a higher order function
and returns a value. Contextual purity takes into account other functions that are
being called from the body of the tested function. A function’s purity depends on
its functional dependencies. Contextual purity assertion generates a call-graph of
functions in a project and propagates purity statuses throughout the graph. The
linter implemented in this project that implements this type of functional purity
assertion is called ’grint’ and classifies functions into three categories: ’pure’, ’im-
pure’ and ’unknown’. Functions classified as ’unknown’ are functions that are not
explicitly impure, but cannot be confidently classified as pure either. This is be-
cause ’grint’ does not currently take into consideration called functions that are not
declared within the project.

The linter is used in order to detect safely memoizable functions in two open-

v

source projects: ‘marked’, a markdown-to-HTML compiler, and ’trianglify’, a li-
brary that can generate triangle-based graphical art. All of the memoizable func-
tions found are part of the ’unknown’ category, which emphasizes the incomplete-
ness of ’grint’. In order to assert the possible energy consumption benefits of
memoization, I manually memoize the chosen functions, rebuild the project as
memoized versions, execute them as part of a test suite and compare their per-
formance with the original versions. Results show that memoization consistently
worsened the performance of the applications. While not having investigated the
reasons for this, I postulate that the memoization overhead caused by having to
process complex function arguments into strings, such that they can be used as
keys in the memoization table, is of higher cost than the computations of the func-
tions themselves.

The main takeaway from the results of the experiments is that memoization in
JavaScript is a more complex aspect of functions that just purity nad that reckless
memoization can worsen the performance of an application, rather than improve
it.

vi

An energy-oriented look into memoizability, using
static analysis

Theodor Constantin

June 14, 2021

Abstract

Energy awareness has become a hot topic in software development and
computer science in recent years, due to realizations concerning the amount
of energy consumed through ICT processes worldwide. Practitioner-oriented
research reveals that a recurring problem in adopting energy-saving men-
talities and techniques for developers is the lack of supporting tools in this
area. In this thesis, we go over the development of grint, a green linter
for JavaScript programs. grint is designed to detect functional purity in
JavaScript functions, that can be optimized via memoization, in order to
improve the energy consumption of the application. I test the efficacy of
grint and memoization, as an energy optimization technique, on two open-
source projects by running original and refactored versions, as part of an
experimental suite, and comparing their energy consumption. I use Intel’s
RAPL to perform energy measurements. Measurements show that the mem-
oized versions of the applications had consistently worse energy consumption
rates than the original. This suggests that function memoizability is a more
complex aspect of JavaScript functions, that is only conditioned by purity
and not fully represented by it.

1

Contents

1 Introduction 3
1.1 Problem statement . 4
1.2 Related work . 5

2 The Linter 7
2.1 The original lint . 7
2.2 grint . 8

2.2.1 Parsing . 9
2.2.2 Abstract Syntax Tree Traversal 10
2.2.3 Purity detection . 14
2.2.4 Automatic reformatting . 23
2.2.5 Further development . 26

3 Experiments 30
3.1 Methodology . 31
3.2 Tools and setup . 36

3.2.1 Intel’s RAPL . 37

4 Results 39
4.1 Discussion . 40

4.1.1 Threats to validity . 42

5 Conclusion 44

References 46

Appendix 50
Time results for both repositories in milliseconds 50

2

1 Introduction
Due to the impending problem posed by global energy consumption rates, energy
awareness has become an issue concerning more specialized domains of human
activity. Specifically, ICT (Information and Communications Technology)
accounts for over a tenth of the global consumption rates and is expected to double
in the next decade [1].

This realization has prompted practitioners and academia to invest in the develop-
ment and research of energy saving methods and technologies that could reduce
the global impact of ICT. This was probably only galvanized by the increasing use
and usefulness of mobile and battery-dependent gadgets, which are constrained
by energy-related requirements. This increased interest in energy awareness in
ICT has given rise to the Green IT movement [3], a global endeavour to raise
awareness about ICT consumption rates and develop a more energy-conservative
culture in IT development. In this thesis, I will refer to Green Software [4], a
specific branch of Green IT that concerns the software aspect of ICT.

The complexity of ICT, as a domain of activity, makes it rather difficult to reform,
such that it adopts a more energy-conservative attitude. New energy methods
and solutions are investigated by academia or in-house R&D specialists, while
practitioners are supposed to apply them, as part of development processes managed
by companies and enterprises. There are several caveats that impeded this entire
process:

• not all Green Software research is immediately useful and applicable for
practitioners;

• research has shown that practitioners, while interested in Green Software
ideas, are stumped by the lack of utilities to help them develop more energy-
efficient software;

• businesses do not necessarily have an incentive to invest in more energy-
aware development processes, especially if development time is significantly
impacted by this choice;

• researchers are not necessarily aware of the specific needs that practitioners
may have, in terms of energy-aware methodologies and tools; this creates
the specific need for practitioner-oriented research [5], in order to reveal
and understand these needs.

An aspect of Green Software, of which development could potentially bring
significant improvements to the movement, is the development of tools and
utilities to aid practitioners in architecting energy-efficient software. Previous
research [6–8] has investigated the strength of static analysis tools for source code

3

in detecting energy-inefficient patterns, and results suggest that these utilities
are worthwhile. In this thesis, I venture to investigate the potential of a linter,
such a static analysis tool, for aiding the optimization of memoizable functions, in
JavaScript applications.

1.1 Problem statement
Linters are static analysis utilities that parse and process source code in order to
detect specific patterns for various purposes. The term originates from lint, a static
analysis tool developed by Stephen C. Johnson in 1978, at Bell Labs [9], which
was a C and C++ preprocessor designed to detect troublesome areas of code,
undetected by the compiler, that may cause problems at runtime [10]. Later, lint
started being used outside of Bell Labs, and the usefulness of the tool prompted
the development of other variations for C and C++. Eventually, lint-like tools
were developed for other languages and the term became a denomination for static
analysis tools that detect code smells [8].

Linters are especially useful in the context of dynamically typed scripting languages,
that cannot make use of compilers in order to check erroneous areas of code. For
example, ESLint is a well-known linter for JavaScript, that is nowadays included
by default in most IDEs (Integrated Development Environments) and text editors,
and can be configured to detect and refactor even developer-defined patterns of
code. The ubiquity of ESLint and the possibility to use it both as a development
tool and as part of Continuous Integration pipelines makes it a viable tool in the
Software development industry. In the case of Python, a comparable scripting
language, PyLint is the most popular such linting tool, accompanied by multiple
other popular choices (PyFlakes, pycodestyle, pydocstyle, Bandit, MyPy).

Linters are not only used to detect defective code, but also for less functional
aspects of code, such as quality attributes. For example, ESLint is often used
amongst teams of developers to define source code standards and reject pipelines
on which code does not respect the convened upon standards. This is so that
repositories are homogenous in terms of coding style. This is to show that the
range of uses for static analysis tools is fairly wide and often problems that concern
source code can probably see some form of resolution in static analysis.

On this note, I introduce this paper by suggesting a linting tool as a solution for
energy inefficient source code. Previous work [11] has documented the reluctance
of practitioners to adopt Green Software practices due to the inexistence of usable
support tools for writing energy-efficient code. A linter as a solution for energy-
greedy code patterns has been approached as a topic for research before [6], and I
will discuss some of this relevant work in the Related Work section. The novelty of

4

this piece of research is given by the specific energy optimizable that I choose to
approach: memoizable functions.

A paper written by Pinto et al. [12] investigates the potential for energy savings of
memoization, an optimization technique consisting in the avoidance of unnecessary
function computations by caching results upon the first function call with certain
arguments and accessing the cache upon function ulterior calls to that function.
The paper’s results suggest a significant energy optimization for a majority of the
chosen functions. However, the authors manually picked their optimizable functions.
In this paper, I detail the development of a linter that specifically detects and
refactors memoizable functions, and assess the energy-saving potential of such an
optimization technique.

I choose to use JavaScript as the language targeted by the linter, firstly because it
has been consistently one of the most popular programming languages [13, 14] and,
as such, the contributions of this project should have relevance to a greater base of
practitioners. Secondly, JavaScript is an interpreted programming language and
such languages have a tendency to be less performant [15]. Optimizations for a
slower programming language that has a greater degree of popularity are probably
more influential and welcomed.

Thus, I formulate the following research questions, which I will attempt to answer
by the end of this paper:

Research questions:

1. What impact can static analysis have on the energy consumption behaviour
of a JavaScript application?

2. How can we define purity for subroutines in an imperative programming
language, such as JavaScript?

3. What impact does the memoization of pure subroutines have on the energy
consumption of an application?

4. How can we build a static analysis tool that detects and refactors memoizable
functions?

Before any further discussion, it is worth mentioning that, apart from producing
interpretable results suggesting the energy-saving potential of memoization, I intend
for this paper to act as a cookbook for static analysis tools of this king, having the
guide to creating a linter as one of the major contributions of this paper.

1.2 Related work
In [11], Manotas et al. produce a study detailing the opinions of a number of
software engineers in regard to writing energy efficient code. The practitioners

5

were chosen such that the diversity of experience and domain was maximized
amongst themselves. The study reveals, alongside other results, that engineers
show some degree of reluctance towards energy-efficient code due to the lack of
proper supporting tools that would aid them in producing green code at a viable
pace. The result suggests that a static analysis tool detecting optimizable code
could be a worthwhile endeavour.

Pinto et al. investigate the feasibility of memoization as a way to write more
energy-efficient applications in [12]. The authors select a number of pure functions,
from 3 different Java code repositories, and run and compare optimized and original
code on the Android platform. Their results suggest that memoization can help
save energy for most of the selected functions, although it can worsen consumption
in certain cases. The authors do not investigate further the nature of the functions
that do not benefit from memoization.

Given that Java is an Object-Oriented language, the study made by Pinto et
al. requires a definition for functional purity within an imperative context, given
that pure functions are a concept rather associated with the functional paradigm.
The authors cite the work of Yang et al., who study the purity of methods in
Java and offer a automatic method for inferring function purity in an object-
oriented language [16]. In this study, Yang et al. emphasize the differences between
imperative and functional subroutines, and give a set of rules for identifying pure
methods, and how these might vary.

Couto et al. produce a static analysis tool dubbed Chimera in [6], which is designed
to detect EGAPs (Energy Greedy Android Patterns) in Java code specifically
written for the Android platform. The authors comprise a list of some of the most
encountered and impactful energy-greedy patterns and construct a static analysis
framework to detect and refactor these patterns. Their results show that refactored
versions of the applications are consistently and significantly more energy efficient
than the original ones.

Nicolay et al. devise an approach to detecting functional purity in JavaScript, based
on abstract interpretation [17]. Comparatively to the tool used in this project, their
approach is more robust and can detect functional purity even in the case of higher
order functions, which is a shortcoming of the linter I make use of. As opposed
to their method, I use an Abstract Syntax Tree analysis approach to detecting
patterns that denote functional purity. The two approaches are alternatives to each
other and their work represents a different method of performing what I attempt
in this thesis.

6

2 The Linter

2.1 The original lint

In July, 1978, Stephen Johnson explains in a paper [10] the use and implementation
of lint, the tool he had been working on within Bell Labs up to that point, that
would later be used by a wider base of programmers and that would inspire the
creation of other such static analysis tools.

Firstly, Johnson mentions the importance of lint as an appendix to the C compiler,
rather than as a part of it. While a compiler is required to process input code as
fast and succinctly as possible, such that it accurately represents the specification
of its language, a linter verifies source code in much more detail, such that it
helps detect problems with the code that do not concern the language itself. A
compiler is supposed to catch incorrect uses of the language, while a linter searches
for patterns that negatively impact development, but that are not necessarily
“incorrect.” Despite this observation, nowadays, compilers for C and C++ are
equipped to give warnings for some of the code smells that lint was designed to.
Nevertheless, linters still exist for most programming languages, as they can help
detect specific unwanted patterns of code, whatever these are. Customizability is
an advantage given by the auxiliary nature of linters.

In his paper, Johnson mostly describes the functionality of lint and whatever blind
spots it might have in detecting unwanted code patterns. A casual takeaway from
his descriptions is that compromises are to be expected when building such a tool.
A static analyser is naturally limited by what is computable (for example, whether
a function can ever terminate). Furthermore, a linter is limited by its static nature,
and cannot possibly deduce behaviours of the code that are dependent on input
data (for example, certain portions of code might never be executed, depending
on runtime input). As such, Johnson seems content with implementing linting
algorithms to the best possible extent, despite not being able to detect patterns
perfectly.

In terms of implementation, Johnson gives a succinct description of the architecture
of lint: two programs and a driver. The first program includes a C compiler and
has the role to syntactically and semantically analyse the input code. The product
of this program is saved to an intermediary file. The second program performs a
consistency check on the results of the first. The driver acts as a controller for this
entire process [10].

Johnson does not give a detailed guide to how a linter is build (in fact, there is no
reason for him to know at the time that “linters” would be a class of tools of their

7

own). However, there are some useful takeaways that I take into consideration:

• any linter most probably requires a compiler or at least a parser of the input
language; the linter should not have the responsibility of checking for lexical
and syntactic correctness, as dictated by the language specification; the
compiler has that role, and the linter analyses the intermediary output of the
compiler, which can be an Abstract Syntax Tree (AST); as an energy-relevant
example, in [6], the authors write a linter in which they detect energy-greedy
patterns by searching ASTs for specific patterns of code

• functions of the linter might not always be completely accurate; complex
linters can miss some of the searched patterns, due to limitations of com-
putability and the reluctance to overcomplicate the architecture of the linter
itself;

• a linter is used because it suits more specific requirements of developers
programming in a certain language; configurability is an advantage, as it
increases the degree to which a programmer can better tailor the tool to their
specific needs

2.2 grint

In my attempt to perform investigations concerning memoization and its energy
saving potential, I develop a prototype linter specifically designed to detect mem-
oizable functions. As a side note, function memoizablity (which, at the moment
of writing this, might not be a word in the English language) is a function that
can be memoized, without impacting the functionality of the program. Here, I
draw a distinction between purity and memoizability, as there can be functions
that are not strictly pure (at least not by the textbook definition), but that can
be safely memoized, with some caveats. For example, these can be functions that
depend on external variables that are not expected to change during runtime. On
the other hand, by the end of this thesis, results will suggest that memoizability
can mean more than simple purity, when considering the purpose for which it is
usually employed. I will go into theoretical details concerning purity in the Purity
detection section.

Similarly to Johnson’s lint, my linter design is comprised of three main components:
a parser, a purity checking module and a memoization module. Of the three, the
parser is the component that I can safely import from an external source. For this
purpose, I choose a well-known and maintained JavaScript parsing library, acorn.js.
The purity-checker is responsible for detecting pure functions that can be memoized.
It generates a list of all of these functions in a chosen root-directory of a JavaScript
project. The developer then has the freedom to choose which of the detected pure
functions should be optimized, which is then done by the memoization module.

8

Similarly to how other tools of this kind often have names that are variations of
the original lint, I name this tool grint, an abbreviation of Green Lint. In the rest
of this section, I will be detailing the constituent parts of grint, all the while I
explain any necessary theoretical and technical concepts surrounding JavaScript
parsing, functional purity and memoization.

2.2.1 Parsing

A minimal explanation for the functionality of a linter is that it is a tool that
detects patterns of code. A technique for doing this is to generate an AST from
the input source code and traverse it, while trying to catch the wanted patterns.
An abstract syntax tree is an intermediary representation of the code, that is
ensured to have been lexically and syntactically checked for correctness and that is
easier to traverse and decorate with further checks and specifications. For example,
a type checker will work with an AST, in order to ensure the type-correctness of a
program, by decorating nodes of the tree with type annotations and checking that
code constructs throughout the AST abide by their type semantics. In compilation
processes, ASTs are valuable artefacts that are obtained via parsing.

Parsers are probably the most documented aspect of computer program compilation,
with a plethora of supporting tools and practices, such as parser generators, parser
construction libraries, paradigm-specific techniques (such as parser combinators,
in the functional paradigm) and even complete and integrable parsers for most
languages with some minimal degree of popularity. A language as popular such as
JavaScript is bound to have some options for parsers available for public use, case
in which I did not see a point in constructing my own parsing unit for JavaScript.

JavaScript is formally defined by the ECMAScript Language Specification [18].
However, the language does not have an official, primary interpreter, compiler or
parser. Popular for defining functionality within dynamic web pages, JavaScript
is executed by web browsers using various engines, specific to each browser (V8
in Google Chrome, SpiderMonkey in Firefox, Chakra in Internet Explorer, etc.)
[19–21]. However, there are several well-known parsers and compilers for JavaScript
developed by communities of volunteers, that are reputable enough to use. One
such library is acorn.

There is not much to detail upon acorn: it is a lightweight JavaScript parser, with
one main function that, given a program string, will return a parsed version of
that string, or throw an error, given any syntactical error in the input code; the
parsing process is configurable, such that the parser accommodates for various
versions of the ECMAScript language, different styles of coding and different ways
of feeding the input to the parser; the parser can be extended further with existing

9

plugins. It is notable that acorn produces an AST that is modelled as a JavaScript
object, that abides by a community-convened standard for JavaScript ASTs name
ESTree [22]. This standard came to existence after a Mozilla engineer, working on
SpiderMonkey, the Firefox-specific JavaScript engine, exposed and documented the
internal format used the SpiderMonkey JavaScript AST. This format is officially
represented by recursive TypeScript types, which makes tools such as acorn easy
to integrate within TypeScript programs, that also need to process the ESTree
AST, after it is generated. Finally, I should note that ECMAScript continues to
receive updates and improvements, while the ESTree format remains supported by
a team of volunteers, who claim that ESTree is a community standard that became
a lingua franca for applications that process JavaScript code [22].

The format of the AST is important, as it is a functional representation of the
grammar of JavaScript, without which I myself would have to derive some sort of
type library that emulates the ECMAScript grammar. Thankfully, ESTree provides
a good enough such library, that provides sufficient information on AST nodes,
such as preceding comments or delimiting line numbers for said code constructs.
Lastly, the fact that ESTree provides a TypeScript type library for its standard
and that acorn is written in JavaScript and is integrable in TypeScript programs
determined the choice of TypeScript as the programming language for grint to be
written in.

2.2.2 Abstract Syntax Tree Traversal

The acorn parser produces an AST comprised of various types of nodes. The ESTree
specification defines these nodes as a collection of TypeScript interfaces that is
conveniently available as a Node library. Thus, it is easily usable in a TypeScript
workspace.

The ESTree interfaces represent the various code constructs specified by the EC-
MAScript language. They are an implemented representation of the language’s
grammar. As such, they closely resemble language grammar rules:

• they build upon each other, either by extension or through union types,
much like grammar nonterminals may produce multiple other types of single
terminals, alternatively; for example, such as the Expression type, which is a
union of all different expression interfaces in the library;

• they recursively reference each other, much like grammar nonterminals pro-
duce series of other terminals and nonterminals, denoting code constructs;
for example, IfStatement has as attributes a test (Expression), a consequent
(Statement) and a possible alternate (Statement).

The ESTree-format AST is basically a large JSON object, of type Program, that

10

contains the entire rest of the program as an attribute. In order to process such
a construct, we need to perform some sort of AST traversal method. A common
pattern used in processing ASTs is the visitor pattern, a design pattern specific to
Object-Oriented Programming, meant to avert the implementation of class-specific
functionality by having it contained in a visitor object and injecting it in specific
classes when being processed [23]. The visitor pattern is implemented as follows:

• a visitor class implements a set of visit functions for various other classes;
in the case of an AST, these classes would represent the variety of AST nodes

• these other classes would expose a function that accepts a visitor object and
calls the visit function upon itself

• the visitor object’s visit functions then implement whatever processing
algorithms are needed for each of the classes that they specifically concern.

It is worth noting that the visitor pattern is only an option to AST traversal and
that various types of tree processing might require specific methods.

Obviously enough, the visitor pattern is OOP-specific, while our implemented AST
representation is a collection of interfaces that cannot contain functionality unless
converted to classes. As I did not want to tamper with the ESTree library, as that
might be more work than it is worth, I devised some sort of a procedural visitor
pattern.

Firstly, I must mention a convenient aspect of ESTree interfaces, which is that
they each specify a type attribute, that is of a literal type. In TypeScript, one
can use a language literal (string, number, boolean, etc.) as a type for a variable
declaration. Declaring a variable as such, for example with the type true, it can
only ever have the value true. A literal type essentially denotes a set of possible
values of size 1. In the ESTree library, the type attribute on each interface is of a
string literal type, denominating the variety of interface that it is contained by.
For example, the IfStatement interface will have type: "IfStatement". This aspect
of ESTree interfaces essentially enables us to determine the type of a node object
based on what its type attribute is equal to (see Listing 1).

1 function processExpression(exp: Statement) {
2 if (exp.type === "IfStatement") {
3 // process `if` statement
4 //...
5 } else if (exp.type === "WhileStatement") {
6 // process `while` statement
7 //...
8 } else if (exp.type === "ForStatement") {
9 // process `for` statement

10 //...
11 }

11

12 }

Listing 1: An example of how the ’type’ field helps with typing inside the switch
statement; within each branch, ’exp’ will be typed differently

As such, based on the type attribute of our AST nodes, we can programmatically
redirect them towards different methods of processing each node. This leads to the
following method of AST traversal:

• I have a general visit function, that accepts as parameters an AST node and
a function that accepts a node and returns any type of value; the function
parameter is optional and defaults to a constant undefined function ((n) =>
undefined; see Listing 2);

• the visit function returns a NodeMap (Listing 3), which specifies the type of
the node, data returned by the processing function when applied to it, a
dynamic value attribute, that might contain specific information about some
types of nodes, and a collection of other NodeMap objects, denoting the node’s
children; as an honest personal note, this aspect of the visitor function did
not offer much utility, for anything other than debugging; my initial plan
for this return type was to simplify the AST to as succinct of a structure as
possible; however, that was not entirely necessary

• within the visit function, there is a rather large switch statement that
discriminates the parameterized node based on its type attribute (Listing 4),
and redirects it as a parameter to specialized visitor-functions, that handle
specific types of nodes, along with the parameterized function mentioned
above (Listing 5 shows an example for the FunctionExpression node)

• the parameterized function is used in each of the node-specific visitor-functions
on the node object; its return value is stored in the top level of the returned
NodeMap object; this function is a way to inject functionality in this tree
traversal process, such that we can process whatever types of nodes we wish
inside this callable parameter, externally from the visitor-module;

• inside the node-specific visitors, apart from calling the parameter function
with the node, we possibly store some node data in the value attribute of
the resulting NodeMap (for example, actual values for literals) and then, call
the generic visit function on child nodes of the currently visited node; we
store the resulting NodeMap objects from these calls in the children attribute
of the currently constructed NodeMap; it is worth mentioning that some code
constructs have optional child nodes specific to them, such as the else branch
of an if statement, represented in ESTree by the alternate attribute of the
IfStatement interface; this needs to be handled, or otherwise the program will
throw errors when trying to access attributes on null objects;

• at the end of this traversal process, all nodes in a tree will have been tra-

12

versed, mapped to the resulting NodeMap and will have been processed by the
parameterized function.

1 function visit(node: Node, func: (n: Node) => any = (n) => undefined): NodeMap;

Listing 2: The definition of the ’visit’ function

The functionality injected via the function parameter of the visitors can be used to
both alter the original AST, or to return relevant data regarding any specific types
of nodes. For example, in order to extract all function calls from the body of a
function, we visit the FunctionExpression node corresponding to that function, with
a parameter function that pushes FunctionCall nodes into an externally declared
container. This array can be declared in the same scope in which visit is called,
and the scope of the parameter function, provided as a lambda, will be able to
reference the external array and modify it contents. This can be isolated into a
special function of its own and can be generalized to search for multiple types
of nodes at the same time, so as to avert unnecessary extra traversals of ASTs
(Listing 6).

1 export interface NodeMap {
2 type: NodeType;
3 data?: any;
4 body?: NodeMap[];
5 value?: any;
6 }

Listing 3: The NodeMap interface

1 export function visit(
2 node: Node,
3 func: (n: Node) => any = (n) => undefined
4): NodeMap {
5 let nM: NodeMap = { type: node.type };
6 switch (node.type) {
7 case "Program":
8 nM = visitProgram(node, func);
9 break;

10 case "ClassDeclaration":
11 nM = visitClassDeclaration(node, func);
12 break;
13 case "MethodDefinition":
14 nM = visitMethodDefinition(node, func);
15 break;
16
17 // ...
18
19 case "ExportSpecifier":

13

20 nM = visitExportSpecifier(node, func);
21 break;
22 }
23 nM.data = func(node);
24 return nM;
25 }

Listing 4: Snippet of the ’visit’ function

1 function visitFunctionExpression(
2 functionExpression: FunctionExpression,
3 func: (n: Node) => any = (_) => undefined
4) {
5 const nM: NodeMap = { type: functionExpression.type };
6 nM.body = functionExpression.id ? [visit(functionExpression.id, func)] : [];
7 nM.body = nM.body.concat([
8 ...functionExpression.params.map((p) => visit(p, func)),
9 visit(functionExpression.body, func),

10]);
11 return nM;
12 }

Listing 5: The visitor function for the ’FunctionExpression’ type node

1 export function getVisitByType(
2 type: NodeType,
3 acc: Node[]
4): (node: Node) => void {
5 return (node: Node) => {
6 if (node.type === type) acc.push(node);
7 };
8 }
9

10 export function getByType(node: Node, type: NodeType): Node[] {
11 const acc: Node[] = [];
12 visit(node, getVisitByType(type, acc));
13 return acc;
14 }

Listing 6: The functions responsible for retrieving specific types of node form an
AST

2.2.3 Purity detection

For a function to be pure, it has to respect the following two conditions:

• the function’s evaluation solely depends on its provided arguments, and is
consistent, such that, for a particular set of arguments, the function’s call
will always evaluate to the same value;

14

• the computation of the function does not have any side effects; this is to
mean that the function cannot alter any state outside of its own scope.

Functional programming generally prides itself with functional purity as one of its
main strong points. Advocates of functional programming will attribute multiple
advantages of this programming style to its purity aspect, such as greater ease
to reason about the program or greater algorithmic safety, due to the lack of
side effects. However, functional languages are intrinsically specified to enforce
functional purity, while imperative and OOP languages are not, although they
often offer facilities to accommodate a functional style. As such, this these varieties
of programming styles might require a more rigorous definition of functional purity.

JavaScript is a multiparadigm programming language, that can be used functionally
relatively easily. Nevertheless, JavaScript also has imperative and OOP aspects to
it, which means that we need to define functional purity such that it applies to
these contexts as well.

A paper written by Yang et al.[24] investigates the concept of pure methods in
Java, an OOP programming language. The authors remark the fact that OOP
languages require somewhat of a redefinition for function purity and devise a
method of detecting pure functions in Java. An interesting takeaway from this
piece of research is a suggested classification of functional purity [24]:

• stateless - conforming to the original definition of purity, it means that the
return value of the function does not depend on external variables, other
than the provided arguments;

• stateful - meaning that such a function returns a value that can be dependent
on the state of the object it belongs to.

In another paper involving Yang [16], the authors investigate refactoring methods
revolving around function purity in Java. Amongst others, they discuss memoization
and suggest three preconditions for a function to be memoizable:

• purity - this refers specifically to the lack of side effects; the authors imply in
the third pre-condition that the function’s return value can actually depend
on external values, to some extent;

• argument immutability - the type of the arguments should enforce im-
mutability; this is because mutating members of an object argument in Java
will mutate the original object passed to the function;

• limited external dependency - the authors exclude static fields, public
member fields and exposed member fields from the allowable dependencies
for the memoizable function’s return value; this implies that the value of the
function’s return cannot possibly be affected by any functions that do not

15

belong to the encapsulating class; this last point is interesting, as it breaks
the original definition of purity, while the authors consider stateful purity
enough to render a function memoizable.

As a side note, Pinto et al., who investigate the energy saving potential of memo-
ization in [12], use these pre-conditions to identify memoizable functions.

In the case of JavaScript, purity detection is significantly more complicated, given
the dynamically typed nature of the language. A strong type system, such as the
one Java has, gives more information about the program at compile-time, such that
static analysis on the program can be much more fruitful and can make decisions
about the meaning of the program with higher certainty. On the other hand,
statically analysing dynamically typed code requires more inference and has to
take into consideration use cases for the code that might never even happen at
runtime, depending on input information.

Considering the natural inaccuracy of a purity detector for JavaScript, in this
project I aim to build a helper tool to identify functions that are likely to be
pure. More precisely, I build a tool that can detect impure functions, based on the
most significant indicators, probably impure functions, based on weaker indicators
of impurity and possibly pure functions, through exclusion of the rest. In order
to perform this, I first need to decompose impurity detection into smaller, more
cohesive modules.

Firstly, we should note that a function can be considered impure if it either directly
breaks the rules of purity (no side effects, no external dependencies that might
influence its evaluation) or if it calls another impure function. As such, a function’s
impurity can be determined either independently, or contextually. This determines
a two-pronged classification of my impurity checks:

• independent checks - these are the types of checks that verify whether a
function directly determines its own impurity status; independent checking
can detect whether a function is impure solely by analysing its body, without
having to know anything about the other functions it calls; for example, if a
function attempts to assign a value to an identifier that has not been declared
within the body of said function, then we can assert that the function is
impure; if a function is not independently impure, that does not imply purity;
purity can only be asserted once the contextual check has been run and all
function calls within the body of said function are pure; this implies that if a
function is not independently impure and it does not call any other functions,
then it is pure;

• contextual checks - a function’s purity status depends on the purity status
of the functions it calls within its body; a function can become impure

16

through no refactoring of its own, but rather just by having one of its calls
become impure; this implies that purity detection is a matter of constant
workspace/project analysis, in order to contextualize a function’s role in
determining other functions’ purity status; unfortunately, this also implies an
immediate limitation of such a purity detector: libraries cannot be included
in the analysis, as it might be unfeasible to do so, given the magnitude of such
a task; this is especially exacerbated by the fact that functions have to be
re-contextualized with each refactor; alas, the contextual check is necessary
to form a map of function purity for a particular project.

Contextual checking forms a map of dependency between functions, which is
essentially a call graph, while independent checks discover the independently impure
functions, from which the impurity status will propagate throughout the project
call graph. Whatever functions are not flagged as impure after the propagation
process are possibly pure.

In the rest of this section, I will go into more technical details surrounding the
independent and contextual purity checks.

2.2.3.1 Independent purity I consider a function to be independently pure
if it does not (1) directly cause side effects in the program and (2) it does not
directly refer to external variables in its calculation of the return value. This means
that a function’s independent purity aspect can be asserted simply by analysing
the body of the function, and nothing else. Independent purity does not concern
itself with calls to other functions, that may be impure themselves, as this would
imply an analysis of dependencies, ergo, code external to the body of the function
currently being analysed.

In order to assert independent purity, I separate the analysis into multiple subchecks
that concern a single type of impure behaviour, as I explain in the previous para-
graph. For each of these, I construct a function that accepts a FunctionExpression
or FunctionDeclaration object and returns a boolean value, denoting the whether
the function in question passed the respective purity check. The entire set of checks
is placed into a collection that is used by the one entry point of the independent
purity module to verify each function that it is invoked with, as a parameter. One
failed check is enough to mark the function as independently impure. As such, as
a small optimization, at the first failed check, the function is asserted as being
impure and no other checks are run on it. This creates an incentive to order the
check collection based on how computationally heavy the checks are, such that the
less expensive ones are run first.

1 export function checkIndependent(
2 fExp: FunctionExpression | FunctionDeclaration

17

3): boolean {
4 for (const check of purityChecks) {
5 if (!check(fExp)) return false;
6 }
7 return true;
8 }

Listing 7: The top level check functions that sequentially performs all other checks

The list of independent purity subchecks is, as follows:

• returnCheck (Listing 8) - in order for a subroutine to be a function, it
must return a value, based on its parameters; a subroutine without a return
statement is not technically a function, but rather a procedure; in JavaScript,
a function with no return statement evaluates to the undefined value, which
means that, technically, any JavaScript subroutine is a function and the lack
of a return statement in a function does not per sa imply impurity; however,
it does render the function non-memoizable, because the entire purpose of
memoization is to cache possible return values for a function; having no
explicit return value defeats the purpose of memoization; as such , for the
purpose of this project, functions lacking return statements are to be deemed
impure;

1 function returnCheck(fExp: FunctionExpression | FunctionDeclaration): boolean {
2 let nM = visit(fExp);
3
4 function pruneNestedFunctions(root: NodeMap): NodeMap {
5 if (root.body) {
6 const newBody = root.body
7 .filter(
8 (n) =>
9 n.type !== "FunctionExpression" && n.type !== "FunctionDeclaration"

10)
11 .map(pruneNestedFunctions);
12
13 root.body = newBody;
14 }
15
16 return root;
17 }
18
19 nM = pruneNestedFunctions(nM);
20
21 function checkForReturn(root: NodeMap): boolean {
22 return (
23 !!root.body &&
24 (root.body.some((n) => n.type === "ReturnStatement") ||

18

25 (() => {
26 for (const n of root.body) {
27 if (checkForReturn(n)) return true;
28 }
29 return false;
30 })())
31);
32 }
33
34 return checkForReturn(nM);
35 }

Listing 8: The check responsible for verifying whether a function contains a ’return’
statement

• assignmentCheck (Listing 9) - there must not be any assignments within
the body of the function done to identifiers that have not been declared
within the body of the function; this is the best indicator of side effects, as
it is clearly a change of program state, external to the body of the function;
in order to perform this check, the body of the function is traversed, such
that all assignments are ensured to be done to variables declared within the
body of the function up to that point; the parameters of the function are also
allowed for assignments, as assigning to them does not mutate the possible
original variable passed to the function; assignments to attributes of objects
should also be handled; an expression through which an object attribute
is accessed (of the format object.attribute) is called a member expression
(of type MemberExpression in the AST); in order to ensure that assignments
are only made to attributes of locally declared objects or arrays, assignment
nodes whose left side represents a MemberExpression are ensured to have as the
root identifier of this member expression a locally declared variable; in this
case, parameters are not to be considered safe for assignment, as assignments
to member attributes of parameterized objects in JavaScript carry over to
the originally passed variable; as such, assignments to parameter members
are possibly side effects;

1 function assignmentCheck(
2 fExp: FunctionExpression | FunctionDeclaration
3): boolean {
4 let localIds: string[] = [];
5 let paramIds: string[] = fExp.params.reduce((acc, curr) => {
6 return acc.concat(patternToIds(curr));
7 }, []);
8 let sideEffect = false;
9

10 visit(fExp, (node) => {

19

11 if (node.type === "VariableDeclaration") {
12 node.declarations.forEach(
13 (dec) => (localIds = localIds.concat(patternToIds(dec.id)))
14);
15 } else if (node.type === "AssignmentExpression") {
16 if (node.left.type === "MemberExpression") {
17 const base = getBaseIdentifier(node.left);
18 if (!(base.type === "Identifier" && localIds.includes(base.name)))
19 sideEffect = true;
20 } else {
21 const ids = patternToIds(node.left);
22 const mutableIds = localIds.concat(paramIds);
23 if (ids.find((id) => !mutableIds.includes(id))) sideEffect = true;
24 }
25 }
26 });
27
28 return !sideEffect;
29 }

Listing 9: The check responsible for catching external assignments

• higherOrderCheck (Listing 10) - in our context, a higher order function is
a function that attempts to call one or more of its parameters; at compile
time, it is not possible to assert independent purity of higher order functions,
as the parameterized function can possibly be impure and side-effectual and
there is no way of knowing this at compile time; it might be possible to infer
the purity of the parameterized function by analysing the calls to the function
at hand, throughout the project, to verify whether it is only called with pure
functions as parameters; however, this is unfeasible for projects that serve
as libraries and expect their functions to be used externally; as such, higher
order functions are to be deemed independently impure

1 function higherOrderCheck(
2 fExp: FunctionExpression | FunctionDeclaration
3): boolean {
4 let parList: string[] = [];
5
6 for (const param of fExp.params) {
7 parList = parList.concat(patternToIds(param));
8 }
9

10 let notHigherOrder = true;
11
12 visit(fExp, (node) => {
13 if (node.type === "CallExpression" && node.callee.type === "Identifier") {
14 notHigherOrder = !parList.includes(node.callee.name);

20

15 }
16 });
17
18 return notHigherOrder;
19 }

Listing 10: The check that verifies whether the function calls any of its parameters

2.2.3.2 Contextual purity A function is contextually pure if all function calls
within its body are pure. It is important to distinguish this side of functional purity
from independent purity because it involves the analysis of the entire containing
project of the considered functions.

A function’s purity depends on the purity of its functional dependencies. This
means that a function can have its state of purity change by having its function
dependencies change their state of purity. As such, we can model a JavaScript
project, in terms of its functions, as a directed call graph, where nodes represent
functions whose state of purity depends on the purity of their children in the graph.

Excluding circular dependencies, the call graph will resemble a sort of tree with
multiple root nodes, where the leaves are the most basic functions that are either
in-built JavaScript functions or do not call other functions, and the roots are the
highest-level functions that are not called internally in the projects. For libraries,
these functions would represent the exposed interface of functionality that the
library offers. For programs with one main entry point, the call graph would be a
tree, where the root node is the entry point of the program. The technical name
for the “multi-root tree” structure is a directed acyclic graph.

In order to form the call graph, the contextual purity module traverses an entire
project recursively, starting at its root directory, and records the names of all
JavaScript files in a tree. The files in the tree are then parsed though acorn, and the
file tree is enriched with lists of FunctionExpression and MethodDeclaration nodes that
are present inside its AST. For the purpose of identification, functions and methods
are assigned an identification string of the format <path>:<class>:<identifier>
for methods and <path>:<identifier> for top scope functions. For methods, it
is necessary to specify the name of the containing class. I will be referring to
these identifiers as function links. A current known limitation of this identification
method is the fact that it does not take into account the possibility of functions
with the same name being declared within disjoint scopes.

For each recorded function, we enrich the file tree further with lists of function
dependencies, such that each function has a collection of identifier strings of the
functions it calls corresponding to it. These identifiers must now be linked to the

21

functions they refer to.

The function linking process involves the analysis of imports in each file. If a called
identifier refers to an internal import, then I use the source file for that import to
produce its function link, and replace the string identifier with it. The same is done
for in-file references. Functions that are external imports, such as from libraries,
and in-built functions are marked with the special character ?, to denote this.

The module takes into consideration a list of in-built JavaScript functions, and
whether they should be considered pure or impure. Another limitation of this
method arises here, when considering functions on JavaScript arrays and objects.
Should there be calls to an in-built method on arrays, such as push or concat, there
are cases in which it is unsure whether the object on which these methods are
called is a JavaScript array or a custom object, that happens to contain a function
with the same name as an array function. For example, if a function calls concat
on a parameter (parameter.concat(arg)), it is not possible to know whether the
parameter is an array or a custom object. This fact brings doubt to the purity
status of the concat function. Inference by analysing the uses of the containing
function throughout the project might raise confidence in regard to the type of its
parameter, but if the function can be used externally, then we cannot make any
confident assertions in this regard.

After the linking process, the file tree is converted into a list of objects containing
the function link for each function in the project, along with an array of function
links denoting each function’s dependencies and a field denoting the purity status
of the function (pure, impure or unknown). By default, functions are classified as
unknown in terms of their purity status. This list is then used in the impurity
propagation process, which follows the following algorithm:

1. the entire function list is evaluated by the independent purity module; this
will classify a portion of the original list as impure functions;

2. the impure functions in the list are then selected and, out of the other functions,
that are still marked as unknown, it is verified which ones call any of the impure
functions;

3. unknown functions that call impure functions are marked as impure;
4. the previous two steps are repeated until there no more unknown functions

that call any of the impure functions.

A similar process can be applied to propagate purity throughout the list of func-
tions, although it will flag significantly fewer functions, if any. This is because,
purity propagation starts with functions that do not make any function calls and
are not independently impure, which tend to be fewer. These are marked as
pure. Propagation then continues by marking unknown functions that only call pure

22

functions as pure. This repeats until there is no more unknown functions that satisfy
the condition.

Functions that call external or in-built functions remain marked as unknown, because
of the reasons specified earlier. To reiterate, we cannot with confidence declare
these functions as pure, because of possible naming overlaps with custom functions,
in the case of in-built calls, or unknowable purity status of external functions, in
the case of external library calls. As such, I decide that the memoization of these
functions should remain a choice of the developer. Nevertheless, the linter will
inform the user of the list of function declared throughout the project, alongside
their asserted purity status.

2.2.4 Automatic reformatting

At the moment of writing this thesis, automatic reformatting in grint is subject to
future development and, arguably, it is not extremely useful in the current state of
the linter. I will explain why this is after discussing how memoization is currently
done, for the sake of the experiments, and how I would automate it.

Memoization is done simply via a function that takes another function as a pa-
rameter and returns a memoized version. Courtesy to an article on JavaScript
memoization written by Joseph Chege [25], we have the function in Listing 11
which instantiates an object as the memoization table and returns a function that
checks whether the object contains a previously calculated result; if so, it returns
it; otherwise, the function being memoized is run with the arguments of the return
function; before returning this results, it is first inserted into the instantiated object,
as a member field, with a stringified version of the argument array as the key, and
the return value of the memoized function as the value. For the sake of monitoring
and debugging, I added a memoization counter that keeps track of the number of
memoization table hits for each run of the program. Knowing how often values are
being retrieved from the memoization table helps us assert whether memoization is
actually helping avert repeated computations in the first place.

1 let memoCounter = 0;
2
3 const getCounter = () => memoCounter;
4
5 const memoize = (func) => {
6 const results = {};
7 return (...args) => {
8 const argsKey = JSON.stringify(args);
9 if (!results[argsKey]) {

10 results[argsKey] = func(...args);
11 } else {
12 memoCounter++;

23

13 }
14 return results[argsKey];
15 };
16 };
17
18 module.exports = { memoize, getCounter };

Listing 11: The memoization function, taken from Joseph Chege’s article

In order to memoize a function, we initialize it using the memoize function, with
the initial lambda as a parameter. If the original function is not declared as a
const and initialized with a lambda, but rather uses the special function syntax,
we need to refactor it to a const variable, refactor the body and parameters of
the function into a lambda, and initialize the const with the memoized version
of the resulting lambda. This entire process implies that we need to import the
memoize function into each file we use it in. The way this is done depends on the
version of ECMAScript the project uses, as ES6 introduced a new import and
export syntax. As such, projects written in ES6 may use the newer import syntax,
while older projects will not. As such, memoization refactoring will depend on the
version of ECMAScript used in the project. A solution to this would be to give the
developer the ability to configure the linter, via a configuration file placed in the
root directory of the project, similarly to how other linters can be configured. This
can expose the functionality to specify the version of ECMAScript that the project
uses, which I can make use of in order to refactor in a version aware manner.

However, the language version issue is not the only aspect impeding automatic
refactoring. A project may make use of multiple other linters and static analysis
tools for various purposes. One such use is often code style standardization, which
checks whether code abides by certain style standards, according to some sort of
configuration. ESLint is a well-known example of this. Different configurations
for ESLint may denote styles of code that are incompatible with each other’s
configurations, such that there is no style that satisfies both configurations. This
means that, any automatic addition of code will have to know of the ESLint
configuration beforehand, in order to produce code that is compatible with the style
configuration. Otherwise, there is a risk that automatic refactoring will determine a
project to be rejected by possible pipelines that incorporate ESLint into them. This
means that something like grint cannot properly perform automatic refactoring
without the risk of incompatibilities with other project related tools. Nevertheless,
the developer can be given the choice to automatically memoize functions, although
the effort of marking functions as automatically memoizable is arguably comparable
to the effort needed to just memoize the functions.

A first solution for automatic refactoring would be to work directly with the AST,

24

modify it and then recompile it to code. Once a marked function is found, the
AST node corresponding to it can be processed as I discuss above, such that the
function becomes a constant initialized with a lambda. The lambda node can then
be inserted as a parameter node within a function call to the memoization function.
Lastly, we need to include an import statement node in the main scope of the file
we are processing. This would correspond to the body of the root node of the
AST. It is also necessary to include the file exporting the memoization function in
the root directory of the project. A second solution would be to directly modify
the code string in the original file, such that we append the necessary code to the
functions’ expressions in order to memoize them. At the same time, we would need
to append the necessary import statement for the memoize function at the beginning
of the file.

The main advantage with the AST solution is that refactoring is more robust and
typed, such that we do not have to consider strange code layouts when processing
the AST. As for modifying the file directly, we would essentially need to write
a mini-parser for function expressions, such that we can handle various code
layouts. On the other hand, refactoring the AST would require us to also include
a code generation library that processes ESTree ASTs back into JavaScript code.
While researching the means to do this, I happened upon an open-source library
called astring [26], that promises to do exactly that. However, it generally seems
information about converting the ESTree specification back into the ECMAScript
code that it represents is scarce.

As a final feature to the automatic refactoring module, the developer should have
the choice of which functions are to be memoized. This is because, a majority
of memoizable functions that are potentially most impactful, will be marked as
unknown, in terms of their purity status, as discussed in the previous section. Some
other development tools for JavaScript make use of comments in the source code
in order to embed otherwise meaningful code in the JavaScript document. A
popular example of this is JSDoc [27], a markup language used to embed program
documentation directly in the JavaScript source code. IDEs will then make use of
JSDoc comments in order to display more readable tips and information regarding
a program’s or library’s functions, variables or types. As another example, some
IDEs, such as JetBrains’ WebStorm [28], will use commented annotations in
order to mark portions of code in order to override functionality of their embedded
linters (an example of this is when the developer is technically breaking a linter rule
in the code, but nevertheless needs to do so). Similarly, grint can also make use of
commented annotations before functions, to mark them as memoizable (for example,
something similar to >>grint:memoize). Arguably, the linter may also throw errors
and give warning s when memoization is attempted for impure or unknown functions,

25

respectively. The AST generated by acorn gives access to comments prefacing code
nodes, which makes the annotation feature relatively facile to implement.

To conclude this section, automatic refactoring, while implementable in different
ways, comes with several impediments that can make it ungeneralizable and
impractical. As for its usefulness within this project, manual memoization eventually
turned out to be quite an easy task, that did not require automation.

2.2.5 Further development

Apart from automated refactoring, there are several other points of improvement
for a tool such as grint that can elevate its usefulness from a practitioner’s perspec-
tive. In this section, I will be discussing some of them, alongside implementation
possibilities.

2.2.5.1 Configuration A strong point of some of the static-analysis-based
tools surrounding the JavaScript development stack is their configurability. Various
types of projects might require variations in the way some tools interact with
the code. For example, I have already discussed the issue regarding ECMAScript
versions: current projects may use different versions of ECMAScript, such that it
is often impossible to generalize tools that can properly interact with all versions.
As such, linters and other auxiliary tools might require different programmed
behaviours for different versions of the language. This can be specified via the
package.json file that is found in the root directory of the project at hand. In other
cases, the tool may prefer to have a specialized configuration file. For example,
Prettier, an automatic code formatter for JavaScript [29], may make use of a
.prettierrc configuration file in the root directory of a project, that will specify
the style in which the code is to be formatted. Similarly, Babel, a JavaScript
compiler (and often an alternative to acorn), usually used for translating JavaScript
code to different versions of ECMAScript, for compatibility reasons, makes use of
a configuration file, that specifies compiler options. Comparatively, I provide the
acorn parser with its compilation options when the main parse function is called
on a code string.

Likewise, grint can also make use of a main configuration file in order to expose
some options to the developer:

• automatic refactoring - if implemented, automatic refactoring should be a
toggleable option, such that the developer has control over the memoization
process;

• ECMAScript version- seeing as acorn itself requires this specification and
acorn is part of grint, it would be necessary to expose this bit of configuration

26

to the user of grint, rather than just setting the acorn ECMAScript version
to the latest possible one

• other parser options - other than the language version, acorn also exposes a
set of other option for the developer to configure the parsing process with; for
example, the input code string can be parsed as a script or as a module, and
this is specified in the parser options with the denomination sourceType; this
option can be exposed as a grint option as well; however, in this particular
case, the option applies per file of source code; anecdotally, as far as I have
been able to observe in the JavaScript repositories that I considered for this
project, projects can be generally parsed using the module; this may mean that,
the number of outstanding files that might require a different configuration
is low enough, such that we can afford to specify a set of parser options for
each of these files; the rest of the files in the project would be parsed using a
one-time specified set of options; the main conclusion of this entire point is
that grint configuration should offer the possibility of per-file configuration

• excluded subdirectories - a project directory may contain subdirectories
or files that are not to be considered project source code; furthermore, a
root directory for a repository may contain multiple projects; as such, it is
necessary that grint has a way of specifying which subdirectories or even
files are to be excluded from the linting process; this is actually currently
done, in a non-configurable way, such that the node_modules directory, in
which external libraries are installed via the Node Package Management
(NPM) system, is not traversed by the tool; this is also done for directories
of which name begins with a period (.), which is a convention originating from
Unix-like systems denoting hidden files or directories, that usually contain
configuration and meta-information; this part of the linter relies on a list
of predicates that check whether a directory should be excluded, which are
run on each subdirectory of the root of the project; this can be extended to
be configurable and check whether directory names match certain patterns
specified in the configuration file; this is reminiscent of the way .gitignore
files work, with the git version management system [30]

• linter options - a released version of the linter should have some degree of
interaction with the user, via the console; similarly to how C/C++ compilers
such as clang or gcc give meaningful warnings and errors regarding the
compiled program, grint could also give out errors, when trying to memoize
impure functions and warnings, when trying to do so with unknown functions;
linter insights such as these should be toggleable;

• pure identifiers - as the developer of grint, I cannot confidently make any
assertion of purity for functions used in a project, that are not also declared
in that project; at most, functions that call such functions are to be deemed

27

unknown; however, if a developer using grint has the insight that some of these
function identifiers are to be considered universally pure within the project,
then they should have the freedom to do so; for example, if the developer
knows that the JSON.parse function, which parses a JSON string into an object,
is not otherwise overridden by an impure construct

2.2.5.2 Degrees of memoizability and function complexity analysis As
results will show, memoizing functions found to be pure in our chosen repositories
increases the overall energy consumption of the program, rather than reducing it.
I will go into more details regarding this result in the discussion section of this
thesis, but I suspect that the main reason for the lack of improvement is that the
processing keys and values for the memoization table is too expensive in the cases
where these data are too complex. This will probably happen for functions that
have a more complex set of arguments, either a larger number of arguments or
more complex objects as arguments or a combination of both factors. When values
are memoized, the arguments of the function call being memoized are treated as an
array of values and the array is converted to a string, being afterwards used as the
key based on which the value will be found in the memoization table. The larger
this key is, the greater the overhead of the stringifiation needed to have processed
it.

In their work on memoization of Java functions, Pinto et al. [12] make it a point to
select methods that specifically have primitive types as arguments. It is specifically
because of comparison overhead that they do this. In my case, the lookup overhead
is negligible, as I use a JavaScript object as a memoization table, and JavaScript
objects are hashes with a constant lookup time [31]. However, the issue of overly
complex memoization keys is nevertheless the same between my thesis and their
paper. In order for memoization to be a viable optimization technique, its means
of implementation must be less expensive than the unmemoized alternative. In
[12], Pinto et al. perform a comparison of energy savings for multiple functions
when memoized. A personal observation that I made while reading their article
was that, amongst some of the worst performing instances of memoization was the
function that had a list object as a parameter, alongside a string, which are an
arguably complex pair of parameters.

Given this issue, the main takeaway is that there is more to memoizability than
just functional purity. The purity aspect of a function denotes whether the function
can be memoized. However, memoizability should also denote whether a function
should be memoized, such that the application benefits in terms of performance.
This would happen if the overhead added through memoization is overall less
costly than performing the actual computation associated with the function in

28

question. As such, a possible further development for grint would be some form of
memoizability analysis, such that the developer knows (at least roughly) to what
extent a function is worth memoizing.

Calculating a function’s degree of memoizability would involve (1) calculating the
approximate overhead of a memoized function call and (2) calculating the cost
of executing the function in question. For (1), the overhead score of a memoized
function will have to be approximated based on the parameters of the function. The
simplest way to do this is to just use the number of parameters as the overhead score.
A more accurate way would be to attempt to infer the types of the parameters and
incorporate that information into the overhead score. However, as long the method
relies on static analysis to assert memoization overhead, it will, at best, produce
an approximation rather than an accurate calculation.

For (2), we can assert function complexity relatively more accurately. A simple way
to perform such an analysis would be to traverse a function’s AST and simply count
the number of operations it contains in its body. While not very accurate, because
operations, such as function calls and assignments, will differ in complexity and
performance cost, this method might be a good initial proxy for relative complexity
amongst functions. A more advanced version of this method would be to calculate
function cost based on the cost of functions it calls in its body, relying on a project
call graph, similarly to how I perform contextual purity analysis in grint.

In order to determine memoizability, the final step of this process would be to
determine a relationship between memoization overhead and function complexity,
and determine which threshold of this ratio separates memoizable functions from
non-memoizable ones. We can call this ratio a degree of memoizability. Auto-
matically calculating this memoizability score could provide us with a hierarchy of
functions, ordered by memoizability, with an arguable level of accuracy. However,
this is a barely conceptualized idea and a possible subject for future work.

29

3 Experiments
The main issue around this project revolves is the overall worth of memoization as
an energy optimization technique in JavaScript. In order to study this, I built a
tool that automatically finds functions that can be memoized, a linter that maps
the network of functions in a project and asserts which ones are pure, impure or not
classifiable as either of these categories confidently (unknown).

While developing grint, I tested it on an existing repository of code, namely phaser
[32], a web game development engine written in JavaScript. This meant that, once
I had enough of grint developed, I could run it on the phaser project and check
whether it could assert purity correctly, on the scale of a larger project. This
method of testing also revealed some shortcomings and bugs that needed to be
fixed, in order for the linter to work correctly: badly handled AST nodes, the
lack of error messages, the lack of support for functions declared with the same
identifier, in the same file. Once the development of grint, aided by phaser as a
subject for analysis, was sufficiently complete to detect pure functions properly, it
could be used on other existing repositories and discover potentially memoizable
functions. I did not take the refactoring step with phaser, because it is a complex
game development library that would be rather difficult to construct test cases
for and run them in a controlled manner, such that I can measure performance
metrics.

The two repositories that I chose to perform my experiments on are marked and
trianglify. marked [33] is a JavaScript library that parses markdown-formatted text
into HTML. trianglify [34] is a utility that produces triangle-themed graphical art,
based on a predefined configuration. The repositories can be found on GitHub and
I came upon them while using Awesome Open Source [35], a website containing
data on over software 370.000 projects, that can be filtered based on various
keywords and technologies. The main criterium for choosing my test subjects was
the ability to upscale input data, such that I can increase the computational strain
upon these libraries. This way, I can read performance metrics at various levels of
computational load for the libraries and potentially reveal greater discrepancies
between the memoized version and the original one at greater workloads. From
this perspective, marked can be used with larger and larger markdown files. As for
trianglify, the configuration settings needed to initialize the art generator can be
scaled up such that it produces more complex and higher resolution images.

For each of the repositories, I wrote a small test suite that produces a file of
performance metric readings (time and energy). The entire experimentation process,
for each project, conforms to the following steps:

30

1. Each project is analysed with grint, which will produce a list of functions,
classified as either pure, impure or unknown

2. Of the pure functions, I browse the list of unknown functions, and select the
ones that are pure;

3. All selected functions are memoized and the projects are rebuilt; this is
typically done by running the npm run build command, which will attempt
to execute the build task, as defined in the project; as such, this is not
a universal solution and, if not already implemented, some other method
may be required to build the project; the building process will produce a
compiled or bundled version of the project, possibly with several other files,
in a reserved folder

4. Within the test suite, I install the original version of the project using npm;
this will download the library in the node_modules folder, in the directory of
the test suite;

5. The library folder will then be duplicated and, in the second copy, I replace
the project files with the ones produced by building the application; this
version of the project will be renamed, to reflect that it is the memoized
version, and will be imported inside the test suite as such

6. The test suite is then executed, which will produce a file of metric readings.

In the rest of this section, I explain the experimental methodology relating to the
test programs and give technical details about the tools and environment used for
running the experiments.

3.1 Methodology
The test suites used for the two repositories are similar in their layout, the only
aspect differing being the input data fed to the two libraries. Both versions of a
library, original and memoized, are imported at the beginning of the file, alongside
the input data, which is provided from external files for both libraries. Each
version of the library is run on a piece of the input data, for a given number of
iterations. The final results are based on 100 iteration executions. Anecdotally,
100 iterations provided consistent measurement data, without a large number of
outliers. However, for a more statistically robust process, as subject for future work,
a method for deciding how many samples will produce a statistically significant set
of data may be used, such as the application of Cochran’s formula [36]. This entire
process is then repeated for the rest of the input data. The input data for each
library is represented by 5 entries, increasing in computational workload. During
each iteration, the test suite registers execution time and RAPL-measured energy
in an array, which is saved as a string in an external file at the end of the test suite
execution. This is done by reading a timestamp and the RAPL energy consumption

31

level before and after the execution of the library functionality, and calculating the
difference between the two values.

In the case of marked (Listing 13), the input data is represented by 5 markdown files,
of increasing size. At the beginning of each of the corresponding test cases, a file is
read as a string and provided to the main function of marked, the parse function,
which will return an HTML string.

In the case of trianglify (Listing 12), a program execution produces graphical
art in the form of an HTML canvas, which can then be converted and saved as a
PNG file. This is based on a predefined set of options, that produce variations in
the resulting graphical art, in terms of colours, shapes, resolution, shape sizes,
etc. Amongst these options, a randomization seed can be provided, such that any
execution of trianglify will be identical, given the same seed. This is important,
because we need identical test cases in order to have accurate comparisons between
the two versions of the library. As such, the input data for trianglify is a set of
five configurations, with the same seed, and increasing image resolution settings,
acting as the scaling factor for the execution workload.

32

1 const fs = require("fs");
2 const tri_memo = require("trianglify-memoized");
3 const tri_norm = require("trianglify");
4 const performance = require("perf_hooks").performance;
5
6 const inputs = require("./inputs.json");
7 const iterations = 100;
8
9 const results = [];

10 let test_memo, test_norm;
11
12 // warmup phase
13 test_memo = tri_memo().toCanvas();
14 test_norm = tri_norm().toCanvas();
15
16 // iterating through the inputs
17 for (const input of inputs) {
18
19 let pathResults = {
20 path: input.id,
21 memo: [],
22 norm: [],
23 };
24
25 // iterating measurements for the same input
26 for (let i = 0; i < iterations; i++) {
27 const timeA = performance.now();
28 const raplA =

fs.readFileSync("/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj")
29 test_memo = tri_memo(input.options).toCanvas();
30 const timeB = performance.now();
31 const raplB =

fs.readFileSync("/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj")
32 test_norm = tri_norm(input.options).toCanvas();
33 const timeC = performance.now();
34 const raplC =

fs.readFileSync("/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj")
35
36 // registering individual measurements
37 pathResults.memo.push({ time: timeB - timeA, rapl: raplB - raplA });
38 pathResults.norm.push({ time: timeC - timeB, rapl: raplC - raplB });
39 }
40
41 // registering all measurements for the input
42 results.push(pathResults);
43
44 const fileMemo = fs.createWriteStream(`./outputs/memo-${input.id}.png`);
45 const fileNorm = fs.createWriteStream(`./outputs/norm-${input.id}.png`);

33

46
47 test_memo.createPNGStream().pipe(fileMemo);
48 test_norm.createPNGStream().pipe(fileNorm);
49 }
50
51
52 // saving the results in the same directory
53 let file = fs.createWriteStream("./results.json");
54 file.write(JSON.stringify(results));

Listing 12: The test file for trianglify

34

1 const marked_norm = require("marked");
2 const marked_memo = require("marked-memoized");
3 const fs = require("fs");
4 const performance = require("perf_hooks").performance;
5
6 const inputPaths = [
7 "./inputs/1.md",
8 "./inputs/2.md",
9 "./inputs/3.md",

10 "./inputs/4.md",
11 "./inputs/5.md",
12];
13
14 const iterations = 100;
15
16 const results = [];
17 let test_memo, test_norm;
18
19 // warmup phase
20 const warmup_input = fs.readFileSync(inputPaths[0]).toString();
21 test_memo = marked_memo(warmup_input);
22 test_norm = marked_norm(warmup_input);
23
24 // iterating through the inputs
25 for (const path of inputPaths) {
26 const input = fs.readFileSync(path).toString();
27
28 let pathResults = {
29 path,
30 memo: [],
31 norm: [],
32 };
33
34 // iterating measurements for the same input
35 for (let i = 0; i < iterations; i++) {
36 const raplA =

fs.readFileSync("/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj")
37 const timeA = performance.now();
38 test_memo = marked_memo(input);
39 const raplB =

fs.readFileSync("/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj")
40 const timeB = performance.now();
41 test_norm = marked_norm(input);
42 const raplC =

fs.readFileSync("/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj")
43 const timeC = performance.now();
44
45 // registering individual measurements

35

46 pathResults.memo.push({ time: timeB - timeA, rapl: raplB - raplA });
47 pathResults.norm.push({ time: timeC - timeB, rapl: raplC - raplB });
48 }
49
50 // registering all measurements for the input
51 results.push(pathResults);
52 }
53
54 // saving the results in the same directory
55 let file = fs.createWriteStream("./results.json");
56 file.write(JSON.stringify(results));

Listing 13: The test file for marked

1 "options": {
2 "width": 200,
3 "height": 200,
4 "cellSize": 25,
5 "variance": 1,
6 "seed": 1,
7 "xColors": "Blues",
8 "yColors": "Purples",
9 "strokeWidth": 0

10 }

Listing 14: Example of a trianglify configuration

3.2 Tools and setup
The experiments, in their entirety, were run on a Linux machine, running Ubuntu
(version 20.04.1 LTS). grint was developed in TypeScript and, in order to execute
it, I used the ts-node utility [37], which is a tool used for executing TypeScript
code without first precompiling it to JavaScript. The test suites were run simply
using node, as they are written directly in JavaScript.

In terms of hardware, the machine on which the experiments were executed is an
ASUS laptop, with the following hardware characteristics:

• processor - Intel Core i7-4710HQ 2.50GHz, Haswell
• memory - 12GB, DDR3, 1600MHz, split into two modules of 4GB and 8GB

The machine exposes an SSH server on the local network it is connected to, such
that any development and experiment executions can be done remotely, from a
different machine. This is in the hope that any reduction of activity on the main
experiment machine will work towards more accurate energy readings. However,
this choice is only driven by personal intuition, as I am unsure to what extent this
method increases energy reading accuracy.

36

Energy consumption is measured using Intel’s RAPL, a utility that keeps track of
energy consumed by different power domains of the computer, since it last booted.
I discuss RAPL in more detail in the following section. However, it is important to
mention here that RAPL is a hardware feature of newer Intel processors. As such,
the experiments would only function on a machine that meets this criterium.

3.2.1 Intel’s RAPL

TheRunning Average Power Limit (RAPL) is a hardware utility implemented
in Intel processors, at least as new as the Sandy Bridge version (2011), that measures
energy consumption for a set of different computer consumption domains and can
be used to limit consumption for specific domains [38–41].

RAPL primarily relies on a specific type of processor registers called Model
Specific Registers (MSR) [41, 42]. MSRs are usually used for monitoring and
controlling aspects of the computer hardware. In this case, RAPL MSRs constantly
retain information about the energy consumption RAPL-monitored domains. These
domains are:

• package (PKG) - the entire CPU socket
• power plane 0 (PP0) - CPU cores
• power plane 1 (PP1) - on-chip graphical processing unit
• DRAM - dynamic random access memory

These four domains each have their own set of MSRs, that expose a variety of
information to the user (energy status, minimum and maximum power, performance
impact of manually limiting power for specific components, relevant hardware
information) alongside registers that enable the power limiting mechanism. It is
worth noting that the DRAM energy domain is supported by the RAPL mechanism
starting with Intel processors produced in 2013 (Haswell) or newer.

Khan et al. conduct a study in [38] where they investigate the overall accuracy of
RAPL. While having found some specific shortcomings with the tool, they asserted
that Intel’s RAPL is sufficiently accurate to be trusted as a component-specific
energy measurement tool. Simultaneously, papers surrounding the area of Green
Software that perform some sort of software energy-related benchmarking have been
using RAPL as their main tool of measuring energy [15, 43, 44], which supports
RAPL’s reputation as a worthwhile utility.

It is worth noting that, due to the fact that RAPL relies on MSRs as a mode of
interaction with the user, sing RAPL requires the machine to run a Unix-based
operating system (such as iOS or a variety of Linux). In a previous project [5],
I discovered first hand that it is impossible to access the RAPL MSRs using the

37

Windows operating system, because Windows simply does not have access to model
specific registers, while Unix-like systems do [45]. This explains my choice for
Ubuntu as the operating system for the machine running the experiments.

Accessing RAPL MSRs is a simple task, as information from MSRs can be read
from their respective files, in the Linux system directories. These files are updated
each time RAPL produces new readings. This happens sequentially, amongst the
different domains and, as such, given a program that reads all of them consecutively,
there is a possibility of dirty reads, when values for different domains are read that
belong to different RAPL update waves.

38

4 Results
The experiments show clear increases in energy consumption in the memoized
versions of the libraries. In all 10 different tests cases, the original version was
more energy efficient than the memoized versions. In the first several runs of the
experiments, the memoized versions of the libraries consistently showed increased
outliers in their first execution of the entire test suite, in terms of both energy
consumption and execution time. This prompted me to implement an initial
warmup execution for both libraries, which removed the initialization outliers.
Furthermore, the memoized libraries are stateful, such that they are not reset in
between executions. Because of this, memoization tables are kept from one test
case to the next, which will help subsequent test executions by having them make
use of previously computed values. However, even with these adjustments and
advantages of memoization, the refactored libraries were in all cases both slower
and less energy efficient than the original versions.

For marked, the energy consumption readings, as shown in Table 1, while consistently
larger for the memoized version relatively to the original, the results were arguably
subtle. The difference between the average measurement for the first test case,
with the smallest workload, was of 0.0025J in favour of the original version of the
library. For the last test case, with the greatest workload, the difference was of
0.4603J in favour of the original version.

Table 1: RAPL energy reads (Joules) for marked, at the
different workload levels, for both the original (norm) and
memoized (memo) versions

Workload Average (norm) Average (memo) Median (norm) Median (memo)
1 0.0374 0.0399 0.0277 0.0393
2 0.2170 0.2640 0.2030 0.2404
3 0.9014 1.0516 0.8711 1.0124
4 4.1217 4.6815 3.9611 4.4638
5 4.3037 4.7640 4.2673 4.6313

For trianglify, results are more pronounced, as seen in Table 2. The average
execution of the first test case is approximately four times more energy consuming
for the memoized version of the library then the original, at 0.8517J as compared
to 0.2127J. For the test case with the greatest workload, the average execution
was 25.6 times more energy consuming for the memoized version of the application
than the original.

39

Another aspect of the experiments made more obvious by the trianglify results is
the increasing discrepancy between the average and the median results. This is
consistent in the marked results as well, but far more noticeable for trianglify. As
I note in a previous report [5], with RAPL readings, longer running experiments
introduce greater chances for outliers in the resulting measurements. Given that
trianglify provides a more expensive piece of functionality that should typically
take longer to execute, the chances for reading outliers in the trianglify results
are higher.

Table 2: RAPL energy reads (Joules) for trianglify, at
the different workload levels, for both the original (norm)
and memoized (memo) versions

Workload Average (norm) Average (memo) Median (norm) Median (memo)
1 0.2127 0.8517 0.1988 0.8143
2 0.6986 5.1638 0.6125 4.5659
3 1.5752 18.2349 1.3623 16.5428
4 2.7348 45.7663 2.4445 44.6527
5 4.6214 118.5109 3.7490 97.9351

After obtaining the measurements, the two data sets for each test case, for the
original and the memoized applications, was processed using Wilcoxon Signed-
Ranks Test, in order to assert whether the two data sets are statistically different
[46]. The null hypothesis of the test dictates that the medians of the two datasets
are equal [46]. By using a calculator for the Wilcoxon Signed-Ranks Test,1 with
a significance level of 0.05, I reject the null hypothesis for all datasets, meaning
that the differences between the original and the memoized versions are indeed
statistically significant.

4.1 Discussion
Despite memoization itself being successful with helping avert recalculations of
previously computed function calls, results show that the overhead added through
memoization is greater than the cost saved by avoiding some recomputations.
This implies that there is a cost to memoization that has to be surpassed by the
alternative in order for this optimization technique to be viable. In this project, I
constructed a tool that enables me to more easily detect pure functions that can
be memoized, without altering the functionality of the overall program. However, I

1https://www.socscistatistics.com/tests/signedranks/default2.aspx

40

mostly took a blind approach when selecting the functions to be memoized, without
taking into consideration their complexity or the magnitude of their arguments.
Furthermore, a practitioner will have more insight into their own project, such that
they can know what functions will be called considerably more frequently and will
have the greatest impact when memoized. Obviously enough, the blind approach,
primarily taking into consideration purity, is not enough to select memoizable
functions, and purity is only one aspect of a more complex problem.

The main takeaway points resulting from the experiments are the following:

1. There is more to memoizability than purity - While purity is certainly
a necessary precondition for functions to be memoized, memoizability implies
that a function should also be worth memoizing, such that it produces perfor-
mance improvements in the application. In this case, the lack of improvement
is most likely caused by the fact that the mechanism for enabling memoization
is a greater overhead than the averted computations themselves. Admittedly,
the functions chosen for memoization, from both tested repositories, have mul-
tiple arguments, which is not recommended when considering memoization,
as indicated by [12]. Pinto et al. make it a precondition for memoizability
for methods in Java to have simple or primitive parameters. This is because,
parameters determine the size of the key in the memoization table. In Pinto’s
case, Java HashTables should handle this more efficiently, as data types in
Java have their own implementations of the hashing function. In our case, the
arguments need to be stringified using JSON.stringify, in order to be used as
keys. This process can add a significant overhead to the memoization process.
An observation that I make at this point is that memoizable functions, as
Yang et al. define them, are scarce or inexistent in the repositories that I
reviewed in the scope of this project. While an anecdotal observation, the
“single immutable parameter, primitive return type, without side effects” type
of function does not seem like a very common pattern in “real-life” projects.
An interesting follow-up project to this one might be to perform a study on
the frequency of memoizable functions in existing projects.

2. Perceivable warmup overhead - Before having implemented the warmup
step in the experiment suite, measurements indicated an initial high outlier,
for both libraries. This means that libraries require an initialization phase,
at which point they will be less time and energy performant than afterwards.
In my experiment suite, the two utilities are not reset between each test case
execution, which means that the initialization phase happens once in the
entire experiment execution of a library. In reality, uses for these libraries
might be independent and initialization might happen for every use. This
prompts the need for some form of memoization table caching for libraries.

41

3. Unknown functions are the most memoizable - Functions that are classified
as pure, based on independent purity and whether they do not call any
functions or they only call other functions classified as pure, are scarce and
the ones that are found by grint are part of non-refactorable files, such
as minimized files or bundles. I refactored unknown functions exclusively in
order to perform the experiments. This indicates that my method of purity
detection is incomplete and it is not enough to find a sufficient amount of
functions that are memoizable. Of the unknown functions, insight into libraries
that are used within the analysed project was necessary, in order to assert
purity and memoize safely. Incorporating purity analysis for libraries used by
a project being linted may increase confidence in purity assertion such that
some of the unknown functions can be classified as more likely to be pure.

4.1.1 Threats to validity

The measurements used in this thesis result from on experiments where each
test case was executed for 100 iterations. This number was chosen based on the
convenience of shorter running tests and anecdotal observation of the preponderance
of outliers. By manually analysing the data, I noticed a mild frequency of outliers,
while the rest of the data tended to be close to the minimum. Graphically plotting
the distribution of the data revealed decreasing exponential distributions, which
confirmed that the data sets contain measurements mainly concentrating around
the minimum with decreasing numbers of outliers, as their magnitude increases.
At the same time, while calculating the means and medians of the data sets, I also
calculated the standard deviations of the data sets, which were small enough for
me to consider the 100 iterations enough to produce reasonably consistent data.
However, I do not think that this process is robust enough to prove the statistical
significance of the data. Some statistical analysis tools may be called for in the
future, in order to assert whether 100 iterations appropriate.

Another point of vulnerability is the fact that the experiments do not take into con-
sideration the temperature the experimental machine, nor the ambient temperature.
As remarked in other studies [38, 39], higher ambient and internal temperatures can
skew the RAPL measurements such that they introduce more outliers and increase
variance between test executions that are supposed to be compared against each
other. In future iterations of this project, some sort of temperature control and
monitoring mechanism would be preferable, to ensure that outlier are not caused
by increased setup temperatures and that compared test cases are executed within
similar temperature intervals.

Finally, I would have preferred to execute experiments on a larger, more diverse
project base. In this project, I took a look at two repositories and refactored a

42

modest number of functions in these repositories. The results show changes in
performance and, while negative, these changes prove that the refactoring process
was impactful in both cases. However, the negative nature of the impact is most
probably due to the fact that the chosen functions were not particularly memoizable,
for reasons I discuss in previous sections. Memoization may have a positive impact,
if applied more selectively, to pure functions that are relatively high in complexity,
while receiving less complex arguments and returning less complex values. This
would reduce the size of the memoization tables and simplify the processing of the
table data, which may improve the memoization overhead. As a topic of future
work, I would like to search for such functions in a greater number of repositories
and analyse the effect of memoization in those cases. If memoization has a positive
impact for a certain type of functions, then this may prompt a new memoizable
coding style, that promotes the construction of memoizable functions.

43

5 Conclusion
In this project, I investigate the impact of memoization, as an optimization tech-
nique, over performance and energy consumption in JavaScript-written applications.
As a means to doing this, I construct grint, a linter that processes an entire project
directory and classifies functions in one of three purity categories: pure, impure and
unknown. Using grint, I detect pure or potentially pure functions in two open-source
JavaScript repositories, marked and trianglify, which are functions that can be
memoized safely. After refactoring these functions using memoization, I compare
the performance of the refactored libraries with that of the original ones, in terms
of execution time and energy.

Results suggest that memoization can negatively impact the performance of the
application, as the memoized versions of the library displayed consistently worse
performance than the originals. This suggests that memoization has a significant
overhead that must be surpassed in cost by each original function in order for the
memoization of the function to yield performance benefits.

While further investigation is needed, in order to determine what makes a function
memoizable and devise some rules for memoization such that it yields performance
benefits, I have addressed the research questions presented in the introduction of
this thesis as follows in the following paragraphs.

What impact can static analysis have on the energy consumption be-
haviour of a JavaScript application? Static analysis, in the form of purity
linting, has proven useful in finding pure functions in a project. The functionality
of grint is rather conservative with its classification of functions and, thus, most
pure functions are catalogued as unknown. Even so, this method of static analysis
eliminates a great bulk of impure functions, leaving behind worthwhile suggestions
for memoizable functions. Refactoring these functions by using memoization did
not yield positive results. Nevertheless, the static analysis I perform within this
project emphasized portions of code that are safe to optimize by memoization,
without changing the functionality of the application. As such, static analysis can
reveal code that can be memoized. Its overall impact on energy consumption would
depend on some sort of analysis on the functions, that asserts whether they should
be memoized. Within this project, results suggest that reckless memoization can
definitely worsen the energy consumption rate of an application.

How can we define purity for subroutines in an imperative programming
language, such as JavaScript? In this project, I propose a classification of
purity analysis for JavaScript functions: independent and contextual. Furthermore,
independent purity is comprised of several checks that ensure a function does not

44

break the established rules of purity (side effects, external dependencies, obligatory
return statement, etc.). Contextual purity analyses the functional dependencies
of a function and asserts whether any impure operations are performed via the
function calls of said function. As such, within the context of this project, I define
a JavaScript function as being pure if it respects both independent and contextual
purity rules.

What impact does the memoization of pure subroutines have on the
energy consumption of an application? After performing a series of test cases
on two different open-source repositories, measuring energy consumption for these
experiments and comparing the data between memoized and original versions of
the applications, results suggest that memoization can have a negative impact on
the energy consumption level of an application.

How can we build a static analysis tool that detects and refactors memo-
izable functions? Finally, this project is facilitated by grint, a linter for detecting
functional purity. Over the course of this thesis, I explain its architectural details,
its practical use case and its shortcomings. At the moment of writing, I meant
this thesis as almost a step-by-step “cookbook” to constructing such a tool. While
there are certainly points of improvement from which the experimental side of this
project would have benefited, grint has proven to ease and facilitate the detection
of functions that can be memoized safely.

45

References
[1] N. Jones, “How to stop data centres from gobbling up the world’s electricity,”

in Nature 561.7722, 2018, pp. 163–167.
[2] U. of Liverpool, “What is green IT?” https://www.liverpool.ac.uk/sustaina

bility/on-campus/green/green-it/ (accessed Jun. 12, 2021).
[3] “How the earth can benefit from green ICT,” 2011. https://www.eurescom.e

u/news-and-events/eurescommessage/eurescom-message-archive/euresc
om-messge-2-2011/how-the-earth-can-benefit-from-green-ict.html (accessed
Jun. 12, 2021).

[4] M. Zimmermann, “Green software: An overlooked factor in the sustainability
discourse,” 2020. https://www.digitalsme.eu/green-software-an-overlooked-
factor-in-the-sustainability-discourse/ (accessed Jun. 12, 2021).

[5] T. Constantin, “An investigation into benchmarking of energy consumption
with various programming languages,” Jan. 2021.Available: https://projekte
r.aau.dk/projekter/da/studentthesis/an-investigation-into-benchmarking-
of-energy-consumption-with-various-programming-languages(db2be832-
c17c-4c6f-a51e-3b31436bf2ce).html

[6] M. Couto, J. Saraiva, and J. P. Fernandes, “Energy refactorings for android
in the large and in the wild,” in 2020 IEEE 27th international conference on
software analysis, evolution and reengineering (SANER), 2020, pp. 217–228.
doi: 10.1109/SANER48275.2020.9054858.

[7] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
international conference on software engineering (ICSE), 2013, pp. 92–101.
doi: 10.1109/ICSE.2013.6606555.

[8] L. Cruz and R. Abreu, “Using automatic refactoring to improve energy
efficiency of android apps,” Jan. 2018.

[9] R. Morris, “Stephen curtis johnson: Geek of the week,” 2009. https:
//www.red-gate.com/simple-talk/opinion/geek-of-the-week/stephen-
curtis-johnson-geek-of-the-week/ (accessed Jun. 12, 2021).

[10] S. C. Johnson, “Lint, a c program checker,” in COMP. SCI. TECH. REP,
1978, pp. 78–1273.

[11] I. Manotas et al., “An empirical study of practitioners’ perspectives on green
software engineering,” in Proceedings of the 38th international conference
on software engineering, 2016, pp. 237–248. doi: 10.1145/2884781.2884810.

46

https://www.liverpool.ac.uk/sustainability/on-campus/green/green-it/
https://www.liverpool.ac.uk/sustainability/on-campus/green/green-it/
https://www.eurescom.eu/news-and-events/eurescommessage/eurescom-message-archive/eurescom-messge-2-2011/how-the-earth-can-benefit-from-green-ict.html
https://www.eurescom.eu/news-and-events/eurescommessage/eurescom-message-archive/eurescom-messge-2-2011/how-the-earth-can-benefit-from-green-ict.html
https://www.eurescom.eu/news-and-events/eurescommessage/eurescom-message-archive/eurescom-messge-2-2011/how-the-earth-can-benefit-from-green-ict.html
https://www.digitalsme.eu/green-software-an-overlooked-factor-in-the-sustainability-discourse/
https://www.digitalsme.eu/green-software-an-overlooked-factor-in-the-sustainability-discourse/
https://projekter.aau.dk/projekter/da/studentthesis/an-investigation-into-benchmarking-of-energy-consumption-with-various-programming-languages(db2be832-c17c-4c6f-a51e-3b31436bf2ce).html
https://projekter.aau.dk/projekter/da/studentthesis/an-investigation-into-benchmarking-of-energy-consumption-with-various-programming-languages(db2be832-c17c-4c6f-a51e-3b31436bf2ce).html
https://projekter.aau.dk/projekter/da/studentthesis/an-investigation-into-benchmarking-of-energy-consumption-with-various-programming-languages(db2be832-c17c-4c6f-a51e-3b31436bf2ce).html
https://projekter.aau.dk/projekter/da/studentthesis/an-investigation-into-benchmarking-of-energy-consumption-with-various-programming-languages(db2be832-c17c-4c6f-a51e-3b31436bf2ce).html
https://doi.org/10.1109/SANER48275.2020.9054858
https://doi.org/10.1109/ICSE.2013.6606555
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/stephen-curtis-johnson-geek-of-the-week/
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/stephen-curtis-johnson-geek-of-the-week/
https://www.red-gate.com/simple-talk/opinion/geek-of-the-week/stephen-curtis-johnson-geek-of-the-week/
https://doi.org/10.1145/2884781.2884810

[12] A. Pinto, M. Couto, and J. Cunha, “Memoization for saving energy in
android applications: When and how to do it.” Submitted.

[13] “PYPL PopularitY of programming language,” 2021. https://pypl.github.io
/PYPL.html (accessed Jun. 12, 2021).

[14] “TIOBE index for june 2021,” 2021. https://www.tiobe.com/tiobe-index/
(accessed Jun. 12, 2021).

[15] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards a green
ranking for programming languages,” 2017. doi: 10.1145/3125374.3125382.

[16] J. Yang, K. Hotta, Y. Higo, and S. Kusumoto, “Towards purity-guided
refactoring in java,” in 2015 IEEE international conference on soft-
ware maintenance and evolution (ICSME), 2015, pp. 521–525. doi:
10.1109/ICSM.2015.7332506.

[17] J. Nicolay, C. Noguera, C. De Roover, and W. De Meuter, “Detecting func-
tion purity in JavaScript,” Sep. 2015. doi: 10.1109/SCAM.2015.7335406.

[18] “ECMAScript® 2020 language specification,” 2020. https://www.ecma-
international.org/publications-and-standards/standards/ecma-262/
(accessed Jun. 12, 2021).

[19] “V8 JavaScript engine.” https://v8.dev/ (accessed Jun. 12, 2021).

[20] “SpiderMonkey JavaScript/WebAssembly engine.” https://spidermonkey.d
ev/ (accessed Jun. 12, 2021).

[21] “ChakraCore.” https://github.com/chakra-core/ChakraCore (accessed Jun.
12, 2021).

[22] “The ESTree spec.” https://github.com/estree/estree (accessed Jun. 12,
2021).

[23] “Visitor design pattern.” https://www.geeksforgeeks.org/visitor-design-
pattern/ (accessed Jun. 12, 2021).

[24] J. Yang, K. Hotta, and S. Higo Yoshikiand Kusumoto, “Revealing purity
and side effects on functions for reusing java libraries,” in Software reuse
for dynamic systems in the cloud and beyond, 2014, pp. 314–329.

[25] J. Chege, “Introduction to memorization in JavaScript,” 2021. https:
//www.section.io/engineering-education/an-introduction-to-memoization-
in-javascript/ (accessed Jun. 12, 2021).

[26] “Astring.” https://github.com/davidbonnet/astring (accessed Jun. 12,
2021).

[27] “JSDoc.” https://jsdoc.app/ (accessed Jun. 12, 2021).

47

https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3125374.3125382
https://doi.org/10.1109/ICSM.2015.7332506
https://doi.org/10.1109/SCAM.2015.7335406
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://v8.dev/
https://spidermonkey.dev/
https://spidermonkey.dev/
https://github.com/chakra-core/ChakraCore
https://github.com/estree/estree
https://www.geeksforgeeks.org/visitor-design-pattern/
https://www.geeksforgeeks.org/visitor-design-pattern/
https://www.section.io/engineering-education/an-introduction-to-memoization-in-javascript/
https://www.section.io/engineering-education/an-introduction-to-memoization-in-javascript/
https://www.section.io/engineering-education/an-introduction-to-memoization-in-javascript/
https://github.com/davidbonnet/astring
https://jsdoc.app/

[28] “Disabling and enabling inspections.” https://www.jetbrains.com/help/w
ebstorm/disabling-and-enabling-inspections.html#suppress-inspections
(accessed Jun. 12, 2021).

[29] “Prettier.” https://prettier.io/ (accessed Jun. 12, 2021).

[30] “Git - gitignore documentation.” https://git-scm.com/docs/gitignore
(accessed Jun. 12, 2021).

[31] S. Hsu, “JS objects and arrays — which one is faster?” https://sherryhs
u.medium.com/js-objects-and-arrays-which-one-is-faster-cfcdb1281704
(accessed Jun. 12, 2021).

[32] “Phaser - HTML5 game framework.” https://github.com/photonstorm/pha
ser (accessed Jun. 12, 2021).

[33] “Marked.” https://github.com/markedjs/marked (accessed Jun. 12, 2021).

[34] “Trianglify.” https://github.com/qrohlf/trianglify (accessed Jun. 12, 2021).

[35] “Awesome open source.” https://awesomeopensource.com/ (accessed Jun.
12, 2021).

[36] S. Glen, “Sample size in statistics (how to find it): Excel, cochran’s formula,
general tips.” https://www.statisticshowto.com/probability-and-statistics/f
ind-sample-size/ (accessed Jun. 12, 2021).

[37] “Ts-node.” https://www.npmjs.com/package/ts-node (accessed Jun. 12,
2021).

[38] K. Khan, M. Hirki, T. Niemi, J. Nurminen, and Z. Ou, “RAPL in action:
Experiences in using RAPL for power measurements,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS),
vol. 3, Jan. 2018, doi: 10.1145/3177754.

[39] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt, “Virtual
machine warmup blows hot and cold,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, Oct. 2017, doi: 10.1145/3133876.

[40] S. Pandruvada, “Running average power limit – rapl,” 2014. https://01.org
/blogs/2014/running-average-power-limit- (accessed Jun. 12, 2021).

[41] “Intel® 64 and IA-32 architectures software developer’s manual: Volume 3B:
System programming guide, part 2,” 2016. https://www.intel.com/conten
t/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-vol-3b-part-2-manual.pdf (accessed Jan. 01, 2021).

[42] “Msr(4) - linux manual page,” 2009. https://man7.org/linux/man-pages/
man4/msr.4.html (accessed Jun. 12, 2021).

48

https://www.jetbrains.com/help/webstorm/disabling-and-enabling-inspections.html#suppress-inspections
https://www.jetbrains.com/help/webstorm/disabling-and-enabling-inspections.html#suppress-inspections
https://prettier.io/
https://git-scm.com/docs/gitignore
https://sherryhsu.medium.com/js-objects-and-arrays-which-one-is-faster-cfcdb1281704
https://sherryhsu.medium.com/js-objects-and-arrays-which-one-is-faster-cfcdb1281704
https://github.com/photonstorm/phaser
https://github.com/photonstorm/phaser
https://github.com/markedjs/marked
https://github.com/qrohlf/trianglify
https://awesomeopensource.com/
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.statisticshowto.com/probability-and-statistics/find-sample-size/
https://www.npmjs.com/package/ts-node
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3133876
https://01.org/blogs/2014/running-average-power-limit-
https://01.org/blogs/2014/running-average-power-limit-
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://man7.org/linux/man-pages/man4/msr.4.html
https://man7.org/linux/man-pages/man4/msr.4.html

[43] R. Pereira et al., “Energy efficiency across programming languages: How
do energy, time, and memory relate?” in Proceedings of the 10th ACM
SIGPLAN international conference on software language engineering, 2017,
pp. 256–267. doi: 10.1145/3136014.3136031.

[44] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards a green
ranking for programming languages,” 2017. doi: 10.1145/3125374.3125382.

[45] MDN, “Tools/power/rapl,” 2019. https://developer.mozilla.org/en-
US/docs/Mozilla/Performance/tools_power_rapl (accessed Jun. 12, 2021).

[46] “The wilcoxon signed-ranks test calculator.” https://www.socscistatistics.c
om/tests/signedranks/ (accessed Jun. 12, 2021).

49

https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3125374.3125382
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/tools_power_rapl
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/tools_power_rapl
https://www.socscistatistics.com/tests/signedranks/
https://www.socscistatistics.com/tests/signedranks/

Appendix

Time results for both repositories in milliseconds

Library Workload Type Average time Median time
trianglify 1 memo 38.9162 36.0814
trianglify 2 memo 241.9750 197.0238
trianglify 3 memo 811.8182 691.7651
trianglify 4 memo 2312.6016 2275.8071
trianglify 5 memo 5989.4759 4749.6002
trianglify 1 norm 9.6346 8.6823
trianglify 2 norm 33.1952 26.7609
trianglify 3 norm 70.1137 57.7227
trianglify 4 norm 140.4359 122.1158
trianglify 5 norm 237.7437 176.9045

marked 1 memo 1.7989 1.5343
marked 2 memo 13.2919 12.0194
marked 3 memo 47.7276 42.8440
marked 4 memo 198.3689 184.0369
marked 5 memo 201.6011 188.3333
marked 1 norm 1.6262 1.3084
marked 2 norm 10.7715 10.0003
marked 3 norm 40.2130 36.4140
marked 4 norm 172.1259 164.1545
marked 5 norm 178.1635 169.3855

50

	Front page
	English title page
	1 Summary
	Contents
	Introduction
	Problem statement
	Related work

	The Linter
	The original lint
	grint
	Parsing
	Abstract Syntax Tree Traversal
	Purity detection
	Automatic reformatting
	Further development

	Experiments
	Methodology
	Tools and setup
	Intel's RAPL

	Results
	Discussion
	Threats to validity

	Conclusion
	References
	Appendix
	Time results for both repositories in milliseconds

