
Modelling and Control of Thrust

Vectoring Mono-copter

Master Thesis by

Emil Bjerregaard Jacobsen

Aalborg University

Control and Automation

Control and Automation

Aalborg University

www.aau.dk

Title:

Modelling and Control of Thrust

Vectoring Mono-copter

Theme:

Control and Automation

Project Period:

01/02-2020 - 02/06-2021

Participant(s):

Emil Bjerregaard Jacobsen

Supervisor(s):

Kirsten Mølgaard Nielsen

Copies: 1

Page Numbers: 89

Date of Completion:

June 2, 2021

Abstract:

In recent years, private companies have

embraced the space industry to pur-

sue the immense economic potential of

space. The private industry has skyrock-

eted the development of reusable rockets

to increase profit and make space eco-

nomically viable. The sudden growth

has raised the demand for new employ-

ees with hands-on experience. However,

reusable rockets and space technology

is out of reach of most scientific insti-

tutes, as no educational platform is read-

ily available. This project investigates

the concept of mono-copters as a practical

way to mimic reusable rockets’ behaviour

in a safe environment. A custom hard-

ware platform is developed to accomplish

this, and a model-based control strat-

egy using LQR is proposed to stabilise

the mono-copter. This requires measure-

ments that are not available, for which

an optimal estimator is implemented; the

Kalman filter. In conclusion the proposed

control strategy is able to stabilise the

system, enabling the mono-copter to per-

form vertical take-off, hovering and land-

ings, much like a reusable rocket.

The content of this report is freely available, however publication may only take place in agreement with

the author.

https://www.aau.dk

Contents

Preface 1

1 Analysis 2

1.1 Introduction . 2

1.2 Problem Statement . 3

1.3 State of the Art . 4

1.4 Summary . 5

2 System Design 6

2.1 System Overview . 7

2.1.1 Functional requirements . 7

2.2 Actuation . 8

2.2.1 Propulsion . 8

2.2.2 Speed Controller . 9

2.2.3 Thrust Vectoring . 9

2.3 Communication . 11

2.4 Sensors . 12

2.4.1 Orientation . 12

2.4.2 Absolute position . 13

2.4.3 Relative Altitude . 13

2.4.4 Linear velocity . 14

2.5 Flight Controller . 15

2.5.1 PCB . 15

2.6 Power Management . 16

2.6.1 PCB . 16

2.7 Summary . 17

3 Modelling 18

3.1 Model Preliminaries . 19

3.1.1 Coordinate frames . 19

3.1.2 Kinematics . 20

3.1.3 Modelling principle . 21

3.2 Moments and forces . 22

3.2.1 Motor Propulsion Force . 23

ii

CONTENTS CONTENTS

3.2.2 Thrust Vane Forces . 24

3.3 Rotational Dynamics . 27

3.3.1 Rotation in body frame . 27

3.3.2 Rotation in inertial frame . 28

3.4 Translational Dynamics . 29

3.4.1 Translation in body frame . 29

3.4.2 Movement in world frame . 30

3.5 Linear System Model . 31

3.5.1 State-space representation . 31

3.5.2 Linearisation . 32

3.6 Summary . 33

4 Control 34

4.1 Full-state feedback . 35

4.1.1 Controllability . 36

4.1.2 Linear Quadratic Regulator . 36

4.1.3 Integral action . 37

4.2 Control strategy . 38

4.3 Hover Controller . 39

4.3.1 Control considerations . 39

4.3.2 Roll and pitch control . 40

4.3.3 Yaw control . 41

4.3.4 Altitude control . 42

4.4 Position Controller . 43

4.4.1 Control considerations . 43

4.4.2 Position control . 44

4.4.3 Time-delay margin . 45

4.4.4 Trajectory tracking . 46

4.5 Summary . 48

5 State Estimation 49

5.1 State measurements . 50

5.2 Estimator Model . 51

5.2.1 Discrete-time model . 52

5.3 Kalman Filter . 53

5.3.1 Algorithm . 53

5.3.2 Steady-State filter . 54

5.4 Estimation evaluation . 56

5.4.1 Visual aided inertial estimation . 57

5.4.2 Position updates . 58

iii of 89

CONTENTS CONTENTS

5.5 Summary . 59

6 Software 60

6.1 Software structure . 61

6.2 Flight Controller . 61

6.2.1 Main Loop . 62

6.2.2 Class: Sensors . 63

6.2.3 Class: Control . 64

6.2.4 Class: Communication . 64

6.2.5 Class: Config . 65

6.2.6 Class: DShot . 65

6.3 Ground Station . 66

6.3.1 Command structure . 66

6.3.2 Telemetry and logging . 67

6.4 Summary . 67

7 Results 68

7.1 Attitude Control . 69

7.1.1 Test Setup . 69

7.1.2 Results . 70

7.2 Altitude . 71

7.2.1 Test Setup . 71

7.2.2 Results . 72

7.3 Position . 73

7.3.1 Test Setup . 73

7.3.2 Results . 73

7.4 Summary . 74

8 Discussion 75

8.1 Results . 75

8.1.1 Attitude control . 75

8.1.2 Altitude control . 76

8.1.3 Position control . 76

8.2 Implementation . 76

8.3 Appliance . 77

8.4 Literature . 77

9 Conclusion 78

Bibliography 79

iv of 89

CONTENTS CONTENTS

A Motor Thrust Tests 82

A.1 Test setup . 82

A.2 Results . 83

A.3 Parameter Estimation . 84

A.4 System Identification . 85

B Thrust Vane Design 86

B.1 Shape . 86

B.2 Characteristics . 86

B.3 Parameter estimation . 87

B.4 Implementation . 87

C Nonlinear Simulation 88

D Schematics 89

D.1 Carrier board . 89

v of 89

Preface

This report documents the work done during my master’s thesis in control and automa-

tion, conducted in the spring of 2021, at Aalborg University.

I want to express my sincere thanks to my supervisor Kirsten Mølgaard Nielsen for

supplying guidance and theoretical support from start to finish. I also wish to thank

engineering assistant Kenneth Kirke for valuable advice and helpful, practical discussions

throughout the semester. In addition, I would like to thank my friends and family, who

has supported me in a time of global crisis. Lastly, a big thanks are given to Dane RC

Aps, for supplying the electronics and hardware needed for this thesis.

Readers guide

This report is intended to be read in chronological order. Throughout the report, figures

and equations are labelled using numbers which is used for reference in the text. Sources

and materials used for the project are found in a bibliography at the end, and are referred

to using numbers. Lastly the equations composed of physical units, follows the standard

of SI-units.

Emil Bjerregaard Jacobsen

thesolidgeek@gmail.com

1

CHAPTER 1
Analysis

1.1 Introduction

In recent years, the space industry has seen a sky-rocketing increase in public interest,

and private companies are accelerating the development of rockets and space technology,

comparable to the space-race of the sixties. One of the main drivers of this growth is the

economical benefits of reusable rockets [1], which until a few year ago was considered

impossible. Companies such as Blue Origin [2] and SpaceX [3], both develops reusable

rockets, and the latter has achieved multiple low-earth-orbit missions and performed

vertical reentry landings [1], see Figure 1.1. This has shown to be a profitable business,

as reusable rockets reduce the cost of space-flight by an order of magnitude [4], since the

costs are reduced to that of the propellant and refurbishments [1].

Figure 1.1: Reentry of the Falcon 9 rocket, performing a controlled vertical landing [3]

2

1.2. PROBLEM STATEMENT CHAPTER 1. ANALYSIS

Reusable rockets are characterised by being able to reenter the atmosphere and perform

an autonomous landing after a mission [1]. The technology needed to control such

rockets are an interesting topic that poses great theoretical and practical challenges.

However, the concept of reusable rockets has sparsely been researched in practice, as the

technology is out of reach for most people. Rockets are expensive, dangerous and does

not fit into an academic environment. This is a problem, as the rapidly growing space

industry is in huge demand for new employees with practical and theoretical knowledge

[5]. To support the ongoing development of reusable rockets, and give students hands-on-

experience with space-related technologies, the academic institutes would benefit from

a safer and more accessible platform that replicates the behaviour and dynamics of a

reusable rocket. Opportunely, the concept of reusable rockets are not that different

from the field of unmanned aerial vehicles (UAVs) which in recent years has been widely

researched. Knowledge can especially be drawn from the research on vertical take-off

and landing (VTOL) UAVs, as they operate using principles similar to that of reusable

rockets.

1.2 Problem Statement

The space industry is in demand for new and skilled employees with experience in the

field of space technology. However, because space technology is out of reach for most

scientific institutes, engineering students and researchers have a hard time getting hands-

on-experience. In order to enable the scientific community to contribute to the advances

in reusable rockets, the technology has to be made safe and accessible for everyone. To

make the technology more accessible, the principle of autonomous UAVs could be used

to mimic the dynamics of reusable rockets, on a safe and smaller scale. However, to

capture the flight dynamics of a reusable rocket in a small UAV, the system must be

designed using the principles of flight of a rocket. The most significant difference between

classical VTOLs (such as quad-copters) and reusable rockets, are the propulsion and

control. Quad-copter uses multiple sources of thrust to produce rotational moments,

that can be controlled to stabilise the orientation. Reusable rockets, on the other hand,

uses only one primary source of thrust, and applies thrust vectoring control (TVC) in

order to stabilise its orientation.

This leads to the following problem statement:

“How can one design and stabilise an autonomous UAV that uses a single

source of thrust, to achieve vertical take-off and landing, similar to that of a

reusable rocket.”

3 of 89

1.3. STATE OF THE ART CHAPTER 1. ANALYSIS

1.3 State of the Art

The field of autonomous UAVs with VTOL capabilities has been widely researched in the

last decade [6][7][8]. The underlying goal of this research has been to achieve hovering

stability for a large variety of aircraft. In the scientific field of VTOLs, the most frequent

design is that of multi-rotors [6] such as quad-copters. Another less researched type of

VTOL is the mono-copter, also known as a single rotor UAV (SRUAV), which uses

thrust vectoring control (TVC) to stabilise the attitude. As the name implies, these

aircraft uses just a single source of vectored thrust to achieve stability, much like a

reusable rocket. The concept of mono-copters date back to the 60s [8], however, only a

few mono-copters has ever been documented, and those that have, are either military

projects or amateur projects with no theoretical documentation, see Figue 1.2.

(a) Honeywell RQ-16 T-Hawk [9] (b) Amatuer Single-Rotor Drone [10]

Figure 1.2: Two mono-copter VTOL designs

The absence of mono-copters in literature is largely contributed to the technological

challenges associated with mono-copters, and limitations of past technology. Recent

years of improved battery technology and light-weight avionics has, however, made the

concept of autonomous mono-copters more accessible [11]. The new possibilities has

aroused new interest in mono-copters, and as shown by Carholt et al. [8], the research

gap regarding mono-copters is not a result of bad flight performance. On the contrary

mono-copters is thought to be a promising alternative to existing VTOL designs such

as quad-copters, which poses safety and efficiency issues due to unenclosed propellers

[8]. This is further supported by the reduced production cost of mono-copters, due to a

large reduction in motors, electronics and propellers.

4 of 89

1.4. SUMMARY CHAPTER 1. ANALYSIS

The controlling principle of mono-copters is based on producing rotational moments,

such that the centre of mass (COM) pivots around the principle axes. This is the

pervasive principle used to control all airborne vehicles, with the only difference being

how the moments are produced. As an example, quad-copters uses differences in motor

thrust to produce controlling moments, while the mono-copter uses thrust vectoring. The

dynamic behaviour of such system is often modelled as a rotational rigid body, described

by the Newton-Euler equations [12]. Carholt et al. [8] uses this approach, to develop

a dynamic model used to simulate the behaviour of a generic mono-copter. The model

is however not used to design a stabilising controller, and instead a generic model-free

PID method is applied (trial-and-error) [8]. A more sophisticated model-based control

approach, using state-space and the linear quadratic regulator (LQR) is applied to a

quad-copter by Greiff [6] and by Foehn and Scaramuzza [13]. However, because the

controlling principle of a quad-copter is quite similar to that of a mono-copter, the same

control approach might be considered for the latter.

Using the advances in drone technology, the concept of mono-copters is considered to be

applicable in the design of a small scale reusable rocket. Model-based control methods

such as LQR might be useful to stabilise the mono-copter, however to do so, an advanced

system model is needed. Based on an extensive literature search, this has not been

attempted in scientific literature before, and presents an obvious opportunity to produce

a novel contribution to the field.

1.4 Summary

This thesis seeks to explore and apply the basic theoretical building blocks of autonomous

UAVs, into the development of a platform that mimics the behaviour and dynamics of a

reusable rocket. The goal is to design a VTOL platform with a single source of thrust,

that can be used in academic projects alike, to test and apply principles of reusable

rockets in a safe environment. Simultaneously, the work aspires to test and apply well-

known control principles, onto the hardware platform as to validate the performance of

the implemented system.

5 of 89

CHAPTER 2
System Design

The goal of this thesis is to replicate the dynamics of a reusable rocket, in a small scale

autonomous UAV, using a single source of vectored thrust. This can be achieved purely

in simulation, as done by Carholt et al. [8], however even with a good model, simulation

can never replace empirical data. In order to gain empirical data, a hardware platform

is needed. However, because of the unconventional principle of flight no such drone

platform exists, and the construction of a custom platform is needed. The design of this

platform is considered a large part of the thesis, and this chapter aims to describe the

design and construction of a Thrust Vectored Mono-copter. The functional principle of

the hardware platform is illustrated in Figure 2.1.

1

2

3

Figure 2.1: Functional illustration of the mono-copter platform. (1) Flight controller and battery. (2)

Propulsion, air is sucked through the duct. (3) Exhaust, airflow is controlled by thrust vectoring.

6

2.1. SYSTEM OVERVIEW CHAPTER 2. SYSTEM DESIGN

2.1 System Overview

The hardware components needed for a thrust vectoring mono-copter is similar to that

of a traditional quad-copter, with only the actuation and propulsion being different.

UAVs in general requires a very specific set of electronics, need to stabilise the system

and navigate its surroundings. The electronics needed for this project, are grouped into

seven subsystem, see Figure 2.2.

Actuators

Flight
Controller

Communication

Ground
Station

Sensors

Battery

Power
Management

Regulator

Thrust Vectoring Mono-Copter

Manual
Control

Figure 2.2: Overview of the seven subsystem and their interacting. The black lines illustrate a wired

connected, while the blue illustrate a wireless connection.

2.1.1 Functional requirements

The successful design and construction of any airborne vehicle, requires a requirement

on the total weight of the system. Furthermore, in order to ensure safety and more

manageable working conditions, the hardware platform must be able to fly indoors.

To achieve this, the mono-copter should be reasonable small with a mass less than

1 kg. By decreasing the weight of the mono-copter, the risk of human injury during a

rapid unscheduled disassembly (crash) is reduced. To completely answer the problem

statement, and successfully mimic the concept of reusable rockets, three main objectives

must be reached. These are:

• Must be able to take-off vertically

• Must be able to enter a stable hover

• Must be able to perform a vertical landing

With this in mind, the design and construction of each of the subsystems, as illustrated

by Figure 2.2, will be described in the following sections.

7 of 89

2.2. ACTUATION CHAPTER 2. SYSTEM DESIGN

2.2 Actuation

The actuation of the mono-copter is composed of two separate systems; the propulsion

and the thrust vectoring. The method used as propulsion affects the design of the thrust

vectoring system, and is therefor described first.

2.2.1 Propulsion

To counteract the forces of gravity and propel the mono-copter into the air, a method of

propulsion is needed. Many methods exists that generates thrust by propelling air, such

as: Jet engines, electrical ducted fans (EDF) or conventional motors with propellers. Jet

engines produces a large amount of thrust, however requires liquid fuel to operate. This

produces exhausts that are unsuitable for indoor flight. EDFs does not have this issue,

however produces a large rotational momentum around the axis of rotation, causing the

mono-copter to rotate around it self. One way to counteract the rotational moment

is by using a second counter-rotating motor. This is not feasible using EDFs, but can

be achieved using smaller brushless DC (BLDC) motors and propellers. BLDC motors

typical has a lowe than EDFs, however when configured in a counter-rotating setup the

nominal thrust is increased [14], and the rotational momentum is reduced.

The motor setup used on the mono-copter must be able to generate more thrust than

the maximum total weight of 1 kg. To achieve this, two motors of the name F40PRO

2600KV are chosen, which each can generate 1,2 kg of thrust, when paired with a 5045

tri-bladed propeller. The two motors are mounted back-to-back in a coaxial design, using

a custom 3D-printed mount, see Figure 2.3. To validate the motor performance, a series

of thrust measurements has been made, see Appendix A.

Figure 2.3: 3D-CAD drawing of the two motors mounted back to back.

8 of 89

2.2. ACTUATION CHAPTER 2. SYSTEM DESIGN

2.2.2 Speed Controller

BLDC motors are not regular DC motors, and must be controlled using specialised elec-

tronics; an electronic speed controller (ESC). The motors chosen is rated at a maximum

of 45 A, at a voltage of 16,8 V (a fully charged four celled lithium-ion battery), however

because two motors shares the load, the current of one single motor should never reach

the rated maximum. Nonetheless, the ESCs chosen for the mono-copter is a KISS 32A,

which is rated to a peak current of 45 A. The KISS 32A ESCs are chosen based on their

current rating, but more importantly, because it uses the digital communication proto-

col DSHOT, and has telemetry capabilities. The digital protocol enables configuration

and precise control of the motors, while the telemetry enables measurement of motor

RPM, battery voltage and current consumption. Using these ESCs, the motors can be

controlled precisely and monitored by the flight controller, see Figure 2.4.

ESC 1
KISS32A

ESC 2
KISS32A

Motor 1
F40PRO 2600KV

Motor 2
F40PRO 2600KV

Flight
Controller

DSHOT

UART

DSHOT

UART

Figure 2.4: Overview of the propulsion system. The two ESCs each controls a single motor, and feeds

telemetry back to the flight controller over UART.

2.2.3 Thrust Vectoring

To stabilise the mono-copter using only a single source of thrust, a mechanism that

can vector the thrust is needed. This can be achieved with two methods; either by

gimballing the thrust or by deflecting the thrust. Gimballing is used on most modern

rockets [15], and works by controlling the direction of the exhaust nozzle of the engine,

see Figure 2.5a. A gimballed motor mount is mechanical complex, and the slightest

backlash in the joints could result in uncontrollable vibrations. The second method uses

control surfaces that deflects small amounts of thrust to produce a desired movement.

The control surfaces (thrust vanes) are less mechanical complex and does not have issues

with backlash, as no movable joints are needed, see Figure 2.5b. Depending on the

configuration, thrust vanes also enable full control of the attitude, which cannot be

achieved using a single gimballed motor. Thrust deflectors are considered superior in a

mono-copter, and will be used as the actuating force of the mono-copter.

9 of 89

2.2. ACTUATION CHAPTER 2. SYSTEM DESIGN

(a) Rocket engine using gimballed TVC [16] (b) Rocket using TVC deflectors [17]

Figure 2.5: Two methods of performing thrust vector control (TVC)

To get full attitude control, a total of four thrust vanes are necessary. To accurately con-

trol the angle of these thrust vanes, four independent servo motors of the type DAVIGA

DS213 are used. These servo motors are chosen, as they offer a high rotational velocity

of 750 °/s, and is built using metal gears for high strength [18]. The four servo motors

are mounted on the outside of the main body, with only the motor axle perturbing the

cylinder, see Figure 2.6. The thrust vanes are mounted on the inside, and are shaped

according to a commonly known airfoil design, see Appendix B.

Figure 2.6: Isometric view of the thrust vectoring system, designing in 3D-CAD software.

10 of 89

2.3. COMMUNICATION CHAPTER 2. SYSTEM DESIGN

2.3 Communication

To enable telemetry and wireless control of the mono-copter, a method of wireless com-

munication is needed. Many methods exist to enable wireless communication, such as

Bluetooth, WiFi or other RF systems. The WiFi protocol is chosen, as most modern

laptops comes with a WiFi-card, enabling the use of a laptop to be the ground station

with plenty of range. The WiFi-capable microprocessor ESP32 is chosen to act as the

link between the mono-copter and the ground station, as it comes in a very small and

light-weight package (2,2 g). The ESP32 can be programmed to act a router, and gen-

erate a small local network, which any wifi-able device can connect to. The use of WiFi

makes it possible to use the data transport protocols TCP or UDP, to send an receive

commands and telemetry.

The ground station will acts as a high-level command centre, running on an laptop

with multiple processes sharing the resources. In situations where the ground station is

unresponsive, a secondary system must be able to take control of the system, to ensure

safety. The secondary communication is implemented using standard RC equipment

used by hobbyists. A small radio receiver with four PWM-channels is connected to the

flight controller, and a radio controller is used to control the four PWM-channels. Using

a single PWM-channel, the maximum velocity of the motors is controlled, such that the

motors at all times can be stopped. The remaining channels can be used to control the

attitude or position in manual mode.

The two communication systems are connected in parallel, see Figure 2.7, giving some

measure of redundancy, should one of the systems fail.

Ground Station
PC

Radio
Controller

Flight
Controller

Radio
Receiver

ESP32
Wifi Module WiFi

RF

UART

PWM

Figure 2.7: Overview of communication subsystem. The ESP32 allows for bi-directional

communication, while the radio receiver, only acts as external input.

11 of 89

2.4. SENSORS CHAPTER 2. SYSTEM DESIGN

2.4 Sensors

To stabilise the mono-copter, measurements of the systems attitude and position is

needed. To measure this, a multitude of sensors are needed, each providing unique

information about the state of the system. The sensors chosen will be described in the

following sections.

2.4.1 Orientation

In order to stabilise and navigate an object moving freely in the air, its orientation has

to be known. Orientation is often measured using Tait-Bryan notation [6], also know as

roll, pitch and yaw. To determine the orientation, measurements from accelerometers,

gyroscopes and magnetometers can be combined using sensor fusion techniques [6]. The

methods needed to fuse inertial measurements into an orientation estimate, is however

not the focus of this project. Instead, an inertial measurement unit (IMU) with an

internal orientation estimator is chosen; the BNO080 from Bosh, see Figure 2.8.

Roll

Pitch
Yaw

xb

yb

zb

Figure 2.8: Coordinate system of the BNO080 on the breakout board FSM300.

The BNO080 is a combined package of multiple inertial sensors, that are sampled by

an on-board microprocessor that performs the sensor fusion. The estimated orientation,

including the raw measurements from the BNO080 are sampled using a special 7-wire

SPI protocol, see Figure 2.9.

Micro-processor
Sensor Fusion

SPI

Flight
Controller

Accelerometer

Gyroscope

Magnetometer

BNO080

INT

RST

WAK

Figure 2.9: Overview of the SPI communication and the internal sensor fusion of the IMU.

12 of 89

2.4. SENSORS CHAPTER 2. SYSTEM DESIGN

2.4.2 Absolute position

When flying indoors, the measurement of position can be problematic, as the primary

source of positional measurements, the GPS system, needs a clear view of the sky.

Positional measurements are crucial to stabilise the mono-copter, but also to validate

the performance of the system. For this reason the indoor tracking system known as

Vicon is used instead. Vicon uses a multitude of cameras to track a set of optical

features mounted on the system. The Vicon system is connected to the ground station,

and positional measurements are transmitted over WiFi to the flight controller, see

Figure 2.10. Vicon can be sampled at a maximum of 100 Hz, however due to technical

limitations, measurements are only transmitted at 5 Hz to the flight controller.

Flight
Controller

Ground
Station

Vicon
Tracker

WiFiESP32
Wifi ModuleUART

Figure 2.10: Communication between the Vicon system and the flight controller.

2.4.3 Relative Altitude

To achieve stable flight, the relative altitude (height above ground) must be known.

The measurements supplied by Vicon could be used for this, however, the slow sample-

rate of 5 Hz is not considered sufficient. To enable faster measurements of the altitude

the time-of-flight (TOF) sensor VL53L1X is used. An on-board altitude sensor, is also

necessary if the mono-copter was to be tested outdoors. The TOF sensor can measure

up to 4 m at a sample-rate of 50 Hz, and uses the communication protocol I2C. The

sensor is connected directly to an I2C port on the flight controller, see Figure 2.11.

Care has to be taken when sampling the TOF sensor, as the orientation of the mono-

copter affects the measured altitude. If the mono-copter tilts, the measurement will have

an error proportional to the tilting angle, which must be corrected using the measured

attitude.

Flight
Controller

VL53L1X
Time-of-FlightI2C

Figure 2.11: Communication between TOF-sensor and the flight controller.

13 of 89

2.4. SENSORS CHAPTER 2. SYSTEM DESIGN

2.4.4 Linear velocity

To supplement the occasional positional measurements from Vicon, measurements of

the translational velocity are used. From previous experience [19], it was found that a

camera sensor and computer vision algorithms can be used to measure the translational

velocity of an object. Drawing on this experience, a small camera sensor, the PMW3901

is chosen to measure the horizontal velocity. The sensor is a black-box sensor that

computes the optical flow components ∆xof and ∆yof (changes in pixels) and returns

the accumulation of these since the last sample. The sensor must have a clear view of the

surface it is tracking, and therefor must be mounted at the bottom, looking down, see

Figure 2.12b. The sensor uses standard 4-wire SPI protocol, and is directly connected

to a SPI port on the flight controller, see Figure 2.12a.

Flight
Controller

PMW3901
Optical flowSPI

(a) SPI communication for PMW3901

Δx

Δxof

h

f

(b) Optical flow principle

Figure 2.12: Illustration of the working principle of PMW3901

In order to have any use, the unitless optical flow components given by the sensor

must be scaled to a physical unit (m/s). To do so, the optical flow is divided by the

sample-time ∆t, and the pine-hole model is applied to properly scale the values [20].

The pin-hole model describes the projection of 3D-point onto a 2D-point, and requires

knowledge about the cameras focal length f and the image depth h. The image depth

can be considered the altitude (height above ground), while the focal length is found

experimentally. The camera measurements does however not only include linear velocity,

and is corrupted by rotational components, as the camera cannot distinguish between

the two. To remove the unwanted rotational components, the velocity is compensated

using the angular velocities (ωx, ωy), see Equation 2.1 [20].

[
vx
vy

]
=

1

∆t

h

f
0

0
h

f

[

∆xof
∆yof

]
+

[
−h 0

0 h

][
ωy
ωx

]
(2.1)

14 of 89

2.5. FLIGHT CONTROLLER CHAPTER 2. SYSTEM DESIGN

2.5 Flight Controller

The flight controller is the most central part of the system design, as it connects all the

sensors and actuators. As a consequence, the flight controller has to sample all sensors,

do heavy computations and generate appropriate control signals to stabilise the system.

To accomplish this, a reliable and fast computing unit is required. The computing unit

must also have all the required input-output (I/O) ports and communication interfaces

needed for the sensors. This is best achieved with an embedded platform, where the I/O

ports and the hardware peripherals (SPI, UART etc.) are directly accessible through

software. The micro-processor chosen is the Teensy 4.0, which runs on a ARM Cortex-

M7 at 600 MHz, with a total of 40 configurable I/O pins. The Teensy 4.0 comes with

all the needed peripherals and is directly programmable using the Arduino IDE, making

it perfect for fast prototyping.

2.5.1 PCB

The micro-controller has to interface with a lot of different components, by a wired

connection, see Appendix D. To organise and connect all the components, a custom

PCB has been designed. The PCB is named the carrier board, and houses the micro-

processor, the WiFi module, and a total of eleven connectors, see Figure 2.13.

Figure 2.13: Custom PCB designed for the flight controller. The two buttons mounted next to the

WiFi-module, are used to flash the ESP32 module using the four pin-headers.

15 of 89

2.6. POWER MANAGEMENT CHAPTER 2. SYSTEM DESIGN

2.6 Power Management

All the electronics of the mono-copter needs a source of power to function, and since the

system is airborne, a wired connection to a power-supply is out of the question. Instead

a battery must be included. To comply with the high current demand of the motors, a

high-capacity high-load battery is used. The battery chosen is a 2200 mA h, composed

of four lithium-ion cells yielding a total voltage of 16,8 V.

The ESCs are designed to handle high voltages [21], however the rest of the system

runs at either 3,3 V or 5 V. To regulate the voltage, a 5 V DC-DC step-down regulator

D24V22F5 is used [22]. The 5 V is feed to an linear regulator on-board the carrier board,

that supplies 3,3 V to the more sensitive components.

2.6.1 PCB

To separate the high-powered and high-voltage electronics from the more sensitive com-

ponents, a custom PCB is designed for the power management. This PCB is named

the power board, and houses the ESCs, the DC-DC regulator and the direct battery

connection, see Figure 2.14. Power is supplied by the power board to the carrier board

by a four-pinned connector; two wires for each terminal (5 V and GND).

Figure 2.14: Custom PCB designed to power the electronics of the mono-copter. The battery goes in

the middle, to better balance the weight of the system.

16 of 89

2.7. SUMMARY CHAPTER 2. SYSTEM DESIGN

2.7 Summary

The mono-copter is designed to combine all the hardware and electronics, in a light-

weight and sturdy construction. The complete mono-copter and most of its components

are modelled in 3D-CAD software, see Figure 2.15.

(a) Side-view of entire system (b) 3D-view of internal structure

Figure 2.15: 3D model of the complete system

Most of the construction are produced using 3D-printing techniques, allowing for fast

prototyping and light-weight plastic parts. Nonetheless, the complete physical system

has a weight of 0,968 kg compared to the estimated 0,828 kg of the 3D-model. The

increase in weight is mostly contributed to the wiring, which is not included in the 3D-

model. To account for the difference in weight, an additional mass is added to the centre

of the 3D-model, such that the computed inertia more accurately matches that of the

physical system.

With the physical platform developed, a mathematical model of the system can be

derived for control and simulation. The following chapter will describe the working

principle of the mono-copter in detail and derive a mathematical model that describes

the dynamics of the system.

17 of 89

CHAPTER 3
Modelling

In the following chapter, a multi-dimensional model are derived that describes the rigid

body dynamics of a mono-copter. This chapter intends to derive a system model that

can be used for simulation and can be applied to design a suitable control strategy that

stabilises the position and attitude of the mono-copter.

First, the model preliminaries are described, including vector notation, coordinate frames

and attitude representation. Next, the forces and torques applied by the thrust vanes

and motor throttle are analysed in order to describe the translational and rotational

dynamics. Lastly, the nonlinear dynamics are linearized around an operating point,

such that a linear model-based controller can be designed.

18

3.1. MODEL PRELIMINARIES CHAPTER 3. MODELLING

3.1 Model Preliminaries

Before diving into the model formulations, some basic notation and prerequisites are due

for clarification. This includes a description of the coordinate systems used, the defined

state vectors and transformations between them.

3.1.1 Coordinate frames

In total, two coordinate frames are used to model the UAV’s movement; the body and

the world frame. The world frame W = { xw, yw, zw } is an inertial frame that is fixed to

a static point from which the position is measured in x, y and z (flat earth). The body

frame B = { xb, yb, zb } on the other hand is a moving frame that is rigidly attached to

the drones centre of mass (COM), and thus moves along with it, see Figure 3.1.

xb

yb

zb

xw yw

zw

p

Figure 3.1: The two coordinate frames used to describe the movement of the drone.

To simplify the derivation of the system models, the body frame axes are aligned with

the structure of the drone, with the xb- and yb-axis being parallel with thrust vanes.

The zb-axis is aligned with the motors centre of rotation and points out through the top,

being perpendicular to the xy-plane.

19 of 89

3.1. MODEL PRELIMINARIES CHAPTER 3. MODELLING

3.1.2 Kinematics

To describe the absolute position and orientation of the UAV, a sequence of kinematic

equations are needed. For future reference, let p denote the absolute position of the

UAV’s centre of mass in the earth fixed world frame, let η denote the orientation de-

scribed using the Tait-Bryan angles (roll, pitch and yaw), and let vB and ωB denote the

translational and angular in the body frame, respectively.

p =

xy
z

 vB =

vxvy
vz

 η =

φθ
ψ

 ωB =

ωxωy
ωz

 (3.1)

The orientation of a rigid body with reference to an inertial frame, can be explained in

terms of three consecutive rotations, as was introduced by Euler [23]. These rotations

can be applied in several different ways, however for this project the ZYX Tait-Bryan

notations will be used. Using the Tait-Bryan notation, the orientation can be formulated

as a sequence of rotations summarised in the rotation matrix Rw
b : B ⇒ W [23].

Rw
b (ψ, θ, φ) = Rz(ψ) ·Ry(θ) ·Rx(φ) (3.2)

Rw
b (ψ, θ, φ) =

c θ cψ sφ s θ cψ − cφ sψ cφ s θ cψ + sφ sψ

c θ sψ sφ s θ sψ + cφ cψ cφ s θ sψ − sφ cψ

− s θ sφ c θ cφ c θ

 (3.3)

where sφ, s θ, sψ = sin(φ), sin(θ), sin(ψ) : Sine function [−]

cφ, c θ, cψ = cos(φ), cos(θ), cos(ψ) : Cosine function [−]

Using the rotation matrix Rw
b , any vector in the body frame (velocity, acceleration etc.),

can be transformed to the world frame by pre-multiplying the rotation matrix [23].

The orientation η and its derivative η̇ are however not vectors in the world frame but

rather vectors describing the three rotations around independent reference frames. Con-

sequently the Tait-Bryan rotational rates η̇ cannot be described using Rw
b and the body

rates ωB. Instead, to perform the transformation from body to Tait-Bryan rotational

rates, the matrix Wη is used [6] [23].

ωB = Wη η̇ ⇒ η̇ = Wη
−1 ωB (3.4)

Wη =

1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ

 (3.5)

20 of 89

3.1. MODEL PRELIMINARIES CHAPTER 3. MODELLING

It should be noted that the inverse transformation Wη has singularities at θ = {−90° 90° },
causing the transformation to fail. To provide a seamless mapping, quaternions rather

than Euler angles can be used [6]. However, because a ninety-degree angle of pitch is

outside the normal operating condition, this will not be addressed further.

3.1.3 Modelling principle

The UAV is a freely moving object that can move in three spacial and three rotational

directions. This is also known as a system with six degrees of freedom (6-DOF). To

describe the drones translational and rotational dynamics in six DOF, the forces and

moments acting on the drone in three dimensions has to be analysed. This is done

using the Newton-Euler equations, which describes the moments and forces acting on a

body with respect to a coordinate frame whose origin coincides with the centre of mass

(COM), see Equation 3.6 [12].

[
F

τ

]
=

[
m I3 0

0 J

][
v̇

ω̇

]
+

[
0

ω × J ω

]
(3.6)

where F : R3 - External force acting on the COM [N]

τ : R3 - External torque acting about the COM [N/m]

m : R1 - Mass of the body [kg]

J : R3×3 - Moment of inertia about the COM [kg/m2]

v̇ : R3 - Linear acceleration [m/s2]

ω̇ : R3 - Angular acceleration [rad/s2]

The moment of inertia J is a square matrix describing the rotational inertia around the

drones principle axes. The off-diagonal terms in the inertia matrix (products of inertia)

can be approximated to zero when the mass of the body are evenly distributed around

the local frame of reference’s axes [23]. The UAV has been designed in such a way

that this is achieved, and thus the product-of-inertia terms becomes zero, see Equation

3.7.

J =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

 ⇒ J ≈

Jxx 0 0

0 Jyy 0

0 0 Jzz

 (3.7)

This is validated by the inertia computation performed by the CAD-software, with the

diagonal terms being an order of magnitude larger than the off-diagonal terms.

21 of 89

3.2. MOMENTS AND FORCES CHAPTER 3. MODELLING

3.2 Moments and forces

To model the rotational and translation dynamics of the mono-copter, a description

of the forces and moments acting on the body is needed. To assist in the description

thereof a three-dimensional free body diagram has been made, see Figure 3.2. The

primary forces acting on the body are those produced by the motor and the thrust

vanes. Aerodynamic forces are neglected as they are considered inconsequential when

the mono-copter operates near the hovering state.

Ft

mg

α1
F1 F2

F3F4
α3

x

z

COM

y

τx τy

τz

Fd4

Fd1 Fd2

Fd3

Figure 3.2: The forces and moments acting on the UAV’s COM in the body frame. For illustrative

purposes only a single motor is included, yet two will be used.

The forces F1 . . . Fn (n = 1, 2 . . . 4) denotes the controlling forces produced by the thrust

vanes, Ft denotes the total force produced by the motors and Fd denotes the combined

drag-forces Fd1 . . . Fdn of the four thrust vanes. The offset of the thrust vane forces

F1 . . . Fn to the centre of mass (COM), produces the controlling torques denoted by

τ1 . . . τn. These torques acts around the UAV’s principle axes of rotation, causing ro-

tational movement. The motor torque τm around the z-axis are not included, as this

effectively sums to zero because of the counter-rotating motor setup.

22 of 89

3.2. MOMENTS AND FORCES CHAPTER 3. MODELLING

3.2.1 Motor Propulsion Force

To describe the propulsion force Ft in terms of the digital control input ut, two models

are used, one describing the motor dynamics and another describing the propulsion force

of the propeller, see Figure 3.3.

Motor Propeller

Figure 3.3: Block diagram of the propulsion model

The input to the motor system is a digital signal, while the output can be considered

the rotational velocity ωt of the motor. To describe the dynamics of the motor system,

the relationship between input and output must be found. The motors are controlled

by electronic speed controllers (ESC), which by the manufacturer has a linear throttle

response [21]. The motor does however not actuate instantaneous, as the motor and

propeller has inertia. To describe these dynamics, the propulsion system is described in

terms of a first order system, with time-constant τt and DC-gain Kt.

ωt(s)

ut(s)
=

Kt

τts+ 1
(3.8)

To find the system parameters, a step is applied on the input ut, and the output ωt is

monitored. The resulting step-response is fitted to a first order system, using MATLAB’s

”System Identification Toolbox”, see Appendix A.

The first order system does however only describe the dynamics of the motor, and not

the actual propulsion force. As described by many previous works [6][7], the propulsion

force Ft generated by a propeller can be described by a second order polynomial of the

rotational velocity ωt and a constant scaling factor Kf .

Ft(ω) = Kf · ω2
t (3.9)

The scaling factor Kf is found by conducting a polynomial fit on a series of measure-

ments, where the rotational velocity of the motor and generated thrust is measured, see

Appendix A. Considering the value of the time-constant being τt = 0,0345 s, the motor

dynamics are considered to be much faster than the combined system dynamics, and can

thus be reduced to the DC-gain Kt and the scaling factor Kf .

23 of 89

3.2. MOMENTS AND FORCES CHAPTER 3. MODELLING

3.2.2 Thrust Vane Forces

The UAV’s rotational movement is controlled by the four thrust vanes located at the

exhaust. Each of the thrust vanes are actuated by an independent servo motor, con-

trolled by a PWM signal. To describe the thrust vane forces F1 . . . Fn in terms of the

PWM signals u1 . . . un, both the servo and thrust vane dynamics must be considered,

see Figure 3.4.

Servo Motor Thrust Vane

Figure 3.4: Block diagram of the thrust vector model

The servo motors used to actuate the thrust vanes, translates a PWM signal into an

absolute rotational position αn, with very high actuation speed (750 °/s) [18]. Due to

the internal servo control system being so fast, and the low inertia of the attached thrust

vanes, the rotational dynamics of the servo motors are considered to be negligible. For

this reason, the model describing the servo motors can be reduced to a simple gain, that

translates the PWM signal to an angular position of the servo motor.

αn = Ka · usn (3.10)

To describe how the change in servo position α1 . . . αn affects the control forces F1 . . . Fn
the aerodynamics must be must considered. The thrust vanes are essentially a symmet-

rical downwards facing wing (airfoil), with forced air flowing across them. The forces

generated by the thrust vanes can be described in terms of lift Flift (controlling force)

and drag Fdrag (loss due to friction and turbulence), see Figure 3.5.

α

Flift

Fdrag

v

Figure 3.5: Air with velocity v is forced across the thrust vane. The pitching of the thrust vane angle

α adjusts the amount of lifting force Flift.

24 of 89

3.2. MOMENTS AND FORCES CHAPTER 3. MODELLING

The aerodynamic forces generated by the thrust vanes can be described using the lift

and drag equations [24].

Flift =
1

2
ρ v2 Cl Afin (3.11)

Fdrag =
1

2
ρ v2 Cd Afin (3.12)

where Cl, Cd : lift- and drag-coefficient [−]

ρ : air density [kg/m3]

v : air velocity [m/s]

Afin : surface-area of airfoil [m2]

The lift and drag coefficients are unit-less, and describes the characteristics of the wing

in a single coefficient. These coefficients are cannot be calculated, but are rather found

experimentally or using simulation [24].

Lift and drag coefficient

To describe the amount of lift and drag generated by the thrust vanes, the corresponding

coefficients must be found. Both coefficients have a nonlinear dependency on the angle

of attack α [24]. which can be described in terms of higher order polynomials [24].

However, because of the symmetric airfoil design, the coefficients can be approximated

quite accurately using linear functions. Seen from Figure 3.6a, the lift coefficient has

a linear correlation with the angle of attack α, for small angles (α < 10°). Similarly, the

drag coefficient can be approximated as a constant in the same interval.

-20 -10 0 10 20
Angle of attack , [deg]

-1.5

-1

-0.5

0

0.5

1

1.5

Li
ft

co
ef

fic
ie

nt
 C

L
 [-

]

(a) Lift coefficient

-20 -10 0 10 20
Angle of attack , [deg]

-1.5

-1

-0.5

0

0.5

1

1.5

D
ra

g
co

ef
fic

ie
nt

 C
D

 [-
]

(b) Drag coefficient

Figure 3.6: Simulated values of the lift and drag coefficient vs. angle of attack, found using the

interactive simulation tool XFoil, see Appendix B.

25 of 89

3.2. MOMENTS AND FORCES CHAPTER 3. MODELLING

As seen from Figure 3.6, the lift and drag coefficients can be approximated to a linear

function and a constant, respectively. This assumes that the thrust vanes operates

around 0° and stays within small angles of ±10°. Using this assumption, the lift and

drag coefficients can be described as follows:

Cl(α) = CLα α (3.13)

Cd(α) = CD0 (3.14)

where CLα : slope of the lift coefficient [−]

CD0 : constant bias of the drag coefficient [−]

The coefficients CLα = 0.008905 and CD0 = 0.001054 are found by performing lin-

ear regression on the simulated values of the lift and drag coefficients, see Appendix

B.

Aerodynamic flow

The lift and drag forces generated by the thrust vanes, are described in terms of the air

velocity v. The air velocity is unknown unless measured, which is not easily achieved.

To simplify this, Newton’s second law is applied to describe the motor force Ft, in terms

of the air density, the exhaust area and the air velocity squared [25]. This in turn allows

the air velocity to be expressed in terms of the motor force Ft, see Equation 3.15.

Ft = Aduct ρ v
2 ⇒ v2 =

Ft
Aduct ρ

(3.15)

where Aduct : Cross-sectional area of the exhaust [m2]

Using Equation 3.15, the forces generated by the thrust vanes can be described in

terms of the motor force Ft, the angle of attack α and two constants CL and CD.

Fn = Ft
CLα Afin
2Aduct︸ ︷︷ ︸
CL

αn (3.16)

Fdn = Ft
CD0 Afin
2Aduct︸ ︷︷ ︸
CD

(3.17)

26 of 89

3.3. ROTATIONAL DYNAMICS CHAPTER 3. MODELLING

3.3 Rotational Dynamics

The rotational dynamics of the mono-copter can be described using Euler’s equations

for rigid body dynamics. Euler’s equations for a rotating body, see Equation 3.18,

assumes that the UAV is a rigid body with a rotating reference frame fixed to the body’s

principal axes of inertia. This means that the moment of inertia stays independent of

the orientation, and thus greatly simplifies the formulation of the model.

τ = Jω̇ + ω × Jω (3.18)

When performing rotation around more than one of the principle axis, the second term

(ω×Jω) in Equation 3.18 describes the centripetal moment acting on the body frame.

In the simpler case of a single axis rotation, the centripetal moment is not present and

the model are easier to visualise, see Figure 3.7.

xw

zw

yw

τy

l
r F2+4

xb

zb

Figure 3.7: Torques acting around the y-axis. The value l is the distance between the COM and the

thrust vane joints, while r is the distance between the z-axis and the middle of the thrust vanes.

3.3.1 Rotation in body frame

To describe the rotational dynamics in the body frame, firstly the torque acting on the

body must be described. The torque acting on the body, can be described in terms of

the thrust vane forces F1 . . . Fn and the distances r and l, see Figure 3.7.

τB =

τxτy
τz

 =

 (F1 + F3) l

−(F2 + F4) l

(F1 − F2 − F3 + F4) r

 (3.19)

27 of 89

3.3. ROTATIONAL DYNAMICS CHAPTER 3. MODELLING

Next, the body torque τB is inserted into Euler’s equation, and the angular acceleration

vector ω̇B is solved for.

ω̇B = J−1(τB − ωB × J ωB) (3.20)

ω̇xω̇y
ω̇z

 = J−1

 (F1 + F3) l

−(F2 + F4) l

(F1 − F2 − F3 + F4) r

−
ωxωy
ωz

× J

ωxωy
ωz

 (3.21)

Lastly, by inverting the inertia matrix J and multiplying out the above equation, the

rotational dynamics in the body frame are found, see Equation 3.22.

ω̇xω̇y
ω̇z

 =

1
Jxx

(F1 + F3) l
1
Jyy

(F2 + F4) l
1
Jzz

(F1 − F2 − F3 + F4) r

+

1
Jxx

(Jyy − Jzz)ωyωz
1
Jyy

(Jzz − Jxx)ωxωz
1
Jzz

(Jxx − Jyy)ωxωy

 (3.22)

3.3.2 Rotation in inertial frame

With the intention to stabilise the orientation of the drone, the rotational dynamics of

the body frame must be described in terms of the inertial frame (Tait-Bryan angles).

However, the angular rates of the body frame (ωB) and angular rate of the Tait-Bryan

angles (η̇) are not the same, but are related by the transformation matrix Wη,

η̇ = Wη
−1 ωB (3.23)

Expanding the above equation, by multiplying out the transformation matrix Wη and

the angular velocity vector ωB, yields three additional state equations. The complete

model of the rotational dynamic can then be summarised, see Equation 3.24.

fR(x,u) =

φ̇ = ωx + ωz cosφ tan θ + ωy sinφ tan θ

θ̇ = ωy cosφ− ωz sinφ

ψ̇ = ωz
cosφ

cos θ
+ ωy

sinφ

cos θ

ω̇x =
1

Jxx
(Jyy − Jzz)ωyωz +

1

Jxx
(F1 + F3) l

ω̇y =
1

Jyy
(Jzz − Jxx)ωxωz +

1

Jyy
(F2 + F4) l

ω̇z =
1

Jzz
(Jxx − Jyy)ωxωy +

1

Jzz
(F1 − F2 − F3 + F4) r

(3.24)

28 of 89

3.4. TRANSLATIONAL DYNAMICS CHAPTER 3. MODELLING

3.4 Translational Dynamics

The translational movement of the mono-copter can be described in using Newton’s

second law of motion; that the acceleration of a body over time is directly proportional

to the force applied.

F = mv̇ (3.25)

The UAV is subject to forces in all three dimensions, however to simplify the derivation,

the forces are more conveniently illustrated in 2D, see Figure 3.8

xw

zw

yw

F2+4

xb

zb

Fd

mg

Ft

α

COM

Figure 3.8: Free body diagram, showing the forces acting in the body frame.

3.4.1 Translation in body frame

To describe the translational motion in the body frame, firstly the forces acting on the

body must be described. These forces are: The propulsion force Ft, the thrust vane

forces F1 . . . Fn and lastly the gravitational force mg. The gravitational force depends

on the orientation of the UAV, as gravity originates in the inertial frame. To describe

this, the gravitational force vector is rotated from the inertial to body frame using the

inverse rotation matrix Rw
b
T, see Equation 3.26.

FB =

F2 + F4

F1 + F3

Ft − Fd

−Rw
b
T

 0

0

m g

 (3.26)

where Rw
b
T : Rotation matrix from world- to body-frame [−]

g : Gravity acceleration [m/s2]

29 of 89

3.4. TRANSLATIONAL DYNAMICS CHAPTER 3. MODELLING

Next the body forces FB are inserted into Newton’s second law, and the acceleration is

solved for.

v̇B =
1

m
FB (3.27)

v̇xv̇y
v̇z

 =
1

m

F2 + F4

F1 + F3

Ft − Fd

−Rw
b
T

 0

0

m g

 (3.28)

Lastly by expanding the above equation and multiplying out the rotation matrix, the

following body-frame model is found:

v̇xv̇y
v̇z

 =

 1
m(F2 + F4)
1
m(F1 + F3)
1
m(Ft − Fd)

+

 g sin θ

−g cos θ sinφ

−g cos θ cosφ

 (3.29)

3.4.2 Movement in world frame

The previous body frame model can be used to stabilise the relative velocity of the UAV,

however in order to stabilise the absolute position p the dynamics has to be described

in the world frame. This is done by rotating the body frame velocity vector vB into the

inertial frame using Rw
b .

ṗ = Rw
b vB (3.30)

Multiplying out the rotation matrix Rw
b and velocity vector vB yields the three remaining

state equations, describing the relationship between the body and inertial frame. The

complete model of the translational dynamics can then be summarised:

fT(x,u) =

ẋ = vx cψ c θ − vy(cφ sψ − cψ sφ s θ) + vz(sφ sψ + cφ cψ s θ)

ẏ = vx c θ sψ + vy(cφ cψ + sφ sψ s θ)− vz(cψ sφ− cφ sψ s θ)

ż = vx s θ + vy c θ sφ+ vz cφ c θ

v̇x =
1

m
(F2 + F4) + g s θ

v̇y =
1

m
(F1 + F3)− g c θ sφ

v̇z =
1

m
(Ft − Fd)− g c θ cφ

(3.31)

Seen from above system of equations, the translational dynamics are highly dependent

on the rotational system. Furthermore, all the system dynamics are highly nonlinear in

terms of the trigonometric functions. These non-linearities will have to be addressed in

order to use the model for linear control algorithms.

30 of 89

3.5. LINEAR SYSTEM MODEL CHAPTER 3. MODELLING

3.5 Linear System Model

The goal of the system modelling, is to design a control system capable of stabilising

the mono-copters rotational and translational dynamics. The models formulated in the

previous sections, includes all the nonlinear kinematics present in a system with 6-DOF.

These non-linear system equations can be formulated in terms of two functions:

ẋ = f(x,u) (3.32)

y = h(x,u) (3.33)

Where x, u and y is the state-, input- and output-vector respectively, f is the state

equations (describing the change in system states) and h is the output equations (relating

the system states to the outputs).

In order to use the non-linear model in the design of a stabilising controller, either a

nonlinear control strategy is needed, or the system must be linearized. A non-linear

control strategy allows for more aggressive control, as showed by Greiff [6], however

when aggressive control outside the stable hover position is not needed, linear approaches

performs similarly and are less computational heavy. Therefore, a linear control scheme

is deemed sufficient, and the non-linear dynamics has to be linearized in order to design

a linear stabilising controller.

3.5.1 State-space representation

In order to apply classical control theory to design a stabilising controller, a linear time-

invariant (LTI) model is needed. One way to to describe a linear model, is using the

state-space representation, with states x, inputs u and output y:

ẋ = Ax+ Bu (3.34)

y = Cx+ Du (3.35)

Where A is the system matrix, B is the input matrix, C is the output matrix and D is

known as the feedthrough matrix, see Figure 3.9.

+
+

+
+

Figure 3.9: Visual representation of a linear system modal on the generalised state-space form.

31 of 89

3.5. LINEAR SYSTEM MODEL CHAPTER 3. MODELLING

To describe the entire system, the translational and rotational models are concatenated,

resulting in a state vector x that consists of the twelve system states:

x =
[
φ θ ψ ωx ωy ωz x y z vx vy vz

]T
(3.36)

The system model describes the dynamics in terms of the forces acting on the system

These forces are not considered the direct system inputs, but rather nonlinear functions

thereof. Instead, the system inputs are considered the variables of these functions,

being the thrust vane angles (α1 . . . αn) and the motor velocity (ωt), yielding the input

vector:

u =
[
α1 α2 α3 α4 ωt

]T
(3.37)

3.5.2 Linearisation

In order to apply classical control algorithms in the design of a stabilising controller,

a linear time-invariant (LTI) model is needed. To obtain such a model, the nonlinear

system dynamics given by ẋ = f(x,u) are linearized around an operating point x0 (with

equilibrium input u0). The linearization approximately describes the system dynamics,

as long as the system state and input stays close to the operating point with only small

perturbations x̃ and ũ, being described by:

x̃ = x− x0 ũ = u− u0 (3.38)

Using the above definition, a linear model describing the small signal dynamics can be

written on state-space as:
˙̃x = Ax̃+ Bũ (3.39)

The small signal system matrix A and input matrix B are found by calculating the

Jacobian of the nonlinear system f(x,u) = [fR fT]T, with respect to the states and

inputs, and evaluating the partial derivatives at the equilibrium point.

A =
∂f(x,u)

∂x

∣∣∣∣
x0,u0

B =
∂f(x,u)

∂u

∣∣∣∣
x0,u0

(3.40)

The operating point for the linearization is chosen to be the only stable equilibrium

point for the drone; the hover point. In this stable state, the drone is perfectly horizontal

θ = 0, φ = 0 and the motors deliver a total thrust that equals the gravitational pull.

32 of 89

3.6. SUMMARY CHAPTER 3. MODELLING

3.6 Summary

Using the nonlinear dynamics, a linear small signal model is found by linearizing around

the hover point, using the Jacobian linearzation. By evaluating the partial derivatives

at the equilibrium point, the following linear system dynamics are found:

φ̇ = ωx

θ̇ = ωy

ψ̇ = ωx

ω̇x =
l CLCF
Jxx

(α1 + α3)

ω̇y =
l CLCF
Jyy

(α2 + α4)

ω̇z =
r CLCF
Jzz

(α1 − α2 − α3 + α4)

ẋ = vx

ẏ = vy

ż = vz

v̇x =
CLCF
m

(α2 + α4)− gθ

v̇y =
CLCF
m

(α1 + α3) + gφ

v̇z =
2Kfω0(1− CD)

m
ωt

(3.41)

The linear system equations can then be written on state-space form, with A and B

being composed of the linearized system dynamics.

A =

03 I3 03 03

03 03 03 03

03 03 03 I3 0 g 0

−g 0 0

0 0 0

 03 03 03

∈ R12×12 (3.42)

B =

03×2 03×2 03×1
CLCF l
Jx

0

0 −CLCF l
Jy

CLCF r
Jz

−CLCF r
Jz

CLCF l
Jx

0

0 −CLCF l
Jy

−CLCF r
Jz

CLCF r
Jz

 03×1

03×2 03×2 03×1[
0 CLCF

m
CLCF
m 0

] [
0 CLCF

m
CLCF
m 0

]
02×1

01×2 01×2
2Kfω0(1−CD)

m

∈ R12×5 (3.43)

The output matrix C is an identity matrix I12, however with zeros in the places matching

an unmeasured system state. The next chapter will introduce the concept of full-state

feedback and describe the control law that will be utilised to stabilise the system dy-

namics based on the linear system dynamics described by A and B.

33 of 89

CHAPTER 4
Control

Many methods can be applied to stabilise UAVs in general, however, the most com-

mon strategy is that of the proportional–integral–derivative (PID) control. The PID

approach, however, is based on classical control theory, and does only apply to single-

input single-output (SISO) systems. This makes the PID controller difficult and time-

consuming to apply on a 6-DOF system, as each control loop has to be designed sepa-

rately.

Another established control strategy is that of full-state feedback, that relies on either

pole-placement or the theory of linear quadratic regulator (LQR) to compute a controller

that stabilises the entire system. Full-state feedback enables the control of multiple-

input multiple-output (MIMO) systems, which greatly simplifies the controller design

of an UAV. The method presented by Foehn and Scaramuzza [13], uses LQR and the

partial differentials of a nonlinear model, to build a linear model and to compute the

controller gains at each time-step. This approach is very computational expensive, which

does not fit well on a digital platform that has to run in real-time. Instead, the regular

LQR method, as proposed by Greiff [6], is considered sufficient, where the controller is

computed offline.

In the this chapter, the linear state-space model derived in Chapter 4 will be used to

design a model-based control strategy, with the goal of stabilising both attitude and po-

sition. First, the principle of full-state feedback is introduced, and the LQR formulation

is described. Next, the full-state vector is separated into two subsets and the proposed

control strategy is described. Lastly, the controller gains are computed, and steps are

applied to test the controller response on the nonlinear simulation.

34

4.1. FULL-STATE FEEDBACK CHAPTER 4. CONTROL

4.1 Full-state feedback

The stability of a linear system depends entirely on the location of the eigenvalues in the

complex plane [26]. The open-loop dynamics described by the system matrix A from the

state-space representation, see Equation 4.1, has all-zero eigenvalues (poles at origin).

This means that the linearized open-loop system has marginal stability.

ẋ = Ax+ Bu (4.1)

The system therefore cannot achieve stability on its own, as any slight disturbance will

excite the system towards instability. To achieve stability the systems open-loop poles

must be moved to the left half of the complex plane. One way to achieve this is by using

full-state feedback, with the controller gain K [26], see Figure 4.1.

+

-

Figure 4.1: Full-state error feedback with controller K and reference r.

Assuming all system states are measurable and known at all times, the full-state feedback

law is described by:

u = −K(x− xr) (4.2)

Where xr is a vector of desired state setpoints, which serves as a external input to the

closed-loop system [27]. Using the above control-law, the open-loop system is closed,

and the feedback-term controlled by the gain matrix K can be used to place the system

poles at the desired location, yielding the closed loop dynamics:

ẋ = (A−BK)x+ BKxr (4.3)

The poles of the closed-loop system are then given by the characteristic equation of

the matrix (A − BK) while the matrix BK acts as input matrix to the closed-loop

system.

Full-state feedback are a powerful tool, that enables absolute control of the closed-loop

system poles [26], however it comes with an obvious problem; the choice of the gain

matrix K. To determine K, two methods are often utilised; pole placement and the

linear quadratic regulator (LQR).

35 of 89

4.1. FULL-STATE FEEDBACK CHAPTER 4. CONTROL

The pole placement method computes K such that the close-loop poles are placed at

specific locations. This requires knowledge about the system, and how the system char-

acteristics (overshoot, rise-time etc.) should behave. LQR on the other hand computes

K such that the closed-loop poles are placed optimal, given a quadratic cost function

that punishes state errors and the actuation effort. Tuning of K using LQR are therefore

much more intuitive, and enables faster development of a stabilising controller for larger

and complex systems [26].

4.1.1 Controllability

In order to design the stabilising feedback gain K using any of the above mentioned

methods, the system it self must be controllable. Only the poles of a fully controllable

system can be moved to any arbitrary place within the complex plane using full-state

feedback. A system is said to be controllable if a sequence of control inputs u can

transfer any initial state to the origin in a finite amount of time [26].

For linear time-invariant systems, a system is controllable if its controllability matrix, C,
has a full row rank of n, where n is the dimension of the systems matrix A [26]:

rank(C) = n (4.4)

C =
[
B AB . . . An−1B

]T
(4.5)

The controllabillity matrix is computed for the linearized system dynamics, and the

rank is found to be n = 12. This implies that the 12 system states given by x, are fully

controllable from the 5 control inputs u.

4.1.2 Linear Quadratic Regulator

The linear quadratic regulator is a full-state feedback controller, that is computed by

minimising a quadratic cost function J that punishes state errors and actuation effort.

The continuous-time variant of the cost function is defined as [13]:

J(x̃, ũ) =

∫ ∞
0

(x̃TQx̃+ ũTRũ)dt (4.6)

Where Q and R are positive definite matrices, that punishes the state errors and actu-

ation effort respectively.

The intent of the cost function is to bring the state error close to zero using the term

x̃TQx̃. This might require very large control inputs, which the additional term ũTRũ

penalises, such that a more realistic design is found [28].

36 of 89

4.1. FULL-STATE FEEDBACK CHAPTER 4. CONTROL

Bryson’s Rule

The choice of the weighting matrices Q and R are however not trivial. Practically the

LQR formulation, translates classical control problems where specifications are given

in terms of settling time, overshoot etc. into the choice of the coefficients of the cost

function. To aid in the choice of the coefficients, Bryson’s rule is applied, describing

the coefficients in terms of maximum allowed deviation of the states and input [28] by

choosing the matrices as diagonal matrices:

Q =

Q1 0 0

0
. . . 0

0 0 Qn

 R =

R1 0 0

0
. . . 0

0 0 Rn

 (4.7)

Where the diagonal entities Qn and Rn are defined as the reciprocal of the maximum

allowable value of state and inputs squared.

Qn =
1

max(xi)2
Rn =

1

max(ui)2
(4.8)

Even though Bryson’s rule usually gives good initial results, it is merely the starting point

for a trial and error iterative design process, aimed at achieving desirable properties for

the closed-loop system.

4.1.3 Integral action

An inherent disadvantage of the standard LQR-controller is that, in essence, it is a

proportional state feedback controller, that may result in steady-state errors. To remove

steady-state error integral action can be introduced into the feedback loop [6], see Figure

4.2.

+

-

Figure 4.2: Full-state feedback with integral action on a selection of the state errors.

The G matrix has the same columns as the size of the state vector, and is used to select

the states errors that need integral action. The same matrix is appended to the system

when computing the feedback gain, augmenting the system with additional states.

37 of 89

4.2. CONTROL STRATEGY CHAPTER 4. CONTROL

4.2 Control strategy

Before designing the actual controller using LQR and Bryson’s rule, first the control

strategy will be explained. In order to ease the design and implementation, the control

system is separated into two subsystems, each consisting of a subset of the total system

dynamics, this being:

xhov =

η

ω

z

vz

 ∈ R8×1 xpos =

x

y

vx
vy

 ∈ R4×1 (4.9)

The first subsystem consists of all the rotational dynamics, including the altitudinal

states (z-axis). The controller for this subsystem is named the ”Hover controller”, as

the objective of this controller is to stabilise the drone in the hover point. The second

subsystem consists of the translational states in the horizontal plane, and is named

”Position controller”, having the goal of stabilising the horizontal position by supplying

roll and pitch set-points to the hover controller, see Figure 4.3.

Hover Controller
Altitude and AttitudePosition Controller

Horizontal Position
Rotational
Dynamics

Translational
Dynamics

System Model

-
-

Figure 4.3: Block diagram of the proposed control strategy.

The division of the state-vector separates the faster dynamics (xhov) from the slower

dynamics (xpos), which allows for the design of an independent hover controller. With

an independent hover controller, different position control strategies can be tried out,

while maintaining the same level of hovering stability.

38 of 89

4.3. HOVER CONTROLLER CHAPTER 4. CONTROL

4.3 Hover Controller

The hover controller acts on the truncated system dynamics described by the state

vector xhov = [φ θ ψ ωx ωy ωz z vz]T, and from this generates the control signals u =

[α1 α2 α3 α4 ωt]T, that stabilises the attitude and altitude, see Figure 4.4.

Hover
Controller-

Figure 4.4: Block diagram of the hover controller. The vector xhov,ref, defines the desired state

reference, such as φr, θr, ψr and zr.

4.3.1 Control considerations

As the system dynamics are linearized around the hover point, the system inputs (control

signals) has reached steady-state. At steady-state, the only input not being zero is the

rotational velocity of the motors ωt. In order to produce the needed thrust, the steady-

state motor velocity ω0 must be added to the controller output. This, however, would

cause a very sudden step on the z-state, causing uncontrollable behaviour. Another way

to reach ωo is by augmenting the system with integral action on the z-state, such that

the control output slowing raises towards the steady-state value.

Integral action could similarly be implemented on the attitudinal states, to reduce

steady-state errors caused by misalignments and unbalanced weight. However, this could

potentially reduce performance, as the integral action would slow down the controller

response. No integral action is therefore applied to the attitude, and any steady-state

error present on the real system must therefore be handled by the position controller.

The augmented hover controller with integral action on the z-state, thus becomes:

Ahint =

[
Ahov 09×1

Ghov 01×1

]
∈ R9×9 Bhint =

[
Bhov

01×5

]
∈ R9×5 (4.10)

With Ahov and Bhov being the truncated system and input matrices. The integral action

matrix Ghov is defined as,

Ghov =
[
0 0 0 0 0 0 1 0

]
∈ R1×8 (4.11)

39 of 89

4.3. HOVER CONTROLLER CHAPTER 4. CONTROL

Using the augmented system, the control gain Khov is designed using MATLABs lqr()

command, with the Qh and Rh initially being defined using Bryson’s rule. After the

initial run, Rh are kept constant, and Qh are tuned to achieve desirable response. The

maximum allowable actuation are chosen to be within reasonable limits of the operating

point; max(αt) = 10° and max(ωt) = 1000 rpm, yielding the Rh coefficients:

Rh1 . . . Rh4 =
1

(10°)2
Rh5 =

1

(1000 rpm)2
(4.12)

4.3.2 Roll and pitch control

For the purpose of stabilising the mono-copter, fast and robust control of roll and pitch is

required. Any small error in roll or pitch propagates into the translational states, which

affects the overall performance. Therefore, the penalty of errors in roll and pitch must be

high, such that state-errors quickly are removed. The state-error penalty described by

the diagonal coefficients of Qh are found iterative, to be a maximum allowable deviation

of 0,1 rad for roll and pitch, and 1 rad/s for the angular rates.

Qh1 = Qh2 =
1

(0,1 rad)2
Qh4 = Qh5 =

1

(1 rad/s)2
(4.13)

The resulting controller achieves a very quick response with almost zero overshoot, and

with no steady-state error, see Figure 4.5. Furthermore, as seen from Figure 4.5b the

actuation effort is kept below 10° as desired.

0 0.25 0.5 0.75 1 1.25 1.5
Time [s]

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

A
m

pl
itu

de
 [r

ad
]

Roll
Step

(a) Roll with a step of 0,1 rad.

0 0.25 0.5 0.75 1 1.25 1.5
Time [s]

-2

0

2

4

6

8

A
ct

ua
tio

n
[d

eg
]

,1, ,3

(b) Actuation from a step of 0,1 rad on roll.

Figure 4.5: Step-response and actuation effort from a step on roll. Similar results are seen with pitch,

as the mono-copter is symmetric.

40 of 89

4.3. HOVER CONTROLLER CHAPTER 4. CONTROL

4.3.3 Yaw control

The rotational motion around the z-axis (yaw) differs from the roll and pitch, both in

terms of inertia but also because no specific value of yaw causes instability. Although

all values of yaw are stable, a controller is still needed to counteract the small net

momentum caused by differences in motor velocity and inertia. In the absence of yaw

control, the mono-copter would keep rotating in the air, which eventually could lead to

instability. Considering that fast control of yaw is not critical, the yaw control can be

tuned to perform considerable slower than roll and pitch, to save actuation effort. This

is important, as the thrust vanes has to actuate significantly more, in order to produce

torque around the z-axis (τz), than with roll and pitch (difference in moment arm). It

is therefore important to penalise the yaw state less, as to not saturate the thrust vanes

and in turn losing control of roll and pitch. The maximum allowable deviation of yaw is

chosen to be 1 rad and the yaw rate to be 2 rad/s.

Qh3 =
1

(1 rad)2
Qh6 =

1

(2 rad/s)2
(4.14)

This yields a considerable slower step-response than roll and pitch, see Figure 4.6a, yet

still uses quite a lot of actuation effort, see Figure 4.6b.

0 1 2 3 4 5
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pl
itu

de
 [r

ad
]

Yaw
Step

(a) Step-response of yaw with a step of 1 rad.

0 0.5 1 1.5 2 2.5
Time [s]

-6

-4

-2

0

2

4

6

A
ct

ua
tio

n
[d

eg
]

,1, ,3
,2, ,4

(b) Actuation signals from a step of 1 rad on yaw

Figure 4.6: Step-response of the yaw and the resulting actuation, using the nonlinear system model.

It is important to notice, that the attitude is measured in polar coordinates, and switches

sign at ±180°. This does not work well with the cartesian definition of state errors

e = xr − x, causing the yaw controller to take the wrong route in certain intervals. To

account for this, 2π is subtracted from the state-error, if the yaw error is larger than π,

which forces the control to always rotate in the correct direction.

41 of 89

4.3. HOVER CONTROLLER CHAPTER 4. CONTROL

4.3.4 Altitude control

The altitude is controlled entirely by the motor thrust, which in turn is controlled by the

rotational velocity of the motors ωt. The hover controller computes the motor velocity

ωt using feedback from both the altitude z and the velocity vz, and from the augmented

integral state (summation of errors in z). The integral term is used to slowly raise the

motor velocity to the steady-state value ω0. This has the benefit of also removing any

steady-state error, which otherwise would be present due to gravity. However, because

of the integral action, the z motion is also inclined to overshoot, as the actuation output

mostly consist of the slower integral state. The overshoot can be reduced by punishing

the z state more, however a preferable solution is to implement anti-windup on the

integral. This is done by setting an upper limit on the integral, that limits how much

the integral state can add to the motor velocity.

Now, using Bryson’s rule, the maximum allowable deviation of z is chosen to 0,5 m and vz
to 1 m/s. The integral state is tuned to achieve a lift-of delay of approximately 2 s.

Qh7 =
1

(0,25 m)2
Qh8 =

1

(1 m/s)2
Qh9 =

1

(0.15)2
(4.15)

As seen from Figure 4.7, this yields a rather slow rise-time with a slight overshoot.

Furthermore no change in altitude is observed before 2 s after the step of 1 m is applied.

This behaviour is the result of the slowly growing integral, and not a result of slow

system dynamics. This is an intended feature, which only is observed at initial take-off

and not at any subsequent steps performed afterwards.

0 2 4 6 8 10 12 14 16 18 20
Time [s]

0

0.5

1

1.5

2

2.5

A
m

pl
itu

de
 [m

]

Altitude
With anti-windup
Step

Figure 4.7: Simulated step-response of the altitude with and without anti-windup. The anti-windup

reduces overshoot by stopping the integral from growing to large.

42 of 89

4.4. POSITION CONTROLLER CHAPTER 4. CONTROL

4.4 Position Controller

With the hover controller being able to stabilise the attitude and altitude, the position

controller can be designed. The position controller acts on the translational states in

the horizontal plane, xpos = [x y vx vy], and outputs roll and pitch references (φr, θr) to

the hover controller, see Figure 4.8.

Hover
Controller-

Position
Controller

-

Figure 4.8: Block diagram of the postion and hover controller. The vector xpos,ref, defines the desired

state reference, being the target position xr and yr

4.4.1 Control considerations

The first and foremost goal of the position controller is to stabilise the positional drift

caused by steady-state errors in the hover controller caused by imperfections in the

physical system. To account for this, the position controller is augmented with an

integral state on both positional states x and y. The augmented system with integral

action becomes:

Apint =

[
Apos 04×2

Gpos 02×2

]
∈ R6×6 Bpint =

[
Bpos

02×2

]
∈ R9×5 (4.16)

With the integral action matrix Gpos being defined as,

Gpos =

[
1 0 0 0

0 1 0 0

]
∈ R1×8 (4.17)

Using the augmented system, the control gain Kpos is computed using the same approach

as for the hover controller, with Qp and Rp being defined using Bryson’s rule. The

maximum allowable actuation is chosen to 0,1 rad ≈ 5° for both φr and θr.

Rp1 = Rp2 =
1

(0,1 rad)2
(4.18)

43 of 89

4.4. POSITION CONTROLLER CHAPTER 4. CONTROL

4.4.2 Position control

The only way to control the position, is by pivoting the mono-copter such that a com-

ponent of the thrust vector lies in the horizontal plane. This is achieved by supplying

roll and pitch references to the hover controller, which in turn actuates the thrust vanes.

However, because the position is measured in the inertial frame, and the roll and pitch

actuation is done in the body frame, the values are not directly compatible.

The error in position must therefore be rotated to the body frame, in order to generate

appropriate control signals for the hover controller. Without rotating the error any

non-zero yaw angle will make the control system unable to track the global position

precisely. To rotate the positional error, the rotation matrix Rw
b
T are applied with

φ = 0 and θ = 0. This is possible because the absolute position is measured horizontally

in two dimensions, and thus the error is not affected by roll and pitch.

Rw
b
T ≈

 cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 R2D =

[
cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

]
(4.19)

The error in position and velocity can then be rotated to the body frame as:

ep =

([
xr
yr

]
−

[
x

y

])
R2D ev =

([
vxr
vyr

]
−

[
vx
vy

])
R2D (4.20)

Yielding the state-error vector: epos = [ep ev]T

Now, using Bryson’s rule the state-penalty coefficients are found. The maximum allow-

able deviation of x and y is chosen to 0,5 m while the value of vx and vy is chosen to

1 m/s. The penalty of the integral states are chosen such that the integral part quickly

reduces, which unfortunately increases the overshoot.

Qp1 = Qp2 =
1

(0,5 m)2
Qp3 = Qp4 =

1

(1 m/s)2
Qp5 = Qp6 =

1

(1)2
(4.21)

As seen from Figure 4.9, this results in a rather fast step-response, with a large over-

shoot. The overshoot is largely caused by the integral, which grows without constraints

when a step is applied. To suppress this behaviour, the principle of anti-windup is again

utilised by setting a limit on the integral. The integral limit is found experimentally,

however, it is important to note that this limit might need adjusting to correct for larger

steady-errors, found on the physical system.

44 of 89

4.4. POSITION CONTROLLER CHAPTER 4. CONTROL

To evaluate the integral action, an offset of 1° is introduced on all thrust vanes in the

simulation. This offset produces a steady-state error is the hover controller, which would

have propagated into an error of 0,1 m in the position, see Figure 4.9. Similar steady-

state errors in the actuation or attitude are likely to be present on the physical system,

which strongly argues for the implemented integral action.

0 2 4 6 8 10 12 14
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Po

si
tio

n
[m

]

No integral
With integral
With anti-windup
Step

Figure 4.9: Three simulated step-responses with a step of 1 m on the x-position.

As might be observed from Figure 4.9, the position has a small dip in the opposite

direction (non-minimum phase) before moving towards the step. This is the result of the

thrust vanes producing a opposite force of the desired translational direction, in order

to tilt (roll/pitch) the system. The small dip can be seen as a time-delay, and in a sense,

sets a fundamental limit on how fast the system can be actuated.

4.4.3 Time-delay margin

The mono-copter is a fast moving system, with relative quick dynamics. Positional

measurements are however prone to be slow, causing a transport delay in the feedback

loop. This could potentially cause instability, because the controller reacts on old mea-

surements. To estimate how much transport delay the positon controller can handle, a

time delay is introduced in the feedback-loop (simulation). The delay is adjusted until

the closed-loop system is on the verge of instability, defining the time delay margin of

the controller. Using this approach, a maximum allowable time-delay of 0,4 s is found.

To increase the allowable time-delay, the controller gains can be reduced, however, the

achieved time delay margin is considered sufficient.

45 of 89

4.4. POSITION CONTROLLER CHAPTER 4. CONTROL

4.4.4 Trajectory tracking

The problem of tracking a trajectory differs slightly from the regular problem of doing a

step along a single axis. This is especially noticeable when tracking a nonlinear continu-

ous trajectory, such as a circular path. Nonetheless, the position controller are capable

of tracking a nonlinear path to some degree, as shown in Figure 4.10a. Here the posi-

tion is controlled entirely by linear x and y feedback, causing the system to never reach

the trajectory due to a steady-state error. This steady-state error is not present in the

linear case, and is probably the result of the integral states being a summation of errors

with different origin. To resolve this, the front of the mono-copter should point in the

direction of movement (heading) such that the body-frame is aligned with the path, and

the accumulated errors translates directly to the body-frame, see Figure 4.10b.

-1 -0.5 0 0.5 1
x [m]

-1

-0.5

0

0.5

1

y
[m

]

Position
Trajectory

(a) Constant yaw

-1 -0.5 0 0.5 1
x [m]

-1

-0.5

0

0.5

1
y

[m
]

Position
Trajectory

(b) Yaw equal to heading

Figure 4.10: Simulated trajectory tracking, with a circular path. The yaw direction has a large effect

when tracking nonlinear trajectories.

In order to align the system with the heading, the yaw reference of the hover-controller

is used. To control the yaw, a nonlinear control block is introduced that computes the

heading from the desired trajectory and feeds this to the yaw controller.

ψr = atan2

(
yn − y
xn − x

)
(4.22)

Where xn and yn are the next set-point values for the controller. A better method for

following nonlinear paths (with multiple waypoints and sharp corners) would be pure-

pursuit or carrot-chasing [29], however that is out of the scope for this project.

46 of 89

4.4. POSITION CONTROLLER CHAPTER 4. CONTROL

With the nonlinear heading control added, the linear control scheme shows great promise,

as it is capable of following a nonlinear trajectory in three dimensions, see Figure 4.11,

while eliminating steady-state errors in the hover controller introduced by actuator biases

or unbalanced weight.

Figure 4.11: Simulated step-response of the 3D-position following a circular trajectory. Actuators are

biased by 1° of offset, and integral action is active.

47 of 89

4.5. SUMMARY CHAPTER 4. CONTROL

4.5 Summary

Simulation shows that the proposed linear control strategy are able to stabilise the entire

nonlinear system dynamics. Furthermore, by addition of a small nonlinear control block,

nonlinear trajectories can be followed with zero steady-state error.

The proposed full-state feedback controller is designing using a linear continuous-time

model, and are tested as such in the simulation. However, the controller is eventually

going to be implemented on a digital system, and thus the effects of sample-time, bit-

resolution and controller loop frequency should be accounted for. If the discrete system

differs to much from the continuous, the controller will not perform as expected on the

real physical system. The effects of discretization does however become very small if

the loop frequency gets very high (low sample-time), and the difference between the

continuous- and discrete-time controller gains converges towards zero. This is assumed

to be the case, as long as the control loop is run above 200 Hz.

During the design of the full-state controller, it was assumed that all system states are

available at all times. This however, is not the case, as multiple states of the system

are measured at different sample rates while other states are not measured at all. To

account for the missing states used by the full-state feedback, a method of estimation

must be applied. To perform the state estimation, the well-established concept of the

Kalman filter is applied, which will be described in the following chapter.

48 of 89

CHAPTER 5
State Estimation

To implement the full-state feedback controller described in the previous chapter, mea-

surements of the entire state vector x are needed. However, as previously described,

some of the system states are not measured, while most are sampled at different fre-

quencies. To remedy this issue, the use of an estimator is proposed; both to estimate

the unmeasured system states, but also to interpolate in-between samples. The goal of

the estimator is to produce estimates of the unmeasured system states, using indirect

and noisy measurements and a system model. To deal with the noisy measurements, the

Kalman filter is applied, which combines knowledge about the process and measurement

noise, to produce an optimal state estimate. This chapter describes the basic concept of

Kalman filtering, and how this is applied to estimate and interpolate the needed state

vector.

49

5.1. STATE MEASUREMENTS CHAPTER 5. STATE ESTIMATION

5.1 State measurements

The entire state vector x must be known in order to implement the full-state feedback

controller. Most of the states are directly measurable by the available sensors, while some

must be found by estimation. As an example, the IMU supplies attitude measurements

η and drift free gyro measurements ω, at very high sample-rates. The translational

states on the other hand, are measured by sensors with a low sample-rate and one of

the states (vz) is unmeasured. This poses an issue in terms of the feedback control, as

the controller cannot operate faster than the rate of the measurements and because all

states are needed to close the loop. An overview of the system states availability and

their sample-rates are given in Table 5.1.

IMU VICON TOF FLOW

State φ θ ψ ωx ωy ωz x y z vx vy vz
Measured X X X X X X X X X X X 7

Rate [Hz] 400 400 400 400 400 400 5 5 30 50 50 -

Table 5.1: Overview of the system states and their sample-rates

From Table 5.1, it is clear that all the translational states xpos require interpolation if

the entire control loop is to be run at the same frequency. In order to interpolate and

estimate the unmeasured system states, an estimator is introduced in the feedback-loop.

The goal of the estimator is to produce an estimate of the translational state vector xpos,

by combining available measurements with a system model, see Figure 5.1.

Hover Controller
Altitude and AttitudePosition Controller

Horizontal Position

System Model

-
-

Estimator

IMU

LIDAR

FLOW

Figure 5.1: Block diagram of the control structure, with the estimator in the feedback.

50 of 89

5.2. ESTIMATOR MODEL CHAPTER 5. STATE ESTIMATION

5.2 Estimator Model

In order to predict the evolution of the system states, the state estimator requires a

linear time-invariant model described on state-space form. The obvious choice would be

the dynamic system model derived for the controller design. However, because of the

linearization, the kinematic relationship between the body- and world-frame are lost,

and the model would yield inferior tracking performance. A solution to this would be

implementing a nonlinear estimator (such as an extended Kalman filter) that linearizes

the nonlinear dynamics at each sample. However, due to the computational limitations of

the digital platform, this is not considered feasible at the desired update frequency.

Instead, a slightly different model is used, one described entirely in terms of the equations

of motion. Any object moving in a frictionless environment can be described using the

kinematic equations for a moving body. The velocity v of this object is defined as the

derivative of the position p with respect to time t. In like manner, the acceleration a

is defined as the derivative of v with respect to time t. This results in the following

differential equations:

v = ṗ =
dp

dt
a = v̇ =

dv

dt
(5.1)

a

v

m p

Figure 5.2: Illustration of the kinematic model described by the equations of motion.

The two differential equations described by Equation 5.1 can be written on state-space

form. The position p and velocity v is chosen as the system states, while the acceleration

a is considered the system input. Any acceleration of the object must result from an

external force acting on the body, and per definition, this is to be considered an external

input. Formulated on state-space, this looks like:[
ṗ

v̇

]
=

[
0 1

0 0

][
p

v

]
+

[
0

1

]
a (5.2)

Using the motion model, the translational states can be described entirely in terms of

position, velocity and acceleration measured in the world-frame. The general idea is to

combine slow optical flow measurements, with fast acceleration and occasional positional

measurements, to shape a solid estimate for the translational states.

51 of 89

5.2. ESTIMATOR MODEL CHAPTER 5. STATE ESTIMATION

5.2.1 Discrete-time model

The state-space model presented in Equation 5.2 are in continuous-time, however the

estimator is to be implemented on a discrete-time system. Computers cannot compute

continuous-time differentials directly, and instead a numerical solution must be defined.

The discrete-time state-space representation can be written as:

xk+1 = Ad xk + Bd uk (5.3)

yk = C xk (5.4)

where Ad : discretization of the state space matrix A

Bd : discretization of the state space matrix B

The discrete state-space representation is described in terms of finite differences. To fit

this representation, the continuous-time model, described in Equation 5.2 are approx-

imated using a finite difference (second order Taylor series) with step-time ∆t, yielding

the discrete-time model: [
pk+1

vk+1

]
=

[
1 ∆t

0 1

][
pk
vk

]
+

[
1
2∆t2

∆t

]
ak (5.5)

The model described by Equation 5.5 only includes the motion in one dimension, how-

ever as the objective is to estimate all six translational states xpos = (x, y, z, vx, vy, vz),

the model is expanded to three dimensions, yielding:

x

y

z

vx
vy
vz

k+1

=

1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

︸ ︷︷ ︸

Ad

x

y

z

vx
vy
vz

k

+

1
2∆t2 0 0

0 1
2∆t2 0

0 0 1
2∆t2

∆t 0 0

0 ∆t 0

0 0 ∆t

︸ ︷︷ ︸

Bd

axay
ax

k

(5.6)

The output of the system yk should depict which measurements are available at time k,

meaning that the C matrix is not constant. As a consequence, the system is not always

fully observable, and depending on which measurements are available the positional

states are not guarantied to converge.

52 of 89

5.3. KALMAN FILTER CHAPTER 5. STATE ESTIMATION

5.3 Kalman Filter

The Kalman filter (KF) is an optimal full-state estimator, that combines a linear system

model perturbed by noise with noisy measurements, to estimate unmeasured system

states and reduce measurement noise [30]. The Kalman filter is a great tool to infer

missing information from indirect and noisy measurements. The goal of the Kalman

filter is to produce a state estimate x̂k that minimises the error of the estimate and

the true state x, using noisy measurements yk, described by the discrete-time linear

system:

xk+1 = Adxk + Bduk + wk (5.7)

yk = Cxk + vk (5.8)

Where wk is the process noise, and vk is the measurement noise. Both wk and vk are

assumed to be zero-mean gaussian noise, with known covariances Qf and Rf [30]:

wk ∼ N (0,Qf) vk ∼ N (0,Rf) (5.9)

5.3.1 Algorithm

The Kalman filter is an estimator, and runs in parallel with the system, using the

system input uk and output yk to estimate the true internal state xk of the system. The

Kalman filter are often separated into two steps; the prediction and the update step.

The prediction is based on the system model, while the update uses the residual between

the prediction and observations to correct the estimate, see Figure 5.3

Kalman Filter

System Model

+-

+
+

+
+

+

+
+

+ +

Figure 5.3: Diagram of the discrete system model in combination with the Kalman filter [30].

53 of 89

5.3. KALMAN FILTER CHAPTER 5. STATE ESTIMATION

Prediction step

The prediction step utilises the system model, the input and the prior system state to

predict the system state and uncertainty at the newest time-step. This is called the prior

estimate, see Equation 5.10.

x̂−k = Adx̂k−1 + Bduk (5.10)

Doing the prediction step, the uncertainty of the prediction P−k is also computed,

P−k = AdPk−1Ad
T + Qf (5.11)

Update step

The update step improves the predicted state estimate x̂−k , by combining the prediction

with sensor measurements yk. In order to perform the update-step, there must however

be new measurements available. This is described by the measurement matrix H (a vari-

ation of the C matrix), which relates the current system states, with the measurements.

Using H the predicted estimate x̂−k is corrected using the measurements by a factor Kf

[30]. The factor Kf is known as the optimal Kalman gain [30], and is computed as:

Kf = P−kH
T (HP−kH

T + Rf) (5.12)

Using the Kalman gain Kf , the state and process covariance is updated:

x̂k = x̂−k + Kf (yk −Hx̂−k) (5.13)

Pk = (I−KkH)P−k (5.14)

If there is no new observations, the measurement matrix H matrix is set to zero, and the

update step does nothing. In such as case, the estimator relies solely on the prediction,

and the process covariance (uncertainty in the prediction) would increase until new

measurements are ready.

5.3.2 Steady-State filter

The Kalman filter algorithm described above computes a new optimal filter gain at

each sample [28] [30]. This process is computational heavy, and does not fit well in an

embedded system for real-time state-estimation. A well known feature of the Kalman

filter is that for time-invariant systems with constant uncertainty, the filter gain Kf tends

to converge towards a steady state value after the initial transient process [31].

54 of 89

5.3. KALMAN FILTER CHAPTER 5. STATE ESTIMATION

This means that the filter gain can be computed offline, and be used in an digital

implementation with ease. With Kf being constant, there are no longer any need to

compute the process error covariance, and only the state prediction and update equations

are needed. The steady-state assumption of the estimator is however not perfectly true,

as the observations arrives at different intervals (H is rarely equal to I6). This would

change the process error covariance Pk in the regular Kalman filter, which in turn would

change the optimal Kalman filter gain. The effects of these fluctuations in the uncertainty

is however considered negligible, and the computational advantages of the steady-state

Kalman filter are utilised.

The steady-state gain Kf is computed using MATLAB’s dlqe() command (discrete

linear quadratic estimator), using the discrete-time system matrix Ad and the noise

matrices Qf and Rf . The measurement noise matrix Rf describes the covariance of the

sensors noise, and is estimated by a diagonal matrix with the entries being the variance

of each state measurement, see Figure 5.15.

Rf =

σ
2
x 0 0

0
. . . 0

0 0 σ2
vz

 (5.15)

The process noise covariance Qf is similarly approximated, but rather than keeping the

diagonal entries constant, these are used to tune the response of the Kalman filter. If

Qf are made to small, the filter becomes overconfident in the prediction, causing slow

and less responsive behaviour. On the other hand, if the coefficients are made to high,

the estimate will be highly influenced by measurement noise. Using these guidelines, a

trial-and-error approach is used to compute a filter gain that yields the most desirable

attributes.

55 of 89

5.4. ESTIMATION EVALUATION CHAPTER 5. STATE ESTIMATION

5.4 Estimation evaluation

To evaluate the performance of the steady-state Kalman filter, a preliminary test has

been performed. In this test, the physical platform has been manually carried around

in a square pattern, while all measurements are logged, see Figure 5.4.

Figure 5.4: Position measured by Vicon (ground truth) during the preliminary test

While performing the test, all sensor measurements were logged, and the resulting data

has been used to tune the Kalman filter offline. Before the measurements are feed to

the estimator, they are rotated to the world frame, using the rotation matrix described

by Equations 3.3.

Using the data logged from this test, two offline simulations has been performed; one

where no positional measurements are supplied, and one where the position is updated

occasionally. The first simulation is made to evaluate how the filter performs, when

no position measurements are available. Doing this simulation, the system is not fully

observable and the positional estimate are certain to drift. The second simulation is

made to evaluate the overall performance of the estimator, with positional measurements.

Altitude measurements from the LIDAR are supplied in both simulations, as the optical

flow relies on this to scale the velocity measurements correctly.

Both offline simulations are run at 200 Hz, and the results thereof are presented in the

following sections.

56 of 89

5.4. ESTIMATION EVALUATION CHAPTER 5. STATE ESTIMATION

5.4.1 Visual aided inertial estimation

In the first simulation, the estimator is feed with measurements of altitude (z), velocity

(vx and vy) and with acceleration (ax, ay and az) as input. Since the velocity measure-

ments are based on optical flow, they are heavily corrupted by noise, however combined

with the measurements of acceleration, two smooth velocity estimates (vx and vy) are

produced, see Figure 5.5. The velocity vz is based on the derivative of the altitude mea-

surements, and is similarly improved by the measurements of acceleration, see Figure

5.5c.

0 100 200 300 400
Time [s]

-2

-1

0

1

2

v x [m
/s

]

Measured
Kalman

(a) x-velocity

0 100 200 300 400
Time [s]

-2

-1

0

1

2
v y [m

/s
]

Measured
Kalman

(b) y-velocity

0 100 200 300 400
Time [s]

-2

-1

0

1

2

v z [m
/s

]

Kalman

(c) z-velocity

Figure 5.5: Velocity estimates produced by steady-state kalman filter.

The position estimate is the result of integration, and due to errors in the velocity

estimates, the position drifts. However, as seen from Figure 5.6 the overall translational

movement is captured, and the position drifts less than 0,2 m doing the entire test.

0 100 200 300 400
Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

x
[m

]

Kalman
Ground truth

(a) x-position

0 100 200 300 400
Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

y
[m

]

Kalman
Ground truth

(b) y-position

Figure 5.6: Position estimate using optical flow and acceleration.

57 of 89

5.4. ESTIMATION EVALUATION CHAPTER 5. STATE ESTIMATION

5.4.2 Position updates

In the second test, the exact same information is feed to the Kalman filter, however with

the occasional position measurement (5 Hz) to correct the positional drift. As seen from

Figure 5.7, the position estimates now follows the ground truth, and the positional

drift is eliminated, see Figure 5.8.

0 100 200 300 400
Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

x
[m

]

Kalman
Ground truth

(a) x-position

0 100 200 300 400
Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

y
[m

]

Kalman
Ground truth

(b) y-position

Figure 5.7: Position estimate updated using Vicon measurements at 5 Hz

-1 -0.5 0 0.5 1
x [m]

-1

-0.5

0

0.5

1

y
[m

]

With position
Without
Ground Truth

Figure 5.8: Comparison between the position estimate, with and without positional updates.

58 of 89

5.5. SUMMARY CHAPTER 5. STATE ESTIMATION

5.5 Summary

The offline simulations of the steady-state Kalman filter shows that the estimator is

able to produce a solid estimate of both position and velocity, even if no positional

measurements are available. The estimator can continue to estimate the position in

short periods of time even if the positional system is unresponsive.

However, if the estimate drifts to much, the residual of an position observation, could

potentially cause instability in the estimator. This is the result of the steady-state

assumption, as the filter applies the same gain, no-matter how much uncertainty has

been accumulated. To account for this, the steady-state kalman filter is tuned to perform

sub-optimal, such that a positional measurement does not cause to big of a update. The

estimator does however still produce a very solid estimate, that in general performs

better than the Vicon measurements, see Figure 5.9.

0 0.5 1 1.5 2
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Po
si

tio
n

[m
]

Ground Truth
Measurement
Estimator

Figure 5.9: Comparison between the ground truth, the positional measurement update and the

estimate. The estimator interpolates the position in-between measurements, however lags behind the

ground truth by 0,1 s.

The sampling and wireless transmission of the Vicon measurements, does however intro-

duce a small time-delay of approximately 0,1 s in the estimate. This is barely noticeable,

however, will have an noticeable effect on the position controller, which only has a time

delay margin of 0,4 s, see Section 4.4.3. Nonetheless, the filter performs well, and

the time-delay is within the acceptable margin, and therefore no other action is needed

in order to implement the control system. The next chapter will describe and discuss

the considerations taken in order to implement the control system on the digital plat-

form.

59 of 89

CHAPTER 6
Software

This chapter will describe the structure of the digital implementation, and explain the

software needed to implement the full-state feedback and estimation. The software is a

crucial part of the project, as it enables the evaluation of the designed control system in

practice.

The software developed for the project is freely available under the open-source MIT li-

cense, and can be accessed online at Github: github.com/SolidGeek/SingleRotorUAV.

60

https://github.com/SolidGeek/SingleRotorUAV

6.1. SOFTWARE STRUCTURE CHAPTER 6. SOFTWARE

6.1 Software structure

The software developed for the mono-copter is separated into two different solutions; the

ground station and the flight controller. The flight controller software is written in C++,

and is divided into a subset of classes, each handling a particular function. The ground

station on the other hand, is written in MATLAB, and is developed using MALTABs

app designer that provides the primary graphical features. An overview of the software

structure is shown in Figure 6.1.

Measurements

class
Sensors

Estimator

class
Communication

MATLAB
Application

class
Control

Main Loop
Timing and state-

machine
Servo Motors

ESC

WiFi
ESP32VICON

IMU
BNO080

FLOW
PMW3901

LIDAR
VL53L0X

BLDC
Motors

Flight Controller
Teensy 4.0

Figure 6.1: An overview of the two software solutions and their interaction.

6.2 Flight Controller

The flight software is rather complex, and is therefor divided into a subset of classes to

better organise and reuse the code. A total of five classes are written, these being:

• Sensors()

Samples each sensor and fuses the measurements in the estimator

• Control()

Implements full-state feedback control to generate appropriate control signals.

• Communication()

Handles the WiFi communication between ground station and mono-copter.

• Config()

Enables storage of non-volatile configuration and calibration parameters.

• DShot()

Configures two DShot outputs to control the motor ESCs

61 of 89

6.2. FLIGHT CONTROLLER CHAPTER 6. SOFTWARE

6.2.1 Main Loop

The flight software runs in an infinite loop, that periodically calls the functions of the

software classes. The timing of these function-calls are handled by keeping track of only

two timers; the control/estimator timer and the sensor timer, see Source 6.1. The

sensor timer is used to sample the TOF and FLOW sensor, while the IMU is sampled as

often as possible. The continuously sampling of the IMU is possible, because the IMU

is configured to pull a pin high when a new measurement is available, and therefor no

additional computation-time is wasted.

1 void loop() {

2 // Sample IMU as fast as possible (sample-rate is limited by sensor)

3 sensors.sample_imu();

4

5 // Sample FLOW and TOF at 50 Hz

6 if(micros() - sensor_timer >= 20000){

7 sensor_timer = micros();

8

9 sensors.sample_flow();

10 sensors.sample_tof();

11 }

12

13 // Run control and estimator at 200 Hz

14 if(micros() - control_timer >= 5000){

15 control_timer = micros();

16

17 sensors.run_estimator();

18 control.run(sensors.data, sensors.estimate);

19 }

20 }

Source 6.1: The basic timing performed in the infinite loop. The function micros() returns the time

in microseconds since startup.

Correct timing is important to ensure stability of any control system, as the discrete sys-

tem poles changes with sample-frequency. Therefore, to guarantee stability, the sample-

frequency must be kept constant. However, the timing method used in the flight con-

troller does not guaranty perfect timing, as nothing stops a process, should it be using to

much processing-time. Nonetheless, to ensure that the sample-frequency is kept within

an acceptable margin, the software is developed using non-blocking functions, and the

communication is kept in buffer until it can be read. A better approach would be the use

of a real-time kernel such as the Free real-time operating system (Free-RTOS) [32].

62 of 89

6.2. FLIGHT CONTROLLER CHAPTER 6. SOFTWARE

6.2.2 Class: Sensors

The sensor class handles the setup and sampling of each sensor and combines the mea-

sured data in the estimator. The purpose of this class, is to provide the control system

with measurements and estimates of the system states. Each time a new measurement

becomes available, a data structure is updated with the measurement and a boolean flag

regarding the state of that measurement is updated, see Source 6.2. Using this flag,

next time the estimator is called the new measurement will be used as an observation

to update the state estimate.

1 typedef struct {

2 float gx, gy, gz;

3 float roll, pitch, yaw;

4 float ax, ay, az;

5 float vx, vy;

6 float x, y, z;

7 struct{ // Struct to represent if new measurements are available

8 uint8_t imu : 1;

9 uint8_t flow : 1;

10 uint8_t tof : 1;

11 uint8_t pos : 1;

12 } status;

13 } sensor_data_t;

Source 6.2: The sensor data structure used to hold the newest measurements.

The estimator consists of multiple matrix operations, which is time-consuming to imple-

ment as multiple 1-dimensional computations. Instead the library BasicLinearAlgebra

[33] is applied, as this implements standard matrix notion in C++. Using this library,

the A, B and Kf matrices of the estimator can be implemented directly in software, see

Source 6.3, and can be used for multiplication, addition and substraction.

1 Matrix<6,6> A = { 1, 0, 0, DT, 0, 0,

2 0, 1, 0, 0, DT, 0,

3 0, 0, 1, 0, 0, DT,

4 0, 0, 0, 1, 0, 0,

5 0, 0, 0, 0, 1, 0,

6 0, 0, 0, 0, 0, 1 };

7 Matrix<6,3> B = { ... };

8 Matrix<6,6> Kf = { ... }

Source 6.3: Declaration of the estimator model (A, B) and the steady-state kalman gain (Kf)

63 of 89

6.2. FLIGHT CONTROLLER CHAPTER 6. SOFTWARE

6.2.3 Class: Control

The control class, implements the two full-state feedback controllers designed in Chap-

ter 4; the hover and position controller. This is implemented using the same matrix

library as the estimator, enabling direct declaration of the gain matrices Khov and Kpos.

Each controller is implemented as its own function, such that they can be called individ-

ually. The input arguments are the values of the system states, see Source 6.4, while

the set-points are kept as private variables in the control class.

1 // Hover controller

2 void control_hov(float roll, float pitch, float yaw, float gx, float

gy, float gz, float z, float vz);↪→

3

4 // Position controller

5 void control_pos(float x, float y, float vx, float vy, float yaw);

Source 6.4: Header declaration of the hover and position controller. The position controller uses yaw

to rotate the position error to body frame.

Changing of set-points is only needed for attitude and position, and are done using

the function void set_reference(uint8_t setpoint, float value);. Using this

function, the attitude and position of the mono-copter can be controlled, allowing for

full 3D-movement.

6.2.4 Class: Communication

The communication class, handles the communication between the ground station and

the mono-copter. The WiFi module is programmed to generate a local WiFi network,

on which it listens for UDP commands from the ground station. When a command is

received, the data is relayed to the flight controller over UART. The same goes in the

opposite direction, where the WiFi module listens for UART packages (telemetry) and

broadcasts these as UDP messages to the ground station, see Figure 6.2.

Ground
Station

ESP32 WiFi

UART WiFi

Loop
Transmit buffer

Flight
Controller UDPSerial

Figure 6.2: The WiFi module acting as a communication relay.

64 of 89

6.2. FLIGHT CONTROLLER CHAPTER 6. SOFTWARE

6.2.5 Class: Config

The config class, enables non-volatile storage of configuration and calibration parameters.

This is done by reading and writing a data structure to a region in the flash memory

that is not used for the application. The data structure can be as large as 2 kB, however

only 8 B are used to store the calibrated servo offsets, see Source 6.5. Since the data

is stored in a structure, other parameters could easily be added such as the controller

gains, or initial values for controller integrals computed on the fly.

1 struct config{

2 int16_t servo_offset[4];

3 } params;

Source 6.5: Header declaration of the configuration data structure.

6.2.6 Class: DShot

The DShot class, contains the functionality and configuration needed to generate two

DShot signals to control the ESCs. This is achieved using internal hardware timers

and interrupt driven direct memory access (DMA), to offload the processor. DShot is

a digital protocol that offers CRC checksum, a high resolution and does not require

throttle calibration [34]. The DShot packet contains a total of 16 bits, with each bit

being represented by a PWM pulse. The bit-value 0 and 1 are distinguished by different

pulse lengths. The DShot data packet is divided into three elements [34]:

• Throttle (11 bits)

• Telemetry request (1 bit)

• Checksum (4 bits)

To request telemetry from the ESCs, the telemetry request bit is set high, and the

telemetry is received as serial data on the telemetry wire. The data received are unpacked

and stored in a data structure, see Source 6.6.

1 typedef struct {

2 uint8_t temp;

3 uint16_t voltage;

4 uint16_t amps;

5 uint16_t ampHours;

6 uint16_t rpm;

7 } DSHOT_telemetry;

Source 6.6: Header declaration of the telemetry structure

65 of 89

6.3. GROUND STATION CHAPTER 6. SOFTWARE

6.3 Ground Station

The ground station has three important functions; sending commands, displaying teleme-

try and logging. The transmission of commands and logging, could be achieved using a

simple terminal script, however the live plotting of telemetry requires a graphical user

interface (GUI). MATLABs App designer was chosen for this, as MATLAB comes with

a lot of pre-built features such as plots, inputs and an UDP server class (for telemetry).

As seen from Figure 6.3, the designed GUI includes both plots and controls.

Figure 6.3: Graphical User Interface developed using MATLAB App designer. Three plots are used

to illustrate the movement of the mono-copter; horizontal position, altitude and attitude.

6.3.1 Command structure

To send commands from the GUI to the mono-copter, a command structure had to be

established. The commands needed are generally simple, and does not have to contain

more than an identifier, however some commands, such as changing a set-point, requires

additional data. The command structure is therefor composed of an command identifier

of type uint8 t and a array of float for additional data, see Source 6.7.

1 typedef struct{ uint8_t command; float value[3]; } command_t;

Source 6.7: Header declaration of the command structure.

66 of 89

6.4. SUMMARY CHAPTER 6. SOFTWARE

6.3.2 Telemetry and logging

Logging of the received telemetry is critical to document the response of the system,

but also to gain knowledge from every flight. By logging the telemetry on the ground

station, a new test can be initiated immediately, rather than extracting the data from a

SD card or similar. To perform the logging, a data structure is created in MATLAB, that

can hold all the measurements, see Source 6.8. For each telemetry package received,

a complete lines of measurement are added to this structure. However, because the

telemetry is transmitted at the same frequencye as the control loop runs (200 Hz), data

can easily be lost. To limit the data-loss, a buffer is used, that holds the UDP packages

until the GUI has time to write them all at once.

1 log_fields = { ...

2 'time', ... % Timestamp

3 'gx','gy','gz', ... % Angular-rate (imu)

4 'roll','pitch','yaw', ... % Attitude (imu)

5 'ax','ay','az', ... % Acceleration (imu)

6 'vx','vy','vz', ... % Velocity (flow sensor)

7 'x','y','z', ... % Internal position sensor (no sensor)

8 'vxt','vyt','vzt', ... % Velocity estimates (kalman)

9 'xt','yt','zt', ... % Position estimates (kalman)

10 'a1','a2','a3','a4','dshot', ... % Actuation signals (lqr)

11 'xe','ye','ze', ... % External position (vicon)

12 'stat_imu','stat_flow','stat_tof','stat_pos' ... % Status

13 };

Source 6.8: MATLAB data structure used for logging.

6.4 Summary

The software developed for both the flight controller and ground station, are described

at a minimal, trying to give an general idea of the underlying processes of the digital

implementation. The reader is referred to the Github repository published for this

project, if a higher level of detail is needed.

With the digital implementation working, the controller, estimator and hardware can

be tested in practise. The next chapter will describe how the combined system is tested

and the results thereof.

67 of 89

CHAPTER 7
Results

In order to validate the performance of the physical system, a series of tests has been

performed that aims to evaluate the designed controllers and validate the three main ob-

jectives of this thesis; vertical take-off, hovering and landing. This chapter will describe

the results of these tests and compare the empirical data with the nonlinear simulation

results.

68

7.1. ATTITUDE CONTROL CHAPTER 7. RESULTS

7.1 Attitude Control

It is essential to evaluate the attitude control (roll and pitch) before reaching any of the

main objectives, which requires actual flight. Without reasonable attitude control, the

mono-copter will never achieve stable flight, as just a tiny error in attitude has cascading

effects on the rest of the system.

7.1.1 Test Setup

To evaluate the stabilisation of roll and pitch, without being in flight, a test bench has

been constructed. The test bench is a dual-axis gyroscope construction that allows the

mono-copter to move in two degrees of freedom (roll and pitch), see Figure 7.1.

Figure 7.1: 2-DOF test bench, constructed to evaluate the control of roll and pitch. The rotational

joints uses ball-bearings to reduce friction, and the structure is made using aluminium extrusions and

3D-printed brackets. The entire setup is mounted on a table, using screw clamps.

Using the test bench, the mono-copter is securely mounted, and the ESCs are com-

manded to spin the motors at a velocity equal to the value of the hover-point. When

the motors reach the desired velocity, a step is performed on each axis separately, and

the results are logged wireless by the ground station.

69 of 89

7.1. ATTITUDE CONTROL CHAPTER 7. RESULTS

7.1.2 Results

A step of 0,1 rad ≈ 6° is applied to the roll and pitch control (φref , θref) and the step-

responses thereof are plotted alongside the simulated, see Figure 7.2. As seen from

the plots, the attitude is quickly stabilised, and the rise-time of 0,2 s for both steps are

near identical to their simulated counterpart. Both tests does, however, generate an

overshoot of roughly 20 %, which is not the case in simulation.

0 0.4 0.8 1.2 1.6 2
Time [s]

-0.02

0.02

0.06

0.1

0.14

A
m

pl
itu

de
 [r

ad
]

Actual
Simulation
Step

(a) Roll with a step of 0,1 rad.

0 0.4 0.8 1.2 1.6 2
Time [s]

-0.02

0.02

0.06

0.1

0.14

A
m

pl
itu

de
 [r

ad
]

Actual
Simulation
Step

(b) Pitch with a step of 0,1 rad.

Figure 7.2: Comparison between simulated and real step-response of 0,1 rad on roll and pitch.

To further test the attitude control, a sequence of varying steps is applied to the roll direc-

tion, see Figure 7.3. This test shows that the attitude controller is capable of stabilising

roll for varying step inputs, with the same overshoot of approximately 20 %.

0 5 10 15 20 25
Time [s]

-0.1

0

0.1

0.2

0.3

0.4

A
m

pl
itu

de
 [r

ad
]

Roll
Step

Figure 7.3: Sequence of steps of varying size (0.1, 0.2 and 0,3 rad) on the roll control φref .

70 of 89

7.2. ALTITUDE CHAPTER 7. RESULTS

7.2 Altitude

With the attitude control being stable, a step on the altitude can be used to evaluate

two of the main objectives; vertical take-off and landing. In order to achieve vertical

take-off, the motors has to produce enough thrust to counteract gravity. This is handled

by the hover controller and to test this, a step has to be applied on altitude (zref). The

landing phase is more complicated, as changing the reference to zero, would result in

the system crashing to the ground. Instead, when a landing is initiated, the previous

reference is kept constant, and the integral is reduced slowing.

7.2.1 Test Setup

To evaluate the altitude control, without drifting to far from the origin, a cable is

connected to the mono-copter through a hook in the ceiling. The cable helps to limit

the uncontrolled positional movement and to catch the mono-copter should something

go wrong, without limiting the z-movement, see Figure 7.4.

Figure 7.4: 4-DOF setup (x and y restricted) used to evaluate the control of altitude.

As this is an actual flight test, the Vicon system is used to keep track of the position, and

will be used as ground truth. The on-board estimator is used as the control feedback,

and no positional data is feed to the mono-copter from Vicon.

71 of 89

7.2. ALTITUDE CHAPTER 7. RESULTS

7.2.2 Results

A step of 0,5 m is applied to the altitude control (zref), and the step-response thereof

is plotted alongside the corresponding response of the simulation, see Figure 7.5. Seen

from the graph, the step-response of the physical system closely matches that of the

simulation, with a rise-time of 1,39 s. Furthermore, the slowly growing integral of the

altitude, has nearly the same time-delay as in the simulation. The small increase in over-

and undershoot is considered insignificant.

0 2 4 6 8 10 12
Time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

pl
itu

de
 [m

]

Actual
Simulation
Step

Figure 7.5: Comparison between actual and simulated step-response of 0,5 m on the altitude zref .

After the vertical take-off, the landing sequence is initiated, see Figure 7.6. The con-

trolled vertical landing is performed successfully, however, with to high velocity causing

a small bump at landing. The rough landing causes an sudden change in acceleration,

which by the estimator is interpreted as negative motion.

0 2 4 6 8 10 12
Time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

pl
itu

de
 [m

]

Actual
Step

Figure 7.6: The landing procedure, after an initial step of 0,5 m on the altitude.

72 of 89

7.3. POSITION CHAPTER 7. RESULTS

7.3 Position

With both the attitude and altitude stabilised, the semi-stable hover state is achieved,

however, this does not guarantee stability of the horizontal translation. The position

control is needed to stabilise the horizontal system states, as would otherwise drift due

to disturbances and steady-state errors. To evaluate the entire system stability, the po-

sitional controller is evaluted by two individual tests. The first test performs a standard

step on a single axis, while the second test uses a nonlinear trajectory.

7.3.1 Test Setup

To evaluate the position control, the same setup as for the altitude test is used. This time,

however, the Vicon system is used to supply positional updates to the on-board estimator

at 5 Hz. The nonlinear trajectory used as reference for the last test, is generated by the

flight controller, which after the initial take-off phase, feeds x- and y-coordinates to the

position controller (xref , yref).

7.3.2 Results

For the first test, a step of 2 m is applied to the y-axis (yref). The step-response is

plotted alongside the simulation result, see Figure 7.7. From the plot, it is clear that

the position is successfully stabilised, however, that the implemented controller has a

steady-state error and undershoots considerable. Additionally, it can be observed that

the implemented controller is slightly slower with a rise-time of 1,41 s, rather than the

1,20 s of the simulated.

0 2 4 6 8 10 12 14 16
Time [s]

-0.5

0

0.5

1

1.5

2

2.5

A
m

pl
itu

de
 [m

]

Actual
Simulation
Step

Figure 7.7: Comparison between actual and simulated step-response of 2 m on the y-position yref .

73 of 89

7.4. SUMMARY CHAPTER 7. RESULTS

The second test, is done to validate the combined performance of the mono-copter, by

supplying a nonlinear path as reference; a circle with a radius of 0,5 m. The actual

trajectory (position) is plotted alongside the desired path, see Figure 7.8.

Figure 7.8: Trajectory of the mono-copter following a circular path with radius 0,5 m.

As seen from Figure 7.8, the nonlinear path is tracked with varying success. Around

half-way, the tracking suddenly performs poorly. Doing this time, it was observed that

the yaw angle did not follow its reference, but slowly drifted. This has to some degree

been observed in all flights, however only causes problems over longer flights. The

problem is observed even if the mono-copter are stationary on the ground, but only with

the motors spinning.

7.4 Summary

The results presented in this chapter, showcases the empirical performance of the im-

plemented control system. Multiple tests has been performed, to evaluate the proposed

control strategy and the performance of the designed system. The next chapter will

discuss the observations made from these results, and discuss the decisions and methods

used to reach the objectives of this thesis.

74 of 89

CHAPTER 8
Discussion

This chapter will evaluate the results presented in the previous chapter, and discuss the

overall performance of the proposed mono-copter system.

8.1 Results

The results presented in Chapter 7, demonstrates that the proposed control strategy, is

able to stabilise the unstable dynamics of the mono-copter. The data acquired from these

tests is near identical to that of the simulation, which suggests that the assumptions and

simplifications made to develop the dynamic model has been well founded. Nonetheless,

deviations of the empirical data from the simulated response is present, which is to be

expected as the controller has to deal with measurement noise, time-delays, and dynamics

which has not be included in the model. The difference between the simulation and the

empirical results will be used to discuss the performance of the control system in the

following sections.

8.1.1 Attitude control

The overshoot experienced by the roll and pitch control, see Figure 7.2, are not expe-

rienced in simulation or during actual flight. As a result, the unexpected behaviour is

thought to be the effects of the added inertia of the test bench. The added inertia (mass)

changes the dynamics of the mono-copter, making the controller, which is designed for

a lower mass, perform a little under-damped. Similar overshoot is experienced in simu-

lation, when the moment of inertia terms (Jxx and Jyy) are increased, while keeping the

controller gains constant. The attitude control (roll and pitch) is therefor considered to

perform better than the presented results, when the mono-copter is in flight. The yaw

control on the other hand, proved difficult to evaluate, as the yaw estimate from the

IMU quickly drifts after take-off. The controller stabilises the yaw rotation, however,

because the estimate drifts, the controller does not have a solid reference.

75

8.2. IMPLEMENTATION CHAPTER 8. DISCUSSION

8.1.2 Altitude control

The altitude control performs almost identical to that of the simulation, see Figure 7.5.

This is the result of an accurate model and a relatively slow controller, that keeps the

system close to the operating point. The landing on the other hand, could be improved

considerable, f.x. by designing a separate controller used only in the landing phase.

8.1.3 Position control

The slower rise-time and under-damped response experienced on the implemented po-

sition controller, see Figure 7.7, is not observed in simulation, unless a time-delay is

introduced in the feedback loop. In consequence, the less ideal response of the position

controller might be contributed to the time-delay introduced by measuring, transmitting

and estimating the position. To reduce the time-delay, the regular Kalman filter (not

steady-state) might be utilised, where the gains can be tuned more aggressively. An

alternative method, would be to use an on-board positioning system such as GPS, such

that the transmission delay from one system to another is minimised. Nonetheless, the

delay is small enough to keep the system stable, and reduction is only needed to improve

performance.

The most noticeable problem with the position controller, is that of the steady-state er-

ror. This should not be the observed, as the controller is augmented with integral action,

which is designed to suppress any steady-state errors. The occurrence of steady-state

error is considered the result of the used anti-windup method, which for the implemented

system is configured with a too low limit. However, increasing the integral limit, is likely

to increase the overshoot, which is not desired. Another approach, is to reduce the effects

causing the steady-state error, such as balancing the weight distribution or reducing the

bias on the actuators.

8.2 Implementation

The hardware presented in Chapter 2, is based on the concept of a counter-rotating

motor setup, that in theory should counteract the rotational momentum of one single

motor. In practise this did not work, and yaw control had to be implemented to remove

the net-torque generated by the differences in motor velocity. Furthermore, the dual

motor setup generates a lot of noise, caused by increased turbulence, drag and vibrations.

The principle of counter-rotating motors is good, however, in practise a better choice

might be a single motor ducted fan (EDF).

Another more prominent issue of the hardware design, is the placement of the IMU. As

previously described, the yaw estimate drifts whenever the motors are running. The

IMU fuses angular velocity measurements with measurements of the earths magnetic

76 of 89

8.3. APPLIANCE CHAPTER 8. DISCUSSION

field, to produce a yaw estimate with a constant reference; magnetic north. However,

due to the close proximity of the IMU to the motors, the magnetic measurements are

corrupted by magnetic noise produced by the motors. To reduce the influence of the

motors, the IMU must be moved, or shielded somehow.

8.3 Appliance

All the tests performed has been in perfect conditions, with no wind and with very pre-

cise positional measurements. Reusable rocket, however, operate outdoors with varying

weather and wind gusts. A small body such as the proposed mono-copter is much more

susceptible to wind and air resistance, and is therefor not suitable for outdoor flight in

its current state. However, the small form factor does have its merits in an indoor and

wind-free environment, as it originally is intended.

The mono-copter platform is however not only usable in the pursuit of resuable rockets,

but shows great general flight capabilities that might have merits in other fields. One in-

herent feature of the mono-copter is the reduced risk of human injuries, as the propellers

are enclosed.

8.4 Literature

While previous research performed by Carholt et al. [8] purely focused on simulation,

the results provided in this thesis uses a practical approach to demonstrate that the

mono-copter is a robust platform, that is capable of autonomous flight. The model

derived for the mono-copter expands on the modelling principles used to describe multi-

rotors [6], and contributes with a simple approach to describe the forces generated by

the thrust vectoring system. Considering the large gap in research on mono-copters, this

thesis aims to provide a novel contribution in terms of combining the needed theoretical

building blocks, in designing, modelling and stabilising a mono-copter.

77 of 89

CHAPTER 9
Conclusion

The focus of this thesis, has been to develop a mono-copter that resembles a reusable

rocket, and design a control system capable of stabilising the unstable dynamics thereof.

This has been attempted using the linear quadratic regular (LQR) based on a dynamic

system model, derived using the Newton-Euler formulation of a rigid rotating body. Now

recall the problem-formulation:

“How can one design and stabilise an autonomous UAV that uses a single

source of thrust, to achieve vertical take-off and landing, similar to that of a

reusable rocket.”

The principle of thrust vectoring control (TVC) has been applied to an unmanned aerial

vehicle (UAV), in order to stabilise the attitude and position using only a single source

of thrust. This concept is named a mono-copter, and closely resembles the flight princi-

ple used by modern reusable rockets. The mono-copter platform is custom built, using

3D-printing and low cost and readily available avionics and actuators. The stabilising

is achieved using two full-state feedback controllers, designing using a linearized system

model and the well-known linear quadratic regulator (LQR). In order to stabilise the sys-

tem using full-state feedback, a steady-state Kalman filter is designed and implemented,

supplying state estimates for both controllers.

In conclusion, the designed mono-copter is capable of performing vertical take-off, hov-

ering and landings, using a model-based control strategy designed using LQR. The pro-

posed control strategy is capable of stabilising the mono-copter in mid air, and can

recover from large steps and disturbances. On the basis of that, the proposed system is

able to replicate key aspects of reusable rockets, while providing the groundwork used

to test and apply concepts of reusable rockets in a safe environment.

78

Bibliography

[1] Steinar Lag. Reusable rockets: revolutionizing access to outer space. url: https:

//www.dnv.com/to2030/technology/reusable-rockets-revolutionizing-

access-to-outer-space.html.

[2] New Shepard. url: https://www.blueorigin.com/new-shepard/.

[3] Falcon 9. url: https://www.spacex.com/vehicles/falcon-9/.

[4] Michael Belfiore. The Rocketeer. 2013. url: https://foreignpolicy.com/2013/

12/09/the-rocketeer/.

[5] Caleb Henry. America’s space industry has a hiring problem, and it must bat-

tle the Silicon Valley to solve it. May 2018. url: https: // spacenews. com/

americas-space-industry-has-a-hiring-problem-and-it-must-battle-

the-silicon-valley-to-solve-it/.

[6] Marcus Greiff. “Modelling and Control of the Crazyflie Quadrotor for Aggressive

and Autonomous Flight by Optical Flow Driven State Estimation”. MA thesis.

Department of Automatic Control: Lund University, 2017.

[7] Guilherme V. Raffo, Manuel G. Ortega, and Francisco R. Rubio. “An integral

predictive/nonlinear H-infinity control structure for a quadrotor helicopter”. In:

Automatica 46.1 (2010), pp. 29–39. issn: 0005-1098.

[8] O. C. Carholt et al. “Design, modelling and control of a Single Rotor UAV”. In:

2016 24th Mediterranean Conference on Control and Automation (MED). 2016,

pp. 840–845.

[9] Army-technology.com. Honeywell T-Hawk Micro Air Vehicle (MAV). 2007. url:

https://www.army-technology.com/projects/honeywell-thawk-mav-us-

army/.

[10] Dan Maloney. Single-Rotor Drone: A Thrust-Vectoring Monocopter. 2018. url:

https : / / hackaday . com / 2018 / 08 / 31 / single - rotor - drone - a - thrust -

vectoring-monocopter/.

[11] A. Bacchini and E. Cestino. “Key aspects of electric vertical take-off and landing

conceptual design”. In: Proceedings of the Institution of Mechanical Engineers,

Part G: Journal of Aerospace Engineering 234 (2020), pp. 774–787.

[12] Eric Stoneking. “Newton-Euler Dynamic Equations of Motion for a Multi-Body

Spacecraft”. In: (Aug. 2007).

[13] P. Foehn and D. Scaramuzza. “Onboard State Dependent LQR for Agile Quadro-

tors”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).

2018, pp. 6566–6572. doi: 10.1109/ICRA.2018.8460885.

79

https://www.dnv.com/to2030/technology/reusable-rockets-revolutionizing-access-to-outer-space.html
https://www.dnv.com/to2030/technology/reusable-rockets-revolutionizing-access-to-outer-space.html
https://www.dnv.com/to2030/technology/reusable-rockets-revolutionizing-access-to-outer-space.html
https://www.blueorigin.com/new-shepard/
https://www.spacex.com/vehicles/falcon-9/
https://foreignpolicy.com/2013/12/09/the-rocketeer/
https://foreignpolicy.com/2013/12/09/the-rocketeer/
https://spacenews.com/americas-space-industry-has-a-hiring-problem-and-it-must-battle-the-silicon-valley-to-solve-it/
https://spacenews.com/americas-space-industry-has-a-hiring-problem-and-it-must-battle-the-silicon-valley-to-solve-it/
https://spacenews.com/americas-space-industry-has-a-hiring-problem-and-it-must-battle-the-silicon-valley-to-solve-it/
https://www.army-technology.com/projects/honeywell-thawk-mav-us-army/
https://www.army-technology.com/projects/honeywell-thawk-mav-us-army/
https://hackaday.com/2018/08/31/single-rotor-drone-a-thrust-vectoring-monocopter/
https://hackaday.com/2018/08/31/single-rotor-drone-a-thrust-vectoring-monocopter/
https://doi.org/10.1109/ICRA.2018.8460885

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Wojciech Giernacki et al. “Performance of Coaxial Propulsion in Design of Multi-

rotor UAVs”. In: vol. 440. Mar. 2016, pp. 523–531.

[15] National Aeronautics and Space Administration (NASA). Gimballed Thrust. Vis-

ited: 19-05-2021. url: https : / / www . grc . nasa . gov / www / k - 12 / rocket /

gimbaled.html.

[16] url: https://www.rocketlabusa.com.

[17] Hunini. JASDF AAM-5 Kai TVC behn right rear view at Gifu Air Base November

19, 2017. 2017. url: https://upload.wikimedia.org/wikipedia/commons/

0/0e/JASDF_AAM-5_Kai_TVC_behn_right_rear_view_at_Gifu_Air_Base_

November_19%2C_2017.jpg.

[18] KST DS213 DAVIGA. url: https://wiki.rc-network.de/wiki/KST_DS213_

DAVIGA.

[19] Emil Bjerregaard Jacobsen. Position Estimation of Unmanned Aerial Vehicles in

GPS denied locations. 9th semester internship report. 2021.

[20] D. A. Mercado et al. “GPS/INS/optic flow data fusion for position and Velocity

estimation”. In: (2013), pp. 486–491.

[21] KISS ESC 3-6S 32A. Visited: 05-04-2021. url: https://www.flyduino.net/en_

US/shop/product/pr2200-kiss-esc-3-6s-32a-45a-limit-32bit-brushless-

motor-ctrl-2961.

[22] Pololu 5V, 2.5A Step-Down Voltage Regulator D24V22F5. Visited: 05-04-2021.

url: https://www.pololu.com/product/2858.

[23] Kimon P. Valavanis and George J. Vachtsevanos. Handbook of Unmanned Aerial

Vehicles. Springer Publishing Company, Incorporated, 2014. isbn: 9048197066.

[24] E.L. Houghton et al. Aerodynamics for Engineering Students. Seventh Edition.

2017. isbn: 978-0-08-100194-3. url: https://www.sciencedirect.com/science/

article/pii/B9780081001943000018.

[25] National Aeronautics and Space Administration (NASA). Momentum effects on

Aerodynamic Forces. Visited: 05-04-2021. url: https://www.grc.nasa.gov/www/

k-12/airplane/momntm.html.

[26] William L. Brogan. Modern Control Theory (3rd Ed.) Prentice-Hall, Inc., 1991.

isbn: 0135897637.

[27] M.S. Triantafyllou and F.S. Hover. Maneuvering and Control of Marine Vehicles.

Massachusetts of Institute of Technology.

[28] João P. Hespanha. Linear Systems Theory: Second Edition. Princeton University

Press, 2018. isbn: 9780691179575.

[29] Ross A. Knepper et al. Foundations of Robotics Course Notes. Cornell University,

2019. url: https://rpal.cs.cornell.edu/foundations/.

[30] Kalman Filtering: Theory and Practice Using MATLAB. John Wiley & Sons, Ltd,

2008. isbn: 9780470377819.

80 of 89

https://www.grc.nasa.gov/www/k-12/rocket/gimbaled.html
https://www.grc.nasa.gov/www/k-12/rocket/gimbaled.html
https://www.rocketlabusa.com
https://upload.wikimedia.org/wikipedia/commons/0/0e/JASDF_AAM-5_Kai_TVC_behn_right_rear_view_at_Gifu_Air_Base_November_19%2C_2017.jpg
https://upload.wikimedia.org/wikipedia/commons/0/0e/JASDF_AAM-5_Kai_TVC_behn_right_rear_view_at_Gifu_Air_Base_November_19%2C_2017.jpg
https://upload.wikimedia.org/wikipedia/commons/0/0e/JASDF_AAM-5_Kai_TVC_behn_right_rear_view_at_Gifu_Air_Base_November_19%2C_2017.jpg
https://wiki.rc-network.de/wiki/KST_DS213_DAVIGA
https://wiki.rc-network.de/wiki/KST_DS213_DAVIGA
https://www.flyduino.net/en_US/shop/product/pr2200-kiss-esc-3-6s-32a-45a-limit-32bit-brushless-motor-ctrl-2961
https://www.flyduino.net/en_US/shop/product/pr2200-kiss-esc-3-6s-32a-45a-limit-32bit-brushless-motor-ctrl-2961
https://www.flyduino.net/en_US/shop/product/pr2200-kiss-esc-3-6s-32a-45a-limit-32bit-brushless-motor-ctrl-2961
https://www.pololu.com/product/2858
https://www.sciencedirect.com/science/article/pii/B9780081001943000018
https://www.sciencedirect.com/science/article/pii/B9780081001943000018
https://www.grc.nasa.gov/www/k-12/airplane/momntm.html
https://www.grc.nasa.gov/www/k-12/airplane/momntm.html
https://rpal.cs.cornell.edu/foundations/

BIBLIOGRAPHY BIBLIOGRAPHY

[31] Nicholas Assimakis, Emmanouil Psarakis, and Demetrios Lainiotis. “Steady State

Kalman Filter: A New Approach.” In: Neural Parallel & Scientific Comp. 11 (Jan.

2003), pp. 485–490.

[32] Market leading RTOS (Real Time Operating System) for embedded systems with

Internet of Things extensions. May 2021. url: https://www.freertos.org/.

[33] Basic Linear Algebra. url: https://github.com/tomstewart89/BasicLinearAlgebra.

[34] Blake West. DSHOT on Mbed. Visited: 25-05-2021. url: https://os.mbed.com/

users/bwest32/notebook/dshot.

[35] Airfoiltools.com. Joukowski 9% Symmetrical Airfoil. url: http://airfoiltools.

com/airfoil/details?airfoil=joukowsk0009-jf.

81 of 89

https://www.freertos.org/
https://github.com/tomstewart89/BasicLinearAlgebra
https://os.mbed.com/users/bwest32/notebook/dshot
https://os.mbed.com/users/bwest32/notebook/dshot
http://airfoiltools.com/airfoil/details?airfoil=joukowsk0009-jf
http://airfoiltools.com/airfoil/details?airfoil=joukowsk0009-jf

APPENDIX A
Motor Thrust Tests

This appendix describes a series of test performed to fidn the correlation between motor

thrust and RPM (thrust curve). This is useful, to compute the steady-state motor

velocity, needed to counter-act the gravity in the hover point. Furthermore, by analysing

the response of a single step on the motor, a model describing the motor dynamics can

be approximated.

A.1 Test setup

To measure the thrust Ft generated by the motors, the principle of moment arm is

utilised to convert the motor force Ft to a equal buts 90° rotated force. In order to

measure the generated thrust a custom setup has been produced, see Figure A.1. The

thrust is manually measured, while the motor RPM, current and voltage is measured by

requesting telemetry from the ESCs.

(a) Test of a single motor in free air (b) Test of single and dual motor in duct

Figure A.1: Comparison between the two test setup used.

Using this setup a series of tests is performed.

82

A.2. RESULTS APPENDIX A. MOTOR THRUST TESTS

A.2 Results

To generate a thrust curve, the motor velocity is increased in steps and the throttle

is measured. Four tests in total is made, one for each type of propulsion system, see

Figure A.2.

0 5 10 15 20 25
Motor Velocity [kRPM]

0

0.2

0.4

0.6

0.8

1

1.2
Th

ru
st

 [k
g]

Single (Free air)
Single (Duct)
Dual (Same Direction)
Dual (Counter Rotating)

Figure A.2: The results of the four separate motor tests. All four setup performs similarly, however,

the counter-rotating setup yields the most thrust.

To approximate a dynamic model of the motor, a step is applied to the motor ESC, and

the output is monitored, see Figure A.3.

-0.1 0 0.1 0.2 0.3 0.4
Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ot

or
 V

el
oc

ity
 [k

R
PM

]

Figure A.3: The step-response of the motor velocity, with a DSHOT step of 200.

83 of 89

A.3. PARAMETER ESTIMATION APPENDIX A. MOTOR THRUST TESTS

A.3 Parameter Estimation

As described in Chapter 3, the motor thrust can be described as a second order poly-

nomial of the motor velocity.

Ft(ω) = Kf · ω2
t (A.1)

From the motor test the same is observed. Using the measurements acquired from motor

tests, a second order polynomial fit is made using the MATLAB function polyfix(),

which performs a regular polynomial fit, while forcing the fit specific points (0,0).

0 5 10 15 20 25
Motor Velocity [kRPM]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Th
ru

st
 [k

g]

Measurements
Polynomial fit

Figure A.4: Polynomial fit of motor thrust, which is forced through origin. The x-axis unit is kilo

RPM (a thousand RPM).

The polynomial fit, yields the thrust coefficient Kf = 0.002140127.

84 of 89

A.4. SYSTEM IDENTIFICATION APPENDIX A. MOTOR THRUST TESTS

A.4 System Identification

Using MATLABs ”System Identification Toolbox”, the step-response, see Figure A.5

is fitted to match a first order system.

ωt(s)

ut(s)
=

Kt

τts+ 1
(A.2)

With the DC gain Kt = 19.89 · 10−3 and the time-constant τt =0,0345 s.

-0.1 0 0.1 0.2 0.3 0.4
Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ot

or
 V

el
oc

ity
 [k

R
PM

]

Measured
Model

Figure A.5: System Identification applied on the motor velocity step-response.

The DC gain effectively transfers DSHOT throttle to a corresponding RPM value, while

the time-constant describes the dynamics of the motor.

85 of 89

APPENDIX B
Thrust Vane Design

To describe the amount of thrust reflected by the thrust vanes, it is important to know

the lift and drag coefficients. These coefficients cannot be calculated theoretically and

must instead be obtained experimentally using a wind-tunnel or by running aerodynamic

simulations.

B.1 Shape

To reduce the time-consuming task of achiveing these coefficients for a custom thrust

vane, a preexisting airfoil design has been chosen as the shape of the thrust vanes. The

specific airfoil chosen is a symmetrical airfoil known as the Joukovsky airfoil, see Figure

B.1.

Figure B.1: Joukovsky airfoil shape [35]

The shape and characteristics for the Joukovsky shape is freely available on the internet.

The freely available data includes lift- and drag-coefficients measured at different angles

of attack (α). These measurements will be applied to find an approximate model for the

lift and drag coefficients that can be applied in a linear model.

B.2 Characteristics

The coefficients of lift and drag, for varying angle of attack are found using the iterative

aerodynamic simulation tool called XFoil [35]. The data is made freely available by

Airfoiltools.com [35].

86

B.3. PARAMETER ESTIMATION APPENDIX B. THRUST VANE DESIGN

B.3 Parameter estimation

From the plots shown in Figure B.2, it is clear that for small angles the lift coefficient

can be modelled as a linear function and the drag coefficient can be modelled as a

constant. Using these assumptions, the measurements in the interval 0° to 10° is fitted

to the linear model, see Figure B.2a. This results in a slope of CLα = 0.1081 for the

lift coefficient, and a constant of CD0 = 0.0145 for the drag coefficient.

-20 -10 0 10 20
Angle of attack , [deg]

-1.5

-1

-0.5

0

0.5

1

1.5

Li
ft

co
ef

fic
ie

nt
 C

L
 [-

]

Measurements
Linear fit

(a) Linear fit of lift coefficient

-20 -10 0 10 20
Angle of attack , [deg]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

D
ra

g
co

ef
fic

ie
nt

 C
D

 [-
]

Measurements
Linear fit

(b) Linear fit of drag coefficient

Figure B.2: Linear models for both lift and drag coefficient

B.4 Implementation

The shape of the Joukovsky airfoil is accessible as a set of coordinates or as a vector-file.

Using the vector-file the shape is imported into 3D-CAD modelling software, where it

can be used to extrude the shape, see Figure 3.5.

Figure B.3: Import of airfoil shape into CAD software

87 of 89

APPENDIX C
Nonlinear Simulation

In order to use the derived system model, a simulation build in MATLAB Simulink is

constructed, see Figure C.1. The simulation is available at the Github repository, as

the rest of the software, see Chapter 6.

Position	Controller

Setpoints

Nonlinear	System	Model
Hover	Controller

LQR	Hover
Control

Nonlinear	Dynamics

LQR	Position
Control

Euler
b w

Body	Velocity
Rotation

Hover	Control
States

Position	Control
States

PositionAltitudeAttitude

Attitude	Ref

Omega	Ref

Altitudinal	Ref

Position	Ref

Velocity	Ref

ref yaw

Yaw	Setpoint
Generator

w
Euler b

Position	Error
Rotation

in out

Yaw	Error
Correction

yref

xref

attitude

attitude

yref

xref
yaw_ref

z_ref

pitch_ref

roll_ref

roll_ref

pitch_ref

x_pos

x_hov

x_hov

x_pos

x

y

Trajectory	Generator

xref

yref

z_ref

z

yaw_ref

Attitude

vx
vy

x
y

Omega

vz

z

Figure C.1: Overview of the MATLAB Simulink simulation, divided into three sections; nonlinear

system model, hover controller and position controller.

The simulation uses the S-Function block, to call the nonlinear differential equations

describing the dynamics of the mono-copter. This includes all the rotational and trans-

lational dynamics, motor model and the nonlinear lift- and drag-equations. The rest of

the simulation is done purely in Simulink, however with the gain-matrices being com-

puted beforehand in a separate matlab-script.

88

APPENDIX D
Schematics

D.1 Carrier board

The carrier board houses the main micro-processor and the WiFi-module, and all the

connectors needed to interface with the sensors and actuators, see Figure D.1.

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 5-24-2021 Sheet of
File: C:\Users\..\ControlPCB.SchDoc Drawn By:

GND
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12 P13

P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
3V3

GND
VIN

Te
en

sy
 4

.0

U1

TEENSY 4.0

GND

GND

5V

SERVO1

5V

SERVO1
SERVO2
SERVO3
SERVO4

TLM1

TLM2
DSHOT1
DSHOT2

MISO
MOSI
CS1

SCK

GND

3V3

WIFI RX
WIFI TX

CS1

SCK
MISO
MOSI

GND
3V3
EN
GPIO36
GPIO39
GPIO34
GPIO35
GPIO32
GPIO33
GPIO25
GPIO26
GPIO27
GPIO14
GPIO12

G
N

D
G

P
IO

13
G

P
IO

9
G

P
IO

10
G

P
IO

11
G

P
IO

6
G

P
IO

7
G

P
IO

8
G

P
IO

15
G

P
IO

2

GPIO0
GPIO4

GPIO16
GPIO17

GPIO5
GPIO18
GPIO19

NC
GPIO21

RX0
TX0

GPIO22
GPIO23

GND

ESP32-S

U2

ESP32-S

3V3

GND

GND

3V3

SCL
SDA

RESET

WAKE
INT

1

9
J7

IMU

RESET

WAKE
INT

J9

POWER

5V

GND

J10

FLOW

3V3

GND

CS2

SCK
MISO
MOSI

CS2

SDA
SCL

PWM1
PWM2

PWM3
PWM4

J11

PWM INPUT

5V

GND

PWM1
PWM2
PWM3
PWM4

J8

LIDAR

J1

SERVO1
GND

SERVO2

5VJ2

SERVO2
GND

SERVO3

5VJ3

SERVO3
GND

SERVO4

5VJ4

SERVO4
GND

J5

MOTOR1

J6

MOTOR2

DSHOT1

5V

GND

3V3

J13

TX

J12

RX

WIFI TX

WIFI RX

SW1

RESET

SW2

FLASH

1
2

R1
10k

GND GND

1
2

R2
10k

3V3

GND

GND

VIN

GND

VOUT

U3

LT1086CT-3.3

C1
1uF

C2
1uF

GND

1 2
R3

2k

1 2
R5

2k

1
2

R6
5k

GND

DSHOT2

TLM2TLM1 1
2

R4
5k

12
R7

1k

1 2

LED1

3V3

GND

1
2

R8
1k

GND

12
LED2

GND

Power Sensor Connectors

Main Processor WiFi Module

Actuator Connectors

Figure D.1: Schematic overview of the carrier board, used for the flight controller.

89

	Front page
	Title page
	Preface
	 Analysis
	Introduction
	Problem Statement
	State of the Art
	Summary

	System Design
	System Overview
	Functional requirements

	Actuation
	Propulsion
	Speed Controller
	Thrust Vectoring

	Communication
	Sensors
	Orientation
	Absolute position
	Relative Altitude
	Linear velocity

	Flight Controller
	PCB

	Power Management
	PCB

	Summary

	Modelling
	Model Preliminaries
	Coordinate frames
	Kinematics
	Modelling principle

	Moments and forces
	Motor Propulsion Force
	Thrust Vane Forces

	Rotational Dynamics
	Rotation in body frame
	Rotation in inertial frame

	Translational Dynamics
	Translation in body frame
	Movement in world frame

	Linear System Model
	State-space representation
	Linearisation

	Summary

	Control
	Full-state feedback
	Controllability
	Linear Quadratic Regulator
	Integral action

	Control strategy
	Hover Controller
	Control considerations
	Roll and pitch control
	Yaw control
	Altitude control

	Position Controller
	Control considerations
	Position control
	Time-delay margin
	Trajectory tracking

	Summary

	State Estimation
	State measurements
	Estimator Model
	Discrete-time model

	Kalman Filter
	Algorithm
	Steady-State filter

	Estimation evaluation
	Visual aided inertial estimation
	Position updates

	Summary

	Software
	Software structure
	Flight Controller
	Main Loop
	Class: Sensors
	Class: Control
	Class: Communication
	Class: Config
	Class: DShot

	Ground Station
	Command structure
	Telemetry and logging

	Summary

	Results
	Attitude Control
	Test Setup
	Results

	Altitude
	Test Setup
	Results

	Position
	Test Setup
	Results

	Summary

	Discussion
	Results
	Attitude control
	Altitude control
	Position control

	Implementation
	Appliance
	Literature

	Conclusion
	Bibliography
	Motor Thrust Tests
	Test setup
	Results
	Parameter Estimation
	System Identification

	Thrust Vane Design
	Shape
	Characteristics
	Parameter estimation
	Implementation

	Nonlinear Simulation
	Schematics
	Carrier board

