
Master Thesis
-

Master Thesis Report

Roberto Rodríguez

Aalborg University
Electronics and IT



Copyright c© Aalborg University 2015

Here you can write something about which tools and software you have used for typeset-
ting the document, running simulations and creating figures. If you do not know what to
write, either leave this page blank or have a look at the colophon in some of your books.





Title:
Scheduling of home appliances based
on adaptive user optimization and di-
verse forecasting models.

Theme:
Energy, machine learning

Project Period:
Spring Semester 2020

Project Group:
Roberto Rodríguez

Participant(s):
Thomas Dyhre Nielsen

Supervisor(s):
1

Copies: May 17, 2021

Page Numbers: 42

Date of Completion:
Electronics and IT
Aalborg University
http://www.aau.dk

Abstract:

In United States the residential and
commercial buildings consume 73% of
the electricity. The Smart Grid imple-
mentations have grown boosting con-
cepts such as: Demand Side Man-
agement (DSM), Advanced Metering
(AM), Demand Response (DR) and
Scheduling and Forecasting (SF). The
renewable energy sources as wind tur-
bines and photovoltaics (PV) behave
uncertainly, therefore there is a gap be-
tween the supply and demand energy.
To tackle the imbalances, many studies
have proposed solutions based on DR
strategies to reschedule the load en-
ergy. From this perspective to accom-
plish energy efficiency at household
level, it is necessary to use the flexi-
bility concept to adjust the supply de-
mand gap. This project proposes to get
the possible energy loads that can be
rescheduled as flexible consumption
descriptions (flex-offers). This work
focuses on wet devices (washing ma-
chine, dishwasher) because they can
change the behaviour to fit in the RES
production energy and they represent
30% of household consumption.
In Demand Side Management, the
pricing mechanisms are designed to
encourage the consumers to change
their behaviour, for example the time-
of-use pricing sets different prices
during the day, hence the consumer
change the demand to off-peak hours.
In this context, to schedule the con-
sumer loads, we have to apply the best
machine learning models to get the
best results.
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Chapter 1

Introduction

In 2015, residential and commercial buildings consumed 73% of the electricity in
the U.S. [8] The Smart Grid implementations have grown boosting concepts such
as: Demand Side Management (DSM), Advanced Metering (AM), Demand Re-
sponse(DR) and Scheduling and Forecasting(SF)[2]. The renewable energy sources
as wind turbines and photovoltaics (PV) behave uncertainly, therefore there is a
gap between the supply and demand energy. To tackle the imbalances, many
studies have proposed solutions based on DR strategies to reschedule the load en-
ergy. From this perspective to accomplish energy efficiency at household level, it
is necessary to use the flexibility concept to adjust the supply demand gap [1].
The proposed aim is to get the possible energy loads that can be rescheduled as
flexible consumption descriptions (flex-offers). This project focuses on wet devices
(washing machine, dishwasher) because they can change the behaviour to fit in the
Renewable Energy Production (RES) production energy and they represent 30% of
household consumption [12].

In DSM, the pricing mechanisms are designed to encourage the consumers to
change their behaviour, for example the time-of-use pricing sets different prices
during the day, hence the consumer changes the demand to off-peak hours [13]. In
this context, to schedule the consumer loads, it is necessary to get real time and
predicted future data, maximum device flexibility, device usage preferences and
manual device operation scheduling [5]. In the DSM environment the consumer
interaction is necessary to shift the loads, however the new consumer requirement
to participate in decisions can lead consumers to get tired of rescheduling appli-
ances. This phenomenon is known as “response fatigue” [11].

Based on the time horizon the energy load forecasting can be classified in:
Very Short Term forecasting (VSTF), Short Term Forecasting (STF), Medium Term
Forecasting (MTF) or Long Term Forecasting (LTF). Considering that the Locational
Marginal Price (LMP) is given by Day-Ahead or Real-Time pricing, in both cases
the prices are released for the next day. This project is narrowed down to focus

1



2 Chapter 1. Introduction

Figure 1.1: Data dictionary

only at STF, specifically to estimate daily the next two consecutive hour-level and
day-ahead wet-device activations (the details will be discussed in Section 4) [6].
The hour to make the predictions daily will be related with the smaller activity
of each device at the end of the day, giving time to the user to override the new
schedule.

1.1 Dataset: Description and Analysis

The dataset used in this Project is from Pecan Street organization. In dataport web
site that manages the Pecan Street datasets, provides access to data on consumer
energy and water consumption behaviour. From Dataport it can analyse, visualize
and create custom reports from appliance-level consumer. The dataset provides
measures circuit-level usage and generation from approximately 1000 homes that
are located mainly in Austin Texas. The measures can be obtained minutely or
hourly. As this is a large dataset is important be careful to select the right data.
This study selected the columns shown in Figure1.1:

The number of houses from which the data could be collected is inversely pro-
portional to the period of time that it selects for the query. i.e. It is possible to
get cured data from 20 houses in a period of one year, however it can get the data
from 11 houses in two years. This means the shorter period of time, the more
information can be obtained. The selected data period is from January 2017 until
December 2018 and this period has been chosen because it was the most recent
data available from Dataport.

As mentione in the introduction this project focuses on wet devices, such as
dishwashers and washing machines, they are responsible for approximately of 30%
of the household energy consumption.[4]. To find relations between the wet de-
vices and other devices, it has been selected two more appliances that are related
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Figure 1.2: Total Activations for House:Washing Machine

with the wet devices, the oven and the dryer.
To analyse appliances behaviour along the time, it has been created graphs with

different features that we are showing above:

1.1.1 Washing machine

The total activations for houses along the two years for the washing machine is
shown in the Figure1.2,there are three houses(379,4147,871), whose values are from
500 to 600 activations. Five houses have from 300 to 400 activations. And finally 3
houses under 200 activations.

The total activations for weekdays are shown in the Figure1.3. The weekdays
are shown from Monday to Sunday and as it supposed, Sunday is the most popular
day to make laundry, whereas Tuesday is the second most popular one. The num-
ber of activations of these two days is around 600, meanwhile the least popular
weekday, Thursday has around 400 activations.

The total activations of all houses per hour is shown in the Figure1.4. It is visible
that, the most frequent hours to activate the washing machine are the morning
hours from 9:00 to 12:00.

The washing machine activations per house, group by weeekday is shown in
the Figure ??
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Figure 1.3: Total Activations for Weekday: Washing Machine

Figure 1.4: Total Activations for hour: Washing Machine
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Figure 1.5: House 93

Figure 1.6: House 9001
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Figure 1.7: Total Activations for House: Dishwasher

1.1.2 Dishwasher

The total dishwasher activations for houses is shown in the Figure1.7. Houses(379,
1714, 4147) have between 500 to 600 activations. The houses 379 and 4147 have
higher activations number with respect to the washing machine too, where the
house 93 has the lowest value, similar to washing machine activations.

The activations number for weekdays are shown in the Figure1.8. The highest
number of activation is on Sunday, with more than 500 activations. However it does
not differ much from the lowest number of activations corresponding to Friday
having 400 activations.

The total activations for every hour is shown in the Figure1.9. As it is visible, it
has a substantial number of activations in two ranges: from 6:00 to 12:00 and from
18:00 to 21:00.

1.1.3 Dryer

Figure1.10 shows the total dryer activations for houses. The highest numbers of
activations are in houses 379, 4147 and 871. As we observed in the Figure1.2 these
are the three houses with more activations for washing machine too.

The total dryer activations for weekdays is shown in the Figure1.11. It has
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Figure 1.8: Total Activations for Weekday: Dishwasher

Figure 1.9: Total Activations for Hour: Dishwasher
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Figure 1.10: Total Activations for House: dryer

been observed that the dryer has similar behavior with the washing machine with
respect to the number of activations.

The total activations for an hour is shown in the Figure1.12. There is a consid-
erable dryer activity from 8:00 to 22:00, however The peak hours are from 10:00 to
13:00.

1.1.4 Oven

The oven activations for houses is shown in the Figure1.13. It is notable that there
are two houses(5784,8142) with very high values of activations. Oven data has been
chosen to find out a correlation with the dishwasher.

The oven activations for weekdays is displayed in the Figure1.14. As all the
appliances the most popular day to use it is Sunday, and the smaller value belongs
to Thursday.

The total oven activations along the day are shown in the Figure1.15. The peak
hours are in three different ranges: 7:00 to 8:00, 11:00 to 12:00 and 17:00 to 18:00
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Figure 1.11: Total Activations for Weekday: dryer

Figure 1.12: Total Activations for Hour: Dryer
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Figure 1.13: Total Activations for House: oven

Figure 1.14: Total Activations for Weekday: oven



1.1. Dataset: Description and Analysis 11

Figure 1.15: Total Activations for Hour: Oven

1.1.5 House size in square footage

One of the factors that could be considered as a predictor is the number of people
in the house, however this information is not availableon the dataset. Althought
it provides the information of the size in square footage to check the correlation
with the appliances activations. The results are shown in the Figure1.16 where is
visible that the house 379 second biggest size, has the highest number of activations
regarding to the washing machine, dishwasher and dryer. Yet the rest of the houses
do not have any relationship between size house and activations. For example the
house 93 is one of the biggest house, however it has the smallest value in activations
in most of the appliances.

1.1.6 Features

As it could observe in the previous graphics about the data analysis. Base on the
high correlation between the features and the response, it has been selected the
following predictors:

• Day of the week

• Day of the month



12 Chapter 1. Introduction

Figure 1.16: house size

• Month

• Year

• hour

Additionally it will be tested eigth more predictors:

• Time elapsed, between the current activation and the previous five activa-
tions. It means that there will be five new features.

• The mean among the time elapsed features.

• The mean among all the time elapsed for each house.

• The standard deviation among all the time elapsed for each house.



Chapter 2

Flex Offer

2.1 Flexibility and Flex offers

To manage the energy demand, this project proposes to use the flexibility devices
which means shifting load-devices from a planned timestamp to other timestamp
with utility benefits. The flexible energy demand can be represented in two dimen-
sions[9].

• The first dimension is the time flexibility that depicts the possibility to resched-
ule the load-device.

• The second dimension is the amount flexibility that represents the energy
consumption at specific time.

Definition 1. A flex-offer f is a tuple

f = ([tes, tls], p)

, where
[tes, tls]

is the time interval during which to trigger the Activate action and p is the energy
profile. p is a sequence of slices

< s1, ..., sd >

, where a slice sd is a continuous range

[emin, emax]

defined by the minimum emin and maximum emax energy bounds, and d is the
number of slices in p[13]

13
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Figure 2.1: Flex Offer on two dimensions [13]

The latest end time of the device operation is calculated as

tle = tls + d

that is shown in the figure 2.1 [9]. The flex-offer works on both time and amount
flexibility, this project only focuses on the time dimension of flex-offers, as we
focus on wet-devices and they do not allow amount postponement, but only for
time shifting[1], such that

emin = emax

While we are working on uncertain environment on demand and supply in the
energy market, Flex-offers can be a very important aid to the energy market players
such as Balance Responsible Parties (BRPs) and Distribution System Operators
(DSOs). BRPs could get benefit of Flex-Offers, using it to schedule demands that
minimize their market deviations. In this context the prosumers (individual who
both consumes and produces) provide flexibilities to the market players, who can
exploit it for financial and share part of the benefits to the prosumers.[1]
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2.2 Predictions

2.2.1 Prediction of Appliance activation

The Home Energy Management System(HEMS) can supply Appliance Load Mon-
itoring (ALM) in costumers sites, in this project we use Dataport dataset described
in 1.1 that works like Non-intrusive Load Monitoring (NILM). This type of load
monitoring allows us to get disaggregated household electrical load measured at
a single appliance [14] Dataport supply the load measurements in terms of Kw/h,
therefore we just take the initial timestamp of each appliance to transform this
information in activations per appliance. We analyzed the behavior in the ap-
pliances(washing machine and dishwasher), and we concluded that the average
operation duration is 70 minutes, it means that even there are energy load absense
in this 70 minutes, the machine still works in the same task. Device activations are
described like:

A = [a1, a2, ..., an]) (2.1)

where a1 is the first activation and an the last activation in the period of two years.
It is important to mention that the period between a1 and a2 is going to be a feature
to predict the activations.

Then we use the activation set per each appliance to predict an hour-level pre-
dictions of the next two activations . Thus we can produce the earliest start time
for the first activation and the latest start time for the second activation, of a flex
offer.

Given the random variables Tes, the timestamp of the earliest start time, and
Tle, the timestamp of the latest end time, and given the dataset 1.1 with the data
series, with the granularity of the chosen aggregation level, in this project is hourly
granularity. We will predict Tes probability, given an evidence set P(Tes|e) in this
case the set is the dataset from Dataport, with the selected features described in
1.1.6. Then we predict

P(Tle, Tes|e) = P(Tle|Tes, e)P(Tes|e) (2.2)

Being the probability of the time of the earliest start time and the latest end
time, conditioned by the probability of Tes.

2.2.2 Probabilistic Flex- Offers

As we described in section 2.1 the Flex Offer model represent the range flexibility
between two timestamps, although our model represents the Tes and the Tle like
random variables, therefore it is necessary creating the new definition of proba-
bilistic flex offer [3]. A probabilistic flex offer is a tuple

f = ([Tes, Tle], p)
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Figure 2.2: Earliest Start Time

where Tes and Tle are discrete random variables to represent the earliest start
time and the latest end time respectively and p is the energy profile of activa-
tion. [Tle,Tes] defines a set of |Tle| x |Tes| possible flexible intervals where the
activation can be reschedule, described by the tuple <[tes,tle - |p|], P(Tes = tes,
Tle = tle)> where tes ∈ Tes and tle ∈ Tle, |p| is the length of operation and P(Tes

= tes, Tle = tle) is the interval probability define in 2.2 The probabilistic flex offer
considers all the intervals [tes,tls] where tls= tle - |p| on the period between the
earliest start time and the latest end time. The figure 2.2 shows the earliest start
hour distribution for our dataset, and the figure 2.3 shows the distribution for the
latest start hour. In 5 it will be detailed how to use flex-offers to get an accurate
schedule flexible demand.
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Figure 2.3: Latest Start Time
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Machine Learning Algorithms

3.1 Supervised Learning Algorithms

Inductive machine learning is the process of deducing a set of rules from train-
ing set examples. It means building a classifier algorithm to use for generalizing
unseen instances [7]. The figure 3.1 shows the process to solve a real problem by
supervised learning

3.2 Bayesian Network (BN).

A BN is a probabilistic graphical model that represents the relationships among
a set of variables (features X) and their conditional dependencies by a directed
acyclic graph (DAG) S. The nodes in the graph S are in one-to-one correlation
with variables X. The arcs among the nodes are the effects between the nodes,
whilst the nodes that are not connected represent variables that are conditionally
independent of each other. To learn a BN is necessary to develop two parts: first
the DAG learning and second the probabilistic parameters resolution. We can
represent the probabilistic parameters via set of tables, one for each variable, as it
is shown in the figure 3.2 [7]

3.2.1 Naive Bayes Classifier

Naive Bayesian networks (NB) basically are Bayesian networks that are made of
DAG with only one parent (the unobserved node) and several children (the ob-
served nodes) with a strong assumption of independence among child nodes re-
spect to their father. In this way, the independence model (Naive Bayes) is based
on estimating the equation 3.1

R =
P(i|X)

P(j|X)
=

P(i)P(X|i)
P(j)P(X|j) =

P(i)∏ P(X|i)
P(j)∏ P(X|j) (3.1)

19
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Figure 3.1: Supervised Learning process to solve a problem
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Figure 3.2: Bayesian Network

It compares these two probabilities

P(i|X)

and
P(j|X)

and the longer probability specifies which class label that is more likely to be the
real label (if R>1: predict i; else predict j). Naive Bayes classification is prone to
being extremely affected by 0’s probabilities, if you have no occurrences of a class
label and a certain attribute value together then the frequency-based probability
estimate will be zero, NB uses a product operation to compute the probabilities
P(X, i). This can be avoided by using Laplace estimator or m-esimate, by adding
one to all numerators and adding the number of added ones to the denominator
[7] . The assumption of independence among child nodes is constantly erroneous
therefore other sophisticated algorithms like ANNs are more accurate than NB.

3.3 Linear Regression

The concept of regression and the methods to research the relationships between
two variables have been studied since 100 years ago. There are two types of linear
regression, the simple regression and the multiple linear regression. We will focus
on the multiple linear regression.
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Suppose that there are multiple input features (predictors) X1,. . . ,Xn are all
numeric and there is one target Y. The linear function of the input must be like the

Yw̄(e) = w0 + w1 ∗ X1(e) + ... + wn ∗ Xn(e) =
n

∑
i=0

wi ∗ Xi(e) (3.2)

where
w̄ =< w0, w1, ..., wn > (3.3)

is a tuple of weights, to make easier to manipulate the equation, we create X0, with
value 1.

We say that E is a set of data, The sum of square errors on examples E for target
Y is

error(E, w̄) = ∑
eεE

(Y(e)−Yw̄(e))2 = ∑
eεE

(Y(e)−
n

∑
i=0

wi ∗ Xi(e))2 (3.4)

The weights proposed can be calculated analytically. Other approach to use for
wider classes of functions is computing the weights iteratively [10].

Gradient descent is an iterative approach to find the function’s minimum. Gra-
dient descent for minimizing errors begins with a set of weights; in each step, it
decreases each weight in proportion to its partial derivative like 3.5 shows.

wi := wi − η ∗ ∂

∂wi
error(E, w̄) (3.5)

where
η

, is the learning rate. The learning rate, the features and the data, is given as
input to the learning algorithm. The partial derivative defines how much a little
change in the weight would alter the error. The sum-of-squares error is convex for
a linear function with only one local minimum, which is the global minimum. As
gradient descent with small step size will converge to a local minimum, therefore
the algorithm will converge to the global minimum [10].

Consider minimizing the sum-of-squares error. The partial derivative of the
error in the equation in 3.5 with respect to weight wi.

∂

∂wi
error(E, w̄) = ∑

eεE
−2 ∗ δ(e) ∗ Xi(e) (3.6)

where
δ(e) = Y(e)− Ȳw̄(e) (3.7)

Gradient descent will renew the weights after sweeping through all examples.
An alternative is to renew each weight after each example. Each example e can
update each weight wi using the equation 3.8
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wi := wi + η ∗ δ(e) ∗ Xi(e), (3.8)

where the constant 2 has been deleted, because we expect it is consumed by

η

3.4 Neural Networks

The neural networks are inspired by the brain’s neurons but they do not replicate
neurons. The number of neurons in the Artificial neural networks are much less
than the 1011 neurons that there are in the human brain, and the artificial neurons,
called units, are much simpler than the real biological neurons. Neural networks
have had considerable success in different machine learning applications such as
for image interpretation, speech recognition and machine translation[10]. The main
reason is that they are very flexible and can create new features. In this project, we
will use feed-forward neural networks. Feed-forward networks are the simplest
artificial neural network (ANN), in this type of ANN, the data flow just in one
direction. This ANN can be seen like a hierarchical organization chart, but with
more connections. A regular architecture is shown in the figure 3.3 where we
can appreciate three layers, with multiple units (neurons) in each layer. In the first
layer on the left are the input neurons for the input features (predictors), the second
layer in the middle is the hidden layer, could there be more than one, where are
the hidden neurons, that are features that we never observed, but are convenient
for predictions. The last layer on the right are feed by the hidden neurons and is
the output layer that are the predictions of this architecture.

Between the input layer and the Hidden Layer we have a complete linear layer,
where each output Oj is a linear function of the input values Vi to the layer (as in
linear regression, we added X0 =1 ) described as

Oj = ∑ iWjiVi (3.9)

for weights Wji that are learned. For each input-output, there is a weight. In
the figure 3.3 there is a weight for every arc for the linear functions. Every linear
function is affected by an activation f thus: Oi = f (Vi). Examples of activation
function are: sigmoid an relu.

Backpropagation.
Back-propagation is an algorithm for training feedforward neural networks,

that implements stochastic gradient descent, for all weights. As we saw in3.3
stochastic gradient descent updates each weight w with

∂

∂wi
error(e) (3.10)
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Figure 3.3: Neural Network Architecture

for each example e
There are two properties that back-propagation applies like algorithm:
• Linear rule: the derivative of a linear function is given by:

∂

∂w
(aw + b) = a (3.11)

therefore the derivative is just the number that is multiplied by w in the linear
function.
• Chain rule: if g is a function of w and function f , that is independent on w is

applied to g(w), then

∂

∂w
( f (g(w))) = f ′(g(w)) ∗ ∂

∂w
g(w) (3.12)

where f’ is the derivative of f
The learning process has two activities through the network for each example:
• Prediction: calculate the value for the outputs of the layer. • Back-propagation:

go backwards through the layers to update all of the weights of the network to re-
duce the error.

3.5 Decision Trees

Decision tree learning is one of the simplest useful techniques of predicting algo-
rithms. We assume there is a single discrete target feature called the classification.
Each component in the domain of the classification is a class. A decision tree or a
classification tree is a tree in which
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Figure 3.4: Decision Tree Example

In the decision tree the middle nodes, the branches, represent the solutions,
and the leaves represent the predictions.

A decision tree is a tree where:
Each middle node (non-leaf) node is labeled with a condition. Each middle

node has two children, true and false. Each leaf (prediction) of the tree is labeled
with a estimation of the class.

The middle nodes (conditions) is evaluated and the arc corresponding to the
result (true or false) is followed. When a leaf is reached, the classification corre-
sponding to that leaf is returned. A decision tree can be represented as a nested
if-then-else structure in coding. In the figure 3.4 we can see how to classify if
there is going to be an activation of the washing machine or not. We have three
conditions, based on the day, time and time elapsed since the last activation. For
example if is not a weekend day inmediately is goig to classify like not activation.





Chapter 4

Adaptive user utility models

In this section as [6] proposes it will describe how to model the acceptance of
rescheduling by flex-offers 2.2.2 to get user utility that is a combination of financial
profits and user flexibility.

4.1 User utility

In this DR scheme, the reschedules appliances have to being approved by the users
based on their requirements, otherwise the involved parties will lose financial ben-
efits.The user flexibility is defined by the flex offers described in 2.1. Regarding to
the users, they are free to make decisions based on their own profit energy, regard-
less other external factors such as other users, market, etc. The utility model is a
combination between financial interests and device interests, as each user has dif-
ferent approaches, each user wiil have different utility function. Hence the function
will incorporate the specific user-device pair, the time of schedule and the finan-
cial benefit. Based on these assumptions [6] proposes an user assumption: "Users
are flexible in regards to their devices being rescheduled in return for financial
benefits, as long as the schedule matches their preferred device behavior. Their ac-
ceptance of the device schedule is positively correlated with the financial interests
and negatively correlated to the amount of delay by the schedule"

The user has the control of devices activity. In this context the scheduling
of a device activation can be represented by a quid pro quo between financial
benefits(higher flexibility) and device interests(lower flexibility). The User utility
will be defined for a user u and device d, whose operation o starting at time tes has
been scheduled to time t, as:

E[Uu,d(t|tes,tle,A)] = G(A=a,t,tes) . P(A=a|t,tes,tle) + G(A=r,t,tes) . P(A=r|t,tes,tle)
(4.1)
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where G(A=a,t,tes) is the financial benefit when the new schedule is approved
by the user, A=a, delaying the activation of o from tes to t, while G(A=r,t,tes) is the
financial benefit by rejecting the new schedule, A=r. P(A=r|t,tes,tle) is the prob-
ability that the user would either approve, P(A=a), or reject, P(A=r). the new
schedule, with respect to the delay t-tes in the interval [tes,tel] and the user flexibil-
ity. The financial benefit G(A=a,t,tes) = Price(0,t) - Price(o,tes. For example if the
new schedule is rejected G(A=r,t,tes) = Price(0,tes) - Price(o,tes) = 0 Consequently
4.1 simplifies in

E[Uu,d(t|tes,tle,A)] = G(A=a,t,tes) . P(A=a|t,tes,tle) (4.2)

4.2 User Flexibility

The user flexibility is the rate of approval of schedule by the user. The aim is under-
standing the user preference to maximize the probability P(A=a|t,tes,tle) then the
expected user utility.In [6] uses a model based on exponential distributions where
it describes the probability distribution of the time intervals between events(ready
actions) in a stochastic process where the events occur at a constant average rate.
Let T be a random variable depicting the distance between two ready device(d)
events, and t-tes be the delay on device activation o, dictated by the new schedule.
Let us assume tes <= t <= tle - |p|, then P(A=a|t,tes,tle) simplifies into P(A=a|t,tes).

Therefore,
P(A=r|t,tes) = P(T<=t-tes),
"where P(T<=t-tes) is the cumulative distribution function of the probability

that a user will need the device ready before the proposed time t"[6]. Alternatively,
P(A=r|t,tes) = 1 - P(T<=t-tes), will be the probability of new schedule user ac-

ceptance. The figure 4.1 shows the exponential distribution of the time elapsed
between two consecutive activations.

4.3 Estimation of User Flexibility

[6] proposes a data-driven user flexibility model, based just on the device-level
activations. The aim is estimating the function 1 - P(T<= t - tes), therefore it has
calculate the distribution of T, i.e. the distribution of time between two ready
events.

Let T be the random variable that depicts the distance in hours(granularity)
between two ready actions following an exponential distribution. Therefore the
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Figure 4.1: Exponential Distribution of Elapsed Time

cumulative distribution function of T is represented as:

F(t’,λ) = {1− λe−λt′ , i f t′ >= 0
0, otherwise
(4.3)

where t’ ∈ T is a time interval, and λ is the rate parameter, describing the
frequency of an interval of t’ that separates two activations. In this implementation
λ parameter will be calculated by µ where

λ =
1
µ

(4.4)

µ will be calculated based on the historical data, but it will be updated by the
new device-level load consumption data.





Chapter 5

Scheduling appliances

The User utility 5.2 is the basis to schedule flexible demand of appliances. The two
factors used to calculate the user utility are:

• Financial gain from spot market

• User flexibility 4.2

The user utility depicts the quid pro quo between maximizing financial gain
and minimizing loss of user-perceived quality of service, then presents an efficient
schedule based on these two factors.

The demand scheduling depends on the financial benefit that the flexibility can
produce from the spot market. This project will evaluate the savings that can be
obtained by the spot market.

5.1 Spot Market Savings

Spot market savings are the financial benefits of energy demands and the corre-
sponding flex offers at the spot market for the predicted device activation 2.2. To
maximize this factor, an appliance activation is rescheduled so that the cost of the
energy required for the appliance functioning is minimized. The hourly spot prices
between the earliest start time and the latest start time is represented by

Spot = [os(tees), ..., os(tele)] (5.1)

The total energy consumption cost of the device operation is the product of
energy demand and the respective spot price represented as:

S(x) =
|p|−1

∑
i=0

ei.os(x + i) (5.2)
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where |p| is the duration in hours of the device functioning that begins at times-
tamp x, and ei is the demand. Thus the savings by spot market rescheduling the
device activation from tes to t is:

∆S = S(t)− S(tes) (5.3)

=
|p|−1

∑
i=0

ei.os(t + i)−
|p|−1

∑
i=0

ei.os(tes + i) (5.4)

5.2 User utility by scheduling

The reschedule of a device activation o described by a probabilistic flex offer f maps
the start time of activation tes to a new timestamp t, producing a postponement of
t − tes in the device activation. The new timestamp will be added between the
probabilistic time flexibility interval [Tes, Tle] of the flex offer and the latest start
time is delineated as tls = tle − |p|. We will conclude the user utility definition
described by 4.1 replacing G(A, t, tes) with the spot market savings, of equation 5.4
, given by:

ε[Uu,d(t|tes, tel , A)] = (∆S).P(A = a|t, tes, tel) (5.5)

Although, the scheduling depends on P(tes, tle|e) , i.e., the flexibility interval
[tes, tle] is correct. consequently, the objective function to schedule and operation o,
considering the uncertainty of the flexibility intervals, is defined by:

ε[t] = ∑
tes,tel

ε[Uu,d(t|tes, tel , A)].P(tes, tle|e) (5.6)

where P(tes, tel |e) is the probability of flex offer interval [tes, tle].As Tes and Tle
are are discret random variables. Then the 5.6 get the summation over the discrete
values in [tes, tle] rather than integration. Finally, the scheduling function for the
operation o selects the t that maximizes the expected utility ε[t] is given by:

Sched(o) = argmaxε[t]



Chapter 6

Experiments

It has been developed and tested several experiments to check the performance
of the DR model. First it will be presented the flex offer scheduling evaluation.
Second, it will be showed how the adaptive user flexibility can satisfy the user
confort. And finally, we show how the prediction of probabilistic flex offers affect
on the scheduling process.

6.1 Dataset

It was used the Dataport dataset described in 1.1, we selected 11 houses, because of
the filtered data that contains. Each house has the consumption records of wash-
ing machine and dishwasher. The granularity selected of the time series is 1 hour.
It means we will consider the demand at hourly resolution. Based on the infor-
mation of activations per house, it was determined that the dataset is extremely
unbalanced, with an average number of activations of 1.7%. Showing an average
of 0.42 activations per day. For evaluation proposes, the dataset was splitted in
67% for training and 33% for test. For the first level prediction that utilizes Naive
Bayes model to forecast the appliance activation for the next 24 hours, it is used the
columns: day of the month, day of the week, hour, month and year. It was added
a new features: the time that has passed since the last five activations until the
current activation that are named HourDiff, HourDiff2, HourDiff3, HourDiff4 and
HourDiff5; the mean time among the 5 last activations that is called HourMean;
the mean among all the activations for house that is called HouseMean and the
last feature is the standard deviation among the time elapsed of the activations for
each house. The target is a binary class that contains 1 if there is an activation and
0 if there is not an activation within the 24 next hours, this new target increased
the percentage of the value 1 in the target to 31% . I tried to tackled the problem of
unbalanced dataset by oversampling, that means it will generate extra data from
the minority class, to overcome its shortage of data. The Synthetic Minority over-
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Figure 6.1: Probability of user acceptance

sampling Technique (SMOTE) [3] is one of the main methods to obtain this extra
sample generation. It is based on generating examples on the lines connecting a
point and one its K-nearest neighbors.

For the Financial evaluation, it was used the The Electric Reliability Council
of Texas (ERCOT) that can get from Dataport, the same provider of the dataset
consumption appliances.

For the device activation prediction, Neural Network was implemented for the
first layer, to predict if will be there an activation the next 24 hours. And the second
layer was the same as the first experiment with NB.

Evaluating device operation scheduling
The schedule’s approval by the user and the utility from the financial spot mar-

ket i given by the accuracy of the probabilistic flex-offer and the modeling of the
use flexibility. As we described before as much as rigid is the user flexibility is
lower the approval and vice versa. Therefore, it emphasizes that a rescheduling
must perform an arrangement between user acceptance and financial benefits. In
the figure ?? we can appreciate the probability of the user acceptance prediction re-
lated to the delay in hours. As we said before, as longer as the delay, the probability
acceptance will decrease.

Based on the User acceptance predictions we could get saves of 13% from the
spot market.

6.2 Evaluating activation device prediction

The efficacy of the flex offer prediction depends mainly on the accuracy of activity
device prediction. To observe the features with biggest influence in the target,
it was created the correlation matrix, that we can observe in 6.2,and we see that
the most correlated features are Hourdiffs, means and the standard deviation. To
predict the if there is an activation the next 24 hours (first layer), two models were
evaluated, the first one the Naive Bayes model, and the second one was Neural
Networks, using the library Scikit-learn and Keras from Python. The model was
evaluated at dayly and hourly level. In spite of SMOTE was applied, the results for
the first layer were not much better than the results without SMOTE, as is shown
in the confusion matrix 6.3 Therefore, it decided working without over-sampling.

Additionally, in the second layer Linear Regression was evaluated.



6.2. Evaluating activation device prediction 35

Figure 6.2: Features Correlation

The results are shown in the confusion matrix 6.5 where we can calculate the
specificity that is 0.7 and the specificity that is 0.25, concluding that NN model is
almost the double efective related to NB taking account the specificity. The results
were verified by the loss in the test data vs the loss in the validation data shown in
the 6.4 It was concluded that the model fits adequately.

Finally we can see the results in 6.6 the on the second layer, for both NB and NN
the seconda layer with Linear Regression has the same setup. We can appreciate
that after NN the second layer has a much better performance.

All the results were evaluated in Jupyter using Python, and is in the repository
https://drive.google.com/drive/u/1/folders/1wzRoqi2F6IvOvTRmzqsonSlKXpvCTl9g
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Figure 6.3: SMOTE NB results

Figure 6.4: Train loss vs Test Loss
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Figure 6.5: Confusion Matrix NN

Figure 6.6: RMSE Second Layer Linear Regression





Chapter 7

Conclusions

In this project was presented a Demand Response model to predict the household
appliances behavior. Several factors such as flexible flex offers, user utility and
user flexiblity were analyzed to understand how we have to proceed to obtain a
model to maximize the utility for consumers. The collected data was meticulously
filtered and new features were created to achieve better results in the machine
learning models tested. It is important to tackle the problem of imbalanced dataset
as one of the most important features to get the best results is the prediction of
activations. However, in some cases like this the oversampling method does not
improve the results. It is important to review the models if they are overfitting,
like the Neural Network. The best results that it can get are from Neural Networks
in the first Layer. We conclude that if we use more advanced models such as NN,
Convolutional NN, etc, we could get better results than Naive Bayes. To get better
results is important the size of the dataset, in this project the number of rows and
other features affected directly the different models performance.
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