
Energy-Aware Interface for Memory Allocation in
Linux

Lars Rechter,
Martin Jensen

June 2021

10th Semester
The Technical Faculty of IT and Design
Department of Computer Science
Selma Lagerlöfsvej 300
9220 Aalborg Øst
https://www.cs.aau.dk

Title: Energy-Aware Interface for
Memory Allocation in Linux

Subject: Programming Technology

Project period:
Spring 2021
01/02/2021 - 14/06/2021

Group No:
pt103f21

Group Members:
Lars Rechter
Martin Jensen

Supervisor:
Bent Thomsen
Lone Leth Thomsen

Pages: 78

Abstract:

In this master thesis, we extend the Linux
kernel to support grouping frequently ac-
cessed (hot) and infrequently accessed
(cold) data on different memory hardware.
By doing this, the memory hardware with
cold data can reduce energy consumption
by going into low power states. We man-
age this separation in the kernel by adding
an additional zone for cold data, which is
adjustable at compile time. Processes can
allocate memory in the cold zone with an
extension to the mmap system call. We
test the memory layout of our machine
with the benchmark STREAM, showing
that the modified kernel behaves as desired
in terms of memory separation. Addition-
ally, we implement a proof of concept in-
memory database to benchmark the power
consumption and run time performance of
our modified kernel. The results show a
smaller overhead than expected, but no
reduction in power usage. We attribute
the unchanged power usage to the memory
power management strategy of the mem-
ory controller in our test machine.

Publication of this report’s contents (including citation) without permission from the authors is prohibited.

https://www.cs.aau.dk

Summary

Computers are faster and more common now than ever, rendering the need
to optimise programs, specifically for speed, less prevalent. As data centres
consumed about 200 TWh in 2019, reducing the energy usage, by a small amount
on single machines, can yield significant results on a global scale. Therefore, we
aim to optimise the energy consumption, while accepting a small trade-off with
the computation speed.

On computers, processes run on top of an operating system (OS), which provides
a layer of abstraction to the running processes and the programmer. As the
Linux kernel is both open source and popular to run on servers, we make our
modifications to this OS kernel.

The memory controller can put DRAM into low power states. Literature shows
that a reduction in power consumption of memory can be achieved by separating
the memory into frequently (hot) and infrequently (cold) accessed parts, as this
allows the memory controller to put the cold memory into low power states.
To reduce memory power consumption, we want to modify the Linux kernel to
group memory in this fashion on the underlying hardware.

There are multiple different ways of implementing a separation between hot
and cold memory in the Linux kernel. We outline three approaches; creating an
additional memory zone in the kernel for cold data, dividing each zone into a
hot and cold part, or determining whether page frames are cold based on their
address index. We choose to implement the additional zone, as this approach
makes use of the original infrastructure in the kernel, rather than creating new
infrastructure.

Additionally, there are multiple ways of interfacing with the memory separation
in the modified kernel. The simplest approach is modifying the mmap system
call, to be able to allocate cold or hot memory based on an input. However, more
advanced approaches can make it easier for the programmer to benefit from the
memory layout; such as a malloc interface, modifying a run time environment
to support hot and cold memory, or letting the kernel move the memory based
on how often it is accessed.

We implement a new memory zone in the Linux kernel, that we call the cold
zone. The size of the cold zone is adjustable when compiling the Linux kernel.

The cold zone integrates with the memory allocation infrastructure of the kernel
with few changes.

To interface with the new zone, we modify the mmap system call to take an
extra flag. This flag is used to indicate that the memory allocation should
be performed in the cold zone. The modifications to mmap are backwards
compatible with the Linux kernel from version 5.11. Thus, programmers can
write code to take advantage of our modified kernel, while the same code will
also run on Linux kernels without our changes.

To test our modifications, we perform two series of benchmarks. First, we
modify STREAM to use our mmap interface. STREAM is used to test memory
bandwidth and with our modifications, in combination with our hardware setup,
we can detect whether attempts at allocating memory in hot or cold memory
lead to the desired allocation in physical memory. Results show that the modi-
fied kernel successfully separates the memory allocations based on the memory
request.

Our second experiment is a benchmark inspired by a similar work. The bench-
mark is an in-memory database. A memory intensive program, such as this,
allows us to test how the cold zone can be utilised, with cold data eviction
policies in the database. We implement the database using our modified mmap
interface. Running the benchmark and collecting timing and power measure-
ments are done with code from an earlier semester project that we have worked
on. We run different benchmarks with varying workloads and database sizes.
Our results show a run time overhead that is lower than expected, but we ob-
serve no changes to the power consumption in memory.

While we are not successful in reducing the power consumption on our test
machine in the database benchmark, we can see that our modifications in the
kernel work as intended in the STREAM benchmark. Therefore, we attribute
the unchanged power usage to the hardware not utilising the extended periods
of time, where the cold memory can go into low power state.

As future work, the modified kernel can be extended with more programmer
friendly memory interfaces, dynamically changeable settings for the cold zone,
support for NUMA, and portability to other architectures.

Contents
1 Introduction 1

2 Background 3
2.1 Introduction to Computers and Operating Systems 3
2.2 Memory Hardware . 5
2.3 Memory Management in Linux 8
2.4 Related Work . 17

3 Design 19
3.1 Requirements . 20
3.2 Memory Separation Approach 22
3.3 Utilisation of Memory Separation 24

4 Implementation 28
4.1 The Cold Zone . 28
4.2 Supporting Cold Memory Allocation with mmap 36
4.3 Summary . 37

5 Experiments 39
5.1 Test Setup . 39
5.2 Benchmarks . 40
5.3 Experiment Results . 50

6 Discussion 56
6.1 The Cold Zone . 57
6.2 The System Call . 62
6.3 Benchmarks . 63
6.4 Results . 65
6.5 Relevance . 68

7 Conclusion and Future Work 69
7.1 Conclusion . 69
7.2 Future Work . 71

Appendix
A Complete Results

Chapter 1

Introduction

Historically, the main priority in computing has been to increase execution speed
[1]. This stems from the fact that computers were rare and expensive, making it
important to utilise them to the fullest. Today computers are not as expensive
nor as rare. Thus, optimising software execution speed is no longer as important
as it once was, leaving room for other considerations, such as energy usage.

There are three domains where energy efficiency already has a significant role,
being IoT, mobile, and servers [2]. With IoT and mobile settings, there is of-
ten a very tangible limit on the energy that the system can use - the battery.
Therefore, power becomes a crucial resource one must consider when develop-
ing applications in these domains. Servers are different, as the reason for the
interest in energy-awareness in this domain revolves around reducing power con-
sumption, both to reduce CO2 emissions and the price of powering the facility.
Data centres consumed 200 TWH in 2019 [2], meaning that reducing the energy
consumption of these, even by a margin, has great effect.

In servers, large amounts of memory may draw as much power as the CPU [3].
Memory devices have energy-aware options, to save energy in periods where they
are idling [4]. However, this feature is used sparingly in many computer systems,
due to memory interleaving [4]. Thus, if we can utilise these energy efficient
options in the memory hardware, we are able to make a trade off between
energy consumption and run time performance.

1

In this thesis, we work with energy efficiency in the Linux kernel. We have chosen
to work with Linux, in part, due to its popularity - a big part of data centres run
Linux [5]. Additionally, the Linux kernel is open source [6], meaning that we
can access the code and modify the Linux kernel to increase energy efficiency
in memory. Moreover, due to the popularity of Linux, a lot of resources are
available regarding the inner workings of the kernel.

We begin our work based on the following problem statement:

How can the Linux kernel be modified to support energy efficient
memory management?

In Chapter 2 we go through theory and background knowledge on the topic
of computer systems in general, the role of memory hardware, how memory
is managed in Linux, and related works. Chapter 3 contains thoughts on the
most important requirements for the project. With this in mind, we specify
the design of the modified kernel and how to interface with it. Based on this
design, Chapter 4 describes how we have modified the Linux kernel to support
energy efficient memory allocation. The implementation is also tested, which
is documented in Chapter 5. Here we run two benchmarks to test the memory
layout of our machine and to test the performance of the system both in terms of
run time and energy efficiency. Chapter 6 describes what we have achieved and
how the choices we have made influence the final result. Lastly, in Chapter 7
we conclude on the thesis and present ideas for future work.

2

Chapter 2

Background

In this chapter, we go through some underlying theory of how memory works.
Memory management is a complex topic that requires cooperation between the
operating system (OS) and the underlying hardware. First, we give an overview
of how computers and OS’s work in section 2.1. This lays the ground for Sec-
tion 2.2, in which we describe the functionality of memory on the hardware level,
and Section 2.3, where we go through how Linux manages memory. Lastly, in
Section 2.4 we list works that are related to our topic, of which we draw inspi-
ration and knowledge for this thesis.

2.1 Introduction to Computers and Operating
Systems

In the early 1980s, computers used approximately equally long time on a CPU
cycle and fetching data from an address in memory [7, p. 20],[8, p. 13]. Since
then, the size and speed of both components have grown - with the CPU out-
growing the memory regarding speed. To mitigate the difference in speed, ad-
ditional layers of hardware caches have been introduced to lower the cost of
accessing the main memory. The caches allow for small amounts of data to
be stored for lower latency access to recently (or frequently) used memory ad-
dresses. Figure 2.1.1 shows a comparison between different operations in the
machine. Here a clock cycle is normalised to 1 second to add context to the

3

2.1. INTRODUCTION TO COMPUTERS AND OPERATING SYSTEMS

length of other operations. With this normalisation, it is clear how expensive it
is to access main memory.

Another important change in the hardware, is the possibility for multiple cores
or even CPUs. Therefore, it is necessary that there is a system for distributing
tasks to different cores and CPUs [9, pp. 5–6]. In most computers, this is done
by the scheduler of the OS. Similarly, the main memory is controlled by the
OS, and allocated to different processes as needed [9, pp. 7–8]. Additionally,
with the non-uniform memory access (NUMA) architecture on machines with
multiple CPUs, some CPUs are closer to some parts of the memory than other
parts. Thus, the OS must consider the specific computer layout when performing
scheduling and memory allocation [10]. We limit NUMA from this project, as
NUMA further complicates the already complex topic of memory management.

Figure 2.1.1: Overview of latency of fetching data from devices other than CPU
registers [11]

Controlling the different resources of the computer is an extensive task. There-
fore, the OS is an important abstraction layer between programs and hardware,
to avoid resource management in program development. With the OS virtu-
alising the hardware resources, the programs merely have to use the interfaces
supplied by the OS. Another advantage of this is that it allows the OS to han-
dle malicious or buggy programs that, without privilege, interact with other
programs running on the system.

4

2.2. MEMORY HARDWARE

To manage the allocation of CPU and memory to the processes on the system,
the OS uses virtualisation. The individual processes are oblivious to the fact
that the OS schedules them to run for a share of time, before they are preempted
and switched out with other processes waiting to be run. A process may even be
scheduled to be run on other CPUs in the system, which is transparent to the
process [9, p. 25]. For memory, the OS manages a virtually contiguous memory
space for the process, which is mapped to physical memory. Thus, the process
does not need to be aware of other processes in the memory space. Rather, the
process simply uses the OS interfaces to obtain and release memory.

2.2 Memory Hardware

To establish a vocabulary and basic understanding of memory on a hardware
level, we introduce the most important hardware features. First, we provide
a general, high level overview of the memory layout in Section 2.2.1. Then,
Section 2.2.2 introduces the notion of memory power states. Lastly, Section 2.2.3
describes hardware interleaving of memory. Furthermore, it is discussed how
interleaving influences different workloads on the machine.

2.2.1 Memory Layout

This section serves to provide an outlined overview of the hardware components
of the memory system. In computers dynamic random access memory (DRAM)
is the main memory of the system. This is provided by a dual in-line memory
module (DIMM), typically inserted into the motherboard of a computer. The
connection between the CPU and the memory is provided by memory channels
and managed by the memory controller of the CPU. Computers can have multi-
ple channels to connect the memory controller to more DIMMs at the same time.
Additionally, it is also common for a channel to be shared by more DIMMs. By
having multiple DIMMs distributed over different memory channels, it is pos-
sible for the memory controller to load data from multiple DIMMs in parallel.
As the CPU is faster than DRAM by a factor of 100, the improved bandwidth
of using multiple channels can reduce the impact of the memory bottleneck (see
Figure 2.1.1 on the preceding page).

To avoid accessing main memory, some data from memory can be stored in
hardware caches, which are faster to access than main memory by multiple

5

2.2. MEMORY HARDWARE

factors. With caches, main memory is only accessed on a cache miss or during
context switches. [12, pp. 54–56][9, pp. 94–96]

The DIMMs can be further divided into smaller units. The largest of these units
is called a rank. Each rank is connected to the memory channel and is managed
by the memory controller. The memory controller keeps track of which DIMMs
and ranks are currently using the channels to transfer data [4]. The ranks can
be further divided into banks, rows, and columns. However, we aim to use
the power states at the rank level as these preserve the data in memory while
offering energy savings of up to 80% as can be seen in Table 2.2.1. Power states
on lower level memory hardware, such as PASR, do not maintain the data of
the memory and has a smaller potential memory energy saving of approximately
5-15% [13]. Thus, we will not further elaborate on memory units below rank
level.

2.2.2 Power States

DRAM, such as DDR3 and DDR4, has multiple power states to save energy
whenever the memory is not being written to or read from. A lower power
state yields a higher delay on accessing data on the rank, as it must awake
from its current power state [4]. Therefore, low power states are only entered
after a period of idling for the DIMM. The transfer between the power states
on a DIMM is handled by the memory controller [14, p. 514]. Therefore, power
states are only influenced by the OS indirectly through memory access patterns.
To indicate the magnitude of power savings and latency, Table 2.2.1 shows the
approximate power usage and exit latency of DDR4 DRAM. The table shows
that up to 80% memory energy usage can be saved, when allowing DRAM to
enter low power states such as the self refresh state. It can also be seen that
a greater delay is introduced with greater energy savings. Thus, it is crucial
to carefully manage the power states, as overusing self refresh may impair the
execution speed, and only using stand by might consume an unnecessary amount
of energy.

State Power, W Exit latency, ns
Stand by ∼ 1.5 0

Power down 0.9 ∼ 5
Self refresh 0.3 ∼ 500

Table 2.2.1: DDR4 Memory States [4]

6

2.2. MEMORY HARDWARE

2.2.3 Memory Interleaving

As mentioned in Section 2.2.1, the CPU is restricted whenever it needs to access
main memory, as main memory is slow compared to the CPU. Therefore, the
memory access time should be minimised if possible. In memory hardware,
interleaving is one way to reduce the memory access time, by increasing the
memory bandwidth. Interleaving occurs at multiple levels of memory units,
being banks, ranks, and channels [15][14, pp. 345–346]. We will not further
elaborate on nor work with bank interleaving, since it does not affect rank
power states. Rather, the term interleaving, in the remainder of this report,
refers to interleaving across ranks and channels.

Interleaving is used to increase the bandwidth of memory by distributing the
allocation of sequential memory across multiple memory modules. It is per-
formed by using a subset of bits in the memory address to determine the device
that the data should be stored in. For example, for N-way interleaving K bits
are needed, where K = log2(N), to interleave the data across N devices (for
example memory channels). A graphical example of interleaving across four
memory devices is shown on Figure 2.2.1. In the figure, it can be seen how con-
tiguous addresses from 0 to 15 are interleaved across the 4 devices rather than
allocated to a single device. With interleaving, whenever the CPU requests a
contiguous block of memory, all available memory devices can fetch their part
of the request, utilising the combined bandwidth of the devices.

Figure 2.2.1: 4-way interleaving across four memory devices.

7

2.3. MEMORY MANAGEMENT IN LINUX

The effect of interleaving on program performance varies based on the workload
of the program. In the benchmark STREAM [16], the sustainable memory
bandwidth is tested. Here, the program performance scales linearly with the
memory bandwidth. However, most other workloads do not use memory this
way. In [15], the author experiences that most benchmarks perform at the same
level (at the most extreme a 4.8% run time increase) after disabling interleaving
and thereby, lowering the maximum memory bandwidth.

2.3 Memory Management in Linux

In this section, we give an introduction to how Linux manages the memory of the
computer as of kernel version 5.11.0. First, Section 2.3.1 provides an overview of
the virtual memory management system in Linux. Section 2.3.2 contains details
on how processes access memory from the OS. Following, Section 2.3.3 describes
how the physical memory is allocated to a process requesting memory. Then
we dive into the details of the Linux memory subsystems in Section 2.3.4, Sec-
tion 2.3.5, and Section 2.3.6. Based on the memory subsystems, we summarise
the memory allocation flow when allocating memory via mmap in Section 2.3.7.
Lastly, we describe some of the differences between hardware architectures in
terms of code for memory allocation in Section 2.3.8.

2.3.1 Memory Virtualisation

To describe how Linux, in combination with hardware, tackles the topics de-
scribed in Section 2.1, this section provides a simplified overview of Linux’ mem-
ory management system.

The most important concept in memory management for any general purpose
OS is memory virtualisation. With memory virtualisation, the OS provides
the illusion that each program has start address 0, contiguous memory, and as
much memory available as the architecture allows. To translate addresses from
virtual to physical memory, the OS divides memory into equally sized blocks,
called pages [12, p. 36]. When referring to a page we distinguish between a page
of data (e.g., 4 KiB data from a process) and a page frame from physical memory
(e.g., physical address 4096 to 8191) [12, p. 46]. A page of data can be moved
around by the OS from one page frame to another. This only requires that
the mapping from virtual to physical memory is updated. These mappings are

8

2.3. MEMORY MANAGEMENT IN LINUX

managed by the OS in page tables describing which processes use which page
frames. Thus, accessing an address in memory from a user process requires
multiple steps. First, the OS must retrieve the physical address of the page
frame that is used by the process. This is done by using the most significant
bits of the virtual address to determine the start address of a page frame by
going through the page table. The remaining bits are used as an offset into the
page frame to find the physical address. Finally, the value in this address can
be read and returned to the process.

To reduce the size of the page table, Linux uses multiple levels of page tables,
which are shown graphically in Figure 2.3.1. Dividing the page table into mul-
tiple levels, allows the OS to store only the relavant tables at different levels
for each process rather than the entire page table [12, pp. 57–59] To translate
a virtual address to a physical one, Linux goes through each of the page table
levels. Linux uses the first X number of bits in the virtual address to index
into the upper-most page table. In Linux this is denounced as the "Page Global
Directory". The value obtained from this lookup is the address of the next level
page table. This address is used with the index given by the next Y bits to ob-
tain the address of the next page table. The OS continues through the typically
four levels of page tables in Linux. In the last level page table is the page frame
number, corresponding to the virtual address.

Figure 2.3.1: Multi-level page tables in Linux [12]

9

2.3. MEMORY MANAGEMENT IN LINUX

Virtual memory provides the illusion that processes have all memory of the sys-
tem to themselves. This eases memory management from the perspective of the
programmer [9, pp. 13–14]. Another advantage with virtualisation is security.
By using the page table indirection, the OS can determine whether each process
is accessing the memory it is allowed to access. This prevents processes from
reading or writing data to each others memory spaces, without explicit permis-
sion [9, p. 146]. Lastly, the OS has an effective tool to combat fragmentation.
Fragmentation can be divided into 2 categories; internal and external. Internal
fragmentation revolves around allocating too much memory for a process, re-
sulting in memory that is allocated yet unused. External fragmentation is the
holes that occur between the memory allocations of processes. Internal frag-
mentation is limited by the 4 KiB size of the page frames of the virtual memory
system. Additionally, the OS can combat external fragmentation, as the pages
of a process can be placed anywhere in physical memory.

While the virtual memory system helps in many aspects, the act of accessing a
memory location is further complicated - meaning longer memory access time.
As described, whenever a process needs to access memory, it must access it
an additional time for each page table level. This problem is mitigated by a
memory address cache called the translation-lookaside buffer (TLB) [9, pp. 183–
194]. This hardware cache saves the physical address of the page frame, thus
removing the need to look up the address on subsequent accesses to the given
page frame. Thus, there is a speed overhead for the processes on the first access
to a page, although the subsequent accesses are made with the entry from the
TLB. Note that this hinges on the number and demand of TLB entries.

Lastly, as processes assume they have as much memory they need, Linux must
handle when processes use more memory than available in the system. To sup-
port this, Linux only allocates the virtual pages that are actually used by the
process in the physical memory [9, pp. 169–179][12, pp. 35–36]. Additionally,
during high memory pressure, Linux may swap some of the least recently used
pages to secondary storage. Thereby, the processes are supplied with the mem-
ory they need, without losing the data that is evicted from memory. To the
process, the act of swapping is transparent and swapped pages may be moved
back to the main memory if accessed again.

10

2.3. MEMORY MANAGEMENT IN LINUX

2.3.2 Programmer Interface

The Linux kernel has two system calls called brk and mmap that handle memory
requests from user space. One way of requesting more memory, is to ask the
OS to resize the heap. This is done through the brk system call, by giving the
desired new end address of the heap as a parameter to the OS [12, pp. 395–397].
Thus, brk can both expand and shrink the heap. A helper function to expand
the heap is sbrk, which takes a value describing how much the heap should be
incremented, rather than a new address. When the OS receives a request to
enlarge the heap, it grants the memory if the request is legal and there is free
memory available to supply the request.

The mmap system call [17] is more powerful than brk, as it is capable of allo-
cating a linear memory address space at any point in the virtual address space,
rather than only on top of the heap. The underlying function do_brk can be
implemented with do_mmap, though this is slightly less efficient [12, p. 397].
With mmap the user can supply a preferred address to allocate to the desired
size of memory, and information describing the protection, sharing, etc. of the
memory. The specified address is used to allocate the memory, if there is space
for the allocation at that virtual address. If there is not sufficient space at the
desired address or no address is supplied, then mmap allocates the memory
wherever it is possible. An error is returned if a sufficiently large amount of
contiguous memory is not available in the virtual memory space of the process.

To ease the process of allocating memory for the programmer, the malloc func-
tion is available in the standard C library glibc1. Malloc abstracts away most
details of brk and mmap such that the user only has to worry about the size of
the memory to request and other parameters such as write protection. Malloc
may even request more memory of the OS than the user requests in order to
limit the number of system calls necessary in the future. The counterpart to
malloc is free which is used to deallocate memory that is no longer needed.

2.3.3 Physical Memory Management

To represent the physical memory of the system, Linux divides the physical
memory space into zones and page frames. Figure 2.3.2 shows the relation
between physical memory in the form of DIMMs, zones, the buddy allocator,

1https://www.gnu.org/software/libc/

11

2.3. MEMORY MANAGEMENT IN LINUX

and page frames. In the figure, the physical memory of the DIMMs is split into
zones. Each zone has a buddy allocator that maintains a list of free memory
blocks. The memory blocks consist of a number of contiguous page frames,
which can be used to store virtual memory. The following sections further
elaborate on page frames, zones, and the buddy allocator.

Figure 2.3.2: Graphical representation of the physical memory management in
the kernel.

2.3.4 Page Frames

In Linux, page frames are 4 KiB in size. A page frame is represented by the
page type in the Linux source code [6]. A page contains information on how
many references there are to it by running processes, as multiple processes may
share memory. It also contains flags that describe the state of the page frame.
Lastly, multiple page frames are contained in a zone, which are elaborated in
Section 2.3.5 on the next page.

The Linux kernel will consider certain page frames "reserved". This represents
page frames that are used for kernel code or those that are unavailable to the
OS. Unavailable page frames include those in address ranges with memory used
by the BIOS or other machine specific functionality [12, pp. 65–66].

12

2.3. MEMORY MANAGEMENT IN LINUX

2.3.5 Zones

A zone represents a contiguous amount of physical memory. Zones exist for the
purpose of dividing memory into parts that can be supported by certain devices
and functionality [12, pp. 299–301]. For example, older IO devices may only
support direct memory access (DMA) from the lowest 16 MiB or lowest 4 GiB
of memory. Due to their address restrictions, the DMA and DMA32 zones may
be relatively small compared to the normal zone. As the normal zone supports
fewer types of memory requests, the OS will prioritise allocating to this zone if
the request does not specifically require access to a lower zone. If the normal
zone cannot offer the requested memory, the OS will iterate through the lower
index zones. Zones are in Linux represented by a zone type [6, 15]. The zones
that are available to the system can be configured when compiling the kernel.

The types of zones that can be represented in Linux can be seen in Listing 1 on
the following page. Zones are represented as enum constants representing the
hierarchy between the zones. This hierarchy is used when allocating memory
to select the zone with the largest value that the request allows. I.e., a request
to DMA32 tries to allocate memory in this zone first, and if this fails, then it
tries the DMA zone. The presence of most zones is dependent on the config-
uration file that is used during compilation of the kernel. The enum constant
__MAX_NR_ZONES on line 16 represents the number of zones that are available in
the system.

Each instance of a zone is represented by a type called zone. A zone has
members to describe its starting page frame number (PFN) and its size including
or excluding the reserved page frames in the zone. Each zone contains a list of
watermarks to describe limits on what is considered high or low memory loads.
The watermarks are used for determining when to free memory from zones,
how much memory to free, and whether allocating more memory in the zone is
restricted.

2.3.6 Buddy Allocator

The buddy allocator is the mechanism used to allocate a block of contiguous
page frames when processes request memory in a given zone. Additionally, it is
responsible for collecting adjacent freed page frames to avoid external fragmen-
tation [9, pp. 166–167][12, pp. 311–317].

13

2.3. MEMORY MANAGEMENT IN LINUX

1 enum zone_type {
2 #ifdef CONFIG_ZONE_DMA
3 ZONE_DMA,
4 #endif
5 #ifdef CONFIG_ZONE_DMA32
6 ZONE_DMA32,
7 #endif
8 ZONE_NORMAL,
9 #ifdef CONFIG_HIGHMEM

10 ZONE_HIGHMEM,
11 #endif
12 ZONE_MOVABLE,
13 #ifdef CONFIG_ZONE_DEVICE
14 ZONE_DEVICE,
15 #endif
16 __MAX_NR_ZONES
17 };

Listing 1: The zones that Linux 5.11.0 can represent. The actual number of
zones depends on the compile time configuration [6].

When trying to allocate a block of memory in a specific zone, the buddy allocator
goes through its free list. The free list is a list, where each element is itself a
list of memory blocks. Each of these lists contains blocks consisting of a specific
number of page frames. The sizes are orders of two, from 20 to 210. Thus, when
allocating a block of memory the buddy allocator first finds the list with the
smallest blocks that can contain the request. If the free list for that size is empty,
the buddy allocator looks at the blocks one order higher. However, this block
is too large for the request and would be wasteful to allocate to the request.
Therefore, the block is split into two blocks (buddies) of equal size. One of the
blocks is used for the allocation and the other is added to the previously empty
free list of that size blocks. This way of splitting a page one order higher can
be done as many times as necessary to achieve the requested block size with
minimal excess memory. The process of finding a fitting memory block for an
allocation is shown in Listing 2. Here the for loop iterates through each order
that is equal to or higher than the request, and tries to find a page of that order
to allocate to.

When memory is freed, the buddy allocator checks whether the buddy of the
given block is also free. If this is the case, the two buddies of order 2N are
merged into one block of order 2N+1. This merged block has a new buddy of

14

2.3. MEMORY MANAGEMENT IN LINUX

1 static __always_inline
2 struct page *__rmqueue_smallest(struct zone *zone, unsigned int

order, int migratetype)↪→

3 {
4 unsigned int current_order;
5 struct free_area *area;
6 struct page *page;
7

8 for (current_order = order; current_order < MAX_ORDER;
++current_order) {↪→

9 area = &(zone->free_area[current_order]);
10 page = get_page_from_free_area(area, migratetype);
11 if (!page)
12 continue;
13 del_page_from_free_list(page, zone, current_order);
14 expand(zone, page, order, current_order, migratetype);
15 set_pcppage_migratetype(page, migratetype);
16 return page;
17 }
18

19 return NULL;
20 }

Listing 2: Buddy allocator removing the smallest possible block of memory from
the free list [6].

equal size, which may also be free to be merged. The buddy allocator keeps
merging blocks of contiguous memory this way until either the buddy of a block
is not free or the highest order of the buddy allocator has been reached.

2.3.7 The Memory Allocation Flow

Once a process has requested memory using the system calls described in Sec-
tion 2.3.2, the OS has to support the process in using the memory. However, the
memory is not physically allocated before it is used by the process that requested
it [15]. Rather, the system calls create a virtual memory area, which is described
by the type vm_area in the kernel. The first time the newly allocated memory
is read from or written to, the system extracts the allocation options saved in
vm_area. These options are passed to the function alloc_pages_nodemask,
which is the main physical memory allocation algorithm.

15

2.3. MEMORY MANAGEMENT IN LINUX

The algorithm consists of two approaches; the fast allocation path and the slow
allocation path [6]. First, the kernel tries the fast allocation path. This path
makes the simple allocations, for instance, if there is lots of free space in the
requested zone or the zones below. To allocate the memory, the algorithm
first extracts information from the vm_area. The most important pieces of
information are how much memory is required and which zone it should be
allocated in. Using this information, the algorithm iterates through the buddy
allocator of the preferred zone, as described in Section 2.3.6. If it is not possible
to find a block in this zone, then the algorithm tries the next zone in the
hierarchy, as described in Section 2.3.5.

If it is not possible to find a memory block for the allocation in the fast path,
then the OS must make space for this allocation. This happens in the slow
path, where the OS has multiple options to free memory. The first option is
reclaiming memory by cleaning up the page cache. The page cache is a memory
cache that contains files that have been loaded into memory from disk. The
OS assumes that the user needs these files again soon, and as it is expensive to
access the disk, the OS stores it in memory if there is space. The second option
is simply swapping the memory to the disk, such that it can be retrieved later
if necessary. As accessing the disk is expensive, the OS tries to swap out pages
that it most likely will not need in the near future. The third option regards
compacting the current memory allocations. This is done by combating external
fragmentation [18]. The last resort for the OS is to start the out of memory
killer. The out of memory killer is a process that locates and terminates memory
intensive applications on the system [12, pp. 710–711].

2.3.8 Architectures

As different architectures may handle memory differently from each other or
have differing feature sets, Linux must support this. As can be seen in Listing 3
some flags for virtual memory requests are simply left unavailable to 32 bit
architectures in the Linux kernel. This is just one place, where the architecture
of the system impacts the programming of the OS. The Linux code base has a
folder called "arch", containing specific code for the different architectures. This
folder contains 24 subfolders, corresponding to 24 different architectures that
Linux supports. Furthermore, some of the architectures contain files specific to
either 32-bit or 64-bit systems, such as the x86 architecture.

16

2.4. RELATED WORK

Since some low-level features require architecture-specific code, a change to such
a feature will possibly require a similar change to each architecture that is
supported by the kernel. Additionally, other architectures must support the
change, which is not guaranteed - such as the extra protection flag bits in page
table entries on 64-bit machines.

1 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
2 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit

architectures */↪→

3 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit
architectures */↪→

4 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit
architectures */↪→

5 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit
architectures */↪→

6 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit
architectures */↪→

7 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
8 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
9 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)

10 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
11 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
12 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */

Listing 3: Bits, only available on 64 bit machines, are used as virtual memory
allocation flags [6].

2.4 Related Work

Little research exists on the topic of memory power efficiency, especially on
DIMM or rank level. However, the articles [4] and [15] contain research on
how DIMMs and ranks can be used in a more energy efficient manner. In this
section, we give a short summary of both.

In [4] the authors show that the energy consumption of memory can be lowered
for an in-memory database system, called DimmStore, by utilising rank-aware
memory. Rank-aware memory is a possibility only after disabling memory inter-
leaving on the system. Also, memory addresses are mapped to physical DIMMs
in a modified Linux kernel. With this mapping the system is able to allocate
multiple DIMMs worth of memory for the database system to evict infrequently
accessed data. The result is that some DIMMs can stay in low power states for

17

2.4. RELATED WORK

longer as their data is accessed less frequently. Some memory is left to the OS
to handle as regular memory. This memory will contain the database code and
some of the frequently accessed data from the database along with the regular
OS and processes.
The authors bring a series of suggestions for future work on their implementa-
tion. For example, they call for a standardised interface to request rank-aware
memory, rather than having to manage this separately from Linux. Their im-
plementation physically accesses memory that is left unavailable to the Linux
kernel. This disallows memory virtualisation, which processes usually have and
could potentially cause problems if multiple processes attempt to use the same
physical memory. Also, accessing physical memory from a user process, as is
done in [4], requires the process to have super user privileges. This could pose
a security risk and therefore may not be fit for general purpose applications.

Another attempt at reducing energy usage of memory is made in [15]. The au-
thor measures the energy used by different memory hardware in the computer.
The memory hardware differs in the usage of energy when reading from and
writing to the hardware. With this in mind, the Linux kernel is modified, such
that memory requests through the malloc interface can describe the main work-
load of the memory. Then if the main workload of the memory is writing, it is
allocated on memory hardware that is efficient at writing. To obtain this con-
trol of which hardware contains the different memory blocks, rank and channel
interleaving is disabled in the system. This leads to a small slow down in some
of the benchmarks, though most benchmarks, especially on a slower processor,
has the same runtime. This implementation reduces the memory energy usage
of the benchmarks by up to 27.8%.
Since the memory management changes are implemented directly into the Linux
kernel, the article provides inspiration regarding how to manage the physical
memory in the kernel. Specifically, the author utilises the zone structure, as
zones already are a representation of the physical memory.

18

Chapter 3

Design

As reported in [4], it is possible to achieve a memory energy reduction of up
to 50% by grouping rarely used data to the same ranks. The article uses the
principle of hot and cold data, which means the data is often used and rarely
used respectively. This allows the ranks with cold data to stay in the low power
state for extended periods of time. Therefore, we want to apply this way of
handling memory to the Linux kernel, to enable energy savings on desktop
computers and servers with Linux. Another advantage of the Linux kernel is
that it is open source, allowing us to access and alter the code to support energy
efficient memory management.

To establish a terminology, we call data that is frequently accessed "hot", and
infrequently accessed data "cold". Similarly, the physical memory dedicated
to storing hot data is referred to as hot memory, and the physical memory
dedicated to storing cold data as cold memory. We want to group the two kinds
of data on the memory hardware to allow the cold memory to go into low power
states.

In this chapter, we go through the process of adding hot and cold memory in
the Linux kernel. In Section 3.1 we describe the different requirements for the
modified kernel. Next, Section 3.2 contains different approaches to separating
hot and cold memory in the kernel. Lastly, Section 3.3 considers the options of
how to use the chosen approach to separate memory.

19

3.1. REQUIREMENTS

3.1 Requirements

To describe the priority of different requirements and trade-offs, we make a
MoSCoW analysis [19]. In the remainder of the section, we introduce the re-
quirements in a list for each category of the MoSCoW. After each category we
elaborate on the requirements in the category.

Must Have

• Allow allocation of hot and cold data separately in physical memory.

• Work with x86_64 architecture

To enable power savings in programs by using the principle of hot and cold
data, we must modify the kernel to support a new type of memory allocation
for cold memory. Furthermore, the kernel must allocate cold memory in separate
memory hardware to allow this memory hardware more time in low power state.

Since most personal machines and servers use the x86_64 architecture [20], we
must support the x86_64 architecture.

Should Have

• Energy usage reduction

• Possibility to enable and disable our implementation in the kernel

As [4] shows that energy can be saved in memory by allocating cold data in
separate DIMMs, this should be achievable with our implementation as well.

The next requirement regards enabling and disabling the updated memory man-
agement when compiling the kernel. This is important in the Linux kernel as
different users have different needs which Linux has to fulfil. Thus, some Linux
users might want to disable our memory management, if it results in unneces-
sary overhead for them. Disabling our additions to the kernel should not break
or alter any existing functionality in the kernel.

Could Have

• Change the size of cold memory on run time

• Automatically allocate hot and cold memory

• Support for different architectures

20

3.1. REQUIREMENTS

Another desirable feature is adjusting the size of the cold and hot zone at run
time. This can be helpful for adjusting the separation of memory depending on
the current memory requirements. Additionally, users can hardly be expected
to know the optimal memory layout for their machine from the start. Having
the possibility of altering the sizes of the hot and cold memory on run time eases
trying out different layouts. This helps the Linux user to find the best division
of hot and cold memory for them.

To make the memory separation as transparent as possible to any user and
programmer, the allocation of data to hot and cold memory can be automatically
and entirely handled internally in the OS. This has a large possible energy
reduction, as the memory separation affects any process on a computer running
with the modified kernel. It is, however, a complex task to monitor and correctly
predict how to allocate memory for every process on the system.

The fundamental idea of separating hot and cold data in the memory of a com-
puter is applicable across different architectures. While portability is important
in the kernel, it is also difficult to implement and test. The kernel contains
many different files that are specific for the architecture the system is running
on. Thus, any changes to memory management that reside in architecture spe-
cific files, must be implemented for each of the architectures that we choose
to support. Additionally, the kernel testing must be carried out on machines
corresponding to all supported architectures. Thus, we are not prioritising this
requirement.

Won’t Have

• Detection of hardware layout

It is deemed beyond the scope of the project to automatically detect the hard-
ware layout of the main memory in the computer. The boundary between hot
and cold data should match the boundary between two hardware elements in
the memory, e.g., two ranks. This allows the DRAM running the cold part to
go into self refresh. While it is possible to obtain the memory layout for the OS,
it is not possible to control the memory controller options. Thus, it is necessary
for the user to configure the memory to support the modified kernel.

21

3.2. MEMORY SEPARATION APPROACH

3.2 Memory Separation Approach

To support splitting the physical memory of the system in hot and cold, to allow
cold DIMMs and ranks to save power, we need to alter the code in the kernel
that manages the physical memory. In Figure 2.3.2 on page 12, we provide a
simplified overview of how the kernel manages the physical memory currently. In
the following sections, we modify this figure to showcase three different designs,
to make the kernel aware of the two different kinds of data.

3.2.1 Cold Memory Zone

One approach to separating memory is to introduce a memory zone for cold
data. This integrates with the existing zone infrastructure of the Linux kernel,
by adding another zone that can be chosen when allocating memory. This
means that little code has to be altered for allocating memory. Additionally, no
abstraction is added to the memory management, as can be seen in Figure 3.2.1.
One drawback to this approach is that it clashes with the idea that zones in the
Linux kernel exist for compatibility reasons [15]. Currently, the sizes of most
zones are determined at compile time and by the amount of memory available at
the system boot. Allowing for dynamically resizing the normal and cold zones
at run time may require more significant changes to the kernel.

3.2.2 Regions of Page Frames

Another approach is to have an abstraction between the zones and the buddy
allocator. We call this abstraction regions. Regions are used to split the con-
tiguous memory covered by a zone. By doing this, one region can be used for
cold data and another for hot data. This approach is independent from the rest
of memory management. However, by adding a new data structure to manage
cold and hot data, we need to implement more code for memory allocation.
This, in turn, allows us to have more control over allocation policies in contrast
to modifying existing implementations such as zones. Moreover, this approach
may allow for a dynamically sized separation between hot and cold data, if the
regions are located within the same overlying memory zone. For a visual repre-
sentation of the placement of regions in the representation of physical memory
in Linux, see Figure 3.2.2. Of course, adding an additional level of memory
management may introduce overhead to the kernel.

22

3.2. MEMORY SEPARATION APPROACH

Figure 3.2.1: Graphical representation of the physical memory management in
the kernel with the memory zone for cold data.

3.2.3 Hot and Cold Page Frames

Each physical page frame is represented in the Linux kernel by the page type
that contains, among other, the start address of the page. By having a global
variable that describes the boundary between hot and cold memory, each page
frame can infer whether the page frame resides in cold or hot parts of memory
by comparing its start address to the boundary. This may be adjustable at
run time, by altering the address that separates the hot and cold page frames.
See Figure 3.2.3 for a representation of how this affects the representation of
memory in Linux. As page frames are common in many architectures, this
approach is generic across those. This approach creates some overhead, as the
buddy allocator must consider both hot and cold memory blocks when searching
for either kind of memory.

3.2.4 Choice of Approach

Each of the three approaches described are valid, and have their own trade-
offs. However, in this project we take the approach of adding an additional zone
specifically for cold data. This approach requires only minor modifications to the
Linux kernel as zones already represent contiguous physical memory. Thus, the

23

3.3. UTILISATION OF MEMORY SEPARATION

Figure 3.2.2: Graphical representation of the physical memory management in
the kernel with the memory regions.

new zone will automatically be taken into account by the memory management
of Linux. By introducing the cold zone we avoid having to add a new layer
of abstraction in the form of regions. Additionally, the page frame approach
can introduce a significant overhead in the buddy allocator, as we must iterate
through both hot and cold pages when looking for either. Alternatively, we must
have two buddy allocators in each zone to manage the different memory types,
though this is a less modular way of having regions. The consequence of choosing
the zone approach is that we must delimit the possibility of dynamically scaling
the amount of hot and cold memory, as the zone approach is statically defined
at compile time.

3.3 Utilisation of Memory Separation

If a separation between hot and cold memory exists, the OS must provide some
method to take advantage of it. In this section, we discuss the pros and cons of
either having the OS automatically manage hot and cold memory in contrast
to exposing an interface for explicit hot and cold memory allocation.

24

3.3. UTILISATION OF MEMORY SEPARATION

Figure 3.2.3: Graphical representation of the physical memory management in
the kernel with the page frames storing whether they can have hot or cold data.
Page frames that contain a C and H are cold and hot respectively.

3.3.1 Automatically Managed by the OS

One approach is to have the OS automatically place data in hot or cold memory
depending on the memory usage pattern. For example, a process that allocates
a lot of memory, but accesses the data infrequently, should have that data
allocated to cold memory. Grouping infrequently used data in cold memory
areas allows the underlying hardware to use its power saving capabilities for
longer periods of time.

There is a big potential for saving energy with this approach as it affects all
processes running on the machine. Moreover, this approach is completely trans-
parent to the processes, as no changes to their code are needed.

To make this approach possible, the memory behaviour of processes must be
monitored. This can be done by maintaining the flags that describe the state of
a page frame. For example, the PG_lru and PG_active flags describe, whether
a page has recently been accessed by its owner process [12, pp. 691–693]. This
information is used to determine whether a page of data can be swapped to
disk in the Linux kernel. Likewise, the same flag or a new flag can be used to
determine if the page should be evicted from cold memory.

25

3.3. UTILISATION OF MEMORY SEPARATION

A swapped page of data is moved back to main memory as soon as it is needed by
its process, as the CPU cannot access data from the secondary storage directly.
It is not as critical to move data back to hot memory for this approach as
the CPU can read data from cold memory. There is, however, still an interest
in moving pages of data back to hot memory if they are accessed frequently,
to prevent cold memory from being kept in high power states. One way of
handling this is to move pages from cold to hot memory with a probability for
each memory access. This approach is used in DimmStore [4].

3.3.2 New System Call

Another approach is to make a new system interface to allow explicit memory
requests to the regions with hot and cold data. Such an interface can be made
as an mmap-like call or maybe modify the allocation flags of the current mmap
to support the two types of allocation. An interface like this is useful when the
programmer knows which data in their program is accessed infrequently.

An interface like this is vulnerable to improper use by programmers. For exam-
ple, if cold memory is used frequently by a process, the cold memory hardware
is prevented from entering the self refresh state. Processes violating the expec-
tation of memory usage in cold memory reduce the power savings for the ranks
of memory that are affected.

Directly calling the mmap-like system call should only be necessary in specialised
cases as is the case with regular mmap. In the following, we present some
possible uses, for a new system call that are easier to use than mmap.

Malloc

It is simpler, faster, and uses less memory to use malloc instead of mmap in
most cases [21]. Currently, as described in Section 2.3.2 on page 11, the user
can call the malloc function to request memory. Malloc then, if necessary, calls
the system calls mmap or sbrk to request more memory for the process. There-
fore, in conjunction with a new mmap-like system calls a malloc-like function
can use the new mmap functionality. The new malloc function has the same
responsibility and functionality as the existing malloc, with the exception that
it calls the mmap to obtain cold memory. A new malloc-like function has the
same pros and cons as the existing malloc function. This includes the necessity
for the programmer to manually free memory after use.

26

3.3. UTILISATION OF MEMORY SEPARATION

Run Time Environments

Run time environments of higher level languages could use a new mmap-like
system call to handle allocation of hot and cold memory for the programmer.
.NET has a run time environment1 (CLR) that performs just-in-time (JIT)
compilation and manages memory with a generational garbage collector [22].
The new system call could, for instance, be used to separate the hot data from
the cold in the highest generation of objects in the generational garbage collector.
The upside to using a new system call for cold memory allocation in a managed
run time environment for a programming language, is that the change affects all
programs run with that environment. Thus, the programmer does not need to
consider the memory usage of their code. Moreover, as run time environments
may differ, each run time environment may choose to use the new system call
in different ways, depending on what is advantageous for the given program.

3.3.3 Choice of Interface

As it is the simplest and most direct way of using the changes we have made
to the kernel, the choice of interface for this project is the new system call.
The system call allows further extensions to build on this functionality, to aid
developers in using our modified kernel to reduce memory power usage. For
instance, a run time environment could be changed to use the modified mmap
system call to allocate specific data in cold memory.

1https://docs.microsoft.com/en-us/dotnet/standard/clr

27

Chapter 4

Implementation

Based on the design in Chapter 3, this chapter describes the steps we take
to implement a Linux kernel that supports separating hot and cold data in
physical memory. The chosen design revolves around adding an additional zone
in the kernel, which is used specifically for the cold data. The process of adding
the zone and implementing the zone in the allocation strategy of the kernel is
detailed in Section 4.1. Additionally, the section describes how the modified
kernel handles inefficient use of the cold zone. Lastly, the kernel configurations
to enable, alter, or disable the added functionality is described. Following,
Section 4.2 documents the additions to the mmap system call. This revolves
around adding a flag to allow allocation of memory in the cold zone. Our
modification are available on our Github repository: https://github.com/
Nitram1995/linux/.

4.1 The Cold Zone

To implement a split between hot and cold data in the physical memory of
the computer, we must change the way the Linux kernel views and manages
memory. Specifically, the kernel needs a way of differentiating the two types
of data and a strategy for placing the data on the DIMMs. In this section, we
describe how we implement this in the kernel. First, the cold zone is described
along with the changes to incorporate it in the kernel. Then we describe the

28

https://github.com/Nitram1995/linux/
https://github.com/Nitram1995/linux/

4.1. THE COLD ZONE

compile options we require the Linux user to set, in order to use the modified
kernel.

In Section 3.2.4 on page 23 it is decided that the best approach for our im-
plementation is to store hot and cold data in different zones. There are two
major benefits to this approach. The first is that zones are an abstraction of
the physical memory layout - meaning we can use zones to group hot and cold
data. The second benefit is that zones are implemented in a modular way in
the kernel, as different machines and architectures require different zones to run
[15]. Thus, adding another optional zone in the kernel is well supported.

4.1.1 Adding the Cold Zone to the Kernel

To add another zone in the Linux kernel, we need to alter the enum called
zone_type. The updated enum can be seen in Listing 4. We add the COLD_ZONE
zone as the last type in the enum in lines 363-365. Note that __MAX_NR_ZONES
is not an actual zone type, rather it is used to keep track of the total number of
zones in the kernel, which is possible due to how enums can be used as integers
in the C programming language. The placement of the cold zone in this enum
determines the order in which the memory allocation algorithm allocates to the
available zones. This is due to the kernels memory allocation strategy, where it
tries to allocate memory in the specified zone, and if this is not possible it tries
to allocate memory in the zones below. Thus, by placing the cold zone as the
last zone, it will only be allocated to if it is the specified zone for the allocation.
This has the advantage that we have complete control over what is allocated in
the cold zone, allowing us to keep hot data out of the physical memory storing
cold data. Another advantage is that requests for memory in the cold zone can
fall through to the lower zones, if the cold zone is full. Thus, cold data may end
up being stored in hot memory instead of the system having to swap cold data
to disk, if the cold memory is full. A disadvantage is that the system can be
inefficiently used by only allocating to the hot zone. This causes the hot zone
to start swapping to disk as it runs out of memory, while the cold zone might
be completely empty. To combat this, we add a compile option, as described
in Section 4.1.3, allowing the system to overflow from the hot zone to the cold
zone.

Adding the cold zone to the zone_type enum takes care of most things, such as
creating the zone type and instantiating a zone for cold data on boot. Although,

29

4.1. THE COLD ZONE

348 enum zone_type {
349 #ifdef CONFIG_ZONE_DMA
350 ZONE_DMA,
351 #endif
352 #ifdef CONFIG_ZONE_DMA32
353 ZONE_DMA32,
354 #endif
355 ZONE_NORMAL,
356 #ifdef CONFIG_HIGHMEM
357 ZONE_HIGHMEM,
358 #endif
359 ZONE_MOVABLE,
360 #ifdef CONFIG_ZONE_DEVICE
361 ZONE_DEVICE,
362 #endif
363 #ifdef CONFIG_ENERGY_EFFICIENT_MEMORY
364 ZONE_COLD,
365 #endif
366 __MAX_NR_ZONES
367 };

Listing 4: The updated zone_type enum from include/linux/mmzone.h with
the comments removed for readability.

we do need additional changes to fully support the cold zone. An important
addition is choosing the desired size of the different zones. Given that zones
and zone sizes differ in the different architectures, this change must be made
in an architecture specific file. As the x86_64 architecture is "must have" in
Section 3.1, we edit the init.c file in the folder arch/x86/mm. To support ad-
ditional architectures, this change has to be ported to their architecture specific
files.

Lines 1005-1010 in Listing 5 show the updated code to describe the zone sizes,
if the kernel is compiled with the cold zone. Else, we default to the original
code in the else case in lines 1013-1018. The sizes of the different zones are
determined by the max_zone_pfns array. This array has an entry for each zone,
which contains the address of the highest page frame in the zone. Thus, when
we add the cold zone as the last zone, we give it the highest possible address
as the end address. This is done in line 1010, where we set it to max_low_pfn,
which is the highest address of the physical memory. In 32-bit systems the
highest address is at 4 GiB, so if the system has more memory, this has to

30

4.1. THE COLD ZONE

be handled in a special case. This is managed by ZONE_HIGHMEM. However, for
64-bit systems the highest address is limited by the amount of memory in the
computer, rendering the highmem zone unnecessary.

1005 #ifdef CONFIG_ENERGY_EFFICIENT_MEMORY
1006 max_zone_pfns[ZONE_NORMAL] = min(MAX_NORMAL_PFN,

max_low_pfn);↪→

1007 #ifdef CONFIG_HIGHMEM
1008 max_zone_pfns[ZONE_HIGHMEM] =

max_zone_pfns[ZONE_NORMAL]↪→

1009 #endif /* CONFIG_HIGHMEM */
1010 max_zone_pfns[ZONE_COLD] = max_low_pfn;
1011

1012 printk("EEL: CONFIG_MAX_NORMAL_SIZE: %u\n",
CONFIG_MAX_NORMAL_SIZE);↪→

1013 #else
1014 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1015 #ifdef CONFIG_HIGHMEM
1016 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1017 #endif /* CONFIG_HIGHMEM */
1018 #endif /* CONFIG_ENERGY_EFFICIENT_MEMORY */

Listing 5: The zone sizes in the modified kernel from init.c in arch/x86/mm.

In addition to adding the cold zone size, it is also necessary to limit the size of the
normal zone, as this originally spanned the remainder of the addressable mem-
ory. To do this, we add a user configurable constant called MAX_NORMAL_PFN.
This is used in Listing 5 on line 1006, to set the maximum page frame number
for the normal zone. We use the min function to ensure that the normal zone
does not try to access more memory than is available in the system.

4.1.2 Allocating to the Cold Zone

Allocation to the cold zone works in the same way, as allocating to any other
zone. Thus, adding the functionality to support the cold zone requires little
code. The additional code recognises the cold flag in the function gfp_zone,
which is used to determine the preferred zone to allocate memory in. Listing 6
shows the additional code in the function, which returns the cold zone, if the
cold zone allocation flag is set.

When allocating memory with the cold zone as the preferred zone, the function
get_page_from_freelist first tries to allocate in the cold zone. If this fails,

31

4.1. THE COLD ZONE

460 #ifdef CONFIG_ENERGY_EFFICIENT_MEMORY
461 if(flags & __GFP_COLD)
462 {
463 return ZONE_COLD;
464 }
465 #endif

Listing 6: The only necessary addition to the allocation algorithm in the kernel
to support the cold zone. This is added to the file include/linux/gfp.h in the
kernel.

it will iterate through the lower zones and attempt allocation in those zones. If
no zone can provide the requested memory, the slow path is used to make space
for the requested memory. The slow path is, as the name suggests, a slower
algorithm for allocating memory that may invoke various procedures to reclaim
memory for the allocation. The slow path also includes iterations through the
cold zone and any zones below the cold zone.

4.1.3 Overflowing Hot Memory to Cold Zone

The user can choose a non-strict separation between the normal zone and the
cold zone. This means that if the system is unable to allocate a memory re-
quest in the normal zone (e.g., due to high memory pressure), it may attempt
allocation in the cold zone. This is preferable over swapping from the normal
zone to secondary storage, as swapping is expensive in terms of time and power
consumption on both disk and CPU. To allow overflowing, three steps are added
to the "slow path" of the memory allocation.

As can be seen in line 4778 in Listing 7, we only allow memory from the
normal zone or higher to be allocated in the cold zone. Zones lower than
ZONE_NORMAL are not considered since data from such zones (for exam-
ple, ZONE_DMA) cannot be moved to higher physical addresses transparently
to their owner process. This is due to some hardware only supporting direct
memory access to lower physical memory addresses.

The first addition to the memory allocation algorithm, is the attempt to reclaim
the page cache in the preferred zone and then reattempt the memory allocation
in that zone. The page cache is memory that contains data from files that are no
longer referenced by any process. The data is kept in memory to limit latency
if the same file is loaded into memory later. To limit the risk of hot data being

32

4.1. THE COLD ZONE

4777 #if defined(CONFIG_ENERGY_EFFICIENT_MEMORY) &&
defined(CONFIG_NON_STRICT_EEM)↪→

4778 if(ac->highest_zoneidx >= ZONE_NORMAL && ac->highest_zoneidx
< ZONE_COLD){↪→

4779 /* Attempt reclaiming page cache, then retry */
4780 int ret;
4781 ret =

node_reclaim(ac->preferred_zoneref->zone->zone_pgdat,
gfp_mask, order);

↪→

↪→

4782 switch(ret) {
4783 case NODE_RECLAIM_NOSCAN:
4784 case NODE_RECLAIM_FULL:
4785 break;
4786 default:
4787 page = get_page_from_freelist(gfp_mask, order,

alloc_flags, ac);↪→

4788 if (page){
4789 goto got_pg;
4790 }
4791 }
4792

4793 /* Attempt with cold zone used as regular zone */
4794 enum zone_type oldzone = ac->highest_zoneidx;
4795 ac->highest_zoneidx = ZONE_COLD;
4796 ac->preferred_zoneref =

first_zones_zonelist(ac->zonelist,
ac->highest_zoneidx, ac->nodemask);

↪→

↪→

4797 page = get_page_from_freelist(gfp_mask, order,
alloc_flags, ac);↪→

4798 if (page){
4799 goto got_pg;
4800 }
4801 /* If cold zone failed, reinstate preferred zone */
4802 ac->highest_zoneidx = oldzone;
4803 ac->preferred_zoneref =

first_zones_zonelist(ac->zonelist,
ac->highest_zoneidx, ac->nodemask);

↪→

↪→

4804 }
4805 #endif

Listing 7: The modified slow path allocation, to allow data from the normal
zone to overflow to the cold zone under high memory pressure. The code is
added to the file mm/page_alloc.c in the kernel.

33

4.1. THE COLD ZONE

allocated in the cold zone, we reclaim the page cache before overflowing into the
cold zone. Clearing the page cache is done in lines 4778 to 4791 in Listing 7.
The function node_reclaim is called in the effort to reclaim the page cache
of the preferred zone. If some memory was freed get_page_from_freelist is
called in a new attempt to allocate memory in the preferred zone. If this is
successful, an overflow to the cold zone has been averted.

If the first attempt at freeing memory in the preferred zone fails, the memory
allocation is allowed to overflow to the cold zone. In lines 4794 to 4800, the
preferred zone is updated to the cold zone and an attempt to allocate in this
zone is made with get_page_from_freelist. If successful, memory is allocated
in the cold zone. This is transparent to the process.

If it was not possible to allocate in the cold zone, the old preferred zone is re-
instated in lines 4802 to 4803 and the algorithm will continue with the other
approaches to make the memory allocation possible, including swapping to sec-
ondary storage. The algorithm loops back to line 4777 if further attempts at
freeing memory are unsuccessful. This may yield a different result from the last
iteration based on the system state.

4.1.4 Compilation Options

To allow the kernel to be modular, there are many compilation options the
Linux user can set, to obtain a different kernel. Following this scheme, we add
compilation flags to the kernel to enable or disable our changes. In lines 4777-
4778 on Listing 7, two flags are used in combination with an #if defined. This
is C preprocessor syntax to note that this code should only be included in the
compilation, if the given flags are defined. By using this around the code we
have added in different places in the kernel, the kernel will remain unaffected
by our changes, if the flags are disabled in the compilation.

To give the user an overview of the different available compilation flags, the
kernel includes a graphical program called Kconfig. This program gathers the
different flags by their domains. For instance, our flags reside in the memory
category, as our changes affect the memory management of the kernel. Listing 8
shows the lines added to the mm/Kconfig file in the linux kernel. The code for a
compilation flag must have; the name and type of the flag, a description, whether
it should be enabled by default, and a help option with further information.

34

4.1. THE COLD ZONE

878 config ENERGY_EFFICIENT_MEMORY
879 bool "Add cold zone for allocation of infrequently used data."
880 default y
881 help
882 Enabling this allows allocation to 'Cold Zone' in memory.

Grouping infrequently accessed data in this zone leads to
lower energy consumption in memory, as this data is
allocated physically close together. Entire memory ranks
or DIMMs that only store this data can spend more time in
the energy efficient low power states. To take advantage
of this, memory interleaving must be disabled on the
DIMMs or ranks that are used in the cold zone.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

883

884 config NON_STRICT_EEM
885 bool "Allow overflowing hot data to the cold zone."
886 default y
887 help
888 System may allocate hot memory in cold zone from energy

efficient memory under high memory pressure in the
normal/hot zone. This prevents poor performance when the
cold zone is not utilised.

↪→

↪→

↪→

889

890 config MAX_NORMAL_SIZE
891 int "Normal zone max size as GiB"
892 default 8
893 help
894 Determines the address that separates the hot and the

cold zone↪→

Listing 8: The user defined flags in mm/Kconfig that enable and disable cold
memory and allow overflowing the normal memory to cold memory.

As can be seen in Listing 8, we have added two flags and a configurable integer.
The first flag is called ENERGY_EFFICIENT_MEMORY, which makes the kernel cre-
ate the cold zone. Without this flag selected none of our changes are compiled.
The second flag is called NON_STRICT_EEM, and allows the normal zone to over-
flow to the cold zone under high memory pressure, as described in Section 4.1.3.
Lastly, the configurable integer MAX_NORMAL_SIZE allows the user to specify the
address, where the separation between the hot and cold zone is. The input is
converted from GiB to a page frame number, to represent the address in an
understandable manner to the Linux user.

35

4.2. SUPPORTING COLD MEMORY ALLOCATION WITH MMAP

4.2 Supporting Cold Memory Allocation with
mmap

This section explains how we expand the mmap system call to support cold
data. First, we show how to use the interface to allocate both hot and cold
data. Then Section 4.2.2 details, how we add support for allocating cold memory
in the mmap system call. Additionally, it is described how the system call is
connected to the allocation of physical memory, as this is necessary to implement
the allocation of data in a specific part of memory.

4.2.1 Usage

An example of allocating memory for both hot and cold data is shown in List-
ing 9. Deallocating the cold memory is done with munmap, like any other
memory allocation obtained through mmap. As can be seen in lines 6 and 7,
the only difference between allocating regular memory and cold memory is the
presence of the MAP_COLD flag.

1 #include <sys/mman.h>
2 #define MAP_COLD 0x200000
3 #define PAGE_SIZE 4096
4

5 int main(void){
6 void *regular_mem = mmap(NULL, PAGE_SIZE, PROT_WRITE|PROT_READ,

MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);↪→

7 void *cold_mem = mmap(NULL, PAGE_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_COLD, -1, 0);↪→

8

9 munmap(regular_mem, PAGE_SIZE);
10 munmap(cold_mem, PAGE_SIZE);
11 return 0;
12 }

Listing 9: Example of allocating a page of regular memory and a page of cold
memory.

4.2.2 Memory Allocation

When a process invokes the mmap system call, the OS takes control to allocate a
piece of memory from the process address space. The arguments given to mmap
are first translated to Linux specific VM_flags, such that a virtual memory area

36

4.3. SUMMARY

can be allocated for the process. The virtual memory is only allocated physically
once the owner process accesses it, as is described in Section 2.3.7 on page 15.

When the OS handles the system call, the protection flags and other flags
passed to mmap are translated to VM_flags. This is done with the functions
calc_vm_prot_bits and calc_vm_flag_bits. We add a single line of code to
calc_vm_flag_bits, which is line 158 in Listing 10. The VM_flags are stored
in the vma struct that describes the virtual memory area that has been allocated
for the process.

150 static inline unsigned long
151 calc_vm_flag_bits(unsigned long flags)
152 {
153 return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN) |
154 _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE) |
155 _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED) |
156 _calc_vm_trans(flags, MAP_SYNC, VM_SYNC) |
157 #ifdef CONFIG_ENERGY_EFFICIENT_MEMORY
158 _calc_vm_trans(flags, MAP_COLD, VM_COLD) |
159 #endif
160 arch_calc_vm_flag_bits(flags);
161 }

Listing 10: The function from include/linux/mman.h used to convert mmap
flags to vm_flags.

When the process tries to use the virtual memory that has been allocated to
it, a page fault occurs as the physical memory is allocated to the process. The
VM_COLD flag is used to determine the flags for the physical memory allocation
(GFP_flags). The addition to this process is the translation from the VM_COLD
to the GFP_COLD in line 2179 in Listing 11.

Now the request for cold memory from the calling process is translated to nec-
essary parameters for physical memory allocation in the cold zone. The process
of allocating in the cold zone is described in Section 4.1.2 on page 31.

4.3 Summary

To summarise, we have modified the Linux kernel to have an additional memory
zone that is supposed to contain cold data. The additional cold zone is config-
urable when compiling the kernel, in terms of the address that separates hot

37

4.3. SUMMARY

2168 struct page *
2169 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2170 unsigned long addr, int node, bool hugepage)
2171 {
2172 struct mempolicy *pol;
2173 struct page *page;
2174 int preferred_nid;
2175 nodemask_t *nmask;
2176

2177 #ifdef CONFIG_ENERGY_EFFICIENT_MEMORY
2178 //Sets __GFP_COLD flag if VM_COLD flag is set in the vm_flags

of the vma.↪→

2179 gfp |= _calc_vm_trans(vma->vm_flags, VM_COLD, __GFP_COLD);
2180 #endif

Listing 11: The first lines of the function from mm/mempolicy.c are used to
allocate physical memory based on a virtual memory area.

and cold physical memory. To utilise the cold zone, we have added an additional
flag in the mmap system call. Using this flag, the process can request memory
that is located in the cold zone, if it is possible (i.e. there is room in the cold
zone).

38

Chapter 5

Experiments

In this chapter we describe the experiments we conduct to test our implementa-
tion from the previous chapter. First, we present the setup and specifications of
the computer, that is used for the experiments, in Section 5.1. Then we explain
the experiments and the motivation for having them in Section 5.2. Lastly, in
Section 5.3, we present our expectations to the benchmarks and the results from
the experiments.

5.1 Test Setup

5.1.1 Computer Specifications

The test machine used to run the benchmarks has the following specifications:

General
Processor Intel Xeon W-1250P, 8 core (16 threads) at 4.10 GHz
Storage 512 GB NVMe SSD

Memory 32 GiB DDR4: 1x16 GiB SK Hynix HMA82GU7DJR8N-XN
2x8 GiB Kingston KHX2666C16/8G

OS Ubuntu 20.04.2 with Linux kernel 5.11[6]

Table 5.1.1: Specifications of the test machine.

Ubuntu Linux 20.04.2 ships with kernel version 5.4 [23]. We upgrade the kernel
of the OS to version 5.11, to work with the newest kernel available at the start
of the project.

39

5.2. BENCHMARKS

5.1.2 Memory Layout

To allow a part of the physical memory of the test machine to go into low power
states, it is important that interleaving is disabled. In similar articles [4, 15],
disabling interleaving is an option in the BIOS. However, the BIOS in our test
machine does not have this option, meaning we have to find a different way to
handle interleaving.

The motherboard in the test machine has two memory channels and two DIMM
slots for each channel. Since it is possible to read and write data to both channels
at the same time, the memory controller tries to interleave as much memory as
possible across the channels. In our case, we have a 16 GiB DIMM and two 8
GiB DIMMs. If we put the two 8 GiB DIMMs in one channel and the 16 GiB in
the other, we would have a memory space of 32 GiB, all of which is interleaved.
This is undesirable to us, as it prevents the memory hardware from going into
low power states. Rather, we place the 16 GiB DIMM and one 8 GiB DIMM in
one channel, and the remaining 8 GiB DIMM in the other channel. With this
skewed memory setup, interleaving is either disabled or the memory controller
interleaves it in flex mode [24]. If flex mode is used, the first 16 GiB memory is
interleaved between the two 8 GiB DIMMs, while the latter 16 GiB is only run
on the 16 GiB DIMM, allowing it to go into low power states when this part
of memory is unused. To test the memory layout of the machine, we perform
experiments, which are described in Section 5.2.1.

5.2 Benchmarks

5.2.1 Memory Bandwidth with STREAM

To determine the memory layout, we test the different parts of our memory
space. As mentioned in Section 2.2.3 on page 7, the biggest difference in per-
formance between interleaved memory and regular memory is in memory band-
width. Thus, by using the memory benchmark STREAM, we should be able to
determine, whether interleaving is disabled or flex mode is used in the machine
[16].

We modify the STREAM benchmark to optionally use dynamically allocated
memory, obtained via the mmap system call. We also add the ability to allocate
data in either hot or cold memory based on an argument given to the program.

40

5.2. BENCHMARKS

To perform the memory allocation in different memory hardware, we use the
modified kernel. We perform one test, where the memory is allocated normally,
i.e. in the hot memory. Then we perform another test, where the memory is
allocated in the cold memory. We expect the machine to use flex mode for
interleaving, meaning that the normally allocated memory is interleaved and
the cold memory is not.

When using the STREAM benchmark, it is necessary to select the size of how
much memory the benchmark must use to conduct the test. As we are testing
two 16 GiB parts of memory, we have set the size to 13.4 GiB or an array size
of 600 million elements in the benchmark. The reason that we do not use all 16
GiB is that the normal zone must also preserve memory for running the OS and
it always keeps additional memory ready. Thus, with a higher memory pressure
the system will start to swap memory to disk, which invalidates the test.

5.2.2 Memory Power Consumption with the Energy-Aware
Map

As the results from the DimmStore database [4] show large possible energy
savings in memory, we want to recreate their results with the modified kernel.
Unfortunately, we have not been able to obtain the source code of DimmStore.
Therefore, we create a proof of concept benchmark, called the Energy-Aware
Map (EAM), that uses some of the key features described in the article. We
implement the EAM in C++.

The EAM can save data associated with a given key. To manage the hot and
cold memory, we allocate a memory space in both hot and cold memory corre-
sponding to input parameters. This allows us to move data to a memory space
that matches how often it is used. The two areas are represented by a type
called memory_area, that handles memory allocation, underlying CRUD (Cre-
ate, Read, Update, and Delete) functionality in the memory, and maintains a
LRU (least recently used) list. The LRU list is used to determine, which data is
cold and can be evicted from the hot memory area. Whenever the hot memory
area is full, a number of LRU data values are evicted to the cold memory area.
Similarly it is necessary to have a way of returning cold data to the hot mem-
ory area, if it is frequently accessed. To implement this, each cold element has
a probability of getting moved to the hot memory area on each access to the
element. Thus, if an element is accessed many times, it has a high probability

41

5.2. BENCHMARKS

of getting moved to the hot area, while an element that is infrequently accessed
will seldom be moved to the hot area. With these two mechanisms, the database
ensures that cold data is in the cold memory area and hot data is in the hot
memory area.

Configuration

There are multiple parameters that can influence the EAM in different ways.
This section explains which configurations we have set and how this influences
the EAM. Lastly, Table 5.2.1 summarises the different parameters that we use
for the EAM.

The first parameters are the sizes of the memory areas in the system. We use
10 GiB in the hot area and the full size of the cold zone as the cold area.
Using 10 GiB as the hot area leaves room for the OS and other processes in the
hot memory. Additionally, we maintain data structures, such as the LRU lists
described above, in hot memory that take up space. To fill the database, we use
structs of size 1024 bytes (1 KiB). This is also the data size used in DimmStore.

To run our EAM in a similar fashion to DimmStore, we implement the three
phases of running the benchmark; initialising the database, warm-up, and the
actual run. We use the same values for the different phases as well. After
the database is initialised, we run the benchmark with the desired load as a
warm-up. Then we run the benchmark, where we measure the performance.
The duration of the warm-up period and the benchmark run is five minutes
each for the maximum workload. For benchmarks where we scale the workload,
the run time is scaled such that each benchmark performs the same number
of transactions. This is the same approach as in [4]. Running the benchmark
for this long stabilises the result in regards to minor influences, such as system
interrupts or background processes.

During the benchmark run, we need to decide which operations should be per-
formed in the database. The EAM supports CRUD, meaning any of these four
operations can be used. To match the benchmark from the DimmStore article
[4], we perform 80% read and 20% write transactions. A read transaction con-
sists of reading a value in the database. A write transaction consists of reading
a value from the database and then writing a new value in its place. Whether
to perform a write transaction is determined by the rand function. To ensure
that the benchmark workload is the same for all implementations, we seed the

42

5.2. BENCHMARKS

rand function with srand. The two functions are included in the C standard
library1.

Now that we know what transactions to perform, the next question is which data
values to select. We want to select different values, although with a skew such
that some values are accessed more often than others. To do this, we use the Zip-
fian distribution with a 0.95 skew parameter. The distribution ensures that few
elements are accessed often, while most other elements are accessed infrequently
[25]. This is also the distribution used in DimmStore, and in their benchmark
the skew parameter has little influence on the power usage [4]. Rather than
implementing the Zipfian distribution ourselves, we have used the code from
[26] and modified it with the code from [27] to reduce the cost of generating the
numbers.

The two last configurations regard how elements are moved back and forth
between the hot and cold memory areas. The first is how many elements to
evict to the cold area whenever the hot area runs out of memory. A small
number means that the move action has to be performed many times, while a
large number introduces the risk of moving hot elements to the cold area. In the
benchmark, we move 64 elements at a time, being 64 KiB of data. The other
configuration is the probability for elements to be unevicted on access. This has
the same considerations; too high means many cold data elements in the hot
area, while too low increases the amount of time a hot element can force the
cold area into a high power state. We use a probability of 1/64. Both the size
of data to evict and the probability of unevicting data is the same as in [4].

Parameters Values
DB size 10 GiB hot and 18 GiB cold = 28 GiB
Workload 30-300 ktps, 30 ktps intervals
Uneviction probability 1/64
Eviction size 64 KiB
Zipfian skew parameter 0.95

Table 5.2.1: The parameters with which the benchmark is run.

Running the Benchmarks

In Figure 5.2.1 on the next page, the components of our benchmark setup can
be seen.

1https://www.cplusplus.com/reference/cstdlib/

43

5.2. BENCHMARKS

Figure 5.2.1: The structure of the components that are used to obtain results
for our benchmark.

Starting from the bottom right corner of the figure, the benchmark orchestrator
parses a list of benchmark configurations to run. For each of these configurations
it invokes the benchmark launcher, which executes the benchmark. The EAM
at the top of the figure is the benchmark implementation, which is described in
Section 5.2.2 on page 41. As it is written in C++, it is compiled to a shared

44

5.2. BENCHMARKS

library, which is then imported and called by the benchmark launcher that is
implemented in C#. The benchmark launcher is able to invoke the initialisa-
tion and the warm-up phase before starting the benchmark run. To measure
the EAM, the benchmark launcher uses a benchmark library that measures
multiple values for a single function call. The benchmark library imports the
measurement library, which is used to collect results from the system clock and
Intel RAPL registers. The benchmark orchestrator collects the result from the
benchmark library and adds it to the list of results. In this section, we describe
each of these components in more detail.

1 const unsigned int arrSize = 256;
2 // 1 KB
3 struct data {
4 int arr[arrSize];
5 };
6

7 extern "C" unsigned long initDB(unsigned long hotSizeBytes,
8 unsigned long coldSizeBytes,
9 unsigned long elementsCount);

10

11 extern "C" void ycsbLoad(const unsigned int ktps,
12 const unsigned int runTimeSec,
13 const unsigned long elements,
14 unsigned long map);
15

16 extern "C" void printStats();
17

18 extern "C" unsigned int sizeOfData(){
19 return sizeof(data);
20 };

Listing 12: Header file for C++ benchmark that is compiled to a shared library.

The EAM

The EAM is implemented in C++, as this language has low level memory
management tools and easy access to the mmap system call for memory allocation.
Additionally, C++ supports more abstract features such as classes and generic
programming. We also implement functions for interacting with the EAM.
These functions, such as initDB, take arguments to describe the size of the
database and the workload to deliver. The functions must be callable from

45

5.2. BENCHMARKS

another program. Therefore, we compile the implementation to a shared library
and expose necessary functions in a header file, which can be seen in Listing 12.

Benchmark Launcher

To setup and run a benchmark, we use a benchmark launcher program that can
call the shared library. We implement the program in C# of .NET core2 for this
purpose, as it allows us to utilise the benchmark library, also written in C#, to
perform our measurements of time and energy consumption. To call the EAM,
the functions from the library must be declared in the C# program. This can
be seen in lines 9 to 21 in Listing 13.

9 [DllImport(@"./eel_benchmark.so",
CallingConvention=CallingConvention.Cdecl)]↪→

10 public static extern void ycsbLoad(uint ktps,
11 uint runTimeSec,
12 ulong elements,
13 ulong map);
14 [DllImport(@"./eel_benchmark.so",

CallingConvention=CallingConvention.Cdecl)]↪→

15 public static extern ulong initDB(ulong hotSizeBytes,
ulong coldSizeBytes, ulong elementsCount);↪→

16

17 [DllImport(@"./eel_benchmark.so",
CallingConvention=CallingConvention.Cdecl)]↪→

18 public static extern void printStats();
19

20 [DllImport(@"./eel_benchmark.so",
CallingConvention=CallingConvention.Cdecl)]↪→

21 public static extern uint sizeOfData();

Listing 13: The declaration of functions in C# from the shared library written
in C++.

Our benchmarks consist of an initialisation phase, a warm-up phase, and a
benchmark phase. We are only interested in obtaining results from the actual
benchmark phase, meaning we must be able to make our measurements only
for some of the code. Therefore, we must separate the initialisation and warm-
up phases from the actual benchmark. We do this by generating functions for
performing the initialisation, warm-up, and the benchmark it self in lines 51 to
59 in Listing 14. The initialisation function and the warm-up function are called

2https://dotnet.microsoft.com/

46

https://dotnet.microsoft.com/

5.2. BENCHMARKS

immediately afterwards in lines 61 to 65. The benchmark function, however, is
given as an argument to the benchmark library, which performs the benchmark
and collects measurements in the Run method.

44 var bm = new Benchmark(1, false);
45

46 // Converts the dbSize to the corresponding number of
elements↪→

47 ulong elementsCount = dbSize * gb / sizeOfData();
48 uint runtime = benchmark == 0 ? totalTransactions /

ktps : totalTransactions;↪→

49

50 // Make database
51 Func<ulong> initFunc;
52 if(isHotCold) // With a hot and a cold zone
53 initFunc = () =>

initDB(dbHotSizeBytes,dbColdSizeBytes,elementsCount);↪→

54 else // Only one zone for all data
55 initFunc = () =>

initDB(dbHotSizeBytes+dbColdSizeBytes,0,elementsCount);↪→

56

57 // Determine which benchmark to run
58 Action<ulong> warmUpFunc = (db) =>

ycsbLoad(ktps,runtime,elementsCount,db);↪→

59 Func<ulong, ulong> mainFunc = (db) => {
ycsbLoad(ktps,runtime,elementsCount,db); return
0; };

↪→

↪→

60

61 System.Console.WriteLine("Performing init");
62 var db = initFunc();
63

64 System.Console.WriteLine("Performing warmup");
65 warmUpFunc(db);
66

67 System.Console.WriteLine($"Performing benchmark.
Expected to take {runtime} seconds");↪→

68 bm.Run<ulong,ulong>(mainFunc, db, (input) => {
printStats(); });↪→

Listing 14: Creation of functions for initialisation, warm-up, and running the
benchmark. Benchmark library is called with the function for running the
benchmark as argument.

47

5.2. BENCHMARKS

Benchmark Library and Measurement Library

The benchmark library is part of our previous project described in [28]. The
most essential part of this library can be seen in Listing 15. This is the generic
Run method that takes a function to benchmark and an action to print output
from the benchmark. In lines 86 to 88 measurements are started, the benchmark
function is run, and measurements are ended and stored. The measurements are
performed by a measurement library, that is imported. The measurement library
is also part of our earlier work [28]. It provides the actual capability to measure
and store time and RAPL measurements. When a benchmark is completed, the
benchmark library calls a method in line 103 to output its measurements to a
CSV file.

Benchmark Orchestrator

Lastly, to run a series of benchmarks sequentially, we have implemented a bench-
mark orchestrator program. This is a helper program that automates our pro-
cess of running several configurations of the same benchmark. This program
parses a CSV file containing benchmark configurations with associated names.
For each configuration in the configuration file, the runner starts the benchmark
launcher as a process. The benchmark orchestrator awaits the end of the pro-
cess and then it collects the result from the run and appends it to the result
file. This can be seen in Listing 16.

48

5.2. BENCHMARKS

71 //Performns benchmarking
72 //Writes progress to stdout if there is more than one

iteration↪→

73 public void Run<R>(Func<R> benchmark, Action<R>
benchmarkOutput)↪→

74 {
75 //Sets console to write to null
76 System.Console.SetOut(benchmarkOutputStream);
77

78 elapsedTime = 0;
79 _resultBuffer = new List<Measure>();
80 for (int i = 0; i < iterations; i++)
81 {
82 if(iterations != 1)
83 print(System.Console.Write, $"\r{i + 1} of

{iterations}");↪→

84

85 //Actually performing benchmark and resulting IO
86 start();
87 R res = benchmark();
88 end();
89

90 if (benchmarkOutputStream.Equals(stdout))
91 print(System.Console.WriteLine, "");
92 benchmarkOutput(res);
93

94 if (elapsedTime >= maxExecutionTime){
95 print(System.Console.WriteLine, "\nEnding

benchmark due to time constraints");↪→

96 break;
97 }
98 }
99

100 if (iterations != 1)
101 print(System.Console.WriteLine);
102

103 saveResults();
104

105 //Resets console output
106 System.Console.SetOut(stdout);
107 }

Listing 15: The Run method of our benchmark library. This controls the mea-
surements when running the given function. [28]

49

5.3. EXPERIMENT RESULTS

30 // Initialise results file
31 var filePath = "results.csv";
32 var header =

"name;duration(ms);pkg(µj);dram(µj);dram(W);temp(C)"
+ "\n";

↪→

↪→

33 File.WriteAllText(filePath, header);
34

35 foreach(var (name, path, process) in runs)
36 {
37 System.Console.WriteLine($"Running benchmark

{name}");↪→

38

39 var p = Process.Start(process);
40 p.WaitForExit();
41

42 var res = string.Join('\n',
File.ReadAllLines(path + "/tempResults.csv")↪→

43 .Skip(1)
44 .Select(str => name + ";" + str));
45

46 appendResults(name, res, filePath);
47

48 Thread.Sleep(1500); //Sleeping shortly
49 }
50 }

Listing 16: The benchmark orchestrator. This program parses a list of bench-
marks to run and invokes programs to do so. It collects the results and outputs
them to a file.

5.3 Experiment Results

5.3.1 STREAM

By running the STREAM benchmark described in Section 5.2.1, we have ob-
tained the results shown in Table 5.3.1 and Table 5.3.2. Table 5.3.1 shows the
result of the STREAM benchmark when allocating the memory in the hot zone.
We can see that the sustainable memory bandwidth ranges from 17900 to 20800
MiB/s in the different functions tested in the benchmark. Here a higher value
is better, as a higher value means that the memory can transfer more data at a
time.

50

5.3. EXPERIMENT RESULTS

Function Best Rate MiB/s Avg time (s) Min time (s) Max time (s)
Copy 18269.7 0.526 0.525 0.528
Scale 17944.7 0.537 0.535 0.539
Add 20788.6 0.694 0.693 0.695
Triad 19838.3 0.727 0.726 0.729

Table 5.3.1: The results of running the STREAM benchmark with 13.4 GiB
memory allocated in the normal zone.

Function Best Rate MiB/s Avg time (s) Min time (s) Max time (s)
Copy 11487.0 0.836 0.836 0.837
Scale 11417.2 0.841 0.841 0.842
Add 13020.5 1.107 1.106 1.107
Triad 12795.0 1.126 1.125 1.127

Table 5.3.2: The results of running the STREAM benchmark with 13.4 GiB
memory allocated in the cold zone.

The results from running the benchmark with memory allocated in the cold
zone are shown in Table 5.3.2. Here we get a sustainable memory bandwidth
of 11400 to 13000 MiB/s. Thus, the bandwidth in the hot memory is more
than 1.5 times larger than the bandwidth in the cold zone. This performance
matches the memory layout described in Section 5.1.2 if the system uses flex
mode. The hot memory must be allocated on the two interleaved DIMMs and
the cold memory must be allocated on the single DIMM. This should allow the
single DIMM to go into low power states, whenever the cold memory is unused
for an extended period of time.

To verify our hypothesis that the cold memory is slower due to the memory not
interleaving the highest 16 GiB of addresses, we perform the same STREAM
benchmark with another memory layout. This memory layout has the 16 GiB
memory stick in one channel and the two 8 GiB in the other channel. This
layout allows the memory controller to interleave all physical memory across
the two available channels. The results of running STREAM on our modified
kernel can be seen in Table 5.3.3 and Table 5.3.4. As can be seen from the best
transfer rate in the two tables, there are no significant differences between the
normal zone and the cold zone with this memory layout, unlike the results with
the other memory layout.

51

5.3. EXPERIMENT RESULTS

Function Best Rate MiB/s Avg time (s) Min time (s) Max time (s)
Copy 20115.3 0.478 0.477 0.478
Scale 19624.0 0.489 0.489 0.490
Add 22404.8 0.644 0.643 0.645
Triad 21383.4 0.675 0.673 0.675

Table 5.3.3: The results of running the STREAM benchmark with 13.4 GiB
memory allocated in the normal zone with fully interleaved memory.

Function Best Rate MiB/s Avg time (s) Min time (s) Max time (s)
Copy 20120.7 0.477 0.477 0.478
Scale 19641.7 0.489 0.489 0.489
Add 22456.1 0.642 0.641 0.642
Triad 21455.3 0.673 0.671 0.673

Table 5.3.4: The results of running the STREAM benchmark with 13.4 GiB
memory allocated in the cold zone with fully interleaved memory.

Based on the results, we determine that the flex mode interleaving is enabled
on the machine. The memory layout of our test machine is visualised in Fig-
ure 5.3.1.

5.3.2 The EAM

We have multiple tests of the EAM that utilises the hot and cold memory zones
implemented in the kernel. The EAM is tested against the original kernel, where
all memory is allocated in the normal zone with mmap. Additionally, we also
test the overflowing functionality from the hot to the cold zone in the modified
kernel. Here we compile the kernel to have a cold zone, but we allocate all
memory to the hot zone to test if this causes performance issues.

To test the different aspects of the EAM in these three kernel setups, we perform
three different benchmarks. The first benchmark measures the power usage of
the memory of the system at various workloads. Based on the results in [4], we
expect that the kernel that separates hot and cold memory should have a lower
power usage. The second benchmark measures the power usage of memory
scaling with the size of the elements in the database. Here we expect that
the power savings of the kernel that separates hot and cold data are larger
with smaller databases. Lastly, we make a stress test, where we see how fast
and energy efficient each of the kernel setups can execute a large number of
transactions. Our expectations for this test is that the original kernel is faster

52

5.3. EXPERIMENT RESULTS

Figure 5.3.1: Memory layout in experiments. The first 16 GiB of memory is
interleaved across two 8 GiB DIMMs with the remaining 16 GiB DIMM being
non-interleaved.

and uses less CPU power, while the kernel that separates hot and cold data uses
less power in memory. The modified kernel that allows overflowing is expected
to perform similar to the original kernel, though it might have a small overhead.

The first test of the kernels revolves around scaling the workload. We scale the
workload from 30 to 300 kilo transactions per second (ktps), with a benchmark
size of 20 GiB. This is a database size that is large enough to ensure that the
benchmark uses both memory areas. To ensure that each benchmark performs
the same number of transactions, the tests with lower workload must execute
for a longer time. The result of this benchmark is seen in Figure 5.3.2.

The next benchmark revolves around testing the power consumption of the
memory with varying number of elements in the database. The number of ele-
ments is described as the total size of all the elements in the database. We test

53

5.3. EXPERIMENT RESULTS

Figure 5.3.2: DRAM power at different workloads with a 20 GiB database.

50 100 150 200 250 3001

1.1

1.2

1.3

1.4

Workload [ktps]

Po
we

r
[W

]

Original Linux 5.11
Hot/cold data

Overflowing hot zone

from a 8 GiB database to 26 GiB with 2 GiB increments. The benchmark is per-
formed with a workload of 90 ktps, matching the value used in [4]. Figure 5.3.3
shows the results of the benchmark.

Figure 5.3.3: DRAM power at different DB sizes with 90 ktps workload.

10 15 20 251

1.05

1.1

1.15

1.2

DB size [GiB]

Po
we

r
[W

]

DRAM power at different DB sizes

Original Linux 5.11
Hot/cold data

Overflowing hot zone

54

5.3. EXPERIMENT RESULTS

To test both run time and energy efficiency when the database is under high
pressure, we have made a stress test, where the database must handle 200 million
transactions as fast as possible with a 20 GiB database. Table 5.3.5 shows how
long each of the kernels take to handle the transactions, how much energy was
consumed by the CPU and the RAM, and the power consumption of RAM.

name time(s) pkg(J) dram(J) dram(W) temp(C)
Hot/cold data 245.4 5406 463.2 1.887 48.5
Original Kernel 244.6 5583 454.5 1.858 48.5
Overflowing hot zone 245,5 5539 448.7 1.827 46.5

Table 5.3.5: The results of running 200 million transactions on different kernels,
with a 20 GiB database.

The results are different from our expectations for the benchmarks. While
we do see the power consumption scale proportionally with the workload in
Figure 5.3.2, no substantial difference arises between the regular Linux 5.11
kernel and our modified kernel. This is the case both with and without the
ability to overflow hot data into the cold zone. Our expectation of a greater
difference between the regular kernel and our modified one is not met, as the
memory power consumption should remain low in the cold zone due to the
memory of the cold zone entering a low power state. Continuing the same trend
as the first benchmark, the results of the second benchmark, in Figure 5.3.3, do
not yield the results we expect. Once again we see that there is little difference
in the power consumption of the different kernels when we scale the database
size, where we expect the kernel with hot and cold data to use less memory
power than the others. The results from the two graphs can be seen in full
detail in Appendix A on page 79.

Lastly, in the high pressure test seen in Table 5.3.5, the three kernels perform
similarly as well. In this test we expect the original kernel to be slightly faster
than the other two due to overhead introduced in the modifications. The original
kernel is 0.33% faster than the modified kernel with strict separation between
the hot and cold data. The difference in run time between the original kernel
and the modified kernel that allows overflow is 0.37%.

55

Chapter 6

Discussion

To start the discussion, we summarise the direction of the thesis, the changes
we have made to the Linux kernel, and the benchmarks that we have performed.
The thesis revolves around implementing a way to make the memory manage-
ment in the Linux kernel energy efficient. To further define this, we have made
a MoSCoW analysis in Section 3.1 on page 20, where we prioritise different re-
quirements. As we have chosen to improve the kernel by separating hot and cold
data in memory, the "must have" requirement is implementing this functionality
in the x86_64 architecture of the Linux kernel. We discuss our implementation
of the memory management in the kernel in Section 6.1, and the user interface
we have made to support this allocation in Section 6.2.

In the "should have" category, the first requirement is reducing energy usage.
Unfortunately, we do not fulfil this requirement. Section 6.4 contains considera-
tions as to why we do not achieve the results we expected from our benchmarks.
Additionally, Section 6.3 contains considerations as to how we have made our
benchmarks. The other "should have" requirement, of implementing flags to
enable, disable, or change the parameters for the cold zone in the kernel, is
discussed in Section 6.1.5.

The first "could have" requirement is changing the size of cold memory in the ker-
nel during run time. We have not implemented this, as the zones are defined at
compile time in the kernel. The next "could have" requirement is automatically
allocating and moving data between the zones in the kernel. This is not imple-

56

6.1. THE COLD ZONE

mented, although it could reduce energy usage without modifying programs to
take advantage of the modified kernel. Section 7.2 further elaborates on this.
The last "could have" requirement is support for different architectures in the
kernel. We have chosen to only support x86_64. Supporting more architectures
is discussed in Section 6.1.2.

To round off the discussion, we reflect on the relevance and context of the project
in Section 6.5.

6.1 The Cold Zone

We choose to use the zone infrastructure that already exists in the Linux ker-
nel. This allows us to make an arbitrary split in physical memory, separating
regularly allocated memory from cold allocated memory, without adding new
data structures and with minimal changes to the memory allocation algorithm.

6.1.1 Process of Implementing the Cold Zone

Creating and utilising a new zone in the Linux kernel is a simpler process than
expected. Our implementation of the cold zone is described in Section 4.1.1
on page 29. Zones are represented by the zone data structure, and a zone is
created for each value in the zone_type enum. Introducing the cold zone is a
matter of adding it to the enum, assigning it a maximum page frame number,
and limiting the size of the normal zone. To allocate to the zone, a GFP flag
associated with the zone must be added. The code in the kernel related to
allocating memory in a zone works automatically with the new cold zone. To
allocate memory, the kernel uses a macro that iterates from the requested zone
to the lower zones, attempting to allocate in the highest possible zone. Here
the cold zone is automatically included in these iterations, if the request for
memory is a request for cold memory. As with allocations to any zone, we
can fall through to lower zones to complete an allocation meant for the cold
zone. Thus, the kernel will iterate through the normal zone, and lower zones if
necessary, to complete the memory request to the cold zone. Most other code
associated with the cold zone is related to debugging or statistics in the OS.

57

6.1. THE COLD ZONE

6.1.2 Cold Zone in Relation to Other Approaches

As described in Section 3.2 on page 22, there are other possible ways of imple-
menting a separation in memory. One is adding a region data structure under
each zone to split hot and cold memory. Another is allowing each page frame
to determine whether it is hot or cold based on its address. The approach of
introducing regions requires a new data structure to be implemented. In the
case of embedding information on whether a page is hot or cold in page frames,
this can be done by comparing the start address of a page frame to a boundary
address. In both cases the new implementations would require changes to the
memory allocation algorithm. With the region data structure, the kernel has to
manage more than one buddy allocator per zone and choose the buddy alloca-
tor that fits the memory allocation request. For the page frame approach, it is
necessary to retry the memory allocation algorithm until a page matching the
allocation type is found.

An additional zone adds little in terms of run time overhead, as it is only one
extra iteration when iterating through zones during memory allocation. If the
user requests memory in a zone lower than the cold zone, no additional iteration
is run. Adding a layer of regions would result in a similar performance when
allocating memory. This is since each region would require a separate buddy
allocator that can be used to find a specific type of page, just as each zone has
its own buddy allocator. If we were to separate hot and cold memory with the
page frames, it would decrease the performance when allocating memory. For
instance, if there are few hot pages and many cold pages, the system has to
iterate through many cold page frames before finding a usable hot page.

The definition of the cold zone, such as the size of it, is defined when compiling
the kernel. The cold zone can not be enabled or disabled at run time and its size
is not adjustable at run time either. This may discourage users from utilising
it as it cannot change in reaction to the workload on the system. Even with a
constant workload it may be a tedious task to find the best size for the cold zone
as adjustments require recompilation of the kernel. It might be possible to resize
the cold zone, if functionality is added to the kernel that can move memory from
the buddy allocator of one zone to that of another zone. For the approach that
uses regions, that are independent from zones, similar functionality is necessary
to resize regions. However, the page frame approach requires fewer changes to
support this, as changing the boundary address might be sufficient to move the

58

6.1. THE COLD ZONE

split between hot and cold memory. In any case, it is necessary to move the data
that reside in the memory area, which has changed from one type of memory
to another. Moving data, when changing the size of the parts of memory, is an
extensive task.

While the implementation of the cold zone is straightforward, it does contain
a few lines of architecture-specific code. We make our implementation for the
x86_64 architecture. As this architecture supports a certain set of memory
zones, it contains a specific zone_sizes_init function to set the sizes of the
zones. As described in Section 4.1.1 on page 29, we modify this function to
limit the normal zone in size and set a size for the cold zone. To support archi-
tectures such as ARM64 or RISC-V, similar changes should be made to their
implementation. Some architectures do not have a zone_sizes_init function
and therefore further investigation has to be made into how to support the cold
zone for these architectures.

The other approaches might be less architecture specific than the cold zone.
This is due to the other approaches not requiring changes to the zone sizes,
which is the only architecture-specific code we use in the implementation of the
cold zone. Thus, unless the two other approaches have other requirements that
must be set for specific architectures, they are less architecture specific.

Seeing how well our implementation with the zones fit into the kernel code,
the zones seem to be a good way of implementing cold memory. The two
other approaches do have some advantages over the zone approach, such as
easing portability and dynamically resizing the cold memory. However, as these
requirements do not have high priority in this thesis, the simplicity and smaller
overhead from the zones are preferable.

6.1.3 Optionally Overflowing Hot Memory to Cold Zone

Our modification is a big change to how memory is made available to processes
of the system. Regular programs that have not been made to take advantage
of the possibility of allocating in cold memory will, by default, allocate all their
data in hot memory. This has the consequence that if few or no processes utilise
the cold zone, the cold memory will be unused while the hot memory can be filled
to the point where swapping data to secondary storage is necessary. To combat
this scenario we have made the option to enable NON_STRICT_EEM. As described
in Section 4.1.3 on page 32, this setting will attempt to separate memory by

59

6.1. THE COLD ZONE

allocating regular memory requests in hot memory, but it will allocate memory
requests for the normal zone in the cold zone, if the normal zone is under high
memory pressure.

The setting has its pros and cons: It can potentially improve performance over
the regular setting of strictly separating memory. If a machine has 8 GiB of
hot memory and 8 GiB of cold memory and running processes need 12 GiB of
memory, the strict separation can cause the OS to swap a lot of data between
hot memory and disk. This is a disadvantage over simply allocating data in the
cold zone. If, however, the policy is enabled and it allocates hot data in the cold
zone, the memory from the cold zone may be kept hot by the data that was
overflowed to the cold zone. This can negate any possible memory power savings
if the data is hot and its owner process does not deallocate it. Moreover, the
act of allocating hot data in the cold zone is slower than normal. This is due to
the overflowing happening in the slow path of the memory allocation algorithm.
Once allocated, the memory is as fast to access as any other memory, given that
the cold memory is kept in higher power states.

6.1.4 Size of Cold Zone

The split between hot and cold memory can be made at any address with a
granularity of a GiB. This is not necessarily as fine granularity as the user of
the system may want. The split could also be given as a multiple of the size
of a page frame in memory. On x86_64 bit machines, the pages are 4 KiB in
size. Determining the best page frame number for splitting memory would be
a complex task for the user to do, especially given that page frame sizes varies
across architectures. Instead, giving the separation address in GiB is relatable
to the information that can be obtained about the memory layout of a computer.

We do not have a lower limit to the start address of the cold zone. If a user
chooses to set the split at address 0 GiB, the normal zone will not contain any
data. If, however, the DMA32 zone exists, the OS allocations to the normal
zone will fall through to this zone. If only the DMA zone with a maximum size
of 16 MiB, is enabled the system may become unusable as there is not enough
memory to contain user processes or even the Linux kernel. This issue can be
resolved by enforcing a minimum split address or enforcing the NON_STRICT_EEM
memory allocation setting for addresses under a certain boundary. We have not
spent time to solve this issue, though, as we determine that the default split

60

6.1. THE COLD ZONE

at 8 GiB indicates that higher memory addresses should be used. Besides, we
provide some help in the documentation in Kconfig.

6.1.5 User Customisation

The Linux kernel has many options that can be enabled or disabled at compile
time. To maintain this modularity, we have added three compilation options
to control the cold zone in the modified kernel; one to enable the cold zone,
another to allow overflowing to the cold zone under high memory pressure, and
lastly an option to set the address of the boundary that separates hot and cold
memory. Additionally, it is implemented to support the command line tool,
menuconfig, that the Linux kernel is already using, to ensure that it works as
any other compilation option in the kernel.

Allowing users to enable, disable, or modify the kernel is important for the
usability. Though, it is required that the user has knowledge of memory to
navigate the options. The user should have an understanding of what memory
interleaving is and how to disable it or take other measures to allow the kernel
to allocate memory on specific hardware. Also, the user should have an un-
derstanding of the memory space of the machine to set the boundary address
separating hot and cold memory. To help the user navigate this, we added
information to the compile options menu in the kernel.

6.1.6 Linux Community Guidelines

Currently, zones exist in the kernel to ensure compatibility between the physical
memory space and legacy devices that can utilise only a subset of available ad-
dresses [12, pp. 299–301]. An exception does exist in the form of ZONE_MOVABLE.
This zone exists to enable the memory hotplug feature for some memory and
to allow easier migrations of data from the ZONE_MOVABLE zone [6]. The cold
zone does not exist to ensure compatibility with hardware devices, as it spans
over addresses that could already be used in the normal zone on 64 bit systems.
Instead, the cold zone acts to separate physical memory into parts that can be
utilised for different purposes - in this case for cold data. As special case zones,
such as ZONE_MOVABLE are allowed in the Linux kernel, using a zone to manage
cold data is not a problem for merging our changes into the kernel.

Also, in order to be widely accessible, support for more architectures should
be implemented. If more architectures can be supported, showing that the cold

61

6.2. THE SYSTEM CALL

zone is not only a specialised use case for x86_64 machines, our implementation
may stand a better chance of acceptance in the Linux community.

The system call, mmap, is able to take several flags in Linux that are not
specified in any POSIX specification [17]. As there exist several Linux specific
flags, we determine that an additional MAP_COLD flag will not be a problem to
integrate in the kernel.

Adding the user customisation to let the user enable and disable our changes,
is crucial. It is important to the Linux community that the kernel is modular
and it is possible to disable features from the kernel [29].

6.2 The System Call

To interface with the changes we have made in the kernel, we modify the existing
mmap system call. Allocating in the new cold memory zone is done by adding
the cold zone flag to the mmap allocation. An advantage of this solution is that
the kernel does not check for the cold zone bit in the mmap flags, if the cold
zone is disabled. Thus, using mmap with the cold zone is backwards compatible
with the original Linux kernel, allowing programmers to use the programs that
support the cold zone on any kernel.

In Section 3.3 on page 24, different possible interfaces for the modified kernel
are considered. The mmap interface is the simplest of the interfaces, and is
useful as it is possible to implement the remaining interfaces using the modified
mmap system call. The other interfaces, for example malloc, are also relevant
as they are easier to use for programmers, and are further discussed as future
work in Section 7.2.1.

Modifying the mmap system call requires few lines of code. We need to pass
the flag from the mmap flags to the flags in a virtual memory area. One issue
is that currently only bits above the 32nd bit in the bitmask are free. We are,
thus, forced to use a higher bit meaning that the system call does not work on
32-bit architectures. One way of changing this, is to change the type containing
the flag from a long to a "long long" type, such that a minimum of 64-bit is
available.

Once the flag is passed to the virtual memory area, we need to ensure that the
physical memory allocation algorithm uses the flag. To support this, we have

62

6.3. BENCHMARKS

added a check in the memory allocation path to allocate virtual memory areas
that have the cold flag in the cold zone. The simplicity of changing the mmap
system call stems from the design choice of using a zone to represent cold data
in the kernel. With a different approach, such as having hot and cold page
frames or split zones into a hot and a cold region, it would require more changes
to the memory allocation algorithm to support the cold data. The page frame
approach would require a check to see if the page frames found in the memory
allocation algorithm is the same type as the request. Additionally, it needs to
retry if it was the wrong type, potentially attempting to allocate pages many
times before it is successful. Splitting zones into a hot and a cold region requires
a check to determine where in the zone to allocate the data.

6.3 Benchmarks

To test the modified kernel, we use two benchmarks. The first is a benchmark
called STREAM, which we use to test the memory layout of the system. The
other benchmark is the EAM, implemented by us. It is made to match the
benchmark used to test DimmStore in [4].

6.3.1 STREAM

The STREAM benchmark is advantageous for us to use, as it can show the
memory layout of our machine indirectly by measuring the memory bandwidth.
As we do not have the option of disabling memory interleaving in the BIOS,
we rely on the memory layout to single out a DIMM. To allocate the memory
dynamically, the STREAM benchmark has to be changed, as it is allocated
statically as default. To do this, we use the modified mmap system call we have
made. The benchmark is not affected by this, as the memory is allocated before
the benchmark begins measurements.

For the test we used a data size of 13.4 GiB, which is large enough to use most
of the hot or cold memory space without the risk of swapping compromising our
results. In the benchmark, it is important that the data size is large enough that
the tests can be measured accurately by the timer granularity of the computer.
This is fulfilled by the test size we use.

The STREAM benchmark runs 10 iterations of the tests per default. Tables
5.3.2, 5.3.1, 5.3.4, and 5.3.3 all show the smallest and the largest time usage

63

6.3. BENCHMARKS

for these measurements. All of these values are less than 1% different from
the average. Thus, more iterations are not necessary, as the measurements are
precise.

6.3.2 The EAM

The EAM is made to see if we can save power in the memory of the test ma-
chine. The benchmark is an in-memory database that handles read and write
operations on a large amount of data. This is a realistic workload for a server,
as many servers manage data and handle requests. While we strive to follow the
implementation used in DimmStore, there are differences that we will discuss
with their impact on the benchmark.

While we have used the same parameters to control how pages are moved be-
tween the hot and the cold memory area, we have not implemented a mechanism
that automatically moves unused pages to the cold zone. In DimmStore a num-
ber of threads evict cold data every 1 ms, if their system region (corresponding
to our hot memory) is under high memory pressure. We do not move pages to
the cold area until the hot area is full. This slightly increases the latency when
handling a request that requires memory to be moved. This change slightly
skews the results compared to DimmStore, although it does not make a differ-
ence when comparing our own results to each other.

Another significant difference is the hardware used to run the benchmark. Dimm-
Store uses a server with eight DIMMs placed in eight memory channels, where
we use a desktop computer with three DIMMs placed in two channels. Addition-
ally, DimmStore has disabled interleaving, allowing them to use two DIMMs for
the system region, where the remaining six potentially are in low power state.
We only have the possibility of putting one DIMM in a low power state, as the
other two are interleaved. Thus, both the total power consumption of memory
and the potential power savings are larger in DimmStore. However, if the sin-
gle DIMM goes into low power state, we should see a power reduction in the
modified kernel compared to the standard Linux kernel.

The last difference is how the energy measurements are taken during the bench-
mark. We use RAPL to measure the energy usage of the EAM, where Dimm-
Store uses hardware to measure the energy usage of the memory. RAPL has a
good accuracy, meaning that we can reliably compare our own results with each

64

6.4. RESULTS

other [30, 31]. Thus, we can compare the relative power usage in our results to
the relative power usage in DimmStore.

While implementing the EAM, multiple parameters are introduced that influ-
ence the performance. Most of these parameters are set to match those used
in DimmStore to allow comparing our results to theirs. Changing the parame-
ters will likely lead to slightly different results, but we expect the results to be
similar.

Each benchmark is run at least five minutes to reduce the measurement noise,
such as system interrupts. The initialisation and warm-up phases make the
workload more realistic, as a database normally is a long-lived process, where
initialisation is unimportant compared to the performance of activities such as
inserting or reading rows of data.

6.4 Results

By running our benchmarks, we have obtained the results seen in Section 5.3.
First, we interpret the results of the STREAM benchmark, then the results for
the EAM.

6.4.1 STREAM

The goal of the STREAM benchmark is to determine, whether the memory
layout behaves as we expect. The results show that flex mode interleaving is used
on the machine. This is apparent, as the cold zone memory has a significantly
lower bandwidth, at approximately 60% of the hot zone bandwidth, seen in
Tables 5.3.2 and 5.3.1. Additionally, if we change the memory layout, such that
the entire memory space is interleaved, this difference is no longer seen. With
that memory layout, the memory allocated to hot and cold zones have the same
bandwidth, as seen in Tables 5.3.4 and 5.3.3. We account the small differences
in run time between the two to measurement uncertainty. Thus, we conclude
that the memory layout is as we expect, with the hot zone consisting of the
two 8 GiB DIMMs, and the cold zone consisting of the single 16 GiB DIMM.
Additionally, we see that the kernel is capable of separating the physical memory
in hot and cold zones.

65

6.4. RESULTS

6.4.2 The EAM

While we get results that match our expectations in the STREAM benchmark,
the results from the EAM benchmarks are a different story. We expect the
modified kernel to use less memory power at the cost of a small performance
overhead. Figure 5.3.2 and 5.3.3 show that we do not reduce the memory
power consumption when scaling the workload nor when scaling the size of the
workload. In both graphs we see that the results from the three different settings
yield close to the same memory power consumption.

For the workload graph, the memory power consumption of all three kernels rises
proportionally to the workload. The workloads below 120 ktps have almost the
same power consumption for all settings. From 150 ktps we see the different
settings differ slightly from one another. The kernel utilising hot and cold data is
slightly smaller than or equal to the other two settings. Though, the power usage
differences are so small that they might stem from measurement uncertainties.

For the tests with a varying database size there is again, little difference between
the three kernels. The pattern of the power consumption in relation to the
database size is very similar between the kernels, even down to the rise and fall
of the power consumption for every other increase of database size. Only at 14
GiB does the overflowing hot zone distinguish itself by continuing to increase
its power consumption for the second database size increment in a row. It does,
however, fall back into the pattern of the others after the 16 GiB database size.
Thus, the updates to the kernel do not show a general pattern of higher memory
efficiency depending on the database size, in the EAM benchmark.

This is in stark contrast to the results from DimmStore [4], where they save
up to 50% memory power on the smallest database. Thus, either the kernel
modifications, the EAM, or the hardware setup behaves drastically different
in our benchmark than it does in DimmStore. The first possibility is that
our implementations in the kernel do not act as we intended. However, as
the STREAM benchmark confirms the modified kernel’s control of the physical
memory, it is not the kernel that causes our results to be different from the
results of DimmStore.

The second difference is the EAM implementation. Specifically, the way of
evicting data from the hot to the cold zone. In DimmStore, multiple threads
run an algorithm that checks the LRU lists of data in their system region. If the

66

6.4. RESULTS

memory pressure in the system region exceeds a limit, then the thread will evict
64 KiB of data from the LRU list to the cold region of memory. The threads
do this while the database remains available for requests. In our EAM, we evict
data to the cold area if there is no room to allocate memory in the hot area. This
is a blocking operation, potentially raising the latency for requests. While the
EAM has this performance bottleneck, caused by its single-threaded nature, the
memory power consumption should not be affected greatly by whether a worker
thread evicts data to the cold memory or if the main thread does so. In general,
our implementation is not equivalent to DimmStore as it is completely different
code bases. However, we have made the EAM following the basic principles
of DimmStore, and we use similar parameters for data management. Thus,
we determine that the differences between the EAM and DimmStore are not
significant enough to be the cause of the substantial difference in power savings
between them.

The last difference is the hardware used for the benchmark. DimmStore is run
on a server, where our benchmark is run on a desktop computer. Therefore,
there might be a difference in the memory controller, which is the hardware
that controls when memory goes into low power states. In our benchmark it
seems from the power usage that the single 16 GiB DIMM is not put into low
power state, whenever the system only uses the two 8 GiB DIMMs. This might
be due to the strategy the memory controller uses to put DIMMs into low power
states.

While we do not get the power reduction we had hoped for, the performance
overhead of separating the data is smaller than expected. In DimmStore they
have a performance overhead of 2%. Our benchmark has an overhead of 0.33%
when separating the hot and cold data in the performance benchmark. Ad-
ditionally, if the kernel is misused by only allocating to the hot zone, we can
limit the performance overhead to 0.37%, if the overflow option is enabled in the
kernel. Our overhead is significantly lower than expected, to the point of barely
affecting the run time in our performance run. The overhead might increase
once the memory hardware correctly enters low power states more of the time
to save memory power consumption.

67

6.5. RELEVANCE

6.5 Relevance

The aim of this project is to allow programmers to save power in memory by
modifying the OS kernel to manage memory energy efficiently. The potential
power savings are high on systems with large amounts of memory, as described
in [4] and [15].

In the benchmarks we have run on the desktop machine, we do not see the
same results as are achieved in [4], even though we are following their test
setup. The most significant difference is the hardware we use to run the tests,
where they use a server machine. It seems that the server machine has a better
control over memory interleaving and the power states in the DIMMs than the
desktop computer. Thus, using our modified kernel is mostly relevant in a
server context. As servers consume a lot of energy globally in data centres [2],
it is highly relevant to make server-specific improvements to the Linux kernel
to achieve power savings.

When developing means to save power on a server, Linux is a good choice to
work with, as Linux is the most used OS kernel on servers [5]. Additionally, as
x86 based processors continue to be popular in data centres [20], the focus on
the x86_64 architecture is relevant.

68

Chapter 7

Conclusion and Future
Work

7.1 Conclusion

The goal of this thesis is to research how the Linux kernel can be extended to
support more energy efficient memory management. The main contribution is
that we have modified the Linux kernel to allow the memory hardware more
time in the power saving state. To do this, the memory is separated into two
parts. The two parts are hot and cold memory, where hot memory consists
of data that is accessed frequently, and cold memory consists of data that is
infrequently accessed. Given that the hardware of the machine supports it,
the DIMMs that contain cold data can enter low power states more often and,
thereby, decrease the power consumption of memory.

Our main change to the kernel is the introduction of the cold zone. The cold
zone takes up some of the memory that is normally reserved for the normal zone
on a x86_64 architecture machine. The zone integrates well with the existing
infrastructure for physical memory allocation in the kernel such that normal
memory allocations are separated from the cold memory. No functionality in
the memory system, such as swapping to the disk during high memory pressure,
has been altered or removed. For processes that allocate cold memory, it is

69

7.1. CONCLUSION

transparent whether the memory request actually ends up being allocated in
hot or cold memory.

We provide the system user with several options to adjust how our modified
kernel behaves in terms of memory separation. These options can be adjusted
when compiling the kernel. The user can even fully exclude our modifications,
when compiling the Linux kernel, if the user so wishes.

To take advantage of the memory separation in the kernel, we make it possible
to request memory allocations in cold memory via an additional flag that is to
be passed to the mmap system call. The addition is backwards compatible, such
that the usage of the flag on kernels without hot and cold memory separation
has no effect and, thus, works as regular memory requests.

We test the modified kernel to ensure that hot memory and cold memory corre-
spond to separate DIMMs in memory hardware. This ensures that the two types
of memory in the kernel are completely separated in the hardware, allowing the
memory hardware with cold data more time in low power states. To perform
this test, we use the benchmarking tool STREAM, modified to utilise memory
allocated with our mmap system call. We obtain results that show that we are
able to affect memory interleaving in the way we expect by the placement of
the memory DIMMs. We also see that we are able to allocate data in different
parts of physical memory as intended, with our kernel modifications.

Additionally, a proof of concept in-memory database, that separates hot and
cold data with our updated mmap system call, is implemented. This is to test
how the power usage and the run time performance are affected in the modified
kernel. In these tests, we do not observe any reduction in the memory power
usage. We attribute this to the memory power management strategy of the
memory controller in our test machine. In a machine that allows memory to
enter low power states when unused, the energy consumption of main memory
can be reduced with our modified kernel. The tests also reveal that the run
time overhead of managing the memory separation is 0.3% − 0.4%, which is
significantly smaller than the 2% that we have seen in the existing literature.
While the run time is excellent, the overhead might increase when the memory
has to transition more between the power states.

70

7.2. FUTURE WORK

7.2 Future Work

In this thesis, we have laid the foundation to support energy efficient memory
with the Linux kernel. This section suggests multiple areas to expand on this,
such as making the modified kernel more user friendly, optimising performance,
and investigate more use cases.

7.2.1 Other Interfaces

As mentioned in Section 3.3 on page 24, there are multiple options for creating
interfaces to ease the interaction between the programmer and the memory man-
agement required to save power. We have implemented the mmap system call,
which is one of the lowest level ways of managing memory in a program. Thus,
to make the modified kernel more user friendly to the programmers developing
programs to run on it, other interfaces are relevant.

Malloc

Malloc is easier to use than mmap for memory allocation, as it keeps track of
the size of the different allocations, such that the programmer just needs to use
the free function to deallocate. Malloc also has some strategies to reduce the
cost of allocating memory. First of all, Malloc uses both the mmap and sbrk
system calls. The sbrk system call is good to allocate a small amount of data, in
extension of your current data, where mmap is better when allocating larger or
separate data areas. Secondly, Malloc sometimes allocates more memory than
needed or waits with releasing the freed memory to the kernel. This allows
Malloc to handle small memory allocation requests, without having to perform
a context switch to the OS with a system call.

Runtime Environments

To completely remove the memory allocation and management from the user,
a runtime environment interface to the modified kernel can be made. One ex-
ample of this is to modify the .NET core JIT-compiler, such that the memory
management of the generational garbage collector is performed in an efficient
way. Modifying a runtime environment to work with the modified kernel, al-
lows all programs developed for that platform to save memory. Furthermore,
programs would not even have to be ported to be used energy efficiently with
this approach, as they merely must be run in a different runtime environment.

71

7.2. FUTURE WORK

Automatic Management of Hot and Cold Data in the Kernel

The last approach to ease the memory management for programmers is to built
the memory management of hot and cold data directly into the kernel. This
way, it is not necessary to change anything about the programs running on the
system.

To allow the kernel to automatically divide the memory into hot and cold, we
need to know which data is used frequently and which is used infrequently.
Fortunately, the kernel is already keeping track of which memory pages are
used infrequently, as these can be swapped to disk under high memory pressure.
While this seems promising, the issue with the LRU list of the kernel is that
the list contains pages from all zones. This is an issue, as pages from, for
instance, the DMA zone should not be moved to the cold zone. In general,
it is important to be careful when moving memory around, as not all pieces
of memory are allowed to be moved. Additionally, all of the memory, that is
already in the cold zone, will most likely be a part of the LRU list, as this should
be some of the least accessed data. Thus, the LRU list will most likely be filled
with data that is not possible to evict to the cold zone, meaning that using it
for this purpose, while a seemingly good idea, most likely will not work, as it
covers all zones. An alternative to this is to implement a LRU list for each zone,
which can be used to evict data from a given zone, if this is allowed for the zone.

Now that we have discussed how to evict hot data to the cold zone, we also
need to be able to move back data from the cold zone to the hot zone, if it
becomes more frequently accessed. This is difficult, as the kernel does not keep
track of how many times a page of memory is accessed. Our initial idea is to
use a TLB miss on the page, to move the page back to the hot area with some
probability. However, this is not possible in the x86 architecture, as TLB misses
are hardware managed [32, 33]. Thus, it is necessary to find some other strategy
for moving hot pages away from the cold zone.

While solving the problems of moving data to and from the cold zone, it is also
important to consider how often the kernel moves data, as moving the data
too much will create a large overhead. It is important that the overhead from
moving data around is minimal and any increase of CPU energy consumption
should be met with a bigger decrease in memory energy consumption. Thus,
while this is a clever solution that requires very little of the programmers, it

72

7.2. FUTURE WORK

is difficult to make a good implementation in the Linux kernel to manage the
memory in a way that allows the hardware to save energy.

7.2.2 NUMA

Early in the project, we choose to delimit the project from the NUMA architec-
ture, which is mostly used on servers. Thus, making the modified kernel capable
of saving power in memory on the NUMA architecture is another option to ex-
pand on this project.

NUMA is an architecture, where the computer has multiple CPUs that access
different parts of memory at different speeds. Thus, the goal with NUMA is to
make the CPUs mostly access the memory that are close to them, rather than
the memory that is far away [12, pp. 297–298]. This is managed in the kernel by
dividing the memory into nodes. Each node has a zone structure, the same way
as a non-NUMA system. In fact, when disabling NUMA, the Linux kernel views
the system the same way as a NUMA system that only has one node. Thus,
since we have implemented an extra zone, supporting NUMA requires that we
add this zone to each node. This way, each node has hot and cold memory to
store hot and cold data.

7.2.3 Dynamic Settings

Currently the size of the cold zone and the policy of allowing memory overflows
to the cold zone are set at compile time. Work could be done to allow these
parameters to be set when booting the kernel via kernel boot parameters. This
would allow the user to e.g. set the size of the cold zone when rebooting their
machine rather than having to recompile the kernel for each change. Some
modifications would be needed to the zone_sizes_init function, as it currently
uses constants to determine the maximum sizes for the normal zone. Likewise,
a kernel parameter could be used to determine whether memory should be
allowed to overflow to the cold zone. This would require a run time check
for the parameter instead of currently only including the code, depending on
the parameters set at compile time. We determine that an extra if-check is
insignificant, as this code is run in the slow path of the memory allocation
algorithm. Changing the option of overflowing to the cold zone can even be
set when the system is running, as it only requires changing a variable. This

73

7.2. FUTURE WORK

is significantly harder for regulating the cold zone size, as it would require the
system to redistribute the memory space between the zones.

7.2.4 Portability

While the x86 architecture is the dominating architecture in the world of servers
[20] it may not stay that way for ever. To accommodate changes in the server
market, more architectures could be supported, as the absence of the possibility
to save power in memory, which may act as an additional obstacle in transitions
to different server architectures. For architectures with a zone structure, as
x86_64, this should be similar changes to those of this thesis. Though, archi-
tectures with different memory representations than zones might require more
comprehensive changes.

74

Bibliography

[1] Rui Pereira et al. “Energy Efficiency across Programming Languages”. In:
(2017). doi: 10.1145/3136014.3136031. url: https://doi.org/10.
1145/3136014.3136031.

[2] George Kamiya. Data Centres and Data Transmission Networks. 2020.
url: https : / / www . iea . org / reports / data - centres - and - data -
transmission-networks (visited on 25/03/2021).

[3] Raja Appuswamy, Matthaios Olma and Anastasia Ailamaki. “Scaling the
memory power wall with dram-aware data management”. In: Proceedings
of the 11th International Workshop on Data Management on New Hard-
ware. 2015, pp. 1–9.

[4] Alexey Karyakin and Kenneth Salem. “DimmStore: Memory Power Op-
timization for Database Systems”. In: Proc. VLDB Endow. 12.11 (July
2019), pp. 1499–1512. issn: 2150-8097. doi: 10.14778/3342263.33422629.
url: https://doi.org/10.14778/3342263.33422629.

[5] Steven J. Vaughan-Nichols. Can the Internet exist without Linux? Oct.
2015. url: https://www.zdnet.com/article/can- the- internet-
exist-without-linux/ (visited on 31/05/2021).

[6] Linus Torvalds. Linux 5.11. 2021. url: https://github.com/torvalds/
linux/releases/tag/v5.11 (visited on 05/03/2021).

[7] Alan Mycroft. Programming Language Design and Analysis motivated by
Hardware Evolution. Aug. 2007. url: https://www.cl.cam.ac.uk/
~am21/papers/sas07slides.pdf (visited on 25/03/2021).

[8] Ulrich Drepper. “What Every Programmer Should Know About Memory”.
In: 2007.

75

https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://doi.org/10.14778/3342263.33422629
https://doi.org/10.14778/3342263.33422629
https://www.zdnet.com/article/can-the-internet-exist-without-linux/
https://www.zdnet.com/article/can-the-internet-exist-without-linux/
https://github.com/torvalds/linux/releases/tag/v5.11
https://github.com/torvalds/linux/releases/tag/v5.11
https://www.cl.cam.ac.uk/~am21/papers/sas07slides.pdf
https://www.cl.cam.ac.uk/~am21/papers/sas07slides.pdf

BIBLIOGRAPHY

[9] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Sys-
tems: Three Easy Pieces. 0.80. Arpaci-Dusseau Books, 2014.

[10] Jean-Pierre Lozi et al. “The Linux Scheduler: A Decade of Wasted Cores”.
In: Proceedings of the Eleventh European Conference on Computer Sys-
tems. EuroSys ’16. London, United Kingdom: Association for Computing
Machinery, 2016. isbn: 9781450342407. url: https://doi.org/10.1145/
2901318.2901326.

[11] Adrien Mahieux. Memory Management: From Silicon to Algorithm. 2018.
url: https://www.slideshare.net/Saruspete/memory-management-
112860641 (visited on 25/03/2021).

[12] Daniel P. Bovet and Marco Cesati.Understanding the Linux Kernel. 3rd ed.
O’Reilly Media, Inc., 2006. isbn: 0596005652.

[13] Jonathan Corbet. Memory power management. 2011. url: https://lwn.
net/Articles/446493/ (visited on 26/03/2021).

[14] Bruce Jacob, Spencer W. Ng and David T. Wang. Memory Systems:
Cache, DRAM, Disk. 1st ed. Denise E.M. Penrose, 2008. isbn: 9780123797513.

[15] Mark Gottscho. “ViPZonE: Exploiting DRAM Power Variability for En-
ergy Savings in Linux x86-64”. In: (Mar. 2014). doi: 10.13140/2.1.
4932.3204.

[16] John D. McCalpin. “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers”. In: IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter (Dec. 1995),
pp. 19–25.

[17] Michael Kerrisk. mmap(2) — Linux manual page. Mar. 2021. url: https:
//man7.org/linux/man-pages/man2/mmap.2.html (visited on 09/04/2021).

[18] Jonathan Corbet. Memory compaction. Jan. 2010. url: https://lwn.
net/Articles/368869/ (visited on 23/04/2021).

[19] Dai Clegg and Richard Barker. Case Method Fast-Track: A Rad Approach.
1st ed. Addison-Wesley, 1994. isbn: 9780201624328.

[20] Timothy Prickett Morgan. x86 Servers Dominate The Datacenter - For
Now. June 2015. url: https : / / www . nextplatform . com / 2015 / 06 /
04/x86- servers- dominate- the- datacenter- for- now/ (visited on
12/04/2021).

76

https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/2901318.2901326
https://www.slideshare.net/Saruspete/memory-management-112860641
https://www.slideshare.net/Saruspete/memory-management-112860641
https://lwn.net/Articles/446493/
https://lwn.net/Articles/446493/
https://doi.org/10.13140/2.1.4932.3204
https://doi.org/10.13140/2.1.4932.3204
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://lwn.net/Articles/368869/
https://lwn.net/Articles/368869/
https://www.nextplatform.com/2015/06/04/x86-servers-dominate-the-datacenter-for-now/
https://www.nextplatform.com/2015/06/04/x86-servers-dominate-the-datacenter-for-now/

BIBLIOGRAPHY

[21] Matthew Flatt. Dynamic memory allocation. Oct. 2018. url: https://
my.eng.utah.edu/~cs4400/malloc.pdf (visited on 23/04/2021).

[22] Microsoft. Fundamentals of garbage collection. Nov. 2019. url: https://
docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
fundamentals (visited on 23/04/2021).

[23] Ubuntu. ReleaseNotes. Feb. 2021. url: https : / / wiki . ubuntu . com /
FocalFossa/ReleaseNotes (visited on 24/05/2021).

[24] Tom Bauer. Dual channel mode for DDR, DDR2, DDR3 and DDR4. 2019.
url: https://www.compuram.de/blog/en/single-dual-and-multi-
channel-memory-modes/ (visited on 07/06/2021).

[25] Brian F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”.
In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC
’10. Indianapolis, Indiana, USA: Association for Computing Machinery,
2010, pp. 143–154. isbn: 9781450300360. doi: 10.1145/1807128.1807152.

[26] Kenneth J. Christensen. Zipfian. Nov. 2003. url: https://www.csee.
usf.edu/~kchriste/tools/genzipf.c (visited on 20/05/2021).

[27] Masoud Kazemi. How to generate Zipf distributed numbers efficiently?
Jan. 2018. url: https://stackoverflow.com/questions/9983239/
how-to-generate-zipf-distributed-numbers-efficiently (visited
on 20/05/2021).

[28] Casper Susgaard Nielsen et al. “The Influence of Programming Paradigms
on Energy Consumption”. In: (2021). url: https://projekter.aau.
dk/projekter/da/studentthesis/the-influence-of-programming-
paradigms - on - energy - consumption(145e96f3 - b48b - 443b - 9b74 -
39c7e4aa9a85).html.

[29] kernel.org. Working with the kernel development community. url: https:
//www.kernel.org/doc/html/v4.14/process/index.html (visited on
07/06/2021).

[30] Kashif Nizam Khan et al. “RAPL in Action: Experiences in Using RAPL
for Power Measurements”. In: ACM Trans. Model. Perform. Eval. Com-
put. Syst. 3.2 (Mar. 2018). issn: 2376-3639. doi: 10.1145/3177754. url:
https://doi.org/10.1145/3177754.

[31] T. Ilsche et al. “Power measurements for compute nodes: Improving sampling
rates, granularity and accuracy”. In: 2015 Sixth International Green and
Sustainable Computing Conference (IGSC). 2015, pp. 1–8.

77

https://my.eng.utah.edu/~cs4400/malloc.pdf
https://my.eng.utah.edu/~cs4400/malloc.pdf
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes
https://www.compuram.de/blog/en/single-dual-and-multi-channel-memory-modes/
https://www.compuram.de/blog/en/single-dual-and-multi-channel-memory-modes/
https://doi.org/10.1145/1807128.1807152
https://www.csee.usf.edu/~kchriste/tools/genzipf.c
https://www.csee.usf.edu/~kchriste/tools/genzipf.c
https://stackoverflow.com/questions/9983239/how-to-generate-zipf-distributed-numbers-efficiently
https://stackoverflow.com/questions/9983239/how-to-generate-zipf-distributed-numbers-efficiently
https://projekter.aau.dk/projekter/da/studentthesis/the-influence-of-programming-paradigms-on-energy-consumption(145e96f3-b48b-443b-9b74-39c7e4aa9a85).html
https://projekter.aau.dk/projekter/da/studentthesis/the-influence-of-programming-paradigms-on-energy-consumption(145e96f3-b48b-443b-9b74-39c7e4aa9a85).html
https://projekter.aau.dk/projekter/da/studentthesis/the-influence-of-programming-paradigms-on-energy-consumption(145e96f3-b48b-443b-9b74-39c7e4aa9a85).html
https://projekter.aau.dk/projekter/da/studentthesis/the-influence-of-programming-paradigms-on-energy-consumption(145e96f3-b48b-443b-9b74-39c7e4aa9a85).html
https://www.kernel.org/doc/html/v4.14/process/index.html
https://www.kernel.org/doc/html/v4.14/process/index.html
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754

BIBLIOGRAPHY

[32] Benedict Brown et al. Computer Organization and Design. 2020. url:
https://www.seas.upenn.edu/~cis371/current/slides/12_virtual_
memory.pdf (visited on 02/06/2021).

[33] Adarsh Patil. “TLB and Pagewalk Performance in Multicore Architectures
with Large Die-Stacked DRAM Cache”. In: CoRR abs/2002.01073 (2020).
arXiv: 2002.01073. url: https://arxiv.org/abs/2002.01073.

78

https://www.seas.upenn.edu/~cis371/current/slides/12_virtual_memory.pdf
https://www.seas.upenn.edu/~cis371/current/slides/12_virtual_memory.pdf
https://arxiv.org/abs/2002.01073
https://arxiv.org/abs/2002.01073

Appendix

A Complete Results

name duration(s) pkg(j) dram(j) dram(W) temp(C)
030 ktps 3000.0 37353 3107 1.034 36.0
060 ktps 1500.0 20698 1596 1.064 38
090 ktps 1000.0 15134 1097 1.097 37.5
120 ktps 750.0 11599 846.3 1.128 42.5
150 ktps 600.0 9681 697.6 1.163 43.5
180 ktps 500.0 8383 598.0 1.196 40.5
210 ktps 427.9 7389 520.3 1.216 41
240 ktps 374.9 6471 464.5 1.239 42
270 ktps 332.9 5969 425.9 1.279 42.5
300 ktps 300.0 5394 395.7 1.319 41.5
08 GiB 300.0 4376 325.7 1.086 38.5
10 GiB 300.0 4584 323.6 1.079 39
12 GiB 300.0 4537 326.3 1.088 39
14 GiB 300.0 4247 325.4 1.085 38.5
16 GiB 300.0 4532 330.6 1.102 40.5
18 GiB 300.0 4489 334.9 1.089 40.0
20 GiB 300.0 4517 329.5 1.098 38.5
22 GiB 300.0 4487 327.7 1.092 38
24 GiB 300.0 4331 330.4 1.101 40
26 GiB 300.0 4612 328.1 1.094 40

Table A.1: The raw results from the tests with the original kernel

79

name duration(ms) pkg(µj) dram(µj) dram(W) temp(C)
030 ktps 3000.0 37350 3102 1.034 37.5
060 ktps 1500.0 20870 1594 1.063 39
090 ktps 1000.0 14780 1094 1.094 40
120 ktps 750.0 11650 847.4 1.130 40.5
150 ktps 600.0 9447 691.7 1.153 40
180 ktps 500.0 8186 590.8 1.182 42
210 ktps 427.9 7178 518.7 1.212 42
240 ktps 374.9 6098 465.5 1.241 42
270 ktps 332.9 5919 425.1 1.277 43
300 ktps 300.0 5323 393.0 1.310 42.5
08 GiB 300.0 4412 326.7 1.089 40.5
10 GiB 300.0 4350 324.5 1.082 40
12 GiB 300.0 4477 327.0 1.090 40
14 GiB 300.0 4424 325.4 1.085 43
16 GiB 300.0 4506 329.5 1.098 40
18 GiB 300.0 4432 325.5 1.085 41
20 GiB 300.0 4429 328.8 1.096 40.5
22 GiB 300.0 4443 327.6 1.092 42
24 GiB 300.0 4481 331.9 1.106 42.5
26 GiB 300.0 4538 328.4 1.095 40.5

Table A.2: The raw results from the tests with the hot/cold kernel

name duration(s) pkg(j) dram(j) dram(W) temp(C)
030 ktps 3000 36511 3099 1.033 38
060 ktps 1500 20501 1592 1.062 38.5
090 ktps 1000 14805 1094 1.094 42.5
120 ktps 750.0 11580 843.7 1.125 40
150 ktps 599.9 9331 695.9 1.160 44.5
180 ktps 500.0 7976 594.9 1.190 43
210 ktps 427.9 6997 523.4 1.223 41
240 ktps 374.9 6124 469.0 1.251 42.5
270 ktps 332.9 5745 425.5 1.278 41
300 ktps 300.0 5150 395.5 1.318 42
08 GiB 300.0 4171 326.2 1.087 41
10 GiB 300.0 4324 324.1 1.080 41
12 GiB 300.0 4228 325.9 1.086 40.5
14 GiB 300.0 4242 327.3 1.091 40
16 GiB 300.0 4456 329.8 1.099 40.5
18 GiB 300.0 4420 326.4 1.088 41.5
20 GiB 300.0 4463 327.8 1.093 39
22 GiB 300.0 4441 327.1 1.090 39
24 GiB 300.0 4487 330.3 1.101 39
26 GiB 300.0 4475 328.4 1.095 39

Table A.3: The raw results from the tests with the non-strict kernel that allows
overflow of data from hot memory to cold memory

	Introduction
	Background
	Introduction to Computers and Operating Systems
	Memory Hardware
	Memory Management in Linux
	Related Work

	Design
	Requirements
	Memory Separation Approach
	Utilisation of Memory Separation

	Implementation
	The Cold Zone
	Supporting Cold Memory Allocation with mmap
	Summary

	Experiments
	Test Setup
	Benchmarks
	Experiment Results

	Discussion
	The Cold Zone
	The System Call
	Benchmarks
	Results
	Relevance

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Complete Results

