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Abstract
This report is an investigation of an alter-
nate method for inference in a large graph-
ical BN2O model used by the AI system
IntMed. The system is used for clinical de-
cision support in real-time medical consulta-
tions and is made by Ambolt ApS who have
supplied the data necessary to conduct the
research. The current inference calculation
algorithm of IntMed is called ’Quickscore’
and calculates exact probability estimations,
but struggles to uphold the real-time con-
straint. We propose the usage of a special
type of neural networks known as Recogni-
tion Networks for inference approximation.
Specifically, we propose a Recurrent Recog-
nition Network capable of analysing the tem-
poral unveiling of symptoms through patient
questioning that happens during consulta-
tions. We show how this recurrent network
can be trained using forward sampling from
a BN2O. To demonstrate the network’s po-
tential we compare it to Quickscore in vari-
ous consultation scenarios, in terms of pos-
terior estimation and importance order of
diseases. These results show that a recur-
rent neural network is able to mimic the
results of exact inference better than the
sequential counterpart, but needs attention
in terms of scaling and calibration.
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Preface

This report is a master’s thesis build upon work from two semesters of Aalborg University’s
international computer science master’s programme. This report is thereby a continuation
of a previous report [1] made by me and my erstwhile colleague. It should therefore be
noted that part of the previous report’s content has been reused in some of the sections
of this report. This will be noted in the beginning of the chapters containing sections
that reuses the contents.
I would like to thank Ambolt ApS for the opportunity to work on this project, and

MSO Thomas Dyhre Nielsen for great supervision through the entire project and the
Machine Intelligence related courses. I also apologize for having delayed his lunch with
my questions on several occasions.
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Summary

This report is a master’s thesis that investigates the effect of using a recurrent neural
network as a method for inference in a BN2O network consisting of medical data. The
investigation takes its outset in the AI system IntMed. This system is developed by the
company Ambolt ApS and is made to provide decisive support for healthcare professionals
during patient consultations.

The system works by calculating the posterior of all possible diseases given the symptoms
which the patients reveal through questioning. The calculation time for providing exact
posteriors is however not fit for a consultation scenario where the system should provide
its diagnostic suggestions in real time.

This problem stems from the probabilistic model which the system bases its calculations
upon. The model is a large Bayesian network with a vast number of diseases and symptoms,
where the diseases have connections pointing to a large number of symptoms, and the
symptoms have connections pointing to them from a large number of diseases.

As an alternative to exact calculation of the posteriors, we propose the usage of a neural
network to instead approximate them. The neural network type used for this purpose is
called a Recognition Network which we propose to implement as a Recurrent Recognition
Network. This enables it to use the question sequences given by patients for diagnosis
prediction.

Before diving into the implementation of the recurrent version, we show how the basic
idea of recognition networks have great potential for approximating inference of BN2O
networks in general. We show how sampling of the large BN2O network can be used to
produce simulations of patient cases for the recognition networks to train upon.

For the recurrent recognition network, we show how these samples are made to resemble
a medical consultation, specifically in the context of modelling them as question sequences.
We propose an architecture for the recurrent network based on ideas from literature and
experimentation conducted throughout the project.

Finally, we conduct experiments where we compare the recurrent networks to IntMed’s
currently used exact inference algorithm known as Quickscore. We do this by analyzing the
posteriors, the ordering, the KL-divergence, and the top-k similarity between the diseases
produced by Quickscore and the recurrent networks, in various simulated consultation
scenarios. The results of the experiments show that the recurrent network is able to
produce outputs that closely resemble the estimations made by exact inference. It does
however currently require more work in terms of scaling the concept to work for very
large BN2O networks.
The data for the project as well as the overall project suggestion were provided by

Ambolt ApS. The data are created through collaboration with healthcare professionals
who created it based on disease prevalence and expert knowledge.
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1 Introduction

This entire chapter reuses content from [1].

In the field of machine intelligence one of the most common and fundamental tasks
is prediction. This is the main aspect that makes an artificial intelligence (AI) seem
intelligent compared to other kinds of software. The task of prediction comes in many
flavors, such as regression, forecasting, or cause-effect explanation. The latter has been re-
searched extensively to make sophisticated monitoring systems [2, 3] all with the common
denominator of serving as diagnostic tools.
One of the most common cause-effect prediction tasks where such diagnostic tools

are used is disease prediction. As a result of this, there are many different machine
intelligence related techniques that have been applied in this area. This has led to the
invention of an entire class of systems called Clinical Decision Support Systems (CDSS).
These systems serve many purposes within the medical domain [4, 5], ranging from simple
recommendations and/or notifications, to provision of complete diagnoses, all of which is
usually based on patient data.

One such system is IntMed, a CDSS developed by the company Ambolt ApS [6]. This
system is designed to provide real-time diagnostic assistance through the calculation of
posterior disease distributions based on patient symptoms. It derives these calculations
by using an extensive database of expert medical knowledge and patient data. This
knowledge is organized in a probabilistic model that takes form as a large bi-partite
Bayesian network, enabling it to include probabilistic knowledge about a very large variety
of diseases.

In this regard the IntMed system is very different from most other CDSS. Most diagnostic
systems presented in various papers [7–10] seem to focus on predicting either the severity
or simply just the presence of very few diseases. Furthermore, these predictions are usually
based upon very specific and limited attributes. The only other prominent example of
a system with the same probabilistic model setup and data quantity as IntMed, is the
QMR-DT system [11, 12]. This system contains prevalence knowledge of diseases and
symptoms, where both of these entities amount in quadruple digits.

Even though the inclusion of many diseases and symptoms increases IntMed’s versatility
compared to systems designed for more simple tasks, it also creates a problem that has
to be dealt with. Many of the symptoms are individually conditioned on a vast number
of diseases. Inference of disease posteriors based these symptoms requires techniques that
goes beyond both standard Bayesian network inference and network structure. However,
even with these techniques the posterior calculation may not be carried out in time
suitable for a real-time system.

1



1.1 Available IntMed Material Group mi105

An approach that does allow for real-time usage is to use a recognition network, a special
type of neural network which can bypass the direct utilization of the Bayesian network for
inference, and instead give an approximate prediction. This approach has great potential,
but could use some tweaking to become a more robust artificially intelligent prediction
tool for medical settings. A particularly interesting extension to the recognition network
is the inclusion of the temporal symptom unveiling which is inherent in all consultations.

In this thesis we investigate appliance of state-of-the-art neural network techniques for
enhancement of a recognition network. The goal is to make an implementation that allows
for consideration of the temporal unveiling of symptoms within a medical consultation. In
particular we investigate the representation of symptom evidence and usage of a recurrent
neural network structure.

The rest of this thesis is structured as follows: In the remaining part of this chapter,
we specify the disease and symptom data made available for the project by Ambolt ApS.
In Section 2 we state the primary problem statement to be investigated throughout the
report. In Section 3 we cover the necessary preliminaries, namely Bayesian networks,
BN2O networks, the Quickscore algorithm, and neural networks. In Section 4 we examine
the concept of the originally proposed recognition network idea which we subsequently
make slightly altered implementations of to showcase the recognition network potential.
In Section 5 we go through the entire design and implementation process of making
the recognition network recurrent. In Section 6 we analyse and explain the results of
experiments conducted with the recurrent recognition network, and we contrast different
implementation varieties. Finally, in Section 7 we conclude upon the primary problem
using the experimental results and observations made throughout the thesis.

1.1 Available IntMed Material

Ambolt has granted access to a database containing information of 514 diseases, 347
symptoms, and 2745 relations between them. The data contains the probabilities of the
diseases, including information about their prevalence, statistical information based on
disease incidents, and the rarity that for each disease specifies whether it is common or
rare. Most of this information comes from various healthcare professionals. The disease
data have some missing entries, so a priority system is in place to select which metric
to base the probability on, if the desired metric is not available. The priority order is
prevalence, incidents, and finally rarity.
The data set also includes demographic information about gender, age, ethnicity,

and country, as well as specific characteristics for each symptom meant for guiding the
formulation of questions. For the symptoms there is also a classification of the anatomical
region a given symptom may appear in, specified as either ’general’ or ’specific’. ’General’
refers to a body part such as the torso, and ’specific’ refers to the precise spot where
the symptom manifests such as in one of the shoulders. Finally, there is also relations
between diseases that describe which diseases that influences others.

2
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The demographic, anatomical, and disease relational information will not be used for
this project.
Aside from the data provided by Ambolt, MSO Thomas Dyhre Nielsen has provided

an implementation of IntMed that uses these data to showcase how the system normally
works.
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2 Problem Formulation

The IntMed system is built upon expert knowledge of the medical domain which is
gathered in a large Bayesian network. This network contains high quality data that may
be used for developing an AI capable of disease prediction. However, due to the challenging
structure of the data, the posterior calculation time of the AI is prone to exceed levels
where it stops being useful for real time usage. Approximating the probabilities using
a recognition network is a possible alternative. In addition, it would be interesting to
examine the results of tailoring the network to the medical consultation scenario in which
it should operate. A prominent part of this scenario is the temporal symptom unveiling
which may become available through a recurrent neural network structure.

2.1 Problem Statement

Given the introductory considerations, the following is the problem statement to be
investigated for the rest of this thesis:

“Is it possible to develop a Recurrent Recognition Network capable of using a sequence of
unveiled symptoms for approximating the inference of a large Bayesian network such that

the inference accuracy is on par with exact alternatives, if recurrent neural network
techniques from literature and aspects of the domain where the system is designed to

operate, are used as key parts of its development?”

The following questions have been made to help branch out the research:

• How are posteriors normally and currently being calculated for the type of Bayesian
network IntMed uses, and why would these ways aspire the usage of a neural network
to substitute them?

• What is the fundamental idea behind Recognition Networks, and how can it be
shown that they can provide great approximations of the inference in the type of
Bayesian network that IntMed uses?

• What state-of-the-art neural network structure is advisable for the creation of a
Recurrent Recognition Network, and how can it be explicitly designed for medical
patient questioning?

5
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• How should the samples for the training of the recurrent neural network be se-
mantically defined given the purpose of embodying aspects of a standard medical
consultation?

• Given its usage intention, how should the developed recurrent neural network be
tested, evaluated, and experimented with?

6



3 Preliminaries

All sections within this chapter reuses content from [1].

In this chapter all of the necessary preliminary information needed for the rest of the
report will be covered. The main topics are Bayesian networks, exact and approximate
inference, and neural networks.

3.1 Bayesian Networks

A Bayesian Network (BN) is a probabilistic model that takes form as a directed acyclic
graph describing the conditional dependencies of variables within a domain. A BN can be
described as a tuple [2] such that BN = (V ,E) where V is the set of vertex nodes, and
E is the set of edges. Each v ∈ V denotes a variable of the domain with a set of states it
can take within the domain. Variables that have been observed to be in a specific state is
said to have received evidence. Along with a state set, each variable has a Conditional
Probability Table (CPT) where the conditional dependencies between a given variable and
the remaining variables of the network are modeled by edges such that {∀v ∈ V |P (v|πv)}
where πv denote the set of vertex nodes with edges pointing to v. The node set πv is said
to be the parents of v, and it follows that v is their child node. A highly useful property
of this probabilistic model type is that the joint probability distribution of the different
variable state configurations can be calculated using the chain rule:

P (V ) =
∏
v∈V

P (v|πv) (3.1)

3.2 The Noisy-OR Concept

BN modelling of symptoms that are conditioned on a large number of diseases is a
non-trivial task. In the medical domain the diseases are seen as causes and symptoms
are seen as effects. This means that the disease parent set for each symptom child may
have a very large cardinality which when modelled as a BN forms many converging
connections. Let si be a symptom from the full set of symptoms s = {s1, . . . , sI}, and let
d = {d1, . . . , dJ} be the full set of diseases, then dsi denotes the parent set of si where
dsi ⊆ d. With plain Bayesian inference the CPT to be specified for si will have O(2|dsi |)
entries and is thereby time- and space-wise highly intractable.
To enable modelling of this medical domain, the BN is enhanced with the Noisy-OR

concept [13, 14] which assumes that each effect variable is conditioned on each of its cause
variables individually.

7
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With this tweak the number of probabilities to estimate becomes linear in the number
of causes rather than exponential. For the disease-symptom domain the CPTs to estimate
instead becomes {∀si ∈ s,∀dj ∈ dsi |P (si|dj)} such that each si will have a number of
CPTs equal to |dsi |.

Both symptoms and diseases are binary variables, with both having the state set {+,−}
denoting positive and negative presence respectively. If a symptom is observed to be
positive, denoted by s+i , it is assumed for that for each dj ∈ dsi , dj has caused s+i with
probability 1, unless a prevention factor has apprehended it. This prevention factor is the
probability of the disease not having caused the symptom. With this setup, calculation
of the posterior with respect to some s+i is given by:

P (s+i |dsi) = 1−
|dsi |∏
j=1

P (s−i |dj) (3.2)

Conversely, the probability of s−i is then:

P (s−i |dsi) =
|dsi |∏
j=1

P (s−i |dj) (3.3)

3.3 BN2O Networks

The BN containing all the probabilistic information used by IntMed, is graphically
organized in two horizontal layers where the top layer contains the diseases, and the
bottom layer contains the symptoms. Along with this specific structure, the network also
uses the Noisy-OR concept. This type of BN formed by 2 layers with Noisy-OR is known
as a BN2O network. Figure (3.1) shows a depiction of this setup.

Figure 3.1: Depiction of a BN2O network

The joint probability distribution of a BN2O network where the conditionals are based
on the Noisy-OR concept, is calculated by first using the chain rule for each state of the
symptoms.

8
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This specifies the conditional probabilities on the form:

P (s+|d) =
I∏

i=1

1− P (s−i |d) (3.4)

and

P (s−|d) =
I∏

i=1

P (s−i |d) (3.5)

where s+ and s− are the set of all positive and negative symptoms respectively such
that s = s+ ∪ s−. By factoring in the disease marginals, the full joint probability table
can be obtained:

P (s,d) =

(
I∏

i=1

1− P (s−i |d)

)
I∏

i=1

P (s−i |d)
J∏

j=1

P (dj) (3.6)

The disease states are unobservable in this domain and information of their states
are essentially what users of the system are interested in, whereas the symptom states
are observable through patient questioning. The system therefore works by receiving
either positive or negative evidence on symptoms through questions to patients during
consultations. The model is not the perfect representation of this domain, as multiple
diseases in reality can cooperate to cause symptoms, and symptoms may cause other
symptoms. The model should instead be seen as the best representation available.

3.4 Exact Inference in BN2O

Exact inference in BNs is the act of using Bayes’ rule to calculate the posterior probability
of the BN variables based on new evidence on the observable variables. This is the
preferable way of updating the belief about the hidden state of the unobservable variables,
especially in a medical domain where diagnostic accuracy is highly important. Using the
joint probability calculation of Equation (3.6), exact inference in a system like IntMed
that uses a BN2O structure is carried out in the following way:

P (d|s) = P (s|d)p(d)∑
d

P (s|d)p(d)
=

I∏
i=1

P (si|d)
J∏

j=1

P (dj)

∑
d

( I∏
i=1

(
1− P (s−i |d)

)) I∏
i=1

P (s−i |d)
J∏

j=1

P (dj)

 (3.7)

Isolation of the new evidence in the denominator to obtain the normalization constant
needed for Bayes’ rule requires summation over 2|d| terms to be calculated and this is
unfortunately computationally intractable. There is however an algorithm developed
specifically for BN2O structured networks that may be used instead.

9
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3.4.1 The Quickscore Algorithm

The current inference algorithm in the IntMed system is known as Quickscore [15]. It effec-
tively reduces the intractable complexity shown in Equation (3.7) through factorizations
derived from consideration of the positive and negative evidence isolation.
The probability calculation of the negative evidence for one negative symptom takes

form as the following expression:

P (s−i ) =
∑
d

|d+si |∏
j=1

P (s−i |only dj)

|d+si |∏
j=1

P (d+j )

|d−si |∏
j=1

P (d−j )

 (3.8)

where d+j represents dj being present and d+si are the present parents such that d+si ⊆ dsi ,
all of which also applies for absent diseases. By moving the summation of d into the
equation rather than taking products over the present and absent diseases of the parent
set individually, the equation can be rewritten into a simpler expression:

P (s−i ) =

|dsi |∏
j=1

[
P (s−i |only dj)P (d

+
j ) + P (d−j )

]
(3.9)

The rewriting reduces the complexity of Equation (3.8) from O(2n), to O(j) thereby
making it a linear product rather than an exponential summation. Given Equation (3.9),
the joint probability of the entire set of negative symptoms can be found by:

P (s−) =

J∏
j=1

|s−|∏
i=1

P (s−i |only dj)P (d
+
j ) + P (d−j )

 (3.10)

Rewriting of the positive evidence isolation is significantly more complicated. For
simplification, the case of having only two positive symptoms is considered. In this case
the joint probability of interest is P (s+1 , s

+
2 ):

P (s+1 , s
+
2 ) =

∑
d

P (s+1 |d)P (s
+
2 |d)P (d) (3.11)

Because of Equation (3.2) P (s+i |d) can be written as 1−P (s−i |d) which turns Equation
(3.11) into the following:

P (s+1 , s
+
2 ) =

∑
d

P (d)−∑
d

P (s−1 |d)P (d)−∑
d

P (s−2 |d)P (d)+∑
d

P (s−1 |d)P (s
−
2 |d)P (d)

(3.12)

10
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The sum of P (d) in the expression above is equal to 1 and the three sums following it
are P (s−1 ), P (s

−
2 ), and P (s

−
1 , s

−
2 ) respectively.

Using Equation (3.10), the expression can be rewritten as:

P (s+1 , s
+
2 ) = 1 −

|ds1 |∏
j=1

P (s−1 |only dj) + P (d−j ) −

|ds2 |∏
j=1

P (s−2 |only dj) + P (d−j ) +

|ds1∪ ds2 |∏
j=1

P (s−1 |only dj) + P (s−2 |only dj)P (d
+
j ) + P (d−j )

(3.13)

By combining the rewriting of both the positive and negative evidence isolation, the
following new expression for isolating all new evidence can be obtained:

P (s+, s−) =
∑

s′∈2s+
(−1)|s′|

J∏
j=1

 ∏
si∈s′∪s−

P (s−i |only dj)

P (d+j ) + P (d−j )

 (3.14)

where 2s
+ is the power set of positive symptoms. Having obtained the normalization

constant P (s+, s−) it can used within Bayes’ rule:

P (d|s+, s−) = P (d, s+, s−)

P (s+, s−)
=
P (s+, s−|d)P (d)

P (s+, s−)
(3.15)

By using the fact that P (s) = P (s+, s−), the equation can be rewritten into something
that highly resembles Equation (3.7), namely:

P (d|s) = P (d, s)

P (s)
=
P (s|d)P (d)

P (s)
(3.16)

Quickscore makes exact inference possible, however, the algorithm has a flaw when
considered in the context of being used for real time diagnostics. Notice that Equation
(3.14) has to sum over the power set of positive symptoms. This means its calculation
time is O(2|s+|). This is problematic, seen as a high number of positive symptoms is a
common phenomenon in medical consultations. Because of this, exact inference is not
possible in reasonable time given the real-time constraint. To make IntMed more useful as
a real-time CDSS, alternate ways of calculating the disease posteriors based on symptom
evidence must be investigated.

11
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3.5 Approximate Inference

Approximate inference methods sacrifice posterior accuracy, but in return speeds up the
calculation time to fit the needs of a real-time system. In general, approximate methods
take advantage of the following part of the posterior calculation:

P (s,d) = P (s|d)P (d) (3.17)

This is equivalent to the calculation of the numerator (otherwise known as the hypothesis
term) in Bayes’ rule in Equation (3.7) which shows that it is calculated as a linear product
over the same variables as the denominator. Approximate methods use this to produce
posterior estimates that are well-reasoned, since they are calculated from the same
hypothesis term used for exact inference.

Popular approximate methods applied to BN2O networks include sampling [16], where
sample configurations of the hypothesis term are used to statistically determine the
normalization constant. There are also variational Bayesian methods [12] where variables
of the hypothesis term are made dependent on parameters. These parameters are then
iteratively updated until the hypothesis term calculation yields a good approximation of
the normalization constant.
Another approximation method that combines the concepts of sampling and iterative

parameter learning are neural networks. Since many of the concepts that goes into neural
networks are key for understanding the approach of using recognition networks, this
particular approximation method will be explored further in the next subsection.

3.5.1 Neural Networks

Neural networks (NN) in computer science [17–19]1 are artificial representations of their
biological counterpart and are able to learn prediction of a given input’s classification2.
Despite the name resemblance, NNs are to be seen as function approximators rather than
artificial brains.
Plain NNs are structured as a sequential stack of layers, where each layer contains a

set of neurons. The first layer is known as the input layer and has a number of neurons
equal to the number of input features. Subsequent layers after the input layer are called
hidden layers, and each of these have an arbitrary number of neurons. The final layer is
the output layer which has a number of neurons equal to the set of possible classification
classes. Inputs to the network are always in the form of real numbers, meaning that
inputs which are not on this form must be transformed before being inputted3.

More formally, let a be a vector containing j total input features, and let f be a vector
of output neurons, then each output neuron is a function approximator for the collective
input such that {a ∈ R | ∀f ∈ f , f(a1, . . . , aj) ∈ R}.

1These references are the foundation of this entire subsection.
2Neural networks are used for other types of prediction than just classification, but since classification is
the main concern in this thesis they will be explained in this context.

3This transformation is known as one-hot encoding.
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The neurons in the layer sequence are connected through tensor edges where each edge
have an associated weight. Each neuron of a layer is connected to all the neurons in the
next. To formalize this concept, consider a network with two layers, an input and an
output layer. The weights between these layers forms a weight matrix:

W =

w1,1 . . . w1,j
...

. . .
...

wi,1 . . . wi,j

 (3.18)

Where i iterates over the neurons in the second layer, and j iterates over the weights
connected to the ith neuron in the second layer, meaning it essentially iterates over the
number of neurons in the first layer.

When the network receives input, each input is individually multiplied with each weight
connected to the neuron it was inputted to, all of which is summed together. More
formally, the dot product is taken between the weight matrix and the input vector:

W>a =

w1,1 . . . wi,1
...

. . .
...

w1,j . . . wi,j

 ·
a1...
aj

 (3.19)

where the transposed weight matrix W> allows for columnwise multiplication, thereby
producing a weighted sum for each neuron in the next layer.

All of the neurons in the hidden and output layers have an activation function. These
functions squish the weighted sum into a value ranging in a small interval. An example is
the sigmoid function where any input is outputted as a value in the range [0, 1]. If the
output is over a certain threshold, the neuron is said to become activated. To control
this activation, each neuron of the hidden layers and the output layer has a bias term
bi which is added to the weighted sum before it is squished through the given neuron’s
activation function. The final vector notation of this entire process thereby becomes:

q = f


w1,1 . . . wi,1

...
. . .

...
w1,j . . . wi,j

 ·
a1...
aj

+

b1...
bj


 (3.20)

Where fj is the output neuron activation function that approximates the probability
qj of the collective input belonging to the j’th class. Written in a more compact notation
this becomes:

q = f(W>a+B) (3.21)

where B is the bias vector. It follows from the way the network is structured that its
outputs are dependant on the weight and bias parameters. It is through tweaking of these
parameters that the network learns.
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The learning process starts off with calculation of the difference between the actual
output and the desired output, where the latter is known as the target. This calculation
happens according to a loss function. Just like with the activation functions there exist
various loss functions, but in essence they all do the same thing; takes targets and actual
outputs and calculate their difference. The loss is calculated over all training inputs and
targets.

Formally, let M be the number of training examples, let y be a vector of targets, let q
be the actual outputs, let χ =W :: B be the concatenation of the weights and biases,
and let L be a loss function, then the loss of an NN is calculated by:

loss =
1

M

M∑
i=1

L(yi, q
(χ)
i ) (3.22)

where χ are the weights and biases that is used by the network to output qi, resulting
in the loss being transitively affected by them.

The goal is then to find the configuration of weight and bias values that minimizes this
loss calculation. Searching for this configuration is done by exploiting that the negative
gradient of a function gives the steepest descent. Therefore, if the negative gradient
vector with respect to all weights and biases are calculated and then added to the current
weights and biases, this calculation will tweak them towards the minimal loss function.
This process is known as backpropagation and is applied iteratively for each average of the
loss function taken over M training examples. One iteration of this process is given by:

χ′ = −∇loss(χ) + χ (3.23)

Where χ′ are the updated weights and biases after one backpropagation iteration.
In practice the NN applies an iteration of backpropagation after having averaged the loss
of a subset of n training examples out of the total M . The subset of n training examples
is called a batch. A traversal of all the training examples using the batch size n such
that M

n backpropagation iterations have been conducted, is known as an epoch. NNs are
usually trained with carefully chosen values for these two numbers.
In summary, an NN is a function approximator that learns parameters to be combined
with an input, resulting in an approximated output in close proximity to the exact.
It calculates this proximity to the target values and uses it to iteratively update the
parameter set. After having learned the parameter set, it can be used for prediction of
classes for a given input. Furthermore, the prediction process is timewise feasible for
a medical consultation, making an NN a viable candidate for being IntMed’s inference
engine.
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4 Recognition Networks

All sections within this chapter reuses content from [1], but the main reusage happens in
the sections 4.1 and 4.2, and subsection 4.2.1.

In this chapter, the concept of Recognition Networks is explored. Firstly, the orig-
inal version of Quaid Morris’ Recognition Network [20] is examined in greater detail.
Based on the original version we will then see two new implementations that uses the same
basic idea, but with a few variations. Finally, these two new versions are experimented
with, in order to examine how well the idea applies to the IntMed case.

4.1 The Original Recognition Network Idea

A Recognition Network (RN) [20] is an NN trained with the specific purpose of inverting
a generative model [21], such as a BN2O network constructed from symptom and disease
variables. Quaid Morris created an RN with the purpose of optimizing disease posterior
calculation time for the QMR-DT system.
The structure, sampling, and training of this RN was centered around exploitation of

two aspects related to the patient consultation process [22]. Firstly, any given consultation
has an implicit symptom evidence observation process which must be taken advantage of.
The healthcare practitioner and the patient have different outsets for the type of evidence
they provide. Healthcare professionals will try to ask the most revealing questions and
may notice symptoms the patients themselves might not notice. Patients on the other
hand will mainly report positive symptom evidence, and provide it based on physical
sensation.
Secondly, there is a tendency towards positive symptoms being revealed more often

than negative symptoms. This is the case because healthcare professionals ask revealing
questions. In addition, the patients mainly report symptoms they feel are present. This
creates an apparent observation bias ratio which dictates that one type of evidence is
more prominent than the other for any given consultation, with a positive bias ratio being
the most common.
To take advantage of these aspects, the BN2O model must be extended to include

information about the observation process and bias. This is done by extending it with an
extra layer of observation nodes, each of them being conditioned on one of the symptoms.
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This extension will graphically make the BN2O network look as depicted by Figure
(4.1).

Figure 4.1: Augmented BN2O network

An observation node oi is a ternary variable where its states are assigned according to:

oi =


+ soi ∈ s+

− soi ∈ s−

? otherwise

(4.1)

where soi is the parent symptom of oi, and +, −, and ? denote positive, negative, and
unobserved, respectively. This introduces a new type of evidence, namely ’unobserved’,
which is necessary if the observation process is to be modelled. The idea is to depict
the consultation such that unobserved symptoms may turn out to be either positive or
negative, and then use the bias ratio for guiding the assumption of what state they might
be in. The proportion of unobserved nodes that will turn out to be positive and negative,
are respectively given by:

P (oi =?|s+i ) = p+

P (oi =?|s−i ) = p−
(4.2)

thereby, p+ and p− are the probabilities that oi = + and oi = − respectively, once si
receives evidence. This concept allows the RN to invert the BN2O model, as it can infer
the diagnosis probability from symptom observations and knowledge of the p+ and p−

ratios. More formally, the probability of an observation node being unobserved given the
hidden diseases is calculated by:

P (oi =?| d+) = p+P (s+i | d
+) + p−P (s−i | d

+) (4.3)

where d+ is the set of underlying present diseases.
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With a bit of rewriting, it can be shown that this conditional probability also describes
the joint probability of the observation being unobserved along with having the hidden
diagnosis:

P (oi =?| d+) = P (oi =?|s+i )P (s
+
i | d

+) + P (oi =?|s−i )P (s
−
i | d

+)

= P (oi =?, s+i , d
+) + P (oi =?, s−i , d

+)

= P (oi =?, d+)

(4.4)

Because of this relationship, it can be derived that the probability of hidden diseases
conditioned on the unobserved observations, must be proportional to the joint probability
P (oi =?, si, d

+). Through this knowledge, an equation for approximating the desired
disease posterior can be written as:

P (d+ |oi =?) ∝
[
p+/p−P (s+i | d

+) + P (s−i | d
+)
]
P (d+) (4.5)

To utilize this new model and its incorporated knowledge of the observation process, the
augmented network is forward sampled, thereby producing observation vectors, defined
by o = {0, 1}|s|, and reference diagnoses, defined by d̂ = {0, 1}|d|. These serve as inputs
and targets respectively, meaning the RN has a number of input layer neurons equal to
|s| and output layer neurons equal to |d|. Morris experimented with different values for
p+ and p− such that symptoms were made unobserved in the samples according to values
that differed between experiments.

Before sampling from the network, the probabilities of each disease are initially normal-
ized. Diseases with low probabilities are unlikely to be sampled often, resulting in the
network training on extremely few cases where the low probability diseases have caused
their symptoms. Though it is desirable that the network learns how low probability
diseases rarely are the cause of symptoms, the probability values of these disease are
often low by several orders of magnitude. Because of this, there is a mismatch between
the sample size needed for learning prediction of common diseases, and the sample size
needed for learning prediction of the rare diseases with low prevalence [23]. To prevent
this mismatch, all diseases are normalized using the following formula:

P ′(dk = 1) =

{
P (dk = 1) if P (dk = 1) > 0.04

0.04 otherwise
(4.6)

where P ′(dk = 1) is the normalized probability of dk. Rather than using the diseases
generated to be present directly as targets, Morris instead distributed all diseases into
vectors with exactly five diseases per vector. For each vector ~dm, the joint probability of
having contracted ~dm along with the specific observation vector on is calculated by:

P (~dm,on) = P (~dm|on)P (on) (4.7)

These joint probabilities are added to a diagnosis list (D-List) in descending order,
ranking the most likely diagnoses given the sampled on vector. Repetition of this process
thereby created samples of o vectors, and their correct reference D-list, {~d1, ~d2, ..., ~dm}.
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Morris made two RN versions: One with only the in- and output layers, and one with
a single hidden layer containing 1000 neurons. The hidden layer of the second version
used the hyperbolic tangent (tanh) as activation function. Both versions used sigmoid as
the output layer activation function.
By having a number of output layer neurons equal to |d| in combination with using

sigmoid for these neurons, the output becomes a vector, denoted d̃, of approximated
posteriors for each disease. It is desired that the network predicts high probabilities for the
diseases from the benchmark D-list ~d and low probabilities for all others. Subsequently
it should also penalize incorrect predictions. To obtain this effect, the RN uses the
cross-entropy loss function given by:

XEnt(χ) = −
∑
j

∑
k

d̂
(oj)
k log d̃

(oj)
k + (1− d̂(oj)k ) log(1− d̃(oj)k ) (4.8)

where d̃(oj)k and d̂
(oj)
k are the actual and target outputs based on the given input

observation vector oj , and χ is the current set of weights and biases with the notation
and interpretation being equal to that of Equation (3.22).
Despite having based the entire argumentation on the concept of having unobserved

evidence, Morris strangely did not include a representation for it in his observation vectors,
seen as all of these only had binary values for positive and negative. Furthermore, he
argued that the D-Lists were a fairer benchmark compared to the output posteriors because
the methods he measured against [12, 23] were unable to incorporate the unobserved
state.

These remarks are by no means meant for undermining Morris’ results, but are instead
meant to spark ideas for possible extensions to his implementation, as the idea of using
an RN for BN2O inference is quite interesting. In the next section, an RN version that
resembles the original will be presented, along with a version that differentiates between
the positive, negative, and unobserved evidence.

4.2 Reworked Recognition Network

In this section the implementation of two slightly extended and altered versions of the
original RN will be presented. After this presentation, the results of a consultation
comparison experiment between the two RN versions and Quickscore will be shown. The
purpose of this section is to showcase the usefulness of the basic RN concepts in a medical
setting, before diving into a more sophisticated RN structure in the next chapter.

4.2.1 Basic Recognition Network

The Basic Recognition Network (BRN) implementation is made to represent the original
implementation, but with tweaks based on a nuanced view on neural network structure.
The BRN is implemented using TensorFlow with Keras as interfacing library. It is

structured as a sequential stack of 5 fully connected dense layers; the in- and output
layers and three hidden layers.
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The input layer has a number of neurons equal to the number of symptoms in the
BN2O which with the data from Ambolt amounts to 347. The output layer has 514
neurons based on the number of diseases. The three hidden layers have 600 neurons each.

The number of hidden layers and neurons in them were initially inspired by [24] which
indicates that a number of neurons lying between in- and output size is adequate, but it
turned out that a large number of trainable parameters is necessary to capture the BN2O
relations1.

The hidden layer neurons use the rectified linear unit (ReLU) activation function, and
the output layer uses sigmoid. The change of activation function choice for the hidden
layers compared to the original RN is made due to ReLU being more computationally
efficient. In contrast to tanh it only has to determine a logical statement rather than
calculating a formula for each neuron, making it about 6 times faster [25, 26]. The output
layer neurons use sigmoid in order to get a probability output for each disease. The BRN
uses the cross-entropy loss function just like the original RN.
The BRN is trained using forward samples of the BN2O network, though without

decorating it with observation nodes. The samples are pairs of observation vectors and
reference diagnoses. Each observation vector mimics a symptom configuration acquired
from having contracted n diseases that are in turn stored in the corresponding reference
diagnosis. Each pair is represented as two vectors, o(m) = {0, 1}|s| and d̂(m)

= {0, 1}|d|,
where each index in each vector corresponds to the position of the symptom/disease in
the BN2O. ’1’ denotes positive presence, and ’0’ denotes negative for both symptoms and
diseases. This resembles the original RN with no state differentiation, and because of this
there is no need for decorating the network, nor incorporate the probabilities p+ and p−

for determining if positive/negative symptoms are unobserved in the samples.
The sampling process is carried out by first sampling n diseases, where n is predeter-

mined and n > 0, resulting in a set of diseases sampled as present, denoted d̂+. Each
dj ∈ d̂+ are added as ’1’ values on their respective indices in d̂ and the rest are set to ’0’,
thereby finishing the sampling of the diseases. Each symptom conditioned on at least one
of the sampled diseases are then sampled according to:

P (oi = +) = 1−
|d̂+ ∩ dsi |∏

j=1

P (s−i |dj) (4.9)

Since the database contains no information of the noisy-OR probabilities for the
symptoms, each value is given by:

P (s−i |dj) =

{
0.1 if dj is common

0.9 if dj is rare
(4.10)

which models that symptoms are usually being caused by common diseases.

1This was discovered through various experiments with network structure. There is unfortunately no
direct example showcasing it and backing up this claim. A possible example could be Figure (A.2) in
Appendix A, though it depicts a different network type than what is used here.
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The sampled symptoms are added to the observation vector o the same way as the
diseases which finishes the sampling of the symptoms and thereby the sample-pair.
Two BRNs called BRN1 and BRN3 are trained with 107 of such samples, with the

number suffix denoting the n of their sampling process. The BRNs were both trained
over the course of 10 epochs for each 106 samples, with a batch size of 1000.

4.2.2 State Differentiation Recognition Network

The State Differentiation Recognition Network (SDRN) is an implementation of the RN
made to support the unobserved state of symptoms. The internal structure of the SDRN
is essentially the same as the BRN, except that the number of neurons for the input
layer is different. Support of a third symptom state requires an additional bit for each
symptom, meaning the new number of input layer neurons becomes 2|s|. The observation
vector o is for SDRN redefined as:

o = {oi}|s|, oi =


(1, 0) soi ∈ s+

(0, 1) soi ∈ s−

(0, 0) otherwise

(4.11)

such that each symptom is represented as a tuple where each tuple denotes one of
the states given by Equation (4.1). The network cannot receive tuples as input so to
accommodate for this, the dimensionality of the observation vectors is reduced by one
which removes the tuple status and therefore requires the number of input layer neurons
to be 2|s|.
The sampling process for SDRN follows the same pattern as that of BRN, but now

an additional step is added after Equation (4.9) has been used to sample the symptom’s
positive/negative status. Based on the probabilities p+ and p− used for positive and
negative symptoms respectively, it is determined if a newly sampled symptom should in
fact be labeled as unobserved. The value of p+ was set to 0.9 and the value of p− was set
to 0.5, according to the idea that positive symptoms are more likely to be observed.

Just like the BRN counterparts, an SDRN1 and SDRN3 were trained with 107 samples,
10 epochs per 106 samples, and a batch size of 1000.

4.3 Reworked Recognition Network Experimentation

To test the RN idea, the two reworked RN versions are matched against the current exact
Quickscore algorithm used in IntMed. This is done by having the BRNs, the SDRNs, and
Quickscore calculate posterior distributions in a simulated consultation scenario. In this
simulated scenario, the patient repeatedly reports positive symptoms for a disease that
has connections to many symptoms.
Quickscore struggles calculation timewise with large numbers of positive symptoms,

meaning the RNs will prove very useful if they can provide posteriors comparable to those
calculated by Quickscore, given the same large quantity of positive evidence.
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In order to make the experiment timewise manageable, a disease with 15 symptoms
in total is chosen to be the underlying disease which makes Quickscore able to finish in
feasible time. For the multi-disease trained RNs, the experiment changes slightly; the
simulated patient now have 3 underlying diseases that are connected to 5 symptoms each.

The networks and Quickscore are analyzed according to several metrics. The first major
metric is the predicted posteriors based on the current evidence set for the underlying
disease. This is the most fundamental metric that shows how well the RN approximates
the posteriors compared to Quickscore. For this metric higher is better, though close
proximity to Quickscore is also desirable.
The second major metric is the ranking of diseases in descending order of posterior

probability, with the highest rank being 1. In the plots lower is better for the metric, but
ranks described as ’high’ will refer to ranks close to 1.
Ranking is important to consider for two main reasons. The first reason is that the

system is supposed to be used for diagnostic guidance. Placement of the correct diseases
high enough for a doctor to notice them is crucial. Even if the probabilities of all diseases
are predicted to be low, the system should still predict the correct diseases to be within
the top view of all available diseases.
Secondly, if ranking of the correct diseases is very different from the probabilities

predicted for them, it may be a sign that the network over- or underestimates the
probabilities. For this experiment k = 10 when referring to top-k. Ranks predicted to be
outside top-10 are normalized to be 11 in the plots because all ranks outside the top-10
view should be considered equally inferior.

The third major metric is a small ensemble of smaller metrics defined as top-k similarity
metrics. These metrics measure how similar the top-k predicted diseases are between
Quickscore and the given RN. Let QStopk = {d̂(1)j , . . . , d̂

(k)
j } and RNtopk = {d̃(1)j , . . . , d̃

(k)
j }

be the sets of top-k diseases predicted by Quickscore and the RN respectively, then the
first top-k metric (TK1) is given by the following set:

TK1 = QStopk ∩RNtopk (4.12)

such that the number for the metric is defined as |TK1|. The second top-k metric (TK2)
is the same as TK1, but where each element in TK1 is within the same probability
interval:

TK2 =

{
dj ∈ TK1, 0 ≤ i < 10

∣∣∣∣ i10 < P (dj) ≤
i+ 1

10

∧ i

10
< Q(dj) ≤

i+ 1

10

}
(4.13)

where P (dj) is the posterior calculated by Quickscore and Q(dj) is the posterior
approximated by the given RN for the disease dj . The number for the metric is given by
|TK2|.
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TK3 is defined as the number of diseases that are found in both QStopk and RNtopk,
placed on the exact same indices:

TK3 =

k∑
i=1

1

(
d̂
(i)
j = d̃

(i)
j

)
(4.14)

where d̂(i)j ∈ QStopk and d̃(i)j ∈ RNtopk.
Finally, TK4 counts all the diseases that satisfies the collective conditions of TK1, TK2,

and TK3 simultaneously:

TK4 =
∑

dj∈TK2

k∑
i=1

1

(
dj = d̂

(i)
j

∧
dj = d̃

(i)
j

)
(4.15)

This metric ensemble is included in the experimentation to compare Quickscore with
the RNs in a way that does not solely focus on posterior estimation of the underlying
diseases. Even though high probabilities given the evidence on the underlying diseases is
important, it us arguably just as important that the RN provides a sensible probability
and ranking of diseases that are symptom-wise related to the underlying causes.

If the system is unable to reason properly for the related diseases, it would not provide
assistance that classifies as advisory, but rather provide a series of educated guesses, and
in that case only its highest probability and/or ranked predictions would be of use. It is
important to remember that the underlying diseases in a real consultation scenario in fact
can be the ones estimated by the system to have low posterior distributions. The top-k
content should therefore in those cases give the medical practitioner a valid overview
of the possible symptom causes, who may then manually decide upon an appropriate
diagnosis.

Because of these reasons it is important to measure how proportional the content of the
RN’s approximated top-k predictions is to that of exact inference. Aside from enabling
top-k similarity measurement, the similarity metrics also provide it on different levels of
strictness, where TK2 and TK3 are stricter than TK1, and TK4 are more strict than all
the others. A perfect top-k similar RN will predict k diseases that has the same ranking
indices and the approximately same estimated posteriors as Quickscore.

The final major metric is the arithmetic mean of the Kullback-Leibler divergence (KL)
calculated in bits for all diseases of the BN2O network. Where the similarity metrics
are used to give a broad overview of the top-k predictions, the KL-divergence for all
diseases is intended to give the broad overview of all predicted probabilities in total. This
is calculated and plotted for each prediction. The lower the better for this metric.

The calculation follows the standard KL-divergence equationKL(P ||Q) where Quickscore’s
posteriors are used as the true distribution P and the RN’s predictions as the approxi-
mated distribution Q. For each disease, the sum of the probabilities of its present and
absent states are taken and summed together to get the total divergence between all of
Quickscore’s and the RN’s estimated disease probabilities.
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Finally, the average is brought into the equation to obtain the final result:

KL(QS||RN)avg =
1

|d|

|d|∑
j=1

P (d+j ) log2
P (d+j )

Q(d+j )
+ P (d−j ) log2

P (d−j )

Q(d−j )
(4.16)

For both of the comparison experiments depicted in Figure (4.2) and in Figure (4.3),
the left column of diagrams shows the results of the simulated consultation where the
patient has 1 underlying disease, and the right column show the results of the simulated
consultation where the patient has 3 diseases. The RNs with matching suffixes to these
numbers are used accordingly. The results of each column were produced during the same
experiment.

4.3.1 BRN1 Experimentation

We first consider Figure (4.2) which shows the experimental results of the BRN, and we
start of by examining the results of BRN1.
For the probability prediction of the underlying disease BRN1 predicts probabilities

close to 0 for the first 7 positive symptoms compared to Quickscore which estimates
the probability to be in the range [0.4, 0.45] after just 3 positive symptoms. By the 8th
positive symptom both Quickscore and BRN1 estimates the correct disease to have a
probability within [0.9, 1] for the rest of the consultation, with the only exception being
BRN1’s prediction at the 8th positive symptom.

Even though BRN1 is behind Quickscore probability-wise in the beginning, it is vastly
ahead in ranking. The correct disease is placed within top-10 after just 2 positive
symptoms and after 4 it is ranked as the first consistently, only deviating from the spot
at the 6th prediction where Quickscore also deviates.
The similarity metrics show quite poor results with only about 1 disease predicted

by the RN being found within Quickscore’s top-10 highest posterior calculations. The
presence of all similarity metrics from question 8 and onwards undoubtably stems from
the correct disease, seen as both Quickscore and the RN place it as top-1 at this point.

The KL-divergence show a vast deviation of all diseases from 3 to 7 positive symptoms,
whereafter it slowly moves downwards. The steepest ascend in divergence happens after 3
questions, which is also depicted by the other metrics where ranking is vastly different from
probability prediction, and similarity is non-existent at that point in the consultation.
BRN1 is best when it comes to predicted probability and ranking. Its predicted

posteriors are however very steep in their ascendance rather than increasingly progressive.
The KL-divergence is overall quite low considering the number for each plot is an average
of the divergence of all diseases. The similarity metrics are BRN1s weakest metric, showing
that it is unable to infer adequate posteriors for the diseases related to the underlying.
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Figure 4.2: BRN1 (left column) and BRN3 (right column) compared to Quickscore. Rows
from top to bottom: Predicted probabilities for the underlying diseases, ranking
of underlying diseases, the similarity metrics where TK1 is cyan, TK2 is orange,
TK3 is purple, and TK4 is green, and the average KL-divergence of all diseases.
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4.3.2 BRN3 Experimentation

We now turn the attention to BRN3 in Figure (4.2).
Probability-wise, BRN3 outperforms Quickscore quite a bit on one of the diseases

with its probability being constantly predicted to be within [0.9, 1] after just 3 positive
symptoms. Though the probabilities for the remaining diseases are estimated to be quite
low by BRN3, it still gives them quite high ranking by placing them in between top-8
and top-4.

Its similarity metrics are worse than those of BRN1, seen as no diseases at all are found
on the same indices in Quickscore’s top-10 set. The KL-divergence is overall lower, but
steadily increases.
The overall result of the BRN shows that it is quite extreme in its predictions and

tends to either predict vastly low or high probabilities. Despite of this it produces some
decent estimations with some of them outperforming Quickscore. Its ranking results are
very promising, with the correct diseases being found within top-10 after very few positive
symptoms. BRN lacks most in terms of the similarity metrics, indicating that it has been
fit to predict high probabilities for the correct diseases, and disregard all others.

4.3.3 SDRN1 Experimentation

We now consider the results of the experimentation with SDRN shown by Figure (4.3),
and start off with SDRN1. These experiments use the same diseases as the ones used for
the BRN experiment, but with the order of incoming positive evidence being different.
The posteriors of Quickscore are thus different from those calculated in Figure (4.2).

Surprisingly, despite the new order, SDRN1 predicts roughly according to the same
pattern as BRN1 with the only difference being that SDRN1 predicts the probability
to be within [0.9, 1] one additional positive symptom later. Overall, for this metric,
SDRN1 outperforms Quickscore quite a bit as it takes 5 additional positive symptoms for
Quickscore to reach the same probability output for the correct disease.

The ranking shows an even greater result for SDRN1 where the prediction based on 4
positive symptoms of the correct disease places it at top-2 with the subsequent positive
symptom bringing it to top-1 which it keeps, except at 7 symptoms.
The similarity metrics are however very poor for SDRN; 7

15 of the predictions have
completely different top-10 content from Quickscore, and the similarity shown for question
13 to 15 are the correct disease only.

The KL-divergence shows about the same result as that of BRN1, where the average
divergence is highest at the 4th prediction after which it rapidly falls. The effect of this is
visible via the ranking metric which shows completely different rankings at this point.

The conclusion of SDRN1 is the same as that of BRN1, except that SDRN1 is even
more extreme in its predictions for the underlying disease. It predicts either 0% or 100%
posterior probability, and estimates ranks that are either completely outside of top-10,
or within top-2. This subsequently increases the KL-divergence and dissimilarity from
Quickscore’s posteriors.
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Figure 4.3: SDRN1 (left column) and SDRN3 (right column) compared to Quickscore. Rows
from top to bottom: Predicted probabilities for the underlying diseases, ranking
of underlying diseases, the similarity metrics where TK1 is cyan, TK2 is orange,
TK3 is purple, and TK4 is green, and the average KL-divergence of all diseases.
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4.3.4 SDRN3 Experimentation

We now turn the attention towards SDRN3 in Figure (4.3).
SDRN3 outperforms both BRN3 and Quickscore in the first major metric. The

probability of the disease depicted by the dotted line increases slightly from 1 to 3 positive
symptoms, before going above 0.5 where it (approximately) stays above for the rest of the
consultation. The dashed line disease behaves roughly like the disease predicted by BRN1,
with a high surge and a slight fall in posterior probability after 7 positive symptoms. The
disease represented by the solid line struggles quite a bit in terms of probability, even
towards the end of the consultation where all of its symptoms have received evidence.
In comparison, Quickscore only provides a high probability for the dashed disease

towards the end of the consultation.
The ranking mirrors the underlying diseases output probabilities, showing that SDRN3

aside from outputting better posteriors, also includes all diseases in the top-10 view.
SDRN3 have two of the three diseases ranked outside top-10 in 6

15 of the predictions,
whereas that number for Quickscore is 14

15 .
The similarity metrics look better for SDRN3 compared to those of SDRN1. The initial

4 predictions have more than 2 diseases in common with Quickscore, where some of them
are even located at the same index or has about the same posterior. The rest of the
predictions are quite dissimilar, with the only slight outliers to this being the predictions
made based on 6, 10, and 14 positive symptoms.

The average KL-divergence throughout the consultation shows the same result as that of
BRN3, but rather than being increasingly ascending, it approximately evens out towards
the end with slight increases and decreases in bits.

4.3.5 Recognition Network Concept Evaluation

In conclusion of the RN’s medical consultation applicability, it definitely has great
potential, but could use tweaking towards producing more similar results to those of
the current IntMed system. Both RNs are capable of approximating high posterior
probabilities when predicting based on symptom configurations that has a high number of
positive symptoms for the correct diseases. In addition, the RN’s ranking of the correct
diseases turns out to be a metric where it outperforms Quickscore significantly.
The RN is however majorly behind behind the current IntMed system when it comes

to classifying as an assistance tool. It does not produce a valid top-view to be used by
medical practitioners for guidance because its top-10 diseases are vastly different from
those produced by exact inference.
Furthermore, there is a mismatch between its ranking and probability output of the

correct diseases. The ranking for these diseases were shown to be good from the beginning
of the consultation, even though their posterior probabilities were set to be low, indicating
that the network underestimates the posteriors.
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Despite the underestimation and the dissimilarity, the overall comparison expressed
via the average KL-divergence between all disease posteriors shows quite decent results.
The number of diseases in the BN2O is after all within triple digits meaning that a
divergence of 1 bit on average for each disease is quite good for these straightforward RN
implementations. It could however be useful to bring down the spikes in difference, which
is essentially a conclusion that applies to all plots and metrics in both Figure (4.2) and
Figure (4.3).
In summary, the RN idea has proven to be useful in a consultation scenario and has

potential to become the inference engine of IntMed, but it needs correction towards being
more similar to the currently used Quickscore algorithm. In the next chapter, a new RN
structure that exploits certain consultation aspects will be presented, in order to carry
out this correction.
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In the previous chapter, it was shown how the RN concept has great potential to act
as a new inference engine in IntMed, where very straightforward RN implementations
were shown to give promising results. In this chapter, the network will be redone using a
recurrent NN structure that is inherently able to represent unobserved inputs and allows
the system to exploit the temporal unveiling of evidence inputs.

5.1 The Motivation for Inclusion of Recurrence

Before going into the design of a recurrent RN version, some proper motivation for doing
so should be given.
The greatest tendency in literature regarding machine learning solutions for medical

diagnostic purposes where NNs are used as the base model, has mostly been concerned
with analyzing images to determine a diagnosis. [27–30]. The networks used in this regard
have also in some cases been extended to analyze the temporal development through
different images [31, 32].

Literature concerning usage of NNs for medical patient consultation is however scarce,
especially in terms including temporal analysis. Most examples described in papers
specifically designed for patient consultation, concerns with analyzing Electronic Health
Records (EHR) [33–35]. These networks are usually deployed in scenarios where the
network must be able to infer a diagnosis from text descriptions of symptoms made by
patients. Aside from text analysis they have also been used to analyze temporal changes
of patients’ real-number statistics, such as blood-pressure or cholesterol-levels.
The motivation of using networks that support temporal analysis is clear for systems

where the main goal is to analyse EHR. Changes in medical statistics over time is
important to monitor and may provide valuable information with regards to a given
patient’s disease course.
Even though the RN approach is more focused on real time diagnosis using pos-

itive/negative presence of symptoms, it can still benefit from considering temporal
symptom revealing. Rather than learning the relation between changes in real numbers
and disease courses, the RN would instead learn the relation between symptom evidence
time sequences, and disease diagnoses. Through this idea it will be possible to more
closely fit the way the network predicts to the consultation scenario. This is however
a challenge to implement for the IntMed case because the BN2O does not contain any
information regarding temporal symptom revealing. To realize this concept, some thought
must therefore be given to the design of the sampling.
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Modelling of the temporal aspect introduces an opportunity to conveniently address a
problem related to the current representation of unobserved evidence. The main idea of
including this concept is to introduce the idea that some proportion of symptoms in a
consultation will remain missing. This was the reason why the values of p+ and p− were
used in the previous chapter to simulate how some symptoms would remain hidden in
the samples. Modelling this using temporal input comes more naturally; if a symptom
remains unobserved, it will simply not be given as input.

The question is whether the representation of unobserved should be kept for the input
vectors. Given that the effect of unobserved evidence can be achieved through absent
input by using a recurrent network, it might be excessive to model all three states for
each symptom. Contrarily, it might make the network unable to properly differentiate
between negative and unobserved evidence. The results of Section (4.3) indicate that
there is not much difference, but since these are not based on recurrent structures, they
cannot be decisive in this regard.
Deciding upon the best representation comes down to experimentation. For now,

inclusion of recurrence gives the network more options in terms of how evidence should
be represented, which is an advantage over the sequential networks shown in the previous
chapter.

5.2 Modelling the Diagnostic Process

In this section the diagnostic process is analyzed with the purpose of determining a way
to integrate it into a recurrent RN implementation. This will enable the RN to utilize the
most important aspects of a standard consultation to its advantage.
To establish some requirements for the new recurrent RN implementation, it is first

necessary to consider the typical aspects of a medical consultation between a patient and
a medical practitioner. In this scenario, the patient is likely to have initial symptoms
which have sparked the need for a medical consultation in the first place. Aside from
the initial symptoms, the patient might have additional symptoms that only the medical
practitioner is able to reveal through questioning, due to the patient being unaware of
the significance of their physiological signs.
Even though the questioning process may reveal the majority of relevant symptom

information, it is likely that some information stays unobserved due to various reasons.
This can happen if the patient for instance unknowingly gives false negative evidence that
would otherwise have led the medical practitioner to deduce additional information [36, 37].
Because this effect is common in medical consultations, a proper RN implementation needs
to be able to differ between positive, negative, and unobserved evidence on symptoms.

Another important consultation aspect that is the temporal information unveiling. In
Section 4.1 the observation bias of a consultation was discussed, where it was noted
that positive symptoms are likely to be in abundance compared to negative symptoms.
Patients will mainly report positive symptoms because of the physiological effect they feel
from these. In turn, patients will not report symptoms they do not feel the presence of,
and so negative evidence is mostly reported based on the medical practitioner’s questions.
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Given these factors it is valid to assume that patients will initially report the symptoms
they feel the most which may indicate a greater probability for the diseases connected to
these pressing symptoms. This concept is interesting to consider because it indicates that
the order of incoming evidence matters and may be used in the inference process.
It should however be noted that the exact order is not what is interesting here, but

rather the concept modelling the symptoms as an unveiled sequence, rather than an
accumulated symptom set.

With these considerations in mind, the question is now how to make an RN model that
can support these aspects. As a starting point we consider the SDRN presented in Section
4.2.2 which is able to represent symptoms as either positive, negative, or unobserved.

The SDRN is trained using forward samples of IntMed’s BN2O. Informally, each sample
represents a simulation of a patient who consults a medical practitioner with a medical
case. Formally, each of such medical cases has an observation vector o and a corresponding
target diagnosis d̂ that caused it. Before any evidence has been added to o, its content is
defined by:

o0 = {(0, 0)}|s| (5.1)

where the tuple representation is from Equation (4.11). With this setup it is assumed
that after the vector has been sampled, it contains all the information of the consultation
it represents. Each observation oi is at this point in a state based on the evidence its
corresponding symptom soi received during the consultation. The possible states they
may have taken (or kept if they were not observed) are defined by Equation (4.11).
When the network has been trained and then carries out predictions, the input se-

quence given to SDRN as the consultation progresses happens according to the following
description: Let ζ be a consultation where T = |ζ| and let 1 ≤ t ≤ T , then we have that:

ζ = (o1, . . . ,oT ) (5.2)

where ot = [o1, . . . , oi−1, oi, oi+1, . . . , oI ] such that oi = o
(i)
t , with o(i)t being the repre-

sentation of the symptom that were observed with question t.
SDRN predicts by using the symptom configuration made from the symptom states

accumulated in ot. It only considers past observed symptoms in the sense that they are
part of the configuration to base the prediction upon at t. Thereby, the input vector o
given to the SDRN after t symptoms have been revealed, has a positive/negative value
representation for each previously revealed symptom on their respective indices. The trail
of evidence from prior predictions given by (o1, . . . ,ot−1) is thus completely neglected,
and the prediction is solely based upon the accumulated evidence in ot.

A recurrent RN will be able to include the observation vector inputs given by (o1, . . . ,ot−1)
into its prediction. The vectors given as input to the recurrent network, ot, should be
redefined such that the entire vector only contains information about o(i)t and nothing
else.
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Without this redefinition, the RN will learn a temporal accumulation which will model
a scenario where the patient reports all already reported symptoms for each question.

This defines the requirements needed for making a temporal supportive RN structure.
In the next section, the NN type which can be used to implement them with will be
examined.

5.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN)[38–41]1 are the fundamental model that is deployed
in machine learning when the problem to solve requires analysis of input sequences rather
than a single input. Common use cases for this are audio, text, or frame processing,
where these entities might come in different quantities. The predictions of interest in
these scenarios relate to how a given quantity in a certain sequence should be interpreted.
In this section the general concept an RNN will be explained using the RN case as a
reference for notation.

An RNN fundamentally works by sharing and passing information to itself. Specifically,
an RNN shares all weights and biases across time, while also passing a hidden state to its
future self which contains information about the time steps computed in the past.

Figure 5.1: The computational graph of an RNN network where the inputs are depicted
as observation vectors and the output is depicted as predicted diagnoses. Note
that the bias vectors B and C, used in the recurrent and output connections
respectively, have been omitted for notational simplicity.
Source of inspiration: [40].

1These references are the foundation of this section, and its subsection.
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Figure (5.1) shows this process, using the RN notation to denote the input and output.
The leftmost model depicts the computational graph of an RNN in a compact way. Upon
receiving an input, it recursively computes the hidden state h using the input weight
matrix U , and the weight matrix W . These weight matrices have been passed forward in
time from its past self to its current self. Using the hidden state and the output weights
V , it computes a weighted sum which is passed through an output activation function
to produce the output. Finally, this output is passed to the loss function L where its
proportionality to the target is calculated.
L for the RN case takes form as the cross-entropy loss defined by Equation (4.8).

Though it is not depicted, this function receives the target corresponding to the given
time step such that Lt = L(d̂t, d̃t).
The forward propagation process of the left side model in Figure (5.1) is unfolded in

the right side of the Figure. Notice that the weight matrices are not subscripted by t, as
these are shared across time steps. The formal definition of the forward propagation, and
incidentally also the entities of the graph is is given by:

ht = f(B +Wht−1 +Uot) (5.3)

d̃t = σ(C + V ht) (5.4)

where B and C are the bias vectors of the recurrent and the output connections
respectively, f is an activation function, and σ is the sigmoid activation function.

The activation function applied for computation of the hidden state can be any activation
function desired by the network engineer, but usually it is defined as tanh.
Finally, the way an RNN learns is by using backpropagation just like standard NNs,

with the only addition of calculating it across time-steps. The intuition for this calculation
is that the RNNs time steps are unfolded as depicted in the right side of Figure (5.1),
then the loss is calculated for each unfolded time step, and finally it is rolled backed,
summed, and averaged. This is known as backpropagation through time and is calculated
by:

lossT =
1

T

T∑
t=1

losst (5.5)

where losst is the loss defined by Equation (3.22), calculated at time step t.
An RNN defines a very powerful computational model, capable of taking time sequences

into account when predicting. It does however have an undeniable flaw that basically
make it unfitting for most tasks.
Just like standard NNs, RNNs can suffer from the vanishing gradient problem. This

problem occurs when the gradient calculated during backpropagation becomes small
or large by several orders of magnitude. This happens because the backpropagation
calculation shrinks or expands the gradient exponentially as the process moves through
the network layers.
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For RNNs this is especially prone to happen because the exponential scaling is amplified
further when the gradient is calculated across multiple time steps. This is called vanishing
gradient through time and, and happens due to a property of the weight matrix W ,
namely that it allows for an Eigen decomposition on the form:

W = ΘΛΘ> (5.6)

where Θ are the weights represented as eigenvectors and Λ is a matrix where the diagonal
consists of eigenvalues. This decomposition describes an exponential relation between the
initial hidden state h0 and ht. If the decomposition ofW in Equation (5.6) is substituted
into Equation (5.3), then the effect of calculating the weighted sum of W and the initial
hidden state h0 across t time steps can be seen:

ht = f(B + ΘΛtΘ>h0 +Uot) (5.7)

where t acts as an exponent for the diagonal eigenvalues. The effect of this is that the
weights ofW along the diagonal will either exponentially shrink towards 0 if they are less
than 1 or expand exponentially if they are greater than 1 with t as the exponent. The
intuition of this problem is that the networks will either forget or overemphasize past
information. This effect is inevitable, so the only way to counteract it is by slowing down
the exponential scaling. For this purpose, there has been developed an alternate version
of the basic RNN, designed to lessen the forward propagated information by remembering
long-term dependencies across time steps.

5.3.1 Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) [42] is an extension of the plain RNN which
filters information as it recurs through time. This regulates h in a way that decreases the
exponential weight scaling it would otherwise suffer from due to Equation (5.7).
LSTM works by vastly modifying the computation of ht. Firstly, it introduces the

concept of cells that differs from the sequential layer structure by having a fixed number of
layers per cell. Secondly, in addition to the forward propagation of h, it also passes forward
a cell state, denoted c. This cell state is used to regulate the result of the computation
between the hidden state and the input by adjusting how much information that should
be kept or discarded.

Figure (5.2) shows a depiction of the internal structure and calculation flow of an LSTM
cell. Once again, the RN notation is used where appropriate to exemplify where it would
be part of the calculation.
The Figure is read from left to right, starting in the bottom-left corner where the

previous hidden state ht−1 and the current input observation vector ot gets concatenated,
before being passed on to four different gates. These gates are essentially NN layers with
weights, biases and activation functions applied elementwise to the input.
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Figure 5.2: The internal structure of an LSTM cell. The notation of concat and copy denotes
the action taken when the left-to-right flow either merges or splits. Source of
inspiration: [41].

The first gate is the forget gate which uses sigmoid to scale unnecessary information
towards 0 and necessary information towards 1. The output of this computation, FGt, is
given by:

FGt = σ(W FG · [ht−1,ot]> +BFG) (5.8)

The next gate is the input gate which computes its outputs exactly like the forget gate,
with the only exception being that it uses its own weights and biases:

IGt = σ(W IG · [ht−1,ot]> +BIG) (5.9)

The next gate computes the candidate cell state c̃t meant for potentially updating the
information of ct−1:

c̃t = tanh(W c · [ht−1,ot]> +Bc) (5.10)

The first three gates collectively provide the components needed for computing the new
cell state ct. After having produced the components, the new cell state can be computed
by elementwise appliance of the arithmetic operators shown in Figure (5.2). The definition
of the new cell state is thus given by:

ct = FGt · ct−1 + IGt · c̃t (5.11)
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These arithmetic operations have certain interpretations. FGt is multiplied with the
previous cell state ct−1 such that the information carried by this cell state is filtered by
importance where important information will be kept (multiplied by 1) and unnecessary
information will be discarded (multiplied by 0). The multiplication of IGt and c̃t followed
by the addition of ct−1 which has been multiplied with FGt, creates the effect of filtering
both old and new information, and then adding it together. In extension to this, since c̃t
is the output of tanh, its sign will simulate the effect of having new information dictate if
something should be emphasized (positive sign) or forgotten (negative sign).
The final gate is the output gate which is meant for computing ht by firstly filtering

information just like the forget gate:

OGt = σ(WOG · [ht−1,ot]> +BOG) (5.12)

OGt is then multiplied with the new cell state that has been squished through tanh,
thereby producing the final output ht:

ht = OGt · tanh(ct) (5.13)

this computation is interpreted as the new cell state regulating ht, using the sign of
tanh to scale its information.
Notice in Figure (5.2) that ht is outputted twice. This is because ht should both

be recurred to the next time step (the horizontal ht output), but also be available as
the network’s actual output (the vertical ht output). The actual output can be used
directly as a prediction or be further refined by additional NN layers or even have its loss
calculated such that loss is calculated for each time step.

With this structure, an LSTM can regulate the forward propagated information enough
for the RNN principle to be useful, though it should be noted that LSTM does not remove
the problem with vanishing/exploding gradient through time.

LSTM’s architecture is however quite involved to the point where an alternate version
of it has been suggested. This version is known as the Gated Recurrent Unit (GRU) [43].
It uses the same cell principle as the LSTM with gates and arithmetic operations, but
differs mainly by not using a separate cell state and instead incorporates the cell state
information into the hidden state. In addition, it only uses two gates: The update gate
which is a combination of LSTM’s input and forget gates, and the reset gate which serves
to emphasize or reduce information.

Since the GRU has fewer gates and in turn less weights, biases, and activation function
computations, it is a more light-weight alternative to LSTM. LSTM is still sometimes
preferred over GRU as it with more complexity is able to capture dependencies across
longer time distances. Thereby, none of the two models are better than the other, so the
best practice is to test both models for a given case to see what works best.
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5.4 Recurrent Recognition Network Architecture

In this section the architectural implementation of the Recurrent Recognition Network
(RRN) will be presented and reasoned for using various papers.

Figure 5.3: The RRN architecture

The RRN is implemented as a multilayered LSTM network. It consists of an input layer
with a number of neurons equal to 2|s| to account for the extra bit needed for representing
the unobserved state. In succession of the input layer is a Keras masking layer2, followed
by 4 hidden LSTM cells, and finally a standard NN layer with sigmoid activation as
output. An image description of this is given by Figure (5.3). This architecture is inspired
by [44, 45], where cases similar to that of IntMed is considered.
The first fundamental choice made for the architecture is the choice of LSTM over

GRU. This choice is a bit ambiguous given the inspirational sources. GRU could arguably
be able to adequately capture the time step dependencies of the question process, even
with its simpler architecture. Since [46] seem to suggest that LSTM is more often applied
to diagnostic time dependency cases, and because the RRN should be able to handle
really long sequences with many questions, LSTM is chosen as the initial RNN type for
the RRN.

2This will be explained in the next section
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Usage of GRU in the RRN case has not been tested throughout the project because
other fundamental parts of the implementation required more attention. It is therefore
left as future experimentation to see what works for this part of the architecture.
The next choice for the architecture is the number of hidden LSTM cells. Initially

the RRN was constructed with 2 cells which is described in literature as being the
optimal number of cells for diagnostic LSTMs [44, 45, 47]. Through experimentation on
early versions of the RRN it was however discovered that more trainable parameters are
necessary3. Because of this the number of cells was increased to 4, allowing for a large
number of parameters.

The 4 LSTM cells are implemented with dropout which is an NN regularization technique
that drops some of the weights randomly during training by multiplying them with 0.
This forces the remaining weights to be shaped to solve the problem, hence fitting them
to be more independent of other connections. This reduces the chance of overfitting.
Dropout can for an LSTM network be applied to each LSTM cell’s input weights, its

recurrent weights, or both. The RRN applies dropout to the input of each LSTM cell,
following the example of [44, 45] once again. It can be argued that recurrent dropout
might be necessary given that 4 cells results in a quite large number of total parameters.

The next architectural choice is the number of units for each cell. This number is the
dimension of the hidden state ht and the cell state ct described by Figure (5.2). The
equal size between them is necessary because their elements on corresponding indices will
be pairwise added and multiplied according to Equation (5.11). Upon defining an LSTM
cell, the dimensionality of the network input o is merged with units, which is then used
to define the LSTM cell’s number of trainable parameters:

|WG| = 4(input · units+ units2 +B) (5.14)

Where input is the dimension of the input given to the cell, and WG is the collective
weight set for all gates of a cell. It follows that the number defined for units has high
impact on the number of model parameters, especially when 4 cells is used.
To choose an appropriate number of units, [45] is used as a reference. In that paper

the network is tuned to predict 128 out of 429 possible diseases, based on 13 real valued
input features. For this purpose, they obtain the best results with units = 128 and a
dropout of 0.5.

The recurrent network of the reference paper only has to learn prediction of a subset of
the diseases, whereas the RRN must be able to make predictions for all diseases. Through
experimentation with different RRN sizes, it was discovered that setting the number of
units to be quite high is necessary. Therefore, the number of units is set as 300 to give
the network enough power to capture the BN2O relations.
It seems there is a tendency for LSTMs developed for diagnostic purposes to choose

units to be a number which can be factorized into a power of 2 [45, 47], possibly indicating
that choosing 256 would be the better option. The optimal number is however decisively
found through further experimentation.

3One such experiment is depicted in Figure (A.2) in Appendix A
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5.5 Recurrent Recognition Network Sampling

In this section the sampling and prediction procedures of the RRN will be explained.
Firstly, we consider the number of inputs and outputs to be supported by the RRN,
which will also allow for the definition of the wanted posterior to be produced. Using this
information, the samples to train the network with are defined such that they may be
used to obtain the wanted posterior. Included in this are a definition of the time step
semantics related to the RRN’s inputs and outputs.

Figure 5.4: Many-to-many type RNN (left) and equally many-to-many RNN (right). Source
of inspiration: [38].

One of the main advantages of recurrent networks are their ability to manage input
and output sequences of varying sizes. Figure (5.4) depicts two input-output sequence
size relations that are useful to consider for the RRN. Both of the general RRNs depicted
get many inputs and produces many outputs, with the only difference being that the
’many’ of the right model is a fixed size.

The RRN must be able to infer disease probabilities based on each t where 1 ≤ t ≤ T ,
and T is defined as the finite consultation length of a given consultation. The RRNs
input is thus given as a sequence of observed symptoms and its output is a diagnosis
related to that sequence. The wanted posterior distribution hence take form as:

P (d|s) ≈ P (d̃t | o1, . . . ,ot) (5.15)

Even though the output should be one single diagnosis, it is important that the RRN
makes a prediction for every reported symptom observation, otherwise the system’s
assistance aspect is lost. Because this is the case it should be implemented as an equally
many-to-many RNN as per depicted in the right side of Figure (5.4). The loss must be
calculated per time step such that the RRN is optimized to predict the most probable
diagnosis for any t in 1, . . . , T .

To learn prediction of the wanted disease posterior, the RRN requires samples of medical
consultations where the questions act as the time steps. Each time step will display all
symptoms as unobserved, except for the symptom which receives evidence at that time
step. This symptom will instead be labeled as positive or negative depending on what
state it was sampled as.
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Figure 5.5: Data structure of the vector of consultation observation vector sequences used
during training by the RRN. The green brackets denote the vector that holds
all the sampled consultations. The blue brackets denote a sampled consultation
containing T time steps. The red brackets denote the vector of a time step
which has a tuple representation for each symptom. In each time step vector,
only one symptom is sampled as either positive or negative.

Data structure-wise this resembles Figure (5.5) where the green brackets are the
consultation sample dimension, the blue brackets are the time step dimension, and the
red brackets are the symptom dimension with each symptom being 2-dimensional due to
their two-bit tuple representation. The two consultations depicted may contain a different
number of time steps, and as depicted by the observed symptom tuple shown in the
middle of each time step4 the evidence given may differ. The first consultation sample
starts of with a positive symptom, then a negative, and in the end a positive. The second
starts off with two positive symptoms revealed in succession and ends with a negative.
The depiction may give the impression that the same symptom can be revealed multiple
times throughout the time steps, but this is not the case. With each time step, a new
symptom is observed. Each consultation sample depicted by the blue brackets are defined
as ζ in Equation (5.2).

4’The middle’ refers to the Figure depiction, and not (necessarily) the actual middle index position.
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The content of ζ is the sequence of ot time steps depicted with the red brackets. These
now only contain evidence on one symptom, rather than all evidence accumulated from
time steps 1, . . . , t− 1. The vector of consultation observation vector sequences, depicted
by the green brackets, can now be defined as:

ζ = [ζ(1), . . . , ζ(M)] (5.16)

where M is the desired number of consultation samples.
The training process also requires disease vectors to serve as target values for each of

the consultation samples. The time step observation vectors should have corresponding
disease target vectors that caused them such that each time step has an associated target.

The associated target for each ot in a sequence given by ζ should be the same because
a consultation has the same underlying diagnosis. Data structure-wise the vector of
consultation targets to be defined is thus almost identical to what is depicted by Figure
(5.5). The only difference is that each red time step bracket is now an instance of
d̂ = {0, 1}|d|, where each index represents a disease of the BN2O being present (when set
as 1) or absent (when set as 0).

Formally, let d̂
(m)

be the reference diagnosis that caused the sequence of observations
given by ζ(m), then the consultation reference diagnosis sequence of ζ(m), denoted β(m),
is defined as:

β(m) = [d̂
(m)
1 , . . . , d̂

(m)
T ] (5.17)

such that d̂
(m)

remains the same throughout the sequence.
With this definition in place, the vector of consultation reference diagnosis sequences

to be created is defined as:

β = [β(1), . . . , β(M)] (5.18)

where M is identical to that of Equation (5.16) such that for 1 ≤ m ≤M we have that
the underlying explanation of ζ(m) is β(m).
The generation process of the sample sets ζ and β happens as follows: Firstly, the

reference diagnosis d̂
(m)

is sampled the exact same way as the non-recurrent RNs described
in Section 4.2.1.
Secondly, the consultation question sequence ζ(m) is to be sampled. This happens by

using Equation (4.9), but rather than inserting each sampled symptom into its respective
index in an observation vector, it is instead concatenated to a sequence of sampled
symptoms φ(m) = (o

(i)
1 , . . . , o

(i)
T ).

When all sampled symptom observations have been concatenated to φ(m), its order is
then randomized which ensures that evidence is given in different orders for each sample.
This is important for two main reasons. Firstly, it mimics how patients may give evidence
in different orders even though they have the same diagnosis.
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Secondly, if the sequence is not randomized, its order will programming-wise depend on
the order of the symptoms given by the BN2O network5. This would result in all samples
consistently having some symptoms appearing before others which is undesirable.
The sequence of φ(m) is then processed where each sampled symptom is handled as

follows: Firstly, an observation vector of only unobserved values defined by Equation (5.1)
is created. The sampled symptom observation is then inserted at i such that o(i)0 = o

(i)
t .

The vector is at this point on the form depicted by the red bracket vectors in Figure (5.5).
This vector is then concatenated to the consultation question sequence ζ(m).

Upon this concatenation, an instance of d̂
(m)

is also concatenated to the corresponding
consultation reference diagnosis sequence β(m). This entire process repeats until φ(m)

has been processed, whereafter both ζ(m) and β(m) are concatenated to their respective
consultation sample vectors given by Equations (5.16) and (5.18).

When the samples have just been made, they are incompatible as network input. This
is because the number of time steps of the consultations are different from one another,
making the size of the dimension containing them undefinable.
To counteract this, the samples are padded with values that will be ignored during

training. These values are vectors containing purely (-1, -1) tuple values for the observation
vectors, and plain -1 values for the reference diagnoses. The consultation with most time
steps will dictate how many vectors of ignorable values that should be concatenated to
each sample. Each consultation sample of lesser length than the longest will be padded
with a number of ignorable vectors equal to the difference between its own length and the
longest. The padding is concatenated to the end of the consultation sequence.
After the padding, all samples look as per depicted by Figure (5.6) such that the

time step dimension now has a fixed size. To finalize their creation, the consultation
observation vector time steps have their dimensionality reduced by one which removes
the tuple status of the symptom representation.

When the RRN then receives the input during training, it has a special Keras masking
layer that transform ’-1’ values into ’False’ logical values which will be ignored during
training. The value ’-1’ is chosen rather than ’0’ to prevent any confusion between the
actual evidence representation given by Equation (4.11), and the ignorable values.

Finally, the way the RRN should receive input during prediction has the following
semantics: Let ζpastt denote the vector of past asked questions prior to t, and let ζpredt

denote the vector of present network input to be used for prediction t, then ζpastt is defined
as:

ζpastt = [o1, . . . ,ot−1] (5.19)

and ζpredt is then defined as:

ζpredt = ζpastt :: ot (5.20)

where both of these vectors resemble the blue brackets of Figure (5.5).

5For a visual intuition of this, consider the number sequence of the symptom nodes in Figure (3.1)
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Figure 5.6: Data structure of the vector containing consultation observation vector sequences
(left) and the corresponding vector of consultation reference diagnosis sequences
(right) where both have been padded. These are the code representations of ζ
and β, as they appear upon completion of the sample creation. In this example,
the first consultation is the longest with 4 time steps, meaning that the other
consultation with only 2 time steps must have 2 vectors of ignorable values
concatenated.
Notice that the two consultation reference diagnoses depicted in β (shown with
blue brackets) are different, with the first having an additional disease compared
to the other. This has caused the first consultation to be longest, as two present
diseases will have a larger collective symptom set to be questioned. This has been
depicted to show that there is a correlation between the sampled consultation
length, and the number of underlying diseases present within it.

It follows that each prediction is based on all previous questions with the addition of
the new information from ot. The RRN prediction can thus be interpreted as an analysis
of evidence trails. It outputs a number of disease predictions equal to the size of the input
evidence trail. Formally, the disease prediction output βpredt is defined as:

βpredt = [d̃1, . . . , d̃t] (5.21)

and so the desired approximated probability of the disease diagnosis after t questions is
finally obtained:

P (d|s) ≈ P (d̃t |ζpredt ) (5.22)

which matches the wanted disease probability posterior shown in Equation (5.15).
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6 Experiments

In this chapter the results of the RRN training and experimentation will be presented.
Firstly, the experimental setup will be explained. This includes the introduction of a

new metric for NN calibration measurement, a special training technique deployed for the
RRN, and metrics used for monitoring the training phase.

Then two RRNs which will be the main entities of the chapter are presented, and their
training results are analyzed.
Lastly, the experimental results of the two RRNs will be analyzed, where we will

subsequently see an alternate implementation based on the reflections of the analysis.

6.1 Experimental Setup

6.1.1 Expected Calibration Error

The experimentation with the BRN and SDRN showed how these networks tended
to underestimate their output. This was concluded from observing that their output
posteriors for the underlying diseases were low, while the ranking of the same diseases
were high. This is a sign of poor network calibration, where the networks in this case are
underconfident. They assign very low probability posteriors to all diseases, even the ones
predicted to be most correct given their high ranking.
To investigate this further, a new metric known as Expected Calibration Error (ECE)

is introduced [48, 49]. This metric shows the average difference between the proportion of
an NN’s correctly predicted elements (the accuracy), and the probabilities estimated for
those elements (the confidence).
The metric is reported as a single number and is calculated with the same type of

samples the network uses during its training, where each sample have an input and an
associated target value. The way ECE is calculated in the original sources differs slightly
from the way it is calculated here because it must be fitted to a multi-label classification
problem.
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The calculation of ECE for the RRN is carried out as follows: Firstly, M bins are
defined. These are subsets whose collective union form the set of all predictions. Each
bin, denoted Bm, holds the predictions whose predicted probabilities are within the
range (m−1M , m

M ]. The accuracy of Bm is then calculated as the average number of correct
predictions by the members of the bin:

acc(Bm) =
1

|Bm|
∑
j∈Bm

1(d̂j = d̃j) (6.1)

where d̂j is the target and d̃j is the predicted label. The confidence of Bm is the average
of the posterior sum of all predicted labels found within Bm:

conf(Bm) =
1

|Bm|
∑
j∈Bm

Q(d̃j) (6.2)

having defined acc and conf , the ECE score of an RRN is obtained as the sum of
average difference between these two values for each bin:

ECE =
M∑

m=1

|Bm|
n · Tsum · |d̃|

∣∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣∣ (6.3)

where n is the sample batch size used for the calculation, and Tsum is the total number
of time steps for the sample batch. The way the calculation is adapted to the multi-label
scenario is by considering each predicted disease of the BN2O to be counted as one
individual prediction. This is the reason why the normalization constant of the bins is
set as n · Tsum · |d̃|. The sample batch of size n has in total Tsum time steps, with |d̃|
predicted diseases, which makes the total number of disease predictions equal to the
product of these variables. It follows that the bins collectively contain this number of
predicted diseases within them.

In the calculation of ECE reported in the upcoming section, the number of bins M are
set as 10. The number of samples n are set to be 100 and are chosen to be fairly low in
order to accommodate for the large number of predictions resulting from the multiplication
with Tsum and |d̃|. Finally, the way equality is decided between the predicted disease and
the target disease in Equation (6.1) is not determined by strict equality of d̂j and d̃j , but
are instead decided according to:

(d̂j = d̃j) =


True Q(d̃j) ≥ 0.5 ∧ d̂j = 1

True Q(d̃j) < 0.5 ∧ d̂j = 0

False otherwise

(6.4)

which is a more meaningful definition for accuracy given that the RRN should output
a relevant posterior probability rather than plain ’1’ and ’0’ values.
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6.1.2 Recognition Network Sharpening

In Section 4.3 it was shown how the initial RN implementations mostly estimated posteriors
within the ranges [0, 0.1] and [0.9, 1]. The section also showed how the disease ranking
was non-proportional with the posteriors that created it which is a sign of poor network
calibration.
In an attempt to counteract this, a calibration method known as temperature scaling

was deployed [48], where a parameter was trained and used to normalize the RNs’ outputs,
before they were squished through the output sigmoid activation function. After deploying
this method, the networks did unfortunately still show results similar to those of Figures
(4.2) and (4.3). This is showcased by Figure (A.1) in Appendix A.

Through experimentation with RNs trained on a subset of the BN2O with 3 diseases,
it was however discovered that RNs in general learn how diseases often are absent rather
than present. Essentially, an RN trained on the full set of 514 diseases, will have 1 to 5
disease targets for every sample, and thus there are 509 targets set as ’0’ for every sample.
Because of this the networks will learn that a disease usually should be given an output
close to 0. The experiments with the subset trained RNs can be found in Figure (A.4) in
Appendix A.

To counteract this, a technique which we denote as RN sharpening is applied. This
training technique is derived from the subset network experimentation. It is thus not
based on literature, but is purely based on experimentation with the RN concept. An
example of its effect is shown in Figure (A.3) in Appendix A.

RN sharpening is carried out by initially training the given RN with samples containing
a very large number of present diseases. The network will have its weights fit towards
a high possibility of each disease being present. Instead of training the network with a
fixed number of diseases set as present, RN sharpening iteratively decrements the total
number of diseases to be set as present. This is done to prevent the network from being
fitted too much to the idea of all diseases being present.

RN sharpening are done through a sequence of training rounds. The number of training
rounds is equal to |d|. Every training round uses 500 samples which the network is
trained upon for two epochs. The number of present diseases is determined according to
the following description: Let Prounds be the number of already conducted rounds such
that Prounds ≤ |d|, then the number of diseases set as present in a given training round,
d+sharpen, is calculated by:

d+sharpen = |d| − Prounds

When the RN has undergone the sharpening process, it can be trained with larger sample
sizes with few diseases present. This will fit it towards estimating lower probabilities for
most diseases as intended, but it will now output larger values on average.
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6.1.3 Training, Validation, and Testing Metrics

The network training is monitored through loss, precision, and recall. The loss is reported
as the average lossT as it was defined in Equation (5.5), with the only addition of being
averaged over all consultation samples.
The precision and recall are calculated for the top-k predictions, with a threshold

of 0.5. Formally, the metrics with these constraints are defined as follows: Let d̂+

be the set of diseases that were sampled as present in a given consultation such that
they are the diseases set as present in the target vector for each time step, and let
RNtopk = {d̃(1)j , . . . , d̃

(k)
j } be the top-k disease predictions by the RRN for that time step,

then precision in top-k with a threshold of 0.5 is calculated by:

P@k0.5 =

k∑
i=1

1

(
d̃
(i)
j ∈ d̂

+
∧
Q(d̃

(i)
j ) ≥ 0.5

)
[

k∑
i=1

1

(
d̃
(i)
j ∈ d̂

+
∧
Q(d̃

(i)
j ) ≥ 0.5

)]
+

[
k∑

i=1

1

(
d̃
(i)
j /∈ d̂+

∧
Q(d̃

(i)
j ) ≥ 0.5

)]
(6.5)

and recall with the same constraints are calculated by:

R@k0.5 =

k∑
i=1

1

(
d̃
(i)
j ∈ d̂

+
∧
Q(d̃

(i)
j ) ≥ 0.5

)
|d̂+|

(6.6)

6.2 Recurrent Recognition Network Training, Validation,
and Testing

In this section the training phase of the RRN will be covered. This includes an introduction
of an additional RRN version to be included in the experimentation.

The RRN was trained with two sessions of RN sharpening, resulting in approximately
5 · 105 consultation samples and approximately 1000 epochs. To fit it to an appropriate
number of diseases, it was subsequently trained with 105 sampled consultations with a
uniform distribution of targets with 1 to 5 diseases. The network was trained over the
course of 10 training rounds with 104 samples per round. Each round ran 10 epochs with
a batch size of 1.
In a addition to the main RRN, henceforth denoted RRNmain, a smaller version of it

known as RRNsub was also trained. This network was trained using a subset version of the
BN2O. This BN2O contains 50 diseases, 125 symptoms, and 294 relations between them.
RRNsub have the exact same internal structure as RRNmain with the only exception being
the in- and output sizes. It was sharpened through two sharpening sessions the same way
as RRNmain and trained using the same number of samples and epochs. Given that its
number of diseases is smaller, its total number of sharpening samples amounts to 5 · 104.
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Figure 6.1: The average training results of RRNmain (left column) and RRNsub (right
column). The average is taken over 10 training rounds where each round has
trained the given RRN with 104 samples for 10 epochs.
’Test’ in this case refers to a validation sample set of samples used to validate
the given RRN for each epoch. This set has a size of 1000 samples and has a
uniform distribution of targets with 1 to 5 diseases.
Prior to this training, two sessions of RN sharpening have been conducted, hence
the low decrease in loss.
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Model loss P@k0.5 R@k0.5
RRNmain 0.58% 90.05% 8.07%
RRNsub 3.15% 96.54% 32.5%
DLIRRN 4% 86.83% 56.78%

Table 6.1: Test sample set prediction results of all RRNs. Each test set used for each model
contained 1000 sampled consultations with a random number of diseases from 1
to 5 in the targets.

Figure (6.1) shows the average results of all the training monitoring metrics calculated
for both the training and validation samples during training of RRNmain and RRNsub.
We start by considering the loss.

The loss of RRNmain is due to the sharpening sessions already low compared to RRNsub,
undoubtedly due to the difference in the number diseases which determines the number
of samples and epochs of the sharpening. Both RRNs have a downward going loss, but
the reduction per epoch is low by several orders of magnitude. The downward going
loss means that the RRNs can be trained even further and that the models consistently
converge towards 0 which is the most important point of the training.

We now consider P@k0.5 where k = 10.
For P@k0.5 there is a major difference between the development of the curves for

the two RRNs. RRNmain gains a considerable increase from the 3rd to the 4th epoch
whereafter it moves into the [0.85, 0.9] range, in comparison to RRNsub which has no
change in this metric for all training rounds. This is especially interesting given that the
loss of RRNmain decreases less than that of RRNsub. Both RRNs have better P@k0.5 on
the validation data than the training data with about 10% difference on average, with
the only exception being RRNmain at the 3rd epoch.

Finally, we consider R@k0.5 where k = 10.
R@k0.5 is shown for both RRNs to be increasing, though only in both cases with about

0.3%. For RRNmain the numbers for this metric are low. RRNsub achieves a much better
result, even though it is still considered low from being below 50%.

In addition to those results, the two RRNs were also tested with separate testing sample
sets of 1000 consultations1. Each testing consultation had a random number of diseases
from 1 to 5, to represent how real data would not have a uniform distribution of diseases.
The results of these tests are shown in Table (6.1).

1Not to be confused with the validation data with the same quantity.
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To summarize the results of the training and testing, the two RRNs differ the most
when it comes to loss and R@k0.5. Both RRNs also have a significant different value for
precision and recall, despite both metrics being calculated based on the number of true
positives which is the numerator in both Equations (6.5) and (6.6).

This is likely the case because the metrics are calculated per time step. Early time steps
are likely to output very low posteriors which is understandable given that little evidence
have been given at this point. Because of this, the numerator of R@k0.5 in Equation (6.6)
is close to 0 on average, which will in turn yield 0 on average for the metric.
P@k0.5 is instead conditioned on false positives calculated on the right-hand side of the

denominator in Equation (6.5). This number is basically 0 if the average predictions yield
low posteriors. This means that the calculation of P@k0.5 simply need just one disease
on average to be predicted in top-10 with a posterior ≥ 0.5 to yield a high result.

It is thus probably more desirable to calculate these two metrics at the end of a training
consultation sample, rather than considering all time steps in the average.
Despite of this it can still be seen that RRNsub achieve a significantly better R@k0.5.

This indicates that the RRN concept is not necessarily flawed given the poor R@k0.5 of
RRNmain, but may instead simply be a question of scaling.

The last and probably most important point is that the loss progressively falls for both
models, despite it happening slowly. This turns the RRN concept’s convergence into a
matter of scaling samples and/or epochs.

6.3 Experimental Results

In this section, the results of the experimentation with RRNmain and RRNsub will be
presented and analyzed. Based on the reflections of this analysis, a final extra version of
the RRN will be introduced, and its results will be shown.

The suite of experiments to be conducted for the RRNs are the ones already presented
in Section 4.3. These experiments are useful to test the RRN concept with, and allows
for comparison with the results presented in that section. The experiments will use the
same diseases as in the prior section, but with new question sequences.
The idea is to compare the results of the sequential RNs to the recurrent ones, and

to compare the results of RRNmain and RRNsub to get a grasp of the RRN concept’s
scalability.

6.3.1 RRNmain Single Disease Prediction

We start of by considering the results of RRNmain as depicted by Figure (6.2). Firstly,
the simulated consultation with one underlying disease is analyzed which is depicted by
the left column of diagrams in the Figure.
The predicted posteriors by RRNmain in this experiment are lower than what is

calculated by Quickscore, but the slopes of the two curves seem to be decently proportional.
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Even though the posteriors are lower, it is remarkable that RRNmain compared to the
RNs of Section (4.3) now progressively increases the posterior output as more positive
evidence is given.

This progression can also be seen by the ranking which is shown to progress downward
towards a high rank very nicely, in opposition to Quickscore which requires 6 positive
symptoms before placing the underlying disease within top-10. Despite the vast posterior
difference from Quickscore, RRNmain still places the underlying disease as top-1 from the
6th prediction and onwards.

The top-k similarity metrics show a far greater result throughout the consultation than
what was achieved by BRN1 and SDRN1 in Figures (4.2) and (4.3). The highest value
for the metric achieved by the prior RNs is the lowest value achieved for the metric by
RRNmain in this 1-disease scenario. The rest of the similarity metrics are however not as
impressive, with TK3 being the only other metric that is present.

The average KL-divergence is another significant improvement compared to the RNs of
Section (4.3). Where both BRN1 and SDRN1 had their average KL-divergence in the
interval [0.25, 2.25], RRNmain achieves scores approximately within [0.075, 0.12]. It also
stays fairly consistent in the range [0.095, 0.11] from 4 to 12 positive symptoms.

6.3.2 RRNmain Multi Disease Prediction

Now RRNmain is considered in the consultation with 3 underlying diseases, shown in the
right column of diagrams in Figure (6.2).

The posterior predictions of this consultation show poor results for RRNmain, compared
to those produced by BRN3 and SDRN3. It can however be seen that Quickscore does
not estimate high probabilities for any of the diseases either, except for one of them after
9 positive symptoms. The result of the posterior estimation dictates the ranking very
closely for both Quickscore and RRNmain

The top-k similarity is worsened compared to the 1-disease scenario, but not to a large
extent. It is also remarkable how TK1 shows that 9

10 of the diseases are identical after
just one positive symptom.
Just like the top-k similarity, the average KL-divergence is not affected much by the

poor posterior and ranking results. The range it lies within is however expanded from
[0.075, 0.12] to [0.075, 0.16]. It also increases rapidly from the 6th positive symptom and
onwards, but seen as the increase is low by two orders of magnitude this is insignificant.

To summarize the performance of RRNmain, it is evident that inclusion of the temporal
order has a high effect on similarity with Quickscore. Both the similarity metrics and the
average KL-divergence shows considerably better results compared to BRN and SDRN.
In terms of predicted posteriors and ranking of the underlying diseases RRNmain shows
quite underwhelming results for the 3-disease prediction scenario, and mediocre results
for the 1-disease scenario.

For the 1-disease scenario there is once again a mismatch between ranking and posterior
volume. This is now further backed up by the achieved ECE score of RRNmain which is
shown in Table (6.2). The network produces highly miscalibrated probabilities which is
made evident by the posterior-ranking relation.
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Figure 6.2: Experimental results of RRNmain with 1 (left column) and 3 (right column)
underlying diseases. Rows from top to bottom: Predicted posteriors, ranking,
the similarity metrics where TK1 is cyan, TK2 is orange, TK3 is purple, and
TK4 is green, and the average KL-divergence of all diseases.
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From 1 to 6 positive symptoms, it ranks the underlying disease to be within top-10 out
of 514 diseases, but estimates posteriors for it to be within [0, 0.3].

6.3.3 RRNsub Single Disease Prediction

Now the attention is turned towards the results of RRNsub which is shown in Figure (6.3).
It should be noted that the BN2O subset which RRNsub is built to predict for is used in
these experiments. Firstly the 1-disease scenario is considered, shown by the left column
of diagrams the Figure.

The posterior estimation by RRNsub compared to Quickscore in this scenario is remark-
ably better. The posteriors are increasing steadily as more positive symptoms are revealed,
compared to Quickscore where the probability decreases from 2 to 6 positive symptoms
given. This is the best result produced in this experiment by any RN so far. The ranking
of the disease by RRNsub is only outside top-1 in the initial prediction, whereas Quickscore
ranks the disease from top-7 to top-2 in the first half of the consultation.

The similarity metrics achieved are also remarkable. All metrics have almost consistent
presence and TK2 can be seen to amount to about 2 on average. TK1 shows the highest
average seen yet, with most predictions having 6 diseases in the intersection between the
two top-10 sets.
The average KL-divergence is shown to be low. There is a spike from 3 to 6 positive

symptoms, which is undoubtedly because of the higher posterior predicted by RRNsub.
This spike amounts to about 0.13 which is significant in the plotting, but insignificant
overall.

6.3.4 RRNsub Multi Disease Prediction

Now the the predictions made by RRNsub is considered in the 3-disease scenario, shown
in the right column diagrams in Figure (6.3).
Both RRNsub and Quickscore show better performance in the posterior estimation

experiment which is most likely due to the BN2O size reduction. RRNsub is able to predict
somewhat useful posteriors for at least 1 of the 3 diseases compared to RRNmain. It is still
quite low compared to Quickscore which for the same disease consistently estimates 100%
probability and even breaks the scale at the 10th positive symptom. This probability
however plummets towards 0% from the 10th to the 13th positive symptom, in opposition
to RRNsub which keeps the posterior above 50%.
The ranking by RRNsub is on par with Quickscore in this scenario. The ranking and

the posterior outputs are once again a bit off, seen as the diseases shown by the dashed
and dotted lines have quite low probabilities, but still achieves great ranking. Especially
the disease of the dotted line should not be ranked as 6 or 7 based on a posterior within
the range [0.1, 0.2]. After 8 positive symptoms it has even lower probability, but is still
ranked as the disease with the 8th highest probability.

The similarity metrics are decreased compared to the 1-disease scenario. Not all metrics
are represented anymore, with TK4 only being found at the prediction based on question
3. TK2 is also vastly lower on average compared to the 1-disease scenario.
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Figure 6.3: Experimental results of RRNsub. Figure description is the same as Figure (6.2).
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Model ECE
RRNmain 99.11%
RRNsub 92.04%
DLIRRN 93.97%

Table 6.2: Expected Calibration Error of the different RRN types. Lower percentage is
better.

The similarity metrics are lower between the 1- and 3-disease scenarios for RRNsub,
just like it was the case with RRNmain.

The average KL-divergence per disease is initially on the lowest number seen yet, which
is approximately 0.05. The graph is very volatile towards the end of the consultation.
This is most likely due to all diseases being estimated equally low at this point such
that the only real difference is given by the dashed line disease whose divergence changes
rapidly.

Finally, the ECE score of RRNsub can be seen in Table (6.2) to be a bit lower than that
of RRNmain, but still quite high. The effect of this is especially shown in the 3-disease
scenario, given the mismatch between the high rankings and the low probabilities. It is
essentially also shown in the 1-disease scenario, where the underlying disease is top-1 in
14
15 of the predictions, but has a probability within [0.9, 1] in only 9

15 predictions.

6.3.5 Recurrent Recognition Network Concept Evaluation

Now that the experimental results of both RRN implementations have been evaluated it
is possible to assess the RRN concept as a whole. RRNmain which is built to predict for a
triple digit disease number can from its results be seen to produce decent posteriors that
resemble those of exact inference, but its calibration and outputs are still quite lacking.
The experimentation with RRNsub which has the same network size and is trained the
exact same way as RRNmain, yielded results that were better.
Both recurrent models showed a much greater resemblance with exact inference than

the initial sequential RN implementations. All in all, this clearly indicates that the idea
of using a recurrent structure for the task of predicting diseases of a BN2O is useful. The
question is how the concept should be implemented to be able to confidently predict any
arbitrary number of diseases.
Throughout the thesis it has been subtly hinted that literature ideas did not seem

to work for the RRN, especially in terms of network depth and size. Given all the
considerations made for the RRN implementation, it is strange that the results are
still quite lacking. The explanation for this may be deduced from the results of the
experimentation with RRNsub. Since better results were achieved by an RRN built from
a subset of the BN2O, the answer of how to make the model confidently predict any
diagnosis, is simply a matter of scaling.
This raises the question of how to scale the network. The final structure used for

RRNmain was researched and experimented with extensively to produce decent results.
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Because the results are still lacking, all this points at the baseline of using a large
symptom vector to predict a large disease vector. It may be that the recurrent network is
simply unable to capture the BN2O relations using the current implementation. It is after
all only given is a series of large vectors that hold but one index of useful information.
From this, the model is supposed to learn a vast number of relations which may in fact be
the problem. The key to a more scalable implementation might be to utilize the BN2O
relations themselves for the RRN. Instead of having to learn the relations between all
entities of the BN2O network simultaneously, it might be possible for the model to learn
them individually.
From these reflections, one last model is now presented and evaluated using the same

experimental setup as in this section.

6.3.6 Disease Layer Input Recurrent Recognition Network

The Disease Layer Input Recurrent Recognition Network (DLIRRN) is an RRN implemen-
tation which has a different way of receiving input compared to RRNmain and RRNsub.
Instead of receiving one vector with the information of all symptoms, it instead receives a
vector for each disease.

The architecture of DLIRRN is shown in Figure (6.4). The DLIRRN works by using a
sequence of small parallel LSTM cells such that it has one cell per disease of the BN2O
it is built to carry out inference for. These cells are defined as follows: Let h(dj) denote
a disease layer input LSTM cell where J = |d| such that 1 ≤ j ≤ J , then the input
observation vector of h(dj), denoted o(dj), is based on the symptom children of dj , namely
sdj . It follows that the size of o(dj) is |sdj |. DLIRRN takes J of these vectors as input for
each time step t. The output produced of h(d1), . . . , h(dJ ) is concatenated and given to
the main LSTM cell, simply denoted h, which produces the output d̃.

DLIRRN is trained on the same BN2O subset as RRNsub because the training of a
DLIRRN based on the full BN2O turned out to require excessive time. Instead of testing
on the full BN2O right away, the idea is to see if DLIRRN performs as well as RRNsub.
Better performance than RRNsub might indicate that the model can then be used to scale
the RRN concept.

For each h(dj) the number of units is set as 1 such that the number of parameters for
any given h(dj) is directly proportional to the number of symptom children of the dj it is
based on. The number of units for h is set as 300.

DLIRRN is trained the exact same way as RRNmain and RRNsub with 2 rounds of
RN sharpening, and 105 samples with a uniform distribution of 1 to 5 diseases in the
reference diagnosis targets. The results of DLIRRN on its testing sample set are shown
in Table (6.1).
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Figure 6.4: The architecture of the Disease Layer Input Recurrent Recognition Network

Figure (6.5) shows the experimental results of the DLIRRN model. Throughout the
analysis of these experimental results, it is useful to take notice of Figure (6.3), as this
will be consistently referenced. Firstly, the 1-disease scenario is considered.

DLIRRN produces a very nice curve of posterior outputs for the underlying disease in
this experiment. It starts of by predicting posteriors close to 0 like Quickscore, but then
proceeds to make a high spike followed by a nicely rounded curve that slowly progresses.
The ranking outperforms Quickscore as well, with the correct diseases being top-1 after
the 3rd positive symptom. Its probability outputs are thus indicated to be better than
those of RRNsub, but its ranking is a bit worse.

The similarity metrics shows about equal results to those of RRNsub. Where RRNsub

has a higher number on average for TK1, DLIRRN seem to have higher presence for the
rest of the metrics.

The average KL-divergence of DLIRRN highly resembles that of RRNsub with the spike
around 6 positive symptoms. DLIRRN has higher average divergence throughout the
consultation, but the difference is minor.
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Figure 6.5: Experimental results of DLIRRN. Figure description is the same as Figure (6.2).

59



6.3 Experimental Results Group mi105

Now the 3-disease scenario is considered. For the probability prediction, DLIRRN
performs about as good as Quickscore, but outperforms RRNsub significantly. The proba-
bilities of 2

3 diseases steadily rise throughout the consultation, which is the first time this
is seen for an RRN model.

The ranking produced by DLIRRN in this scenario shows the first example seen so far
where the ranking is somewhat proportional to the predicted posteriors. The dotted and
dashed lines of both the probability prediction and ranking plots move according to each
other. They are however still a bit mismatched, given that the disease of the dashed line
becomes top-1 after 7 positive symptoms, with a posterior of about 0.6. Overall, both
plots show a much greater result than shown by RRNsub.

The similarity metrics show a worse result compared to RRNsub, even though the
first 7 predictions show a better result. From question 7 and onwards, the similarity
decreases to the lowest point seen for any of the recurrent network experimented with so far.

Finally, the average KL-divergence achieved for the 3-disease scenario by DLIRRN
shows the highest divergence achieved by an RRN model so far. Like it was concluded for
RRNsub, this is likely only due to the difference in posteriors for the underlying diseases,
and not because of divergence from all other diseases.

To conclude upon the results of the DLIRRN experimentation, it can be seen that the
model achieves the highest multi disease prediction result in comparison with RRNmain

and RRNsub. This comes at the cost of top-k dissimilarity and higher KL-divergence.
DLIRRN seem to be better calibrated than RRNsub by comparison of its predicted ranks
and posteriors, but its ECE score shown in Table (6.2) tells a different story.
It should be noted that this implementation is not backed up by literature or any

other sources, meaning it has great potential for improvement. This straightforward
implementation shows great potential given that higher posterior probabilities is highly
desirable. Basing the RRN architecture on the BN2O it is supposed to predict for, is
likely the best approach to scaling the RRN concept.
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We have in this report investigated the appliance of a Recurrent Recognition Network for
inference time optimization in a large BN2O network, used by the AI system IntMed.
This investigation was carried out by firstly examining the standard way of handling

inference in a BN2O network. In extension, the Quickscore algorithm currently used
in the IntMed system which optimizes the BN2O inference process was also examined.
Quickscore was shown to have a computation timewise downside which then led the inves-
tigation into the topic of Recognition Networks. These were shown to have great potential
in terms of providing inference approximation for BN2O networks, but required tweaking
which led to an investigation of how to implement them as recurrent neural networks.
This sparked the introduction of the Long-Short Term Memory neural network which
became the basis of a new recognition network type known as the Recurrent Recognition
Network. Two networks of this type were created and trained using consultation samples
which included time steps that modelled different kinds of disease scenarios, evidence
types, and consultation lengths. After the training, experimentation was conducted with
the networks in the form of measuring output posteriors, disease ranking, top-k similarity
with Quickscore, and average KL-divergence. This showed that the Recurrent Recognition
Network produced great results, but currently requires work on its scalability for larger
BN2O networks. Finally, based on the reflection about the scalability requirement, one
last recurrent model was created and experimented with, to investigate a possible way of
scaling the recurrent recognition network concept to fit larger BN2O networks.

The main objective in this thesis was to test the applicability of a recurrent neural
network for real time medical consultations. The most remarkable feature of using a
recurrent model compared to a sequential, was the high increase in the overall similarity
with exact inference. In this regard the recurrent model was really on par with exact
inference and gave an incontestable reason to use that type of model rather than the
original sequential version.

As it turned out, the ideas from literature were not directly applicable to this case, seen
as most suggestions pointed towards fairly simple and small network structures which
turned out to be ineffective. Based on the experiments conducted, especially with the
Disease Layer Input Recurrent Recognition Network, it may very well be that the network
simply needs redesign before the ideas from literature would show greater effect.

The aspects of the consultation domain in which the recognition network is to be used,
comes in the form of evidence being given by patients based on urgency, and the fact that
much of the information in a consultation remains unobserved.
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Furthermore, the evidence of a consultation is unveiled in a sequence. The modelling
of unobserved evidence and the temporal unveiling was included in the implementation,
but the urgency aspect was left out.

In summary, it is possible to make a Recurrent Recognition Network model for approx-
imate inference dedicated to a BN2O network like the one used by IntMed, but for it to
be on par with the current exact alternative it requires work on its scalability, design,
and calibration.

7.1 Future Work

The Recurrent Recognition Network concept has many great possibilities of meaningful
future work.
Firstly, there is the further development of the DLIRRN. It is most likely that the

structure it dictates is the way to scale the RRN concept. This assumption is based on
the experimentation, and the intuition that closer architectural resemblance with the
BN2O network should yield better results. Currently, the DLIRRN implementation needs
optimization for being able to train on a very large BN2O networks. The first step in
this regard is to enable inclusion of a large number of disease layers, as this otherwise
greatly slows down its training. This could possibly be done by using simple dense layers
rather than LSTM cells for the disease inputs instead. In that case it would have to be
determined how to give an arbitrary number of time steps to these. Suffice to say, this
model needs more attention.

Secondly, the calibration of the RRN should be addressed given the high ECE scores
for all models shown by Table (6.2). In that regard it would also be useful to find a
more meaningful calculation adaption for the ECE score. The adaption of considering
every disease prediction to be a sample was somewhat arbitrarily chosen. Literature with
examples where ECE is calculated for multi-label classifiers is unfortunately scarce. It
would perhaps be more meaningful to only consider the posteriors predicted for the target
diseases, rather than all diseases. This change would vastly reduce the number in the
bins and the size of the normalization constant in Equation (6.3).

Another option would be to apply a new calibration method. Figure (A.1) in Appendix
A details how the temperature scaling gave little to no results. Mentioned in [48] are a
wide variety of alternate calibration methods which might be better options for the RN
case. It is however a prominent possibility that the ECE will decrease vastly when a more
scalable implementation is obtained through other means.

Another possible entry for future work is the symptom representation. As it was
mentioned Section (5.1), the recurrent structure allows for a convenient representation of
unobserved evidence through absent input. This was evidently not used throughout this
project, due to the idea of keeping a more expressive symptom representation.
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This might however have been the wrong approach, seen as the network input became
fairly data heavy, due to the observation vectors being twice the size of the entire symptom
set’s cardinality. Whether or not simple bit representation for the evidence is better would
have to be tested, but it is the most meaningful optimization to the basic RRN concept.

In extension of the future work on symptom representation, it might also be useful
to redesign the padding of time steps. If the symptoms were instead represented with
bits with ’1’ for positive and ’0’ for negative, and the ignorable value was set to ’0’,
the network would learn to emphasize the positive evidence, as it would only read the
’1’ values. This was initially thought to be detrimental, but it might have the effect of
making the network predict higher and more confident posteriors upon receiving positive
evidence.

In conjunction with this, the padding could instead be concatenated to the beginning of
the sampled consultation sequences. It is possible that the current post-padding strategy
has a negative impact on the computation of the relevant input. The propagation of
the ignorable vectors that happens after the relevant input has been processed might
make the data of the relevant input noisy [50]. The initial wind up of pre-processing
the ignorable vectors ensures that the information of the relevant input is not negatively
impacted [51]. This also has the interpretation of teaching the network that no more time
steps are given after the meaningful inputs have been processed. In turn, the network
learns to output the most confident prediction with high posterior values in the end of
the entire training sequence.

The TensorFlow documentation does not indicate any negative impact from using
post padding which was the main reason for choosing it for the RRN development. The
documentation instead states that every ignorable value at runtime is interpreted as a
logical false value which is ignored completely [52]. Pre-padding also have the downside
of being incompatible with TensorFlow cuDNN support which is currently used to speed
up training significantly. Despite of this, the pre-padding approach still does provide the
possibility of greater output which makes it worth to experiment with.

Then there is the implementation of a more meaningful way to calculate the precision
and recall metrics used for monitoring the training. It was shown that the results of
these metrics imply poor results compared to what the actual experimentation showed.
It was furthermore explained that there is an inherent flaw in the way they are currently
calculated during the training. Correcting this is most likely a simple matter of imple-
menting a custom-made function for these metrics to be used instead of the currently
used TensorFlow implementations.
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Finally, there is a more speculative extension idea for the RRN, namely the addition of
a feature for determination of the next symptom to query. This would essentially take
form as a questioning process tool that can be used by the healthcare practitioner. The
feature could be implemented as a new RRN running in parallel with the standard during
a consultation, but where the standard RRN would provide disease posteriors, the new
RRN would instead provide symptom posteriors.
To predict the symptom posterior, the new RRN would receive as input the current

question sequence and current disease hypothesis from time step t in the consultation
[53]. The disease hypothesis would be provided by the standard RRN’s prediction, which
in turn would be based on the current question sequence given by the new RRN. This
would create a feedback loop system that yields inference for both diagnosis prediction
and medical questioning, thereby making it a very convenient CDSS tool.
This idea is only speculative at this point, but it would be a very useful extension for

further optimization of IntMed.
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A Development Documentation

This appendix contains documentation of development experiments that were used
for investigating what worked best in terms of recognition network construction and
architecture. These are but a subset of the entire set of investigative experiments
conducted. The entire set of plots would be excessive to include. The main points to
document with these plots are the choice of RN size, the effect of temperature scaling for
the RNs, and the invention of the RN sharpening concept.
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Figure A.1: Early RN experiment showing averaged posteriors per question taken over
many consultations. Left plot shows the experiment after temperature scaling
was applied [48], and right shows the result before it was applied. The plots
indicate that temperature scaling has little effect for the RN case.

Figure A.2: Posterior estimations by two different RRNs trained to predict for a BN2O
with 50 diseases. The results to the left are made by an RRN with 2 cells and
150 units, and the results to the right are made by an RRN with 3 cells and
300 units. Both RRNs were trained with the exact same number of samples.
The plots indicate that a bigger network size is better.
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Figure A.3: Ouput posteriors based on the same observation sequence by two different
RRNs trained to predict for a BN2O with 50 diseases. The RRN which has
produced the results of the left plot was trained until fairly low convergence,
whereas the one that has produced the right first underwent sharpening, before
being trained till fairly low convergence. The plots indicate a higher posterior
output for the RRNs that have been sharpened.
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(a) Trained with 1 disease in every target. (b) Trained with 2 diseases in every target.

(c) Trained with all 3 diseases in every target.

Figure A.4: Experiments with RRNs trained for a very small BN2O with only 3 diseases.
Each network has been trained with a number of diseases in each reference
diagnosis as per described by their caption. In the experiment all symptoms of
the network (13 symptoms total) are given positive evidence. It can clearly be
seen that the number of target diseases each of these have been trained with
dictates how many diseases that are given a high posterior consistently. Even
though A.4a and A.4b have been trained with examples of every disease in the
small BN2O and thereby also all symptoms, they still predict low posteriors for
them, despite having been introduced to all disease-symptom relations. This
indicates that the networks predict lower posteriors if they are trained with
many examples where diseases are absent. This sparked the idea for the RN
sharpening concept.
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