
Deep Reinforcement Learning for
Robotic Grasping from Octrees

Learning Manipulation from Compact 3D Observations

Andrej Orsula
MSc in Robotics

Master’s Thesis



Copyright © Aalborg University 2021



Department of Electronic Systems
Aalborg University

https://es.aau.dk

Master’s Thesis

Title:
Deep Reinforcement Learning for
Robotic Grasping from Octrees

Programme:
MSc in Robotics

Author:
Andrej Orsula

Supervisor:
Simon Bøgh

Number of Pages:
69

Submission Date:
June 3, 2021

Abstract:
This work investigates the applicability
of deep reinforcement learning for vision-
based robotic grasping of diverse objects
from compact octree observations. A novel
simulation environment with photorealistic
rendering and domain randomisation is
created and employed to train agents by
the use of model-free off-policy actor-
critic algorithms. Inside this environment,
agent learns end-to-end policy that directly
maps 3D visual observations to continuous
actions. Feature extractor in form of 3D
convolutional neural network is trained
alongside actor-critic networks in order
to extract abstract features from a set of
stacked octrees. To this end, a policy
trained with octree observations is able to
achieve successful grasps in novel scenes
with previously unseen objects, material
textures and random camera poses.
Experimental evaluation indicates that 3D
data representations provide advantages
over traditionally used 2D RGB and 2.5D
RGB-D image observations. Furthermore,
sim-to-real transfer was successfully
applied in order to evaluate an agent
trained inside simulation on a real robot
without any need for retraining.

aorsul16@student.aau.dk

https://es.aau.dk
mailto:aorsul16@student.aau.dk


Contents

Summary v

Preface vi

1 Introduction 1

2 Related Work 4
2.1 Analytical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Sim-to-Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Deep Learning on 3D Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Non-Euclidean 3D Representations . . . . . . . . . . . . . . . . . . . 15
2.5.2 Euclidean 3D Representations . . . . . . . . . . . . . . . . . . . . . . 15

3 Background 18
3.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Model-Free Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Value-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Policy-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Actor-Critic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Actor-Critic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Deep Deterministic Policy Gradient . . . . . . . . . . . . . . . . . . . 23
3.3.2 Twin Delayed Deep Deterministic Policy Gradient . . . . . . . . . . . 23
3.3.3 Soft Actor Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Truncated Quantile Critics . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Problem Formulation 25
4.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Observation Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Proprioceptive Observations . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Observation Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



5 Implementation 30
5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Selection of Robotics Simulator . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Environment for Robotic Grasping . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Domain Randomisation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.4 Demonstrations and Curriculum . . . . . . . . . . . . . . . . . . . . . 38

5.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Framework for Reinforcement Learning . . . . . . . . . . . . . . . . . 38
5.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Actor-Critic Network Architecture . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Hyperparameter Optimisation . . . . . . . . . . . . . . . . . . . . . . 42

6 Experimental Evaluation 44
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.2 Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.1 Comparison of Actor-Critic Algorithms . . . . . . . . . . . . . . . . . 46
6.2.2 Comparison of 2D/2.5D/3D Observations . . . . . . . . . . . . . . . . 47
6.2.3 Invariance to Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.4 Sim-to-Real Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Discussion and Conclusion 52

8 Future Work 55

Bibliography 57

Appendices 65
A Joint Trajectory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C Camera Pose Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
D Camera Configuration and Post-Processing . . . . . . . . . . . . . . . . . . . . 68
E Feature Extraction from RGB and RGB-D Observations . . . . . . . . . . . . . 69

iv



Summary

In this work, deep reinforcement learning is applied for the task of vision-based robotic grasping
with focus on generalisation to diverse objects in varying scenes. Model-free reinforcement
learning is employed to learn an end-to-end policy that directly maps visual observations to
continuous actions in Cartesian space. For observations, octrees are utilised in a novel approach
to provide an efficient representation of the 3D scene. In order to allow agent to generalise over
spatial positions and orientations, octree-based 3D convolutional neural network is designed to
extract abstract visual features. Agent is then trained by combining such feature extractor with
off-policy actor-critic reinforcement learning algorithms.

As training of robotics agents in real world is expensive and potentially unsafe, a new
simulation environment for robotic grasping is created. This environment is developed on top
of open-source Ignition Gazebo robotics simulator in order to provide high-fidelity physics and
photorealistic rendering. Sim-to-real transfer of a learned policy is made possible by combining
a dataset of realistic 3D scanned objects and textures with domain randomisation. Among others,
this includes randomising the pose of a virtual RGB-D camera with aim to simplify the transfer
of a simulated setup to real-world domain.

Results of experimental evaluation indicate that deep reinforcement learning can be applied
to learn an end-to-end policy with octree-based observations, while providing noteworthy ad-
vantages over traditionally used RGB and RGB-D images. On novel scenes with static camera
pose, agent with octree observations is able to reach a success rate of 81.5%, whereas agent with
RGB-D observations and analogous feature extractor achieves 59%. However, the advantage
of 3D observations emerges with invariance to camera pose, where both RGB and RGB-D
observations struggle to learn a policy while octrees still retain a success rate of 77%.

The same policy can be successfully transferred to a real robot without any need for retraining.
On scenes with previously unseen real-world everyday objects, a policy trained solely inside
simulation can achieve success rate of 68.3%. The invariance to camera pose enables a simple
transfer without requiring the real-world setup to match its digital counterpart. Furthermore,
approach from this work allows in some cases to transfer a policy trained on one robot to a
different one, while achieving almost identical performance to a policy that was trained on the
target robot itself.

Besides the aforementioned experiments, this work compares actor-critic algorithms TD3,
SAC and TQC for continuous control, and studies benefits of several ablations and configurations
such as the use of demonstrations, curriculum learning and proprioceptive observations.

v



Preface

This Master’s Thesis is written by Andrej Orsula as his final work of MSc programme in Robotics
at Aalborg University during the academic year 2020/21.

Acknowledgements

Special thanks goes to Simon Bøgh for his supervision, guidance and numerous discussions
throughout the whole process that helped shaping this project. Moreover, I must express a very
profound gratitude to my mum, dad, sister and brother for their love and everlasting support.

Additional Resources

The source code developed during this project is freely available on the following GitHub
repository.

https://github.com/andrejorsula/drl_grasping

All readers interested in reproducing the results from this work are welcome to use pre-built
Docker images that can be pulled from Docker Hub.

https://hub.docker.com/r/andrejorsula/drl_grasping

This manuscript can be accessed on the following GitHub repository, together with additional
resources such as raw data collected during the experiments.

https://github.com/andrejorsula/master_thesis

Recordings associated with this work are available under the following YouTube playlist.
https://youtube.com/playlist?list=PLzcIGFRbGF3Qr4XSzAjNwOMPaeDn5J6i1

vi

https://github.com/andrejorsula/drl_grasping
https://hub.docker.com/r/andrejorsula/drl_grasping
https://github.com/andrejorsula/master_thesis
https://youtube.com/playlist?list=PLzcIGFRbGF3Qr4XSzAjNwOMPaeDn5J6i1


Glossary

CNN Convolutional Neural Network
DDPG Deep Deterministic Policy Gradient
DL Deep Learning
DRL Deep Reinforcement Learning
GAN Generative Adversarial Network
IK Inverse Kinematics
IRL Inverse Reinforcement Learning
MDP Markov Decision Process
NN Neural Network
PBR Physically Based Rendering
PILCO Probabilistic Inference for Learning Control
POMDP Partially Observable Markov Decision Process
ReLU Rectified Linear Unit
RL Reinforcement Learning
RNN Recurrent Neural Network
ROS Robot Operating System
SAC Soft Actor Critic
SDF Simulation Description Format
TD Temporal Difference
TD3 Twin Delayed Deep Deterministic Policy Gradient
TQC Truncated Quantile Critics

vii



1 Introduction

Grasping is a fundamental manipulation skill that is essential for a variety of everyday tasks.
Stacking, inserting, pouring, cutting and writing are all examples of such tasks that require
an object or a tool to be firmly grasped prior to performing them. A hierarchy of subroutines
can be assembled together in order to accomplish more complex goals, which in turn requires
grasping of diverse objects that can differ in their appearance, geometry as well as inertial and
mechanical properties. Despite the uniqueness this might bring to each individual grasp, a
versatile robot should generalise over different objects and scenarios instead of treating them as
distinct subtasks.

Task-specific algorithms are often analytically developed for a specific gripper on a set of
objects via time-consuming approach. Despite effectiveness of such methods, they usually lead
to a solution that lacks the required generalisation and even slight differences in the process or
manipulated objects might require manual reprogramming (Sahbani et al., 2012). Empirical
approaches were introduced to overcome the difficulties with analytical grasping by progressively
learning through sampling and training. In this way, supervised learning provides a way to
learn grasp synthesis from a dataset that is labelled with analytical grasp metrics, however, this
approach requires a large volume of data in order to achieve the desired generalisation (Mahler
et al., 2017). Although imitation learning allows robots to quickly learn simple grasps (Zhang
et al., 2018), the amount of required human expert demonstrations can also become too costly
and time-consuming before a general policy is learned. Reinforcement learning (RL) (Sutton and
Barto, 2018) could offer a solution to this problem, as self-supervision provides the means for a
robot to progressively become better at grasping via repeated experience and minimal human
involvement. The popularity of RL has significantly increased in recent years, especially due
to the noteworthy results obtained by deep reinforcement learning (DRL). Several publications
demonstrated that DRL can be used to achieve human level performance in tasks such as
playing Atari games (Mnih et al., 2015), or even beating world champions in the boardgame Go
(Silver et al., 2017) and real-time strategy game StarCraft II (Vinyals et al., 2019). Moreover,
Schrittwieser et al. (2020) established just how far DRL has come with a single algorithm that
can achieve superhuman performance by learning a model without any prior knowledge of the
game rules in multiple domains, i.e. Go, Chess, Shogi and 57 Atari games.

While games with a well-defined set of rules are popular benchmarks for developing and
testing algorithms, RL has also been employed for several real-world applications such as finance
(Fischer, 2018), industrial process control (Nian et al., 2020), scheduling (Shyalika et al., 2020)

1



and robotic manipulation (Kroemer et al., 2021). Among these, RL has likewise gained popularity
in robotic grasping due to its flexibility. However, there are many challenges in applying RL
to solve robotics problems with high-dimensional continuous action and observation spaces
(Kroemer et al., 2021). It can be difficult to design a suitable reward function because robotics
tasks such as grasping require multiple objectives to be optimised simultaneously, e.g. grasp
an object with as little energy while avoiding all obstacles. Furthermore, collection of training
data on physical robots is a time-consuming and potentially unsafe process, therefore, robotics
simulators are commonly utilised because they provide a less expensive and much faster way
to train RL agents. Unfortunately, this often introduces a reality gap between the virtual and
real-world domain that needs to be addressed via sim-to-real approaches.

End-to-end DRL approaches for solving robotic grasping have become more attractive in
recent years due to their ability to directly map raw observations into actions, where visual obser-
vations in form of 2D RGB and 2.5D RGB-D images are the most common. Features from these
images are typically extracted by utilising 2D convolutions, which unfortunately do not provide
the required level of generalisation over the depth and spatial orientation (Gualtieri et al., 2018).
Since the underlying representation of the scene in which robot operates is 3D, representing
observations with 3D data structures might provide benefits in terms of generalisation. Therefore,
this work aims to investigate the advantages of utilising 3D representation for observations in the
context of robotic grasping.

The primary focus of this work is to apply DRL to robotic grasping of diverse objects with
the use of compact 3D observations in form of octrees. The key contributions are listed below.

• Simulation Environment for Grasping with Domain Randomisation – A novel simu-
lation environment for robotic grasping in the context of RL research is developed in this
work. It utilises realistic 3D scanned objects and domain randomisation in order to enable
sim-to-real transfer. The environment is developed on top of Ignition Gazebo1 robotics
simulator that is interfaced by the use of Gym-Ignition (Ferigo et al., 2020) to provide
compatibility with other OpenAI Gym environments (Brockman et al., 2016).

• Octree Observations for End-to-End Grasping with DRL – This work introduces
a novel approach for utilising octree-based visual observations for end-to-end robotic
grasping with DRL. Octrees provide an efficient 3D data representation with a regular
structure that enables the use of 3D convolutions to extract spatial features. Furthermore,
the use of 3D representation promotes invariance to camera pose, which further improves
sim-to-real transfer to various real-world setups.

• Invariance to Robots – The same combination of RL algorithm, observations and hyper-
parameters can be used to train robots with different kinematic chains and gripper designs.
Furthermore, transfer of a policy trained on one robot to another is also investigated in
addition to evaluating the sim-to-real transfer to a real robot.

1https://ignitionrobotics.org

2

https://ignitionrobotics.org


• Comparison of Three Actor-Critic RL Algorithms – Three off-policy actor-critic RL
algorithms are compared on the developed grasping environment with the proposed octree
observations. The compared algorithms are TD3, SAC and TQC.

• Ablation Studies – Common DRL practices and observation variants are systematically
studied. This analysis investigates the use of demonstrations, curriculum learning, proprio-
ceptive observations, visual observations with colour features as well as sharing of feature
extractor parameters in the actor-critic setting and among temporal observation stacks.

This thesis has the following organisation. First, various approaches for solving robotic
grasping are presented and compared in chapter 2, alongside 3D data representations and their
applicability to deep learning. Chapter 3 presents relevant theory and notation that aids with
understanding of this thesis. It is followed by chapter 4 that formulates the full problem that
this work addresses. Chapter 5 then presents the concrete implementation steps that enable
subsequent experimental evaluation that is reported in chapter 6. Finally, chapter 7 discusses the
results and concludes the work presented in this thesis.

3



2 Related Work

Robotic manipulation and grasping is a field that has been extensively studied for decades via
magnitude of different approaches. This chapter outlines some of the notable methods, while
mainly focusing on contributions that employ model-free reinforcement learning due to their
relevance for this project.

2.1 Analytical Approaches

Analytical approaches determine grasps that satisfy target requirements through kinematic and
dynamic formulations (Sahbani et al., 2012). These methods typically analyse the geometry of
target object and utilised gripper in order to generate a suitable grasp pose, which can then be
reached by using a separate motion planner. The approach was introduced by Nguyen (1987)
through formulation of objectives for constructing stable force-closure grasps on polyhedral
objects. By modelling objects as triangular mesh or 3D point cloud, force-closure grasps were
later extended to remove model restrictions (Yun-Hui Liu et al., 2004). Several analytical
metrics for estimating the quality of grasps were also introduced over the years to quantify good
grasps (Roa and Suárez, 2015), many of which have found their applicability beyond analytical
approaches.

Expert human knowledge of robot in a specific task is required to develop these algorithm,
which allows them to achieve very efficient operation on a number of selected objects due to
direct transfer of this knowledge. However, this also introduces a limitation because performance
is restricted only to the predicted situations and scalable generalisation to novel objects is often
unfeasible due to computational complexity that arises from the number of considered conditions
(Sahbani et al., 2012). Moreover, geometric models of objects might not be available before
interaction is required, and partial occlusion of objects in setups with passive perception similarly
limits the use of geometrical analysis.

2.2 Supervised Learning

Empirical methods were introduced to overcome shortcomings and difficulties of analytical
approaches by combining sampling and training to achieve learning, which in turn reduces
or removes the need to manually develop a model. A common approach is to use supervised
learning to detect grasp poses by training on a dataset that is labelled with indication about what

4



regions contain grasps (Saxena et al., 2008; Lenz et al., 2015). Alternatively, a combination
of analytical grasp quality metrics can be used to provide a more fine-tuned labelling of data
(Mahler et al., 2017, 2018, 2019; Lundell et al., 2019). Saxena et al. (2008) applied supervised
learning for detection of grasps on previously unseen objects by using handcrafted features from
two or more RGB images of the scene in order to identify points in each image that correspond
to grasp locations. They then determined the 3D position of detected grasps via triangulation
and used custom heuristics to estimate orientation before planning a collision-free path.

Due to the significant advancements of deep learning (DL) in recent years, there has been a
trend towards applying DL for robotic grasping. Lenz et al. (2015) developed a framework that
used DL to train two separate neural networks (NNs) on RGB-D data, where a small network
was used to search for image patches with potential grasp candidates, and a larger network then
ranked these candidates to select the most optimal grasp. With this work, Lenz et al. demonstrated
the advantage of using DL instead of time-consuming design of hand-crafted features for robotic
grasping. Popularity of convolution neural networks (CNNs) in computer vision applications also
inspired their use for robotic grasping, which resulted in more accurate systems for predicting
grasps in RGB-D images (Redmon and Angelova, 2015; Kumra and Kanan, 2017). The use
of CNN also provides computationally efficiency, which allowed Morrison et al. (2018) to
synthesise grasps from depth images in real-time and perform closed-loop control.

Besides 2D images, supervised DL methods have also been applied to 3D data representations.
Approach by ten Pas et al. (2017) randomly samples a large number of grasp candidates uniformly
from the object surface using a point cloud, without a need to segment the individual objects
first. They subsequently encode a region of interest around each grasp candidate as a stacked
multi-channel projected image, which is then scored by the use of CNN classifier. By selecting
the grasp candidate with the highest score, they were able to demonstrate a success rate of 93%
on novel objects in a dense clutter. Lundell et al. (2019) used DL on voxel grid for shape
completion of partially observed objects in order to obtain multiple predictions of the full object
shape. These predictions were then used to jointly evaluate analytical grasp metrics for all grasp
candidates, which they sampled from a mesh constructed as mean of all shape predictions. With
this work, Lundell et al. demonstrated improved success rate over methods using only a partial
view or a single shape estimate.

Although supervised learning approaches can achieve high success rate, their main dis-
advantage is the large volume of labelled data required to effectively learn grasp generation.
The process of labelling a dataset is generally automated because it is non-trivial to perform it
manually due to the multitude of ways in which an object can be grasped, furthermore, human
labelling introduces bias (Pinto and Gupta, 2015). However, the data collection itself is still very
costly if performed on a physical setup. Levine et al. (2016) used a setup shown in Figure 2.1
with up to fourteen robots to collect 800,000 grasp attempts over the course of two months. To
avoid this time-consuming process, majority of recent work relies on synthetically generated
datasets. As an example, Mahler et al. (2017) achieved 99% precision by training on a dataset
with 6.7 million point clouds of more than 10,000 unique 3D models, each containing grasps and
corresponding analytical grasp metrics. Generalisation to other gripper types is also limited and

5



the entire dataset needs to be updated in order to support new types, which is why they created
a new dataset of 2.8 million point clouds in 2018 for vacuum-based grippers. This issue was
later addressed by creating a common dataset for both parallel-jaw and vacuum-based grippers
by using a more complex and general analytical metric based on object’s expected resistance to
forces and torques (Mahler et al., 2019).

Figure 2.1: A setup with fourteen robots used by Levine et al. (2016) to collect 800,000 grasps.

2.3 Imitation Learning

Another empirical method is based on the process of learning tasks from demonstrations, called
imitation learning. Demonstrations are normally represented as trajectories that contain states
or state-action pairs, which can be obtained in several different ways such as teleoperation,
kinesthetic teaching, or motion capture (Osa et al., 2018). In this way, imitation learning aims
to provide robots with a desired behaviour by simply showing a sequence of actions instead of
manually programming them.

Behavioural cloning is the simplest form of imitation learning, in which a policy that directly
maps states to actions is learned through techniques such as non-linear regression or support
vector machines (Osa et al., 2018). Recently, Zhang et al. (2018) showed that DL allows
behavioural cloning to be an effective way for robots to acquire complex skills. They used a
virtual reality headset and hand-tracking controller to acquire teleoperated demonstrations in the
form of RGB-D images, which were subsequently used to train a deep policy by the use of CNN.
With this approach, Zhang et al. managed to train a simple grasping task with one object to 97%
success rate while using 180 distinct demonstrations. Learning from observation is an emerging
category that similarly aims to learn policy from visual demonstrations but without any labels
associated with them, where the state might not be fully known (Kroemer et al., 2021).

Even though imitation learning provides a quick way of acquiring new policies, demonstra-
tions usually do not contain all possible states that the robot might experience because collecting
expert demonstrations for all scenarios can become too expensive and time-consuming (Osa
et al., 2018). For this reason, the learned policy might struggle to generalise to novel objects and
situations.

6



2.4 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 2018) aims to learn an optimal policy that
maximises the total reward that is accumulated during a sequential interaction with the envi-
ronment. Unlike supervised and imitation learning, RL does not require any labelled datasets
or demonstrations. Instead, RL agent collects information about the goal it is trying to reach
through direct interaction with the environment, all while improving its own policy. This process
makes RL algorithms heavily dependent on reward signals, which is why it is important to design
a reward function that induces learning towards reaching the desired goal. In addition to the
popular benchmarks such as board and video games that are commonly used to develop and test
new algorithms, RL has been applied to several manipulation tasks over the years. Recently, the
combination of DL and RL termed deep reinforcement learning (DRL) has become a popular
choice for end-to-end control in robotics research, where sequential actions are learned directly
from raw input observations.

RL algorithms can be categorised depending on whether a model of the environment transition
dynamics is used, i.e. model-based or model-free methods. Model-based RL algorithms have
access to the model or learn it during the training, which allows the agent to predict state
transitions and use such knowledge to directly learn the policy (Polydoros and Nalpantidis, 2017).
If a model is correct, model-based RL allows the learning process to be much more sample
efficient than any model-free method, which gives model-based RL algorithms a great potential
for applications within robotics. From this category, Probabilistic Inference for Learning Control
(PILCO) (Deisenroth and Rasmussen, 2011) is model-based framework that has been applied
also for manipulation tasks. With only 90 seconds of experience, Durrant-Whyte et al. (2012)
applied PILCO to learn stacking task while incorporating collision avoidance into the planning.
However, accurate models are rarely available and learning them can be very challenging in
complex manipulation environments. Another difficulty emerges if an agent is trained and
utilised in two different domains, which introduces bias to the model and ultimately leads to
sub-optimal performance. For this reason, it might be significantly easier to learn a policy with
model-free RL than to use model-based RL to learn transition dynamics, while achieving a
similar level of performance (Kroemer et al., 2021). Therefore, the rest of this section will
focus on contributions that use model-free methods to empirically learn a policy entirely from
experience that is acquired via trial-and-error.

The use of model-free DRL for robotic grasping has been explored by several works in last
few years. Many of these contributions typically focus on the final performance using a single
object (Popov et al., 2017; Haarnoja et al., 2018a; Zhan et al., 2020) or a limited number of
objects with simple geometry such as boxes, cylinders or pyramids (Tobin et al., 2017; Gualtieri
et al., 2018; Gualtieri and Platt, 2018; Zeng et al., 2018; Liu et al., 2019; Joshi et al., 2020;
Daniel, 2020; Iqbal et al., 2020). More recent works strive to increase this variety by training
on random objects with more complex geometry (Quillen et al., 2018; Breyer et al., 2019; Wu
et al., 2020; Kim et al., 2020), where the best diversity is achieved by training directly on real
robots (Kalashnikov et al., 2018). Training on diverse objects allows DRL agent to learn a policy

7



that provides the required generalisation, which is considered to be one of the most important
challenges for learning-based robotic grasping (Quillen et al., 2018).

Contributions that apply DRL to robotic grasping also differ considerably in the utilised
action space, where two main categories of approaches can be observed. The first category is
based on pixel-wise action space (Zeng et al., 2018; Gualtieri and Platt, 2018; Liu et al., 2019;
Daniel, 2020; Wu et al., 2020), in which the agent selects a pixel from the observed images in
order to determine the position where an action primitive should be executed, see example in
Figure 2.2. The individual pixels are usually mapped to positions in Cartesian space and the
action primitive is normally the entire grasp trajectory. Grasp orientation around vertical axis is
commonly discretised by extending the action space to a set of images that are uniformly rotated
copies of the original image (Zeng et al., 2018; Daniel, 2020). Orientation was extended to 3D
by Wu et al. (2020) via three image channels for continuous roll, pitch and yaw angles. These
action primitives can also be applied for other skills such as pushing, which Zeng et al. (2018)
used to allow agent to disturb objects before grasping them in order to clear space for fingers
in scenes with densely packed objects. The second category of approaches in terms of action
space are those that directly control robot motion (Quillen et al., 2018; Kalashnikov et al., 2018;
Breyer et al., 2019; Joshi et al., 2020; Zhan et al., 2020; Kim et al., 2020; Iqbal et al., 2020),
which is often expressed as Cartesian displacement of gripper pose in terms of relative translation
(dx, dy, dz) and relative vertical rotation dφ. Control of the full 3D orientation in this way is
uncommon, which is presumably due to the significantly increased complexity of such problem.
However, there are works that directly control joints without the use of inverse kinematics (IK),
e.g. Popov et al. (2017) uses continuous joint velocities. The gripper action also differs within
this category, where some approaches automatically close the gripper after moving below certain
height (Quillen et al., 2018) and others allow only closing of the gripper which subsequently
terminates the episode (Kalashnikov et al., 2018; Joshi et al., 2020). A special formulation of
action space was introduced by Gualtieri et al. (2018), where actions are grasp pose candidates
sampled by the use their previous work ten Pas et al. (2017). Similar approach was adopted by
Osa et al. (2017) for multi-finger grippers with a policy that also selected a grasp type in addition
to grasp pose.

Figure 2.2: Example of pixel-wise action space for grasping by Gualtieri and Platt (2018), where
the observed depth map is marked with a red cross that indicates the position for execution of the
next grasp action primitive.

8



Although the observation space is for some manipulation tasks defined in form of states
extracted from the simulation, e.g. gripper and object position (Popov et al., 2017; Haarnoja
et al., 2018a), the vast majority of RL grasping research relies on visual image observations
that are combined with CNNs. Among these are RGB image (Tobin et al., 2017; Kalashnikov
et al., 2018; Quillen et al., 2018; Kim et al., 2020; Iqbal et al., 2020), depth map (Gualtieri and
Platt, 2018; Breyer et al., 2019; Wu et al., 2020) or RGB-D (Zeng et al., 2018; Liu et al., 2019;
Daniel, 2020). A single camera is commonly mounted statically in the environment and the
preprocessing of images is usually very minimal. Zhan et al. (2020); Joshi et al. (2020) utilised
two cameras simultaneously, where the first is mounted statically in the environment and the
second is attached to the gripper. Despite the dominant use of 2D visual observations, the use of
3D data representation for RL grasping is currently very limited. Even though some works use
point clouds as an intermediate representation (Zeng et al., 2018; Gualtieri and Platt, 2018), these
are subsequently projected into one or more 2D image views that are then individually processed
by a CNN. Osa et al. (2017) and Gualtieri et al. (2018) also utilise point clouds but only to sample
grasp candidates with non-RL methods, where RL policy is then used to select one of them.
Based on this investigation, there is a general lack of methods for robotic grasping that utilise RL
for end-to-end control with visual observations that are represented in 3D. The primary reason
for this is presumably the popularity of existing deep learning frameworks that allow efficient
use of CNN to extract features from 2D images for DRL. However, it can be argued that 2D
convolutional layers do not provide the desired level of generalisation over depth information and
spatial orientation compared to their well-established generalisation for horizontal and vertical
position in the image (Gualtieri et al., 2018), even if applied to 2.5D data representation in form
of depth map or aligned RGB-D images. Therefore, this work studies the importance of such
generalisation over the full 6 DOF workspace in which robots grasp objects.

Application of RL to real world robotics problems is still limited due to several difficulties.
Sample inefficiency is especially problematic in robotics because it can take few minutes to
collect a single training sample of grasping on a real robot. One way to collect more data is
by using multiple robots simultaneously. For example, Kalashnikov et al. (2018) used seven
robots to collect 580,000 grasps over the course of several weeks, which can become very costly
and unpractical. Moreover, the exploratory nature of RL is unsafe and induces jerky motion
patterns, which leads to mechanical wear and potential damage of the actuators (Kroemer et al.,
2021). Therefore, use of synthetic data in form of robotics simulators is common among RL
research because it greatly improves the availability of training data. Figure 2.3 shows examples
of simulation environments that were developed for robotic grasping. Similar to real robots,
running multiple simulation workers in parallel can also accelerate the rate at which data is
collected, e.g. Popov et al. (2017) used 16 such virtual workers. However, there is a reality gap
between simulation and real robot data which must be addressed. Some of the most common
sim-to-real approaches to achieve this transition will be described in subsection 2.4.1.

9



Plappert et al. (2018) Quillen et al. (2018) Singh et al. (2019)

Daniel (2020) Wu et al. (2020) Iqbal et al. (2020)

Figure 2.3: Examples of simulation environments used for robotic grasping with DRL.

Reproducibility of state-of-the-art RL methods is also not very straightforward, as robotics
environments are rarely deterministic and performance of RL methods can be highly influenced
by many factors such as selection of hyperparameters and scaling of the reward (Henderson
et al., 2018). Random seed that is used to initialise pseudorandom generator during training can
also have a significant influence on the learning curve and final performance as visualised in
Figure 2.4. These issues are further magnified by robot and hardware requirements in addition to
any use of proprietary software or framework, hence simulated setup with open-source software
is highly preferred for RL research.

Figure 2.4: Learning curve of DDPG on a locomotion environment for two sets of five different
random seeds. All runs use the same hyperparameter configuration. (Henderson et al., 2018)

10



2.4.1 Sim-to-Real

Due to the popularity of training DRL agents inside simulations, there are several approaches that
have been applied to bridge the reality gap and achieve sim-to-real transfer without any retraining.
The most straightforward approach is to reduce or completely eliminate such gap by utilising a
realistic simulation software that can correctly simulate the required physical interactions and
provide visualisation based on principles of physically based rendering (PBR). For example,
Iqbal et al. (2020) developed a robotics simulator with a physics solver on top of a game engine
that provides photorealistic rendering. However, there is a computational cost connected with
such realism and compromises must be made in order to achieve a desired rate at which training
data can be effectively produced. Consequently, other methods that increase the variety in the
data have been utilised over the years, with aim to provide a better generalisation that would
make the learned policy applicable to real world. Some of these methods are useful even for
realistic virtual environments as a mean to increase diversity due to their low computational cost.

Data Augmentation The amount of available data can be increased by synthetically creating
modified copies of the existing data. This approach is not only popular in supervised learning as
a mean to enlarge dataset, but it has also been applied in RL (Zhang et al., 2015; Laskin et al.,
2020; Zhan et al., 2020). In this context, data augmentation is commonly applied to the visual
observations in form of 2D images with operations such as cropping, rotation, cut-out and adding
jitter to the colour channels.

Domain Adaptation Instead of reducing the reality gap at simulation level, domain adaptation
modifies observations from source domain to provide a better resemblance in the target domain.
Zhang et al. (2015) applied this technique to generate synthetic images of robot arm that were
similar to the training data based on real-time readings of robot’s joint angle positions. In the
opposite direction, Bousmalis et al. (2017) employed generative adversarial network (GAN)
during training in order to adapt the synthetic images from simulation and make them closely
resemble visuals of real-world domain, as illustrated in Figure 2.5.

Synthetic Adapted Real

Figure 2.5: Example of domain adaptation applied to robotic grasping. (Bousmalis et al., 2017)

11



Domain Randomisation Another way to easily expand the variety in data is by randomly
changing the simulation environment. Tobin et al. (2017) applied this method in order to
randomise visual attributes shown in Figure 2.6, such as object colours, table texture, camera
pose and characteristics of the illumination. Furthermore, domain randomisation can be extended
also to other non-visual simulation attributes such as inertial properties of robot links and
hyperparameters of the utilised physics solver.

Randomised Real

Figure 2.6: Example of domain randomisation for visual attributes. (Tobin et al., 2017)

2.4.2 Demonstrations

RL agents often require a large amount of random interactions with the environment before
reaching the desired goal via pure exploration. For robotic grasping, a robot must first approach
an object while its gripper is opened, then move into a valid grasp pose, close the gripper, and
finally lift the object while keeping the gripper closed at all times. It can take millions of nearly
random attempts before agent is able to perform such a sequence of actions for the first time due
to the stochastic nature of the task. This is especially problematic if an agent receives only sparse
rewards during the training, i.e. if reward is received only when an object is lifted above certain
height. One way to mitigate this issue is by designing a dense reward that would guide the agent
along the desired sequence of actions via reward engineering. However, manual engineering
of reward functions for RL is challenging because human experts can introduce a significant
bias towards what is perceived as the best approach, furthermore, it downgrades the end-to-end
approach of DRL due to the rising need for an entirely new pipeline that extracts all objectives
required to compute the engineered reward (Singh et al., 2019).

Another way to combat the issue with lengthy exploration is by introducing concepts of
imitation learning into RL. Namely, demonstrations of an expert performing the task can be
used at the beginning of training in order bootstrap data collection and provide an agent with
knowledge about the desired goal in form of collected rewards. This process can then be
followed by self-supervision through regular RL training. For example, Zhan et al. (2020)
utilised a joystick to control a robot in order to collect ten demonstrations before RL training.
Furthermore, these demonstrations do not need to be collected from a human expert, and a
separate method can be used to collect them instead. This was shown by Kalashnikov et al.
(2018) that initially used a scripted policy to provide grasps until the learned policy reached a

12



success rate of 50%. Imperfect demonstrations are also useful in this approach because RL can
improve upon them, e.g. the scripted policy of Kalashnikov et al. (2018) achieved only up to 30%
success rate.

2.4.3 Inverse Reinforcement Learning

As previously mentioned, manual engineering of reward functions for specific tasks is not trivial
and can introduce bias. In these situations, inverse reinforcement learning (IRL) can be applied
to infer the underlying reward function that a policy is trying to optimise (Kroemer et al., 2021).
This inference is based on expert demonstrations, whose trajectories contain state-action pair
together with the collected reward. IRL differs from imitation learning in that it aims to extract
the desired intent of the agent instead of learning how to perform the task. The reward function
that is acquired by IRL can subsequently be used to learn a policy that optimises it with RL.
However, difficulties with IRL arise because there are infinitely many ways in which a reward
function can be inferred for a single policy.

2.4.4 Curriculum Learning

Curriculum learning is another approach that addresses the problem with lengthy exploration
in complex environments. Instead of learning the entire task from scratch, a curriculum can be
designed to present the problem as a sequence of subtasks with increasing difficulty (Narvekar
et al., 2020). Figure 2.7 illustrates the use of curriculum for the full game of Chess. These
subtasks usually contain their own reward function, e.g. separate reward for reaching and grasping
an object, which results in the notion of composite reward when solving the entire task (Popov
et al., 2017). Decomposing tasks in this way is advantageous because skills with shorter horizon
are simpler to learn and the agent is more likely to reach the desired state during exploration.

Figure 2.7: Subgames that can form a curriculum for learning Chess. (Narvekar et al., 2020)

Another way to apply curriculum learning is by first solving a simplified version of the full
task, and then progressively scaling the difficulty as agent’s success rate increases. Breyer et al.
(2019) applied curriculum learning for several attributes to solve robotic grasping with RL. They
progressively increased workspace size, maximum number of objects, initial robot height and the
required lift distance. With this approach, they found that curriculum learning can significantly
accelerate the training process.

13



2.5 Deep Learning on 3D Data

Robotic grasping requires an agent to operate in 3D workspace with 6 DOF. Projections of this
space onto 2D RGB or 2.5D RGB-D images can partially represent this data and allow an agent
to learn a policy directly from raw pixels. However, there are several other representations in
which 3D data can be expressed. Due to the increasing availability of depth-sensing cameras
and LiDARs, a number of approaches for leveraging these representations in the context of DL
have been proposed in recent years. Combination of such approaches with RL could provide
a number of potential benefits over current DRL research that focuses on utilising 2D or 2.5D
observations to learn end-to-end robotic grasping.

3D data representations differ mostly in their structure and geometric properties, where
Euclidean and non-Euclidean categories provide the main distinction (Ahmed et al., 2018).
High-level overview of commonly used 3D data representations is shown in Figure 2.8.

3D Data
Representations

Non-EuclideanEuclidean

Point Cloud MeshRGB-D Multi-viewVolumetric

Voxel Grid Octree

RGB Depth

Figure 2.8: Overview of various 3D data representations. Adapted from Ahmed et al. (2018).

14



2.5.1 Non-Euclidean 3D Representations

The first type encompasses the non-Euclidean approaches that allow data to be stored in an
irregular structure. Meshes and point clouds are popular representations from this category.

3D Mesh Polyhedral models are most often represented with 3D meshes that intuitively
describe them in terms of vertices, edges and faces. However, 3D meshes are typically not
available a priori for diverse set of real-world objects and constructing them from a single-view
RGB-D observation would require extra pre-processing and result in sub-optimal mesh quality.
Therefore, DL approaches for processing 3D meshes are not considered in this work.

Point Cloud Geometry of 3D objects and shapes can be approximated by representing them
with a point cloud as a set of unstructured 3D points. Furthermore, additional features such
as colour and intensity can be added for each point. Despite the effectiveness and availability
of point clouds for capturing arbitrary 3D scenes, their irregular structure makes it difficult to
process them directly with DL approaches. To enable the use of DL on point clouds, Ruizhong-
tai Qi et al. (2016) proposed PointNet that first preprocesses the unordered input with a spatial
transformer network before using a recurrent neural network (RNN) to process the points as a
sequential signal, where all extracted point features are then aggregated by max pooling. With
this approach, PointNet was successfully applied for classification and segmentation. However,
due to aggregation of all points together, PointNet is unable to extract detailed fine-grained
patterns from local structures. This was later addressed with PointNet++ (Qi et al., 2017) by
recursively applying PointNet on nested partitions of the input point cloud. Such hierarchical
approach of PointNet++ improved the achievable results over PointNet, albeit with significantly
worse computational performance. Approaches based on point clouds therefore pose a limitation
for end-to-end robotic grasping, which requires both real-time performance and local features to
describe detailed geometry for potential grasps.

2.5.2 Euclidean 3D Representations

Euclidean 3D data representations have an underlying grid-like structure that allows data to
be stored in a regular arrangement. Among others, this category includes RGB-D images,
multi-view data and volumetric representations in form of voxel grids and octrees.

Multi-view Data The primary limitation of RGB-D images is their 2.5D nature due to the
projection that produces them. This in turn limits the information they can store to a single view
of the scene, hence occlusions are inevitable. A simple way to mitigate the limitation of single
view is by utilising multiple vantage points simultaneously via multi-view data representation.
This can be achieved when a scene is perceived by multiple RGB or depth-sensing cameras, or
if virtual cameras are used to synthesise projections of the scene. The produced set of images
can subsequently be used in the context of DL by individually processing them with a 2D CNN.
DRL approach by Gualtieri and Platt (2018) applies multi-view data representation in form

15



of three distinct axis-aligned views of the scene, which are combined in order to determine a
3D position via pixel-wise action space for an action primitive that places previously grasped
objects. However, multi-view representations might require a large number of views in order to
sufficiently describe the available 3D information, which in turn causes computational overhead
and it can lead to over-fitting (Ahmed et al., 2018). Furthermore, their use of 2D CNNs still
lacks the required generalisation over depth and spatial orientation (Gualtieri et al., 2018).

Voxel Grid Similar to 2D images that contain pixels in a regular grid, 3D volume can be
subdivided into individual voxels. With this volumetric approach, voxel grids can be used to
describe how 3D objects are distributed throughout the scene. Each voxel can either contain
a simple occupancy indicator or it can have a number of features such as surface normals and
colour channels. Although voxel grids are in many aspects similar to 2D images, they do not
suffer from limitations induced by perspective projection and distortion. Furthermore, they are
easily extendible to 3D convolutional operations due to their regularity, which gave rise to DL
approaches for exploiting the full 3D geometry of objects by using CNNs. With this approach,
Wu et al. (2015) and Maturana and Scherer (2015) concurrently introduced 3D ShapeNets and
VoxNet designed for classification via shape analysis, where the volumetric 3D representation
enabled their CNNs to generalise over shape and spatial orientation of various objects. However,
voxel grids are notoriously inefficient because they fully represent both occupied and unoccupied
cells. This makes their memory and computational cost grow cubically with increasing voxel
resolution, which in turn restricts their use to low resolution voxels. Therefore, 3D ShapeNets
and VoxNet used grid size of only 30x30x30 and 32x32x32 binary voxels, respectively.

Octree To mitigate the inefficiency of voxel grids, octrees provide a more compact volumetric
representation of 3D data. Their efficiency comes from the ability to vary the size of voxels in
the volume according to the object occupancy. It models the 3D representation as a hierarchical
tree-like data structure, where each cell can be recursively decomposed into eight child octants.
This approach provides octrees with the benefits of volumetric approach, while having a reduced
memory and computational cost. This quality made octrees popular in robotics applications such
as obstacle avoidance. However, the hierarchical structure of octrees increases their complexity
and makes it more challenging to parallelise operations such as 3D convolutions for DL. To
address this issue, Wang et al. (2017) proposed O-CNN with a novel octree data structure that is
suited for DL parallelisation on GPUs, which is encoded with shuffled keys and labels for spatial
and hierarchical organisation, respectively. Instead of simple occupancy, they utilise surface
normals in order to preserve smoothness of the objects as visualised in Figure 2.9. To further
improve computational efficiency, their CNN approach processes only the finest leaf octants,
i.e. the smallest possible octants at a certain octree depth that describe the surface of objects.
O-CNN has been applied to problems such as shape classification, completion, retrieval and
segmentation with competitive results (Wang et al., 2017, 2020).

16



Original mesh Occupancy voxel grid Octree with normals

Figure 2.9: Comparison between occupancy voxel grid and smoothness-preserving octree that
uses normal vector instead of binary indicator. Octree is rendered with oriented disks sampled at
the finest leaf octants. Smallest cell size is the same for both representations. (Wang et al., 2017)

Conclusion of Related Work

Several approaches for solving robotic grasping have been proposed over the years. Current state-
of-the-art performance can be achieved by synthesising grasp poses through deep supervised
learning, and then applying a separate motion planner to reach the highest-ranked grasp pose.
However, supervised learning approaches require large labelled datasets that are often fine-tuned
for a specific gripper. RL approaches are becoming more prominent because they can circumvent
this problem via self-supervision. Furthermore, the popularised use of DRL enables end-to-
end control from raw pixel observations. Applying DRL for complex robotics tasks such as
grasping of diverse objects with continuous actions can however be challenging due to issues with
sample inefficiency, trade-off between exploration & exploitation and numerous problems with
reproducibility. The use of simulation environments provides an important stepping stone for
mitigating some of these issues, where sim-to-real approaches are applied to reduce a potential
reality gap.

Current DRL research for robotic grasping focuses on end-to-end approaches that utilise 2D
RGB or 2.5D RGB-D image observations that are processed by CNNs to extract meaningful
features. Despite the success of these methods, 2D convolutions do no provide the desired level
of generalisation over depth information and spatial orientation. This work therefore investigates
the potential benefits of applying DRL on visual observations with 3D data representation.
Among these, octrees are selected due to their organised structure and improved efficiency over
other volumetric representations.

17



3 Background

A theoretical overview of RL foundation based on Sutton and Barto (2018) is provided in this
chapter, together with specific algorithms relevant to this project. The reader is welcome to skip
to the next chapter 4 if these concepts are familiar.

3.1 Markov Decision Process

The goal of RL agent is to maximise the total reward that is accumulated during a sequential
interaction with the environment. This paradigm can be expressed with a classical formulation
of Markov decision process (MDP), where Figure 3.1 illustrates its basic interaction loop. In
MDPs, actions of agent within the environment make it traverse different states and receive
corresponding rewards. MDP is an extension of Markov chains, with an addition that agents
are allowed to select the actions they execute. Both of these satisfy the Markov property, which
assumes that each state is only dependent on the previous state, i.e. a memoryless property where
each state contains all information that is necessary to predict the next state. Therefore, MDP
formulation is commonly used within the context of RL because it captures a variety of tasks
that general-purpose RL algorithms can be applied to, including robotic manipulation tasks.

It should be noted that partially observable Markov decision process (POMDP) is a more
accurate characterisation of most robotics tasks because the states are commonly unobservable or
only partially observable, however, the difficulty of solving POMDPs limits their usage (Kroemer
et al., 2021). Therefore, this chapter focuses only on MDPs where observations and states are
considered to be the same.

Agent

Environment

State ActionReward

Figure 3.1: The interaction between agent and environment in MDP. (Sutton and Barto, 2018)

18



MDPs are typically described as a tuple (S,A, p, r). In this work, the state space S and
action space A are assumed to be continuous. The state transition probabilities are defined by
function p : S × S ×A → [0, 1] that represents the probability density of the next state s′ ∈ S
based on the current state s ∈ S and action a ∈ A.

p(s′|s, a) = Pr{St+1=s
′|St=s, At=a} (3.1)

The behaviour of an agent is defined by a policy π : S → A that provides a mapping from
states to actions. At each discrete time step t, the environment utilises reward function r(st, at) to
emit a scalar value that expresses the immediate reward rt ∈ R for executing action at in state st.
Since both immediate and future rewards must be considered in MDP setting, the return Gt that
RL agent seeks to maximise is defined as a sum of discounted rewards

Gt =
T∑
i=t

γi−tr(si, ai), (3.2)

where γ ∈ [0, 1] is a discount factor that determines the priority of long-term future rewards
and ensures that return is finite for continuous tasks. T denotes a final time step, which either
indicates the end of episode for episodic tasks or T =∞ for continuous tasks. Episodic robotic
grasping task with a fixed maximum number of time steps is considered in this work.

A value function can be defined to determine the expected return when following a policy π
for a particular state s with value function V π(s). Similarly, an action-value function for taking
action a in state s and then following policy π can be defined as Qπ(s, a).

V π(s) = Eπ[Gt|St=s] = Eπ

[
T∑
i=t

γi−tr(si, ai)

∣∣∣∣∣ St=s
]

(3.3)

Qπ(s, a) = Eπ[Gt|St=s, At=a] = Eπ

[
T∑
i=t

γi−tr(si, ai)

∣∣∣∣∣ St=s, At=a
]

(3.4)

The primary goal of the agent is to find the optimal policy π∗ that is better than or equal to
all other policies. This can be achieved by estimating the corresponding optimal action-value
function Q∗(s, a) for all s and a.

Q∗(s, a) = max
π

Qπ(s, a) (3.5)

Optimal action-value function satisfies Bellman equation. Intuitively, Bellman optimality
equation for Q∗(s, a) expresses that the value of a state is equal to the expected return for the
best action a′ taken in that state.

Q∗(s, a) = E
[
rt+1 + γ max

a′
Q∗(st+1, a

′)
∣∣∣ St=s, At=a] (3.6)

19



3.2 Model-Free Reinforcement Learning

As previously mentioned, RL algorithms can be categorised into model-based and model-free
methods, latter of which are considered in this work. Aside from this classification, there are
two additional distinctions among RL algorithms that can be used to categorise them. One of
these distinctions is related to the way in which data is collected during the training, separating
algorithm into on-policy and off-policy. Last category is based on whether RL algorithm
computes a value function or not, which differentiates them into value- and policy-based RL.
Furthermore, RL algorithms apply various exploration strategies in order to balance their trade-
off between gaining more knowledge about the environment through exploration and following
the current most promising direction via exploitation.

On-policy algorithms are restricted to only use data that is collected by the specific policy
that is being optimised during the training. On the contrary, off-policy algorithms can be used to
train an agent on any data collected by an arbitrary policy. This distinction has significant impact
on RL robot learning with respect to sample efficiency. On-policy algorithms cannot reuse
previous data during training because the policy keeps changing with each update. As opposed
to this, off-policy RL algorithms can utilise each transition multiple times. For this, experience
replay buffer (Mnih et al., 2015) is commonly used to store transitions when interacting with the
environment, which are then used to provide samples for updating the policy. However, on-policy
algorithms generally provide better convergence guarantees during learning than off-policy
methods. Despite of possible instability, off-policy algorithms are typically considered to be
more suitable for complex robotics tasks due to their improved sample efficiency (Quillen et al.,
2018).

3.2.1 Value-Based Methods

Value-based methods aim to estimate the optimal state-value function V ∗(s) or more commonly
the action-value function Q∗(s, a). Once the optimal action-value function Q∗(s, a) is found, the
optimal policy π∗ can be followed by selecting the optimal action a∗ at each state s.

a∗(s) = arg max
a′

Q∗(s, a′) (3.7)

Such optimisation of value function is often performed off-policy and can therefore utilise
experience replay. Unfortunately, these algorithms are incompatible with continuous actions,
which limits their applicability for learning robotics tasks that usually require operation in
continuous domain. Exception to this are tasks that allow discretisation, e.g. approaches described
in section 2.4 that combine pixel-wise action space with action primitives.

Temporal difference (TD) learning is a form of value-based approach in which value function
is optimised by minimising TD error δ. For action-value function, this error arises from a notion
that the value of current state and selected action Qπ(st, at) should be equal to the reward that
corresponds with this state-action pair rt, plus the discounted action-value estimate of the next

20



state and best action Qπ(st+1, a
π) that follows the policy π.

δt = rt + γ max
a′

Qπ(st+1, a
′)−Qπ(st, at) (3.8)

Q-learning uses TD learning and in fact, the TD error for action-value function from Equa-
tion 3.8 is employed by Q-learning. With this error δt, estimating Q∗(st, at) becomes an
optimisation problem in the following form where α ∈ (0, 1] is the learning rate.

Q∗(st, at)← Qπ(st, at)+αδt = Qπ(st, at)+α
[
rt + γ max

a′
Qπ(st+1, a

′)−Qπ(st, at)
]

(3.9)

However, classical Q-learning is inefficient for large environments because it must consider
every possible state-action pair in order to determine the optimal Q∗(s, a), e.g. by using a tabular
approach. Therefore, a general function approximator can be used instead of large tables to
solve these inefficiency. In deep Q-learning popularised by Mnih et al. (2015), NNs are used
to approximate the action-value function Q(s, a). Such network can be designed to process a
state as the input, and output a value for each possible action. The main difference from classical
Q-learning is that optimisation of Q∗(s, a) is achieved by minimising TD error δt with respect
to parameters θ of the NN. Action that provides the maximum output of the NN for a given
state can then be selected for subsequent execution. In order to explore different states, a simple
ε-greedy action selection can be employed. With this approach, the agent takes a random action
with a probability equal to ε and action that follows the current policy π otherwise.

The benefit of utilising NNs as a function approximator for deep Q-learning is their scalability
to larger environments. However, converge to optimal solution can often be difficult to achieve
due to instability. Several improvements were therefore proposed over the years to mitigate this
issue. An example of improving training stability is by employing target networks (Mnih et al.,
2015), where one network is used for training and a different network is used for computing
TD error. This allows the target network with parameters θ′ to provide a stable measure of
error that does not significantly change on each update of unrelated state-action pairs, which
would otherwise be common due to the large number of network parameters. These networks
must then be regularly synchronised either via hard update, i.e. regular copy of parameters
at fixed intervals, or by applying a soft update at each step in form of Polyak averaging with
hyperparameter τ ∈ (0, 1].

θ′ ← τθ + (1− τ)θ′ (3.10)

3.2.2 Policy-Based Methods

Instead of determining actions based on their value, policy-based methods directly optimise a
stochastic policy π as a probability distribution π(a|s, θ) that is parameterised by θ.

π(a|s, θ) = Pr{At=a|St=s, θt=θ} (3.11)

21



Following a policy is therefore based on sampling an action from this distribution given a state s.
Typically, θ are weights and biases of NN that are optimised through gradient descent on an
objective function that maximises the expected return over state-action sequences, i.e. policy
gradient methods.

Policy-based algorithms are typically on-policy and therefore less sample-efficient, yet they
have better convergence properties. Furthermore, these algorithms can be directly applied to
continuous action spaces without any need for discretisation, which makes them appealing for
many robotics problems.

3.2.3 Actor-Critic Methods

In contrast to value- and policy-based methods as the two primary categories, actor-critic methods
include algorithms that utilise both a parameterised policy, i.e. actor, and a value function, critic.
This is achieved by using separate networks, where the actor and critic can sometimes share
some common parameters. Such combination allows actor-critic algorithms to simultaneously
possess advantages of both approaches such as sample efficiency and continuous action space.
Therefore, these properties have made actor-critic methods popular for robotic manipulation
while achieving state of the art performance among other RL approaches in this domain.

Similar to policy-based methods, the actor network learns the probability of selecting a
specific action a in a given state s as π(a|s, θ). The critic network estimates action-value
function Q(s, a) by minimising TD error δt via Equation 3.9, which is used to critique the actor
based on how good the selected action is. This process is visualised in Figure 3.2. It is however
argued that the co-dependence of each other’s output distribution can result in instability during
learning and make them difficult to tune (Quillen et al., 2018). Despite of this, actor-critic
model-free RL algorithms are utilised in this work.

Actor

Critic

Environment

State Action

Reward

TD Error

Figure 3.2: Overview of actor-critic methods. TD error δt is used to adjust both critic’s action-
value function Q(s, a) and actor’s policy π(a|s, θ). Adapted from Sutton and Barto (2018).

22



3.3 Actor-Critic Algorithms

Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3), Soft Actor Critic
(SAC) and Truncated Quantile Critics (TQC) are examples of specific actor-critic algorithms
that can be applied for robotic grasping with continuous action and observation spaces.

3.3.1 Deep Deterministic Policy Gradient

DDPG (Lillicrap et al., 2015) is an actor-critic off-policy algorithm for continuous action space
that trains a deterministic policy. It makes use of experience replay buffer and target networks
with soft update that were described in subsection 3.2.1. In addition to the target action-value
network, DDPG also utilises a target policy network. In order to accommodate exploration, noise
is added to the actions during training.

However, DDPG is notoriously unstable and sensitive to hyperparameters (Islam et al., 2017;
Quillen et al., 2018), which makes it difficult to apply for complex robotic manipulation tasks.
Therefore, additional algorithms and extensions to DDPG have been proposed over the years.

3.3.2 Twin Delayed Deep Deterministic Policy Gradient

TD3 (Fujimoto et al., 2018) is an extension to DDPG that aims to improve stability by mitigating
overestimation of action-value function. It achieves this with three extensions. The first change
is the use of two individual critics, where the smaller of the two values is used to compute TD
error in Equation 3.8. The second modification is based on updating actor network less often
than critic networks. The last addition includes a smoothing noise for the actor network, which
makes it harder for the policy to exploit errors of the critic. Similar to DDPG, exploration during
training is encouraged by addition of noise to actions. Together, these three tricks improved
performance over original DDPG.

3.3.3 Soft Actor Critic

As opposed to DDPG and TD3, SAC (Haarnoja et al., 2018b) optimises a stochastic policy. It also
incorporates the use of two critics as TD3, while also inheriting actor network smoothing noise
due to its stochastic nature. The main addition of SAC is the use of entropy regularisation, which
makes the policy optimise a trade-off between expected return and entropy, which represents the
randomness of the policy. Risk of getting stuck in local minima is therefore decreased, since
entropy regularisation has an inherent connection to the exploration strategy because larger
entropy results in more exploration.

The objective of optimal policy π∗ is therefore changed to include the entropy regularisation
termH(X) = E[−logP (X)].

π∗ = arg max
π

Eπ

[
T∑
t=0

γt
(
r(st, at) + αH

(
π(·|st)

))]
(3.12)

23



Entropy coefficient α, also called temperature, is a hyperparameter that determines the trade-off
between expected return and entropy. This temperature can either be fixed or it can be optimised
automatically during the training. With these changes, SAC is by many considered to be state of
the art RL algorithm for continuous control.

3.3.4 Truncated Quantile Critics

TQC (Kuznetsov et al., 2020) is a recent extension to SAC that utilises a distributional rep-
resentation of multiple critics. The action-value function Q(s, a) of critics is modelled as a
distribution with n-number of atoms. TQC further addresses the overestimation of Q(s, a) by
truncation of ~8% topmost atoms from such distributions. With these changes, authors have
reported notable performance increase of TQC over SAC on complex robotics tasks.

24



4 Problem Formulation

This chapter systematically formulates the targetted task of robotic grasping as an MDP, while
describing the utilised observation and action spaces alongside the applied reward function. The
corresponding implementation of such formulation with detailed specifications is covered in the
next chapter 5.

4.1 Task Definition

In this work, agent is assumed to be a high-level controller that provides sequential decision
making in form of gripper poses and actions. Therefore, the environment is considered to include
the robot with its actuators and low-level controllers in addition to all objects and physical
interactions. Episodic formulation of the grasping task is studied, where a new set of objects is
introduced into the scene at the beginning of each episode. During each episode, the aim of agent
is to grasp and lift an object to a certain height above the ground plane, which also terminates the
current episode. Furthermore, an episode is also terminated after 100 time steps and whenever
the agent pushes all objects outside the union of the perceived and reachable workspace. Placing
of objects after their picking is not investigated in this work.

Due to the benefits of employing robotics simulators to train RL agents, e.g. safe and
inexpensive data collection, robotics simulator will be used in this work. Once an agent is trained
in a virtual environment, the learned policy will subsequently be evaluated in a real-world setup
via sim-to-real transfer. The conceptual setup of this work that should be similar in both domains
is illustrated in Figure 4.1.

Figure 4.1: Conceptual setup for the task of robotic grasping that needs to be constructed inside
a robotics simulator for training, and in real-world domain for subsequent evaluation.

25



4.2 Observation Space

The observation space for the grasping task used in this work comprises of visual and proprio-
ceptive observations. Furthermore, a set of sequential observations is stacked together for each
transition in order to provide agent with temporal information about environment states.

4.2.1 Octree

The visual observations utilised in this work are represented in form of 3D octrees. As already
mentioned, this perception originates from a statically mounted RGB-D camera, which is
assumed to provide a new RGB image and depth map of the scene at each time step. Before
constructing an octree, the depth map is first used to create a point cloud of the scene as an
intermediate representation. This point cloud is colourised with a corresponding RGB image
that is registered to the optical frame of the camera’s depth sensor. Therefore, the resulting point
cloud is in form of an unstructured list of (x, y, z, r, g, b) tuples that represent individual points.

Hereafter, three assumptions about the use of volumetric 3D data representation for end-
to-end robotic manipulation are set forth. First, aspect ratio of 1:1:1 is considered to provide
generalisation over all possible directions of movement, i.e. traversing a fixed distance along
any of the primary axes should result in a movement over the same number of cells. Second
assumption considers the volume that each cell occupies, which shall remain consistent over the
entire duration of training and evaluation. This is considered to be beneficial because a persistent
scale of cells provides a consistency over distances between any two cells. Lastly, each cell
should correspond to a specific position of space that remains fixed with respect to the robot
pose, regardless of the camera pose. This assumption is considered to be necessary as it allows
NNs to create relations among individual cells and their respective significance in space.

Due on these assumptions, the approach that is commonly used in classification and segmen-
tation tasks, i.e. rescale a point cloud to fit inside a fixed volume (Wang et al., 2017), cannot be
applied in this work. However, it is assumed that the relative pose of camera with respect to
robot is known, e.g. through calibration process, therefore, the previously obtained point cloud
is transformed into the robot coordinate frame in order to achieve invariance to camera pose
as illustrated in Figure 4.2. Furthermore, such point cloud is subsequently cropped in order to

Depth Map

RGB Image

Point Cloud
Transformed 

and Cropped
Octree

y

x

z

y

x

Figure 4.2: Process of constructing an octree from depth map and RGB image via an intermediate
point cloud, which is transformed into the robot coordinate frame and cropped to a fixed volume.

26



occupy a fixed volume in space with an aspect ratio of 1:1:1. This volume is considered to be the
observed workspace and it is subsequently used to construct the octree observations.

The octree structure by Wang et al. (2017) allows arbitrary data to be stored at the finest leaf
octants. Three distinct features are utilised in this work, namely the average unit normal vector n,
the average distance between the centre of a cell and all points that formed it d, and the average
colour rgb. As illustrated in Figure 4.3, all of these features are computed independently for each
octant based on the points from the point cloud that produced it. Normals ni = (nxi , nyi , nzi)

are selected because they provide smoothness-preserving description of the object surfaces,
as previously shown in Figure 2.9. Since point cloud acquired from RGB-D camera does not
usually contain normals, they must be estimated from a local neighbourhood prior to constructing
the corresponding octree. The average distance to the points d allows the perceived surface
to be offset in the direction of normals, which allows octrees with lower resolution to be used
while still preserving smooth transitions between the cells. Colour features rgbi = (ri, gi, bi)

are expected to provide an agent with additional input that could allow semantic analysis in
addition to shape analysis, which might be especially beneficial for distinguishing dissimilar
objects that are in contact. Besides n being normalised as a unit vector, d and all channels of rgb
are normalised to be in a range [0, 1].

Figure 4.3: Representation of features for a single finest leaf octant from an octree. All points
from the source point cloud that belong to a cell are used to determine the average unit normal
vector n, average distance to the centre of the cell d and the average colour rgb.

4.2.2 Proprioceptive Observations

In addition to the visual observations acquired by an RGB-D camera, it is considered to be
beneficial to also include proprioceptive observations. Gripper pose and gripper state are used
in this work because these observations are independent of the utilised robot. Although both
of these could be determined solely from the visual observations, occlusion can introduce
uncertainties. Furthermore, these readings are easily obtainable from any robot. The state of the
gripper gs is represented as {closed : −1, opened : 1}. The position of the gripper is encoded

27



as (x, y, z) vector represented with respect to robot’s base frame. Gripper orientation is also
with respect to robot’s base frame, and represented as the first two columns of the rotation
matrix [(R11, R21, R31), (R12, R22, R32)] because they provide continuous description of 3D
orientation without ambiguities, contrary to Euler angles or quaternions (Zhou et al., 2020).

4.2.3 Observation Stacking

A single set of visual and proprioceptive observations does not fully describe the state of the
environment. In order to better satisfy Markov assumption, dynamics of the system must also be
observed, including all data based on the temporal information. Mnih et al. (2015) addressed
this in a simple way by stacking last n historical observations together and combining them into
a single observation that fully describes the state.

Despite the increase in the amount of similar data that needs to be processed, this work applies
a similar observation stacking method due to the simplicity of such solution. More specifically,
three sequential octrees and proprioceptive observations are stacked together, i.e. n = 3. At the
beginning of each episode when three observations are not available yet, the first observations is
duplicated multiple times to form the stacked observation.

4.3 Action Space

In this work, the action space for end-to-end robotic grasping comprises of continuous actions
in Cartesian space. By utilising actions in Cartesian space instead of joint space, the action
space is invariant to the specific kinematic configuration of a robot. Furthermore, Cartesian
actions provide better safety guarantees, where traditional IK and motion planning approaches
can be employed to reliably provide commands for low-level joint controllers while avoiding
self-collisions. All actions available to agents are illustrated in Figure 4.4.

For gripper pose, the actions comprise of translational displacement (dx, dy, dz) and relative
rotation around z-axis dφ that are both expressed with respect to robot base coordinate frame.

Figure 4.4: Action space of the grasping task, where (dx, dy, dz) indicates a translational dis-
placement, dφ is a relative yaw rotation, and the gripper closing and opening is denoted by g.

28



These actions are normalised in the range [−1, 1] and subsequently rescaled to metric and angular
units before applying them. The gripper action g is also in a continuous range [−1, 1], where
positive values open the gripper and negative values prompt closing of the gripper. Therefore, RL
agent is allowed to take any combination of continuous actions by selecting the corresponding
values for a tuple (dx, dy, dz, dφ, g).

4.4 Reward Function

Although it would be desirable to provide the agent only with a very sparse reward after
successfully grasping and lifting an object, such approach would prolong the training due the
sparsity of achieving a success through random exploration. Therefore, this work makes use of
a composite reward function that combines together sparse rewards from four distinct stages,
i.e. reaching, touching, grasping and lifting. These stages follow a hierarchical flow, where the
agent must first approach an object, then touch, grasp and finally lift it. During each episode, the
agent is allowed to obtain a reward from each of these stages only once in order to discourage any
rewarding behaviour that would not lead to a desired goal of the final stage, such as repeatedly
pushing an object in order to continually accumulate reward for touching.

The proportion and scale of each component from the reward function can be treated as a
tunable environment hyperparameter because it directly influences the policy that the agent aims
to optimise. Generally, reward at the last stage should be much higher than the reward given
at first stage, which is only meant to guide the training of the agent. Therefore, an exponential
function ri−1exp is used to determine the individual reward for each stage i. The base rexp ∈ [1,∞)

can be tuned, where rexp = 7 was empirically found to provide satisfactory results for the
implemented grasping task, with theoretical maximum achievable reward of rmax = 400.

In addition to positive reward for accomplishing the task, the agent is also given negative
reward of −1 for each time step during which the robot is in collision with the ground plane in
order to discourage the number of undesired collisions. Furthermore, a small reward of −0.005
is subtracted at each time step until termination in order to encourage the agent to accomplish
the task as fast as possible. All rewards are summarised in Table 4.1.

C
om

po
si

te Reaching r0exp = 1

(once per episode)Touching r1exp = 7
Grasping r2exp = 49

Lifting r3exp = 343

Collision −1
(each time step)Act Quickly −0.005

Table 4.1: Overview of the reward function that is utilised in this work for the grasping task,
where rexp = 7 was tuned and each episode has at most 100 time steps.

29



5 Implementation

A concrete implementation of applying DRL for robotic grasping with 3D octree-based obser-
vations is presented in this chapter. First, design and creation of a simulated RL environment
is described, which is then followed by specifics related to the use of DRL with focus on the
octree-based feature extractor. The full implementation is open-source and available on GitHub1.

5.1 Simulation Environment

As presented in section 2.4, simulations are often used for RL training in order to significantly
increase the rate at which data can be collected in a safe manner. In order to implement a virtual
setup for training of robotic grasping based on the design from chapter 4, a simulation must be
capable of accurately modelling the physical interactions between a robot and the manipulated
objects. Furthermore, it must feature a high fidelity rendering of the scene to provide the required
visual observations from viewpoint of a virtual RGB-D camera. Therefore, selection of a robotics
simulator is of great importance because it directly influences the robustness of sim-to-real
transfer and determines the additional steps that must be taken to achieve such transfer.

5.1.1 Selection of Robotics Simulator

There is a variety of simulation tools that could be applied for training of RL robotics agents,
some of which are based on video game engines due to their mature state. Generally, a trade-off
between accuracy, stability and performance must be considered. Although most everyday objects
have certain properties of soft bodies, rigid-body dynamics usually provide a satisfactory degree
of realism for generic robotic grasping without suffering much performance loss. Therefore, a
considered simulator shall have an appropriate physics engine for handling environments with a
number of rigid bodies, and a support for actuated joints that can be used to connect links of a
robot. Similarly, PBR rendering capabilities are highly preferred because of the utilised visual
observations. Some of the popular simulators for robotics RL research are therefore described
with aim to select one that will be used to implement the environment.

1https://github.com/andrejorsula/drl_grasping

30

https://github.com/andrejorsula/drl_grasping


MuJoCo (Todorov et al., 2012) MuJoCo is a physics engine that can accurately model phys-
ical interactions. It has been a popular choice for robotics research for years, including RL
applications. Unfortunately, MuJoCo is a proprietary software, which has resulted in the decline
of its use over the recent years in favour of open-source alternatives. Furthermore, it has limited
rendering capabilities.

PyBullet2 PyBullet simulator is built on top of Bullet physics engine and it has an experimental
support for PhysX3 back-end. PyBullet is gaining popularity for robotics RL research due to its
open-source nature and active development. It provides fast and reliable physical simulations,
albeit the available rendering is not photorealistic.

Gazebo Classic (Koenig and Howard, 2004) Gazebo is one of the oldest open-source robotics
simulators and it has a large active user-base because it is the primary simulator for the community
of Robot Operating System (ROS) (Quigley et al., 2009). Instead of developing everything from
scratch, Gazebo is built on top of already existing physics and rendering engines. By default, it
utilises ODE4 physics engine but others such as DART (Lee et al., 2018) and even Bullet are
also supported. For rendering, it makes use of OGRE5 1 that unfortunately has limited rendering
capabilities.

Ignition Gazebo6 Due to the limitations and outdated architecture, Gazebo Classic is planned
to be deprecated in favour of Ignition Gazebo, i.e. the next generation of Gazebo. Although it is
in its early development, Ignition Gazebo supports DART physics engine and has an upcoming
support for Bullet. In addition to OGRE 1, PBR rendering is enabled by using OGRE 2, and
there is also a partial support for ray tracing with OptiX7. Both physics and rendering engines
can be loaded during runtime due to the utilised plugin-based architecture. Although little RL
robotics research has been conducted with the use of Ignition Gazebo so far, Ferigo et al. (2020)
introduced Gym-Ignition as a framework that simplifies its usage for RL research.

Isaac8 Isaac Sim is a new and promising robotics simulator that is being developed by Nvidia.
It utilises PhysX physics engine and has support for state-of-the-art PBR rendering. Isaac Gym
is extension of Isaac for RL. One of its significant advantages is that physics computations,
rendering as well as the process of determining rewards can be offloaded to GPU in order to
enable running large number of environments in parallel. Unfortunately, the proprietary nature
of Isaac might limit its use and possible customisation. As of May 2021, Isaac Gym is still
available only as an early access and its functionalities are limited.

2https://pybullet.org
3https://developer.nvidia.com/physx-sdk
4https://ode.org
5https://ogre3d.org
6https://ignitionrobotics.org
7https://developer.nvidia.com/optix
8https://developer.nvidia.com/isaac-sim, https://developer.nvidia.com/isaac-gym

31

https://pybullet.org
https://developer.nvidia.com/physx-sdk
https://ode.org
https://ogre3d.org
https://ignitionrobotics.org
https://developer.nvidia.com/optix
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-gym


From the considered robotics simulators, Ignition Gazebo is selected in this work due to
the following reasons. Compared to MuJoCo that requires a license, it is open-source, which
significantly encourages reproducibility. Although Isaac might be a very promising choice for
robotics RL research in the future, it is still under development and its proprietary nature could
make it difficult to extend for the needs of this work. PyBullet is currently considered to be a one
of the best open-source options due to its maturity and a large amount of RL research that has
already been conducted with it. However, it lacks PBR rendering capabilities that are already part
of Ignition Gazebo. Furthermore, the plugin-based architecture of Ignition Gazebo simplifies
addition of new physics engine, where Bullet support is already pending. Its ability to switch
between various physics engines during runtime could eventually provide Ignition Gazebo with
one of the best physics-based domain randomisation, as it would not only allow randomising
physics parameters but also the entire physics implementation. The major disadvantage of the
selected Ignition Gazebo robotics simulator is its relatively early stage and a very limited amount
of RL research conducted with it. Despite of this, the full availability of its source code makes it
possible to extend where needed. Gazebo Classic was excluded from this considerations due to
its planned deprecation.

Therefore, Ignition Gazebo is used to create an environment for robotic grasping with RL.
For the physics engine, the default option of DART is kept unchanged. For rendering engine,
OGRE 2 is selected due to its PBR capabilities. Gym-Ignition (Ferigo et al., 2020) is utilised
because it simplifies interaction with Ignition Gazebo with focus on RL research. Furthermore,
Gym-Ignition facilitates the process of exposing OpenAI Gym (Brockman et al., 2016) interface
for the environments, which provides a standardised form that makes environments compatible
with most RL frameworks that contain implementations of algorithms.

5.1.2 Environment for Robotic Grasping

In order to create a new RL environment for robotic grasping, several different aspects must
be considered and implemented into a single integrated system. Among others, this includes
an accurate model of a robot that needs to be combined with appropriate motion planning and
low-level controllers, as well as perception in form of RGB-D frames that can be used for visual
observations. Furthermore, a set of 3D object models with appropriate appearance, mechanical
and inertial properties is required for training and subsequent evaluation.

Robot Models

Support for two articulated robotic manipulators with different kinematic chains and grippers
is implemented in order to demonstrate flexibility of the developed environment and applied
DRL. This is often neglected from the current robotics RL research, hence it is unknown how
well a system reacts to a change of robot, both with respect to the use of same hyperparameters
during training and transfer of a learned policy. These two robots are 6 DOF Universal Robots

32



UR59 with OnRobot RG210 sweeping-parallel gripper and 7 DOF Franka Emika Panda11 with
its default parallel gripper, both of which are shown in Figure 5.1.

UR5 with RG2 sweeping-parallel gripper Panda with its default parallel gripper

Figure 5.1: Robot models used inside the simulation environment for robotic grasping.

Manufacturers of these robots and grippers provide associated 3D CAD models of individual
links together with a model of the kinematic chain. However, inertial properties of links and
dynamic properties of joints are usually not provided. Therefore, these need to be estimated.
In order to do so, inertial properties for both robots and grippers are estimated based on the
combination of their documented weight and 3D mesh model, while assuming a uniform density
across the bodies. It was found that redistributing a portion of hand’s mass to each finger
provides more stable grasp, which is assumed to be due to the internal mechanical coupling
that would otherwise not be accounted for solely from the 3D mesh. For dynamic properties
of joints, friction and damping were manually tuned for each joint with aim to achieve a stable
manipulation across a variety of control frequencies. Although these estimated values are not
based on the real robots, no negative effects for sim-to-real transfer are expected because the
action space of DRL agent is in Cartesian space.

With this information, description that uses Simulation Description Format (SDF) compatible
with Ignition Gazebo was created for both robots (Orsula, 2021). A simplification for the
sweeping-parallel RG2 gripper was made in order to provide a better stability. It was modelled
by using a single actuated revolute joint per finger, whereas the full model would use three
additional passive joints on each finger. Parallel gripper for Panda is modelled with two prismatic
joints, i.e. one for each finger.

9https://universal-robots.com/products/ur5-robot
10https://onrobot.com/products/rg2-gripper
11https://franka.de/robot-system

33

https://universal-robots.com/products/ur5-robot
https://onrobot.com/products/rg2-gripper
https://franka.de/robot-system


Motion Planning To control the motion of both robots, a joint trajectory controller described
in appendix A was implemented for Ignition Gazebo. It follows trajectories that are generated
in Cartesian space by the use of MoveIt 212 motion planning framework. In this framework,
the default configuration of TRAC-IK (Beeson and Ames, 2015) and RRTConnect (Kuffner
and LaValle, 2000) were used for solving kinematics and motion planning, respectively. An
advantage of utilising MoveIt 2 is that a single interface can be used to control both simulated
and real robots during sim-to-real transfer.

RGB-D Perception

In order to acquire visual observations from the environment, a virtual RGB-D camera is utilised.
Using OGRE 2 rendering engine, it provides aligned RGB image and depth map simultaneously.
For both, the resolution is set to 256×256 px with a field of view of 52°. Framerate of the camera
is set to 10 FPS. Gaussian noise N (0, 0.001) is added to both RGB and depth data in order to
increase the realism of observations. This effect is shown in Figure 5.2 on the resulting point
cloud. Since the pose of camera is known with respect to the robot, the acquired point cloud is
then transformed into the robot base coordinate frame.

Figure 5.2: Effect of adding Gaussian noise to RGB-D data in order to improve resemblance to
noise of real-world camera sensors.

Middleware

ROS 2 is used in this project as a middleware that facilitates communication among the primary
nodes of the system, e.g. RGB-D data stream, requests from motion planner and the simulation
environment itself. Whenever data between ROS 2 and the transport layer of Ignition Gazebo is
required, a bridge between them is used to convert the messages. The selection of ROS 2 was
made because it significantly simplifies the initial research-based development and enables use
of helpful libraries and tools for robotics. However, this choice brings a disadvantage for RL
because the underlying socket-based transport reduces determinism of the simulation, which
prevents exact reproducibility of results even for the same random seed.

12https://moveit.ros.org

34

https://moveit.ros.org


Dataset

Dataset of scanned objects by Google Research (2020) was selected for training and evaluation
of robotic grasping inside the simulation environment. It is available as a collection from Ignition
Fuel, which is a web-based application that allows hosting and sharing of simulation assets. The
selected collection contains a thousand of common household objects that are 3D scanned. Their
realistic appearance and diverse geometry make them ideal for training of robotic grasping with
aim to achieve generalisation. From the dataset, 100 objects shown in Figure 5.3 were selected
and split into training and testing subsets with a ratio of 80/20.

Figure 5.3: Training (left) and testing (right) datasets of diverse scanned objects that are utilised
in the simulated RL grasping environment. Collection is provided by Google Research (2020).

All of these objects contain only their corresponding mesh geometry and material texture
but lack all other properties. Inertial properties were therefore estimated from their geometry
in a procedure that is similar to the aforementioned robot models. Mass of each object used
during such estimation was randomly selected alongside other properties of the model, which is
detailed below in subsection 5.1.3. This also includes the scale of their geometry, as many of
these objects would be too large to fit inside the utilised grippers.

The 3D scanned objects contain meshes with a very high resolution, which makes them
unsuitable for computing physical interactions due to the enormous computational cost it would
bring. Therefore, a low resolution copy of each mesh is created for use as a collision geometry,
alongside the original mesh that is kept for visual appearance. Such copy is automatically
generated for each model by simplifying the original mesh geometry though a decimation
procedure based quadric error metrics by Garland and Heckbert (1997). The algorithm was
configured to reduce the geometry to 2.5% of the original faces but clipped to the range of [8, 400]
faces in order to avoid outliers.

Performance of Simulation

Having a performant simulation accelerates the data collection, which can in turn enable faster
iteration for RL research due to reduced training duration. Besides reducing computational load
by decimating geometry of objects, few more tricks are applied in this work.

35



Disabling of Collision for Robot Links During early trials, it was found that a collision never
occurs between robot links and the environment. This is primarily because MoveIt 2 is used
to plan collision-free trajectories. Furthermore the action space is restricted only to the yaw
rotation, which further reduces the possibility of collisions. Therefore, collision geometry of
robot links is disabled during the training with aim to bring a slight performance gain. The
collision geometry of gripper, i.e. hand and fingers, is kept enabled for both robots as these are
required for interaction with the objects.

Larger Simulation Step Size As previously mentioned, dynamic properties of robot joints
were manually tuned in order to obtain stable manipulation across a variety of control frequencies.
The primary purpose of this tuning is to allow the use of larger simulation step size, which
determines the rate at which simulation progresses. This in turn affects the accuracy of physics
as well as the frequency of low-level controller. A step size of 4 ms is used for the grasping
environment because it was found to have a balanced trade-off between physics stability and
performance.

With performance in mind, the control rate of RL agent is set to a lower frequency of 2.5 Hz.
This is because the agent only provides high-level control, whereas the motion planner and
low-level joint controllers take care of interactions that require faster reaction times. On a laptop
with Intel Core i7-10875H CPU and Nvidia Quadro T2000 GPU, the simulation environment
with physics and the aforementioned perception progresses at a real-time factor of 329% for a
single object and 196% for four objects.

5.1.3 Domain Randomisation

Even though the simulation environment uses objects with realistic appearance and PBR-capable
rendering engine, domain randomisation can still provide advantages for sim-to-real transfer as
described in subsection 2.4.1. Therefore, domain randomisation is applied for several properties
at each reset of the environment, i.e. before the beginning of every episode. Unless otherwise
stated, a uniform distribution is used for sampling of random variables.

Random Objects At each reset, a number of random objects from the utilised dataset is
spawned. Each object is first randomly and uniformly scaled, such that its longest side is
between 12.5 and 17.5 cm. Hereafter, object’s inertial properties are recomputed to account for
the new scale, while also randomising its mass to be in range [0.05, 0.5] kg. Lastly the coefficient
of friction for the object is randomised in range [0.75, 1.5]. In this way, visual, inertial and
mechanical properties of each object are random for every episode.

Random Pose of Objects Besides randomising the type and attributes of each object, the
pose at which they spawn is also randomised. It is randomly sampled for each object from a
predefined volume in 3D space. In case two objects are overlapping, one of them is spawned
again with a new unique pose.

36



Random Ground Plane Material Textures To further randomise visuals of the environment
at each reset, a random material texture is given to the ground plane. Similar to the objects, 100
different PBR materials are used with a split of 80/20 for training and testing, respectively. Since
PBR materials are used, each of them uses four different texture maps, i.e. albedo, normal,
specular and roughness.

Random Camera Pose In order to further increase variety in observations and provide in-
variance to camera pose, it is randomised at each reset. The pose of the camera is randomly
sampled from an arc around the centre of workspace, except for ±22.5° behind the robot in
order to avoid complete occlusion of the scene. Thereafter, a random height for the camera in a
range [0.1, 0.7] m is selected. The camera is then oriented towards the workspace centre and
placed 1 m away from it. This step is expected to provide significant benefits for sim-to-real
transfer by allowing camera to be positioned in a location that is suitable for the real-world setup,
instead of trying to reproduce simulation setup as closely as possible.

Random Initial Joint Configuration Finally, the initial joint configuration of the utilised
robot is randomised. At the beginning of each episode, Gaussian noiseN (0, 6°) is added to each
joint in the default configuration.

Examples of fully randomised scenes are shown in Figure 5.4. The aim of this variety in
observations is to enable sim-to-real transfer that would allow agent to achieve similar degree of
success rate in real-world domain after training only inside the simulation environment.

Figure 5.4: Examples of domain randomisation applied to the implemented simulation environ-
ment for robotic grasping.

37



5.1.4 Demonstrations and Curriculum

As mentioned in section 2.4, use of demonstrations and curriculum learning can mitigate issues
with lengthy exploration. Both of these concepts are therefore investigated in this work and
implemented in the following way.

Demonstrations For demonstrations, approach by Kalashnikov et al. (2018) with the use of
a scripted policy is applied. Since off-policy RL algorithms with experience replay buffer are
employed, the demonstrations can be simply loaded into such buffer at the beginning of training.
More specifically, 5000 transitions are loaded into the replay buffer. A very simple scripted
policy is implemented as a state machine that moves gripper towards one of the objects, and
once it is reached, the gripper is closed and a predefined lifting motion is performed. Due to
its simplicity, it only achieves 19% success rate on objects with diverse geometry. However, it
is considered to be adequate as its sole purpose is to provide few successful attempts that RL
agents can improve upon.

Curriculum Similar to demonstrations, the use of curriculum can improve learning for tasks
in complex environment. This work utilises a curriculum that progressively increases the
number of objects and the area on top of which these objects are spawned based on the current
success rate determined by moving average with n = 100. The spawn area increases linearly
from 2.4×2.4 cm at 0% success to 24×24 cm at success rate of 60%. Similarly, training begins
with a single object, and an additional one is added every 20% until reaching a maximum of four
objects at 60% success rate.

5.2 Deep Reinforcement Learning

The implementation of DRL in this work focuses on integration of octree-based feature extraction
for solving vision-based robotic grasping. A framework for DRL is first selected, which is then
followed by description of the architecture of the feature extractor and network for actor and
critics. Lastly, the applied process of hyperparameter optimisation is presented.

5.2.1 Framework for Reinforcement Learning

It can be very time-consuming and error-prone to implement DRL algorithms from scratch due
to several issues that could arise. Therefore, a framework with pre-existing implementations
of the utilised actor-critic algorithms from section 3.3, i.e. TD3, SAC and TQC, is utilised.
After a brief investigation of the available frameworks for model-free RL, Stable Baselines3 by
Raffin et al. (2019) was selected due to its reliable implementation of the utilised algorithms,
open-source nature and active development. Underneath, PyTorch (Paszke et al., 2019) is utilised
as a machine learning backend that enables training of NNs via its automatic differentiation
engine.

38



In order to enable octree-based feature extraction, the implementation of algorithms was
extended with few modifications. These primarily consisted of support for octrees inside replay
buffer, formation of octree batches and integration of the octree-based feature extractor with
PyTorch-based NNs of actor and critics. All other configurations of these algorithms were
performed through their hyperparameters.

5.2.2 Feature Extraction

With visual features, the first part of the network can often be considered as a feature extractor
that transforms raw data into more abstract features. This fact is often employed in network
architectures for actor-critic DRL methods, where a CNN feature extractor network is shared
between the actor and critics. This work therefore utilises the same approach, where a common
feature extractor transforms raw input into features that are then provided as input for actor and
critic networks. To extract features from octrees, O-CNN implementation by Wang et al. (2017)
is used as a base for the employed feature extractor.

Construction of Octree

First, an octree is constructed from the aforementioned transformed point cloud of the scene
during each step. For this, a volume of 24×24×24 cm is defined to be the observable workspace
and set to be coincidental with the spawn volume of objects. Therefore, each point cloud is
cropped to occupy only this volume in order to preserve assumption about volumetric 3D data
representations from subsection 4.2.1.

Maximum depth of the octree was selected as dmax = 4 in order to provide metric resolution
of each finest leaf octant of 1.5×1.5×1.5 cm. This depth was found to provide enough detail
for grasping of objects from the utilised dataset, while not slowing down the training due to
enormous number of cells. Every octree therefore contains a theoretical maximum of 4096
cells, however, an average of 13% of these cells are occupied at any given time in the created
simulation environment. This is primarily because only a single view of the scene is used, where
each occlusion prohibits the formation of new cells in the occluded regions behind the visible
surfaces. Therefore, it is expected that for each additional depth, the workspace volume can
be increased eightfold while the actual number of occupied cells would be increased at a much
slower rate.

As it was previously described in subsection 4.2.1, each occupied finest leaf octant contains
the average unit normal vector n, the average distance between the centre of the cell and points
that formed it d, and the average colour rgb. All of these features are extracted directly from
the point cloud that is used to create the octree, where each octet considers only the points that
belong to its volume. Since the cropped point cloud does not contain normals, these are estimated
for each point from their nearest neighbourhood, where maximum of 10 closest neighbours at
a maximum distance of 5 cm are considered. Position of the camera is then used to orient all
normals correctly. Once these are found, an octree is created from the point cloud by hierarchical
subdivision of the cells. An example of a created octree is visualised in Figure 5.5.

39



Figure 5.5: An octree that is formed from a volume of the observable workspace. In this
visualisation, each finest leaf octet is represented as a square that is oriented by n and offset from
the centre of the octet by d. Furthermore, each octet is colourised with its corresponding rgb
feature.

Network Architecture of Feature Extractor

After octrees are created, NN can use them to extract abstract visual features about the environ-
ment. Due to the popularity of CNN architectures for image-based DL, 3D octree-based CNN is
employed in this work. In order to incorporate proprioceptive observations from subsection 4.2.2,
these are processed only slightly and concatenated with the features extracted from octrees. The
developed architecture of the network is represented in Figure 5.6.

7 channels 32 channels

3D Conv
ReLU

64 channels

16 channels

3D Conv
ReLU

1D Conv
ReLU Voxelise

4×4×4

Max
Pooling

Max
Pooling

Flatten

1024

Linear
ReLU

160

170

Linear
ReLU

10 10
Octree

Proprioceptive

Concatenate

(3×3×3)
Stride 1

(3×3×3)
Stride 1

(1x1x1)
Stride 1

(2×2×2)
Stride 2

(2×2×2)
Stride 2

Figure 5.6: Architecture of the octree-based CNN feature extractor. Auxiliary features from
proprioceptive observations are concatenated to features extracted from octrees in order to provide
a single output feature vector. This network is duplicated for each of the three observation stacks
and their output is concatenated into a feature vector with length of 510.

The network begins with processing octrees at the maximum depth d = dmax = 4. Each
octree contains seven channels, which encompass the aforementioned features. From this depth,
the octree is processed through a series of 3D convolutions, ReLU (Rectified Linear Unit)

40



activation functions and maximum pooling. Each pooling operation decrements the depth of
the octree such that next convolutional layer computes features at a larger scale. This series of
modules is applied twice, such that the depth of the octree is reduced to d = 2. While doing
so, the dimensionality of channels is increased to provide a wider feature space. However, it is
necessary to reduce the number of channels before the next step. For this, 1D convolution is
applied in order to compress the feature space by combining together features from the different
channels for each cell. Once the dimensionality is reduced, the octree is voxelised in order
to acquire a structure that has a static size regardless on the input, which enables use of more
traditional DL layers. It is achieved by padding the octree at d = 2 with 0s wherever a cell is not
already occupied. Once voxelised, the feature space is flattened into a feature vector that is then
processed by a single fully connected layer followed by ReLU activation in order to provide the
final set of features from octree observations.

The proprioceptive observations are also processed by the same feature extractor. However,
only a single linear layer with ReLU activation of the same dimensionality is used because
these features are already at a higher level compared to the raw octrees. Hereafter, the features
extracted from octree are combined with proprioceptive features into a single feature vector.
The number of utilised channels and the dimensionality of feature vectors is presented in the
aforementioned Figure 5.6, which results in total of 226,494 learnable parameters.

In order to enable observation stacking described in subsection 4.2.3, the feature extractor is
duplicated for each of the three stacks. Once all observation stacks are processed individually,
their output is concatenated into a single feature vector that can be used by actor and critic
networks. A separate network for each stack is utilised instead of a common network because
it allows agent to extract different set of features from historical and current observations. The
disadvantage of this approach is increased number of parameters that must be learned, which
could potentially slow down the training process. Such effect is therefore investigated during
experimental evaluation.

5.2.3 Actor-Critic Network Architecture

Once the feature vector is extracted, it can be used as an input for approximator of the utilised
algorithm, e.g. another network or a set of networks. Only actor-critic RL algorithms TD3, SAC
and TQC are employed in this work, therefore, a single high-level network architecture can be
applied for all of them. The implementation of these networks for specific algorithm would differ
in the output they provide. For example, SAC and TQC require actor to provide a stochastic
policy as opposed to TD3, where TQC also utilises a distributional representation of critic’s
output.

Figure 5.7 illustrates the utilised network architecture that combines a shared feature extractor
with actor and critic networks. An identical architecture that consists of two fully connected
layers with ReLU activations is employed for both actor and critics, albeit with a separate set of
parameters. With the utilised number of nodes, there are 524,288 learnable parameters for each
actor and critic network.

41



Linear
ReLU

512

Linear
ReLU

512

Linear
ReLU

512

Linear
ReLU

512

Actor Network

Critic Network

Octree

7 channels 32 channels

3D Conv
ReLU

64 channels

16 channels

3D Conv
ReLU

1D Conv
ReLU Voxelise

4×4×4

Max
Pooling

Max
Pooling

Flatten

1024

Linear
ReLU

160

170

Linear
ReLU

10 10
Octree

Proprioceptive

Concatenate

(3×3×3)
Stride 1

(3×3×3)
Stride 1

(1x1x1)
Stride 1

(2×2×2)
Stride 2

(2×2×2)
Stride 2

Feature Extractor

510
(3×170)

510
(3×170)

Figure 5.7: Network architecture that is used in this work for all utilised actor-critic algorithms.
The feature extractor from Figure 5.6 is duplicated for each stack in order to process two historical
observations in addition to the current one.

5.2.4 Hyperparameter Optimisation

Selection of hyperparameters can significantly affect the learning curve as well as the final
performance of a learned policy. This brittleness of DRL to hyperparameters therefore means
that their optimisation is of great importance and needs to be performed for each environment. In
this work, both automatic optimisation and manual fine-tuning is performed with aim to obtain a
set of hyperparameters that would allow robust learning of policy for the created environment,
observations and utilised RL algorithms.

First, an automatic hyperparameter optimisation is applied by the use of Optuna, which is a
hyperparameter optimisation framework developed by Akiba et al. (2019). Optuna and other
similar frameworks address the problem of selecting a viable combination of hyperparameters
for DL by performing a number of different trials that are used to iteratively search the hyperpa-
rameter space and find a combination that provides the best results according to some metric.
In terms of RL, this metric is a reward that an agent is able to accumulate over the course of
some evaluation period. Optuna consists of two parts, which are the sampler and the pruner.
Sampler selects a set of hyperparameters from the hyperparameter search space for the next
trial. Such selection can either be completely random, e.g. at the beginning of an experiment,
or by applying algorithms that perform statistical analysis from all previous trials. Pruner in
this context is a strategy that allows early stopping of non-promising trials with aim to limit the
amount of wasted resources. Pruning requires that evaluation episodes of each trial are run at
regular intervals, where each new trial is compared to the performance of all previous trials and
pruned if the accumulated reward is comparably too low.

For the grasping environment, Optuna is first applied to optimise hyperparameters in order
to get a baseline that provides a reliable performance. This optimisation was performed using
SAC, where the search space consisted of most hyperparameters including the size of the feature
extractor and actor-critic networks. Size of the replay buffer, batch size and initial entropy
were not optimised automatically. Replay buffer and batch size were selected to be adequately

42



large for the utilised system in terms of maximum RAM and VRAM usage, respectively. Initial
entropy is kept consistent because it directly influences the performance during the early stages
of each trial, where large initial entropy could result in undesired pruning. Total of 70 trials with
a maximum trial duration of 100,000 time steps were used. A set of 20 evaluation episodes was
performed every 25,000 time steps, which could trigger pruning. At the end, the best performing
set of hyperparameters was used for subsequent manual tuning.

Manual tuning is applied because the automatic optimisation with Optuna requires a lot
of compute time for complex environments such as the one created in this work. This is
also the reason why only 70 trials with a maximum trial duration of 100,000 time steps were
used, which already took approximately three weeks of compute time. Manual tuning of
targetted hyperparameters was therefore performed with several more trials, which were manually
initiated and stopped. Focus of this process was mostly on hyperparameters of the implemented
environment, e.g. reward scale, and on the octree-based feature extractor such as the maximum
depth and network size. The resulting hyperparameters for all utilised actor-critic algorithms can
be seen in appendix B.

43



6 Experimental Evaluation

This chapter presents results of experiments that were conducted in order to evaluate the use of
DRL for robotic grasping with 3D octree-based observations. The created simulation environ-
ment is analysed with respect to the feasibility of sim-to-real transfer in order to validate the
applicability of all results for use in real-world domain. Furthermore, various configurations
and ablations are studied to provide comparative investigation of different approaches and their
advantages for learning robotic manipulation with DRL.

6.1 Experimental Setup

All experiments utilise simulation environment for the training of all RL agents. Generalisation
to novel objects is evaluated for all agents in the same simulation but on a testing dataset, where
one of the trained agents is in addition evaluated also on a real robot to investigate sim-to-real
capabilities.

6.1.1 Simulation

Unless otherwise stated, the training in simulation is identical to the setup described in section 5.1
with full-scale domain randomisation. UR5 robot with RG2 gripper is utilised as the primary
robot for all experiments because it is the robot that is also tested in real-world domain. However,
Panda robot is also used to train one of the agents. Panda is in addition used to evaluate possible
generalisation to new robots with a transfer of an agent trained on UR5, and vice versa. The
same random seed is used to train all agents.

When evaluating the trained agents, testing datasets for both object models and PBR textures
are used. The environment is configured to present the agent with the full task, i.e. the largest
possible workspace and maximum number of objects. Each episode can last at most 100 time
steps and agent succeeds only if an object is lifted 12.5 cm above the ground. The random seed is
changed for all evaluated agents to a new common value that is different from a seed used during
training. In order to encourage reproducibility, this simulation setup is available as a pre-built
Docker image1.

1https://hub.docker.com/r/andrejorsula/drl_grasping

44

https://hub.docker.com/r/andrejorsula/drl_grasping


6.1.2 Real

Real world setup shown in Figure 6.1 is used to evaluate sim-to-real transfer. This setup consists
of a UR5 robot with RG2 gripper and Intel RealSense D4352 RGB-D camera that is mounted on
a tripod in front of the robot. Pose of the camera with respect to the robot is calibrated with a
procedure described in appendix C. Similarly, appendix D presents configuration of the camera
and post-processing of its output.

Figure 6.1: UR5 robot with RG2 gripper and RealSense D435 camera in a setup that is used to
evaluate sim-to-real transfer.

Figure 6.2 shows 18 different objects that were used in real world during the testing. Mostly
compliant objects were selected in order to reduce the risk of damage to the gripper due to the
unpredictability of end-to-end RL policy trained in a different domain. The same workspace
volume and number of objects are used as in the simulation. Similarly, the goal of the agent is to
lift an object within 100 time steps.

Figure 6.2: A set of 18 objects that were used during the evaluation of sim-to-real transfer.

2https://intelrealsense.com/depth-camera-d435

45

https://intelrealsense.com/depth-camera-d435


6.2 Results

Results of the following experiments are presented in this section. First, actor-critic algorithms
are compared on the created simulation environment in order to select the best performing one for
the task of robotic grasping. Hereafter, octree-based 3D observations are compared to traditional
2D and 2.5D image observations, and studied with respect to camera pose invariance. Similarly,
invariance to the utilised robot is evaluated for both training process and transfer of already
learned policy. Lastly, results of sim-to-real transfer are presented.

All agents were trained over the duration of 500,000 time steps, which is assumed to provide
a comparative analysis among the different experiments from this work. It is expected, that the
final performance for many of these agents can be improved with a longer training duration. On
average, each agent takes 65 hours to complete 500,000 steps while training on a laptop with Intel
Core i7-10875H CPU and Nvidia Quadro T2000 GPU. Therefore, only a single random seed
is employed for all agents due to the time-consuming training procedure and time constraints.
However, use of several different seeds with a longer training duration is encouraged as it would
provide more definitive results. During the training of each agent, success rate is logged for
grasps on the training dataset while the agent follows its current stochastic policy that contains
exploration noise. After training, each agent is evaluated on novel scenes for 200 episodes, where
deterministic actions are selected each step based on the learned policy.

6.2.1 Comparison of Actor-Critic Algorithms

TQC, SAC and TD3 were trained using the same grasping environment with a network ar-
chitecture presented in subsection 5.2.3 and hyperparameters from appendix B. The success
rate during training and the final success rate on novel objects and textures is presented in
Figure 6.3 & Table 6.1 for all three algorithms. The episode lengths of successful episodes are
also logged in order to determine how fast an agent can grasp previously unseen objects.

0k 100k 200k 300k 400k 500k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90% TQC SAC TD3

Steps

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e TQC SAC TD3
Success

Rate 77% 64% 0%

Episode
Length 14.0 29.8 —

Evaluation on novel scenes

Figure 6.3 & Table 6.1: Comparison of TQC, SAC and TD3 algorithms on the created grasping
environment. The training success rate is processed with a moving average, n = 100, and
exponential smoothing, α = 0.002, for all agents.

Based on these results, TQC is utilised for all subsequent experiments.

46



6.2.2 Comparison of 2D/2.5D/3D Observations

3D octree observations are now compared to more traditional 2D RGB and 2.5D RGB-D
observations. Besides the success rate, this comparison also includes computational complexity in
terms of memory usage and processing time. For octrees, feature extractor from subsection 5.2.2
is used. For RGB and RGB-D images, an analogous CNN feature extractor described in
appendix E is employed instead. In order to make the comparison fair, the same architecture
design is used with approximately the same number of learnable parameters as listed in Table 6.2.
TQC hyperparameters from appendix B are used for all agents. In order to utilise the same
replay buffer size for all three agents, the resolution of RGB images and depth maps had to be
reduced to 128×128 px for all observation types, including octrees. Note that the change of
image resolution does not impact the number of learnable parameters for octrees.

Octree RGB-D RGB
Learnable Parameters 226,494 229,680 229,248

Table 6.2: Number of learnable parameters per each observation stack for the utilised octree-
based, RGB and RGB-D feature extractors.

The three different feature extractors are first trained in the fully randomised environment.
However, as results in Figure 6.4 & Table 6.3 indicate, 2D and 2.5D observations are unable to
provide invariance to camera pose.

0k 100k 200k 300k 400k 500k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90% Octree RGB-D RGB

Steps

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e Octree RGB-D RGB
Success

Rate 77% 5% 3%

Episode
Length 14.0 36.5 51.0

Evaluation on novel scenes

Figure 6.4 & Table 6.3: Results of octree-based, RGB and RGB-D feature extractors on the full
environment that randomises camera pose on each episode.

Therefore, this experiment is repeated for an environment where the camera pose is static
and remains unchanged throughout the entire training and subsequent evaluation on novel scenes.
Figure 6.5 & Table 6.4 provide results for such environment with reduced domain randomisation.

47



0k 100k 200k 300k 400k 500k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90% Octree RGB-D RGB

Steps

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e Octree RGB-D RGB
Success

Rate 81.5% 59% 35%

Episode
Length 24.6 9.4 9.3

Evaluation on novel scenes

Figure 6.5 & Table 6.4: Results of octree-based, RGB and RGB-D feature extractors on environ-
ment with a fixed camera pose.

Lastly, a comparison of memory usage and computational time for the three observation
types and feature extractors is presented in Table 6.5.

Octree RGB-D RGB
Shape (per sample) 16×16×16 128×128 128×128

Cell Count (per sample) 4,096 octets (theoretical) 16,384 px 16,384 px

Size (per sample)
27 kB (average)

49 kB 115 kB
44 kB (maximum)

Pre-processing (average, per sample) 7.2 ms — —
Batch Formation (average, batch of 32) 3.2 ms 19.7 ms 11.2 ms

Forward (average, batch of 32) 2.1 ms 0.8 ms 0.7 ms
TQC Update (average, batch of 32) 32.4 ms 141.7 ms 82.3 ms

Table 6.5: Comparison of computational complexity for octree-based, RGB and RGB-D observa-
tions with their corresponding feature extractors. Pre-processing of octrees is performed during
data collection and consists of point cloud processing, estimation of normals and creation of
octree. Colour features are stored in octree as 32-bit floating point values, whereas RGB and
RGB-D utilise byte arrays for memory efficiency in order to allow use of the same replay buffer
size. Therefore, the time of batch formation includes conversion of colour channels to floating
point values for RGB and RGB-D images.

48



6.2.3 Invariance to Robot

In addition to training agents with octree observations on UR5 robot with RG2 gripper, an agent
is also trained on Panda robot in order to study the robustness of state-of-the-art actor-critic
algorithm with octree observations to different kinematic chains and gripper designs. Comparison
of success rate between UR5 and Panda can be seen in Figure 6.6 & Table 6.6.

0k 100k 200k 300k 400k 500k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90% UR5 Panda

Steps

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e UR5 Panda
Success

Rate 77% 61.5%

Episode
Length 14.0 27.1

Evaluation on novel scenes

Figure 6.6 & Table 6.6: Results of using the same algorithm and hyperparameters on the created
environment with UR5 and Panda robots.

Furthermore, feasibility of transferring a policy trained on one robot to another is investigated.
Such transfer is evaluated on novel scenes with a policy trained on both UR5 and Panda. Results
for this experiment can be found in Table 6.7.

Evaluation
UR5 Panda

Training UR5 77% 27.5%
Panda 75% 61.5%

Table 6.7: Comparison of success rate on novel scenes for policies trained on one robot and
evaluated on another, for UR5 with RG2 gripper and Panda robot with its default gripper.

49



6.2.4 Sim-to-Real Transfer

Finally, an agent trained inside simulation is evaluated in real-world domain to study the
feasibility of sim-to-real transfer for environment with domain randomisation and octree-based
observations. Setup described in subsection 6.1.2 is used, where objects are randomly replaced
after each success or after 100 time steps have elapsed. With this setup, 41 out of 60 episodes were
successful, which results in a success rate of 68.3%. Figure 6.7 shows examples of successful
grasps, whereas Figure 6.8 shows failed attempts. Recording of several episodes is available on
YouTube3, which can be used to qualitatively assess the policy and corresponding grasps.

Figure 6.7: Examples of successful grasps accomplished by a policy that was transferred from
simulation to real-world domain.

Figure 6.8: Examples of failed attempts. The most common cause of failure is obstruction of a
finger by another object, which prevents the RG2 gripper from closing.

3https://youtube.com/watch?v=btxqzFOgCyQ

50

https://youtube.com/watch?v=btxqzFOgCyQ&list=PLzcIGFRbGF3Qr4XSzAjNwOMPaeDn5J6i1


6.3 Ablation Studies

Besides results presented in the previous section, various ablations of the full approach are
studied in order to determine their effects and contributions. It is believed that these results are
applicable also for other robotics tasks that utilise visual observations. The following ablations
and configurations are studied.

• No demonstrations
• No curriculum
• No colour features
• No proprioceptive observations
• Separate feature extractors for actor and critics
• Shared feature extractor for all stacked observations

Figure 6.9 & Table 6.8 present these ablations with respect to their comparative learning curve
and attainable success rate on novel scenes.

0k 100k 200k 300k 400k 500k
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
Full Method

No Demonstrations

No Curriculum

No Colour Features

No Proprioceptive

Separate Actor-Critic FE

Shared Stack FE

Steps

Tr
ai

ni
ng

 S
uc

ce
ss

 R
at

e

Full
Method

No
Demon-
strations

No
Curriculum

No
Colour

Features

No
Proprio-
ceptive

Separate
Actor-

Critic FE

Shared
Stack

FE
Success

Rate 77% 84% 70.5% 66.5% 75% 68.5% 79%

Episode
Length 14.0 24.5 19.9 29.4 23.0 27.5 22.8

Figure 6.9 & Table 6.8: Results of various ablations of the full method. (FE – Feature Extractor)

51



7 Discussion and Conclusion

Experimental evaluation from previous chapter indicates that DRL with 3D visual observations
can be successfully applied for end-to-end robotic grasping of diverse objects and provide
advantages over 2D and 2.5D observations, especially in terms of camera pose invariance. With
a static camera pose, 3D octree-based observations were able to reach success rate of 81.5%
on novel scenes, whereas 59% was achieved with 2.5D RGB-D observations and 35% with 2D
RGB images. Lower success rate of RGB image observations implies that depth perception is of
great importance for robotic manipulation in scenes where objects can be difficult to distinguish
from a textured background surface. Octrees provide better success rate than RGB-D images,
which is considered to be due to the better ability of 3D convolutions to generalise over spatial
positions and orientations compared to 2D convolutions that only generalise over pixel positions.

However, the primary strength of 3D observations comes from their invariance to the camera
pose. Agents with RGB and RGB-D image observations were unable to learn a policy that
would solve robotic grasping if the camera pose is randomised, whereas an agent with octree
observations was still able to achieve success rate of 77% on novel scenes and camera poses, even
with a configuration that has a much lower computational complexity than images. Although the
use of 3D visual observations requires the relative pose between camera and robot to be known
or estimated via calibration, it is considered to be a valid assumption for majority of vision-based
manipulation setups.

Combination of PBR rendering and domain randomisation of the implemented simulation
environment enabled sim-to-real transfer. In real-world domain, a policy that was trained solely
inside the simulation was able to achieve success rate of 68.3% on a variety of real everyday
objects. Due to the invariance of octree observations to camera pose, the setup for evaluation of
sim-to-real transfer did not require exact replication of its digital counterpart, which resulted in a
simpler transfer. This is considered to be advantageous because it allows a single learned policy
to be employed in a variety of real-world setups.

The primary cause of failed grasps on a real robot originates in cases where a finger of
the utilised gripper is obstructed by another object, which prevents the gripper from closing
due to its safety features. Lower success rate compared to the evaluation in simulation could
also be attributed to the noise profile of depth map acquired by a real stereo camera, which
is complex and cannot be modelled by a simple Gaussian noise that was applied inside the
simulation. Therefore, better modelling of noise patterns in observation combined with further
data augmentation could result in a more robust policy that would better adapt to real-world

52



visual observations. Addition of more extensive domain randomisation of physical interactions
could also bring significant benefits, especially if multiple implementations of physics engine
with random configurations are used during the training.

Having a policy that would be completely invariant to the utilised robot can also significantly
improve its applicability and ease the transfer to real robots. Experiments show that it is
significantly simpler to learn manipulation when using UR5 with RG2 gripper compared to
Panda with its default gripper. Transferred policy from Panda to UR5 also performs much better
than a transfer in the opposite direction. The reason for this is presumably the smaller size
of Panda’s fingers, which affects how precise the gripper pose needs to be before activating it.
The difference in such task difficulty is often overlooked in research for robot learning, which
makes comparing of reported results with different setups nearly impossible. Therefore, there
is a need for a common open-source benchmark for a variety of manipulation tasks that would
value generalisation over single-object performance.

When comparing the same hyperparameters on three actor-critic algorithms, an agent using
TD3 for training was unable to solve the task. There might be a set of hyperparameters that
would make TD3 applicable and allow it to achieve a comparable success rate, however, the
results indicate that TD3 is at the very least more sensitive to hyperparameters than the other
two algorithms. The distributional representation of TQC’s critics provide it with faster learning
and better success rate of 77%, when compared to 64% of SAC. Therefore, these results support
the claim of Kuznetsov et al. (2020) that TQC outperforms SAC as the new state-of-the-art RL
algorithm for continuous control in robotics. Experiments conducted in this work extend this
claim to the task of robotic grasping with visual observations and actions in Cartesian space.

Policies trained with SAC and TQC for 500,000 time steps optimised a behaviour that tries to
repeatedly perform slightly different grasps of objects if previous attempts failed. This behaviour
of end-to-end control therefore resembles signs of the entropy maximisation that is targetted
by these algorithms during the training. Quantitatively, it provides agent with a better chance
of grasping an object during each episode and therefore maximising the accumulated reward.
Given longer duration of episodes, the success rate could be artificially increased. However,
qualitative analysis of such policy is considered to be excessively chaotic and unsafe. Real-world
applications of robotic manipulation require to meet safety standards and use a more structured
interaction with the environment. Agents trained in this work struggle to provide such guarantees,
and their unsupervised use on real robots is limited to compliant objects that reduce the risk of
accidental damage. With this in mind, discrete action spaces, e.g. pixel-wise action space with
predefined action primitives and safety limits, might be currently more suitable for real-world
applications due to their more deterministic behaviour, despite having a reduced ability to learn
more complex policy that would improve their task-solving capabilities. It is therefore believed
that a theory of safety needs to be developed for RL before it is applicable for solving real-world
robotic manipulation tasks with continuous end-to-end control.

Study of ablations brought some unexpected results. Notably, the use of demonstrations
reduced the attainable success rate on novel scenes by 7%, despite faster learning in the early
stages. It can be discussed that this significant downgrade in performance is caused by a bias

53



that was introduced by the suboptimal scripted policy, which lead to eventual convergence to a
local optimal policy. Agent that needs to explore completely from scratch has a better chance
of converging to a policy that is globally optimal and not affected by such bias. Therefore, the
experimental results indicate that the use of demonstrations for RL should be discouraged, if
possible, and other methods with better guarantees such as curriculum learning should be applied
instead.

Addition of proprioceptive observations provides a small increase of 2% to the success rate.
Since these observations are easily obtainable, their use is considered to be beneficial. Similarly,
use of colour features in visual observations increases success rate by 10.5%, which is considered
to be very significant. Therefore, their addition is useful if an environment used for training
supports realistic rendering.

Analysis for sharing of feature extractor parameters brings some interesting results. When
separate feature extractors are used for each observation stack, the initial learning is much faster
than use of a single shared feature extractor, which indicates that different set of features can
be useful for historic observations compared to the current one. This result is counterintuitive
because separate feature extractors have a much larger number of combined learnable parameters.
However, both approaches are able to reach a very similar final success rate, which means
that a shared feature extractor is eventually capable of extracting features from octrees that are
time-independent.

Despite large potential and significantly advancements of RL in recent years, its applicability
for real world robotic manipulation tasks is still limited. There are several challenges that
need to be addressed before end-to-end policies learned by DRL can be robustly integrated
into real robotic systems. Although there have been attempts to improve sample efficiency
of model-free RL algorithms, even off-policy algorithms with experience replay often require
millions of transitions to learn the optimal policy. Algorithms based on the maximum entropy
reinforcement learning framework such as SAC and TQC provide a good step towards balancing
the trade-off between exploration & exploitation, however, a guarantee of safe exploration and
subsequent operation is required for safety-critical systems. Sensitivity to hyperparameters is
another significant problem that needs to be addressed in order to enable large-scale use of
RL. Optimisation of hyperparameters for every task is a very time consuming procedure due
to the long training duration of each trial. Similarly, reproducibility in RL is very challenging
for continuous tasks due to high stochasticity of environments that many robots operate in.
Inexpensive parallelised simulations with high-fidelity physics and rendering could alleviate
some of these issues in the near future. It is therefore believed that DRL will have a promising
future in the field of robotic manipulation. Themes such as model-based RL, hierarchical RL
and aspects of broader generalisation are expected to be extensively studied within this context,
where 3D visual observations could be employed to bridge some of these concepts together.

54



8 Future Work

This chapter contains a list of improvements and possible future directions of this work.

Octree for the Entire Reachable Workspace The observable workspace was restricted to
a subset of robot’s reachable workspace in order to reduce computational complexity of the
problem. Due to efficient structure of octrees, it is believed that a single octree with deeper
structure could be extended to cover the entire reachable workspace of a robot. It would provide
agent with much better understanding of the scene, where multiple depth-sensing cameras could
be combined together in order to reduce occlusions. With larger workspace, a single policy
could be applied as a component in many different high-level tasks that need to be performed all
around the robot. Furthermore, it would simplify its use in mobile manipulation, where large and
detailed observations are required. However, the increase in memory usage and computational
cost would need to evaluated to assess benefits and drawbacks.

Parallel Environments The implemented simulation environment for robotic grasping is
currently limited to a single worker, which unfortunately hinders its scalability. However, data
collection could be accelerated by utilising several workers in parallel, which would also increase
the variety in data. Each worker could contribute with transitions into a common experience
replay buffer. A separate thread could then sample transitions from such buffer in order to
perform asynchronous updates of the policy.

Advanced Network Architectures The architecture of NNs plays an important role for overall
performance of RL agents. However, a relatively simple 3D CNN network was applied for the
octree feature extractor. Therefore, more advanced structures such as RNNs or residual networks
could investigated and integrated with actor-critic RL algorithms.

Random Robot It is believed that an end-to-end policy could be trained to be fully robot
agnostic if an agent experiences many different robots and gripper configurations throughout its
training. Randomisation of robot model could be part of the already existing domain randomisa-
tion, where different combinations of kinematic chains and gripper designs could be randomly
selected. Furthermore, randomisation of mechanical, inertial and visual properties for robots and
grippers would also be beneficial.

55



Random Ground Plane Geometry In addition to randomising visual properties of the ground
plane, its geometry could also be randomised in order to generalise to different types of supporting
surfaces. This could be accomplished by employing a procedurally generated heightmap with
random geometry and texture.

Data Augmentation Use of data augmentation in addition to domain randomisation and sensor
noise would greatly increase the variety in data. However, it needs to be investigated at which
phase such augmentation should be introduced in order to maximise its effectiveness. It could
be applied on the original RGB image and depth map, point cloud and even the octree. Each of
these augmentations could accomplish a different variation in the data and provide policy with
even more robustness and improve the likelihood of sim-to-real transfer.

Control of Full 3D Rotation Action space of end-to-end grasping is currently restricted to the
yaw rotation. However, many objects cannot be grasped directly from top and having control
over the full 3D orientation could improve performance of the learned policy. With full control
of gripper pose, the state space would be significantly enlarged, which will eventually lead to
many challenges with respect to exploration and safety.

Semantic Grasping In addition to traditional grasping of any object from the scene, RL could
be applied for semantic grasping in which a specific object or a class of objects need to be
grasped. Some of the existing research in this area trained an entire policy for a specific object.
However, a goal-oriented definition of the task could be applied, where an agent would be
provided with target goal in addition to observations. With this approach, a single policy could
be applied for a variety of objects and scenarios, which would further improve its applicability
for real problems.

Directional Grasping It is often useful for real-world applications to specify direction from
which an object needs to be grasped. Directional grasping could therefore be an extension of the
previous two points, where a policy with specified grasp direction could be trained.

56



Bibliography

Eman Ahmed, Alexandre Saint, Abdelrahman Shabayek, Kseniya Cherenkova, Rig Das, Gleb
Gusev, Djamila Aouada, and Björn Ottersten. 2018. Deep Learning Advances on Different 3D
Data Representations: A Survey.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019.
Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Patrick Beeson and Barrett Ames. 2015. TRAC-IK: An open-source library for improved solving
of generic inverse kinematics. In 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids). 928–935. https://doi.org/10.1109/HUMANOIDS.2015.

7363472

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal
Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and
Vincent Vanhoucke. 2017. Using Simulation and Domain Adaptation to Improve Efficiency
of Deep Robotic Grasping. (Sept. 2017).

Michel Breyer, Fadri Furrer, Tonci Novkovic, Roland Siegwart, and Juan Nieto. 2019. Compar-
ing Task Simplifications to Learn Closed-Loop Object Picking Using Deep Reinforcement
Learning. IEEE Robotics and Automation Letters PP (Jan. 2019). https://doi.org/

10.1109/LRA.2019.2896467

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:1606.01540 (June 2016).

Paul Daniel. 2020. Deep Reinforcement Learning for robotic pick and place applications using
purely visual observations. Master’s thesis. Technical University of Berlin, Germany.

Marc Peter Deisenroth and Carl Edward Rasmussen. 2011. PILCO: a model-based and data-
efficient approach to policy search. In Proceedings of the 28th International Conference on
International Conference on Machine Learning (ICML’11). Omnipress, Madison, WI, USA,
465–472.

Hugh Durrant-Whyte, Nicholas Roy, and Pieter Abbeel. 2012. Learning to Control a Low-Cost
Manipulator Using Data-Efficient Reinforcement Learning. In Robotics: Science and Systems
VII. MIT Press, 57–64.

57

https://doi.org/10.1109/HUMANOIDS.2015.7363472
https://doi.org/10.1109/HUMANOIDS.2015.7363472
https://doi.org/10.1109/LRA.2019.2896467
https://doi.org/10.1109/LRA.2019.2896467


Diego Ferigo, Silvio Traversaro, Giorgio Metta, and Daniele Pucci. 2020. Gym-Ignition: Repro-
ducible Robotic Simulations for Reinforcement Learning. In 2020 IEEE/SICE International
Symposium on System Integration (SII). 885–890. https://doi.org/10.1109/

SII46433.2020.9025951

Thomas G. Fischer. 2018. Reinforcement learning in financial markets - a survey. Working
Paper 12/2018. FAU Discussion Papers in Economics.

Scott Fujimoto, Herke Hoof, and Dave Meger. 2018. Addressing Function Approximation Error
in Actor-Critic Methods. (Feb. 2018).

Michael Garland and Paul Heckbert. 1997. Surface Simplification Using Quadric Error Metrics.
Proceedings of the ACM SIGGRAPH Conference on Computer Graphics 1997 (July 1997).
https://doi.org/10.1145/258734.258849

Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco Madrid-Cuevas, and Manuel Marín-
Jiménez. 2014. Automatic generation and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition 47 (June 2014), 2280–2292. https://doi.org/10.

1016/j.patcog.2014.01.005

Google Research. 2020. Google Scanned Objects. https://app.ignitionrobotics.

org/GoogleResearch/fuel/collections/GoogleScannedObjects (Igni-
tion Fuel Collection) Accessed on June 2, 2021.

Marcus Gualtieri, Andreas ten Pas, and Robert Platt. 2018. Pick and Place Without Geometric
Object Models. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
7433–7440. https://doi.org/10.1109/ICRA.2018.8460553

Marcus Gualtieri and Robert Platt. 2018. Learning 6-DoF Grasping and Pick-Place Using
Attention Focus. In 2018 Conference on Robot Learning (CoRL).

Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and Sergey
Levine. 2018a. Composable Deep Reinforcement Learning for Robotic Manipulation. In 2018
IEEE International Conference on Robotics and Automation (ICRA). 6244–6251. https:

//doi.org/10.1109/ICRA.2018.8460756

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. 2018b. Soft
Actor-Critic Algorithms and Applications.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and D. Meger.
2018. Deep Reinforcement Learning that Matters. In Association for the Advancement of
Artificial Intelligence (AAAI).

Shariq Iqbal, Jonathan Tremblay, Andy Campbell, Kirby Leung, Thang To, Jia Cheng, Erik
Leitch, Duncan McKay, and Stan Birchfield. 2020. Toward Sim-to-Real Directional Semantic

58

https://doi.org/10.1109/SII46433.2020.9025951
https://doi.org/10.1109/SII46433.2020.9025951
https://doi.org/10.1145/258734.258849
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google Scanned Objects
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google Scanned Objects
https://doi.org/10.1109/ICRA.2018.8460553
https://doi.org/10.1109/ICRA.2018.8460756
https://doi.org/10.1109/ICRA.2018.8460756


Grasping. In 2020 IEEE International Conference on Robotics and Automation (ICRA). 7247–
7253. https://doi.org/10.1109/ICRA40945.2020.9197310

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. 2017. Reproducibility
of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control. (Aug. 2017).

Shirin Joshi, Sulabh Kumra, and Ferat Sahin. 2020. Robotic Grasping using Deep Reinforce-
ment Learning. In 2020 IEEE 16th International Conference on Automation Science and
Engineering (CASE). 1461–1466. https://doi.org/10.1109/CASE48305.2020.

9216986

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. 2018.
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation.

Taewon Kim, Yeseong Park, Youngbin Park, and Il Hong Suh. 2020. Acceleration of Actor-Critic
Deep Reinforcement Learning for Visual Grasping in Clutter by State Representation Learning
Based on Disentanglement of a Raw Input Image.

Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. Interna-
tional Conference on Learning Representations (Dec. 2014).

N. Koenig and A. Howard. 2004. Design and use paradigms for Gazebo, an open-source multi-
robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.04CH37566), Vol. 3. 2149–2154 vol.3. https://doi.org/10.

1109/IROS.2004.1389727

Oliver Kroemer, S. Niekum, and G. Konidaris. 2021. A Review of Robot Learning for Manipula-
tion: Challenges, Representations, and Algorithms. Journal of Machine Learning Research
(2021).

J.J. Kuffner and S.M. LaValle. 2000. RRT-connect: An efficient approach to single-query path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), Vol. 2. 995–1001
vol.2. https://doi.org/10.1109/ROBOT.2000.844730

S. Kumra and C. Kanan. 2017. Robotic grasp detection using deep convolutional neural networks.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 769–
776. https://doi.org/10.1109/IROS.2017.8202237

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. 2020. Controlling
Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics. In
International Conference on Machine Learning. PMLR, 5556–5566.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
2020. Reinforcement Learning with Augmented Data. arXiv:2004.14990 (Nov. 2020).

59

https://doi.org/10.1109/ICRA40945.2020.9197310
https://doi.org/10.1109/CASE48305.2020.9216986
https://doi.org/10.1109/CASE48305.2020.9216986
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/IROS.2017.8202237


Jeongseok Lee, Michael Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha
Srinivasa, Mike Stilman, and Karen Liu. 2018. DART: Dynamic Animation and Robotics
Toolkit. The Journal of Open Source Software 3 (Feb. 2018), 500. https://doi.org/

10.21105/joss.00500

Ian Lenz, Honglak Lee, and Ashutosh Saxena. 2015. Deep learning for detecting robotic
grasps. The International Journal of Robotics Research 34, 4-5 (April 2015), 705–724.
https://doi.org/10.1177/0278364914549607

Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. 2016. Learning Hand-Eye
Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection. The
International Journal of Robotics Research 37 (March 2016). https://doi.org/10.

1177/0278364917710318

Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. 2015. Continuous control with deep reinforcement learning.
Computing Research Repository (CoRR) (Sept. 2015).

Huaping Liu, Yuan Yuan, Yuhong Deng, Xiaofeng Guo, Yixuan Wei, Kai Lu, Bin Fang, Di Guo,
and Fuchun Sun. 2019. Active Affordance Exploration for Robot Grasping. In Intelligent
Robotics and Applications (Lecture Notes in Computer Science), Haibin Yu, Jinguo Liu, Lian-
qing Liu, Zhaojie Ju, Yuwang Liu, and Dalin Zhou (Eds.). Springer International Publishing,
Cham, 426–438. https://doi.org/10.1007/978-3-030-27541-9_35

Jens Lundell, Francesco Verdoja, and Ville Kyrki. 2019. Robust Grasp Planning Over Uncertain
Shape Completions. 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Nov. 2019), 1526–1532. https://doi.org/10.1109/IROS40897.

2019.8967816

Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu,
Juan Aparicio Ojea, and Ken Goldberg. 2017. Dex-Net 2.0: Deep Learning to Plan Ro-
bust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics. arXiv:1703.09312 (Aug.
2017).

Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li, David Gealy, and Ken Goldberg. 2018.
Dex-Net 3.0: Computing Robust Robot Vacuum Suction Grasp Targets in Point Clouds using
a New Analytic Model and Deep Learning. arXiv:1709.06670 (April 2018).

Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael Danielczuk, Bill DeRose, Stephen McKin-
ley, and Kenneth Goldberg. 2019. Learning ambidextrous robot grasping policies. Science
Robotics 4 (Jan. 2019). https://doi.org/10.1126/scirobotics.aau4984

Daniel Maturana and Sebastian Scherer. 2015. VoxNet: A 3D Convolutional Neural Network for
real-time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 922–928. https://doi.org/10.1109/IROS.2015.7353481

60

https://doi.org/10.21105/joss.00500
https://doi.org/10.21105/joss.00500
https://doi.org/10.1177/0278364914549607
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1007/978-3-030-27541-9_35
https://doi.org/10.1109/IROS40897.2019.8967816
https://doi.org/10.1109/IROS40897.2019.8967816
https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.1109/IROS.2015.7353481


Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through deep
reinforcement learning. Nature 518, 7540 (Feb. 2015), 529–533. https://doi.org/

10.1038/nature14236

Douglas Morrison, Peter Corke, and Jürgen Leitner. 2018. Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach. arXiv:1804.05172 (May
2018).

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew Taylor, and Peter Stone.
2020. Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey.

V. Nguyen. 1987. Constructing stable grasps in 3D. In 1987 IEEE International Conference on
Robotics and Automation Proceedings, Vol. 4. 234–239. https://doi.org/10.1109/

ROBOT.1987.1088008

Rui Nian, Jinfeng Liu, and Biao Huang. 2020. A review On reinforcement learning: Introduction
and applications in industrial process control. Computers & Chemical Engineering 139 (Aug.
2020). https://doi.org/10.1016/j.compchemeng.2020.106886

Andrej Orsula. 2021. Manipulators. https://app.ignitionrobotics.org/

AndrejOrsula/fuel/collections/manipulators (Ignition Fuel Collection)
Accessed on June 2, 2021.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Bagnell, Pieter Abbeel, and Jan Peters. 2018.
An Algorithmic Perspective on Imitation Learning. Foundations and Trends in Robotics 7
(Nov. 2018), 1–179. https://doi.org/10.1561/2300000053

Takayuki Osa, Jan Peters, and Gerhard Neumann. 2017. Experiments with Hierarchical Re-
inforcement Learning of Multiple Grasping Policies. In 2016 International Symposium on
Experimental Robotics (Springer Proceedings in Advanced Robotics), Dana Kulić, Yoshihiko
Nakamura, Oussama Khatib, and Gentiane Venture (Eds.). Springer International Publishing,
Cham, 160–172. https://doi.org/10.1007/978-3-319-50115-4_15

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library.

Lerrel Pinto and Abhinav Gupta. 2015. Supersizing Self-supervision: Learning to Grasp from
50K Tries and 700 Robot Hours. (Sept. 2015).

61

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ROBOT.1987.1088008
https://doi.org/10.1109/ROBOT.1987.1088008
https://doi.org/10.1016/j.compchemeng.2020.106886
https://app.ignitionrobotics.org/AndrejOrsula/fuel/collections/manipulators
https://app.ignitionrobotics.org/AndrejOrsula/fuel/collections/manipulators
https://doi.org/10.1561/2300000053
https://doi.org/10.1007/978-3-319-50115-4_15


Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. 2018. Multi-Goal Reinforcement Learning: Challenging Robotics Environments
and Request for Research. (Feb. 2018).

Athanasios S. Polydoros and Lazaros Nalpantidis. 2017. Survey of Model-Based Reinforcement
Learning: Applications on Robotics. Journal of Intelligent & Robotic Systems 86, 2 (May
2017), 153–173. https://doi.org/10.1007/s10846-017-0468-y

Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej
Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. 2017. Data-efficient
Deep Reinforcement Learning for Dexterous Manipulation. arXiv:1704.03073 (April 2017).

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: deep hierarchical
feature learning on point sets in a metric space. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc.,
Red Hook, NY, USA, 5105–5114.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
and Andrew Ng. 2009. ROS: an open-source Robot Operating System, Vol. 3.

Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, and Sergey Levine. 2018.
Deep Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative
Evaluation of Off-Policy Methods. In 2018 IEEE International Conference on Robotics
and Automation (ICRA). 6284–6291. https://doi.org/10.1109/ICRA.2018.

8461039

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and
Noah Dormann. 2019. Stable Baselines3. https://github.com/DLR-RM/

stable-baselines3

J. Redmon and A. Angelova. 2015. Real-time grasp detection using convolutional neural
networks. In 2015 IEEE International Conference on Robotics and Automation (ICRA). 1316–
1322. https://doi.org/10.1109/ICRA.2015.7139361

Máximo A. Roa and Raúl Suárez. 2015. Grasp quality measures: review and perfor-
mance. Autonomous Robots 38, 1 (Jan. 2015), 65–88. https://doi.org/10.1007/

s10514-014-9402-3

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas Guibas. 2016. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. (Dec. 2016).

A. Sahbani, S. El-Khoury, and P. Bidaud. 2012. An overview of 3D object grasp synthesis
algorithms. Robotics and Autonomous Systems 60, 3 (March 2012), 326–336. https:

//doi.org/10.1016/j.robot.2011.07.016

62

https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1109/ICRA.2018.8461039
https://doi.org/10.1109/ICRA.2018.8461039
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1109/ICRA.2015.7139361
https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1016/j.robot.2011.07.016
https://doi.org/10.1016/j.robot.2011.07.016


Ashutosh Saxena, Justin Driemeyer, and Andrew Ng. 2008. Robotic Grasping of Novel Objects
using Vision. International Journal of Robotics Research 27 (Feb. 2008), 157–173. https:

//doi.org/10.1177/0278364907087172

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy
Lillicrap, and David Silver. 2020. Mastering Atari, Go, chess and shogi by planning with a
learned model. Nature 588, 7839 (Dec. 2020), 604–609. https://doi.org/10.1038/

s41586-020-03051-4

Chathurangi Shyalika, Thushari Silva, and Asoka Karunananda. 2020. Reinforcement Learning
in Dynamic Task Scheduling: A Review. SN Computer Science 1, 6 (Sept. 2020), 306.
https://doi.org/10.1007/s42979-020-00326-5

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. 2017. Mastering the game of Go without human knowledge. Nature 550, 7676 (Oct.
2017), 354–359. https://doi.org/10.1038/nature24270

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. 2019. End-to-End
Robotic Reinforcement Learning without Reward Engineering.

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA.

Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. 2017. Grasp Pose Detection
in Point Clouds. The International Journal of Robotics Research 36, 13-14 (Dec. 2017),
1455–1473. https://doi.org/10.1177/0278364917735594

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
2017. Domain randomization for transferring deep neural networks from simulation to the
real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 23–30. https://doi.org/10.1109/IROS.2017.8202133

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
5026–5033. https://doi.org/10.1109/IROS.2012.6386109

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk
Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen,
Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gul-
cehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wün-
sch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu,

63

https://doi.org/10.1177/0278364907087172
https://doi.org/10.1177/0278364907087172
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1007/s42979-020-00326-5
https://doi.org/10.1038/nature24270
https://doi.org/10.1177/0278364917735594
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2012.6386109


Demis Hassabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature 575, 7782 (Nov. 2019), 350–354.
https://doi.org/10.1038/s41586-019-1724-z

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chunyu Sun, and Xin Tong. 2017. O-CNN: Octree-
based Convolutional Neural Networks for 3D Shape Analysis. ACM Transactions on Graphics
36 (July 2017), 1–11. https://doi.org/10.1145/3072959.3073608

Peng-Shuai Wang, Yang Liu, and Xin Tong. 2020. Deep Octree-based CNNs with Output-Guided
Skip Connections for 3D Shape and Scene Completion.

Bohan Wu, Iretiayo Akinola, Abhi Gupta, Feng Xu, Jacob Varley, David Watkins-Valls, and
Peter K. Allen. 2020. Generative Attention Learning: a “GenerAL” framework for high-
performance multi-fingered grasping in clutter. Autonomous Robots 44, 6 (July 2020), 971–990.
https://doi.org/10.1007/s10514-020-09907-y

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric shapes. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1912–1920.
https://doi.org/10.1109/CVPR.2015.7298801

Yun-Hui Liu, Miu-Ling Lam, and D. Ding. 2004. A complete and efficient algorithm for
searching 3-D form-closure grasps in the discrete domain. IEEE Transactions on Robotics 20,
5 (Oct. 2004), 805–816. https://doi.org/10.1109/TRO.2004.829500

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. 2018. Learning Synergies Between Pushing and Grasping with Self-Supervised
Deep Reinforcement Learning. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 4238–4245. https://doi.org/10.1109/IROS.2018.

8593986

Albert Zhan, Philip Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin. 2020. A Framework
for Efficient Robotic Manipulation.

Fangyi Zhang, Juxi Leitner, Michael Milford, Ben Upcroft, and Peter Corke. 2015. Towards
Vision-Based Deep Reinforcement Learning for Robotic Motion Control. (Nov. 2015).

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter
Abbeel. 2018. Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality
Teleoperation. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
5628–5635. https://doi.org/10.1109/ICRA.2018.8461249

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2020. On the Continuity of
Rotation Representations in Neural Networks. arXiv:1812.07035 (June 2020).

64

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1145/3072959.3073608
https://doi.org/10.1007/s10514-020-09907-y
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/TRO.2004.829500
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1109/IROS.2018.8593986
https://doi.org/10.1109/ICRA.2018.8461249


Appendices

A Joint Trajectory Controller

In order to enable execution of planned motions for robotic manipulators inside Ignition Gazebo, a
standard joint trajectory controller was implemented as a system plugin and contributed upstream.
In its simplest, it provides simultaneous control of multiple joints, which can be used to follow
trajectories generated by a motion planning framework such as MoveIt 2. Each trajectory consists
of discrete temporal points that each contain per-joint targets for position, velocity, acceleration
and effort. Control of each joint is accomplished by the use of PID controllers for position and
velocity control. Effort computed by these controllers is combined with feed-forward effort from
the trajectory itself and then applied to the joint for physics computations.

In this work, trajectories generated by MoveIt 2 are followed with position-controlled joints,
where PID gains for both UR5 and Panda robots were manually tuned.

65



B Hyperparameters

Hyperparameters used for the created environment for robotic grasping are listed below for TD3,
SAC and TQC actor-critic algorithms.

Hyperparameter TD3 SAC TQC
Optimisation Algorithm Adam (Kingma and Ba, 2014)
Learning Rate Schedule Linear, 1.5 · 10−4 → 0
Mini-batch Size 32
Update Frequency After Every Episode
Gradient Steps per Update 100
Replay Buffer Size 40000
Discount Factor γ 0.999
Target Update Rate τ 5 · 10−5
Number of Critics 2
Activation Function ReLU
Exploratory Action Noise N (0, 0.025)
Target Policy Noise N (0, 0.25) — —
Initial Entropy Coefficient — 0.1
Entropy Target — −dim(A) = −5
Number of Atoms — — 25
Number of Truncated Atoms — — 3

66



C Camera Pose Calibration

For evaluation of sim-to-real transfer, the camera pose is calibrated with respect to the robot base
frame. For this, a calibration board with ArUcO markers (Garrido-Jurado et al., 2014) is used
as an intermediate reference. Figure C.1 shows the utilised setup. Position of this intermediate
reference is first found in the robot coordinate system by positioning robot’s tool centre point
above origin of the calibration board, and using robot’s joint encoders together with forward
kinematics. Hereafter, ArUcO pattern is detected from RGB images of the utilised camera.
The perceived pixel positions of the pattern are then used with its known design to solve a
perspective-n-point problem and determine camera pose with respect to the pattern. Once known,
pose of the camera is determined with respect to the robot and the calibration board is removed
from the scene.

Figure C.1: Setup used for calibration, where ArUco markers are used as an intermediate
reference frame between the camera and robot.

67



D Camera Configuration and Post-Processing

In order to improve success of sim-to-real transfer, the quality of visual observations is of great
importance. However, the default configuration of the utilised D435 camera produces a very
noisy depth map with many holes. Primary reason for this is the utilised workspace setup that
consisted of a reflective surface inside a laboratory with large amount of ambient illumination.
Not only does the smooth metallic surface of the workspace result in a specular reflection of
ceiling lights, but the pattern projected by the laser emitter of the camera is completely reflected.
Lack of such pattern results in limited material texture of the surface, which further decreases
the attainable depth quality.

To improve quality of the raw depth map, few steps are taken. First, automatic expose of the
camera’s IR sensors is configured for a region of interest that covers only the workspace. This
significantly reduces hot-spot clipping caused by the specular reflection, which in turn decreases
the amount of holes. To mitigate noise, spatial and temporal filters are applied to the depth image.
In order to achieve best results, these filters are applied to a corresponding disparity map with a
high resolution of 1280×720 px at 30 FPS. Furthermore, the depth map is clipped only to the
range of interest in order to reduce computational load. Once filtered, the image is decimated to
a more manageable resolution of 320×180 px and converted to a point cloud, which can then be
converted to an octree. Post-processed point cloud can be seen in Figure D.1.

Figure D.1: Point cloud of the workspace used in real-world to evaluate sim-to-real transfer. This
point cloud is subsequently used to create octree observations.

68



E Feature Extraction from RGB and RGB-D
Observations

Figure E.1 shows a network architecture for the feature extractor that is used for RGB and
RGB-D observations for experiment 6.2.2. It is analogous to octree-based feature extractor from
subsection 5.2.2. For RGB-D observations, the input image contains an additional channel for
depth information. All input channels are normalised to range [0, 1], where maximum depth
of 2 m is used.

Flatten

1152

Linear
ReLU

160

170

Linear
ReLU

10 10

Proprioceptive

Concatenate

Image

RGB:
RGB-D:

48 channels

3D Conv
ReLU

(3×3)
Stride 1

Max
Pooling

(4×4)
Stride 4

96 channels

3D Conv
ReLU

(3×3)
Stride 1

Max
Pooling

(4×4)
Stride 4

18 channels

1D Conv
ReLU

(1×1)
Stride 1

3 channels
4 channels

Figure E.1: Feature extractor used for RGB and RGB-D observation during experimental
evaluation.

69


	Front Page
	Title Page
	Table of Contents
	Summary
	Preface
	Glossary
	Introduction
	Related Work
	Analytical Approaches
	Supervised Learning
	Imitation Learning
	Reinforcement Learning
	Sim-to-Real
	Demonstrations
	Inverse Reinforcement Learning
	Curriculum Learning

	Deep Learning on 3D Data
	Non-Euclidean 3D Representations
	Euclidean 3D Representations


	Background
	Markov Decision Process
	Model-Free Reinforcement Learning
	Value-Based Methods
	Policy-Based Methods
	Actor-Critic Methods

	Actor-Critic Algorithms
	Deep Deterministic Policy Gradient
	Twin Delayed Deep Deterministic Policy Gradient
	Soft Actor Critic
	Truncated Quantile Critics


	Problem Formulation
	Task Definition
	Observation Space
	Octree
	Proprioceptive Observations
	Observation Stacking

	Action Space
	Reward Function

	Implementation
	Simulation Environment
	Selection of Robotics Simulator
	Environment for Robotic Grasping
	Domain Randomisation
	Demonstrations and Curriculum

	Deep Reinforcement Learning
	Framework for Reinforcement Learning
	Feature Extraction
	Actor-Critic Network Architecture
	Hyperparameter Optimisation


	Experimental Evaluation
	Experimental Setup
	Simulation
	Real

	Results
	Comparison of Actor-Critic Algorithms
	Comparison of 2D/2.5D/3D Observations
	Invariance to Robot
	Sim-to-Real Transfer

	Ablation Studies

	Discussion and Conclusion
	Future Work
	Bibliography
	Appendices
	Joint Trajectory Controller
	Hyperparameters
	Camera Pose Calibration
	Camera Configuration and Post-Processing
	Feature Extraction from RGB and RGB-D Observations


