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Synopsis:
Introduktion: Anvendelsen af fritekstdoku-
mentation understøtter kliniske praksis, men der
opstår udfordringer ved genanvendelse af fritekst-
dokumenter. Da det ikke er muligt at genanvende
alt information, bør fokus være på bevarelse af
den situationelle kontekst ved håndteringen af
udfordringerne. Derfor vil dette studie udforske,
hvordan den situationelle kontekst kan bevares
når relevant information udtrækkes og struktur-
eres fra fritekstdokumenter, for at opnå seman-
tisk interoperabilitet.
Metode: Udskrivningsepikriser fra N2C2 2010
konkurrencen blev anvendt som datagrundlag,
som sammen med en implementeringskontekst
satte dette rammen for udviklingen. HL7 FHIR
ressourcer, SNOMED CT udtryk og NLP sys-
temet, cTAKES, blev anvendt til at struk-
turere, kode og udtrække information fra ud-
skrivningsepikriserne. cTAKES blev justeret
vha. en agil udviklingstilgang. Fokus for jus-
teringerne var at inkludere mere kontekstuel in-
formation ved brug af post-koordinerede udtryk
fra SNOMED CT. Dette var testet op imod en
gold standard.
Resultat: De 21 validerede FHIR profiler in-
deholdte 95,5% af information fra udskrivn-
ingsepikriserne. Det justerede cTAKES havde en
F-score på 0,120.
Konklusion: Den situationelle kontekstuelle in-
formation fra fritekstdokumenter kan bevares ved
brug af HL7 FHIR og SNOMED CT. Derimod er
automatiseret dataudtræk ved brug af cTAKES
endnu ikke moden til klinisk anvendelse.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun
ske efter aftale med forfatterne.
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Abstract:
Introduction: The use of free text documen-
tation supports clinical practice but challenges
arise when reusing free text documents. Since
it is not possible to reuse all information within
healthcare, a focus on preserving the situational
context must be retained when handling the
challenges. Therefore, the objective of this study
was to explore how the situational context can be
preserved when extracting and structuring rel-
evant information from free text documents in
order to obtain semantic interoperability.
Method: Discharge summaries from the N2C2
2010 challenge were used as the data foundation,
which together with an implementation context
set the scope for the development. HL7 FHIR re-
sources, SNOMED CT expressions, and the NLP
system cTAKES, were used to structure, encode,
and extract information from the discharge sum-
maries. cTAKES was adjusted using an agile
development approach. The focus of the adjust-
ments were to include more contextual informa-
tion by using post-coordinated expressions from
SNOMED CT, and these were tested against a
gold standard.
Result: The 21 FHIR profiles contained 95.5%
of information from the discharge summaries.
The adjusted cTAKES had a F-score of 0.120.
Conclusion: The situational contextual infor-
mation from free text documents can be pre-
served using HL7 FHIR and SNOMED CT.
However, automatic information extraction us-
ing cTAKES, lack the maturity for clinical use.

The content of the report is freely available, but publication (with source reference) may
only take place in agreement with the authors.



Preface

This report communicates the study with the title ’Preserving Contextual Information
from Unstructured Free Text Documents Using NLP, SNOMED CT, and HL7 FHIR to
Achieve Semantic Interoperability’. This study constitutes the Master’s Thesis authored
by group 21gr10407, 4th semester Master of Biomedical Engineering and Informatics at
Aalborg University. The authors would like to thank Louise Pape-Haugaard from Aalborg
University for inspiring supervision and counseling, and Maibrit Pape from Aalborg
University Hospital for participating in an interview.
The authors of this study gained access to data sets from the N2C2 challenges [Department
of Biomedical Informatics Harvard Medical School, 2018], but are not allowed to share the
data with external partners. For this reason, all examples from the data foundation are
given with inspiration from the data set.
In the study, several FHIR profiles are developed and adjustments are applied to the
default cTAKES system. The profiles and source code are available for supervisor and
external examiner from June 21st till June 28st 2021 on the following link: https:
//github.com/JohanneJensen/21gr10407.

Johanne Krogsgaard Jensen Thea Mentz Sørensen
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Reading Instructions

In the report, the problem domain and the objective are initially presented, followed by
method and result for FHIR profiling, identification of current literature on NLP systems,
and adjustments of the default cTAKES system. The methods and results are then
discussed, followed by a conclusion.
The Harvard reference style is used for both active and passive references in the report.
Active references are incorporated in a sentence, e.g. "In the article by Peterson et al.
[2020] HL7 FHIR...". Passive references are in the end of a sentence, e.g. "...free text
are unstructured [Meystre et al., 2017]." Passive references before a period covers the
particular sentence, and passive references after a period covers the till the prior reference
or paragraph. In the bibliography all references can be seen, sorted by family name of the
first author.
Tables and figures are referred to using the chapter and an increasing number, e.g. figure
2.1 refers to the first figure in chapter 2.
Abbreviations are presented in parentheses after the word or phrase they describe. An
overview of abbreviations used more than once throughout the report can be seen on
page vi.
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Abbreviations

BERT Bidirectional Encoder Representations from Transformers
CDA Clinical Document Architecture
CEN European Committee for Standardization
cTAKES Clinical Text Analysis and Knowledge Extraction System
EHR Electronic Health Record
FHIR Fast Healthcare Interoperability Resources
FN False negatives
FP False positives
HL7 Health Level 7
ISO International Organization for Standardization
MIMIC-III Medical Information Mart for Intensive Care III
MRCM Machine Readable Concept Model
MTERMS Medical Text Extraction, Reasoning, and Mapping System
NLP Natural Language Processing
N2C2 National NLP Clinical Challenges
POS Part-of-speech
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-

Analyses
SNOMED CT Systematized Nomenclature of Medicine Clinical Terms
TP True positives
TUI Type Unique Identifier
UMLS Unified Medical Language System
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Introduction 1
Semantic interoperability involves seamless exchange of healthcare data between health
information systems with an unambiguous understanding of data. It has the potential
to save time for healthcare professionals and reduce errors [Benson and Grieve, 2016c].
Semantic interoperability allows healthcare data to be reused for secondary purposes like
clinical decision support and research [Garde and Knaup, 2006]. In literature it is argued
that it is not enough to achieve semantic interoperability, as some contextual information
is missing despite its importance when reusing data. The ability to share information while
maintaining the original perception of the context is called pragmatic interoperability. In
addition to semantic interoperability, pragmatic interoperability rely on all information
must be understood in the exact same way by the sender and receiver. [Asuncion and van
Sinderen, 2010]
There are several reasons why interoperability of healthcare data in general is challenging
including the complexity of information, various data types, variability of treatments,
life span of information, demand for a holistic view of the patient, different users of the
healthcare data, and patient safety [Garde and Knaup, 2006].
Healthcare data in an electronic health record (EHR) are stored as different data types
e.g. narratives, documents, images, or laboratory results [Garde and Knaup, 2006]. These
data types have varying degrees of structure where narratives and documents with free
text are unstructured [Meystre et al., 2017]. In these unstructured data types, a lot of
information is contained [Meystre et al., 2017; Chen et al., 2009; Meystre et al., 2008]. In
order to achieve pragmatic interoperability of healthcare data, unstructured data need to
be structured and therefore it is relevant to consider; why unstructured clinical data are
necessary in healthcare, which challenges might arise when trying to achieve pragmatic
interoperability of unstructured clinical data, and if it is possible to achieve at all.
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Problem Analysis 2
This chapter represents an analysis of the problem domain and possible solutions. The
methodological approach for collecting relevant knowledge for this chapter can be seen in
appendix A.

2.1 The Need for Free Text Documentation

The unstructured data types described in section 1 on the previous page are convenient
to use when presenting medical concepts or events in an EHR [Lin et al., 2015] and will
henceforth be referred to at free text documents. In the opinion papers by González
Bernaldo de Quirós et al. [2018] and Roberts [2017] it was questioned if it makes sense
to structure all information about a patient. By doing so, the patient becomes a member
of a population with similar measured values or diagnoses, which is valued for research
purposes. On the contrary, is usage of free text documentation which allows to consider
the patient in a holistic view, to treat the patient as an individual, and thereby making
it possible to give them the optimum care. [González Bernaldo de Quirós et al., 2018;
Roberts, 2017]
When documenting, healthcare professionals prefer to use free text written in natural
language as it allows flexibility and efficiency [González Bernaldo de Quirós et al., 2018;
Rosenbloom et al., 2011]. This is emphasized by the fact that around 70% of data available
in an EHR are free text documents, and this data are elaborated by direct entry by
healthcare providers, transcription of dictations, or use of speech recognition applications
[Roberts, 2017; Meystre et al., 2008] By using natural language documentation the
healthcare professionals can be expressive and describe impressions, thoughts, reasoning,
level of concern, and uncertainties to those reviewing the free text document [Peterson
et al., 2020; Rosenbloom et al., 2011]. Additionally, free text documents are often written
under time pressure, which can result in parenthetical expressions, acronyms, and jargon
being used, as well as eliding words. These elements contribute to increase the density
of information in the free text documents. [Leaman et al., 2015] For these reasons, it is
considered an advantage to use free text documents in medical areas with time pressure
e.g. acute care making documentation flexible and efficient.
The context in which data are collected to an EHR is described through relations and
situations that contributes to a meaningful understanding of the data [ISO/TC 215, 2005].
The context can be more or less explicitly described in an EHR, however it is crucial for the
reliability when others try to interpret or reconstruct the meaning of the data. Though,
when structuring the process of data collection a loss of contextual information occurs.
[González Bernaldo de Quirós et al., 2018; Roberts, 2017; Patel et al., 2002; Ingenerf,
1999]
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2.2. Free Text or Structured Data Entry Aalborg Universitet

To summarize, it is important to retain the possibility for free text documentation to 1)
ensure individualized care, 2) support workflow of healthcare professionals, and 3) secure
that the contextual information is maintained when reviewing the data.

2.2 Free Text or Structured Data Entry

Structured data entry can be rich and convenient, but healthcare professionals cannot
express a situation further than a pre-defined set of data entries [Roberts, 2017;
Rosenbloom et al., 2011; Berg, 2001]. According to the articles by Jones et al. [2020];
Roberts [2017] and Meystre et al. [2008] a pre-defined set of characteristics and features
are not sufficient to describe the following three areas; 1) considerations of e.g. personal,
cultural, and social circumstances of the patient, 2) complex interplay e.g. between the
patient’s life, diseases, symptoms, and treatments, and 3) clinical considerations of e.g.
intervention, pathology reports, imaging reports, and diagnoses.
Diagnoses and symptoms should according to the article by Meystre et al. [2008] be
collected as free text. Though it has to be considered that this article is of an earlier date
than the articles by Roberts [2017] and Jensen et al. [2012], who state that diagnoses and
symptoms can be collected in a structured data format. Besides diagnoses and symptoms,
structured data entry can be applied to medication Roberts [2017]; Jensen et al. [2012],
radiological image data, and laboratory test results Jensen et al. [2012].
When using structured data entry, it has to be adjusted to the individual healthcare
professional in order to avoid possible interruptions of their workflow [Galster, 2013a].
The observational study by Galster [2013a] showed that the structure of data collection
performed by the healthcare professionals, was unique for almost every person. It was
additionally found that there is a disagreement between the structure of the EHR, and
the way healthcare professionals prefer to enter data. This disagreement can result in an
interruption of workflow and possibly induced risks of an increased mental load on the
healthcare professionals as well as an increased risk for medical errors. [Galster, 2013a;
Greenhalgh et al., 2008] For this reason, it is important to have exhaustive knowledge
about the workflow and implement flexibility before structuring data collection.

2.3 Obtain Information from Free Text Documents

Currently, there is a lot of relevant, and unused data stored in free text documents, which
are fundamental to obtain if more is to be learn from this healthcare data [Jones et al.,
2020; Viani et al., 2018]. Obtained relevant information from the free text documents
can be reused for multiple purposes ranging from large scale research to quality assurance
and patient management [Jones et al., 2020; Wong et al., 2018; Chen et al., 2009], also
including possible identification of adverse medication events or clinical decision support
[Wong et al., 2018].
According to an article by Peterson et al. [2020] the responsibility of structured data entry
or extraction of relevant information from free text documents cannot be fully assigned
to the healthcare professional. This is not a feasible option as it requires significant time
and effort, which would be added upon an already full workload, why it must be handled
through coding and information extraction [Peterson et al., 2020].
Through the structured literature search, see appendix A, it was found possible either to
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2.3. Obtain Information from Free Text Documents Aalborg Universitet

structure the writing of the free text documents or extract data from free text documents,
called semi-automatic annotation or information extraction, respectively [Lin et al., 2015].
Structuring of data can be used to enable interoperability, and thereby making it possible
to share necessary patient data [Wong et al., 2018].
Semi-automatic annotation involves construction of a pre-defined lexicon, which is mapped
to a standard medical terminology. The lexicon is used when a healthcare professional is
documenting e.g. a patient’s disease. The healthcare professionals are presented to a list
of words or phrases based on the written characters, from which a fitting word or phrase
can be chosen. The chosen word or phrase are mapped to a terminology binding in the
information system, securing unambiguity of the it. [Peterson et al., 2020; Lin et al., 2015]
Natural language processing (NLP) is a subtype of information extraction and is often used
to extract information for research [Peterson et al., 2020; Gaudet-Blavignac et al., 2018;
Roberts, 2017; Lin et al., 2015; Chen et al., 2009; Lussier et al., 2001]. NLP can be used
to extract and encode data from free text documents. It is, contrary to semi-automatic
annotation, applied after the free text documents are elaborated. [Chen et al., 2009]

2.3.1 The Contextual Challenges

As mentioned in section 2.2 on the preceding page it is crucial to describe the context
to enable reliable reuse of the collected healthcare data. Despite this, not all contextual
information is collected and documented, which might be due to healthcare professionals
being selective [Nelson, 1997] or have limited time to document [Galster, 2013b]. A
situation where contextual information is shared but not documented is at a morning
conference for healthcare professionals. Here many questions are asked concerning a
patient e.g. who was the healthcare professional that made a certain decision, where did a
given information collection take place, or under what circumstances was the information
collected. [Galster, 2013b] This information concern both the organizational context e.g.
the structure of the department and a common professional vocabulary [Nelson, 1997],
as well as the situational context e.g. the experience of the healthcare professional and
the patient’s condition [Galster, 2013b]. For both the organizational and the situational
context it is important to understand the circumstances under which the information is
collected [Galster, 2013b].
As mentioned, not all contextual information is documented and when structuring
data there are a loss of information, which makes it impossible to achieve pragmatic
interoperability. Though, it is assumed possible to achieve semantic interoperability, as
data from the situational context is partly documented and therefore structured.

2.3.2 The Linguistic Challenges

Several studies state multiple challenges which arise when attempting to extract relevant
information from unstructured data [González Bernaldo de Quirós et al., 2018; Roberts,
2017; Leaman et al., 2015; Chen et al., 2009; Meystre et al., 2008; Lussier et al., 2001].
Free text documents are written to contain a high density of information [Leaman et al.,
2015], why many abbreviations and acronyms are used [González Bernaldo de Quirós
et al., 2018; Roberts, 2017; Leaman et al., 2015; Chen et al., 2009; Meystre et al., 2008;
Lussier et al., 2001] along with local jargon and dialect [González Bernaldo de Quirós
et al., 2018; Leaman et al., 2015]. Free text documents are additionally nuanced [Peterson
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2.4. Achieving Semantic Interoperability of Free Text Aalborg Universitet

et al., 2020; Roberts, 2017] and ambiguities can easily occur in jargon, abbreviation, or
acronyms [González Bernaldo de Quirós et al., 2018; Roberts, 2017; Chen et al., 2009;
Lussier et al., 2001]. Misspelling [Chen et al., 2009; Meystre et al., 2008; Lussier et al.,
2001], incorrect grammar, and absence of words which potentially could be deduced based
on the context [Leaman et al., 2015; Meystre et al., 2008], can occur as a result of the
hectic situations where the information is collected. The hectic situations might also
explain why attempts to do ad-hoc formatting are seen in clinical free text e.g. by the use
of sections [Leaman et al., 2015; Meystre et al., 2008]. Further, the use of negations as well
as words describing uncertainties are common [Peterson et al., 2020; Roberts, 2017; Chen
et al., 2009]. Lastly, for free text documents originally written in an EHR, the possible
characters are only limited to which can be typed or pasted, why it can be challenging to
recognize in secondary systems [Leaman et al., 2015; Meystre et al., 2008].

2.4 Achieving Semantic Interoperability of Free Text

2.4.1 Standard Terminology

Information from free text documents has to be computer-readable to facilitate semantic
interoperability across healthcare information systems [Chen et al., 2009]. To accommodate
the mentioned difficulties about extracting relevant information from free text documents,
the application of standard terminologies are proposed in the articles by Peterson et al.
[2020] and Chen et al. [2009]. Using standard terminologies it is possible to encode words
and phrases from the free text documents [Peterson et al., 2020; Roberts, 2017; Chen
et al., 2009]. The creation of mapping between the words and phrases, and the standard
terminologies is crucial. However it is still a challenge for semantic interoperability.
[Peterson et al., 2020; Lussier et al., 2001]
Empirical work shows that words and phrases extracted from the free text documents often
cannot be expressed using one code but needs multiple to capture more of the situational
context [Peterson et al., 2020; Liu et al., 2012; Elkin et al., 2006]. This challenge can be
addressed by the reference terminology Systematized Nomenclature of Medicine Clinical
Terms (SNOMED CT) as it supports post-coordinated expressions [Gaudet-Blavignac
et al., 2018]. This enables SNOMED CT to associate concepts and therefore it has
properties similar to the natural language used in free text documents [Gaudet-Blavignac
et al., 2018; González Bernaldo de Quirós et al., 2018]. Furthermore, SNOMED CT is
multiple times mentioned as a promising standard terminology for mapping extracted
words and phrases [Peterson et al., 2020; Gaudet-Blavignac et al., 2018; González Bernaldo
de Quirós et al., 2018; Lin et al., 2015]. According to an article by Gaudet-Blavignac et al.
[2018] binding post-coordinated SNOMED CT expressions to the extracted words and
phrases is necessary in order to capture more of the situational context from free text
documents.

2.4.2 Interoperability Standard

Using SNOMED CT allows handling of ambiguities and thereby partly the semantic
issue when creating interoperability. But a standard for structuring data is necessary
to enable sharing of data across systems. [Chen et al., 2009] Interoperability can be
achieved when structuring the encoded words and phrases with a standard [Lin et al., 2015].
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2.5. Objective Aalborg Universitet

Four standards were identified through the structured literature search, see appendix A,
each with a different purpose: European Committee for Standardization (CEN) 13606,
openEHR, Health Level 7 (HL7) Clinical Document Architecture (CDA) [Lin et al., 2015],
and HL7 Fast Healthcare Interoperability Resources (FHIR) [Bender and Sartipi, 2013].

2.4.2.1 Architectural Standards

CEN 13606 was later renamed International Organization for Standardization (ISO) 13606.
Its purpose is to define a stable information architecture for exchanging data between
information systems, why it is an architectural standard. [VeraTech for Health, 2021]
OpenEHR is an architectural standard as well which enables interoperability by defining
clinical models and open specifications [OpenEHR International, 2021].
In order to obtain interoperability using the architectural standards ISO 13606 and
OpenEHR, the information systems sharing the data need to follow the same architectural
standard [VeraTech for Health, 2021; Beale, 2001].

2.4.2.2 Exchange Standards

HL7 CDA is an exchange standard which is usually implemented with the architectural
standard HL7 v3. HL7 CDA structures the clinical data in different documents with
varying degrees of structure, which can be used to exchange the healthcare data. [Benson
and Grieve, 2016a] However, for HL7 CDA to facilitate interoperability it is depended on
the sending and receiving system to follow the same architectural standard [Beale, 2001].
HL7 FHIR is an interoperability standard which further allows for clinical data to be
structured. Additionally, this standard can be applied to existing systems as it is loose
coupled to the system, which makes it flexible. [Benson and Grieve, 2016b]

2.5 Objective

It is necessary to retain the possibility to write free text documents for the healthcare
professionals, as these are needed to 1) ensure individualized care, 2) support workflow
of healthcare professionals, and 3) secure that the contextual information is maintained
when reviewing the data. To obtain semantic interoperability of free text documents, it is
necessary to extract, encode, and structure these while including the situational contextual
information.
It was found that information in free text documents can both be structured using
semi-automated annotation or NLP. It was found that the responsibility for structuring
healthcare data cannot be assigned to the healthcare professionals, as they have an already
full workload. Based on this the semi-automatic annotation was not selected, why NLP
was chosen to extract relevant information from free text documents.
Additionally, the reference terminology SNOMED CT was found advantageous as it allows
both pre- and post-coordinated expressions, and therefore can include situational context
from the unstructured data, which is important to ensure mutual understanding. As
mentioned both the architectural standards and HL7 CDA is dependent on the sending
and receiving system to follow the same architectural standard. On the contrary, HL7
FHIR describes how to exchange and structure the healthcare data while loosely coupled
to the systems. Therefore, HL7 FHIR was chosen to enable semantic interoperability in
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collaboration with the reference terminology SNOMED CT.
The objective of this study is to explore how the situational context can be preserved
when extracting and structuring relevant information from free text documents in order
to obtain semantic interoperability.
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Design Considerations 3
3.1 Design Premises

As mentioned in chapter 2 on page 2, inclusion of information concerning the situational
context is crucial to ensure mutual understanding when sharing data. Creating semantic
interoperability of free text documents while including situational contextual information
can involve application of interoperability standard and standard terminology. HL7 FHIR
and SNOMED CT were chosen as standards for these tasks, respectively. In addition,
a NLP system was used to extract data from free text documents. The data foundation
described in section 4.1.1 on page 11 was used to restrict and concretize the implementation
and choices.

Working with international standards such as HL7 FHIR and SNOMED CT, some
fundamental rules and guidelines must be followed in order to conform to the standard. For
SNOMED CT these rules are called compositional rules and were followed when making
pre- and post-coordinated expressions [IHTSDO, 2021b]. Additionally, the entire set of
SNOMED CT expressions for a specific version was used. Rules for post-coordinated
expressions were further based on the concept model [IHTSDO, 2021c] and Machine
Readable Concept Model (MRCM) [IHTSDO, 2021d].
In HL7 FHIR these rules are expressed through a conformance layer, which contains rules
about absolute requirements and prohibitions, as well as best practises. This layer was
build, since the nature of FHIR resources are fairly loose, which make the standard very
flexible. However, the interoperability between information systems is at risk if the FHIR
resources are profiled very differently. [Health Level 7, 2021g] To support interoperability,
the rules in the conformance layer was followed.
In the article by Peterson et al. [2020] HL7 FHIR and SNOMED CT expressions were
used to structure and encode data from free text documents, which were extracted with
a NLP system. In the article SNOMED CT was chosen since it allows post-coordinated
expressions and can therefore link related expressions in order to better capture contextual
information [Peterson et al., 2020]. This is in alignment with the reason for choosing
SNOMED CT in this study. Furthermore, the Condition resource was selected to structure
data in the article [Peterson et al., 2020]. When focusing on one FHIR resource it was
investigated how data from the free text documents fits into the Condition resource.
Another approach was to investigate which FHIR resources are necessary in order to
describe data from the free text documents. In this way, the maturity of the FHIR resources
can be investigated, through their ability to contain information from unstructured free
text, as well as preservation of the situational context. The data foundation for the profiling
can be seen in section 4.1.1 on page 11 and includes discharge summaries. They contain
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highly heterogeneous information, and all information is important in order to understand
the context [Spasic and Nenadic, 2020; Lenert et al., 2014]. This calls for the last mentioned
approach, as it enables a more open-minded approach for selection of FHIR resources and
the profiling of these, why this approach was chosen for this study.

In order to extract information from free text documents using a NLP system, an existing
system was identified and used. By doing so, the focus was maintained on exploring how
much of the situational context that could be preserved. Therefore, it was critical to
initially identify an open-source, validated, and well-performing NLP system. Necessary
elements were added to the NLP system, which e.g. includes rules for making post-
coordinated expressions. The rules can both be applied to the output of the NLP system
or added in the system’s source code. The article by Kersloot et al. [2019] used extracted
concepts and relationships between the concepts to identify relevant post-coordinated
expressions from the output of the NLP system. In the article an additional system
was developed including rules for encoding SNOMED CT expressions. This approach
showed fairly good result, but the study only bound a few expressions from a standard
terminology related to cancer. [Kersloot et al., 2019] The approach of adding rules to
the system’s source code was chosen, as it was undesirable to develop a new system and
thereby maintaining the focus on including situational contextual information.

3.2 Implementation Context

Integration of healthcare data is necessary to support management of patient’s health in
different settings [Peng et al., 2020]. According to the article by Peng et al. [2020], the
ability to create semantic interoperability is a precondition for data integration and utiliza-
tion, and thereby the usage of data. Further, a precondition for semantic interoperability
is an interoperability standard e.g. HL7 FHIR and a standard terminology e.g. SNOMED
CT to ensure unambiguities, as argued in chapter 2 on page 2.
As mentioned, the data foundation is described in section 4.1.1 on page 11 and includes
discharge summaries. According to the article by Lenert et al. [2014], discharge summaries
were developed for the primary care physician to obtain knowledge about a patient after
discharge from a hospital e.g. which procedures the patient underwent during admission
or which discharge medication the patient was prescribed. To accommodate this, the in-
tended use of the NLP system and the FHIR profiles was for primary care physicians, and
the intended architecture for implementation, can be seen on figure 3.1 on the following
page.
A cloud-based solution can be used to deliver specific services to existing EHR systems.
The cloud-based solution can be used across multiple implementations within one organi-
zation or across several organizations. Additionally, it is considerably easier to implement
a cloud-based solution than to implement new local applications if multiple users have
to access the data. [McCallie Jr., 2016] If the proposed solution was to be implemented,
it could be through a cloud-based solution. This would consist of the NLP module, the
FHIR profiles, and a mapping between the two to ensure that the extracted information
is assigned to fitting elements in a FHIR profiles, as illustrated on figure 3.1 on the next
page. Mapping was not performed in this study, but is a crucial element in implementation.
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Figure 3.1. shows the overall architectural structure if the NLP system and HL7 FHIR profiles
from this study were to be implemented. The horizontal dashed line indicates a
separation of the applications, the dashed lined boxes indicates that the content
of these are not handled, and the hard lined boxes indicates that the content was
handled.

The EHR database below the dashed line indicates existing, but unspecified databases
able to contain both structured and unstructured data. The dashed box in the bottom of
the figure indicates that several different primary care physicians could request a discharge
summary as structured data from the information system used in primary care. Since the
structured data were intended to be used by primary care physician, it was assumed that
all information from the discharge summary was important for the primary care physician
to get an overview of the patient’s admission and discharge. For this reason, information
of one patient contained in the FHIR profiles was intended to be gathered and send as a
response to the request.
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HL7 FHIR Profiling 4
4.1 Method

In the following section the method for profiling FHIR resources is presented. The choices
made throughout this section followed HL7 FHIR conformance rules to support semantic
interoperability, as described in section 3 on page 8.
The FHIR profiles were developed using the newest available version 4.0.1 of HL7 FHIR
[Health Level 7, 2021f] on March 1st 2021. The graphical user interface Forge R4 [Firely,
Bos en Lommerplein 280, Amsterdam, The Netherlands] was chosen for development, as it
supports HL7 FHIR version 4.0.1, has a build-in validator, is user-friendly, and generates
the FHIR profiles as Extensible Markup Language (XML) or JavaScript Object Notation
(JSON) files [Firely, 2020].

4.1.1 Data set

Through the structured literature search, see section 5.2 on page 45, three different open-
source databases were identified, which all include free text documents. The first and
most frequently used data sets are from National NLP Clinical Challenges (N2C2) for-
merly known as Informatics for Integrating Biology and the Bedside (I2B2). The N2C2
data sets consist of unstructured free text documents, which are annotated with a differ-
ent focus depending of the challenge of the year [Department of Biomedical Informatics
Harvard Medical School, 2018]. These data sets were used by 12 of the studies identified
through the structured literature search. The second data set is from Medical Informa-
tion Mart for Intensive Care III (MIMIC-III) and was used in one article. MIMIC-III is
a large database with both structured and unstructured clinical data from 2001 to 2012
[Johnson et al., 2016]. Lastly, a data set from MTSamples was identified, which includes
transcribed unstructured free text documents [MTHelpLine, 2021]. This data set was used
in one article from the structured literature search.
Since the data sets from N2C2 was the most frequently used and was annotated, it was se-
lected as data foundation. The N2C2 data set from the 2010 challenge concerned extraction
of concepts including problems, treatments, and tests as well as relations between these
concepts. The data set was in English, de-identified, and the information was extracted and
annotated from discharge summaries from Beth Israel Deaconess Medical Center [Depart-
ment of Biomedical Informatics Harvard Medical School, 2018]. Three randomly selected
discharge summaries were used as the data foundation for the FHIR profiling to identify
the necessary resources, and elements.
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4.1.2 Selection of FHIR Resources

This section describes two ways for identifying relevant resources, based on the data
foundation and the implementation context.

4.1.2.1 Based on the Data Foundation

From the three randomly selected discharge summaries, information that could be included
in a FHIR resource was identified. Each discharge summary was analyzed as shown in the
first column in table 4.1. Initially, relevant information was identified from the discharge
summary and assigned to the best fitting FHIR resource, from the existing FHIR resources
index [Health Level 7, 2021c]. The assignment was based on a comparison between the
given information from the discharge summary, and the description of the given FHIR
resource, the elements in each resource, and the possible extensions. If data were assigned
to a given FHIR resource, this resource was selected for profiling.
Information not possible to assign to a FHIR resource was categorized as ’unassigned words
and phrases’.

From discharge summary Resource
This is a female at 56 years... Patient
with a history of coronary artery disease. Observation
She was walking in the garden on 2016-04-17... unassigned
She was walking in the garden on 2016-04-17... Observation
... and developed chest pain, which soon radiated to
the left arm.

Observation

On 2016-04-18... Procedure
...she had surgery and an pacemaker was inserted. Procedure

Table 4.1. shows examples of selecting FHIR resources based on the information from the
discharge summaries.

4.1.2.2 Based on the Implementation Context

Bundles
In order to comply with the implementation context, the information in the discharge
summaries has to be shared as one package. This was handle using the Bundle resource.
A Bundle resource is a container for a collection of resources, and the type of Bundle
depends on the purpose. [Health Level 7, 2021a] The Bundle type ’document’ can be
build to represent a composition of selected FHIR resources. This type can represent
FHIR resources as a coherent set of healthcare information. Furthermore, the Bundle type
’document’ includes an immutable set of FHIR resources which is defined by developers.
[Health Level 7, 2021d] The Bundle type ’document’ was found appropriate to include
for the implementation context and the immutable set should be composed of the FHIR
resources selected based on the data foundation.
All documents follow the same structure which includes, 1) a Bundle resource with the
type ’document’, 2) a Composition resource, and 3) an immutable set of FHIR resources
[Health Level 7, 2021d].
The Composition resource is fundamental when creating a Bundle resource of the type
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’document’, as it provides identification and defines the context for the document. Further,
it contains key information such as a reference to the author of the document and patient,
as well as provides structure to the document.

Implementation Guide
To support implementation of the FHIR profiles, the FHIR resource ImplementationGuide
was profiled. This enables definition of the responsible persons, included profiles, and
purpose of the developed profiles. [Health Level 7, 2021b]

4.1.3 Selection of Elements

All information assigned to a selected FHIR resource was initially gathered to obtain
an overview of information from the three randomly selected discharge summaries. If
information representing an element was present, the element was included in the profile.
Examples of this approach can be seen in table 4.2.

From discharge summary Element
56-years-old Patient.birthDate
female Patient.gender

Table 4.2. shows examples of selecting elements for a FHIR profile based on the information
from the discharge summaries. In this example elements from the Patient resource
was used.

Additionally, when profiling a Bundle resource with the type ’document’ and a Composition
resource, some elements are mandatory, as described in Health Level 7 [2021d]. These
elements were included in the given FHIR profile.
When profiling the ImplementationGuide resource, it was desired to describe the following
information:

• Machine and human readable titles
• Description of the developers by name or organization
• The status of the ImplementationGuide
• The usage of the ImplementationGuide
• Which profiles were supported by the ImplementationGuide

4.1.4 Conformance Rules

The conformance rules in the conformance layer apply to IsModifier, MustSupport,
constrains, and cardinality [Health Level 7, 2021g]. The first three are indicated with
a flag for the given element. IsModifier and constrains can be pre-defined in the FHIR
resource, while MustSupport can be set by the developers [Health Level 7, 2021j].

4.1.4.1 IsModifier

An element marked with the flag IsModifier can potentially change the interpretation of the
data in the entire FHIR profile e.g. if a patient is deceased or not [Health Level 7, 2021g].
All elements from the included FHIR resources with the flag IsModifier were included in the
profile despite no data foundation. This was chosen in order to communicate information
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regarding if the interpretation of the profile was altered. If an element was included due
to the flag IsModifier, but without a data foundation to support it, the cardinality of the
given element was not changed, as described in case no. 3 in table 4.3 on the following
page. No further IsModifier flags were added when profiling.

4.1.4.2 MustSupport

An element marked with the flag MustSupport has to be meaningfully supported by
the sending and receiving systems, if information is included in the given element. The
intended use of this flag is for implementation in a known context. [Health Level 7, 2021g]
As the implementation context described in section 3 on page 8 did not specify a certain
system, it was chosen not to use MustSupport.

4.1.4.3 Constraints

Constrains differs from the other flags, as this flag indicates a guideline, warning, or rule
of any kind which apply to the element, e.g. if two elements are mutually exclusive [Health
Level 7, 2021g]. All warnings, rules, and guidelines were followed and if it required inclusion
of additional elements these elements were included in the FHIR profile without changing
the cardinality, as described in case no. 4 in table 4.3 on the following page.
The rule ’element1.exists( ) or element2.exists( )’ was applied in cases where two elements
describe the same information from the data foundation, and it was assessed necessary to
include information from at least one of them. An example could be a reason for having
an encounter, where the reason could be either a reference to a Condition profile or a code
describing the condition. In this case, the rule ensures that if a reference is not available,
a code must be chosen and vice versa.

4.1.4.4 Cardinality

All elements in a resource have an initial set cardinalities, which can be either 0..1, 0..*,
1..1, or 1..* [Health Level 7, 2021g]. The initial minimum and maximum cardinality for
each element was obeyed, to follow conformance rule.
A closed modelling approach was chosen when determining the cardinalities of the ele-
ments. A closed modelling approach encourage, contrary to the open modelling approach,
that the cardinalities are restricted according to the data foundation. This results in FHIR
profiles which fit to the data foundation, though they are often not forward compatible
[Simplifier.net, 2021a]. The closed modelling approach has contributed to changing the
cardinality in five cases presented in table 4.3 on the next page.
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Case no. 1
Condition The initial minimum cardinality is 0

The information was assessed crucial to include based on
the data foundation

Action Change the minimum cardinality to 1
Case no. 2

Condition The initial maximum cardinality is *
There was only one instance of information in the data
foundation

Action Change the maximum cardinality to 1
Case no. 3

Condition The element was included due to the flag IsModifier but
without data foundation

Action Maintain the initial cardinalities
Case no. 4

Condition The element was included due to a constrain but without
data foundation

Action Maintain the initial cardinalities
Case no. 5

Condition The initial minimum cardinality is 0
The element was not identified as relevant

Action Change the maximum cardinality to 0

Table 4.3. shows the five cases, in which the cardinality of an element was changed, including
which conditions should be present and which action should be taken for each element.

4.1.5 Data Types

An element in a profile can be one of the following data types; 1) simple e.g. string,
boolean, or date, 2) general purpose e.g. CodeableConcept or HumanName, 3) meta-data
used for the meta-resource, and 4) special purpose e.g. a reference or an extension [Health
Level 7, 2021h]. In cases where an element had one data type this was respected, and in
cases an element had multiple data types, they all were included.
If the data type of an element is a reference to another profile, one or more of the
recommended references were chosen based on the data foundation assigned to the given
element. Therefore, references to FHIR profiles beyond the scope of the data foundation
were excluded. A diagram was elaborated to show the references for each profile.
Additionally, a diagram to obtain a full overview of references between all selected FHIR
profiles was elaborated.
If an element has the general purpose data type coding, it required a code and system
represented as a code and an URL, respectively. The system can be either local from
FHIR or an external e.g. SNOMED CT. [Health Level 7, 2021m] Since SNOMED CT was
chosen as terminology for this study, only the newest available version of SNOMED CT
was used as system. If the data type of an element is a coded data type e.g. a Code or
a CodeableConcept, a ValueSet is most often required. A ValueSet is a subset of a code
system and is used to constrain which data can be present in the given element. When
binding to a ValueSet it is associated with four degrees of flexibility; required, extensible,
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preferred, and example. [Health Level 7, 2021m] In table 4.4 the cases for maintaining,
extending, and replacing a ValueSet was presented.

Case no. 1
Flexibility Required
Condition
Action Maintain the ValueSet

Case no. 2
Flexibility Extensible, preferable, or example
Condition Information from the data foundation was represented in the

ValueSet
Action Maintain the ValueSet

Case no. 3
Flexibility Extensible or preferred
Condition Information from the data foundation was not included in the

ValueSet
Action Extend the ValueSet with a code representing the information

from the data foundation
Case no. 4

Flexibility Example
Condition Information from the data foundation was not included in the

ValueSet
Action Extend or replace the ValueSet to ensure the information from

the data foundation was represented

Table 4.4. shows which conditions should be present for the ValueSet to be maintain, extended,
or replaced for each if the four cases.

4.1.6 Slicing

Slicing can be used when an element has the maximum cardinality of more than one and
when the data requires more than one value, e.g. several identifiers for a patient. To
distinguish between the slices a discriminator must be determined which consists of a path
and a type. The path was selected to be a key element, and the type was selected to be
the ’value’ of the slice, as this is the most commonly used type. [Health Level 7, 2021l]
The slicing was chosen to be open, which means that new slices could be added, as this
allows as much information to be included in the FHIR profiles as possible. This contributes
to increase semantic interoperability as it allows for additional information to be included
in the element. In case the maximum cardinality was * slicing was used, and a path was
defined.

4.1.7 Extension

The HL7 FHIR resources includes 80% of the most frequently used healthcare data. In
order to adapt the resources to the data foundation, extension can be added to the profiles.
[Health Level 7, 2021k]
An extension was only added in cases where the FHIR resource did not include sufficiently
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descriptive elements. Only extensions from the registry Health Level 7 [2021i] were used,
as this supports semantic interoperability.

4.1.8 Validation of the Developed Profiles

The developed FHIR profiles were validated using the Firely Terminal from Firely [Firely,
Bos en Lommerplein280, Amsterdam, The Netherlands]. When using the Firely Terminal
it was possible to communicated with a FHIR server and to validate the developed
FHIR profiles by comparing them to the base profiles from HL7 FHIR version 4.0.1.
Validation was performed after installing a JSON-package using the command ’fhir
install hl7.fhir.r4.call 4.0.1’, which describes the metadata of the profiles and the project
dependencies. As shown on figure 4.1, the command ’fhir push’ was used to push a FHIR
profile to the stack, and the command ’fhir validate’ was used to validate the FHIR profile
in the Firely Terminal.
The validation of a FHIR profile could either result in the profile being ’Valid’ or ’Invalid’.
[Simplifier.net, 2021b] In the latter case corrections were made following the description
of the error, in order to achieve soley valid FHIR profiles. An example of a successfully
validated FHIR profile can be seen on figure 4.1.

Figure 4.1. shows a successful validation of a developed FHIR profile. This example includes
the Patient profile.

4.2 Results

4.2.1 Selected Resources

The FHIR resources used for profiling were selected based on the information contained
in discharge summaries number 51, 53, and 74. The selected FHIR resources can be seen
in table 4.5 alongside with the number of times content from a discharge summary was
represented in the given FHIR resource.

The Bundle resource was included based on the implementation context, but could
additionally include information from the the three discharge summaries.
In total 24 words and phrases from the three discharge summaries were not possible to
assign to a FHIR resource. The words and phrases concerned 1) events that had not
occurred e.g. ’no need for a surgery’, 2) formal information about the discharge summary
e.g. who completed the discharge summary, or 3) unspecified information e.g. ’the patient
is a gentleman’.
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Resource Record Number of Mentions Percentage
Data Containing Resources

AllergyIntolerance
51 1

0.2%53 0
74 0

Appointment
51 1

0.2%53 0
74 0

CarePlan
51 9

6.5%53 7
74 20

CareTeam
51 0

0.2%53 0
74 1

Condition
51 6

2.5%53 4
74 4

Device
51 0

0.7%53 2
74 2

Encounter
51 10

5.8%53 12
74 10

FamilyMemberHistory
51 1

0.4%53 0
74 1

Location
51 0

0.4%53 0
74 2

Medication
51 7

4.0%53 4
74 11

MedicationAdministration
49 12

9.6%53 6
74 35

MedicationDispense
51 4

4.5%53 0
74 19

Observation
51 119

42.8%53 17
74 101

Organization
51 0

0.2%53 0
74 1

Patient
51 4

2.0%53 3
74 4

continued on the next page
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Resource Record Number of Mentions Percentage

Practitioner
51 10

5.6%53 9
74 12

Procedure
51 5

8.5%53 18
74 24

RelatedPerson
51 0

0.2%53 0
74 1

Implementation Resources

Bundle
51 3

2.0%53 4
74 4

Composition
51 0

0.0%53 0
74 0

ImplementationGuide
51 0

0.0%53 0
74 0

Unassigned Data

Unassigned words and phrases
51 8

4.3%53 9
74 7

Table 4.5. shows the FHIR resources identified as necessary to structure and exchange
information from the three discharge summaries. The column ’Number of Mentions’
indicates how often information from the randomly selected discharge summaries fit
to the given FHIR resource. Additionally, a percentage was calculated to show how
much information each resource represented.

4.2.2 Profiling

The elements selected for each FHIR profile can be seen in the corresponding tables below.
The FHIR profiles were ordered alphabetically. The selection of elements was based on
information from discharge summaries 51, 53, and 74.

4.2.2.1 AllergyIntolerance

The cardinality of the element AllergyIntolerance.category was changed from 0..* to 0..1,
as it was desired only to have one category for each allergy or intolerance. The cardinality
of the element AllergyIntolerance.code was changed from 0..1 to 1..1 to indicate that the
allergy or intolerance must be given a code to avoid ambiguities.
The element AllergyIntolerance.code was bound to the ValueSet ’AllergyIntolerance
Substance/Product, Condition and Negation Codes’ (http://hl7.org/fhir/ValueSet/allergy
intolerance-code), as it covered the information in the data foundation.
The AllergyIntolerance profile can be seen in table 4.6, and the elements referring to
another profile can be seen on figure 4.2 on the next page.
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Data Element Cardinality Flag
AllergyIntolerance.clinicalStatus 0..1 ?! I
AllergyIntolerance.verificationStatus 0..1 ?!

Allergies: Shellfish AllergyIntolerance.category 0..1
AllergyIntolerance.code 1..1
AllergyIntolerance.patient 1..1

Table 4.6. shows the data foundation, cardinality, and flags for each of the included elements in
the AllergyIntolerance profile.
?! = IsModifier, I = constrain

Figure 4.2. shows the reference from the AllergyIntolerance profile. The text on the arrow
indicates the element that refers to the other profile.

The AllergyIntolerance profile was validated using the Firely Terminal and was found valid.

4.2.2.2 Appointment

The cardinality of the element Appointment.serviceCategory was changed from 0..* to 0..1,
as it was desired to have only one category assigned to each appointment.
The element Appointment.participant.actor was restricted to refer a Patient, Practitioner,
or Location profile. The element Appointment.reasonReference was restricted to refer a
Condition, Observation, or Procedure profile.
The element Appointment.serviceCategory was bound to the ValueSet ’Service Category’
(http://hl7.org/fhir/ValueSet/service-category) as this covered the information in the data
foundation.
The elements Appointment.reasonReference and Appointment.reasonCode both concern
a reason for having an appointment. The rule described in section 4.1.4.3 on page 14
was added to ensure that a reason for having an appointment was included. A rule was
attached to the element Appointment.participant to indicated that either the element
Appointment.participant.actor or Appointment.participant.type shall be present, why the
element Appointment.participant.type was included.
To the elements Appointment.reasonReference and Appointment.reasonCode slices were
added, which was chosen in order to enable that several reasons for having an appointment
could be included. The paths were Appointment.reasonReference.identifier.value and
Appointment.reasonCode.coding, respectively. The element Appointment.participant
indicates that there always must be one or more participant attached to an appointment,
why this element was sliced, using Appointment.participant.actor.identifier.value as the
path. The element Appointment.participant.type indicates how an individual participates
in the appointment. This element was sliced, using Appointment.participant.type.coding
as the path.
The Appointment profile can be seen in table 4.7, and the elements referring to another
profile can be seen in figure 4.3 on the next page.
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Data Element Cardinality Flag
Appointment.status 1..1 ?!

Call trauma clinic to Appointment.serviceCategory 0..1
coordinate the study, Appointment.reasonReference 0..* I
result and appoint- Appointment.reasonCode 0..* I
ment dates
Call trauma clinic to Appointment.start 0..1
coordinate the study, Appointment.end 0..1
result and appoint-
ment dates
Call trauma clinic to Appointment.participant 1..* I
coordinate the study, Appointment.participant.actor 0..1 I
result and appoint-
ment dates

Appointment.participant.type 0..* I
Appointment.participant.status 1..1

Table 4.7. shows the data foundation, cardinality, and flags for each of the included elements in
the Appointment profile.
?! = IsModifier, I = constrain.

Figure 4.3. shows the references from the Appointment profile. The text on the arrow indicates
the element that refers to the other profile.

The Appointment profile was validated using the Firely Terminal and was found valid.

4.2.2.3 CarePlan

The cardinality of the element CarePlan.contributor was changed from 0..* to 0..1, as
only one person was identified in the data foundation to contribute to the care plan.
The cardinality of the element CarePlan.addresses was changed from 0..* to 0..1, since
it was found in the data foundation, that only one issue was addressed for each care
plan. The cardinality of the element CarePlan.activity was changed from 0..* to 1..*
to indicate that an activity must happen within a care plan. The cardinality of the
element CarePlan.activity.detail was changed from 0..1 to 1..1 to indicate that it is
important to have details of the activity assigned to a care plan. The cardinality of
the element CarePlan.activity.detail.performer was changed from 0..* to 1..1 to indicate
that it is important for the situational context to know who is responsible for the activity.
Additionally, only one performer was identified for each activity in the data foundation,
why the maximum cardinality was changed to 1.
The element CarePlan.subject was restricted to only refer the Patient profile, as no groups
were mentioned in the data foundation. The element CarePlan.contributer was restricted
to only refer a Patient, CareTeam, or Practitioner profile, as these entities were found to
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contribute to the content of the care plan. The element CarePlan.activity.detail.performer
was restricted to only refer a Practitioner profile since individual healthcare professionals
were responsible for the care plan.
To the element CarePlan.activity slices were added to enable that several activities could
be included in the care plan. The path was chosen to be CarePlan.activity.detail.code.
There were two ways to describe the details of an activity, where only the element
CarePlan.activity.detail and its sub-elements was chosen to include. This was chosen since
the element CarePlan.activity.reference did not capture the details described in the data
foundation, e.g. did this element not allow to refer a performer.
The CarePlan profile can be seen in table 4.8, and the elements referring to another profile
can be seen in figure 4.4.

Data Element Cardinality Flag
CarePlan.status 1..1 ?!

he should CarePlan.intent 1..1 ?!
she will CarePlan.subject 1..1
in 4 weeks CarePlan.period 0..1
physical therapy
initiated rehabilitation

CarePlan.contributor 0..1

physical therapy
initiated rehabilitation

CarePlan.addresses 0..1

follow up CarePlan.activity 1..* I
CarePlan.activity.detail 1..1 I
CarePlan.activity.detail.kind 0..1
CarePlan.activity.detail.code 0..1

Avoid intensive exercise CarePlan.activity.detail. 0..1 ?!
doNotPerform

Oncology Clinic CarePlan.activity.detail.location 0..1
follow up with Dr. Lin CarePlan.activity.detail.performer 1..1

CarePlan.activity.detail.status 1..1 ?!

Table 4.8. shows the data foundation, cardinality, and flags for each of the included elements in
the CarePlan profile.
?! = IsModifier, I = constrain.

Figure 4.4. shows the references from the CarePlan profile. The text on the arrow indicates the
element that refers to the other profile.

The CarePlan profile was validated using the Firely Terminal and was found valid.
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4.2.2.4 CareTeam

The element CareTeam.subject was restricted to refer the Patient profile, since the data
foundation only concerned individual patients.
The CareTeam profile can be seen in table 4.9, and the elements referring to another profile
can be seen in figure 4.5.

Data Element Cardinality Flag
CareTeam.status 0..1 ?!

physical therapy
approved her for transfer

CareTeam.name 0..1

physical therapy approved
her for transfer

CareTeam.subject 0..1

she attended exercise
multiple times

CareTeam.period 0..1

Table 4.9. shows the data foundation, cardinality, and flags for each of the included elements in
the CareTeam profile.
?! = IsModifier.

Figure 4.5. shows the reference from the CareTeam profile. The text on the arrow indicates the
element that refers to the other profile.

The CareTeam profile was validated using the Firely Terminal and was found valid.

4.2.2.5 Condition

The cardinality of the element Condition.code was changed from 0..1 to 1..1 to indicate
the importance of encoding a condition in order to avoid ambiguities. The cardinality of
the element Condition.bodysite was changed from 0..* to 0..1, as only one body site was
found for each condition in the data foundation. The cardinality of the elements Con-
dition.evidence, Condition.evidence.code, and Condition.evidence.detail were all changed
from 0..* to 0..1 based on the data foundation.
The element Condition.subject was restricted to only refer a Patient profile, since no ref-
erence to a group was found in the data foundation. The element Condition.recorder
was restricted to only refer a Practitioner profile, since it was found irrelevant to refer a
PractitionerRole, Patient, or RelatedPerson profile in the data foundation. The element
Condition.evidence.detail was restricted to refer a Procedure profile as this was covered by
the data foundation.
The element Condition.code was bound to the ValueSet ’Condition/Problem/Diagnosis
Codes’ (http://hl7.org/fhir/ValueSet/condition-code). The element Condition.bodySite
was bound to the ValueSet ’SNOMED CT Body Structures’ (http://hl7.org/fhir/ValueSet/
body-site). The element Condition.evidence.code was bound to the ValueSet ’Manifesta-
tion and Symptom Codes’ (http://hl7.org/fhir/ValueSet/manifestation-or-symptom).
The Condition profile can be seen in table 4.10, and the elements referring to another
profile can be seen in figure 4.6 on the following page.
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Data Element Cardinality Flag
Condition.clinicalStatus 0..1 ?! I
Condition.verificationStatus 0..1 ?! I

He had acute cardiac
arrest

Condition.subject 1..1

Fanny CR Dennis Condition.recorder 0..1
diagnosed myocardial
infarction

Condition.code 1..1

found in the apex of
heart

Condition.bodySite 0..1

status post Condition.onset[x] 0..1
by ultra sound scan Condition.evidence 0..1 I

Condition.evidence.code 0..1 I
Condition.evidence.detail 0..1 I

Table 4.10. shows the data foundation, cardinality, and flags for each of the included elements
in the Condition profile.
?! = IsModifier, I = constrain.

Figure 4.6. shows the references from the Condition profile. The text on the arrow indicates the
element that refers to the other profile.

The Condition profile was validated using the Firely Terminal and was found valid.

4.2.2.6 Device

The cardinality of the element Device.deviceName was changed from 0..* to 1..1 to indicate
that the name of the device is important as it ensures information regarding which device
was used. This was done under the assumption that unique names were used for each
device. In the data foundation each device was given one name, why the maximum
cardinality was restricted to 1.
The Device profile can be seen in table 4.11, and the elements referring to another profile
can be seen in figure 4.7 on the following page.

Data Element Cardinality Flag
patient had ostomy bag Device.status 0..1 ?!
Her pacemaker Device.deviceName 1..1

Device.deviceName.name 1..1
Device.deviceName.type 1..1

Her pacemaker Device.patient 0..1

Table 4.11. shows the data foundation, cardinality, and flags for each of the included elements
in the Device profile.
?! = IsModifier.
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Figure 4.7. shows the reference from the Device profile. The text on the arrow indicates the
element that refers to the other profile.

The Device profile was validated using the Firely Terminal and was found valid.

4.2.2.7 Encounter

The cardinality of the element Encounter.subject was changed from 0..1 to 1..1 to indicate
that every encounter must be associated with a subject.
The element Encounter.subject was restricted to only refer a Patient profile, as no group
was mentioned in the data foundation. The element Encounter.reasonReference was
restricted to only refer a Condition, Observation, and Procedure profile.
The element Encounter.serviceType was bound to the ValueSet ’Service Type’ (http://hl7.
org/fhir/ValueSet/service-type). The element Encounter.hospitalization.dischargeDisposi-
tion was bound to the ValueSet ’Discharge Disposition’ (http://hl7.org/fhir/ValueSet/en-
counter-discharge-disposition).
The elements Encounter.reasonReference and Encounter.reasonCode both concern reasons
for having an encounter. The rule described in section 4.1.4.3 on page 14 was added to
indicate that either one of the elements or both must be present.
The element Encounter.location was sliced with the element Encounter.location.location.
identifier.value as the path, as patients were transferred between different locations during
their hospitalization. The elements Encounter.reasonReference and Encounter.reasonCode
were both sliced, as multiple reasons for having an encounter were identified. The
elements Encounter.reasonReference.identifier.value and Encounter.reasonCode.coding
were used as paths, respectively. Lastly, the element Encounter.appointment was
sliced, as it was found that multiple appointments could be referred by one encounter.
Encounter.appointment.identifier.value was used as path.
The Encounter profile can be seen in table 4.12 on the following page, and the elements
referring to another profile can be seen in figure 4.8.

Figure 4.8. shows the references from the Encounter profile. The text on the arrow indicates the
element that refers to the other profile.
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Data Element Cardinality Flag
Encounter.status 1..1 ?1
Encounter.class 1..1

Admission Date: Encounter.period 0..1
Discharge Date:
patient was admitted Encounter.subject 1..1
Followup Instructions: Encounter.serviceType 0..1
Call Oncology Clinic Encounter.location 0..*
in two weeks with side
effects

Encounter.location.location 1..1

Call Oncology Clinic Encounter.location.period 0..1
in two weeks with side
effects

Encounter.location.status 0..1

Call Oncology Clinic Encounter.reasonReference 0..* I
in two weeks with side
effects

Encounter.reasonCode 0..* I

Call Oncology Clinic Encounter.appointment 0..*
DISCHARGE STATUS: Encounter.hospitalization 0..1
To hospice Encounter.hospitalization. 0..1

dischargeDisposition
transferred to the
intensive care unit

Encounter.hospitalization.destination 0..1

transfer from intensive
care

Encounter.hospitalization.origin 0..1

transferred to Encounter.hospitalization.admitSource 0..1

Table 4.12. shows the data foundation, cardinality, and flags for each of the included elements
in the Encounter profile.
?! = IsModifier, I = constrain.

The Encounter profile was validated using the Firely Terminal and was found valid.

4.2.2.8 FamilyMemberHistory

The cardinality of the element FamilyMemberHistory.condition was changed from 0..* to
1..1 to indicate that a condition for the given family member must be noted. Only one
condition was identified for a family member, why the maximum cardinality was restricted
to 1.
The element FamiliMemberHistory.condition.code was bound to the ValueSet ’Condi-
tion/Problem/Diagnosis Codes’ (http://hl7.org/fhir/ValueSet/condition-code). In the data
foundation, it was described that a family member had no present diagnoses. Therefore,
the ValueSet was extended with the code ’103330002 | No diagnosis |’ from the code sys-
tem ’http://snomed.info/sct’. Lastly, the element FamilyMemberHistory.relationship was
bound to the ValueSet ’V3 Value SetFamilyMember’ (http://terminology.hl7.org/ValueSet/v3-
FamilyMember).
The FamilyMemberHistory profile can be seen in table 4.13, and the elements referring to
another profile can be seen in figure 4.9 on the following page.
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Data Element Cardinality Flag
FamilyMemberHistory.status 1..1 ?!

FAMILY HISTORY: FamilyMemberHistory.condition 1..1
Presence of diabetes FamilyMemberHistory.condition.code 1..1

FamilyMemberHistory.relationship 1..1
FamilyMemberHistory.patient 1..1

Table 4.13. shows the data foundation, cardinality, and flags for each of the included elements
in the FamilyMemberHistory profile.
?! = IsModifier.

Figure 4.9. shows the reference from the FamilyMemberHistory profile. The text on the arrow
indicates the element that refers to the other profile.

The FamilyMemberHistory profile was validated using the Firely Terminal and was found
valid.

4.2.2.9 Location

The cardinality of the element Location.name was changed from 0..1 to 1..1 to indicate
that a name of the location should be noted. By indicating this, it is clear where the
patient is e.g. transferred to.
The Location profile can be seen in table 4.14, and since no references was included in the
profile, no figure was presented.

Data Element Cardinality Flag
Location.status 0..1 ?!

transferred to intensive
care unit

Location.name 1..1

Table 4.14. shows the data foundation, cardinality, and flags for each of the included elements
in the Location profile.
?! = IsModifier.

The Location profile was validated using the Firely Terminal and was found valid.

4.2.2.10 Medication

The cardinality of the element Medication.ingredient was changed from 0..* to 1..1, to
indicate that at least one ingredient must be noted for each medication. Since only
one ingredient was identified for each medication in the data foundation, the maximum
cardinality was restricted to 1.
The element Medication.ingredient.itemReference was restricted to refer a Medication
profile, as there was found no need in the data foundation for a reference to a Substance
profile.
The element Medication.form was bound to the ValueSet ’SNOMED CT Form Codes’
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(http://hl7.org/fhir/ValueSet/medication-form-codes).
The Medication profile can be seen in table 4.15, and the elements referring to another
profile can be seen in figure 4.10.

Data Element Cardinality Flag
Medication.status 0..1 ?!

15 mg Medication.amount 0..1
given IV Medication.form 0..1
Acetylsalicylic acid Medication.ingredient 1..1

Medication.ingredient.item[x] 1..1

Table 4.15. shows the data foundation, cardinality, and flags for each of the included elements
in the Medication profile.
?! = IsModifier.

Figure 4.10. shows the reference from the Medication profile. The text on the arrow indicates
the element that refers to the other profile.

The Medication profile was validated using the Firely Terminal and was found valid.

4.2.2.11 MedicationAdministration

The cardinality of the elements MedicationAdministration.reasonReference and Medica-
tionAdministration.reasonCode was changed from 0..* to 0..1 as the data foundation only
mentioned one reason for administering medication.
The element MedicationAdministration.subject was restricted to only refer a Patient pro-
file, as the data foundation concern individual patients. The element MedicationAdminis-
tration.reasonReference was restricted to only refer a Observation or Condition profile, as
this was sufficient to support the data foundation.
The element MedicationAdministration.medication[x] with the data type CodeableConcept
was bound to the ValueSet ’SNOMED CT Medication Codes’ (http://hl7.org/fhir/Value-
Set/medication-codes). The element MedicationAdministration.reasonCode was bound to
the ValueSet ’SNOMED CT Medication As Needed Reason Codes’ (Value Set http://hl7.
org/fhir/ValueSet/medication-as-needed-reason) instead of the suggested ValueSet ’Rea-
son Medication Given Codes’ (http://hl7.org/fhir/ValueSet/reason-medication-given-codes),
since it was more suitable for the information in the data foundation. The element Medica-
tionAdministration.dosage.route was bound to the ValueSet ’SNOMED CT Route Codes’
(Value Set http://hl7.org/fhir/ValueSet/route-codes).
The elements MedicationAdministration.reasonReference and MedicationAdministration.
reasonCode both concern a reason for administering medication to a patient. The rule de-
scribed in section 4.1.4.3 on page 14 was added to indicate that either one of the elements
or both must be present.
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The MedicationAdministration profile can be seen in table 4.16, and the elements referring
to another profile can be seen in figure 4.11.

Data Element Cardinality Flag
MedicationAdministration.status 1..1 ?!

She took daily insulin MedicationAdministration. 1..1
medication[x]

She took daily insulin MedicationAdministration.subject 1..1
for 10 days MedicationAdministration.effective[x] 1..1
as needed for MedicationAdministration. 0..1 I
knee-pain reasonReference

MedicationAdministration. 0..1 I
reasonCode

One (1) tablet PC MedicationAdministration.dosage 0..1 I
MedicationAdministration.dosage. 0..1
dose

oral medication MedicationAdministration.dosage. 0..1
route

Table 4.16. shows the data foundation, cardinality, and flags for each of the included elements
in the MedicationAdministration profile.
?! = IsModifier, I = constrain.

Figure 4.11. shows the references from the MedicationAdministration profile. The text on the
arrow indicates the element that refers to the other profile.

The MedicationAdministration profile was validated using the Firely Terminal and was
found valid.

4.2.2.12 MedicationDispense

The cardinality of the element MedicationDispense.dosageInstruction was changed from
0..* to 0..1, since there was only identified one instruction per medication in the data
foundation.
The MedicationDispense profile can be seen in table 4.17, and the elements referring to
another profile can be seen in figure 4.12 on the next page.

29



4.2. Results Aalborg Universitet

Data Element Cardinality Flag
MedicationDispense.status 1..1 ?!
MedicationDispense.medication[x] 1..1

Disp :* 5 tablets * MedicationDispense.quantity 0..1
One (1) tablet PC MedicationDispense.dosageInstruction 0..1

Table 4.17. shows the data foundation, cardinality, and flags for each of the included elements
in the MedicationDispense profile.
?! = IsModifier.

Figure 4.12. shows the reference from the MedicationDispense profile. The text on the arrow
indicates the element that refers to the other profile.

The MedicationDispense profile was validated using the Firely Terminal and was found
valid.

4.2.2.13 Observation

The cardinality of the element Observation.subject was changed from 0..1 to 1..1 to indicate
that a subject must be referred when documenting an observation. The cardinality
of the element Observation.category was changed from 0..* to 0..1, since it was found
appropriate to bind one category to each observation. The cardinality of the elements
Observation.interpretation and Observation.performer was changed from 0..* to 0..1, as
only one interpretation and one performer was found for each observation, respectively.
The element Observation.subject was restricted to only refer a Patient profile due to
the data foundation. The element Observation.performer was restricted to only refer a
Practitioner and RelatedPerson profile, since observations were performed by healthcare
professionals and related persons in the data foundation.
The element Observation.code was bound to the ValueSet ’LOINC Codes’ (http://hl7.org/
fhir/ValueSet/observation-codes). The element Observation.bodySite was bound to the
ValueSet ’SNOMED CT Body Structures’ (http://hl7.org/fhir/ValueSet/body-site). The
element Observation.interpretation was bound to the ValueSet ’Observation Interpretation
Codes’ (http://hl7.org/fhir/ValueSet/observation-interpretation), which was extended
with a code to indicate a patient was stable. The added code was ’58158008 | Stable
|’ from the code system ’http://snomed.info/sct’.
The rule attached to the elements Observation.value[x] and Observation.dataAbsentReason
indicates that if no value is present, then a reason for the absence shall be given in the
element Observation.dataAbsentReason, why this element was included.
The Observation profile can be seen in table 4.18, and the elements referring to another
profile can be seen in figure 4.13 on the following page.
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Data Element Cardinality Flag
Observation.status 1..1 ?!

He was awake Observation.subject 1..1
Left arm in cast Observation.bodySite 0..1
rise in HbA1c values Observation.category 0..1

Observation.code 1..1
Glucose: 15 mmol/L Observation.value[x] 0..1 I
her glucose was stable Observation.interpretation 0..1
history of hypoglycemia Observation.effective[x] 0..1
her husband reported Observation.performer 0..1
dizziness and paleness

Observation.dataAbsentReason 0..1 I

Table 4.18. shows the data foundation, cardinality, and flags for each of the included elements
in the Observation profile.
?! = IsModifier, I = constrain.

Figure 4.13. shows the references from the Observation profile. The text on the arrow indicates
the element that refers to the other profile.

The Observation profile was validated using the Firely Terminal and was found valid.

4.2.2.14 Organization

The cardinality of element Organization.type was changed from 0..* to 0..1, as only one
type was assigned to each organization in the data foundation.
The element Organization.type was bound to the ValueSet ’Organization Type’
(http://hl7.org/fhir/ValueSet/organization-type).
Due to a rule stating that the Organization profile should at least include an identifier or
a name, the elements Organization.name and Organization.identifier were included.
The element Organization.identifier was sliced, using Organization.identifier.value as path.
The Organization profile can be seen in table 4.19 on the next page, and since no references
was included in the profile, no figure was presented.
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Data Element Cardinality Flag
Organization.active 0..1 ?!

discharged from hospital Organization.type 0..1
Organization.identifier 0..* I
Organization.name 0..1 I

Table 4.19. shows the data foundation, cardinality, and flags for each of the included elements
in the Organization profile.
?! = IsModifier, I = constrain.

The Organization profile was validated using the Firely Terminal and was found valid.

4.2.2.15 Patient

The element Patient.link.other was restricted to only include a reference to a Patient
profile, due to the data foundation. The element Patient.link was sliced using the element
Patient.link.other.identifier.value as path.
The Patient profile can be seen in table 4.20, and the elements referring to another profile
can be seen in figure 4.14.

Data Element Cardinality Flag
Patient.active 0..1 ?!

Sex Patient.gender 0..1
Date of Birth Patient.birthDate 0..1

Patient.deceased[x] 0..1 ?!
Patient.link 0..* ?!
Patient.link.other 1..1
Patient.link.type 1..1

Table 4.20. shows the data foundation, cardinality, and flags for each of the included elements
in the Patient profile.
?! = IsModifier.

Figure 4.14. shows the reference from the Patient profile. The text on the arrow indicates the
element that refers to the other profile.

The Patient profile was validated using the Firely Terminal and was found valid.

4.2.2.16 Practitioner

The cardinality of the element Practitioner.identifier was changed from 0..* to 1..1, to
indicate that it should be possible to identify a practitioner. Since only one identifier
was presented in the data foundation, the maximum cardinality was changed to 1. The
cardinality of the element Practitioner.name was changed from 0..* to 0..1, since each
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practitioner had one name. The cardinality of the element Practitioner.qualification
was changed from 0..* to 1..1 to indicate that each practitioner must be described with
one qualification. The maximum cardinality was changed to 1, since each healthcare
professional was associated with one qualification in the data foundation.
The element Practitioner.qualification.code was bound to the ValueSet ’v2 table 0360,
Version 2.7’ (http://terminology.hl7.org/ValueSet/v2-2.7-0360).
The Practitioner profile can be seen in table 4.21, and since no references was included in
the profile, no figure was presented.

Data Element Cardinality Flag
73-984 Practitioner.identifier 1..1
Leonora Colmor Practitioner.name 0..1
MD Practitioner.qualification 1..1

Practitioner.qualification.code 1..1

Table 4.21. shows the data foundation, cardinality, and flags for each of the included elements
in the Practitioner profile.
?! = IsModifier

The Practitioner profile was validated using the Firely Terminal and was found valid.

4.2.2.17 Procedure

The cardinality of the element Procedure.code was changed from 0..1 to 1..1 to indicate
that each procedure must be given a code, describing which procedure was or is about
to be performed. The cardinality of the elements Prodcedure.reasonCode and Proce-
dure.reasonReference was changed from 0..* to 0..1, since there was identified one reason
for each procedure. The cardinality of the element Procedure.performer was changed from
0..* to 0..1, as one performer performed a procedure in the data foundation. The cardi-
nality of the element Procedure.bodySite was changed from 0..* to 0..1, as only one body
site was found for each procedure in the data foundation.
The element Procedure.subject was restricted to only refer a Patient profile based on the
data foundation. The element Procedure.reasonReference was restricted to only refer a
Condition profile. The element Procedure.performer.actor was restricted to only refer a
Practitioner and RelatedPerson profile.
The element Procedure.category was bound to the ValueSet ’Procedure Category Codes
(SNOMED CT)’ (http://hl7.org/fhir/ValueSet/procedure-category) and the element Pro-
cedure.code was bound to the ValueSet ’Procedure Codes (SNOMED CT)’ (http://hl7.org/
fhir/ValueSet/procedure-code). The element Procedure.bodySite was bound to the Val-
ueSet ’SNOMED CT Body Structures’ (http://hl7.org/fhir/ValueSet/body-site).
The elements Procedure.reasonCode and Procedure.reasonReference can both contain a
reason for having a procedure. The rule described in section 4.1.4.3 on page 14 was added
as it was important to know the reason for the procedure.
The element Procedure.complicatedDetail was sliced to enable one or more conditions
to follow a procedure, with the path Procedure.complicatedDetail.identifier.value. The
element Procedure.focalDevice was sliced, since information from the data foundation
showed that several devices was used during the same procedure. The path was Pro-
cedure.focalDevice.manipulated.identifier.value.
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The Procedure profile can be seen in table 4.22, and the elements referring to another
profile can be seen in figure 4.15.

Data Element Cardinality Flag
medication was stopped
after surgery

Procedure.status 1..1 ?!

coronary artery Procedure.category 0..1
bypass on 2016-07-24 Procedure.code 1..1
son gave her cardiac
massage

Procedure.subject 1..1

acute myocardial Procedure.reasonCode 0..1 I
infarction Procedure.reasonReference 0..1 I
coronary artery bypass on
2016-07-24

Procedure.performed[x] 0..1

Dr. William Osler Procedure.performer 0..1
performed the procedure. Procedure.performer.actor 1..1
Abdomen clear for fluids Procedure.bodySite 0..1
diagnosed coronary
artery disease by ultra
sound

Procedure.complicatedDetail 0..*

temporary pacemaker was Procedure.focalDevice 0..*
removed successfully Procedure.focalDevice.action 0..1
temporary pacemaker Procedure.focalDevice.manipulated 1..1
was removed successfully

Table 4.22. shows the data foundation, cardinality, and flags for each of the included elements
in the Procedure profile.
?! = IsModifier, I = constrain

Figure 4.15. shows the references from the Procedure profile. The text on the arrow indicates
the element that refers to the other profile.

The Procedure profile was validated using the Firely Terminal and was found valid.

4.2.2.18 RelatedPerson

The cardinality of the element RelatedPerson.relationship was changed from 0..* to 0..1,
as a relationship between two people found in the data foundation, could be described
with one relation.
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The RelatedPerson profile can be seen in table 4.23, and the elements referring to another
profile can be seen in figure 4.16.

Data Element Cardinality Flag
RelatedPerson.active 0..1 !?

His wife RelatedPerson.patient 1..1
His wife RelatedPerson.relationship 0..1

RelatedPerson.gender 0..1

Table 4.23. shows the data foundation, cardinality, and flags for each of the included elements
in the RelatedPerson profile.
?! = IsModifier

Figure 4.16. shows the reference from the RelatedPerson profile. The text on the arrow indicates
the element that refers to the other profile.

The RelatedPerson profile was validated using the Firely Terminal and was found valid.

4.2.2.19 Implementation

Bundles
The cardinality of the elements Bundle.identifier and Bundle.entry.resource was changed
from 0..1 to 1..1, since the Bundle.type is a ’document’, why an identifier and the included
resources must be present.
The element Bundle.resource was restricted to refer a Composition profile, since the Bundle
type is a ’document’.
The Bundle profile can be seen in table 4.24, and the elements referring to another profile
can be seen in figure 4.17.

Data Element Cardinality Flag
Bundle.identifier 1..1 I
Bundle.type 1..1

TUE 2016-04-12 7:03 Bundle.timestamp 0..1
Bundle.entry 0..1 I
Bundle.entry.resource 1..1

Signed electronically
by : DR. Jose Kines

Bundle.signature 0..1

Table 4.24. shows the data foundation, cardinality, and flags for each of the included elements
in the Bundle profile.
?! = IsModifier, I = constrain

Figure 4.17. shows the reference from the Bundle profile. The text on the arrow indicates the
element that refers to the other profile.
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The element Composition.subject was restricted to only refer a Patient profile, since
the discharge summaries in the data foundation concerned one patient. The elements
Composition.event.detail, Composition.section.focus, and Composition.section.entry were
restricted to refer the FHIR resources identified to be necessary since they represent the
data foundation, see table 4.5 on page 19. The elements Composition.attester.party,
Composition.author, and Composition.section.author were restricted to only refer a
Practitioner profile, since practitioners had authored the discharge summaries.
The element Composition.event was sliced using Composition.event.detail.identifier.value
as the path. The element Composition.event.detail was sliced to allow several events
to be documented under the same service using Composition.event.detail.identifier.use as
path. The element Composition.section was sliced to allow division of the composition into
multiple section, and Composition.section.entry was sliced to allow multiple references to
support the given section. The paths were Composition.section.entry.identifier.value, and
Composition.section.entry.identifier.use, respectively. The elements Composition.attester,
Composition.author, and Composition.section.author contained information about who
were responsible for the discharge summary, using the paths Composition.attester.party.
identifier.value, Composition.author.identifier.value, and Composition.section.author.iden-
tifier.value, respectively.
The Composition profile can be seen in table 4.25, and the elements referring to another
profile can be seen in figure 4.18 on the following page.

Mandatory Element Cardinality Flag
Yes Composition.identifier 0..1
No Composition.status 1..1 ?!
No Composition.type 1..1
Yes Composition.subject 0..1
Yes Composition.encounter 0..1
No Composition.date 1..1
Yes Composition.author 1..*
No Composition.title 1..1
No Composition.attester 0..*
No Composition.attester.mode 1..1
Yes Composition.attester.party 0..1
Yes Composition.custodian 0..1
No Composition.event 0..*
Yes Composition.event.detail 0..*
No Composition.section 0..* I
Yes Composition.section.author 0..*
Yes Composition.section.focus 0..1
Yes Composition.section.entry 0..* I

Table 4.25. shows if the element is mandatory since the Bundle type is ’document’ [Health
Level 7, 2021d], the cardinality, and flags for each of the included elements in the
Composition profile.
?! = IsModifier, I = constrain
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Figure 4.18. shows the references from the Composition profile. The text on the arrow indicates
the element that refers to the other profile.

Both the Bundle and Composition profiles were validated using the Firely Terminal and
were found valid.

ImplementationGuide
The cardinality of the element ImplementationGuide.fhirVersion was changed from 1..* to
1..1 as only one version of HL7 FHIR was used for the developed profiles. The cardinality
of the element ImplementationGuide.useContext was changed from 0..* to 0..1, under the
assumption that one implementation guide was used in one context e.g. one hospital
department.
The element ImplementationGuide.definition.resource.reference was restricted to refer the
FHIR resources identified to be necessary in table 4.5 on page 19, in order to accommodate
the context and usage of this implementation guide.
To the element ImplementationGuide.name there was a warning, which concern that the
name should be usable as an identifier to be used by machine processing application.
Slicing was used for the element ImplementationGuide.definition.resource to allow
all identified profiles to be included in the implementation guide. The path
ImplementationGuide.definition.resources.reference.identifier.value was used.
The ImplementationGuide profile can be seen in table 4.26 and the elements referring to
another profile can be seen in figure 4.19 on the following page.
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Concern Element Cardinality Flag
Unique Identifier ImplementationGuide.url 1..1
Machine readable title ImplementationGuide.name 1..1 I
Human readable title ImplementationGuide.title 0..1
Status of the
ImplementationGuide

ImplementationGuide.status 1..1 ?!

Described the developers ImplementationGuide.publisher 0..1
Usage of the ImplementationGuide.description 0..1
ImplementationGuide ImplementationGuide.useContext 0..1

ImplementationGuide.packageId 1..1
ImplementationGuide.fhirVersion 1..1

Profiles supported by the ImplementationGuide.definition 0..1 I
ImplementationGuide ImplementationGuide.definition. 1..*

resources
ImplementationGuide.definition. 1..1
resources.reference

Table 4.26. shows the which field the element concern, cardinality, and flags for each of the
included elements in the ImplementationGuide profile.
?! = IsModifier, I = constrain

Figure 4.19. shows the reference from the ImplementationGuide profile. The text on the arrow
indicates the element that refers to the other profile.

The ImplementationGuide profile was validated using the Firely Terminal and was found
valid.
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4.2.3 References between FHIR Profiles

Based on the selected elements in the FHIR profiles described above, figure 4.20 on the next
page shows the references between all the developed FHIR profiles. The figure illustrates
that when including the situational contextual information from discharge summaries and
structuring it using FHIR profiles, a lot of information lies within the dependencies between
the FHIR profiles.
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Figure 4.20. shows the references between all the developed FHIR profiles, based on information
from discharge summary number 51, 53, and 74. The arrow points towards the
profiles being referred e.g. an element in the Device profile refers the Patient
profile.
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Identifying Existing NLP
Systems 5

5.1 Method

As mentioned in section 2.3 on page 3, studies show that NLP can be used to extract
relevant information from free text documents. To identify existing NLP systems a
structured literature search was conducted.

5.1.1 Structured Literature Search

Through an initial exploratory literature search the article by Meystre et al. [2008] was
identified. This article thoroughly surveyed the current status of NLP systems used on free
text documents from 1995 to 2008 Leaman et al. [2015]; Meystre et al. [2008]. Therefore,
the current structured literature search includes the article by Meystre et al. [2008] and
limits the search period to include articles from 1/1/2008 to 19/2/2021.
A block search was conducted in the databases PubMed and Embase, as there is a retrieval
rate of 92.8% when searching in these two databases according to the article by [Bramer
et al., 2017]. In table 5.1 on the next page and 5.2 on page 43 the search terms for PubMed
and Embase can be seen, respectively. The three columns were combined using the boolean
operator ’AND’, and the rows in each column were combined using the boolean operator
’OR’. As it can be seen in the tables, free text words in the columns ’Clinical Notes’ and
’NLP’ must appear in the title or abstract of the article, where the MeSH and Emtree
terms must appear as a major topic. This was chosen to ensure the relevance of the
articles. Search terms in the column ’Technical NLP Terms’ may appear in all fields which
was valid for both the free text words, MeSH terms and Emtree terms. The search terms
in this column was found through the initial exploratory search of NLP terms, methods,
and sub-elements.
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Clinical Notes NLP Technical NLP Terms

MeSH as Major Topic MeSH
"Narrative
Medicine"[MeSH
Major Topic]

"Natural Language
Processing"[MeSH Major Topic]
"Data Mining"[MeSH Major
Topic] NOT "Multifactor
Dimensionality
Reduction"[MeSH Major Topic]

Free Text Title/Abstract Free Text All fields
Clinical document* Data mining Annotat*
Clinical narrative* Information extraction Concept extract*
Clinic* note* Medical language processing Concept Mapp*
Free text Natural language processing Concept Unique Identifier
Medical document* Natural language understanding Dependency pars*
Medical narrative* Text mining Encoder
Medical note* Lemmatization

Named Entity Recognition
Negation
Relation type select*
Section detector
Segmentation
Semantic pars*
Sentence detector
Sentence Splitt*
Stemming
Syntactic pars*
Tokeniz*

Table 5.1. shows the search terms for the block search conducted in PubMed. The free text in
the columns ’Clinical Notes’ and ’NLP’ must appear in the title and/or abstract. The
free text in the column ’Technical NLP Terms’ may appear in all fields. ’[MeSH Major
Topic]’ indicates that the MeSH term must appear as a major topic.
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Clinical Notes NLP Technical NLP Terms

Emtrees as Major Topic Emtree
‘Medical documenta-
tion’/exp/mj

’Natural language
processing’/exp/mj

’Syntactic processing’/exp

’Data mining’/exp/mj ’Negation’/exp
‘Data extraction’/exp/mj ’Named entity

recognition’/exp

Free Text Title/Abstract Free Text All fields
Clinical document* Data mining Annotat*
Clinical narrative* Information extraction Concept extract*
Clinic* note* Medical language processing Concept Mapp*
Free text Natural language processing Concept Unique Identifier
Medical document* Natural language understanding Dependency pars*
Medical narrative* Text mining Encoder
Medical note* Lemmatization

Named Entity Recognition
Negation
Relation type select*
Section detector
Segmentation
Semantic pars*
Sentence detector
Sentence Splitt*
Stemming
Syntactic pars*
Tokeniz*

Table 5.2. shows the search terms for the block search conducted in Embase. The free text in the
columns ’Clinical Notes’ and ’NLP’ must appear in the title and/or abstract. The free
text in the column ’Technical NLP Terms’ may appear in all fields. ’/exp’ indicates
that the Emtree includes all sub-Emtrees. ’/exp/mj’ indicates that the Emtree term
must appear as a major topic.

The articles retrieved from the two databases were combined and duplicates were removed.
The remaining articles were initially screened based on title and abstract, followed by a
reading of the articles in full length. For the articles to be included they had to fulfill the
following inclusion and exclusion criteria.
Inclusion criterion:

• I1: The article concerned information extraction on electronic free text documents

Exclusion criteria:

• E1: The article used non-human data
• E2: The article presented no arguments for the purpose or influence of the sub-

element(s) in the NLP system that performed the information extraction
• E3: The article concerned de-identification of data
• E4: The article used a non-English data set
• E5: The article was not available in full length
• E6: The article was not written in English or Danish
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5.1.2 Assessment of the Included Articles

The included articles were further assessed. Two different types of studies were identified
among the included articles; systematic reviews and development studies. Systematic
reviews were assessed using the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [Moher et al., 2009], and based on the assessment the articles
were assigned to be low, medium, or high. The development studies were assessed based
on three criteria; 1) reliability concerning e.g. the reproducibility of the study, 2) internal
validity concerning e.g. the amount of data included in the study, and 3) external validity
concerning e.g. the generalizability of the study. Each criterion was assessed to be either
low, medium, or high referring to how much the article fulfilled the given criterion. An
overall assessment of the article was then made based on the grade from the three criteria.
If an article had a low overall assessment the article was excluded.

5.1.3 Selection of NLP system

The selection of a NLP system included; 1) identification of relevant sub-elements in a
NLP system, 2) identification of existing systems, and 3) selection of a NLP system based
on three formulated criteria.
Initially, identification of relevant sub-elements was based on sub-elements in the included
articles e.g. tokenizer or negation detector. The purpose of identifying the sub-elements
was to identify the important functions a NLP system must contain. From the 51 included
articles at least 15 articles must include a sub-element, to ensure that the sub-element was
commonly used. Only sub-elements mentioned in the articles were used in the identification
of relevant sub-elements. The sub-elements that fulfilled the above mentioned criteria must
be a part of the NLP system used, otherwise the functionality of the sub-element were
applied to the source code.
Secondly, in order to select a NLP system an overview was initially given of the NLP
systems identified from the included articles. In this overview the main system was
presented, the related F-score to compare the performance of the system, and it was
noted whether the system was open-source.
Lastly, selection of a NLP system was based on three criteria; 1) the NLP system was open-
source, 2) the NLP system must be used in several articles, and 3) the NLP system had
the highest possible F-score. A F-score represents the performance of a binary classifier
[Gobbel et al., 2014] and was used to compare the performance of the NLP systems in
several of the identified articles. In articles where the F-score was not calculated but the
presented results that made it possible to calculate the F-score, this calculation was based
on the following equation from the article by Gobbel et al. [2014]:

F − score = 2 ∗ Precision ∗Recall

Precision+Recall
(5.1)

In articles where the NLP system was tested on several data sets, a mean of the F-scores
was calculated, using equation 5.2.

F − score =
1

n

n∑
i=1

Fi =
F1 + F2 + · · ·+ Fn

n
, (5.2)

where n is the number of data sets.
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In articles where multiple systems were developed or compared in the article, the F-score
for each system was presented. If a F-score was not possible to calculate this was indicated.
If a NLP system was named in the article this name was used, otherwise no name was
given to the system.

5.2 Results

5.2.1 Included Articles

The structured literature search resulted in 56 articles after including the article by Meystre
et al. [2008] to ensure information about NLP systems before 2008.
After the assessment of the 56 articles, 5 were excluded due to a low overall assessment,
which resulted in 51 articles being included for selection of a NLP system, see figure 5.1.
The articles with a medium or high overall assessment, can be seen in table 5.3 on page 47.

Figure 5.1. shows the number of included and excluded articles from the structured literature
search.
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Reference Reliability Internal
Validity

External
Validity

Overall
Assess-
ment

Development studies
Bill et al. [2014] Medium Medium High Medium
Bozkurt et al. [2019] Medium Medium High Medium
Cai et al. [2019] Medium Low Medium Medium
Cheng et al. [2010] Medium Medium Medium Medium
Coden et al. [2009] Medium Low Medium Medium
Cote et al. [2017] Low Medium Medium Medium
Denny et al. [2009] Low High Low Meduim
Divita et al. [2014] High High High High
Doan et al. [2010] High High Medium High
Epstein et al. [2013] Medium High Medium Medium
Fu et al. [2020] Medium High Low Medium
Gao et al. [2015] High High Medium High
Garla et al. [2011] High Medium Low Medium
Gobbel et al. [2014] Low Medium Medium Medium
Goss et al. [2014] Medium Low Medium Medium
Guan and Devarakonda [2019] Medium Low Medium Mediu
Hamon and Grabar [2010] Low High Medium Medium
Hao et al. [2016] High Medium Low Medium
Iqbal et al. [2017] High Medium Medium Medium
Jindal and Roth [2013] Medium High Medium Medium
Kersloot et al. [2019] High Low Medium Medium
Knoll et al. [2019] Medium High Medium Medium
Kovačević et al. [2013] Medium Medium Medium Medium
Kulshrestha et al. [2020] Medium High Medium Medium
Li et al. [2020] Medium High Medium Medium
Liu et al. [2019a] Medium Medium High Medium
Liu et al. [2019b] Medium Low Medium Medium
Lou et al. [2020] Medium Medium High Medium
Martinez et al. [2014] Medium Low Medium Medium
McCart et al. [2013] Medium Medium Medium Medium
Meystre et al. [2010a] High Medium Medium Medium
Meystre et al. [2010b] Medium Medium Medium Medium
Mishra et al. [2019] Medium Medium Medium Medium
Moon et al. [2019] Medium Low Medium Medium
Nassif et al. [2009] Medium Low Medium Medium
Oleynik et al. [2019] Medium Low Medium Medium
Peterson et al. [2020] High Medium Medium Medium
Qiu et al. [2018] Medium Medium Medium Medium
Savova et al. [2010] High Medium High High
Sevenster et al. [2012] Medium Medium Low Medium
Shah et al. [2019] Medium Medium Low Medium
Tao et al. [2018] Medium Medium Medium Medium
Topaz et al. [2019] Medium Medium Medium Medium
Trivedi et al. [2019] Medium Medium Medium Medium
Wei et al. [2019] Low Medium Medium Medium

Continued on next page
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Reference Reliability Internal
Validity

External
Validity

Overall
Assess-
ment

Yadav et al. [2013] Medium Medium Low Medium
Yang et al. [2020a] Medium Medium Medium Medium
Yang et al. [2020b] Medium Low Medium Medium
Zheng et al. [2012] Medium Low Medium Medium
Zhou et al. [2011] High Medium Medium Medium

Systematic review
Meystre et al. [2008] Medium

Table 5.3. shows the assessment of each article included from the structured literature search.

5.2.2 Sub-elements

In table 5.4 sub-elements that fulfill the criteria stated in section 5.1.3 on page 44
was presented. A full overview of which systems from the structured literature search
mentioned particular sub-elements can be seen in appendix B.

Sub-element Number of references
Tokenization 37
Sentence splitting 31
Negation detection 22
Normalization 18

Table 5.4. shows the sub-elements mentioned in more than 15 articles included from the
structured literature search.

5.2.3 Existing Systems

In table 5.5 on page 50 an overview of the identified systems can be seen. The table was
ordered by the used NLP system and F-score.
The results show that the best performing systems were pre-defined Bidirectional Encoder
Representations from Transformers (BERT) and Medical Text Extraction, Reasoning,
and Mapping System (MTERMS). Since these systems are not open-source they are not
possible to use in this study.
ConText was the best performing open-source system, followed by Clinical Text Analysis
and Knowledge Extraction System (cTAKES). All the identified sub-elements were
included in cTAKES but not in ConText, and cTAKES was used in more articles than
ConText. For these reasons, cTAKES [The Apache Software Foundation, 1000 N West
Street, Wilmington, U.S.A.] was selected as the NLP system for this study.
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Reference Extracted
information

NLP system F-score Open-
source

NLP systems used in several articles
Garla et al. [2011] Hepatic

decompensation
cTAKES 0,886 † Y

Kersloot et al. [2019] Oncology related
terms

cTAKES 0,845 † Y

Savova et al. [2010] Semantically
viable
information

cTAKES 0,824 Y

Mishra et al. [2019] Cranio facial and
dental
informations

cTAKES 0,81 Y

Liu et al. [2019a] Phenotypes cTAKES 0,726 † Y
Zheng et al. [2012] Coreference

resolution
cTAKES ‡ Y

Liu et al. [2019a] Phenotypes MedLEE 0,712 † Y
Sevenster et al. [2012] Breast tumors MedLEE 0,521 † Y
Yadav et al. [2013] Blunt facial

trauma
MedLEE ‡ Y

Meystre et al. [2008] Pneumonia MedLEE ‡ Y
Wei et al. [2019] Medicine BERT 0,941 N
Wei et al. [2019] Medicine BERT 0,919 N
Guan and
Devarakonda [2019]

Medicine BERT 0,810 N

Zhou et al. [2011] Diabetes and
Cardiovascular
system

MTERMS 0,906 N

Goss et al. [2014] Allergies MTERMS 0,876 N
Iqbal et al. [2017] Diseases ConText 0,900† Y
Meystre et al. [2008] Negations and

event
ConText 0,842 Y

Denny et al. [2009] Enlogated
QT-segment

KnowledgeMap
Concept
Identifier

0,998 N

Meystre et al. [2008] Cardiology
reports

KnowledgeMap
Concept
Identifier

‡ N

NLP systems used in one articles
Bozkurt et al. [2019] Tumors - 0,982 N
Hao et al. [2016] Diabetes Valx 0,98 Y
Hao et al. [2016] Breastcancer - 0,97 N
Trivedi et al. [2019] Breastcancer - 0,966 N
Knoll et al. [2019] Unknown - 0,96 Y
Gobbel et al. [2014] Conceptualizing

data in groups
RapTAT 0,95 Y

Cai et al. [2019] Nummeric values EXTEND 0,949 † Y
Continued on the next page
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Reference Extracted
information

NLP system F-score Open-
source

Yang et al. [2020a] Relations - 0,948 N
Epstein et al. [2013] Medication and

food allergies
- 0,939 N

Kovačević et al. [2013] Temporal
information

- 0,894 Y

Peterson et al. [2020] Events ClinicalBERT 0,890 Y
Tao et al. [2018] Medicine

prescription
FABLE 0,878 N

Kovačević et al. [2013] Event recognition - 0,872 † N
Coden et al. [2009] Cancer

characteristics
MedTas/P 0,859 † N

McCart et al. [2013] Identifying falls - 0,850 N
Topaz et al. [2019] Identifying falls NimbleMiner 0,850 Y
McCart et al. [2013] Identifying falls - 0,849 N
Gao et al. [2015] Mammographi - 0,848 ? † Y
Doan et al. [2010] Medicine MedEx 0,821 N
Martinez et al. [2014] Cancer tumors - 0,805† N
Qiu et al. [2018] Breast and lung

cancer
- 0,804 N

Cheng et al. [2010] Cancer Tumors - 0,800 † N
Martinez et al. [2014] Cancer tumors - 0,791† N
Jindal and Roth
[2013]

Temporal
information

HeidelTime 0,790 Y

Li et al. [2020] Ischemic stroke - 0,790 Y
Hamon and Grabar
[2010]

Medicine - 0,780 N

Martinez et al. [2014] Cancer tumors - 0,774 † N
Meystre et al.
[2010b,a]

Medicine 0,770 N

Martinez et al. [2014] Cancer tumors - 0,756 † N
Oleynik et al. [2019] Unknown 0,753 Y
Qiu et al. [2018] Breast and lung

cancer
- 0,728 N

Jindal and Roth
[2013]

Events - 0,710 N

Liu et al. [2019a] Phenotypes MetaMapLite 0,682 Y
Yang et al. [2020b] Concepts and

relations
- 0,654 N

Oleynik et al. [2019] Unknown - 0,590 Y
Oleynik et al. [2019] Unknown - 0,575 Y
Bill et al. [2014] Family and

observations
BioMediCUS 0,554 0

Divita et al. [2014] Unknown SPECIALIST 0,531 Y
Liu et al. [2019a] Phenotypes ClinPhen 0,461† N
Lou et al. [2020] Cancer

surveillance
- 0,451 N

Oleynik et al. [2019] Unknown - 0,427 Y
Continued on the next page
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Reference Extracted
information

NLP system F-score Open-
source

Lou et al. [2020] Cancer
surveillance

- 0,387 N

Lou et al. [2020] Cancer
surveillance

- 0,381 N

Cote et al. [2017] Brain - ‡ Y
Fu et al. [2020] Temporal

information
- ‡ Y

Fu et al. [2020] Temporal
information

- ‡ Y

Fu et al. [2020] Temporal
information

- ‡ Y

Meystre et al. [2008] Drug information
and side effects

Linguistic
String Project

‡ N

Meystre et al. [2008] Negations in
mammografi
reports

NegExpander ‡ N

Meystre et al. [2008] Negation
detection

NegEx ‡ Y

Meystre et al. [2008] Negation
detection

NegFinder ‡ N

Meystre et al. [2008] Temporal
relations

TimeText ‡ N

Meystre et al. [2008] Emergency
department

MMTx ‡ Y

Meystre et al. [2008] Lung scans,
pneumonia and
cental venous
catheter

SymText ‡ N

Meystre et al. [2008] Pathology SPIN ‡ N
Meystre et al. [2008] Cancer caTIES ‡ Y
Meystre et al. [2008] Diagnosis and

smoking status
HITEx ‡ Y

Table 5.5. shows the NLP systems used in the articles included in the structured literature
search, the associated F-score, and weather the system is open-source. The column
’Extracted information’ gives a headline of which type of information was extracted.
In the column ’NLP system’ the used NLP system was mentioned. Initially the NLP
systems used in several articles were presented, followed by NLP systems only used
in one article.
† = Average was calculated, ? = Calculated from precision and recall, ‡ = not available
nor possible to calculate, Y = yes, N = no

50



Adjustments of cTAKES 6
6.1 Method

As mentioned in section 3 on page 8, adjustments were added to the source code of the
selected NLP system, cTAKES, and is henceforth referred to as the adjusted cTAKES.

6.1.1 Data set

In order to train and test the adjusted cTAKES, a subset of the N2C2 2010 challenge data
set described in section 4.1.1 on page 11 was used.
In section 2.2 on page 3 it was stated that diagnoses and symptoms can be in a structured
format which corresponds to the extracted concepts concerning problems from the 2010
data set. As the adjusted cTAKES was a proof of concept, a random sample of ten
discharge summaries was selected, three for training and seven for testing.

6.1.2 Gold Standard

6.1.2.1 Elaboration

It was desired to have a gold standard data set, as this made it possible to evaluate the
performance of the adjusted cTAKES. The extracted problems in the data foundation, from
now on referred to as concepts, were annotated by the N2C2 organization [Department of
Biomedical Informatics Harvard Medical School, 2018]. It was chosen to bind the concepts
to SNOMED CT expressions from version United State Edition 2021-03-01. The binding
was performed on both the training and test data set. Prior to binding SNOMED CT
expressions, all concepts and the associated sentence and headline were extracted.
A concept that had not yet occurred in the discharge summary e.g. something the patient
should be aware of after discharge, was excluded, since it was unknown if the problem
would occur or not.

The gold standard was elaborated in four steps; 1) identification of information assessed to
be related and relevant for the concept by a healthcare professional, 2) outline a guideline
for identifying related, relevant information, 3) outline rules for binding SNOMED CT
expressions, and 4) binding each concept and related, relevant information in a SNOMED
CT expressions.
The first step concerned assessment of the concepts. The SNOMED CT expressions,
which healthcare professionals choose are different from those developers would choose
de Keizer et al. [2008]. For this reason and since the authors of this study did not have a
background within practical healthcare, a third party helped to assess the understanding
of the concepts and related, relevant information from the sentence and headline. The
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third party was Anaesthetic Nurse at Aalborg University Hospital, Maibrit Pape. The
procedure for the interview can be seen in appendix C. Concepts from three of the ten
randomly selected discharge summaries were assessed.
The second step concerned outlining a guideline, which was done using visual inspection
of the related, relevant information. If the type of information was mentioned as relevant
multiple times it was included in the guideline.
The third step concerned outlining rules for making SNOMED CT expressions. They
should describe the concept and related, relevant information from the sentence and
headline. The allowed attributes were identified in the concept model described by
IHTSDO [2021c] chapter 6. To identify which SNOMED CT expressions were allowed
to be bound to a given attribute, the rules stated in the MRCM described by IHTSDO
[2021d] were used.
The fourth step concerned binding each concept and related, relevant information to a
SNOMED CT expressions. Based on the guideline and the rules described in the second
and third step, a concept was bound to a pre- or post-coordinated expression, the procedure
for this can be seen on figure 6.1 on the next page.
Both the training and test data set were bound using this method, why the training and
test data set henceforth include SNOMED CT expressions.

6.1.2.2 Evaluation

After binding the SNOMED CT expression in the fourth step, it was evaluate to what
extend it was possible to follow the guideline. This was calculated using the three
discharge summaries assessed by the third party. Each concept was assessed to be a
’full overlap’, or to contain ’too much information’ or ’too little information’ compared to
which information was assessed to be related and relevant by the third party. The category
’too much information’ was relevant since it was assumed that the authors could assess
additional information to be related and relevant based on the guideline. The category
’too little information’ was relevant, since SNOMED CT is not exhaustive and that not
all refinements was allowed in post-coordinated expressions.

An overview of the training and test data set was given including the number of 1) pre-
coordinated expression, 2) post-coordinated expressions, 3) unintelligible concepts, and 4)
concepts that were not possible to bind using SNOMED CT. Additionally, an average and
percentage was calculated for each category, to show similarities and differences between
the two data sets. A two-tailed t-test, with a significance level of 0.05 was used to calculate
the differences between the two data sets. The hypothesis stated that the mean of the two
groups are equal, while assuming equal variance.
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Figure 6.1. shows the procedure for identifying pre- or post-coordinated expressions for the
concepts and related, relevant information from the discharge summaries.
SCT = SNOMED CT, SCT-exp = SNOMED CT expression, * = refer to the rules
describe in this section, SCT-browser = SNOMED CT browser IHTSDO [2021a].
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6.1.3 Agile Methodology

An agile methodology was used to support the test-driven adjustment of cTAKES, to
ensure a synergy between the adjustments and outcome. The seventh principle of the
agile methodology states that working software is the primary measure for progress [Hunt,
2006]. Therefore, the focus was on delivering working software frequently. To achieve this,
mile stones were establish for the adjustments.
The mile stones were set in order to deliver working software in several steps. In figure
6.2 an overview of the milestones can be seen. The first mile stone was to install the
default version of cTAKES as this was the foundation for adjustments. In the structured
literature search it was found that cTAKES could included the necessary sub-elements,
see table 5.4 on page 47. A milestone was set to ensure, that they all are included in
the pipeline. Incorporation of rules for pre-coordinated expressions and post-coordinated
expressions with one refinement was then identified as the next mile stones. The last mile
stone was to incorporate rules for post-coordinated expressions with two refinements. Two
refinements was found sufficient, as this is a proof of concept.
Another focus of the agile approach is that documentation have to be supportive [Hunt,
2006], why the adjustments made to the default cTAKES pipeline and source code were
documented by using e.g. flowcharts.

Figure 6.2. shows the timeline of the mile stones for applying adjustments to the default
cTAKES.

6.1.4 Data Analyses

In order to incorporate rules for generating pre- and post-coordinated expressions into
the adjusted cTAKES four analyses were made on the SNOMED CT expressions in the
training data set.

6.1.4.1 Identification of Top Levels

Development of SNOMED CT post-coordinated expressions followed the concept model
defined by IHTSDO [2021c] as mentioned in the third step in section 6.1.2 on page 51.
These rules are based on the 19 SNOMED CT top levels and state which top levels can
be combined into post-coordinated expressions using the attributes [IHTSDO, 2021c].
Therefore, it was important to analyse the training data in order to identify which
SNOMED CT expression from the default cTAKES belonged to which top level as well as
which top levels were needed to make rules based on the training data. The analysis used
the output from the default cTAKES to divide the extracted SNOMED CT expressions
into top levels.
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6.1.4.2 Pre-coordinated Expressions

Pre-coordinated expressions can belong to any of the 19 top levels [IHTSDO, 2021c].
Therefore, it was identified which top levels were represented as pre-coordinated expressions
in the training data set. This was done in order to limit the number of pre-coordinated
expressions generated by the adjusted cTAKES and thereby reduce the number of
incorrectly identified SNOMED CT expressions.

6.1.4.3 Translation of Qualifier Values

An analysis of the qualifier values was conducted aiming at identifying which words or
phrases in the sentence and headline from the training data set could be translated to a
given qualifier value. This was important as the adjusted cTAKES only bound words or
phrases which are an exact textual match. Not using the results from this analysis would
cause undefined synonyms not being bound e.g. could the absence of a disease be indicated
by a preceding ’no’, but it would not be detected.

6.1.4.4 Prioritization of Refinements

In the training data set an unlimited number of refinements could be added to a focus
concept when making post-coordinated expression. If the adjusted cTAKES had to bind
every possible combination of SNOMED CT expressions it would result in a high number of
incorrectly identified SNOMED CT expressions. However, since this is a proof of concept
the adjusted cTAKES included no more than two refinements. Therefore, two analyses
were conducted, to identify how frequent top levels were represented in the refinements in
the post-coordinated expressions. The first analysis concerned frequency of top level in
any refinement. This was done to ensure that the generated post-coordinated expression
included the most frequent top level available, hence the information assumed to be most
related and relevant to describe the focus concept. Based on the frequency, the top levels
were prioritized in the first refinement. The second analysis was conducted to prioritize
the top levels for the second refinement. The combination of the refinements in a post-
coordinated expression was counted. For instance, if a top level of a refinement was
’Procedure’ it was counted at what frequency each of the 19 top levels were represented in
the additional refinements.

6.1.5 Test of the Adjusted cTAKES

To test the performance of the adjusted cTAKESthe results from the adjusted cTAKES
were compared to the gold standard. The results were divided into true positives (TP),
false positives (FP), and false negatives (FN) defined as in table 6.1 on the next page
which was based on the article by Kersloot et al. [2019]. From these categories precision,
recall, and F-score were calculated to obtain a measure for the performance of the adjusted
cTAKES.
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Category Description
TP SNOMED CT expression identical

to the gold standard
FP SNOMED CT expression differs

from the gold standard
FN Concept not bound to a SNOMED

CT expression

Table 6.1. shows the three categories of the results from the adjusted cTAKES and their
associated description. Descriptions were made with inspiration from the article by
Kersloot et al. [2019].

Precision, also called the positive predicted value, represents the ability of the adjusted
cTAKES to correctly annotated concepts compared to all annotations [Kersloot et al.,
2019], which was calculated with equation 6.1:

Precision =
TP

TP + FP
(6.1)

Recall, also called the sensitivity, represents the ability of the adjusted cTAKES to correctly
annotate the concepts [Kersloot et al., 2019], which was calculated with equation 6.2:

Recall =
TP

TP + FN
(6.2)

The F-score represents the performance of a binary classifier based on precision and recall
[Kersloot et al., 2019], and was calculated using equation 5.1 on page 44.

6.2 Results

6.2.1 Gold Standard

Discharge summary no. 32, 67, and 81 composed the training data set, and discharge
summary no. 13, 14, 33, 36, 38, 74, and 80 composed the test data set. The characteristics
for the training and test data sets can be seen in table 6.2 and 6.3 on the next page, respec-
tively. A statistical comparison of the data sets can be seen in table 6.4 on the following
page.
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32 67 81 Average
± SD

Percent
[%]

Pre-coordinated
expressions

17 8 23 16.0
± 7.5

27.1

Post-coordinated
expressions

55 13 36 35.7
± 21.2

60.5

Unintelligible
words

6 0 0 2.0
± 3.5

3.4

Not possible to
bind

9 1 6 5.3
± 4.0

9

In total 87 22 68 59.0
± 33.4

100

Table 6.2. shows the number of pre- and post-coordinated expressions, unintelligible concepts,
and concepts not possible to bind for each discharge summary in the training data set.
For each of the four categories the average, the standard deviation, and the percentage
can be seen.

13 14 33 36 38 74 80 Average
± SD

Percent
[%]

Pre-coordinated
expressions

17 21 28 6 16 9 10 15.3
± 6.9

31.1

Post-coordinated
expressions

23 37 50 13 40 18 26 29.6
± 13.9

60.2

Unintelligible
words

2 0 0 0 0 0 0 0.3
± 0.8

0.6

Not possible to
bind

1 1 8 0 11 2 5 4.0
± 4.2

8.1

In total 43 59 86 19 67 29 41 49.1
± 23.1

100

Table 6.3. shows the number of pre- and post-coordinated expressions, unintelligible concepts,
and concepts not possible to bind for each discharge summary in the test data set. For
each of the four categories the average, the standard deviation, and the percentage
can be seen.

The t-test showed that none of the categories in the two data sets were statistical significant
(p > 0.05), see table 6.4.

Train Test p-value
Pre-coordinated expressions 16.0 15.3 0.89
Post-coordinated expressions 26.0 29.6 0.60
Unintelligible words 2.0 0.3 0.22
Not possible to bind 5.0 4.0 0.65

Table 6.4. shows the average number of pre-coordinated expressions, post-coordinated expres-
sions, unintelligible concepts, and concepts not possible to bind for the training and
test data sets, as well as the p-value for each category.
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Discharge summary no. 67 from the training data set and no. 14 and 80 from the test
data set were assessed by Anaesthetic Nurse at Aalborg University Hospital, Maibrit Pape.
In table 6.5 the agreement between the selected SNOMED CT expressions and the third
party can be seen.
The guideline for identifying related, relevant information was elaborated and contained
five observations; 1) indication of whether the concept was a part of the patient’s
anamnesis, most often indicated with ’history of’, 2) if the concept was negated, e.g.
’no abdominal pain’, 3) an administered medication associated with the concept, e.g.
’Vancomycin given for Corynebacterium’, 4) if a procedure caused the problem described
in the concept, e.g. ’hyponatremia following a surgery’, and 5) if there are associated
diseases or symptoms.

14 67 80 Percent
[%]

Full overlap 44 17 24 70.2
Too much bound 6 0 4 8.3
Too little bound 8 4 7 15.7
Not bound 1 1 5 5.8
In total 59 22 40 100

Table 6.5. shows the agreement between the SNOMED CT expressions and the related, relevant
information selected by the third party. The agreement was made based on concepts
extracted from discharge summary no. 67 from the training and no. 14 and 80 from
the test data set.

6.2.2 Documentation of the Adjusted cTAKES

An overview of the adjustments added to the default cTAKES can be seen in appendix
D. The pipeline for the adjusted cTAKES followed the pipeline defined in the file ’Aggre-
gatePlaintextFastUMLSProcessor.xml’ with cTAKES’ status and negation detector added,
which can be seen on figure 6.3 on the next page.
By default cTAKES uses a dictionary based on Unified Medical Language System (UMLS),
which includes several terminologies, such as RxNorm, SNOMED CT, and Logical Obser-
vation Identifiers, Names, and Codes (LOINC). Since SNOMED CT was chosen as standard
terminology in section 2.5 on page 6, an UMLS dictionary only including SNOMED CT
USA edition 2020 was used, as this was the latest version available in English for download
on 30/3/2021.
As a part of the included dictionary the adjusted cTAKES used a term consumer to de-
termine which span of words in a sentence were eligible for terminology binding. It was
chosen to use the ’PrecisionTermConsumer.java’, as this included the longest overlapping
semantic span of words e.g. ’knee pain’ instead of ’knee’ and ’pain’. In this way more of
the situational contextual information was preserved in a single SNOMED CT expression.
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Figure 6.3. shows the pipeline for executing the adjusted cTAKES. The boxes with the dashed
line indicate in which sub-elements adjustments were made. The boxes with the
dotted line indicate the added sub-elements.
POS = Part-of-speach, NER = Named Entiry Regognition.

6.2.2.1 Adjustments in POS-tagger

In the dashed box with part-of-speech (POS) tagging on figure 6.3, each extracted word
was assigned to a word class, e.g. noun, verb, adjective. The default POS-tag list was
extended to include the POS-tags in the following list, in order to accommodate that
non-noun words in a sentence could be included into the SNOMED CT expressions.

• Preposition or subordinating conjunction (IN)
• Noun, singular or mass (NN)
• Noun, plural (NNS)
• Proper noun, singular (NNP)
• Proper noun, plural (NNPS)
• Verb, base form (VB)
• Verb, past tense (VBD)
• Verb, gerund or present participle (VBG)
• Verb, past participle (VBN)
• Verb, non-3rd person singular present (VBP)
• Verb, 3rd person singular present (VBZ), [Treebank, 2003]

6.2.2.2 Adjustments in Dictionary Lookup

In the dashed box with dictionary lookup on figure 6.3, rules and supporting source code
were added to enable pre- and post-coordinated expression to be generated.
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Identification of SNOMED CT Top Levels
Not all of the 19 SNOMED CT top levels were represented in the SNOMED CT expressions
in the training data set. To identify the top levels used in the training data set, the analysis
described in section 6.1.4.1 on page 54 was used. In the list below the identified top levels
were presented. Some of the top levels presented in the list below were in fact sub-levels of
a top level, but for convenience they are henceforth called top levels, since they contained
important information in relation to the implemented rules.

• Attribute (sub-level of SNOMED CT Model Component)
• Body Structure
• Clinical Finding
• Morphologic Abnormality (sub-level of Body Structure)
• Observable Entity
• Organism
• Person (sub-level of Social Context)
• Procedure
• Qualifier Value
• Situation with Explicit Context
• Substance, [IHTSDO, 2021c]

As the SNOMED CT expressions in default cTAKES were assigned to the extracted words
and phrases based on an UMLS dictionary, the SNOMED CT expressions were not pre-
categorized into the 19 SNOMED CT top levels defined in IHTSDO [2021c] chapter 6.
However, it was found that each SNOMED CT expression was associated with a Type
Unique Identifier (TUI) code which represents semantic groups defined by UMLS [Gu
et al., 2016]. In the adjusted cTAKES, the TUI codes were used to assign the SNOMED
CT expressions to a top level, except for the top level ’Attribute’. The choice of which
TUI code belonged to which top level can be seen in table 6.6.

Top Level TUI

Body Structure T017, T018, T021, T022, T023, T024, T025, T026,
T029, T030, T031

Clinical Finding T019, T025, T026, T029, T034, T037, T046, T047,
T048, T049, T050 T051, T055, T184, T191

Morphologic Abnormality T020, T190
Observable Entity T038, T039, T041, T042, T052, T201
Organism T005, T007, T204
Person T016, T099, T100, T101
Procedure T056, T058, T059, T060, T061, T065
Qualifier Value T033, T077, T079, T080, T081, T082
Situation with Explicit
Context -

Substance
T103, T104, T109, T110, T111, T114, T115, T116,
T118, T119, T120, T122, T123, T124, T125, T126,
T127, T129, T130, T131, T167, T192, T196, T197

Table 6.6. shows which TUI code was assigned to which top level. Findings were based on the
training data set.
- = no TUI code identified for the top level.
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Based on the description of the TUI codes and the training data set, no TUI code was
identified for the top level ’Situation with Explicit Context’, why this top level was not
used further in the adjusted cTAKES.
This analysis showed that it was to some extend possible to divide the SNOMED CT
expressions into 10 top levels using TUI codes. Therefore, the TUI codes were extracted
and used to assign each SNOMED CT expression to a top level.

Rules for Pre-coordinated Expressions
Pre-coordinated expressions generated by the adjusted cTAKES were based on SNOMED
CT expression identified in one sentence, as it was not possible to use information from
the headline. The headline was not used, as the default part of cTAKES only detected one
section per discharge summary, hence only one headline.
The analysis of all pre-coordinated expressions described in section 6.1.4.2 on page 55,
showed that only SNOMED CT expressions from the top levels ’Clinical Finding’ and
’Morphologic Abnormality’ were used. Pre-coordinated expressions from these two top
levels accounted for 27.1% of the SNOMED CT expression in the training data set, see table
6.2 on page 57. Therefore, the adjusted cTAKES generated pre-coordinated expressions
from all SNOMED CT expressions in these two top levels.

Rules for Post-coordinated Expressions
As with the pre-coordinated expressions, post-coordinated expressions were based on
SNOMED CT expressions identified in one sentence. The adjusted cTAKES bound a
focus concept and up to two refinements in one post-coordinated expression. Based on
the training data set it was found that only SNOMED CT expressions from the top level
’Clinical Finding’ were used as focus concepts in post-coordinated expressions, which was
implemented in the source code.
The first refinement bound by the adjusted cTAKES, was prioritized based on the frequency
of the top level, as described in the first analysis in section 6.1.4.4 on page 55. The
prioritization of the top levels used in refinements can be seen in table 6.7.

First Top Level Frequency
Qualifier Value 56
Clinical Finding 33
Procedure 22
Body Structure 20
Person 6
Morphologic Abnormality 2
Substance 1
Organism 1
Observable Entity 1

Table 6.7. shows the prioritization of the top levels used as the first refinement based on how
frequent the top level was represented in the training data set.

To avoid an excessive number of incorrect identified post-coordinated expressions, the
second refinement was prioritized in respect to each top level, as described in the second
analysis in section 6.1.4.4 on page 55. The prioritization can be seen in table 6.8 on the
following page.
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First Top Level Second Top Level Instances

Body Structure

Qualifier Value 6
Procedure 4
Body Structure 2
Stand alone refinement 8

Clinical Finding

Qualifier Value 7
Procedure 5
Clinical Finding 6
Stand alone refinement 10

Morphologic Abnormality Qualifier Value - After 2
Stand alone refinement 1

Observable Entity Stand alone refinement 1

Organism Qualifier Value 1
Stand alone refinement -

Person Qualifier Value 4
Stand alone refinement -

Procedure

Clinical Finding 5
Qualifier Value 5
Body Structure 4
Stand alone refinement 7

Qualifier Value

clinical Finding 7
Body Structure 6
Procedure 5
Person 4
Morphologic Abnormality 2
Organism 1
Stand alone refinement 29

Substance Stand alone refinement 1

Table 6.8. shows the prioritization of the top levels used as the second refinement in respect to
the first refinement. The results were identified in the training data set.
’Stand alone refinement’ = the number of times a top level in a refinement was used
without any other refinements.

For the top level ’Clinical Finding’ in the first refinement the most frequent combined
top level in the second refinement was an additional ’Clinical Finding’. However, it was
further observed that five out of the six clinical findings in the second refinement were the
SNOMED CT expression ’365854008 | History finding |’. This particular SNOMED CT
expression describes a finding from the patient’s anamnesis, and in the training data set
this SNOMED CT expression was bound based on information in the headline and not
the sentence. As the headline was not used, the SNOMED CT expression ’365854008 |
History finding |’ was never used. Therefore, the prioritization was changed and followed
table 6.8.

The process of generating the pre- and post-coordinated expressions can be seen on figure
6.4 on the following page while the combination of the top levels and associated attributes
can be seen in appendix E.
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Determine SNOMED CT Expressions for Attributes
Since only SNOMED CT expressions from the top level ’Clinical Finding’ were used as
focus concepts in post-coordinated expressions only attributes possible to bind to ’Clinical
Finding’ were used, based on the concept model [IHTSDO, 2021c]. The process for
determining attributes can be seen on figure 6.5 while the pre-defined set of SNOMED
CT expressions for attributes can be seen in appendix E.

Figure 6.5. shows a flowchart of the process for determining if a SNOMED CT expression is an
attribute.
SCT-exp = SNOMED CT expression, SCT-attribute = SNOMED CT expressions
from the top level ’Attribute’.

Translation of Qualifier Values
As described in section 6.1.4.3 on page 55 synonyms for qualifier values were identified in
addition to the identified SNOMED CT expressions assigned to the top level ’Qualifier
Value’ based on TUI codes. The synonyms were used the to determine if a SNOMED
CT expression covered a word or phrase representing a qualifier value. The process of
translating synonyms into qualifier values can be seen on figure 6.6 on the next page, and
the results can be seen in table 6.9 on page 66.

As the synonym ’No’ was originally used to indicate two qualifier values, a deeper analysis
was conducted. This showed that the synonym ’No’ was used once to describe ’264868006
| No growth |’ and 15 times to describe ’2667000 | Absent |’. Therefore, the synonym ’No’
was used to describe ’2667000 | Absent |’ in the adjusted cTAKES resulting in the qualifier
value ’264868006 | No growth |’ to be excluded.
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Figure 6.6. shows a flowchart of the process for determining whether a word or phrase is a
synonym for a qualifier value.
Word* = the word or phrase which a SNOMED CT expression covers, SCT-exp =
SNOMED CT expression.
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Qualifier Value Synonym

2667000 | Absent |

Denies
Negative
No
Non
Without

373933003 | Acute onset | Spontaneous
62459000 | Chronic persistent | Persistent

448371000124103 | Clinically undetermined |

Like
Likely
Possible
Presumably

263730007 | Continual | Weeks

1250004 | Decreased | Decreased
Less

303114002 | Early neonatal period | Preterm Infants
54328002 | Indifferent | Stable
255604002 | Mild | Mild
6736007 | Moderate | Moderate
264868006 | No growth | -
425404009 | Slightly | Slightly
255507004 | Small | Small
425323003 | Sudden onset AND short duration | Immediately
257556004 | Surgery | Surgery
260360000 | Very high | Very

Table 6.9. shows which synonyms were used in the sentence or headline, in order to identify
qualifier values for the post-coordinated expressions.

6.2.3 Performance of the Adjusted cTAKES

A comparison of the SNOMED CT expressions in the gold standard and generated by the
adjusted cTAKES was conducted for both the training and test data set. The SNOMED
CT expressions from the adjusted cTAKES were generated by running the Apache GUI
Collection Processing Engine for Windows. The rate of TP, FP, and FN as well as the
precision, recall, and F-score can be seen in table 6.10.
In discharge summaries no. 36 and 80 from the test data set, no TP were found.
Additionally, 96.4% and 96.8% of the SNOMED CT expressions generated by the adjusted
cTAKES were incorrect identified SNOMED CT expressions for the training and test data
set, respectively.

FN FP TP Precision Recall F-score
Training Data Set 69 63 22 0.259 0.242 0.250
Test Data Set 157 136 20 0.128 0.113 0.120

Table 6.10. shows the results of the comparison between the SNOMED CT expressions in the
training and test data set and generated by the adjusted cTAKES.
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Profiling was performed on 21 FHIR resources which contained 95.7% of information from
the three randomly selected discharge summaries. All the developed FHIR profiles were
found valid. A gold standard was made, where concepts and relevant information was
bound to pre- (31.1% ) and post-coordinated SNOMED CT expressions (60.2%) in the
test data set. The default cTAKES was adjusted and used to extract information from
discharge summaries. Both pre- and post-coordinated SNOMED CT expressions were
extracted from the discharge summaries, resulting in a F-score on 0.120.
It is considered how the complexity of healthcare data, the maturity of HL7 FHIR, and
whether the implementation context affects the structuring of healthcare data. The results
of data extraction were affected by the complexity of the healthcare data, why it might be
worth considering if it makes sense to try structuring free text documents.

7.1 The Complexity of Healthcare Data

Knowledge within the clinical domain, can according to the article by Garde and Knaup
[2006] be described as; broad as it constantly expands, deep as existing knowledge becomes
more detailed, and complex as new interactions are found. Therefore, is it only possible to
develop and implement a fully relevant system for a limited period. This is problematic,
since the system has to be up to date to ensure that patients at all times are provided
with the most appropriate care. [Garde and Knaup, 2006] Due to this, there must be a set
of requirement to define which information is relevant at the given time. In the developed
FHIR profiles, this requirement included restricting the minimum cardinality from 0 to 1,
as described in table 4.3 on page 15. A minimum cardinality of 1 requires the element to
contain data when exchanging the FHIR profile, though it cannot be assured that the data
are valid. To ensure this, definition of a FHIRPath is required which describes the path to
the correct data element in a database. As information can be incomplete, changing the
minimum cardinality to 1 can become a challenge, especially when the profiles are used in
different settings, e.g. different hospital departments. [Health Level 7, 2021g]
Since interoperability expands [Dinh-Le et al., 2019], it might not be optimal to make FHIR
profiles for single usage, but rather for multiple usages. This would require a common
understanding of which information is of interest and which is not. The article by Dinh-Le
et al. [2019] investigated the challenges associated with health wearables. It was found
that some of these challenges concern interoperability, integration of data into EHR, and
handling the tremendous amount of data. Further, it was stated that there should be
established requirements for the data that should be integrated, such as data analysis or
selection of the important information [Dinh-Le et al., 2019]. This underlines the need for
data requirements when exchanging data in different settings of healthcare.
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As earlier mentioned, discharge summaries are developed for the primary care physicians
[Lenert et al., 2014], and they are used as the primary medium for communication between
hospitals and primary care physicians [Spasic and Nenadic, 2020]. Therefore, they are
essential in order to ensure patient safety and the continuity of care after discharge
[Spasic and Nenadic, 2020]. Discharge summaries typically include; date of admission and
discharge, reasons for hospitalization, findings within different specialities, performed tests
and test results, conditions, medical circumstances or changes, etc. [Spasic and Nenadic,
2020]. The developed FHIR profiles include the majority of the data mentioned above
and are developed based on the data foundation. Another approach could be to develop
FHIR profiles based on existing standards for discharge summaries. The standardization
organization MedCom has elaborated a standard for Danish discharge summaries [Medcom,
2021; MedCom, 2019]. The information in the MedCom standard differs from the discharge
summaries used in the data foundation in regard to the structure and content. An example
is that information about the receiver should included a name, department, organization,
and address if available, as well as a mandatory receiver identifier. [MedCom, 2019] This
shows that when following a standard, there are other requirements for the data, and in this
case it would result in more information to be included in the FHIR profiles. According to
the articles by Spasic and Nenadic [2020] and O’Leary et al. [2009] the structure and content
of discharge summaries vary greatly between institutions and clinicians, which indicates a
lack of international agreement. Compared to the data foundation, international agreement
upon the structure and content of the discharge summaries, would set up new requirements
for the data. Furthermore, it would most likely result in the developed FHIR profiles being
broader, hence enable usage at multiple hospitals following the same standard for discharge
summaries. This is in contrast to the developed profiles, since they are not applicable for
usage at multiple hospitals.

7.2 Maturity of HL7 FHIR

The articles by Peterson et al. [2020] and Hong et al. [2018], both mapped data extracted
with a NLP system to a FHIR resource. The article by Hong et al. [2018] extracted
medication information and mapped it to the MedicationStatement resource, where the
article by Peterson et al. [2020] extracted information about diagnoses and mapped it to the
Condition resource. The article by Peterson et al. [2020] claims that the applied approach
can be used for mapping to any resource. Despite this, both articles are quite narrow
in their development and no implementation context was considered. This is in contrast
to the implementation context defined in section 3 on page 8 as the data foundation was
used to identify relevant FHIR resources for the profiling. By doing so, it permitted an
evaluation of the maturity of the FHIR resources. In total, 95.7% of information from
the discharge summary no. 51, 53, and 74 was possible to assign to elements in FHIR
resources. This shows that HL7 FHIR can enable interoperability of information from
discharge summaries. However, it leaves 4.3% of the information to be unassigned to a
FHIR resource, including orientation of patients and formalities.
Information about orientation of a patient is important when making quality assurance of
healthcare [Jünger and Nagel, 2019]. Additionally, involvement of patients in the decision
making process can positively affect their health, as they possibly become more willing
to follow treatments, why this is a fundamental element in future healthcare [Jünger and
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Nagel, 2019; Stacey et al., 2017]. This information is important for the primary care
physician, in order to know whether the patient is e.g. biased for or against the treatment
[Stacey et al., 2017]. Therefore, it can be assumed that the healthcare professionals are
motivated to document when they have oriented a patient about a situation. A solution
to share this information using HL7 FHIR, could be to add an extension in the HL7 FHIR
registry.
In the discharge summaries some formalities were identified e.g. who dictated the
discharge summary. This information was assumed to be important situational contextual
information, as the dictating healthcare professional likely plays a central role in the
care of the patient. However, it was not possible to bind this information in a FHIR
profile. The responsibility of the provided care must be assigned to a person Pickard
[2019]. According to a commentary by Pickard [2019] responsibility in healthcare can be
assigned to a person, when the person knows what they are doing, knows the alternatives,
and has sufficient control of their actions. This is valid at the time of the action and in
a period afterwards [Pickard, 2019]. This argues that all information about a healthcare
professional’s responsibilities should be possible to document in an EHR and include in a
FHIR profile.

7.3 The Implementation Context

In section 2.4.2 on page 5 it was mentioned that both HL7 CDA and HL7 FHIR can be
used as exchange standards. The architectural standard HL7 v3 has the ability to exchange
messages, which contains CDA documents [Rinner and Duftschmid, 2016]. In the study
by Rinner and Duftschmid [2016], mapping from CDA documents to FHIR resources was
investigated, which was successful for six FHIR resources. Both the ability to exchange
messages and documents were adapted by HL7 FHIR [Rinner and Duftschmid, 2016], by
using the Bundle types ’message’ or ’document’, respectively [Health Level 7, 2021e,d].
The type of bundle was chosen to be a ‘document’, as this was suitable for the intended
implementation context, described in section 3 on page 8. The Bundle type ’document’ was
chosen under the assumption that all primary care physicians need the same information
from the discharge summaries.
Using the Bundle type ’message’, a request is send from a source application asking for
specific content from a destination application. The FHIR resources in a message depends
on the request and is therefore not an immutable set of FHIR resources, as in the Bundle
type ’document’. [Health Level 7, 2021e,d] Using the Bundle type ’message’ allows the
user to request data structured in different FHIR resources for every request, whereas the
immutable set of FHIR resources in the Bundle type ’document’ could result in too much
or too little data being exchanged [Health Level 7, 2021e,d]. As described in section 3
there is a trade-off between the flexibility and degree of interoperability, when working
with HL7 FHIR.
Based on the above mentioned, it could be stated that the Bundle type ’message’ supports
flexibility, to a higher degree than the Bundle type ’document’. Though, the Bundle type
’document’ can be defined for usage in different settings, hence ensuring interoperability
of information when requirements for data are followed. For instance, specifying a
document for several hospital departments since a surgical department need a different
set of information than a medical department. Therefore, the Bundle type ’document’
could be used in the defined implementation context.
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7.4 The Semantic Challenges

As mentioned in section 2.4.1 on page 5, post-coordinated expressions from SNOMED
CT could be used to include additional situational contextual information than the pre-
coordinated expressions. This suggestion is supported by the findings in the gold standard,
since it included 60.5% and 60.2% post-coordinated expressions in the training and test
data set, respectively. The agreement between the selected SNOMED CT expressions and
the related, relevant information identified by Anaesthetic Nurse at Aalborg University
Hospital, Maibrit Pape was 70.2%. This shows that post-coordinated expressions are in fact
needed to describe information in discharge summaries in clinical practice. The downside of
these post-coordinated expressions appears in the poor results from the adjusted cTAKES.
Future work could be to apply logic in order to enable the adjusted cTAKES to choose
the correct post-coordinated expression. If this is applied the adjusted cTAKES would
be one step closer to implementation in clinical practice, hence improving the process of
structuring free text documents.

The F-score obtained by the adjusted cTAKES was poor compared to the identified studies
using cTAKES, in table 5.5 on page 50. Several influential factor can affect these results,
including but not limited to; the division of SNOMED CT expressions into SNOMED CT
top levels and the lack of extracted data.
The division of the SNOMED CT expressions into the 19 SNOMED CT top levels was
based on TUI codes. This process was crucial for the adjusted cTAKES as the rules for
generating SNOMED CT expressions was based on the concept model and therefore use
the top levels [IHTSDO, 2021c,d]. A concern is that the TUI codes do not correspond to
one top level, but often describe information that could be assigned to multiple top levels
[Gu et al., 2016]. This affected the division negatively as some of the extracted SNOMED
CT expressions were incorrectly assigned to a top level. A possible solution could be to
obtain a more comprehensive mapping between SNOMED CT and UMLS. This would
most likely result in more of the situational contextual information to be divided thus
bound correctly.
In the adjusted cTAKES minimal changes were made to the existing source code, and
mainly new rules and a class were added as described in section 6.2.2 on page 58. The
output of the default part of the adjusted cTAKES is challenged by misspellings, synonyms,
and abbreviations [Mishra et al., 2019; Zheng et al., 2012; Savova et al., 2010]. These are
found to be commonly present in free text documents as mentioned in section 2.3.2 on
page 4. Misspellings were not handled, but synonyms were partly handled by including
the UMLS dictionary with synonyms in the adjusted cTAKES. An alternative to include
an extensive number of synonyms is to implement a module for detection of misspellings
and synonyms as described in the article by Kersloot et al. [2019]. This module assigned
SNOMED CT expressions to extracted concepts based on a 5% error margin without
additional FPs [Kersloot et al., 2019]. The abbreviations e.g. ’colon can’ was incorrectly
bound to the SNOMED CT expression ’71854001 | Colon structure |’ as ’can’ is not a
abbreviation for ’cancer’ in the dictionary. The use of abbreviations in the discharge
summaries are probably a part of the explanation for the low TP and FP rate, since too
few clinical findings is extracted.
Another issue is the number of clinical findings, which represent the patient’s anamnesis.
In the discharge summaries, this is often indicated by the headline, but rules for including
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headlines were not implemented in the adjusted cTAKES.
If the challenges concerning misspellings, synonyms, abbreviations, and identification of
the patient’s anamnesis were resolved, it would allow for more of the situational context
to be included in the post-coordinated expressions. Though, it is questionable whether
this would result in a better performance of the adjusted cTAKES. Therefore, it should
be further investigated before drawing any conclusion.

7.5 Structuring of Healthcare Data

Despite the poor results from the adjusted cTAKES, some elements did contribute to
improve the performance, hence extracting and encoding the discharge summaries. In
the test data set 20 (0.2%) TP SNOMED CT expressions were identified. This was 18
pre-coordinated expressions and two post-coordinated expressions with a qualifier values
as the only refinement. The agreement in pre-coordinated expressions is due to the fact
that all SNOMED CT expressions from the top levels ’Clinical Finding’ and ’Morphologic
Abnormalities’ were generated as pre-coordinated expressions. For the post-coordinated
expressions the translation of the specific words and phrases from the discharge summaries
into qualifier values resulted in a controlled choice of SNOMED CT expressions compared
with SNOMED CT expressions in the remaining top levels. This positive effect is also seen
in the result from the study by Kersloot et al. [2019] where the NLP system had an F-score
of 0.845. In the study, three pre-defined pre-coordinated expressions and one pre-defined
post-coordinated expression were bound to free text documents and were evaluated against
a gold standard [Kersloot et al., 2019]. Therefore, an approach to improve the results of the
adjusted cTAKES, could be to extend the process of making a controlled set of SNOMED
CT expressions for each top level. However, clinical information are complex and ever
changing [Garde and Knaup, 2006]. This makes it difficult to maintain an up to date
controlled set of SNOMED CT expressions, which would be necessary in order to include
the situational contextual information and obtain better performance.

To the authors current knowledge none of the identified NLP systems in table 5.5 on
page 50 are used in clinical practice. This indicates the immaturity of the NLP systems
and their ability to extract and encode the correct information. Semi-automatic annotation
could possibly accommodate this hurdle, since the healthcare professional chose the best
fitting pre-defined code for a given word or phrase. The study by de Keizer et al. [2008]
investigated the match between reasons for transferring a patient to an intensive care unit.
The reasons were collected as free text documents and pre-defined codes from a terminology
system. Healthcare professionals wrote a free text document and chose one or more fitting
codes to describe the same reasons. The results showed that only 11% of the reasons
were an exact match, 79% did partly match, and 10% did not match. [de Keizer et al.,
2008] These results could represent semi-automated annotation, and it was suggested that
healthcare professionals should be involved when selecting a vocabulary for the results to
improve [de Keizer et al., 2008]. However, it might not be sufficient to solve the challenges
of extracting and encoding information from free text documents. The article by [Peterson
et al., 2020] states that the work of structuring healthcare data should not be forced onto
the healthcare professional, as they have an already full work load. Therefore, it is worth
considering if NLP or semi-automatic annotation is a solution and whether it make sense
to structure all information. According to the article by Greenhalgh et al. [2008] when
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standardizing and structuring data in systems very carefully in one area it is likely to cause
problems elsewhere in the system, since not all parts are equally structured. Combining
the immaturity of NLP systems and difficulties structuring one part of a system, it might
not be optimal to structure all data from free text documents.
An alternative could be to semi-structure free text documents by making the headlines
more reusable and shareable, while leave the text be. In the article by Galster [2013a] it is
stated that a healthcare professional uses a lot of time and mental capacity on collecting
all relevant information if the information is scattered around the EHR. It is suggested
to structure the information in smaller views, only presenting the necessary information
for a given task [Galster, 2013a]. In the article by Galster [2013a] information is scattered
around the EHR, whereas information is very dense in discharge summaries. Though, it is
assumed that the idea of smaller views could be applicable for discharge summaries, since
primary care physicians do not have to read the entire discharge summary. This could be
obtained by using the semi-structured approach suggested above.
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Conclusion 8
The objective of this study is to explore how the situational context can be preserved
when extracting and structuring relevant information from free text documents in order
to obtain semantic interoperability.
It is possible to preserve information about the situational context from free text
documents, though some limitations are identified. The main limitation is that the clinical
problems are not extracted and encoded sufficiently by the adjusted cTAKES which results
in a poor performance. However, within the boundaries of the defined implementation
context it is possible to structure the information using FHIR resources and achieve
a semantic, unambiguous understanding of the clinical problems using SNOMED CT
expression.

Based on the design considerations, an open-minded approach for selection of FHIR
resources is chosen, which results in development of 20 FHIR profiles and one
implementation guide. In total, the FHIR profiles can hold 95.7% of information from the
discharge summaries. For the developed FHIR profiles to be useful in different settings,
national or international standards shall be followed to set up requirements for which
information shall be accessible to ensure interoperability.
A gold standard is elaborated with help from a healthcare professional, where clinical
problems from the N2C2 data set are bound to pre- and post-coordinated expressions.
Since 60.2% of the expressions from the test data set are post-coordinated expressions, it
indicates that these are necessary to use in order to include the situational context.
The adjusted cTAKES is distinguishable different from the identified NLP systems, as it is
adjusted to include the situational context through pre- and post-coordinated expressions.
It is trained on three discharge summaries, but due to the poor performance, is shall be
trained on more data before drawing conclusions on the overall performance.
In the literature it is found that there exist several NLP systems to extract and structure
free text documents, though none of them are used in clinical practice. This indicates
the difficulties of extracting information from free text documents well enough for clinical
practise. In terms of the discharge summaries a suggestion can be to use a semi-structured
approach with more explicit categorization of the information. Another suggestion can
be to apply logic to the adjusted cTAKES, and learn the system to select an appropriate
SNOMED CT expression.
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Method to Obtain Current
Knowledge A

To obtain knowledge for chapter 2 on page 2 three methods were used, 1) exploratory search
to obtain a knowledge base and vocabulary, 2) a structured literature search in terms of a
block search to investigate of structuring free text documents in order to achieve semantic
interoperability, and 3) chaining search to further explore information from the included
articles. The block search is further described in the following section.

A.1 Structured Literature Search

The purpose of the structured literature search was to investigate structuring of free text
documents in order to achieve semantic interoperability. The block search was conducted
in the databases PubMed and Embase, as a retrieval rate of 92.8% was found according
to the article by Bramer et al. [2017] when searching in these two databases, which was
assumed sufficient. The search terms used in PubMed and Embase, can be seen in table
A.1 and A.2, respectively. The two columns are combined using the boolean operator
’AND’, where the rows in each column are combined using the boolean operator ’OR’.

Clinical notes Structuring Interoperability

MeSH terms
Narrative Medicine[MeSH] Health Information Inter-

operability[MeSH]
Data Curation[MeSH]

All fields
Clinical document* Structuring Interoperability
Clinic* note* Data structur* Interoperable
Clinical narrative* Organizing Reuse
Clinical dicta*
Medical document*
Medical note*
Medical narrative*
Medical dicta*
Free text

Table A.1. shows the search terms used in the structured literature search conducted in PubMed.
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Clinical notes Structuring Interoperability

Emtree terms

Medical documentation Data interoperability

All fields
Clinical document* Structuring Interoperability
Clinic* note* Data structur* Interoperable
Clinical narrative* Organizing Reuse
Clinical dicta*
Medical document*
Medical note*
Medical narrative*
Medical dicta*
Free text

Table A.2. shows the search terms used in the structured literature search conducted in Embase.

The articles from the two databases were combined and duplicates were removed. The
remaining articles were initially screened based on title and abstract, which was followed
by a reading of the articles in full length. The following inclusion and exclusion criteria
had to be respected for an article to be included.

Inclusion criteria:

• I1: The processed data are free text documents.

Exclusion criteria:

• E1: The study does not describe the possibilities and/or limitations for interoper-
ability of the processed data.

• E2: Not available in full length.
• E3: The language is different from Danish or English.

Inclusion and exclusion of articles can be seen in figure A.1, resulting in inclusion of eight
articles. These articles were then assessed based on several criteria, which can be seen in
section A.2.
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Figure A.1. shows the number of included and excluded articles from the structured literature
search.

A.2 Assessment of Included Articles

The included articles were of three different types: review, opinion papers, and development
studies. The review was assessed using PRISMA [Moher et al., 2009], where the
development studies were assessed using relevance, reliability, internal validity, and external
validity. Opinion papers are at the bottom of the evidence hierarchy and are therefore not
assessed, but will get a low assessment. The results of the assessment can be seen in table
A.3, which shows that the articles range from low to high. All articles are used in the
Problem Analysis in chapter 2. Statements from articles with a low assessment will not
stand alone, but have their statement supported by one or more articles. Statements from
articles with a medium or high assessment can stand alone.
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Table B on the following page shows the sub-elements mentioned in the articles identified
trough the structured literature search, see chapter 5.1.
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Reference
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Sentence splitting

Negation detection
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POS-tagging

Section splitting

Remove characters

Context detection

Lower casing

NER
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Procedure for Validating
SNOMED CT expressions C

This appendix describes the procedure for interviewing a healthcare professional regarding
relevant, related information from the data set, as described in section 6.1.2 on page 51.

C.1 Introduction to the Interview

Before starting the interview, the healthcare professional is presented to the project and
the purpose of the interview, as described below.

• Presentation to the project, including:

– The objective of the study
– The implementation context
– The role of the NLP system
– The data set including the extracted concept, sentence, and headline

• The purpose of the interview:

– To obtain an guideline of which information is most often identified as relevant
and related.

– In practise this means that the healthcare professional should make clear, which
information from a given sentence and headline are important to describe the
concept.

C.2 Procedure of the Interview

The procedure for the interview is described below. Three discharge summaries were
assessed.

• One of the authors (TM) read the concept out loud.
• The healthcare professional reads the associated sentence and headline.
• The healthcare professional says if non, one, or multiple words or phrases are

important information to describe the concept.
• The mentioned information are underlined by an author (JK).
• In case a concept is not possible for the authors to understand, the healthcare

professional is asked if he/she is familiar with any synonyms or alternative
descriptions. If so, the synonyms or alternative descriptions are noted.
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C.3 Post-processing of the Interview

After the interview, a guideline was made based on the three discharge summaries assessed
by the healthcare professional. The elaboration of the guideline was performed using
visual inspection of the underlined words and phrases. Information mentioned multiple
times were included in the guideline. This was followed by assigning the pre- and post-
coordinated expressions to the concepts in all ten discharge summaries, following the
approach described in section 6.1.2 on page 51. Lastly, it was evaluated to what extend,
it was possible to bind the concepts and related, relevant information to the concept. If
related, relevant information from the guideline was not underlined in the sentence, but
this was added by the authors, it was assigned to the category ’Too much bound’.

• Full overlap: The concept and all underlined words or phrases are presented in the
SNOMED CT expression.

• Too much bound: The concept and all underlined words or phrases are presented in
the SNOMED CT expression, and more are added due to the guideline.

• Too little bound: The concept is presented in the SNOMED CT expression, but too
few or no refinements were found in the SNOMED CT expression.

• Not bound: The concept was not possible to understand or not possible to bind.
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Overview of the Adjusted
cTAKES D

Source code was added to the file ’AbstractCasTermAnnotator.java’ as it enabled access
to the temporary memory of the adjusted cTAKES. Here the SNOMED CT expressions
generated by the default part of cTAKES were located. After the source code from the
default part of the adjusted cTAKES was processed two adjustments were added in this
file. Initially, all SNOMED CT expressions were assigned a sentence number, based on
the index of the SNOMED CT expression. Further each SNOMED CT expression was
assigned to a SNOMED CT top-level.

A class ’PostTermAnnotator.java’ was created, which contained the functions for
generating pre- and post-coordinated expressions as well as functions to determine if a
word or phrase was an attribute, or a qualifier value. An overview of the added source
code in the adjusted cTAKES can be seen on figure D.1 on the next page.

Three sub-processes were defined on figure D.1 on the following page, which described the
process of determining the attributes and qualifier values, as well as making the pre- and
post-coordinated expressions, as described in figure 6.5 on page 64, 6.6 on page 65, and
6.4 on page 63, respectively.
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Figure D.1. shows the flowchart of the source code for adjusting cTAKES in the existing class
’AbstractCasTermAnnotator.java’ and the created class ’PostTermAnnotator.java’.
SCT-exp = SNOMED CT expression, SCT top level = SNOMED CT top level,
word* = the word which a SNOMED CT expressions covers.
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Attributes and Qualifier
Values E

The pre-defined SNOMED CT expressions for attributes were based on which attributes
were allowed to be bound to a focus concept from the top level ’Clinical Finding’ according
to the concept model described in IHTSDO [2021c] chapter 6. Based on the concept model
described in IHTSDO [2021d], the attributes as well as the top or sub level which the
attribute can be combined with in a refinement were identified and can be seen in table
E.1.
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Attribute Top Level

255234002 | After | 404684003 |Clinical finding|
71388002 |Procedure|

116676008 | Associated morphology | 49755003 |Morphologically abnormal structure|

47429007 | Associated with |

404684003 |Clinical finding|
272379006 |Event|
410607006 |Organism|
78621006 |Physical force|
260787004 |Physical object|
71388002 |Procedure|
105590001 |Substance|

246075003 | Causative agent |

410607006 |Organism|
373873005 |Pharmaceutical / biologic product|
78621006 |Physical force|
260787004 |Physical object|
105590001 |Substance|

263502005 | Clinical course | 288524001 |Courses|

42752001 | Due to |
404684003 |Clinical finding|
272379006 |Event|
71388002 |Procedure|

246456000 | Episodicity | 288526004 |Episodicities|

419066007 | Finding informer |
420158005 |Performer of method|
444018008 |Person with characteristic related to
subject of record|
419358007 |Subject of record or other provider
of history|

418775008 | Finding method | 71388002 |Procedure|

363698007 | Finding site | 442083009 |Anatomical or acquired body struc-
ture|

363713009 | Has interpretation | 263714004 |Colors|
260245000 |Finding values|

363714003 | Interprets |

386053000 |Evaluation procedure|
108252007 |Laboratory procedure|
363787002 |Observable entity|

246454002 | Occurrence | 282032007 |Periods of life|
246112005 | Severity | 272141005 |Severities|

Table E.1. shows which attributes can be used in a refinement for clinical findings, and which
top and sub levels the attributes can be combined with in the refinement.

Qualifier values can only be bound using specific attributes [IHTSDO, 2021c]. In order to
combine the right qualifier value and attribute in a refinement, an analysis of the training
data was conducted. All post-coordinated expressions were extracted from the training
data set. Refinements containing a qualifier value were investigate, and the qualifier as
well as the associated attribute were noted. This resulted in the combinations of qualifier
values and attributes seen in table E.2.
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Attribute Qualifier Value
255234002 | After | 257556004 | Surgery |

263502005 | Clinical course |

263730007 | Continual |
425323003 | Sudden onset AND short duration |
373933003 | Acute onset |
62459000 | Chronic persistent |

246112005 | Severity |
255604002 | Mild |
6736007 | Moderate |
260360000 | Very high |

363713009 | Has interpretation |

2667000 | Absent |
448371000124103 | Clinically undetermined |
21250004 | Decreased |
54328002 | Indifferent |
64868006 | No growth |
425404009 | Slightly |
255507004 | Small |

246454002 |Occurrence| 303114002 | Early neonatal period |

Table E.2. shows which qualifier values were used in the post-coordinated expressions in the
training data set and which attribute was paired with which qualifier value.
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