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Summary

In recent years the energy consumption of software and information and com-
munications technologies (ICT) systems have become an ever increasing envi-
ronmental and societal concern. It has been reported that the total energy con-
sumption of data centres in 2018 amounted to approximately 200 TWh which
corresponds to 1% of the world’s total energy consumption [1]. Furthermore,
this represents a 6% increase compared with 2010 [1]. However, software devel-
opers often neglect the issue of considering the energy consumption impact of
their software [2].

We thus decide to create an IDE extension for Visual Studio Code to aid devel-
opers in reasoning about the energy consumption of their programs. We provide
different types of energy consumption estimates to the user, being through static
analysis and by dynamically executing the code and measuring the energy using
RAPL. The static techniques consists of using machine learning and creating
an energy model.

We create a prototype of the extension and implement the extension accord-
ingly. The extension is implemented as a Visual Studio Code WebView that
conforms to the general design of Visual Studio Code. From the user inter-
face we allow the user to choose for which programs or methods they want
energy consumption estimates. They can also chose how they want to obtain
the measurements, be it statically using the energy model or machine learning
or dynamically using RAPL. For the extension to get the energy estimates we
create a microservice architecture where we include microservices for each es-
timation approach. We also create a microservice for our interpreter. In this
way, the extension can communicate with the microservices using HTTP calls as



needed, and the microservices for the estimation approaches can communication
with the interpreter microservice as needed.

For the energy model and the machine learning we explore different software
abstractions to use as a basis for the estimations, being C# source code, CIL
code, and machine code. We decide to use CIL code as this provides a restricted
set of instructions while being machine independent. Then, to count CIL in-
structions, we create an interpreter for CIL code to count all CIL instructions
in a program along with the number of times each CIL instruction are per-
formed. For the machine learning models we investigate five different regression
techniques to predict the energy consumption of programs. We decide to em-
ploy an experimental approach to determine which of these techniques performs
best on the problem of this project. The machine learning models are trained
on a set of 147 programs. For the per-instruction energy modelling approach,
we used runtime code generation in C#, using the System.Reflection.Emit
library, to emit individual instructions and thus measure their energy consump-
tion. As instructions must be emitted to a method, we use the approach of
creating DynamicMethods, which are also part of the System.Reflection.Emit
library. We create DynamicMethods for each CIL instruction. Then the energy
consumption of the methods were measured, and any dependencies subtracted.
The measurements were then used for the implementation of the energy model
estimation. Lastly, the dynamic estimation approach was created based on the
measurement framework made in our previous work [3].

Based on the implemented estimation approaches, we determine the error of each
static approach, where the dynamic estimates are used as the ground truth. This
is because this approach measures the energy consumption of each benchmark
program and provides statistically significant results. We calculate the error of a
benchmark as the percentage from the ground truth. Based on these results, the
non-linear machine learning estimates have a lower percentage deviation from
the ground truth than the energy model and all of the linear machine learning
models. Furthermore, the energy model has a lower percentage deviation from
the ground truth than the linear models, except for lasso regression. The es-
timation approach with the least error is the random forest machine learning
model, with a minimum of -7.49% and a maximum of 9.19%. The median of
random forest is 1.06%, which indicates a slight over estimation of the energy
consumption.
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Preface
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In this report we create an IDE extension for Visual Studio Code that helps
developers in reasoning about the energy consumption of their code. We create
three approaches for estimating the energy consumption, being statically using
machine learning or an energy model and dynamically using RAPL. We compare
the accuracy of each approach to determine which performs the best. The raw
data of the results is seen in the documents and files attached to this project.

Aalborg University, February 1st, 2021
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Chapter 1

Introduction

In recent years the energy consumption of software and information and com-
munications technologies (ICT) systems have become an ever increasing envi-
ronmental and societal concern. Thus, measures for reducing the energy con-
sumption of software systems have been the source of much research in computer
science. It has been reported that the total energy consumption of data cen-
tres in 2018 amounted to approximately 200 TWh which corresponds to 1% of
the world’s total energy consumption [1]. Furthermore, this represents a 6%
increase compared with 2010 [1]. In addition to servers being responsible for a
large portion of the world’s total energy consumption, the energy consumption
of personal computing and computer networks is also significant [4]. Besides,
the energy consumption of software systems being an environmental concern, it
is also a societal problem. This is because, companies want to reduce electric-
ity expenses, and consumers want their battery-powered devices to last longer.
This is especially relevant since it has been projected that there will be a large
increase in the number of IOT devices in the next couple of years [5].

It is estimated that there are approximately 19 million software developers in
the world in 2019 [6]. However, software developers often neglect the issue of
considering the energy consumption impact of their software [2]. This neglect
can be contributed to a lack of knowledge and tools for reasoning about energy
consumption. Furthermore, performance requirements have often substituted
energy consumption as the general consensus is that a faster programs uses
less energy. This holds true in some cases, but in other cases a faster program
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1.1. PROBLEM STATEMENT

can end up using more energy that a slower counterpart. Based on this, it is
essential to develop methods with which developers can reason about the energy
consumption of their software with ease.

1.1 Problem Statement

This sections presents the problem statement of this project and the motivation
for solving said problem. The problem statement of this project is as follows:

How can an IDE extension be made to aid developers in reasoning
about the energy consumption of their software

The problem statement is motivated by the lack of knowledge and tools sur-
rounding the energy consumption of software. This is seen in both [2] and [7],
where a set of software practitioners share their perspective on green software.
From this, it is clear that we need tools to reason about the energy consumption
of the software that are being developed.

The purpose of this report is to provide an answer to the problem given in
the problem statement. To do this we develop an IDE extension for Visual
Studio Code that allows developers to estimate the energy consumption of entire
programs or individual methods in their code. First, we present work related
to our problem in Section 1.2 where we elaborate on research related to energy
measurement tools and energy estimation techniques. In Chapter 2 on page 5
we first create the high-level design of our IDE extension and the approaches we
include for measuring the energy consumption. This is followed by a more in-
depth view of the extension as well as the energy measurement approaches. After
the design, we present the implementation based on the design in Chapter 3 on
page 27. Followed by this, we create experiments to determine the accuracy
of the implemented approaches, and we present the results in Chapter 4 on
page 55. Lastly, we discuss the results in Chapter 5 on page 70. and conclude
on the report in Chapter 6 on page 77.

1.2 Related Work

In this section we discuss research related to the work of this thesis. We examine
what other tools exist to aid software developers in recognising the energy im-
plications of their code, and thus encouraging the development of more energy

2



1.2. RELATED WORK

efficient code. We also examine different strategies to measure and estimate the
energy consumption of software programs.

1.2.1 Tools

Several related research papers revolve around the creation of tools to aid de-
velopers in reasoning about the energy consumption of their software. In [8] the
authors create a function-level profiling tool that measure the energy consump-
tion of code. This tool performs its program analysis at runtime and identify
functions based on the trace of energy usage and the timestamps of programs
execution events. Furthermore, in [9] the authors create a plugin for the Eclipse
IDE that estimates the energy consumption at the code level, being both pro-
gram, function, and line level. It does so by combining program analysis and
per-instruction energy modelling. Another tool is developed in [10] that is capa-
ble of detecting and refactoring energy inefficient code in Android applications.

1.2.2 Estimation Techniques

Research papers have also investigated various techniques for estimating the
energy consumption of software. First, [11] describes RAPL (Running aver-
age power limit), which is an on-chip power meter tool included on processors
from Intel. RAPL provides the exact energy consumption of the power domains
Powerplane 0 (PP0), Powerplane 1 (PP1), DRAM, and Package (PKG) with
a temporal resolution of 1 ms. Other techniques involve estimating the energy
consumption using machine learning, which is the approach seen in [12], where
the prediction is based on software performance features such as cache hits and
misses, context switches, and clock cycles. The machine learning model is thus
independent of the programming language and it has an error rate of 6.8 %.
Furthermore, several papers, including [13–15] estimates the energy consump-
tion by creating an energy model based on the instructions. In [13] the authors
create a probabilistic energy distributions of instructions and propose a model
for composing instruction sequences using distributions, enabling worst case
energy-consumption analysis on program basic blocks. They account for data-
dependent instructions by providing random values to the instructions when
measuring the energy consumption. In [14] the total energy consumption of a
program is computed as

∑
i(BiṄi) +

∑
i,j(Oi,jṄi,j) +

∑
k Ek, where Bi is the

base cost of an instruction, weighted by the number of times, Ni, it is executed.
Oi,j is the overhead of executing instruction i followed by instruction j, weighted

3



1.2. RELATED WORK

by the number of times, Ni,j , that sequence is executed. Lastly, Ek denote other
inter-instruction effects such as stalls and cache misses. The last paper on en-
ergy modelling is [15], where an energy consumption model is created for an
embedded Java virtual machine (JVM). They determine the constant overhead
of the JVM and compute the energy cost of each Java Opcode by comparing
the instructions and energy of small programs.

1.2.3 Preliminary Research about Energy Consumption

This report builds on research we have conducted during the making of the
report The Influence of Programming Paradigms on Energy Consumption [3].
In this project we sought to provide an answer to the problem statement

How does the execution time and energy consumption compare, for
programs written in different paradigms using the same

multi-paradigm language?

To do this, we compiled an elaborate benchmark suite of problems written in
the style of the procedural, object-oriented, and functional programming para-
digm with all benchmarks implemented in C# as well as F#. We then created
a benchmarking library for all the benchmarks to implement and to measure
the consumed energy and running time of each benchmark, we implemented a
library that uses the RAPL interface. The results of the project showed that
the benchmarks written in the style of the procedural paradigm generally con-
sumes the least energy while the functional paradigm performed worst overall.
Throughout the current work we reference the above mentioned report when
reusing elements already created such as the libraries or the general approach
to measuring energy.
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Chapter 2

Design

This chapter contains the design of the IDE extension we create. This includes
a high-level design, provided in Section 2.1, where we give an overview of the
initial considerations concerning the IDE extension. Then, in Section 2.2 on
page 8 and Section 2.3 on page 22 we detail the two approaches, being static
and dynamic estimation respectively, that we implement in the IDE extension.
Lastly, in Section 2.4 on page 24 we design the functionality and user interface
of the IDE extension.

2.1 High Level Design

This section serves to provide a high-level design and overview of the IDE ex-
tension that we create in this project. As stated in the problem statement
(Section 1.1 on page 2), the goal of this project is to create an IDE extension
that aids developers in recognising the energy implications of their software.
To reason about the energy consumption of software we create and distinguish
between two terms that collectively describes the what and how to perform
measurements. The two terms are:

• Measurement Approach

• Energy Estimation Approach

The measurement approach describes the granularity of what to measure. This
determines the amount of code to be measured, be it the entire program, in-
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2.1. HIGH LEVEL DESIGN

dividual functions, or lines of code. The energy estimation approach is the
method used to obtain the energy consumption at the level of the measurement
approach. This is the how to measure. In the following subsections we elaborate
on the two considerations.

2.1.1 Measurement Approach

The first of the two categories is the measurement approach. This section in-
troduces the granularity with which measurements can be performed. These
include measuring at program, function, and line level.

Program level measurement, means that we estimate the energy consumption of
the entire program, thus the granularity is coarse. It is not possible to determine
where the energy is being used, however one can determine if one program
is more energy efficient than another. With function level measurements we
measure the energy consumption of individual functions within a program. This
enables the developers to use the results to discover where the energy is being
used, and compare functions relative to each other. However, several issues arise
such as how to handle functions that are dependent on some input or functions
that are either recursive or call other functions. Lastly, if measuring on line level,
estimates are provided per line. This is the approach with the finest granularity
and allows developers to reason about individual lines of code.

2.1.2 Energy Estimation Approach

The energy estimation approach denotes how the energy consumption of the
software is estimated or measured. Generally, this can be done in one of two
ways, being statically or dynamically.

If the energy consumption is to be estimated statically, then the related work
have shown two approaches being either program analysis using an energy model
or by creating a machine learning model based on properties of the code. To
perform program analysis using an energy model each low-level or intermediate
level instruction is mapped to their corresponding energy consumption. Then
the total energy consumption is estimated based on the energy of each measured
instruction. If, instead, a machine learning approach is chosen, features of the
code that can be used to predict the energy consumption need to be identified.
In [12] they use software performance features such as cache hits and misses
and branch prediction success. However, other features can be used to predict

6



2.1. HIGH LEVEL DESIGN

the energy consumption as well. This can for example be based on the actual
code at some level of abstraction. Both of these static approaches depend on
knowledge of the energy consumption of each instruction, however as the energy
per instruction is dependent on the processor on which it is measured ([16]),
the static approaches are biased towards the processor on which the energy is
measured.

If the energy consumption is measured dynamically a power meter can be used.
Power meters can either be on-chip, such as Intel’s RAPL, as described in [17],
or external such as the Watts Up Pro, which is used in [10], [18], and [19]. On-
chip power meters generally have higher spatial and temporal resolution than
external power meters. This means, on-chip power meters can perform mea-
surements on individual hardware components, such as the entire processor or
the DRAM. However, external power meters work independently of the hard-
ware and operating system. This is in contrast to Intel’s RAPL, which is only
available on Intel processors and the power measurements can only be accessed
using the Linux operating system [17]. When measuring the energy consump-
tion dynamically the code has to be run several times to obtain statistically
significant results. Our preliminary research found in [3] describes both power
meters and an approach for obtaining statistically significant results in more
detail.

The two approaches, being static and dynamic estimation, complement each
other in static being fast, but imprecise and dynamic being slow but precise. It
is faster to obtain static estimates as the code does not need to be executed,
whereas to obtain dynamic measurements the code must be executed a specified
number of times for the measurements to be statistically significant. However,
to obtain static estimates some precomputation is required, for example training
a machine learning model or computing an energy model.

2.1.3 Summary

Based on the high-level discussion of the approaches from the previous sections,
we include a static as well as a dynamic approach to energy estimation in the
IDE extension. These two approaches are useful in different situations. The
static approach being fast, but imprecise means that developers can get a quick
overview of the energy consumption of the code. While the dynamic approach
is slow, it presents more accurate readings of the energy consumption. The

7



2.2. STATIC ESTIMATION

static analysis is achieved through the creation of an energy model as well as
using machine learning. Furthermore, for the measurement approach we include
program and function level measurements; thus excluding line level. We deem,
that developers benefit the most from program and function level measurements
as this allows them to reason about larger pieces of code relative to each other.
Furthermore, when estimating the energy consumption, it is difficult to deter-
mine what constitutes a line. For example, considering a loop, should the energy
be measured only for the lines of the loop body or should the line containing
the loop condition also be measured? Also, in the C# language an entire pro-
gram could be placed in one line, thus we deem the term line too vague for our
project.

2.2 Static Estimation

As described in Section 2.1 on page 5 we consider two approaches to energy
estimation through static analysis, one based on machine learning and another
based on an energy model. However for both approaches we must first determine
at what level of software abstraction the static analysis is performed. The
following sections first discuss the different levels of software abstractions for
static analysis and then elaborate on the two approaches for static estimation.

2.2.1 Levels of Software Abstractions for Static Analysis

To perform static analysis of an application, it is important to determine what
level of software abstraction to perform the analysis on. For C#, there are
several levels of abstractions which are viable for analysis. When executing a
C# program, it is first compiled into an intermediate representation called the
Common Intermediate Language (CIL), which is part of the Common Language
Infrastructure (CLI). The CIL code is then managed by the Common Language
Runtime (CLR). The CLR contains a Just-in-time (JIT) compiler to convert
the CIL code into machine code. The machine code is then executed on the
machine. An overview of this approach can be seen on Figure 2.2.1 on the
following page. The approach leads to three scenarios where static analysis can
be performed to estimate the energy consumption of a given program.

The first approach is to do the analysis of the C# code. An advantage of
performing the analysis at this stage, is that no further actions have to be done
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2.2. STATIC ESTIMATION

Figure 2.2.1: Overview of the Common Language Infrastructure - Deviousasti
at Wikipedia

to the code to start the analysis. A disadvantage at this stage, is that C#
is a high-level language with a plethora of ways to perform the same actions.
Furthermore, it is possible to condense a lot of information into every single line
of code. This is especially problematic with programming patterns such as fluid
interfaces utilised by among other, the LINQ library. This fact is illustrated in
the code in Listing 1, where one line of C# code performs all of the necessary
actions to compute the sum of all even input values squared.

1 using System.Linq;
2 using System.Collections.Generic;
3

4 public int getSumOfEvenSquares(List<int> ints)
5 {
6 return ints.Where(x => x % 2 == 0).Select(y => y * y).Sum();
7 }

Listing 1: An example of a single line return using LINQ

9



2.2. STATIC ESTIMATION

The second approach is to analyse the CIL code produced by compiling the
C# code. The advantages of analysing at this step is that CIL is machine
independent, like the C# code, while also being language independent. This
means that other languages can be compiled to CIL and the analysis of the
code would still work. Notable languages for the CLI are: C#, F#, and Visual
Basic. The CIL stage also provides a reduced set of instructions compared to
C# code, namely only 226. One disadvantage of performing the analysis at this
stage, is that the code might not be executed exactly as written, because the
JIT compiler optimises code in many ways [20].

The last approach is to do the analysis of the resulting machine code. The
advantage of this approach is that the code is language independent, though
there are several disadvantages to this approach. For one, the code has to be
executed to know the exact machine code, which is produced by the JIT com-
piler. Second, is that the JIT compiler can generate different machine code for
the same CIL code based on optimisations [20]. Third, is the fact that machine
code is machine dependent. There are two factors to consider when working
with machine code. The first is that the operating system can have specific
APIs which are called during the program execution. If these APIs are not
present on another operating system, then the execution will fail. The second
factor is the influence of the CPU. Different CPU can run different instruction
set architectures (ISA), which determine the set of instructions available when
the code is executed on the hardware. It can therefore be much more difficult
to analyse at this level.

We thus decide to perform the static analysis at the CIL instruction stage,
as it provides the benefits of being both machine independent and language
independent, while having a reduced instruction set to analyse.

2.2.2 Common Intermediate Language

As mentioned above CIL is a machine independent intermediate language. Specif-
ically, it is a stack-based intermediate representation for the languages supported
by the .NET platform. It is composed of a smaller set of instructions compared
to the source languages, which also makes it more suitable for analysis. There
are two categories of instructions in the CIL instruction set: Base instruc-
tions and Object model instructions. The former contains all of the instructions
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2.2. STATIC ESTIMATION

necessary for basic flow control and the basic type system, while the latter is
concerned with object manipulation, which also includes custom user types.

With regard to determining the number of CIL instructions for a given CIL
document, the most powerful category of instructions is the branch instructions,
since they can alter the control flow either forwards or backwards in the code.

Branching in CIL exists in three different forms: Unconditional, Conditional,
and Compound-Conditional. Unconditional branch instructions contain all of
the instructions which always alters the control flow by selecting the next in-
struction to be executed. These instructions include:

1. br (Branch)

2. br.s (Branch short-form)

3. ret (Return)

4. call (Calls method)

5. callvirt (Call method associated with an object)

Conditional branch instructions include all of the branch instructions which
have two modes of operation based on a certain condition. The first mode is to
continue the sequential flow of execution. This happens if the condition is false.
The second mode is to alter the control flow by branching to another instruction
either backwards or forwards in the code. A subset of these instructions is seen
below:

1. beq (Branch if equal)

2. blt (Branch if less than)

3. brfalse (Branch if value is 0)

4. brzero (Alias for brfalse)

5. brtrue (Branch if value is non-zero)

Lastly, compound-conditional branch instructions only contain a single instruc-
tion. The switch instruction is used to create a set of targets for branching
based on some condition, called a jump table. The jump table can be used by
indexing, using the result from the condition.

Many high-level constructs are implemented with a combination of the presented
branch instructions. As an example, loops are generally created from a single
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1 IL_0000: ldc.i4.0
2 IL_0001: stloc.0
3 IL_0002: ldc.i4.s 100
4 IL_0003: stloc.1
5 IL_0004: br.s IL_0008
6 IL_0005: ldloc.0
7 IL_0006: ldc.i4.1
8 IL_0007: add
9 IL_0008: stloc.0

10 IL_0009: ldloc.0
11 IL_000a: ldloc.1
12 IL_000b: clt
13 IL_000c: brtrue.s IL_0005
14 IL_000d: ldloc.0
15 IL_000e: ret

Listing 2: A simple loop represented in CIL code

unconditional branch. This branch changes the flow directly to the condition
controlling a conditional branch instruction, jumping back to the start of the
loop if the condition is true. Such a loop can be seen in Listing 2, where IL_0004
is an unconditional branch starting the loop and IL_000c is the conditional
branch either looping back for another iteration or ending the loop.

2.2.3 Approaches for counting CIL instructions

To count CIL instructions, we consider two different approaches. In the following
section, the two approaches we refer to as Naive Counting and Counting by
Interpretation.

Naive counting is a naive approach to determine the number of CIL instruc-
tions. It works by reading all the lines of a CIL file, and counting the number of
times each CIL instruction is encountered. It has the advantage of being quick,
as it only needs a single pass of the code to perform the analysis. However, it
does have its disadvantages. It does not account for any rules imposed by the
different CIL instructions, such as branching paths in the code or looping struc-
tures. As such the naive counting approach is highly inaccurate in cases where
such structures are prevalent. As an example, the code in Listing 2 contains
a single ’add’ instruction in line IL_0007, however, because the main body of
the code is a looping structure, it should be counted 100 times. Therefore for
this simple example, there is a difference of two orders of magnitude between
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expected and actual numbers. It also does not account for the CIL instructions
executed during methods calls, and as such it is only suitable for program level
evaluations.

The second approach, Counting by Interpretation, works by attempting to sim-
ulate the CIL code, as if it were being executed. Thus, this approach interprets
the code. In this approach all classes are identified and for each class their
respective methods. The interpretation then starts in a specified entry method.
Each CIL instruction is then simulated using a stack and heap. This approach
is highly accurate, because of how close it is to actual execution. As such, loops
are iterated, as many times as stated. Branching paths are determined and only
the affected CIL instructions are stored in the resulting counter. A disadvantage
of this approach is the speed of analysis, because the program is essentially exe-
cuted line by line. Furthermore, when interpreting the code in this way, another
disadvantage concerns inputs to the program as well as to methods. For the
interpreter to accurately count the CIL instructions, it must know the values of
inputs.

We consider the naive counting approach to be too inaccurate, as there are
many programming constructs that it does not account for. Thus, we disregard
this naive approach and implement the interpretation approach to count CIL
instructions.

2.2.4 Static Estimation Using Machine Learning

One of the approaches that we use for static estimation is using machine learn-
ing. A similar approach is proposed in [12], however whereas their machine
learning model is based on software performance features, our model predict
the energy consumption based on the CIL instructions of a program. The de-
sign of such a machine learning model consists of several considerations. First,
we must determine which machine learning algorithm to employ and which ap-
proach to use for evaluating the performance of the trained model. Lastly, we
must consider how to create the data set for the model.

First, we consider what machine learning algorithm to employ. Machine learn-
ing is generally divided into supervised, unsupervised, semi-supervised, and re-
inforcement learning [21]. Supervised learning describes problems that involve
using a model to learn a mapping between input examples and a target variable,
while unsupervised learning describes problems that use a model to describe or
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extract relationships in data. Semi-supervised learning is an approach that com-
bines both supervised and unsupervised learning. Lastly, reinforcement learning
solves a problems where decision making is sequential, and the goal is long-term,
such as game playing or robotics. For this project the learning is supervised,
as we are interested in mapping the number of occurrences of each CIL in-
struction to the energy consumption of a program. Within the category of
supervised learning we distinguish between regression and classification prob-
lems. Classification involves predicting a categorical variables and regression
involves predicting a continuous variable. As we are interested in predicting the
energy consumption, being a continuous value, we design the machine learning
approach to utilise a regression type machine learning algorithm. Regression
algorithms can be categorised into being either linear or non-linear. Both types
are described in the following sections to outline the advantages and disadvan-
tages of each.

Linear Regression

The simple linear regression algorithm models the relationship between two
continuous variables, one being the response variable and the other being the
explanatory variable. With linear regression we assume a linear relationship
between the response and explanatory variable. When several explanatory vari-
ables are used to predict the outcome of a response variable, this is denoted
as multiple linear regression. For this project, the energy consumption of a
program, or part of a program, is the response variable, while the number of
occurrences of each CIL instruction denotes the explanatory variables. This
means, we have 226 explanatory variables, as there are 226 different CIL in-
structions. For simple linear regression, a linear regression line has an equation
of the form seen in Equation (2.1) [22].

Y = a+ bX, (2.1)

where X is the explanatory variable and Y is the response variable. The slope
of the line is b, and a is the intercept. Equation (2.2) shows multiple linear
regression.

Y = a+ b1X1 + ...+ bnXn, (2.2)
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where Y is the response variable, a is the y-intercept, b1 is the regression coeffi-
cient for the first explanatory variable (X1), and bn is the regression coefficient
of the last explanatory variable (Xn).

To obtain predictions from linear regression the values of the regression coef-
ficients must be learned. This is done by fitting the data to a regression line.
The most common method for fitting a regression line is the method of Ordinary
Least Squares [22]. This method computes the best-fitting line for a set of data
by minimising the sum of the squares of the vertical deviations from each data
point to the line. Ordinary Least Squares is given in Equation (2.3)

M∑
i=1

(y1 − ŷi)2 =
M∑

i=1

(
y1 −

p∑
j=0

bj ∗ xij

)2
, (2.3)

where M is the number of instances in the data set, and p is the number of
explanatory variables. Thereby, yi is the response variable of the i’th instance
in the data set. Similarly, bj is the regression coefficient of the j’th explanatory
variable, and xij is the j’th explanatory variable of the i’th instance in the
data set. A common pitfall of fitting a model is that of overfitting, meaning
the model does not generalise well beyond the data it has already seen. One
way to combat overfitting is adding a regularisation term to the ordinary least
squares equation. This approach is implemented in Ridge Regression and Lasso
Regression [21]. For ridge regression the regularisation denotes a penalty, which
restricts the size of the coefficients to avoiding overfitting. This amounts to
the ordinary least squares with the addition of an L2 penalty term, as seen in
Equation (2.4) [23].

M∑
i=1

(y1 − ŷi)2 =
M∑

i=1

(
y1 −

p∑
j=0

bj ∗ xij

)2
+ λ

p∑
j=0

b2
j , (2.4)

where λ is the penalty term, which regularises the coefficients such that if the
coefficients take large values the optimisation function is penalised. For Lasso
regression the regularisation denotes a penalty, that reduces explanatory vari-
ables that has a coefficient of zero, meaning some variables are neglected for the
evaluation of the output. This is the L1 regularisation term, and the equation
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is seen in Equation (2.5) [23].

M∑
i=1

(y1 − ŷi)2 =
M∑

i=1

(
y1 −

p∑
j=0

bj ∗ xij

)2
+ λ

p∑
j=0
|bj |, (2.5)

Non-Linear Regression

Contrary to linear regression, with non-linear regression we do not assume a
linear relationship between the response and the explanatory variables. Ap-
proaches to non-linear regression include Random Forests and Support Vector
Regression.

Random Forest Regression operates by constructing a plethora of decision trees
when training and outputting the mean prediction of all trees [21]. Random
Forest Regression is thus an ensemble learning technique as it combines the pre-
dictions from multiple machine learning algorithms, in this case decision trees.
Random Forest Regression uses a technique known as bootstrap aggregation or
bagging [21]. This means, each decision tree is trained on a different sample of
data where sampling is done with replacement. By using bagging the correla-
tion between the decision trees is decreased, making Random Forest Regression
resilient to overfitting.

Support Vector Regression is an extension to the well-known Support Vector
Machines that allows for modelling regression tasks. Support Vector Regression
is similar to Linear Regression in that it tries to fit a line, or in this case a curve,
to the data. In Linear Regression the objective is to minimise the sum of squared
errors, however with Support Vector Regression we can define how much error
is acceptable in our model and then find an appropriate line or curve to fit the
data. More specifically, instead of minimising the squared error we minimise
the L2-norm of the regression coefficients, as seen in Equation (2.6) [24]

MIN
1
2 ||b||

2, where |yi − bxi| ≤ ε, (2.6)

where xi is the vector of explanatory variables with response variable yi. Like-
wise b is the vector of regression coefficients. In the constraint we see the
absolute error is less than or equal to a specified margin, ε, called the maximum
error. ε is a hyperparameter and can be tuned to gain the desired accuracy of
the model. In Support Vector Regression a kernel determines which kind of
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line or curve to fit the data to. Examples of kernels are linear, polynomial, and
radial basic function (RBF). This also means, that based on the kernel, Support
Vector Regression is useful for linear as well as non-linear regression tasks.

Choice and Evaluation of Models

For this project we employ an experimental approach, where we fit regressors of
each of the types just described. This is to determine which algorithm suits this
project best. This means, we fit five different regressors to the data set being

• Linear Regression

• Ridge Regression

• Lasso Regression

• Random Forest Regression

• Support Vector Regression

We then compare the models to determine which performs best on our problem
and data. To evaluate the models we consider their performance on unseen
data. This can be done in one of two ways, the first being that the data set
is divided into a training and a test set. With this split, the model is fit on
the training set and evaluated on the test set. The other approach is called
K-Fold Cross Validation, with this approach the data set is divided into K folds
where each fold is used as the testing set eventually. The algorithm runs in K
iterations, where in the first iteration, the first fold is the testing set and the
remaining K − 1 folds are the training set. This is repeated for each fold. Then
the final evaluation of the model is the mean of each iteration. K-Fold cross
validation thus maximises the use of the available data for training and then
testing a model. It is particularly useful for assessing model performance, as it
averages a range of accuracy scores across different data sets.

Data Set Creation

For this approach the data set consists of C# programs described by the num-
ber of occurrences of each CIL instruction of each program and the program’s
corresponding energy consumption. It is essential to construct a large data set
such that the programs collectively covers all CIL instructions. To obtain such a
large data set we look for repositories of C# programs online, examples of such
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repositories are the Rosetta Code1 repository, the Computer Language Bench-
marks Game2, and the benchmark suite created in our preliminary work [3].
When scraping the repositories we exclude programs that take input, either in
the form of command line arguments or user input when the program is running.
This is because the energy consumption of the program can be dependent on
the input.

2.2.5 Static Estimation Using an Energy Model

The other approach for static estimation of a program’s or function’s energy
consumption is by creating an energy model. This involves modelling the en-
ergy per instruction for each instruction of some low-level or intermediate-level
representation of the code. In our case, we consider C#’s intermediate repre-
sentation, being CIL code.

In [15] the authors propose a general framework for estimating the energy con-
sumption of an embedded Java Virtual Machine (JVM). To do this, they perform
experiments to estimate the constant overhead of the JVM energy consumption
and they establish an energy consumption cost for individual Java Opcodes.
This is comparable to, what we strive to achieve as the Java Virtual Machine
is comparable to the .NET Common Language Runtime, and Java Opcodes are
comparable to the CIL instructions. In Java as well as in C# a strict class
file structure needs to be respected, it is therefore not possible to only execute
one Java opcode or CIL instruction. Thus, to estimate the JVM overhead the
authors create an empty Java application and measure the energy of executing
this. The empty application is seen on Listing 3 on the following page. Then to
estimate the energy consumption of each instruction they perform a cost com-
parison of Java files, for example to obtain the cost of loading an integer (iload),
the energy consumption of the application seen on Listing 4 on the next page
is compared to the empty application (Listing 3 on the following page) and the
difference is the cost of the iload instruction. In this way, the authors are able
to estimate the energy consumption of each Java Opcode.

The approach described above can however be simplified using the concept of
runtime code generation, which is possible in Java as well as in C# [25]. C#
natively supports runtime code generation through the classes in the System.-

1https://www.rosettacode.org/wiki/Rosetta_Code
2https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
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1 public class HelloWord {
2 public static void main(String arg[])
3 {
4 //nothing to do
5 }
6 }

Listing 3: Empty Java application to measure the constant overhead

1 public class HelloWord {
2 public static void main(String arg[])
3 {
4 int i;
5 }
6 }

Listing 4: Java application that loads an integer

Reflection.Emit namespace. The System.Reflection.Emit namespace classes
can be used to emit CIL code dynamically such that the generated code can be
executed directly.

In C# the ILGenerator is used to generate method bodies in dynamic as-
semblies and for standalone dynamic methods [26]. An ILGenerator can be
obtained in two ways; either by dynamically creating an assembly, module, type,
and method and then instantiating the ILGenerator using MethodBuilder.Get-
ILGenerator. The other way is by creating the ILGenerator from a Dynamic-
Method. Here, instead of creating an assembly, module, type, and method, only
a DynamicMethod is instantiated. A DynamicMethod represents a method that
can be compiled, executed, and discarded on runtime [27].

The first approach is seen in Listing 5 on the next page, which is based on [25].
In this approach the System.Reflection.Emit namespace classes are used to
first create an assembly (Line 11-13), then in that assembly create a module
(Line 14), then a type is created in Line 15, and in that type a method is
created (Line 16). Then in Line 18 the ILGenerator is instantiated on the
method and we can emit CIL code to that generator. Lastly, in Lines 22-23
the type is actually created and the method is invoked. The other approach
to invoking a method of generated CIL code is seen on Listing 6 on page 21.
Here, a DynamicMethod is created in Line 12, and from this the ILGenerator
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is obtained in Line 13. The CIL Code is emitted to the ILGenerator on Lines
14-15, and the DynamicMethod is invoked on Line 16.

1 using System;
2 using System.Runtime;
3 using System.Reflection;
4 using System.Reflection.Emit;
5

6 public class Program
7 {
8 static void Main(string[] args)
9 {

10 var appDomain = AppDomain.CurrentDomain;
11 var assemblyName= new AssemblyName();
12 assemblyName.Name = "TestAsm";
13 var assemblyBuilder =

appDomain.DefineDynamicAssembly(assemblyName,
AssemblyBuilderAccess.Save);

↪→

↪→

14 var moduleBuilder =
assemblyBuilder.DefineDynamicModule("TestModule");↪→

15 var typeBuilder = mb.DefineType("TestType",
TypeAttributes.Public);↪→

16 var methodBuilder =
typeBuilder.DefineMethod("TestMethod",
MethodAttributes.Public | MethodAttributes.Static,
null, null);

↪→

↪→

↪→

17

18 var ilg = metb.GetILGenerator();
19 ilg.EmitWriteLine("Hello World");
20 ilg.Emit(OpCodes.Ret);
21

22 var ty = typeBuilder.CreateType();
23 ty.GetMethod("TestMethod").Invoke(null, new object[] {});
24 }
25 }

Listing 5: Creating a method based on an assembly, module, and type
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1 using System;
2 using System.Runtime;
3 using System.Reflection;
4 using System.Reflection.Emit;
5

6 namespace test
7 {
8 class Program
9 {

10 static void Main(string[] args)
11 {
12 var dynamicMethod = new DynamicMethod("TestMethod",

typeof(void), Type.EmptyTypes);↪→

13 var ilg = dynamicMethod.GetILGenerator();
14 ilg.EmitWriteLine("Hello World");
15 ilg.Emit(OpCodes.Ret);
16 dynamicMethod.Invoke(null, Type.EmptyTypes)
17 }
18 }
19 }

Listing 6: Creating a method using the dynamic approach

For this project the approach to estimating the energy consumption of individual
CIL instruction based on the System.Reflection.Emit namespace classes and
the DynamicMethod is used. The methodology of performing cost comparisons,
as proposed in [15] is also highly applicable in this case. Applications similar
to Listing 3 on page 19 and Listing 4 on page 19 can be created by emitting
the corresponding CIL instructions and the energy for each instruction is then
computed by comparing the energy consumption of the applications.

Some instructions are data dependent, meaning they require data either in the
form of arguments or on the stack. An example of such instructions are the
load instruction which requires an argument with a value to load and the MUL
instruction which requires two stack values to multiply. These instructions can
have different energy consumption based on the values [13]. To accurately mea-
sure the energy consumption of data dependent instructions, the instruction
should be provided the range of all values in its state space. However, this
is practically infeasible as an instruction’s state space might be infinite. In-
stead, for data dependent instructions, where data is provided in the form om
arguments, we provide data dependent instructions with a number of random
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values from the instruction’s state space and use these values to approximate
the average energy consumption of an instruction [28].

2.3 Dynamic Estimation

In this section we decide on an approach for estimating the energy consumption
of software dynamically. In Section 1.2 on page 2, we found that to perform
dynamic measurements either an internal power meter, such as RAPL, or an
external one, such as the WattsUP Pro, can be used. For this project using an
external power meter is practically infeasible. This is because we create an IDE
extension for developers to use, we thus cannot assume the developer to have an
external device connected nor can we control such an external device remotely.
Thus, we decide to implement our dynamic measuring approach using the in-
ternal power meter, RAPL. In this section we first elaborate on the capabilities,
pros, and cons of RAPL, after which we elaborate on how we can tailor the use
of RAPL to the needs of our IDE extension.

2.3.1 Measuring Framework using RAPL

Intel introduced the on-chip power meter Running Average Power Limit (RAPL)
in their CPU architecture since the introduction of the Sandy Bridge line of
processors. Furthermore, RAPL allows for a high temporal resolution of a mil-
lisecond, and a spatial resolution of a set of power planes including the power
consumption of the entire CPU or DRAM [17]. A more detailed description of
RAPL is found in our preliminary research [3] and in [17].

One approach for estimating the energy consumption of a software system is to
collect readings from RAPL while executing the entire program. This has the
advantages of being very accurate as the reading reflect the energy consumption
of the CPU or DRAM and are measured directly on the CPU. Disadvantages
for this approach is the noise from the rest of the system. As RAPL not only
measures the energy consumption of the running program, but also from the
rest of the system. Therefore, background tasks and the operating system itself
are also reflected in the readings. Furthermore, at the time of writing, the
RAPL readings are only available on the Linux operating system. Another
disadvantage for this approach is that the entire program is tested at once.
This could make it more difficult to compare different algorithms or measure
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a subset of code. Furthermore, if the code that is to be measured depends on
other parts of the program, then both parts are measured at the same time,
which can make it difficult to determine where the energy consumption lies.

In Section 2.1 on page 5 we decide that energy consumption measurements must
be available for entire programs as well as individual methods. Thus, we must
implement some functionality to account for this. To do this, we build upon the
measuring framework of our preliminary research, found in [3]. In our prelimi-
nary work, we create a framework that provides statistically significant energy
consumption measurements of code. This framework uses RAPL for measur-
ing and the results are statistically significant as Cochran’s formula is used to
compute the number of executions of the code to perform. Our framework can
obtain measurements for all power planes of the CPU, however for this project
we only consider the package power, as this is where most energy is spent. Our
extension to this framework consists in creating custom attributes that let the
developer annotate their code with what code to measure the energy. The de-
sign of this framework draws inspiration from unit-testing frameworks. Thus,
developers will create a new class annotated with a custom attribute letting
the framework know, this class is relevant. Within the class methods can be
created within which the developers can instantiate and execute relevant classes
and methods of their code, for which their energy consumption will be measured.
These measurement methods will be annotated with custom attributes as well,
telling the framework to perform measurements on the code within. Similar to
unit-testing frameworks, we also allow for set-up and tear-down methods where
the code from these is executed before and after the execution of the measure-
ment methods respectively. A proposed design of this is seen on Listing 7 on
the next page

This method has the advantages of only measuring a subset of the code, and
input can be ignored from the measurements, by residing within the constructor
or a setup class. However, since this method also relies on RAPL, the disad-
vantages regarding RAPL still persists, such as handling noise and it only be
available on Linux systems with an Intel CPU.
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1 namespace MeasureTesting
2 {
3 [MeasureClass]
4 public class MeasurementClass
5 {
6 [MeasureSetup]
7 public void Setup()
8 {
9 /* Setup for the measure methods */

10 }
11

12 [Measure]
13 public void MeasureMethod()
14 {
15 /* Any functionality to be measured */
16 }
17 }
18 }

Listing 7: An example of a measure framework based on a standard unit testing
framework

2.4 Extension

This section covers the design of the IDE extension for Visual Studio Code.
First, an introduction to extensions in Visual Studio Code is covered, followed
by the initial design of the user interface (UI) of the extension.

2.4.1 IDE introduction

IDE extensions serve to provide new features for an existing IDE. An extension
can provide support for developing programs in a new language, or adding
snippets to ease the load for the developer.

The goal for this project is to aid developers in reasoning about the energy
consumption of their code. For this we create an IDE extension for Visual
Studio Code. Extensions can contribute to Visual Studio Code in multiple
ways, including: [29]

• Change the look of VS Code with a colour or file icon theme

• Add custom components & views in the UI

• Create a Webview to display a custom webpage built with HTML/CSS/JS
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Figure 2.4.1: Architecture of Visual Studio code [29]

• Support a new programming language - Language Extensions Overview

• Support debugging a specific runtime

Section 2.2 on page 8 and Section 2.3 on page 22 described different approaches
for estimating the energy consumption of a program. Since the estimation
techniques have different shortcomings and advantages, the different approaches
are collected into a single extension, which gives the user a selection of options
to chose from. For the user to get dynamic estimates they must be using a Linux
machine where RAPL can be accessed (see Section 2.3 on page 22, however the
static measurements are available for all users.

2.4.2 Design of User Interface

In Visual Studio Code, there exists different view groups that an extension can
influence, see Figure 2.4.1. The activity bar (1) provides a menu for extensions
which uses the sidebar, where the sidebar (2) functions as the view of the exten-
sion. Therefore, we design an extension which provides an icon for the activity
bar, along with a view for the side bar.

The user interface (UI) of the extension for the sidebar panel needs to contain a
way of choosing which estimation approach to use, be it static or dynamic, along
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Figure 2.4.2: An initial design
for the User Interface for the ex-
tension

Figure 2.4.3: An initial design
for the User Interface for the ex-
tension while estimating

with a way of describing which code to estimate. Furthermore, the extension
should report the result of the estimation to the user. This can be done in
several ways: by saving the result to a file, showing the result directly in the
extension, open a new window with the results, or possibly annotate the code
directly with the estimation results.

Based on the above requirements for the UI, an initial design is created which is
seen on Figure 2.4.2. The initial design contains a drop-down menu for selecting
the estimation approach. Below this, another drop-down menu shows each
method in the currently open program. This drop-down allows the user to
choose individual methods to perform estimations on. They can also choose
to measure on the entire program. Finally, below this an estimate button is
present, which starts the estimation approach for the selected method. While
the estimation is running, a different UI is shown. This is seen in Figure 2.4.3
where the button has changed colour, and the progress of the running methods
is shown below.

As for the results from the estimation, we choose to save the results to a file
on the host system, as well as to show them directly on the extension when the
estimation is done.
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Chapter 3

Implementation

In this section the implementation of the estimation techniques and the IDE
extension is elaborated on. First, in Section 3.1 we outline the general archi-
tecture of our implementation. Then in Section 3.2 on page 30 we elaborate of
the implementation of our static estimation techniques and in Section 3.3 on
page 46 we detail the dynamic measurement approach.

3.1 Architecture

The IDE extension consists of a frontend for the user to interact with, and a
backend consisting of microservices that compute the energy estimations using
the various techniques described in Chapter 2 on page 5. A figure of the general
architecture is seen on Figure 3.1.1 on the following page

The frontend is implemented as a WebView (see Section 3.4 on page 51) us-
ing HTML, CSS and JavaScript. When the user requests an energy estimate,
the extension sends this request to the appropriate microservice. The microser-
vices, Measure Service, Machine Learning Service, and Energy Modelling
Service, represent the three implemented approaches to estimation. The Measure
Service provides dynamic energy estimates by executing the code and using
RAPL to measure. The Machine Learning Service and the Energy Modelling
Service provide the static estimates. For this, both services rely on the Instruction
Counter microservice. This microservice is implemented as an interpreter for
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Figure 3.1.1: Simple overview of the architecture of the IDE extension

CIL code that, given an assembly file, counts the number of times each CIL
instruction is executed. The Machine Learning Service uses the instruction
counts as input to the regression models when predicting the energy consump-
tion. Furthermore, the Energy Modelling Service uses the Instruction
Counter microservice to multiply the energy consumption of each instruction
with the number of times, they occur. All services are elaborated on in the
following sections.

3.1.1 API

The frontend of the IDE extension communicates with the microservices using
REST. The API is seen in Table 3.1.1 on the following page where all endpoints
are compiled.
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Table 3.1.1: API endpoints for the different microservices

Method Microservice Address
POST Measure Service /estimate
GET Measure Service /progress
POST Measure Service /stop
GET Measure Service /methods
POST Machine Learning Service /estimate
POST Energy Model Service /estimate
POST Instruction Counter Service /counts

The microservices Measure Service, Machine Learning Service, and Energy
Model Service each expose an endpoint for getting an energy consumption esti-
mate. These are the /estimate endpoints. To accomplish this the frontend pro-
vides the microservices with an array of objects of type ActivateClass, see List-
ing 8 or IDs in the case of dynamic estimation. This array of ActivateClasses
identifies the methods, and their containing classes. For each class a field de-
notes where its assembly file is located. This information is essential as the
Instruction Counter library relies on the assembly file to count instructions.

1 export interface ActivateClass {
2 ClassName: string;
3 AssemblyPath: string;
4 Methods: Method[];
5 }
6

7 export interface Method {
8 Id: number;
9 Name: string;

10 StringRepresentation: string
11 }

Listing 8: A snippet showing which types of data the ActivateClass contains

In addition to endpoints allowing the user to get energy estimates, it also exposes
endpoints for getting information about the progress of the ongoing measure-
ment and for stopping the ongoing measurement. The dynamic approach needs
to run the code of each function multiple times to get a statistically signifi-
cant results, whereas the static approaches are only run one time for any given
estimate. Therefore, we only provide the progress endpoints for the dynamic
approach. The last two endpoints, /methods and /counts are utility methods.
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The former being an endpoint for getting all of the methods for a given assem-
bly file. The latter, an endpoint to count all of the CIL instructions for a given
assembly file or for individual methods in that assembly.

3.2 Static Estimation

In this section the static estimation approaches are elaborated on. As men-
tioned in Section 2.2 on page 8 and Section 3.1 on page 27 both approaches rely
on being able to precisely determine which CIL instructions are executed and
how many times. Thus, we elaborate on the implementation of how to obtain
precise instruction counts. Then we detail each of the approaches for obtaining
static energy measurements. We consider the estimation approach using ma-
chine learning. We elaborate on, how the machine learning models are trained
and we describe the implementation of the microservice that provide energy es-
timates using the machine learning models. Likewise, for the static estimation
approach using an energy model we describe how we create the energy model
and how the microservice for the energy model is implemented.

3.2.1 CIL Instruction Counting

In this section, we present the implementation of our interpretation approach as
described in Section 2.2.3 on page 12 that we use for counting CIL instructions.
Before being able to interpret a program some preprocessing first be executed.
This preprocessing is presented in Figure 3.2.1 on the next page. From the top,
the instruction counter program can take either an assembly (.DLL) file, where
the CIL code is extracted using a utility called ILspycmd, or it can be given the
CIL code directly. The CIL code is then parsed based on the grammar from
the ECMA standards 335 [30]. The result from the parser is a list of classes
and methods, where classes contain their parent classes, and all the methods
belonging to it. After the classes and methods are created, we can being inter-
preting the code. In the following sections we first detail our implementation of
the IL parser component of Figure 3.2.1 on the following page after which we
elaborate on how we implement the actual interpretation.

Parser

The CIL code is run through a parser to create objects, which can be manipu-
lated as part of the counting process. The three most important result objects
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Figure 3.2.1: A simple overview of the overall structure for counting instructions

are the Class, Method, and Instruction. The instruction is the lowest level
of information, and also the most important part of the CIL code, since these
are the elements we want to count. The simple representation of an instruction
can be seen on Listing 9 on the next page. It contains three pieces of infor-
mation: The location, which is a hex value for the location of the instruction
in a method. The name, which is the actual name of the instruction, such as,
nop or brfalse. Lastly the data is everything after the name, which describes
all the necessary parameters for any instruction which require such parameters.
An example of this division of data can be seen below.

Location︷ ︸︸ ︷
IL_000c : brtrue.s︸ ︷︷ ︸

Name

Data︷ ︸︸ ︷
IL_0005 (3.1)

The next level out from the instruction, is the method level. A method object is
helpful to keep track of which instructions are mapped to which method names.
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1 class Instruction():
2 def __init__(self, location, data):
3 self.location = 'IL_' + location
4 name, *data = data.split()
5 self.name = name
6 self.data = data

Listing 9: The simple representation of an instruction

The information for a method can be seen on Listing 10, which shows a reduced
subset of the information contained within. Two interesting parameters are
is_entry and instructions. Both parameters are set later, since a method
header is parsed before the internals are parsed. The is_entry field, is set if
the keyword .entrypoint is found within a method. This signifies that the
specific method is the starting point when executing the program. The other
value instructions, is a hash map used to get all instructions for the given
method. These instructions are instances of the instruction object above.

30 class Method():
31 def __init__(self, method_attr, call_conv, return_type,

marshal, method_name, gens, params):↪→

32 self.attributes = method_attr
33 self.call_convensions = call_conv
34 self.generics = self.load_generics(gens)
35 self.is_generic = bool(gens) == True
36 self.is_entry = False
37 self.is_instance = 'instance' in call_conv
38 self.parameters = params
39 self.instructions = {}

Listing 10: A simplified view of the data for a method

The outermost level is the class, which is necessary, since multiple methods
can have the same name and the same parameters, but be part of different
classes. Therefore, to know the exact method for counting instructions, we have
to provide the class name, along with the method name. Combining all three
levels of information, we can find a specific method and get all of the instructions
contained within.
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Counting by Interpretation

The approach to counting instructions that we implement is the Counting by
Interpretation approach. The continuation of the process named interpretation
on Figure 3.2.1 on page 31, can be seen on Figure 3.2.2. This approach requires
either that the program has an entrypoint or that a starting method is spec-
ified. All programs that are meant to be run standalone, must contain an
entrypoint method. The process starts by finding either the entrypoint or the
specified method. All of the instructions for the method are loaded onto an
instruction stack, and all the necessary initialisation is done: heap, stack, static
storage. Then the interpretation is started. Each instruction is evaluated in
turn. If an instruction is a call instruction, the call is made and the control-flow
is changed to the other method. This process is run until we evaluate the return
instruction from the initial method. Whenever an instruction is encountered,
it is recorded in a set of executed instructions. This set is created per method,
and upon calling the return instruction for a given method, the set is added to
a global set of counters. At the very last step, when the process has finished
interpreting, all the intermediate counters are summarised into a single final
count of instructions.

Figure 3.2.2: An overview of the steps for the counting by interpretation ap-
proach
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One of the key methods in the interpreter is the execute_method method, which
takes a method and loads all of the contained instructions into a list. It then
iterates through the instructions until either a return statement is evaluated, or
it runs out of instructions. The code for this method can be found on Listing 11
on the next page. Lines 2 through 5 is the setup, where instructions are loaded
and initial values are set. In the loop, the instruction is interpreted on Line
9 by calling the execute method on the instruction. This method has two
return values, first is the action to perform after evaluating the instruction. For
example if the instruction is a branch instruction, then the next action is to
JUMP to some other instruction in the list of instructions. The other return
value contains additional information in regards to the next action. In the
example with the branch instruction, the second return value might be the new
location, which is the target of the branch instruction. There are four types
of actions available in the executor. JUMP, Line 11, is for changing control-flow
to another instruction in the same method. CALL, Line 13, is when another
method has to be executed, this is the case for regular method calls, but also
for constructors when creating new objects. NOP, Line 21, is the most common
action, and signifies that no additional action has to take place, before the next
instruction can be executed. The last action type: RETURN, Line 23, is used,
when the method is returning.

We create the interpreter with the intention of handling all C# programs. How-
ever, due to the time constraints of this project, there are however a set of cases,
for which the interpreter is unable to perform the interpretation of the code.
These limitations are discussed in Chapter 5 on page 70.

3.2.2 Static Estimation Using Machine Learning

In this section, we describe the implementation of the static estimation approach
using machine learning. First, we elaborate on how the machine learning mod-
els are created and fit, and then we detail the implementation of the machine
learning microservice, which the frontend extension interacts with. The ma-
chine learning models as well as the microservice are implemented in Python,
as Python provides a plethora of machine learning libraries which suits the
purpose of this approach.
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1 def execute_method(self, method):
2 instructions = method.get_instructions()
3 instruction_index = list(instructions.keys())
4 index = 0
5 return_val = None
6

7 while index != len(instruction_index):
8 current = instruction_index[index]
9 action, value =

instructions[current].execute(self.storage)↪→

10

11 if action == Actions.JUMP:
12 index = instruction_index.index(value)
13 elif action == Actions.CALL:
14 machine = state_machine(self.storage)
15 return_val = machine.simulate(value,

self.storage.get_active_class())↪→

16 value.clear()
17 if return_val or return_val == 0:
18 self.storage.push_stack(return_val)
19 self.storage.pop_active_class()
20 index += 1
21 elif action == Actions.NOP:
22 index += 1
23 elif action == Actions.RETURN:
24 return_val = value
25 break
26

27 return return_val

Listing 11: The executor method for the interpreter

As described in Section 2.2.4 on page 13 the machine learning approach consists
of several steps. The individual steps are compiled in the list below and each of
the steps are elaborated on in the following text.

1. Create data set by scraping C# programs from online repositories

2. Count CIL instructions for each program in the data set

3. Measure the energy consumption for each program in the data set

4. Fit regression models to the data
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The first point is to create a data set by discovering and scraping C# pro-
grams from online repositories. For this, we have scraped the Rosetta Code1

repository and the benchmark programs from Computer Language Benchmarks
Game2. Furthermore, the learning platforms of Sanfoundry Global Education
and Learning 3 and Include Help 4 contains a plethora of C# programs, which
are also included in the data set. Lastly, we include all benchmark programs
created in our preliminary work presented in [3]. We scrape these websites and
our preliminary work for C# programs and end up with 1438 programs for the
data set. However, not all programs scraped are included in the final data set.
This is because we exclude programs if they conform to one of the following
conditions:

1. Does not have a Main function

2. Waits for user input

3. Requires command line arguments

4. Cannot be build without modifications to the code or the setup

5. Cannot be run with our interpreter

If a program does not have a Main function, the program cannot be executed
without modifications. It is essential that the programs can be executed, oth-
erwise the energy consumption of the program cannot be measured. If the
program waits for user input the energy cannot be reliably measured, because
it will depend on what input is given and how quickly. Furthermore, if the
program requires input in the form of command line arguments we discard the
program as well. This is because, we cannot infer what input is required, and
the energy consumption will be dependent on the given input. In addition, in
our preliminary work of [3], we show that IO is very energy intensive, and thus
including IO will overshadow the energy consumption of the rest of the func-
tion being measured. We also discard programs that cannot be build without
modifying the code or setup. This is generally due to non-standard libraries be-
ing used, for example from NuGet packages. Lastly, we exclude programs that
our interpreter cannot handle. This is because the interpreter counts the CIL
instructions of each program, which eventually are the explanatory variables of
the training set.

1https://www.rosettacode.org/wiki/Rosetta_Code
2https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
3https://www.sanfoundry.com/csharp-programming-examples/
4https://www.includehelp.com/dot-net/basic-programs-in-c-sharp.aspx
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In total, we end up with 147 programs for the training set. The distribution
of the programs is seen on Figure 3.2.3. This chart shows the percentage of
programs that are excluded due to the reasons mentioned above. The remaining
portion shows the percentage of programs that are not excluded (10.2 %). As
can be seen the largest contributors to exclusion of programs are that they do
not contain a Main function (22.2 %) or that our interpreter cannot handle the
program (35.9 %). For the pie-chart it is worth mentioning, that if a program
fails several criteria it is only present in one category. The order of priority
follows the order with which the criteria are presented in the enumerated list
above.

Figure 3.2.3: Distribution of scraped programs.

Having scraped the C# programs, the data set is created by counting the CIL
instructions of each program using our interpreter and the approach described
in the previous section. We measure the energy consumption of each program
using the approach and framework presented in our preliminary research [3].
The final data set is presented as a csv file, and a snippet of the data set is seen
on Table 3.2.1 on the next page.

Having created the data set, the regressors are fit. Listing 12 on the following
page shows a snippet from the Python script that fits the regressors. In the script
X denotes the vector of explanatory variables and y is the response variable. The
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Table 3.2.1: Number of instructions for different benchmarks

Name pkg(µj) add add.ovf.un and arglist ... unbox unbox.any xor
example-of-a-... 34154.90 0 0 0 0 ... 0 0 0
find-sum-of-all-... 36220.16 327 0 0 0 ... 0 0 0
print-the-integer-... 36299.79 0 0 0 0 ... 0 0 0
csharp-program-... 35339.00 0 0 0 0 ... 0 0 0
Combinations_2 71289.25 0 0 0 0 ... 0 0 0

script takes as an input parameter what kind of regressor to fit, and based on
that, the method get_model called on Line 46 instantiates a regressor of that
type in the model variable. On Line 49 the model is fit to the data set. The
model is cross validated on Lines 50-52 if an input argument specifies to do so.
Likewise, the input argument also controls whether to save the model for future
use (Lines 54-55).

43 X = pd.DataFrame(df.drop(['name', 'pkg(µj)', 'duration(ms)',
'dram(µj)', 'temp(C)'], axis=1))↪→

44 y = pd.DataFrame(df['pkg(µj)'])
45

46 model = get_model(args.regression_method)
47 y = np.ravel(y)
48

49 model.fit(X, y)
50 if args.cross_validate:
51 splits = int(len(y) /10)
52 print(np.mean(cross_val_score(model, X, y,

cv=splits,scoring='neg_root_mean_squared_error')))↪→

53

54 if args.save_model:
55 pickle.dump(model, open('model.obj','wb'))

Listing 12: Snippet of script to train a regression model

Machine Learning Microservice

The microservice that provides the frontend with energy estimates is written in
Python as an aiohttp[31] application. This allows the frontend and the microser-
vice to communicate using HTTP requests. A snippet from the implementation
is seen on listing 13 on the next page

As mentioned in Section 3.1 on page 27 the endpoint receives an array of type
ActivateClass, thus in the microservice implementation we iterate over each
class to make predictions on the given methods in each class. First, we retrieve
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24 activate_classes = json_data['activeClasses']
25 inputs = json_data['inputs']
26 all_predictions = {}
27 for current_class in activate_classes:
28 path_to_assembly = current_class['AssemblyPath']
29 className = current_class['ClassName']
30 methods = current_class['Methods']
31 abs_file_path = os.path.splitext(path_to_assembly)[0]
32 name = os.path.split(abs_file_path)[-1]
33

34 # dissassemble and get il code
35 subprocess.call(f'ilspycmd {path_to_assembly} -o . -il',

shell=True)↪→

36 text = open(f'{name}.il').read()
37

38 # count instructions, maps method/program name to IL
instruction Counter↪→

39 counts = requests.post('http://localhost:5004/counts',
json={'path_to_assembly' : path_to_assembly,
'methods': methods, 'inputs': inputs, 'class_name':
className})

↪→

↪→

↪→

40 counts = counts.json()
41

42 # make prediction
43 predictions = {} # maps method/program name to energy

prediction↪→

44 model = pickle.load(open(model_path, "rb"))
45 with open('CIL_Instructions.txt') as f:
46 CIL_INSTRUCTIONS = [x.strip() for x in f.readlines()]
47

48 for name, count in counts.items():
49 count = reduce(lambda a, b: Counter(a) + Counter(b),

count, count[0])↪→

50 temp = []
51 for instruction in CIL_INSTRUCTIONS:
52 temp.append(count[instruction]) if instruction in

count else temp.append(0)↪→

53 predictions[name] = model.predict([temp])[0][0] /
1000000↪→

54 all_predictions[className] = predictions
55

56 # return result
57 return web.Response(text=json.dumps(all_predictions),

status=200)↪→

Listing 13: Snippet of machine learning microservice
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the assembly path, the name of the class, and the array of methods on which we
will make predictions. Then the assembly file is disassembled using ilspycmd on
Line 35 and the resulting .il file is read on Line 36. On Line 39 our Instruction
Counter library is used to obtain the number of times each instruction occur
in each of the methods. Then beginning from Line 43 the energy estimates
are predicted. First, the trained machine learning model is loaded on Line 44
and on Line 45 a list of all CIL instructions is loaded. The loop beginning on
Line 48 iterates through all methods in the current class that we want to obtain
energy estimates from and their corresponding CIL counts. Thus, name is the
name of the method and count represents the instruction counts. The count
variable is a list of type Counter mapping CIL instructions to their number of
occurrences. It is a list of Counters, since, if the method calls other methods
a new Counter is instantiated to count the CIL instructions executed in that
method. On Line 49, the list of Counters are reduced to one Counter in the
variable count, and then for each CIL instruction, if that instruction is present
in count its count is appended to the temp list, otherwise a 0 is appended,
denoting the instruction has not been executed. Then, using the temp array,
the model predicts the energy consumption of the given method on Line 53, and
the resulting energy value is divided by 1,000,000 to convert micro Joule (µJ)
to Joule (J). We convert from micro Joule to Joule for readability as the energy
consumption of the majority of the programs corresponds to Joule or millijoules
and they are thus simpler to compare when converting to Joules. The prediction
is inserted into the predictions dictionary, and when estimates are computed
for all methods in a given class, the predictions dictionary is inserted into
the all_predictions dictionary on Line 67. Lastly, the all_predictions
dictionary is returned to the frontend as the response to the HTTP request.

3.2.3 Static Estimation Using an Energy Model

Based on the description in Section 2.2.5 on page 18, an energy model is created
for each CIL instruction using the dynamic RAPL framework approach initially
described in Section 2.3 on page 22 and the implementation is introduced in
Section 3.3.1 on page 47. This framework is used to simplify the creation of
the energy model, and to be responsible for obtaining statistically significant
measurements.

The following description relates to the method seen on Listing 14 on the fol-
lowing page. The first step in creating an energy model for CIL instructions,
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is to create a DynamicMethod where the instructions are emitted to, along with
an ILGenerator. Therefore, a method called NewMethod is created which re-
turns a new DynamicMethod and its corresponding ILGenerator. This method
is seen in Listing 14 on Lines 4-9, where a DynamicMethod is instantiated with
the name MyMethod, return type of void, and which takes no arguments to
run. Furthermore, for the measurement of each instruction, the method needs
to make a return call and the dynamic method should be invoked.

4 private (DynamicMethod, ILGenerator) newMethod()
5 {
6 DynamicMethod method = new DynamicMethod("MyMethod",

typeof(void), new Type[] { });↪→

7 var ilg = method.GetILGenerator();
8 return (method, ilg);
9 }

10

11 private void runMethod(DynamicMethod method, ILGenerator ilg)
12 {
13 ilg.Emit(OpCodes.Ret);
14 method.Invoke(null, Type.EmptyTypes);
15 }

Listing 14: Creating and invocation of DynamicMethod

Before creating the benchmarks for measuring the energy consumption of each
instruction, we first measure the constant overhead of creating and executing a
DynamicMethod with no other CIL instructions emitted to it than OpCodes.Ret
(emitted in runMethod). The method for this is seen in Listing 15 on the
following page on Lines 18-22. As can be seen both methods in Listing 15 on
the next page has the Measure attribute, which is necessary for the measuring
framework to know which methods to benchmark. For the Empty method the
attribute specifies how many executions to use for its the pilot run. The other
method seen on Listing 15 on the following page is for computing the energy
consumption of the instruction Ldc_I4, which loads a 32-bit integer onto the
stack. In this case the Measure attribute also takes as input an array denoting
which instructions the execution of the current instruction depend on. Thus,
the energy consumption costs for the dependencies can be subtracted to the cost
of the current instruction, to achieve the actual value. In the case of Ldc_I4
it depends on no other instructions being executed beforehand, thus the array
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given as input to the Measure attribute only consists of Empty, denoting that
only the constant overhead should be subtracted.

When emitting the Ldc_I4 instruction it is required to also provide the integer
value to load onto the stack. The stream of OpCodes emitted to the ILGenerator
must represent a valid program, which means that the stack must be empty be-
fore returning, as the DynamicMethod has a void return type. Therefore, the
OpCode Pop is emitted to the generator as well, which then renders the method
as valid. However, this has the implication that when run, we measure the en-
ergy consumption of not only the Ldc_I4 instruction, but also a Pop instruction.
As the DynamicMethod we create has a void return type, no program can be
made which only loads values onto the stack without also popping the stack. If
instead the DynamicMethod had a return type a value is allowed on the stack
when returning. However, for simplicity, we do not return any values.

17 [Measure(1000)]
18 public void Empty()
19 {
20 var (method, ilg) = newMethod();
21 runMethod(method, ilg);
22 }
23

24 [Measure(10000, new []{ "Empty" })]
25 public void Ldc_I4(int value)
26 {
27 var (method, ilg) = newMethod();
28 ilg.Emit(OpCodes.Ldc_I4, value);
29 ilg.Emit(OpCodes.Pop);
30 runMethod(method, ilg);
31 }

Listing 15: An example of measuring the energy consumption for the constant
overhead, and the energy consumption of the CIL instruction Ldc_I4

Like the Ldc_I4 instruction (see Listing 15 on Lines 25-31), some instructions
require some value to be emitted with the instruction. These are the data depen-
dent instructions. To provide these instructions with some data the framework
searches for any input parameters a method may take and supplies random
values of this type. The implementation of this is seen in Listing 16 on the fol-
lowing page. The energy consumption of data dependent instructions correlate
with the data itself ([13, 28]), thus we use random values instead of fixed values
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to ensure that the results can be more generalised. When using random values
we achieve an average of the cost of the instruction. Alternatively, we could
provide the instruction with the entire state space of possible values and then
average the energy consumption. However, in practice, this is infeasible as the
state space of an instruction can be large or even infinite [13]. When measuring
the energy consumption of an instruction using the measurement framework,
the method representing the instruction is executed multiple times to ensure
statistical significance of the energy consumption value obtained. Each time
the method is executed it is provided a new random value.

1 object[] randomInputs = method.GetParameters().Select(parameter
=> {↪→

2 var rnd = new Random();
3 var typeSwitch = new Dictionary<Type, Object> {
4 { typeof(int), rnd.Next(int.MinValue, int.MaxValue) },
5 { typeof(uint), ((uint)rnd.Next(int.MinValue,

int.MaxValue) + (uint)int.MaxValue) },↪→

6 { typeof(short), (short)rnd.Next(short.MinValue,
short.MaxValue) },↪→

7 { typeof(ushort), ((ushort)rnd.Next(ushort.MinValue,
ushort.MaxValue) + (ushort)ushort.MaxValue) },↪→

8 { typeof(sbyte), (sbyte)rnd.Next(-128, 127) },
9 { typeof(byte), (byte)rnd.Next(0, 255) },

10 { typeof(long), (long)rnd.Next(int.MinValue,
int.MaxValue) },↪→

11 { typeof(float), (float)rnd.NextDouble() },
12 { typeof(double), rnd.NextDouble() },
13 { typeof(string[]), new string[]{ "one", "two", "three" }

},↪→

14 { typeof(string), new
string(Enumerable.Repeat("ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789",
rnd.Next(1, 1000) )

↪→

↪→

15 .Select(s => s[rnd.Next(s.Length)]).ToArray())},
16 { typeof(bool), rnd.Next(0, 1) },
17 { typeof(Type), allTypes[rnd.Next(0,allTypes.Length-1)]},
18 { typeof(PosInt), new PosInt() {i = rnd.Next(1,

Int16.MaxValue)}}↪→

19 };

Listing 16: Creating a random value based on a type

When all instructions have had their energy consumption measured, we need
to remove any dependencies from the results. This includes, removing the over-
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head of the empty model from each instruction model. Dependencies denote
any instruction that must be executed prior to the instruction in question, for
example, the Brtrue instruction requires an integer value on the top of the
stack, which is asserted on as the branch condition. Therefore, to measure the
energy consumption of the Brtrue instruction, an integer is loaded onto the
stack. Thus, unlike Ldc_I4, the Brtrue instruction has multiple dependencies,
namely Empty and Ldc_I4. Therefore, in addition to the constant overhead
denoted by the Empty method, the energy consumption value of Ldc_I4 must
also be subtracted to get the measurements of only the Brtrue instruction.

Once all dependencies are subtracted from the energy consumption values of
each instruction, an output XML file is created containing all methods and
costs (see listing 17 on the next page). This XML file is then used with the
CIL instruction counter presented in section 3.2.1 on page 30, to compute the
energy consumption of a program or method.

For the energy model we implement 175 of 226 instructions. We elaborated
more on this in Chapter 5 on page 70.

Energy Model Microservice

The energy model microservice runs in the background allowing the frontend
to make HTTP requests to get the energy consumption using the energy model
estimation technique. Similar to the machine learning microservice, this mi-
croservice is written in Python using aiohttp to supports HTTP requests.

The Energy Model microservice requires an XML-file representing the energy
consumption of each instruction, as shown in listing 17 on the following page.
This model is precomputed and thus available for the microservice to use. How-
ever, as different CPUs may vary in energy usage per instruction the results only
reflect the energy consumption of the CPU on which the energy model (and thus
XML-file) is created. Though not supported, it would be beneficial to allow the
user to create their own energy model, reflecting the energy consumption using
their CPU.

Listing 18 on page 46 shows a snippet of the implementation of the energy
model microservice. The energy model microservice exposes a single endpoint
which expects an array of type ActivateClass (see Section 3.2.2 on page 38).
Similar to the machine learning microservice this array is iterated beginning
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1 <class>
2 <name>measureClass</name>
3 <method>
4 <declaring-type>Modeling.measureClass</declaring-type>
5 <name>Empty</name>
6 <result>Passed</result>
7 <measurement>
8 <name>timer</name>
9 <mean>0,04722468999999934</mean>

10 <completed-runs>10000</completed-runs>
11 <deviation>0,0216284220475747</deviation>
12 <ErrorMargin>0,000216284220475747</ErrorMargin>
13 <ErrorPercent>0,0045798970935701224</ErrorPercent>
14 <mean-subtracted>0,04722468999999934</mean-subtracted>
15 </measurement>
16 </method>
17 <method>
18 <declaring-type>Modeling.measureClass</declaring-type>
19 <name>Ldc_I4</name>
20 <result>Passed</result>
21 <measurement>
22 <name>timer</name>
23 <mean>0,04744672999999965</mean>
24 <completed-runs>10000</completed-runs>
25 <deviation>0,016627105080843554</deviation>
26 <ErrorMargin>0,00016627105080843554</ErrorMargin>
27 <ErrorPercent>0,0035043732372797187</ErrorPercent>
28 <mean-subtracted>0,000222040000000312</mean-subtracted>
29 </measurement>
30 <dependencies>
31 <instruction>Empty</instruction>
32 </dependencies>
33 </method>
34 </class>

Listing 17: A snippet of the energy model

from Line 62. Then the assembly file is disassembled using ilspycmd and the .il
file is loaded and given as input to the Instruction Counter library. Then from
Line 78 each method and their respective instruction count is iterated. For
each method all instructions that are executed in that method are iterated and
multiplied by the energy consumption for that instruction based on the energy
model XML file. Lastly, the collected energy for the instructions are returned
to the frontend.
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58 # Read the request info
59 fileinfo = await request.json()
60 activate_classes = json_data['activeClasses']
61 all_results = {}
62 for current_class in activate_classes:
63 path_to_assembly = current_class['AssemblyPath']
64 class_name = current_class['ClassName']
65 methods = current_class['Methods']
66 abs_file_path = os.path.splitext(path_to_assembly)[0]
67 name = os.path.split(abs_file_path)[-1]
68

69 # dissassemble and get il code
70 subprocess.call(f'ilspycmd {path_to_assembly} -o . -il',

shell=True)↪→

71 text = open(f'{name}.il').read()
72

73 # Count instructions
74 counts = get_cil_counts(methods, class_name)
75

76 # Calculate measurements for all methods in class
77 results = {}
78 for method_name, counter in counts.items():
79 counter = reduce(lambda a, b: a+b, counter,

counter[0])↪→

80 sum = 0.0
81 for instruction in counter:
82 count = counter[instruction]
83 instruction = ILToEmit(instruction)
84 if instruction in ILModelDict:
85 cost = ILModelDict[instruction]
86 sum += count*cost
87 results[method_name] = sum
88 all_results[class_name] = results
89

90 # return result
91 return web.Response(text=json.dumps(all_results), status=200)

Listing 18: Snippet of the energy model microservice

3.3 Dynamic Estimation

This section covers the implementation of the dynamic energy consumption es-
timation approach presented in Section 2.3 on page 22. The dynamic estimation
approach executes the program or method, while measuring the energy using
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RAPL, and immediately returns the result to the frontend. In the following
section this entire approach is elaborated on.

3.3.1 Measuring Framework

This section covers the creation of a measurement framework for C# programs,
which utilises and extends our previous work presented in [3]. We adhere to the
design presented in Section 2.3 on page 22. This means, we create a framework
that allows the user to annotate classes and methods with our custom attributes,
that denote on which methods the energy consumption should be measured.
Thus, we extend our preliminary work of [3] with the ability of recognising
custom attributes. To create a custom attribute in C# we follow the guidelines
presented in [32] and first create a class that inherits from Attribute. The
input variables to the attribute corresponds to the inputs to the constructor of
the custom attribute class. We can annotate our custom attribute class with
other attributes to further specialise the uses of the custom attribute. This
includes which targets the attribute applies to, such as assembly, class, method,
field and more. Furthermore, we can define whether the attribute is allowed to
be applied multiple times to the same target.

In this project, we create four custom attributes MeasureAttribute, Measure-
ClassAttribute, MeasureSetupAttribute and MeasureCleanupAttribute. All
but the MeasureClassAttribute applies to methods, where the class attribute
applies to classes. Furthermore, none of the custom attributes are allowed to be
applied multiple times to the same target. The implementation of the Measure-
Attribute is seen in listing 19. The class constructor takes the number of sam-
ple iterations to be performed, and stores this in the class along with the total
planned iterations, which is updated in a later step. Moreover, the measure
attribute class contains a list of all completed measurements for this method.

The framework is extended with the functionality of detecting and handling the
custom attributes. Next, the process of obtaining the energy consumption of the
given program or method, and returning the results to the extension frontend,
is broken down into several steps. Each step in the process is seen in the list
below and elaborated on in the following text.

1. Detect classes implementing the MeasureClassAttribute
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1 [AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]
2 public class MeasureAttribute : Attribute
3 {
4 public List<Measurement> Measurements;
5 public int SampleIterations;
6 public int PlannedIterations;
7 public int IterationsDone;
8

9 public MeasureAttribute(int sampleIterations = 100)
10 {
11 SampleIterations = sampleIterations;
12 PlannedIterations = sampleIterations;
13 Measurements = new List<Measurement>();
14 }
15

16 public void AddMeasure(Measure measure)
17 {
18 this.IterationsDone++;
19 foreach (var api in measure.apis)
20 {
21 if (Measurements.Any(m =>

m.Name.Equals(api.apiName)))↪→

22 {
23 Measurements.First(m =>

m.Name.Equals(api.apiName)).AddMeasurement(api.apiValue);↪→

24 }
25 else
26 {
27 var temp = new Measurement(api.apiName);
28 temp.AddMeasurement(api.apiValue);
29 Measurements.Add(temp);
30 }
31 }
32 }
33 }

Listing 19: Implementation of the MeasureAttribute

2. Detect any methods, within a class implementing the MeasureClass-
Attribute, which implements either MeasureAttribute, MeasureSetup-
Attribute or MeasureCleanupAttribute

3. Execute the setup method, the measurement method(s) and the cleanup
method until we have a statistically significant result.
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As the user should be allowed to select a set of methods to run, these three
steps are broken up into two separate endpoints on the MeasureFramework mi-
croservice. The first endpoint (GetMethods) implements the two first steps, and
provides the IDE with a set of classes and methods which contains the custom
attribute along with an ID of the methods. The second endpoint (Estimate)
takes a set of IDs from the IDE and run only the specified methods along with
any setup and/or cleanup methods found in the class of the method.

GetMethods

First, to detect the classes that implement the attribute MeasureClassAttribute,
the assembly file of the project is loaded into an assembly using the System.Re-
flection namespace. From this assembly class, we iterate over all types, and
collect the types which implement the attribute MeasureClassAttribute.

With a class type, we can extract all attributes from the class, in this way
we can extract our custom attributes and their corresponding fields and meth-
ods. Furthermore, an object of type Type contains a method called GetMethods
which returns an array of methods of type MethodInfo, the methods can then
be filtered such that only methods containing a MeasureAttribute, Measure-
CleanupAttribute or MeasureSetupAttribute remains. The methods are then
given an ID which in this case is the hash of that method and are saved on the
microservice. The methods are then returned to the IDE. This can all be seen
in Listing 20 on the next page

Estimate

The IDE provides a set of IDs for the methods which should be tested. The
methods are then found in the array, generated by the GetMethods endpoint.
Thus, a reference to the class, class-attribute, method and method-attribute is
obtained along with a reference to the setup and cleanup methods. The setup
method is then invoked on the class, performing any setup as specified in that
method, on that class. The method is then invoked on the class using the
measurement framework from [3] such that all measurements from the frame-
work is saved in the MeasureAttribute. This is done in a loop for the number
of sample iterations specified by the user. Following the guidelines from [3], we
use Cochran’s formula to calculate the iterations needed to obtain a statistically
significant result, and perform any extra iterations of the method. Lastly, the
cleanup method is invoked on the class.
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1 private List<ClassMethods> getAllMethods(Type currentClass,
string file, bool getWithAttributes)↪→

2 {
3 List<ClassMethods> result = new List<ClassMethods>();
4 MethodInfo[] allMethods =

currentClass.GetMethods(BindingFlags.Public |
BindingFlags.NonPublic | BindingFlags.Static |
BindingFlags.Instance).Where(mi => mi.DeclaringType ==
currentClass).ToArray();

↪→

↪→

↪→

↪→

5

6 if (getWithAttributes)
7 allMethods = allMethods.Where(m =>

m.GetCustomAttributes().Any(a => a is
MeasureAttribute)).ToArray();

↪→

↪→

8

9 if (allMethods.Any())
10 {
11 MethodViewModel[] methodViewModels = allMethods
12 .Select(m => new MethodViewModel()
13 {
14 Id = m.GetHashCode(),
15 Name = m.Name,
16 Args = m.GetParameters().Select(p =>

p.ParameterType.ToString()).ToArray(),↪→

17 StringRepresentation = m.ToString()
18 })
19 .ToArray();
20 ClassMethods cm = new ClassMethods
21 {
22 CurrentClass = currentClass,
23 AssemblyPath = file,
24 Methods = methodViewModels,
25 };
26 result.Add(cm);
27 if (getWithAttributes)
28 Methods.Add(cm);
29 }
30 return result;
31 }

Listing 20: Shows how to get all methods of a class

As the energy consumption of all methods are measured, we create an XML file
containing a list of each class and its methods. For each method, we include
the number of executions performed, along with all the types of measurements
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performed and the statistically significant results in the XML file. Lastly, the
XML file is returned to the IDE frontend.

3.4 Extension

Extensions in Visual Studio Code are created as TreeViews or WebViews. Tree-
Views denote interfaces similar to a file explorer, where content is structured
as a tree and conforms to the style of the built-in views of Visual Studio Code.
On the contrary, WebViews allow for the creation of fully customisable views
using HTML, CSS, and JavaScript to create the user interface. To conform to
the design presented in Section 2.4 on page 24, we thus create a WebView. The
final user interface is seen on figure 3.4.1.

Figure 3.4.1: A view of the extension

As can be seen, the extension allows the user to select which type of estimation
technique they want to use, along with the methods for which they want to
obtain energy consumption estimates. In the bottom of the view three buttons
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allow the user to refresh the methods shown, provide inputs for the methods,
and begin the estimation.

To create the Visual Studio Code extension we create a WebView and a WebView
Provider. The WebView contains the UI code, being the HTML, CSS and
JavaScript to manipulate the UI. The WebView provider represents the back-
end code that is responsible for communicating with the various microservices.
The WebView and the WebView Provider communicate by posting messages to
each other. A message is a dictionary and consists of a type and a value. This
allows us to differentiate between the calls, and parse the message to the correct
type in either the WebView or the WebView Provider. In the WebView as well
as in the WebView Provider a switch case uses the type as the condition and
determines which actions to perform when receiving messages. An example of
the WebView posting a message is seen on Listing 21, and likewise an example of
the WebView Provider posting a message is seen on Listing 22. The switch-case
of the WebView Provider is seen on Listing 23 on the following page, where it
can be seen, that the WebView Provider can handle messages of the types: log,
activate, stop, and reloadMethods. Likewise, the WebView handles messages
of the types: progress, done and methods, where for each of these, the value
of the message contains objects or information to update the UI with.

1 webviewView.webview.postMessage({ command: 'done', value:
response });↪→

Listing 21: WebView posting a message

3 vscode.postMessage({
4 type: "activate",
5 value: { methods: selected, inputs: inputsDict, type: type },
6 });

Listing 22: WebView Provider posting a message

For the WebView Provider to handle the messages posted by the WebView it
must be able to communicate with the various microservices. As can be seen
in Listing 23 on the next page all messages are handled in the MeasureParser
class. In this class methods are created to parse the messages and communicate
with the microservices. An example of this is seen on Listing 24 on page 54. The
MeasureParser then awaits a response from the server, and parses the response
to the WebView.
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8 webviewView.webview.onDidReceiveMessage(message => {
9 switch(message.type){

10 case 'log':
11 console.log(message.value);
12 break;
13 case 'activate':
14 let methods = message.value.methods as ActivateClass[];
15 let type = message.value.type;
16 let inputs = message.value.inputs
17 Measure.activate(methods, inputs, type, webviewView);
18 break;
19 case 'stop':
20 Measure.stop();
21 case 'methodSelected':
22 break;
23 case 'reloadMethods':
24 Measure.getMethods(webviewView, message.value.type);
25 break;
26 default:
27 console.log("Cound not understand message of type: " +

message.type);↪→

28 break;
29 }
30 });

Listing 23: Switch-case of WebView Provider
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32 static callService(url: string, httpMethod: any, data: any =
null): Promise<any> {↪→

33 return new Promise(async (resolve, reject) => {
34 try {
35 let response;
36 if (data != null) { response = await httpMethod(url,

data); }↪→

37 else { response = await httpMethod(url); }
38

39 if (response.status == 200) {
resolve(response.data); }↪→

40 else { reject(response.status); }
41 } catch (exception) {
42 reject(exception);
43 }
44 });
45

46 }

Listing 24: WebView Provider communicating with microservices
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Chapter 4

Experiments and Results

We have developed an IDE extension for Visual Studio Code with the purpose
of helping developers reason about the energy consumption of their code. The
extension contains three approaches to estimate the energy consumption of C#
programs and methods. These are: dynamically using RAPL and statically
using either machine learning or an energy model. Furthermore, we test five
different regression techniques for the machine learning approach to determine
which suits the problem of this project best.

In this section we describe experiments to test the accuracy of each of our esti-
mation techniques. In addition to testing the accuracy, we also measure the time
consumption of obtaining the energy consumption estimates dynamically and
using both static approaches. We use the RAPL measurements as the ground
truth for the experiments. First, in Section 4.1 we describe our hypothesis re-
garding how each technique performs. Then in Section 4.2 on page 57 we detail
the approach with which the results are obtained. In Section 4.3 on page 64
we describe the setup for the experiments, which involves the hardware and
software. Lastly, in Section 4.4 on page 64 we present the results.

4.1 Hypothesis

Based on the related work presented in Section 1.2 on page 2, the choices made
in Chapter 2 on page 5, and the different approaches to estimating energy con-
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sumption, we have created three hypotheses. The first is about our expectations
for the performance difference for the machine learning models. The second hy-
pothesis is about the performance of the energy model we have created. The
final hypothesis concerns the execution speed of the static estimation approaches
compared to the dynamic estimation approach.

Performance of machine learning models

We have five different machine learning models to test. While three of the mod-
els assume the data to be linear, we also include the random forest regression
and support-vector regression, which are both non-linear. As presented in Sec-
tion 1.2 on page 2 energy models typically depend on more factors than merely
the number of times each instruction is executed. These factors include the
energy consumed by the transition between instruction and inter-instruction ef-
fects such as cache misses and pipeline stalls. These factors point to the energy
model not being linear based on the instruction count. Thus, based on these
observations we expect the non-linear machine learning models to provide better
predictions than the linear models.

Performance of the energy model

We have created an energy model to estimate the energy consumption based on
the count of each instruction, encountered during the static analysis. It does
not contain the energy consumption for all of the available instructions, and
therefore we predict that the model underestimates the actual value. Further-
more, the energy model only takes into account the number of each instruction,
and not the relationship between the instructions. The relationship in this case
being which instructions come before others, such that we can compute the en-
ergy consumption of the transition between instructions. Thus, we anticipate
that the energy model will further underestimate the energy consumption of a
given program.

Execution time for static estimates and dynamic estimates

The biggest distinction between measurement approaches is the difference be-
tween static estimation and dynamic estimation. While we expect the dynamic
estimation approach to obtain the actual energy consumption, we expect the
static estimation approaches to just approximate the actual consumption. Us-
ing the dynamic approach, we obtain statistically significant results, compared
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with the static approach where the predictions are estimates. This means, for
the dynamic approach, each benchmark is executed multiple times, to be able
to reason about the significance. This is in contrast to the static approaches,
which only have to run once. Based on this, we expect the static estimation
approaches to be at least an order of magnitude faster compared to the dynamic
approach.

4.2 Measurement Approach

This section covers the approach with which the experiments are conducted. We
first elaborate on the suite of benchmarks that is used for the experiments. We
describe how the actual energy and time consumption values are obtained for
the collected benchmarks. We also detail how the energy and time consumption
is estimated using the static estimation techniques. For our experiments we
use the measurement framework and the benchmark library we created in our
preliminary work [3]. Thus, when using the terms measurement framework and
benchmark library, the libraries presented in our preliminary work are what we
refer to.

4.2.1 Benchmark Suite Creation

The benchmarks, which are used for the experiments, are the same benchmarks
which are used as the data set for the machine learning models. This dataset is
described in Section 2.2.4 on page 13 and in Section 3.2.2 on page 34. A scraper
is created to scrape a set of websites for C# programs, which in total found 1438
programs. However, when filtering the programs based on the criteria listed in
Section 2.2.4 on page 13, only 147 benchmarks remain which can be used for
the machine learning and energy model estimation techniques.

The selection of 147 programs is then build and run to obtain the ground truth.
This is done using the measurement framework, which ensures that all bench-
marks are run a specified number of times such that the statistical error is
below the desired value. This number is computed using Cochran’s formula.
This process was executed on the same setup as the energy models were created
on.
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4.2.2 Obtaining the Energy Results

To obtain the results of each estimation technique we first compute the ground
truth values. The ground truth values denote the energy consumption for each
benchmark. These are computed such that we can compare the results from
the static estimation techniques to the ground truth and reason about the error
of each technique. To obtain the ground truth values, we use the measurement
framework, which ensures that the energy consumption values are statistically
significant. This is done by first performing a simple random sample, that is,
running the benchmark for a predefined number of times (in this case 1000),
to be able to compute the standard deviation for that sample. Using the val-
ues computed from the simple random sample, the Cochran formula [33] is
used to determine the minimum number of runs required for the results to be
within the desired error. Then, the benchmark is executed that number of
times to obtain statistically significant results. For a more detailed description
of the approach and the Cochran formula see [3]. For the benchmarks to be
used with the measurement framework, each benchmark must implement the
Benchmark library. Thus, we create a script to automatically insert the code for
the benchmark library into each of the benchmarks. An example of a bench-
mark before and after the library is implemented is seen on Listing 25 on the
next page and Listing 26 on the following page. As the energy consumption of
all benchmarks is computed, the measurement framework creates files with the
values for the package power, DRAM power and run time. Each file consists
of values for the following columns: name, Sample Mean, Standard Deviation,
Standard Error, Standard Error (%), Number of Runs. In our case, we are
only interested in the sample mean value of the package power Section 2.3 on
page 22.

To obtain the energy consumption values for the benchmark using the machine
learning and energy model approaches, another script is created. This script
requires a csv file as a training set for the machine learning models and an xml
file representing the energy model. The script follows the following outline:

1. Load all benchmarks

2. Load the machine learning training set and the energy model

3. For each benchmark

(a) Count the CIL instructions
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1 using System;
2

3 class Program {
4 static void Main(string[] args) {
5 for (int i = 1; i <= 10; i++) {
6 Console.Write(i);
7

8 if (i % 5 == 0) {
9 Console.WriteLine();

10 continue;
11 }
12

13 Console.Write(", ");
14 }
15 }
16 }

Listing 25: Example of benchmark without the Benchmark library implemented.

1 using System;
2 using Benchmark;
3

4 class Program {
5 static void Main(string[] args) {
6 var bm = new Benchmark(1);
7 bm.Run(() => {
8 for (int i = 1; i <= 10; i++) {
9 Console.Write(i);

10

11 if (i % 5 == 0) {
12 Console.WriteLine();
13 continue;
14 }
15

16 Console.Write(", ");
17 }
18

19 return "Continue_0";});
20 }
21 }

Listing 26: Example of benchmark with the Benchmark library implemented.

(b) Fit each of the regressors to the training set (excluding the row in
the training set denoting the current benchmark)
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(c) Predict the energy consumption of the benchmark with each of the
regressors

(d) Compute the energy consumption of the benchmark using the energy
model

(e) Save the result

4. Add the ground truth values to the result and save to a csv file

The implementation of this is seen on Listing 27 on page 62 and an excerpt
of the final output with all results is seen in Table 4.2.1 on the next page. In
Table 4.2.1 on the following page all values are rounded to two decimals and
the names are shortened for brevity.
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Table 4.2.1: Excerpt of the final energy results. All values are presented in µj
and rounded to two decimals. For brevity the column names are shortned, such
that GT means Ground Truth, RF means Random Forest, and EM means Energy
Model

Name GT Linear Lasso Ridge RF SVR EM
example-of-a-... 34154.90 50841.86 49958.22 35529.66 34615.61 36716.96 1048.76
find-sum-of-all-... 36220.16 -10725989.13 -3589324.82 65549.08 37463.33 36700.30 321881.15
print-the-integer-... 36299.79 5601014691.34 43635.96 64684.71 36418.81 36697.64 3969.75
csharp-program-... 35339.00 29403.54 35214.19 40969.91 33443.83 35649.32 82.51
Combinations_2 71289.25 50569.10 56236.08 71685.74 44539.97 36714.50 1372.33

4.2.3 Obtaining the Time Consumption Results

To obtain the results for the time consumption of the various estimation tech-
niques, we use the same script as described above and seen on Listing 27 on the
next page. This script we modify, such that, we also measure the time it takes to
count the CIL instructions and obtain the machine learning and energy model
results respectively. When measuring the time, we execute each 1000 times and
compute the mean value. This is alternatively to obtaining statistically signifi-
cant results as, for the energy consumption, using Cochran’s formula. However,
in this case it is not essential for the results to be statistically significant. This
is because, we are only interested in determining roughly the difference in time
for obtaining statistically significant energy consumption measurements and for
estimating them statically. Listing 28 on page 63 shows a snippet of the same
script as seen in Listing 27 on the next page, but modified to also measure time.
As can be seen the parts of the code we want to measure is executed 1000 times
and then the mean of those 1000 executions is saved. Lastly, an excerpt of the
final output is seen on Table 4.2.2 on page 64
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1 if __name__ == "__main__":
2 # Read all benchmarkable benchmarks
3 benchmarks = os.listdir('MLApproach/correct_benchmarks')
4 energy_df = pd.DataFrame()
5

6 (...)
7

8 ITERATIONS = 1000
9

10 for benchmark in benchmarks:
11 path =

f'/MLApproach/correct_benchmarks/{benchmark}/bin/Debug/net5.0/project.dll'↪→

12 energy_results = {'name' : benchmark}
13 # count instructions, maps program name to IL instruction

Counter↪→

14 counts = requests.post('http://localhost:5004/counts',
json={'path_to_assembly' : path, 'methods': None,
'class_name': "hey", 'inputs': None})

↪→

↪→

15 counts = counts.json().get('project')
16 counts = reduce(lambda a, b: Counter(a) + Counter(b),

counts, counts[0])↪→

17

18 # Run with ML
19 for model in regressions:
20 new_df = df[df.name != benchmark]
21 X = pd.DataFrame(new_df.drop(['name', 'sample mean

(µj)'], axis=1))↪→

22 y = pd.DataFrame(new_df['sample mean (µj)'])
23 y = np.ravel(y)
24 model.fit(X, y)
25 energy_results[str(model).split('(')[0]] =

get_ml_result(counts, model, CIL_INSTRUCTIONS)↪→

26

27 # Run with energy model
28 energy_results['energy-model'] =

get_energy_model_result(counts, ILModelDict,
benchmark)

↪→

↪→

29

30 energy_df = energy_df.append(energy_results,
ignore_index=True)↪→

Listing 27: Snippet of the script that computes the energy consumption using
the static estimation techniques.
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1 if __name__ == "__main__":
2 # Read all benchmarkable benchmarks
3 benchmarks = os.listdir('MLApproach/correct_benchmarks')
4 energy_df = pd.DataFrame()
5 time_df = pd.DataFrame()
6

7 (...)
8

9 ITERATIONS = 1000
10

11 for benchmark in benchmarks:
12 time_measurements = []
13 path =

f'/MLApproach/correct_benchmarks/{benchmark}/bin/Debug/net5.0/project.dll'↪→

14 energy_results = {'name' : benchmark}
15 time_results = {'name' : benchmark}
16 # count instructions, maps program name to IL instruction

Counter↪→

17 for _ in range(ITERATIONS):
18 start = time.time()
19 counts =

requests.post('http://localhost:5004/counts',
json={'path_to_assembly' : path, 'methods': None,
'class_name': "hey", 'inputs': None})

↪→

↪→

↪→

20 end = time.time()
21 time_measurements.append((end-start)*1000)
22 time_results['counts (ms)'] = np.mean(time_measurements)
23 time_measurements = []
24 counts = counts.json().get('project')
25 counts = reduce(lambda a, b: Counter(a) + Counter(b),

counts, counts[0])↪→

26

27 (...)
28

29 # Append results
30 time_df = time_df.append(time_results, ignore_index=True)
31 energy_df = energy_df.append(energy_results,

ignore_index=True)↪→

Listing 28: Snippet of the script that measures the time consumption while
computing the energy consumption using the static estimation techniques.

63



4.3. TEST SETUP

Table 4.2.2: Excerpt of the final time consumption results. All values are pre-
sented in ms and rounded to two decimals. For brevity the column names are
shortened, such that RF means Random Forest, and EM means Energy Model

Name Counts Linear Lasso Ridge RF SVR EM Dynamic
example-of-a-... 272.00 0.12 0.13 0.20 4.87 0.09 0.05 78536.80
find-sum-of-all-... 287.54 0.12 0.17 0.37 5.00 0.90 0.60 36117.18
print-the-integer-... 410.30 0.12 0.12 0.25 5.00 0.09 0.07 35710.60
csharp-program-... 244.73 0,12 0.13 0.10 5.00 0.10 0.04 3640.00
Combinations_2 322.13 0.12 0.13 0.15 4.84 0.09 0.05 44901.60

4.3 Test Setup

To get results from the different estimation approaches which are compared,
we run all experiments on the same desktop PC. The specifications of the PC
can be seen in Table 4.3.1. This is the same desktop PC which we used in our
previous work [3]. Thus, it is running a Skylake processor from Intel which
enables us to use RAPL in order to get accurate energy measurements for the
benchmarks. For the operating system, we have upgraded to Ubuntu version
20.04 LTS. Furthermore, we have also upgraded the .NET runtime environment
to .NET 5, as it is the latest official release at the time of writing.

Table 4.3.1: Hardware specifications of test setup

General
Processor Intel Core i7-6700K Skylake 4 GHz Quad-Core
Storage 240GB SSD
Memory 8GB RAM
Operating System Ubuntu 20.04 LTS
Runtime .NET 5

4.4 Results

As described in the Section 2.2 on page 8, we have two types of static esti-
mation: using machine learning models, and using an energy model. For the
machine learning models, we test a total of five different regression techniques.
Thus, we have a total of six different approaches to compare for the results.
For the experiments we collect energy consumption and time consumption us-
ing the measurement framework of [3], and we also estimate the energy and
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measure the time of using both of the static approaches. The approach for this
is described in Section 4.2 on page 57. The results are all present in the docu-
ments and files attached to this report, under the names time_results.csv and
energy_results.csv.

In this section we present the results and compare the ground truth energy con-
sumption values to the energy consumption estimated by both static approaches.
We also compare the five different regression models among themselves to deter-
mine which suits the problem of this project the best. Lastly, we investigate the
time efficiency of obtaining the static results compared to obtaining the ground
truth. All of the results are gathered and presented in this section.

4.4.1 Energy Estimation Results

First, we consider the results obtained using the various machine learning tech-
niques. Then we consider those obtained using the energy model. We compare
the results to the ground truth values.

Machine Learning

Of the five different machine learning models, three boxplots are created based
on the percentage difference from the ground truth and the actual estimation
values which can be seen in Section 4.2.2 on page 58. These three boxplots are
of random forest, support-vector regression (SVR), and lasso regression. The
last two machine learning approaches are not represented because the size of
the outliers make it practically impossible to display the boxplots, such that
the quartiles can be viewed. The first set of boxplots (Figure 4.4.1 on the
next page) contains the non-linear models random-forest and support vector
regression which are the two most comparable. Furthermore, although the ran-
dom forest has more outliers, it does have a tighter set of quartiles, where the
minimum value is -7.5% and the maximum value is 9.2%. While for the support-
vector regression boxplot, the minimum and maximum are approximately -28%
and 17% respectively.

The other boxplot contains the Lasso regression results (Figure 4.4.2a on page 68).
A large difference between this plot and the previous plots is the change in scale.
Here many of the outliers are ranged between -500% and 500%. Though the
minimum and maximum of the boxplot are ranged between -51% to 70%.
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Figure 4.4.1: Boxplots for Random-Forest and Support-Vector regression
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For the last two machine learning approaches, instead of providing a graphical
boxplot, the quartile ranges are displayed in Table 4.4.1. To compare all of the
approaches the table contains the quartiles for all of the approaches. They are
ordered from lowest percentage deviation to the highest percentage deviation.

Table 4.4.1: Boxplot quartiles for the five machine learning approaches

Name Min Q1 Median Q3 Max
Random Forest -7.49% -1.28% 1.06% 3.72% 9.19%
Support Vector -28.06% -9.33% 0.56% 3.83% 17.39%
Lasso -51% -3.67% 26.15% 36.92% 70.07%
Ridge -219.68% -59.56% 13.37% 68.26% 206.84%
Linear -240.81% -62.69% 22.49% 88.33% 302.43%

Energy Model

In addition to the machine learning models, we have also tested the energy
model. The results of this model can be seen on Figure 4.4.2b on the following
page, which is a boxplot of the results. It should be noted that the boxplot has
more outliers than is shown, the x-axis has been reduced to better show the
actual boxplot. Below can be seen the written form of the boxplot for easier
comparison with the other results.

Name Min Q1 Median Q3 Max
Energy Model -100.56% -91.9% -79.22% -21.98% 74.98%

4.4.2 Time Consumption Results

When computing the energy consumption results, we also measure how much
time it takes to compute each result. This means, for each benchmark we
measure the time it takes for our interpreter to compute and count all CIL
instructions, the time it takes to compute each machine learning prediction, and
the time it takes to compute the energy consumption using the energy model.
Furthermore, as all benchmarks are run using the measurement framework we
also know how much time it takes to obtain a statistically significant measure
of the run time.

An excerpt of the time results is first presented on Table 4.2.2 on page 64 and
again below on Table 4.4.2 on page 69. The excerpt is representative for all
time consumption results in that obtaining all machine learning results, except
for random forest, takes less than a millisecond. For all benchmarks obtaining
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(a) Lasso regression (b) Energy model

Figure 4.4.2: Boxplot of Lasso regression and the Energy model
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machine learning results with random forest takes 4-5 milliseconds. Further-
more, computing the energy consumption using the energy model also takes
less than a millisecond for all benchmarks. To compare the time consump-
tion of obtaining energy estimates statically to obtaining them dynamically,
we recall that for all static techniques we must first compute the count of
each CIL instruction in the program. The time for this is seen in the Counts
column on Table 4.4.2. As the time taken to compute the energy consump-
tion estimates using the machine learning models and the energy model is in-
significant to the time it it takes to compute the count of each CIL instruc-
tion using our interpreter, we just compare this value to the dynamic. For
our comparison we compute how many times faster it is to obtain the CIL
counts than it is to obtain the statistically significant RAPL measurement,
and we denote this value the speedup. For the programs in our benchmark
suite the greatest speedup we observed was a 1280 times difference for the
csharp-program-concatenate-strings_0 benchmark and the lowest was a 5
times difference for the Feigenbaum_constant_calculation_0.

Table 4.4.2: Excerpt of the final time consumption results. All values are pre-
sented in ms and rounded to two decimals. For brevity the column names are
shortened, such that RF means Random Forest, and EM means Energy Model

Name Counts Linear Lasso Ridge RF SVR EM Dynamic
example-of-a-... 272.00 0.12 0.13 0.20 4.87 0.09 0.05 78536.80
find-sum-of-all-... 287.54 0.12 0.17 0.37 5.00 0.90 0.60 36117.18
print-the-integer-... 410.30 0.12 0.12 0.25 5.00 0.09 0.07 35710.60
csharp-program-... 244.73 0,12 0.13 0.10 5.00 0.10 0.04 3640.00
Combinations_2 322.13 0.12 0.13 0.15 4.84 0.09 0.05 44901.60
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Chapter 5

Reflections

This section provides a discussion of this entire project. First, we discuss the
interpreter we create for .NET programs to count the CIL instructions being
executed. Then we discuss the results obtained by estimating the energy con-
sumption of a set of benchmark programs using both the machine learning
approach and the energy model approach.

5.0.1 CIL Instruction Counting

For this project we create our own interpreter for CIL code to count the number
of times specific CIL instructions are executed for a given path through a pro-
gram. In the following section we discuss the implementation of our interpreter.

Prior to creating this interpreter, we discovered that open source interpreters
to C# already exist. Our research has found MoonWalker1 and the official
.NET interpreter2. MoonWalker is developed on the Mono platform and is
created as an equivalent to Java Pathfinder3 for .NET programs. MoonWalker’s
last update is in 2009 and as such, due to version incompatibility we did not
succeed in getting results from the program. Additionally MoonWalker only
works on programs written using the Mono runtime4 which is a different runtime
to the official .NET runtime. The other interpreter we found was the official

1https://fmt.ewi.utwente.nl/tools/moonwalker/
2https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/interpreter.cpp
3https://github.com/javapathfinder
4https://www.mono-project.com/

70

https://fmt.ewi.utwente.nl/tools/moonwalker/
https://github.com/dotnet/runtime/blob/main/src/coreclr/vm/interpreter.cpp
https://github.com/javapathfinder
https://www.mono-project.com/


.NET runtime interpreter, which is still being maintained and updated. The
interpreter is able to provide a summary of the executed CIL instructions for a
program, which is what is desired for this project. The interpreter is written in
C++ and resides in one file of 8000 lines. We have tried to utilise it, however
given that no documentation could be found regarding the interpreter, we could
not get it to run. Additionally, we tried to contact one of the maintainers of
the .NET runtime GitHub repository for help on how to build and use the
interpreter. They have not written back to us.

Limitations Of Our Interpreter

For this project, we have chosen to create an interpreter for CIL code in order
to determine the amount of times specific CIL instructions are invoked for a
given program. There are however features which are not supported in the
interpreter, due partly to time constraints. However the lack of some features
is also due to diminishing returns to implement them. This is the case for
multidimensional arrays. The multidimensional arrays require a special form
of constructor and separate methods to accessing elements and storing elements.
There are however, not a lot of benchmarks which utilise this feature, and as
such, it was decided not to support multidimensional arrays.

Another feature the interpreter lacks support for is multi-threading. This
decision is mainly due to time constraints, as most of the benchmarks do not
utilise the feature. Exception handling is also not supported, though it is
mostly due to time constraints, as most of the groundwork for supporting them
is laid. It can for instance, determine all of the exception handling blocks in the
CIL code. To support this feature would require the addition of a return flag
for methods called Exception as well as the handling of this return flag.

Aside from missing features, there are also some features which work to some
extent, mostly in simpler cases, but will break down in others. In this case, the
handling of Generics works with most small examples, however larger examples,
found in the LINQ library, might not work as intended. Most input and output
is also very lightly supported. Output is mostly set to perform no actions other
than consume the arguments on the stack, as they rarely or never have any
impact on the rest of the program.

Aside from the mentioned limitations in the implementation of features, there is
another limitation to the accuracy of the resulting instruction count. It comes in
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the form of Intrinsics5, which is an attribute that can be applied to methods,
telling the compiler, that the specific method will be filled by the JIT compiler
when executing. Since we have created our own interpreter, the intrinsic meth-
ods have to be handled. To simplify the implementation and the execution, we
simply execute a replacement method, which does what the original method
should do. However, using this approach, we loose some accuracy in the count-
ing, because the replacement methods are not created using CIL instructions,
but written directly into the interpreter.

5.0.2 Static Estimation Technique

For the static estimation techniques we have made several choices that can
impact the overall results. First, we have chosen to use machine learning and
create an energy model as means of static estimation. These two approaches are
chosen as the literature showed several papers where similar approaches were im-
plemented ([12–15]). However, it is interesting to also consider other approaches
to estimating the energy consumption of programs. One such approach could
be to estimate the energy consumption based on some time consumption model
of programs. The literature shows ([3, 34]), that a slight correlation between
time and energy exists, and this correlation could be interesting to model.

Another choice made for both static estimation techniques is, that they are
based solely on the CIL instruction counts. This could however be extended.
In [13, 14, 35], the authors estimate the energy consumption of a program by
factoring three components. The base cost of the instruction, the cost of the
transitions between two instructions and inter-instructions effects such as cache
misses or pipeline stalls. For our results, only the base cost of each instruction
is measured and used for estimation. Using the other two factors as in [13, 14,
35] could provide more accurate results. More specifically factoring transitions
and inter-instructions effects would aid the underestimation seen in the results
of the energy model and some machine learning models. For this project, we
do not include the transitions between instructions and inter-instruction effects
due to time limitations. To measure the transitions between instructions, this
would require to measure two instructions in a row, and subtracting the cost for
the instructions themselves. In addition, the current model does not account
for exceptions thrown. Therefore, the behaviour of exceptions are indefinable

5https://github.com/dotnet/runtime/blob/main/src/libraries/System.Private.
CoreLib/src/System/Runtime/CompilerServices/IntrinsicAttribute.cs
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in the interpreter and thus for benchmark that throws exceptions the estimates
will be less accurate.

Lastly, common for both static estimation techniques is that the models they
depend on are only computed on one specific CPU rendering them tailored to
that CPU. However, as different CPUs may vary in energy usage per instruction
the results only reflect the energy consumption of the CPU on which the energy
model and the data set for the machine learning models are created. For more
accurate results energy and machine learning models should be created for all
CPUs.

5.0.3 Machine Learning Results

In Section 4.4 on page 64 the energy consumption values using the machine
learning approach are presented. The results show, that the linear models, being
linear regression, lasso regression, and ridge regression, perform the worst with
the largest percentage difference from the ground truth. The non-linear models
of random forest and support vector regression performs better than the linear.
For random forest the minimum value is approximately -7.5% and the maximum
value is approximately 9.2%. For the support-vector regression boxplot, the
minimum and maximum are approximately -28% and 17% respectively. This is
also seen in the boxplots shown on Figure 4.4.1 on page 66 and Figure 4.4.2a on
page 68. Furthermore, the linear models are able to predict negative values for
the energy consumption. This is naturally non-desirable as a negative energy
consumption is unrealistic. This suggests that the data is not linear or that not
enough data has been collected to fit the linear model properly. These results
confirm the hypothesis presented in Section 4.1 on page 55

Several measures can be implemented to improve the machine learning models.
First, the data set consists of 147 programs, which is less than the total num-
ber of features, being the 226 different CIL instructions. When the number of
observations is less than the number of explanatory variables, there can be a
lot of variability in the least squares fit (see Section 2.2.4 on page 13), resulting
in overfitting and consequently poor predictions on observations not used in
training the model [36]. Therefore, to improve on the machine learning model
a larger data set is needed. A larger data set could be obtained by improving
the interpreter such that it can handle more benchmarks. Furthermore, to im-
prove the machine learning models it could be interesting to inspect the level
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of correlation between each feature and the energy consumption. This could
reveal which features are highly correlated and which are not. The less corre-
lated features can then be discarded resulting in regression models with fewer
but more correlated features. In [37] the author states that a good feature sets
contain features that are highly correlated with the class, yet uncorrelated with
each other, which is what we would strive to achieve. Furthermore, new features
could be introduced that help predict the energy consumption of the program.
For example in [12] they use performance features such as cache hits and misses
and branch prediction successes. This however requires the program to be run,
which defeats the purpose of the static estimation. Instead data such as the
transition between instructions could be included into the data set.

Furthermore, besides the fact that we have excluded programs in the data set
that contains commandline arguments and runtime IO, some programs still con-
tain file IO. This type of IO cannot be handled by the interpreter which merely
disregards the instructions for the IO. In this way, some programs are included in
the data set are not correctly represented. This is because they are represented
with the correct energy consumption as measured by our measuring framework
but, the instruction counts are incorrect due to our interpreter disregarding file
IO. Because of this some entries in the data set can be considered faulty.

5.0.4 Energy Model Results

The results from the energy model are seen in Section 4.4 on page 64, where
it is seen that the median is -79.22%. This means, that in general the energy
model overestimates the energy consumption of the programs, which contradicts
our hypothesis made in Section 4.1 on page 55. Furthermore, based on Q1 and
Q3, being -91.9% and -21.98% respectively, the average results from the energy
model do not convey much information about the actual energy consumption of
the program analysed.

To investigate why the performance of the energy model is worse than antici-
pated, we consider the instructions and the composition of the energy model. In
terms of composition we create the energy model as a linear combination of how
many times each instruction is encountered in a program by our interpreter and
the instruction’s energy cost. As seen in Section 1.2 on page 2 and discussed
in Section 5.0.2 on page 72 it is commonplace in the literature to include the
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transitions between instructions and other energy cost such as cache misses and
pipeline stalls.

Considering the instructions, not all 226 instructions are implemented and not
all implemented instructions can be estimated precisely. Firstly, a list of the
CIL instructions not implemented is seen in Appendix A on page A-1. The list
includes in total 50 instructions of 226. However only 14 of these instructions are
present in the programs we use for benchmarking. The instructions not imple-
mented include instructions that depend on some address in memory, such as all
ldind instructions. Furthermore, instructions related to exception handling are
not implemented as the instruction Throw cannot be emitted without also be-
ing caught before stopping the measurements. Thus, we cannot get an accurate
measurement of either. As these instructions are not implemented this results in
the estimations from the energy model underestimating the ground truth. How-
ever, as only 14 of the 50 not implemented instructions are actually encountered
in the benchmark programs we do not entirely attribute the underestimation of
the energy model to this. Lastly, from Appendix A on page A-1 we see that
the pop and ret instructions are not implemented per se. However, they are
indirectly measured, as when measuring all instructions, the DynamicMethod to
which we emit the instructions must return, thus all emit a ret. Also, when
loading a value this value must eventually be popped from the stack before re-
turning. Therefore, when measuring the energy consumption of the load we
also measure the energy of the pop instruction.

Considering the instructions that are implemented some instructions are diffi-
cult to estimate precisely. This includes the data dependent instructions such as
mul. In the case of the mul instruction the energy consumption of the instruc-
tion depend on the input given [13]. To measure the energy consumption of
instructions of this kind we use the framework that we created in Section 3.3.1
on page 47 that builds on the measurement framework of [3]. Using this frame-
work allows us to provide randomised values to such instructions. However, for
a more precise measurement, the method for measuring the energy consumption
of data dependent instructions could be split into several separate measurements
accounting for values of different sizes. In this way, we could for example mea-
sure the energy consumption of the mul instruction for large integer values and
for small integer values. If our interpreter could provide a range for the values
for each data dependent instruction, the results could be more precise as the
more specialised instruction measurement could be used. Another option is to
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create a custom attribute which the user could provide to each integer with the
expected range.

Furthermore, the created data set contains negative values for the energy con-
sumption of some instructions. This is because, to measure the energy con-
sumption of some instructions, they require some stack transitional behaviour
before being able to execute. Thus, we need other instructions to setup the
stack before executing the desired instruction, the energy consumption of the
additional instructions need to be subtracted from the result of the instruction
that we are measuring. If the combined additional results gets larger than the
result for this method, then it leads to the result being a negative number. The
combined additional result should not be able to grow larger then the result.
However, as the benchmarks for the instructions are small, and take less than
0.1 ms to run, the results can be influenced with the operating system.

Lastly, as mentioned in Section 2.2 on page 8, another approach to comput-
ing the energy model is to create a series of C# programs instead of using
System.Reflection.Emit to generate CIL code to test the CIL-instruction set.
This would ease the process of creating the different programs needed, as the
stack would not need to be prepared before each instruction that requires it.
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Chapter 6

Conclusion and Future
Work

6.1 Conclusion

This project documents how we created an extension for Visual Studio Code that
aids developers in reasoning about the energy consumption of their software. We
created three approaches for estimating the energy consumption of programs,
being statically using machine learning, statically using an energy model, and
dynamically using RAPL. Furthermore, to aid the static approaches we created
an interpreter for CIL code. However, as the results showed, neither of the static
approaches, besides random forest regression, were able to accurately estimate
the energy consumption, though we present suggestions for improvements in
Chapter 5 on page 70. Both static and the dynamic estimation approach were
implemented in the Visual Studio Code extension in the form of a micro service
architecture. We created a service for the machine learning estimate, one for
the energy model and one for the dynamic approach.

This project was created and guided by the problem statement in Section 1.1 on
page 2 which is reiterated below. The following sections summarise the entire
project and answer the problem statement.
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How can an IDE extension be made to aid developers in reasoning
about the energy consumption of their software

First, we explored the related work of this field in Section 1.2 on page 2, to
investigate the current state of research. Several tools were found which aim
to estimate the energy consumption of programs. Some of which use program
analysis at runtime and some perform the analysis statically. Another tool
uses per-instruction energy modelling and incorporates the estimation into an
extension for the IDE Eclipse. In addition to tools, we also found the current
state of estimation techniques. These techniques include machine learning based
on software performance features such as cache misses and context switches.
Other papers created per-instruction energy modelling for Java, which measured
the energy consumption of performing each Java Opcode. These measurements
were used along with an interpreter to estimate the energy consumption of
programs or to create a probabilistic energy distribution of instructions. Lastly,
the related work also showed dynamic approaches using RAPL where a program
is run multiple times while the energy is measured.

In Chapter 2 on page 5 we determine the specifics of the project and how we
answer the problem statement. We designed a user interface for the Visual
Studio Code IDE extension. A prototype of the extension was created, being
a Visual Studio Code WebView that conformed to the general design of Visual
Studio Code. From the user interface we allow the user to choose for which
programs or methods they want energy consumption estimates. They can also
choose how they want to obtain the measurements, be it statically using the
energy model or machine learning or dynamically using RAPL.

We also designed how to implement the approach for obtaining the energy con-
sumption estimates. For the energy model and the machine learning we explored
different software abstractions to use as a basis for the estimations, being C#
source code, CIL code, and machine code. We decided to use CIL code as
this provided a restricted set of instructions while being machine independent.
Then, to count CIL instructions, we decided to create an interpreter for CIL
code to count all CIL instructions in a program along with the number of times
each CIL instruction is performed. For the machine learning models we investi-
gated five different regression techniques to predict the energy consumption of
programs. We decided to employ an experimental approach to determine which
of these techniques performs best on the problem of this project. We decided to
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create the energy model using run time code generation in C#. Lastly, for the
dynamic approach we decided to extend the framework created in our previous
work [3].

Following the design, we implemented the different estimation techniques and
the Visual Studio IDE extension in Chapter 3 on page 27. We implemented the
IDE extension according to our designed prototype. For the extension to get the
energy estimates we created a micro-service architecture where microservices are
created for each estimation approach. We also created a microservice for our
interpreter. In this way, the extension can communicate with the microservices
using HTTP calls as needed, and the microservices for the estimation approaches
can communicate with the interpreter microservice as needed.

Our CIL interpreter was created using Python with the purpose of providing
a count for each executed instruction. Along with the interpreter, the ma-
chine learning models were created using Python, and trained on a set of 147
programs. For the per-instruction energy modelling approach, we used run-
time code generation in C#, using the System.Reflection.Emit library, to
emit individual instructions and thus measure their energy consumption. As
instructions must be emitted to a method, we used the approach of creating
DynamicMethods, which are also part of the System.Reflection.Emit library.
We created DynamicMethods for each CIL instruction. Then the energy con-
sumption of the methods were measured, and any dependencies subtracted.
The measurements were then used for the implementation of the energy model
estimation. Lastly, the dynamic estimation approach was created based on the
measurement framework made in our previous work [3].

Based on the implemented estimation approaches, we determined the error of
each static approach in Chapter 4 on page 55. We used the dynamic estimates
as the ground truth as this approach measured the energy consumption of each
benchmark program and provided statistically significant results. We calculated
the error of a benchmark as the percentage deviation from the ground truth.
Based on these results, the non-linear machine learning estimates had a lower
percentage deviation from the ground truth than the energy model and all
of the linear machine learning models. Furthermore, the energy model had
a lower percentage deviation from the ground truth than the linear models,
except for lasso regression. The estimation approach with the least error was
the random forest machine learning model, with a minimum of -7.49% and a
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maximum of 9.19%. The median of random forest is 1.06%, which indicates a
slight overestimation of the energy consumption.

6.2 Future work

This section provides an overview of future work which can be made, based on
this project, to encourage future research in this field. Here, multiple possible
areas of future work is elaborated upon and described.

6.2.1 Improved interpretation approach

In Section 2.2 on page 8, two different estimation approaches are designed.
Being the naive approach and the Counting by Interpretation approach. The
interpretation is the approach used throughout the results. An alternative to
the interpretation approach could be to use more tools from static analysis such
as symbolic execution. One idea for such an approach is to use a single pass
of the CIL program to create a control flow graph (CFG) and then, based on
the graph, generate the set of input values necessary to explore all code paths.
This would make it a more generic energy estimation approach compared to the
interpreter, as the interpreter only follows a single path through the program,
either through input parameters or hard-coded values. Taking the average of
all paths could provide a better estimate, than simply executing one path. The
advantage of such an approach is the speed obtained by not interpreting every
single instruction. One disadvantage of this approach is the large set of possible
paths even for small programs, especially when loops are involved.

6.2.2 Using the .NET interpreter

As discussed in Chapter 5 on page 70, the .NET repository for the official
runtime contains its own interpreter. This interpreter is created to run C#
programs, with the added feature of summarising the number of times each
CIL instruction is executed. Compared to the interpreter we have created, we
anticipate that the official .NET interpreter would provide more accurate counts
of the CIL instructions, since it is kept up to date with the rest of the runtime
code and it supports all CIL instructions. Thus, if we could get the official
interpreter to work, then more benchmarks would be available for training and
testing.
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6.2.3 Improve Machine Learning Models

For future work it would be relevant to improve the machine learning models.
Ideas for how this could be done are presented in Chapter 5 on page 70 and
elaborated on here. Firstly, we propose that a larger data set could contribute
to better results. In total 1438 programs are scraped from the internet to be
used for the data set, however only 147 programs are part of the final data set.
This is because we exclude programs based on certain criteria as presented in
Section 3.2.2 on page 34. Thus to expand the data set more programs must
comply to the criteria. In Section 3.2.2 on page 34 we also present a pie-chart of
the criteria and the percentages with which they exclude programs. The criteria
that make us exclude the most programs are those stating that the programs
must include a Main function (22.3 %) and that the program must be able to be
run with our interpreter (35.9 %). For the programs that do not have a Main
function we could write a script to automatically refactor those programs such
that the program is started from a Main function. For the criterion that states
that the program must be able to be run by our interpreter we exclude 35.9 %
of all programs. To combat this, we must improve the interpreter or use the
.NET interpreter instead. Suggestions for how to do this are described above.

Another suggestion for improvement of the machine learning models is to limit
the number of explanatory variables, which is currently 226. This would make
the data set more concise, but possible also more precise. To do this, we would
investigate which variables are mostly correlated to the output variable.

6.2.4 Improving the Energy Model

In Chapter 4 on page 55 the values from the energy model are shown as a boxplot
on Figure 4.4.2b on page 68. From the graph we see that the model underes-
timates in most cases. However, the energy model also only takes into account
how many of each instruction is present multiplied by the energy consumption
of the given instruction. This is a simple model with a linear mapping between
instructions and total energy consumption. In the literature an energy model
is often presented as the product of the energy consumption of each instruc-
tion and the number of times they are executed, the energy consumption of the
transition between instructions, and inter-instruction effects. We only model
the first part of this. Thus, for future work we would implement the remaining
parts of the product into our energy model. To model the transition between in-
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structions, we would count the number of times each instruction switches to any
other instruction and then multiply that number with the energy consumption
of the transition. This should be done for all transition pairs of instructions.
Lastly, we would model the inter-instruction energy costs associated with the
program, being for example the effects of cache misses. Especially, we anticipate
that modelling the transitions will improve the estimation.

Furthermore, as stated in Chapter 5 on page 70, not all CIL instructions have
been measured. Therefore, to improve the energy model, it would be ideal
to implement these instructions. Since some of the missing instructions are
encountered in the benchmarks, they are part of the reason the energy model
underestimates.

6.2.5 Usability Test of IDE Extension

For future work we find it relevant to conduct usability tests of our IDE ex-
tension. This would provide insights into how it could be improved such that
developers benefit the most from the extension. The usability test should be
conducted with subjects that are within the target group of the extension, that
is developers that create software where the energy consumption is of concern
[2].

6.2.6 Creating An Energy Model

The energy model estimation technique uses an XML file describing the energy
consumption of each instruction in CIL. However, different CPUs energy con-
sumption for instructions can vary. Therefore, the energy consumption of a
program can vary based on, on which CPU the program is run, and the energy
model should reflect this to achieve the best estimates. As such, for the best
estimation results the energy model XML file should be created on the same
system, for which the estimates are performed. For future work, it should be
readily available for the user to create an energy model to reflect their system,
such that the user can get the most accurate results.
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A Missing CIL instructions for the energy model

• Arglist

• Calli

• Castclass

• Constrained

• Cpblk

• Cpobj

• Endfilter

• Endfinally

• Initblk

• Initobj

• Isinst

• Ldelema

• Ldfld

• Ldflda

• Ldftn

• Ldind_I

• Ldind_I1

• Ldind_I2

• Ldind_I4

• Ldind_I8

• Ldind_R4

• Ldind_R8

• Ldind_Ref

• Ldind_U1

• Ldind_U2

• Ldind_U4

• Ldloca

• Ldloca_S

• Ldobj

• Ldsfld

• Ldsflda

• Ldtoken

• Ldvirtftn

• Leave

• Leave_S

• Localloc

• Mkrefany

• Readonly

• Refanytype

• Refanyval

• Rethrow

• Starg_S

• Stelem_Ref

• Stfld

• Stind_Ref

• Stobj

• Switch

• Throw

• Unaligned

• Volatile
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