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ABSTRACT
During the last years, model interpretability has become an in-
creasingly researched aspect in machine learning. Its ability to
provide an explanation of the model can, from one side, increase
the trustworthiness of the predictions and from the other side help
in identifying hidden trends, thus going beyond the use of machine
learning as a black box. In this paper, we propose a hierarchical
training method to interpret convolutional neural networks trained
on tabular data, and apply it for bandgap prediction of organometal
halide perovskites, by assigning importance values to features. The
feature space includes properties of the elements, precursors, and
perovskite crystal structures, for a total of 39 features, which can be
combined together. Using a Weight Parameter Saving Method, we
are able to reuse previously trained network’s weights for training
the next network, achieving faster convergence and better pre-
diction performances. Using Shapley Additive Explanations for
approximating feature importance and hierarchical training, a min-
imal feature set needed for bandgap prediction (within a squared
error of 0.1) is found. This has the effect of reducing the feature
space, while preserving the predictive performance of the model.
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1 INTRODUCTION
Modern day machine learning has become a critical function within
many fields. Its ability to go through large amounts of data and
make accurate predictions in areas from playing videogames [7]
to recommending items based on website behavior [1] has made
it a great subject of focus. While machine learning models offer
great benefits in many areas, it usually comes at the cost of its
understandability. Most modern machine learning algorithms are
considered black boxes, which means that the predictions they
make are without explanation and the underlying models’ behav-
ior is hard, if not impossible, to understand. This makes machine
learning a more sceptical choice in fields, where the need for un-
derstanding the model is crucial in order to trust its predictions

[8]. The area of model interpretability tries to solve this issue via
the introduction of algorithms, that can interpret black box models
while attempting to maintain a high accuracy. This interpretation
allows for better insight into how and why a certain prediction was
made and understand the underlying strategy that the model uti-
lizes [8]. Such knowledge will allow for further adoption of machine
learning in various fields, since better model understanding will
increase the usefulness of machine learning for other fields than
computer science, making the model more transparent, trustworthy,
and instructive. An example of a field where hesitation of machine
learning adoption exists is material science, where machine learn-
ing can accelerate the calculations, while interpretations are needed
to disclose the structure-property relationships [10]. Interpretable
machine learning for material science can help with understanding
how thematerial works, as well as to identify trends and descriptors,
which can accelerate the discovery of novel materials [4].

In this paper, we present a post-hoc interpretation of a model
within the field of computational materials, used for predicting
the bandgap of Organometal Halide Perovskites (OMHP) [9]. The
bandgap of the photoactive material is a descriptor of the efficiency
of a solar cell [3]. An OMHP is formed by organic molecules in an
inorganic template. There is virtually several thousand molecules
which can be used, making the investigation space too large to
be simulated via atomistic quantum mechanical simulations, and
only a small subset has so far been studied [2]. The interpretable
method we propose can assist material scientists by getting a better
understanding of the machine learning model they utilize, to help
them understand which features are important and how to better
tune them for achieving an expected bandgap.

This work uses the model and data from research by Saidi Et. al.
[9], where they propose a hierarchical convolutional neural network
for predicting the bandgap of various OMHP. Our research builds
upon their model with the proposal of an interpretable method us-
ing SHapley Additive exPlanations (SHAP) [6] to assign importance
values to features, while retaining the models prediction capabili-
ties. Unlike [5][12], which assume that the features are independent
and may give very limited explanations, this work considers the
relations among features and creates multi-level feature combina-
tions.

The model is trained hierarchically and the unimportant features
are removed iteratively. A weight parameter saving method is pro-
posed to reduce training time of each iteration. We test our method
on the full feature set described in [9], where our method is able to
find features of similar importance.

https://doi.org/10.1145/1122445.1122456
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2 METHOD
A convolutional neural network is used that is trained with a hier-
archical method, using SHAP values to tune input features and a
parameter saving method to reduce training time. The model takes
as input a set of feature combinations 𝐹𝑛 describing an OMHP and
outputs a bandgap prediction 𝐵. The features 𝐹𝑛 are computed by
taking the vector of features 𝐹 and multiplying with the transpose
𝐹𝑇 , combining the features with each other. Any redundant fea-
tures are removed leaving only unique combinations. This is to
create combinations that preserve relations between features due
to using a convolutional neural network, where the kernel makes
nearby pixels in an image more strongly related than distant ones,
and SHAP which assumes that features are independent [6]. The
features are standardized by subtracting the mean value of each
feature, and dividing it by the standard deviation [9].

2.1 SHAP
SHAP is a game theoretic approach that unifies several post-hoc
interpretability methods under one set of algorithms for computing
feature importance through the use of Shapley values [6]. In this
paper, we use the Deep SHAP method [6] which combines the ideas
of Deeplift [11] with Shapley values. In Deeplift, feature importance
is computed by assigning each neuron 𝑦𝑖 in a network a reference
value, which is used to compute how much it causes the output
𝑜 𝑗 of its connected neuron in the next layer to deviate from its
original value. Deep SHAP assumes that features are independent
and the model is linear, by linearizing all nonlinear components
of the model. Feature contribution is approximated by splitting up
the network and computing SHAP values recursively for smaller
parts of the model, summing up to the whole model. This is done
through the usage of Deeplift’s multipliers which can be seen in
Equation 1 and is computed in a backpropagation manner.

𝑚𝑦𝑖𝑜 𝑗
=

𝜙𝑖
(
𝑜 𝑗 , 𝑦

)
𝑦𝑖 − 𝐸 [𝑦𝑖 ]

(1)

The multiplier𝑚𝑦𝑖𝑜 𝑗
represents how much a neurons𝑦𝑖 differen-

tiation from its reference value causes its output neuron 𝑜 𝑗 to differ
from its reference value. The multipliers are computed for all the
neurons in the model with respect to their connected neurons, one
layer at a time. 𝜙𝑖 is the feature attribution and 𝐸 [𝑦𝑖 ] is represented
by the Deeplift summation-from-delta equation

∑𝑛
𝑖=1𝐶Δ𝑦𝑖Δ𝑜 = Δ𝑜 .

When computing a neurons contribution to the models output 𝑜𝑜𝑢𝑡 ,
we sum all multipliers for neuron 𝑦𝑖 and subsequently all previous
neurons 𝑥 𝑗 , leading up to the output as seen in Equation 2. This is
similar to the chain-rule.

𝑚𝑦𝑖𝑜𝑜𝑢𝑡 =

2∑
𝑗=1

𝑚𝑦𝑖𝑜 𝑗
𝑚𝑥 𝑗𝑜𝑜𝑢𝑡 (2)

Once the contribution effect of each neuron on the output has
been computed, the attribution value (SHAP value) of feature 𝑓 can
be approximated to be its multiplier, as seen in Equation 3.

𝜙𝑖 (𝑜𝑜𝑢𝑡 , 𝑓 ) ≈𝑚𝑦𝑖𝑜𝑜𝑢𝑡 (𝑦𝑖 − 𝐸 [𝑦𝑖 ]) (3)

2.2 Hierarchical Training Method
The Hierarchical training method can be seen in Figure 1. An initial
dataset is used from which features are extracted and standardized
into a feature set, as seen by the leftmost box in Figure 1. From
here, the initial second-level features are computed, which is done
following Equation 4, where 𝐹 2 is the set of second-level features,
𝑓 1 is a single feature, N is the number of features and 𝐹 1 is the set of
single features. These features consists of pair-wise combinations
created by multiplying the single features with each other.

𝐹 2 = {𝑓 1
𝑘
× 𝑓 1𝑚 |1 ≤ 𝑘 < 𝑚 ≤ 𝑁, 𝑓 1 ∈ 𝐹 1} (4)

After computing 𝐹 2 features, the model is trained. This first
training run will serve as a baseline for how the model performs
with all features. From here, the trained model and the feature set
will be used together in SHAP to compute the feature importance
for all features, as seen by the rounded box in Figure 1. These SHAP
values are used to determine unimportant features which then will
be removed. For the first run, 10% of the worst features are removed
and the model is trained again on the updated feature set, following
the topmost line in Figure 1. If performance increases, an additional
10% features will be removed, if performance decreases, half of the
most recently removed features will be added back. This loop of
adding/removing features will continue until no more features can
be removed. Between each training run, the model will reuse the
weight parameters from the past run, to reduce the needed training
time, as symbolized by the second topmost line in Figure 1. This is
explained in greater detail in subsection 2.3.

𝐹𝑛 = {𝑓 𝑛−1
𝑘

× 𝑓 𝑛−1𝑚 |∃𝑓 𝑛−2𝑜 ∈ 𝐹𝑛−2, 𝑓 𝑛−2𝑜 ⊂ 𝑓 𝑛−1
𝑘

∧ 𝑓 𝑛−2𝑜 ⊂ 𝑓 𝑛−1𝑚 ,

1 ≤ 𝑘 < 𝑚 ≤ 𝑁𝑛−1, 𝑓 𝑛−1 ∈ 𝐹𝑛−1}
(5)

When no more features can be removed without decreasing
performance, the best model and its feature set is selected, and the
method starts anew as symbolized by the bottom line in Figure 1.
From here, 3rd-level features are generated from the remaining 2nd-
level features, by examining the initial characters of the features,
as shown on Equation 5, where 𝐹𝑛 is the n’th level features. As an
example, using 4th-level features ABCD and ABCE, with the same
3rd-level subset ABC, the feature ABCDE will be computed.

2.3 Model Parameter Saving
To decrease training time, we propose a Model Parameter Saving
method. Using the hierarchical training method we make minor
changes to the model each iteration, by removing the least im-
portant features in the feature set. As we only remove the least
important features, the impact on the functions plane will also be
small and the plane will be very similar with regards to the global
minimum. As we use a convolutional layer in the first layer of the
network, no matter how many input features we have, the first
level will be the same, however the output from the convolutional
layers is different for the distinct input features. Therefore, instead
of training again with randomized weights, we take the weights
from the best model and apply them to the new network, taking
into consideration that it might overwrite some knowledge, as it is
near impossible to know exactly what to save and what to remove
from this area of the network.
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Figure 1: Overview of the Hierarchical training method

3 EXPERIMENT
In this section, we show the benefits of combining features into
higher level features, reducing the feature space, by removing less
important features and the performance benefits of the Weight
Parameter Savingmethod. These experiments are run on the smaller
feature set from [9] to keep it simple and allow for comparison with
their results. Lastly, we also test the performance of our method
on the full feature set and find the importance of each feature to
compare with the 12 features used in the small feature set.

3.1 Experimental Settings
We conduct experiments using two feature sets, which each consists
of 862 Organometal Halide Perovskites (OMHP) compounds. We
use a smaller feature set (hence referred to as the small feature
set) with 12 features as used in [9], and a larger feature set (hence
referred to as the full feature set) with 39 features from which the
12 features were hand-picked as being more useful for predicting
the eV band gap of the compound.

The general formula for OMHP is ABX3, where A is the organic
molecule, B a cation (Pb or Sn), X an anion (Cl, Br, I, or their
combinations. To cover this, we replace X3 with CDE). The feature
set is divided in elemental, precursor, and perovskite features. The
elemental features comprise the 5 first and second (except for the
A-cation which has +1 charge) ionization potentials and electron
affinities (I?, IE?, E?, EPB2?, respectively. A ? indicates A, B, C, D,
or E) , the elemental radii (R?), the Shannon radii (except for the
molecule, RS?), the dipole of the molecule (DIP). The precursor
features are formed by the bandgap of the AX and BX2 precursors
of the OMHP syntesis process (BG_AX, BG_BX2) as well as their
volumes (V_AX,V_BX2) and formation energy (FE_AX, FE_BX2).
All these features can be collected from materials databases. The
calculated features are the perovskites ones and are comprised of
the band gap (bg_tetra), the optimized lattice parameter (opt_a),
the octahedron rotation (OT), and the tolerance factors (Tol1, Tol2,
Tol3). The 12 features selected in Saidi’s work are IA, EA, BG_AX,
FE_AX, RA, V_AX, opt_a, OT, RB, RC, RD and RE.

The model is a convolutional neural network consisting of 5
layers. The first layer is the input layer, followed by a convolutional
layer with 64 filters, another convolutional layer with 128 filters, a
fully connected layer with 100 neurons and a single neuron output

layer. Between each layer, the output is run through a Rectified Lin-
ear Unit activation function. Padding is applied to the convolutional
layers, such that the output has the same size as input. The convo-
lutional layers also apply maxpooling to downsize the input by a
factor of two. The fully connected layer employs a dropout of 0.2 to
avoid overfitting. The optimizer used is the Adam Optimizer with
a learning rate of 1 ∗ 10−4. Early stopping has been implemented
on the validation set, with a patience of 500 epochs.

3.2 Model Performance on small feature set
As a baseline we use the code received from [9] and obtain a RMSE
score of 0.2286. Running our code on the 12 features from the small
feature set and Equation 4, we compute 78 unique features that the
model trains on and receive a RMSE of 0.2880. This shows that by
only keeping unique features the model is still capable of outputting
satisfactory scoring. After hierarchical training, the model has 69
unique features, with a RMSE of 0.2236. This shows that removing
redundant features helps the network by removing noise for other
inputs. With this, we have proven that removal of features can lead
to better performance in terms of RMSE. A test on the full feature
set with 39 features, is run to find how the model performs in this
scenario, getting a RMSE of 0.3067.

3.3 Feature Combination and Importance
Figure 2 shows the heatmap for all second level features in the
model and their importance value as a percentage, summing up to
100, and shows how big of an influence a feature has in predicting
the output. These importance values are calculated using SHAP
values. The column shown as "single_f" represents all the single
features by themselves, as the features and the feature combinations
are both given as input to the model. Half of the map is empty, as
features are not combined with themselves and we only compute
unique features, as mentioned in section 2. We see that a feature like
opt_a is very important for the model, having a 1.86% importance
on the output by itself. The most important feature is the combined
feature of RB and opt_a which has a percentage value of 4.06%.
This shows that we are able to find the importance of single features
as well as their combinations which can lead to a higher importance.
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Figure 2: Heatmap showing the run done with all features
of the first and second level. Values represent a percentage
of importance.

3.4 Benefit of Weight Parameter Saving
For this experiment we have completed two runs on the small
feature set, which can be seen on Figure 3.
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Figure 3: (a) Loss with weight parameter saving turned off.
(b) Loss with weight parameter saving turned on.

Looking at Figure 3a, the models loss does not decrease after
each training run. In contrast to Figure 3b, where the model retains
knowledge from previous runs, we see that the loss decrease in
almost every run. This shows, that weight parameter saving has
performance benefits, since by retaining knowledge from previous
runs we can get a better loss. From a time perspective both Figure 3a
and Figure 3b are nearly equivalent with and average of 301 seconds
with Weight Parameter Saving off, and 283 seconds with it on.

3.5 Best Features from Full Feature Set
As part of the experiment the method ran on the full feature set
with 39 features, to see how important each feature is and how they
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Figure 4: SHAP values for full feature set. Green indicates
features used in the small feature set.

differ from the 12 features used in the small feature set. Looking at
the results in Figure 4, we find the importance of each feature. Of
the 12 best features, only Opt_a, OT, V_AX, RE are used in the
small feature set, however IA, RD, FE_AX are ranked near the top
12. The features used in [9] are good features, ranging from very
important like Opt_a, to average importance like RC, RA and RB,
with some exceptions of example BG_AX and EA, which have a
low SHAP value. Meanwhile the features DIP, Tol3, RSD which
are found to be very important, with a high SHAP value, were not
picked as important features for the small feature set.

4 DISCUSSION
In this section, we will discuss the results and ideas used throughout
the article.When training themodel, a hyper parameter is set, which
is set to a margin of 0.1 of the squared error, and decide if features
should be removed from or added back into the feature set. This
is implemented using the loss of the best performing model in the
current run, we check if the newly trained models loss is within
a margin of error. If it is, we remove more features, else we add
features back. However, the margin of error can be both helpful in
reducing the amount of runs needed to run the algorithm, but also
a problem in the way that it stops us from exploring performance
on even lower amount of features.

The weight parameter saving idea should be useful for anymodel
within the same area of research, as removing less important fea-
tures have a low impact on the model. However, the adding and
removing of features needs to be able to work for several different
methods. There is the possibility that a feature’s removal has a low
or no impact on the model’s performance because its information
could be saved within the models parameters. This means that
reusing the weights does not give a proper removal of a feature.

Currently features are removed with regards to the model with
the lowest loss value. But other removal strategies could be an
interesting area to research. As an example the method could be
changed to instead remove as many features as possible, while
keeping the accuracy close to the baseline.
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5 CONCLUSION
We propose a method that, given a model can help reduce the size of
the input, while retaining the predictive performance. This shows
that intepretability can be used to give insight into the model and
fine-tune the feature space. Furthermore we propose Weight Pa-
rameter Saving during training, which is shown to converge faster
towards the minimum, as well as higher level feature combina-
tions, preserving the relations between several features for better
predictions.
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