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Abstract

Sanitation networks are vital infrastructure
in modern society. They are used for trans-
porting wastewater and rainwater from cities
to treatment facilities, where wastewater is
treated before being released into the environ-
ment. Most countries still use combined san-
itation networks where wastewater and rain-
water are transported in a single pipe. This
leaves the combined sanitation network prone
to overflow in the event of heavy rainfall. A
solution to minimizing the overflow is Real
Time Control (RTC). A popular state-of-the-
art RTC method used to anticipate and min-
imize overflows is standard Model Predictive
Control (MPC). However, the standard for-
mulation of the MPC does face challenges
when dealing with the uncertainty caused by
the inflow disturbances, i.e., the weather fore-
casts. In order to better handle the uncer-
tainties, we propose an extended model pre-
dictive framework called Chance-Constrained
MPC (CC-MPC). First, the nominal multi-
objective MPC is formulated to deal with the
challenges in the sanitation network. Then,
the framework is extended to our stochastic
MPC formulation. Two controllers are com-
pared in a laboratory emulation of the net-
work subsystem that we call the Two Tank
Topology. Gravity pipe elements determine
the primary dynamics that define the trans-
port of wastewater through a network. Both
controller frameworks require a model that
can capture gravity pipe dynamics in order to
predict overflow. Therefore, we developed a
linear Diffusion Wave model based on the dis-
cretized Saint-Venant partial differential equa-
tions. The model is validated through a
data-driven parameter estimation framework.
Identification is conducted in a real network
simulation and in the real-life experimental
setup created in AAU Smart Water Lab.
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Introduction 1
Sanitation networks are a cornerstone of modern civilization. The objective of sanitation
networks is to handle routing and treatment of domestic wastewater discharge, industrial
wastewater discharge and rainwater. A sanitation network typically consists of elements
such as pipes, pumps, gates, and tanks used to transport or route wastewater and rain from
wastewater producers to a Waste Water Treatment Plant (WWTP). In modern sanitation
networks, discharge can be routed separately from rainwater. A system routing discharge
and rainwater together is called a combined sanitation network, while a network that routes
discharge separately is called a separated sanitation network [1]. In figure Figure 1.1 an
illustration of a combined sanitation network is shown.

Figure 1.1: Illustration of a combined sanitation network.

During the later part of the 20th and 21st centuries, there has been an increase in rainfall
and wastewater production. These increases can be attributed to three main factors:
increased industrialization, increased urbanization, and climate change [1]. As most
countries rely on centuries-old, now under dimensioned, combined sanitation networks,
an increased amount of rainwater and discharge has led to a capacity problem. This is
partially because it is difficult to quickly increase the capacity of a wastewater treatment
plant during a heavy rain event, as treatment of wastewater is a biological process [2]. This
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1. Introduction

capacity problem can cause the network to overflow in the event of heavy rainfall. Though
controlled overflows can happen, by discharging untreated waste into the sea or rivers,
there is a possibility for untreated waste to be dispelled onto private or public property [3].
Overflow has a cost whether wastewater ends up on private property or in the environment
[4].

The capacity problem manifests itself in two significant ways: in the treatment of discharge
and the routing of discharge. Two approaches have been taken to solve these problems.
The first approach focuses on increasing the treatment capacity as well as the routing
capacity, while the other approach has been splitting the routing of sewage and rainwater
into separate networks [5]. Both approaches are expensive as they require the construction
of new infrastructure [6].

As a potential budget alternative to the aforementioned approaches, which result in the
construction of new infrastructure, research efforts have been put towards optimal control
using existing but not fully exploited infrastructure. One of these approaches is called
Model Predictive Control (MPC) [6].

MPC of sanitation networks is a fairly young field, with researchers from multiple
backgrounds contributing to it [1], [7]. Both deterministic MPC approaches [8] and
stochastic MPC approaches have been presented [9]. Throughout the thesis, we further
extend the understanding of how MPC approaches can be used in real-world combined
sanitation networks.

This thesis is dedicated to making two contributions to the field of Model Predictive Control
(MPC) for combined sanitation networks:

• The main contribution is made by presenting a performance comparison of two
MPCs. Specifically, a Chance Constrained Model Predictive Controller (CC-MPC)
and a standard Model Predictive Controller (MPC). The comparison is conducted
as a scaled test in the AAU Smart Water Lab [10]. The performance comparison
considers three criteria in prioritized order:

1. Minimize overflow in a network.
2. Avoid fast varying flow to a Waste Water Treatment Plant.
3. Balance wastewater along available storage.

• The second contribution is made by presenting a novel, control-oriented, data-driven,
linear diffusion wave model used for modeling a commonly found structure in real-
world sanitation networks. We call this structure the Two Tank Topology.

The thesis is concerned with Linear, time discrete MPCs, under the influence of stochastic
disturbance. The controllers are formulated as quadratic optimization problems, with
deterministic constraints, and in the case of the CC-MPC, including chance constraints.
Hence standard solvers can be utilized to solve the MPC problem efficiently.

Note that special attention has been paid to ensure that both contributions are applicable
to real-world combined sanitation networks throughout the thesis. For this reason, our
identification strategy uses data collected from level sensors, which are more cost-efficient
and more robust to failure than typical flow sensors.

As model development has applications outside MPC, models have been developed for
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sanitation networks for a long time, though the field of MPC for sanitation networks
is fairly young [1]. Since model development has been done with different applications
in mind, a number of approaches have been explored. The approaches can roughly be
divided into heuristic approaches [11], and physics-based approaches [12], [13], [14]. While
we considered using an existing model in our exploration of MPC, we ultimately developed
our own. This model development resulted in our contribution to the paper: "Nonlinear
Grey-box Identification of Sewer Networks with the Backwater Effect: An Experimental
Study" [15]. Where we compared the performance of a nonlinear version of the model used
in this thesis (the diffusion wave model) to another nonlinear model, called the kinematic
wave model.

The remaining of the thesis is divided into 8 Chapters:

• Chapter 2 - Modeling - Presents the derivation of the diffusion wave model for
the "Two Tank Topology," later used as a component of both MPC problems and
the Kalman filter.

• Chapter 3 - Simulation and Emulation Setup - Outlines the two systems on
which the model is identified. It also introduces the AAU Smart Water Lab, which
is the system used to produce the results for the comparisons of the controllers.

• Chapter 4 - Model Parameter Identification - Describes the process which is
used to identify the model parameters of the simulation and emulation setup. The
identification process is a grey-box, data-driven identification process.

• Chapter 5 - Kalman Filter Outlines the theory of the standard Kalman filter. It
also presents a noise identification process used to identify the filter parameters. The
Kalman filter is later used to estimate initial states for a MPC during the comparison.

• Chapter 6 - Controller Design First presents the theory of the standard MPC
before expanding it to include chance constraints. The chapter also presents a simple
application example of the CC-MPC used on a single tank.

• Chapter 7 - Controlling the Two Tank Topology - Is the culmination of the
previous chapters. The chapter summarizes the theory presented previously as it
pertains to the control of the Two Tank Topology. Further, it presents a comparison
study of the standard MPC and the CC-MPC based on results obtained from the
emulation setup. The chapter ends with a short conclusion on the comparison.

• Chapter 8 - Discussion of the Work - Presents a discussion of the methods and
theory used throughout the thesis.

• Chapter 9 - Conclusion - Concludes on the work done throughout this thesis.
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Modeling 2
Combined sanitation network is an umbrella term covering underground pipe or tunnel
systems used to transport sewage and rainwater from residential and commercial areas
to treatment facilities or disposal. Modeling a complete sanitation network is outside
the scope of this thesis, as sanitation networks generally include a vast array of network
components with several sub-networks.

Instead, we focus on modeling a single topology commonly found in sanitation networks
used in urban areas. We have dubbed this network topology the Two Tank Topology. The
Two Tank Topology is shown in Figure 2.1 and consists of two tanks, two pumps, a rising
main, and a gravity pipe.

Figure 2.1: Illustration of the Two Tank Topology with each component
named.

This chapter aims to develop a linear state space model for the Two Tank Topology, which
can be used in a MPC. Choosing this topology limits us from having to model the effects
of gates, weirs, and other network elements that lend themselves poorly to linear models.

The chapter is organized into two sections: In section 2.1 Model Elements a linear
description of each of the previously mentioned network element is presented. And in
section 2.2 General Model a general state space description of the Two Tank Topology is
made using the already developed models of the system elements.
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2. Modeling

2.1 Model Elements

In this section, a linear, time and space discretized mathematical description of each
element in the Two Tank Topology is created. We chose to develop time discretized
mathematical models rather than continuous time models as they lend themselves to ease
of implementation in digital control and simulation. The goal of developing individual
element descriptions, is to use them in a linear state space model.

We first present a short discussion of the relevancy of including each element’s dynamics
in the model of the Two Tank Topology. In the Two Tank Topology, we consider the
following elements:

• Two tanks,
• a rising main,
• two pumps
• and a gravity pipe.

Rising mains are generally always completely filled with wastewater. This leads to fast
dynamics, as whenever the pump supplying the rising main is turned on, sewage will start
flowing out of the main without significant delay. The fast dynamics lead to the rising
main being of little interest in this project.

The dynamics of the Gravity pipe are significantly slower than the dynamics of the rising
main. The most critical dynamic exhibited by a gravity pipe is, in fact, a delay, and some
simple models only consider this delay [16]. However, in a control environment, it can be
useful to have a more complex model of a gravity pipe, as such a model will include other
relevant dynamics.

Having discussed gravity pipe dynamics, it is also important to touch on tank dynamics.
The dynamics of a tank are described as an integration of flow. This means that in and
out-flow is accumulated. Therefore we can assume that if a pump actuates the tank,
the dynamics of the tank are described by the dynamics of the pump in addition to the
integration. However, we assume that the pump dynamics are very fast compared to the
integration dynamics; therefore, we choose to neglect them.

When a flow phenomenon governs a tank’s in or out-flow, it is important to include this
in the description of the tank dynamics. This is the case for the inflow of tank two in the
Two Tank Topology; therefore, we explore two outflow phenomenons in this section.

2.1.1 Gravity pipe

Care has been put into developing a novel model for the gravity pipe. This is in spite of
a lot of different models already having been developed by other authors. We chose to
develop our own model for the gravity pipe as we (Both authors) were contributing to a
paper on modeling gravity driven sewers at the time of writing the thesis [15]. Since we
did some model development during a previous semester, some results may be identical to
the ones shown in the previous semester’s report [17].

It is common for models of the gravity pipe to utilize the Saint Venant equations as a
starting point. We elected to take these equations as our starting point as well. Some
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2.1. Model Elements AAU

authors focus on developing linear state space modes [18] as we have, other focus on
developing transfer function models [19], [20].

The Saint-Venant equations consist of two specific equations, which are derived using
Reynolds transport theorem. This theorem describes the dynamic behavior of fluid systems
in general [17,page 19-25]. The two Saint-Venant equations are shown in equation (2.1)
and (2.2).

∂A(x, t)

∂t
= −∂Q(x, t)

∂x
, (2.1)

Sf − Sb +
∂h(x, t)

∂x
+

1

gA(x, t)

 ∂

∂x

(
Q(x, t)2

A(x, t)

)
+
∂Q(x, t)

∂t

 = 0, (2.2)

where A(x, t) is the wetted area, Q(x, t) is the flow inside the channel and h(x, t) is the
water level in the channel. These are functions of time t and space x. In control applications
with sanitation networks as the focus, models utilizing the full Saint-Venant equations are
seldom used. This is because the precision a model gains from having additional terms,
often does not outweigh the increase in model complexity. We elect to use a reduced
version of the Saint-Venant equations, called the diffusion wave equations, which ignores
the terms ∂

∂x

(
Q(x,t)2

A(x,t)

)
+ ∂Q(x,t)

∂t of (2.2) yielding the equation:

Sf − Sb +
∂h(x, t)

∂x
= 0. (2.3)

Here Sf is the friction slope of the gravity pipe and Sb the pipe beds slope. We can find an
expression for the friction slope using the Darcy–Weisbach equation [21]. This expression
is, however, highly nonlinear. To include the effects of the bed’s slope in a linear state space
model, we elect to linearize the nonlinear Darcy–Weisbach equation around an operating
point using Taylor approximation. This yields the equation:

(γ1 + γ2Q(x, t) + γ3h(x, t))− Sb +
∂h(x, t)

∂x
= 0, (2.4)

where γ1, γ2 and γ3 are parameters caused by linearization, expressed in (2.5), (2.6) and
(2.7) [17,pages 40-43].

γ1 =
f

2 · g

((
4 · w + 6 · hop

)
4 · w3hop

3 ·
∣∣Qop∣∣Qop − (2 · w + 4 · hop

)
4 · w3hop

3 · Qop
3∣∣Qop∣∣
)
, (2.5)

γ2 =
f

2 · g

(
w + 2 · hop

)
4 · w3hop

3 · Qop
3∣∣Qop∣∣ , (2.6)

γ3 = − f

2 · g

(
4 · hop + 3 · w

)
4 · w3 · hop4 ·

∣∣Qop∣∣Qop. (2.7)

Solving (2.4) for −Q(x, t) allows us to insert it into the (2.1). This yields the partial
differential equation of two variables shown as (2.9).

−Q(x, t) =
1

γ2
(γ1 + γ3h(x, t)− Sb +

∂h(x, t)

∂x
), (2.8)

⇓
∂A(x, t)

∂t
=

1

γ2
(
∂2h(x, t)

∂x2
+ γ3

∂h(x, t)

∂x
). (2.9)
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2. Modeling

To get a partial differential equation of one variable, we want to express the relation
between the wetted area A(x, t) and water level h(x, t). For a round pipe, this relation is
nonlinear, so to have the model remain linear, we assume the pipe is square, yielding the
relation A(x, t) = w · h(x, t), where w is the width of the square pipe, see Figure 2.2b.

(a) Dividing the pipe into sections. (b) Square pipe approximation.

Figure 2.2: Partitioning and approximation of a pipe [17].

This yields the partial differential equation on the form (2.10):

∂h(x, t)

∂t
=

1

γ2 · w
(
∂2h(x, t)

∂x2
+ γ3

∂h(x, t)

∂x
). (2.10)

Second order partial differential equations can be expressed on the standard form:

R
∂2h(x, t)

∂x2
+ S

∂2h(x, t)

∂x∂t
+ T

∂2h(x, t)

∂t2
= W (x, t, h(x, t),

∂h(x, t)

∂x
,
∂h(x, t)

∂t
),

they are characterized by the value of their roots: S2 − 4RT where the partial differential
equation is said to be hyperbolic if S2 − 4RT > 0, parabolic if S2 − 4RT = 0 and elliptic
if S2 − 4RT < 0 [22,pages 24-25]. Rearranging (2.10) to standard form:

∂h(x, t)

∂t
− γ3

γ2 · w
∂h(x, t)

∂x
=

1

γ2 · w
∂2h(x, t)

∂x2
,

we see that T = 0, S = 0 and R = 1
γ2·w , so therefore (2.10), is a parabolic partial differential

equation.

The fact that (2.10) is parabolic allows us to apply numerical analysis as a way
of time and space discretizing the equation. This discretization is done using finite
difference approximations for the derivatives in (2.10) [22,pages 29-33]. We specifically
use the forward difference approximation, backward difference approximation1 and central
difference approximation. This yields (2.11):

∂h(x, t)

∂t︸ ︷︷ ︸
Forward difference

=
1

γ2 · w
(

∂2h(x, t)

∂x2︸ ︷︷ ︸
Central difference

+γ3
∂h(x, t)

∂x︸ ︷︷ ︸
Backward difference

),

⇓
hn+1
j − hnj

∆t
=

1

γ2 · w
(
hnj−1 − 2 · hnj + hnj+1

∆x2
+ γ3

hnj − hnj−1

∆x
). (2.11)

1Often referred to as forward and backward Euler approximation [17]
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2.1. Model Elements AAU

Generally, discretizing in both time and space can be seen as "gridding" the space of
solutions (t, x) [22,page. 29]. We will be using the now discretized partial differential
equation for control applications. We will rewrite it on state space form. Note that the
choice of using the forward difference approximation in time is what allows us to rewrite
(2.11) on a state space form since the forward approximation introduces hn+1

j .

hn+1
j =

∆t

w ·∆x

(
hnj−1

(
1− γ3 ·∆x
γ2 ·∆x

)
− hnj

(
2− γ3 ·∆x
γ2 ·∆x

)
+ hnj+1

1

γ2 ·∆x

)
+ hnj . (2.12)

Having (2.11) rewritten as (2.12), a certain observation can be made. It arises from the
relation 1−γ3·∆x

γ2·∆x > 1
γ2·∆x , between the effects of the up- and down-stream levels2. The

relation shows that the level downstream of a pipe section has a lesser effect on the level
in the pipe section at the next time step than the level of the upstream pipe section. It
occurs as a result of using backward difference approximation on the ∂h(x,t)

∂x -term in (2.10).

In order to get a high resolution model of a pipe, it is advantages to divide a pipe into a
number of sections as shown in Figure 2.2a. This will yield a set of linear equations, as
seen in section 2.2 General Model.

Looking at Figure 2.2a it can be observed that we need to define the boundary conditions
for the pipe. These boundary conditions are the descriptions of the first pipe section j = 1

and the last pipe section j = Nx, where Nx denotes the total number of sections. If
equation (2.12) is to be used to describe boundary sections, then it is necessary to define
h0 and hNx+1.

However, describing the sections at either end of the pipe can be more complicated
than using the flows in and out of the pipe. This is because the flows can often be
directly measured or estimated. If the spacial coordinate of the flow in the mass balance
equation (2.1) is discretized using the backward difference approximation, equation (2.13)
is obtained. Note that additionally ∂h

∂t is discretized in the same way as in (2.11) to achieve
the state space formulation.

hn+1
j =

∆t

w ·∆x

(
Qnj−1 −Qnj

)
+ hnj . (2.13)

Now the inlet section, Qj−1 from (2.13) is defined by the pipe inflow, while the Qj term is
described by (2.8). Likewise, in the last section of the pipe, Qj is defined by the gravity
pipe outflow and Qj−1 is described by (2.8). The complete derivation can be found in
[17,page 43-45]. The equation (2.13) will become useful later when pipes bordering other
network elements have to be described.

2.1.2 Retention tank

The retention tank equation is derived from the mass conservation theorem. A tank acts
as a flow integrator in a system. The dynamics of the tank is described by the linear
differential equation shown in (2.14) [17,page 46]:

d(Mtank(t))

dt
= min(t)−mout(t). (2.14)

2This is assuming that γ2 is positive and γ3 is negative, which is the case for positive ∆x and ∆t, see
(2.6) to (2.7) [17]
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2. Modeling

To use (2.14) in a linear, time discrete model, it is time discretized using the forward finite
difference method and shown in (2.15):

hn+1
j =

∆t

A
(Qnin −Qnout) + hnj = φ∆t(Qnin −Qnout) + hnj , (2.15)

where φ = 1
A is the tank model parameter and Qin and Qout are respectively the inflows

and the outflows. In the Two Tank Topology, the outflow from both tanks consists of a
flow caused by actuation (QFP , FP - flow provider) as well as a flow caused by the tank
overflowing(Qof ). If the tank is a part of a network, the inflow and outflow of the tank can
be a boundary condition for bordering network elements. Different boundary conditions
will be described in the following subsection.

2.1.3 Pipe boundary conditions

Boundary conditions are used to describe the relationship between bordering network
elements, such as the flow relation between tanks and pipes. This section presents three
boundary equations, one using a pump and two boundary equations relating the outflow
from a gravity pipe to the inflow to a tank.

Pumps are treated as "flow providers" or free variables in a network model. This is because
the pump flow is the variable manipulated in a control setting. Therefore the pump flow
is often written as:

Qn = un, (2.16)

where Q is the flow of the pump, u is the control input.

The flow from a rectangular pipe into a tank can be described using two different equations
depending on whether the pipe is free-flowing or flows into a tank below the tank’s
waterline. A free-flowing pipe can be assumed to exhibit the same dynamics as the flow
over the sharp-crested weir [23]. In "Modeling and Control of Hydrosystems" [24,pages
160-162] a model for weir flow is presented, assuming a weir crest Ws = 0. Free flow into
a tank as seen in Figure 2.3a is expressed as:

Qnj = Cd
√

2g · (hnj )3/2, (2.17)

where Cd is a discharge coefficient.

Equation (2.17) is a nonlinear function of water level. To make (2.17) applicable in a linear
model we choose to neglect the power term in (2.17), which yields:

Qnj ≈ Cd
√

2g · hnj . (2.18)

If the pipe outlet is below the water level in the tank, see Figure 2.3b, a different equation
should be used to describe the tank inflow. This phenomenon is called submerged flow
and is described by the submerged flow equation. The submerged flow equation (2.19) is
similar to the free flow equation (2.17) except it includes the water level in the tank as
well as the water level in the pipe. The equation for submerged flow is shown in (2.19).

Qnj = Cd
√

2g · (hnj − hn+1
j )3/2. (2.19)
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2.2. General Model AAU

(a) Free-flow condition. (b) Submerged flow condition.

Figure 2.3: Illustrations of the two considered tank inflows.

Equation (2.19) is linearized like (2.17) yielding:

Qnj ≈ Cd
√

2g · (hnj − hn+1
j ). (2.20)

The reason for simply removing the power rather than expanding the nonlinear equations
into a second order Taylor series lies in the fact that a Q(h) = 0 relation is wanted at
Q(0). This is in order to ensure that the free flow condition is linear and not afine-linear.

2.2 General Model

With a description of the components that make up the Two Tank Topology and
expressions for component boundaries, we begin to describe the Two Tank Topology as a
set of state equations. The state equations are used to represent the Two Tank Topology
on a discrete state space form. The general form of a state space system is shown in (2.21).

xn+1 = Axn +Bun, (2.21)

yn = Cxn +Dun.

Where Bold indicates that a variable or constant is a matrix or vector and x is the state
vector, y is the output vector, u is the input vector, A is the system matrix, B is the
input matrix C is the output matrix and D is the feedthrough matrix.

The first state equation was presented in subsection 2.1.1 Gravity pipe as equation (2.12).
It describes how the water level in a pipe relates to the water level of neighbouring pipe
sections. The equation is again stated below, and expressed for generalized parameters:
θ1 , 1

w·∆x , θ2 , 1−γ3·∆x
γ2·∆x · θ1 and θ3 , 1

γ2·∆x · θ1.

hn+1
j =

∆t

w ·∆xb

(
hnj−1

(
1− γ3 ·∆x
γ2 ·∆x

)
− hnj

(
1

γ2 ·∆x
+

1− γ3 ·∆x
γ2 ·∆x

)
+ hnj+1

1

γ2 ·∆x

)
+ hnj

= ∆t(hnj−1θ2 − hnj (θ3 + θ2) + hnj+1θ3) + hnj . (2.22)

To describe the full topology we have to describe this same relation for pipe sections
boarding pumps and tanks, see (2.13).
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2. Modeling

For the first pipe section hnj = hn1 , which borders a pump, the outflow Qout can be found
by applying the forward difference method to (2.4) such that we get:

Qnout =

(
hnj

(
1− γ3 ·∆x
γ2 ·∆x

)
− hnj+1

1

γ2 ·∆x
+
Sb − γ1

·γ2

)
, (2.23)

Then if we assume that a pump provides the inflow Qin = QFP1 into the pipe section, the
state equation for the first pipe section is:

hn+1
1 =

∆t

w ·∆xb

(
QFP1 − hn1

(
1− γ3 ·∆x
γ2 ·∆x

)
+ hn2

1

γ2 ·∆x
− Sb − γ1

γ2

)
+ hn1

= ∆t(QFP1θ1 − h1θ2 + h2θ3 − θ4) + hn1 . (2.24)

Where θ4 , Sb−γl
γ2

θ1 is another generalized system parameter.

The inflow into the last pipe section hnj = hnL is described by applying the backward
difference method to (2.4) such that we get:

Qnin =

(
hnj−1

(
1− γ3 ·∆x
γ2 ·∆x

)
− hnj

1

γ2 ·∆x
+
Sb − γ1

·γ2

)
. (2.25)

Then using the the free flow boundary conditions described in subsection 2.1.3 Pipe
boundary conditions as outflow we get the following equation:

hn+1
L =

∆t

w ·∆xb

(
hnL−1

(
1− γ3 ·∆x
γ2 ·∆x

)
− hnL

1

γ2 ·∆x
+
Sb − γ1

γ2
− Cd

√
2ghnL

)
+ hnL

= ∆t (hnL−1θ2 − hnLθ3 + θ4 − θ5h
n
L) + hnL. (2.26)

Note that the model shown here only consider the free flow boundary case. With state
equations for all pipe sections in the Two Tank Topology, as well as a description of the
tank from subsection 2.1.2 Retention tank, we can present a full state space representation
of the Two Tank Topology:



hn+1
T1

hn+1
P1

hn+1
P2

...
hn+1
PL

hn+1
T2


=



1 0 0 0 0 · · · 0

0 1 − θ2∆t θ3∆t 0 0 · · · 0

0 θ2∆t 1 − (θ2 + θ3) ∆t θ3∆t 0 · · · 0

...
. . .

0 · · · 0 θ2∆t 1 − (θ5 + θ3) ∆t 0

0 · · · 0 0 φ2
θ5
θ1

∆t 1


·



hT1

hnP1

hnP2

...
hnPL
hnT2



+



−φ1∆t 0 −φ1∆t 0

θ1∆t 0 0 0

0 0 0 0

...
. . .

0 0 0 0

0 −φ2∆t 0 −φ2∆t


·


QFP1

QFP2

QofTI
QofT2

 +



0

−θ4∆t

0

...
0

θ4∆t

0


(2.27)

Equation (2.27) deviates from the form presented in (2.21) at the start of this section
by an affine-term. The affine-term is unavoidable, unless the operating points used while
linearizing the gammas in the γ’s are set to zero, see (2.5) to (2.7). For now we will assume
that C = I and D = 0.
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2.2. General Model AAU

2.2.1 Stability of the General Model

In this section we want to explore the conditions for stability of the general system shown
in (2.27).

When a partial differential equation is discretized, the solutions of the now discretized
equation may be unstable, even if the original equations described the behavior of a stable
system. In this section, we look at the stability of the general model presented in (2.27).
We start by defining the stability of a discrete LTI system:

Stability is a condition on the numerical solution. For a stable discrete system, all outputs
must remain bounded for bounded inputs as time progress n → ∞. This implies that
all errors must remain bounded for bounded inputs as well. More precisely for a discrete
linear state space system, on the form:

xn+1 = Axn +Bun, (2.28)

yn = Cxn +Dun,

stability is defined by the roots of the characteristic polynomial, (zI − A)−1 . The
characteristic polynomial arises from the z-transform of a continuous system [25].
Specifically, for a system to be causal and stable, the unit circle must be included in
the region of convergence of the z-transform, and the system has to be right-sided. This
is equivalent to stating that the absolute value of the roots of (zI −A)−1 has to be less
than 1 [26,pages. 105-121]. Or again is equivalent to stating |eig(A)| < 1.

To ease the analysis of the general system shown in (2.27) we elect to decompose it
into three subsystems: One for the first tank A1 ∈ R, one for the gravity pipe sections
A2 ∈ RNx×Nx , where Nx denotes the number of pipe sections, and one for the last tank
A3 ∈ R. For systems connected in series, decomposition can be done as shown in (2.29).

A =

 A1 0 0

B2 ·C1 A2 0

0 B3 ·C2 A3

 . (2.29)

It can be shown that for systems connected in series, it holds that the decomposition has
the following property:

eig(A) = eig(A1) ∪ eig(A2) ∪ eig(A3).

That is, the set of eigenvalues of A is the union of the sets eigenvalues for the decomposed
systems. We can therefore choose to analyze the decomposed systems individually. A
decomposition of the system from (2.27) is shown in (2.30), assuming four pipe sections,
Nx = 4.

A =



1 0 0 0 0 0

0 1− θ2∆t θ3∆t 0 0 0

0 θ2∆t 1− (θ2 + θ3) ∆t θ3∆t 0 0

0 0 θ2∆t 1− (θ2 + θ3) ∆t θ3∆t 0

0 0 0 θ2∆t 1− (θ5 + θ3) ∆t 0

0 0 0 0 φ2
θ5
θ1

∆t 1


. (2.30)
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2. Modeling

Observing the systems A1 and A3, it is easy to see that their eigenvalues are equal to
1. This means that the tanks are marginally stable. This fits well with the intuitive
understanding of a tank as an integrator. We are, however, able to actuate both tanks
directly using pumps. Therefore it is possible to stabilize the tank levels as a part of closed
loop control.

Opposed to A1 and A3 we expect A2 to be asymptotically stable for the model to behave
in accordance with our physical intuition of the system. We expect any amount of water
added to a pipe section to propagate down the pipe and into tank 2. In other words we
expect the that a system with initial states x0 of the form xn+1 = Axn to propagate to
0 as n→∞.

Finding exact eigenvalues for tridiagonal matrices expressed generally is an active research
field. Said Kouachi from Qassim University has published several papers on eigenvalues of
tridiagonal matrices [27], [28]. Although A2 has some nice properties, an expression for
its exact eigenvalues has not been developed. Rather than undertaking the task of finding
exact eigenvalues, we will try and define an upper limit for A2’s eigenvalues. This can be
done using spectral density. The spectral density of a matrix is defined as shown in (2.31).

ρ(A) = max{|λ| : λ ∈ σ(A)}. (2.31)

Where σ(A) is the spectrum3 of A. We know that if a matrix is square, then the upper
bound for the spectral radius is given by (2.32) [29,page. 390].

ρ(A) ≤ min{max
i

Nx∑
j=1

|aij |,max
j

Nx∑
i=1

|aij |}, (2.32)

which after substituting into the spectral density in (2.31), becomes:

max{|λ| : λ ∈ σ(A)} ≤ min{max
i

Nx∑
j=1

|aij |,max
j

Nx∑
i=1

|aij |}. (2.33)

Restating A2 we see it includes the terms θ1, θ2, θ3 and θ5.

A2 =


1− θ2∆t θ3∆t 0 0

θ2∆t 1− (θ2 + θ3) ∆t θ3∆t 0

0 θ2∆t 1− (θ2 + θ3) ∆t θ3∆t

0 0 θ2∆t 1− (θ5 + θ3) ∆t


Examining the expressions for θ’s, we note that they are positive, for positive ∆x and w
as we know that Cd, g and γ2 are positive and γ3 is negative. The γs are shown in (2.5)
to (2.7) and the expressions for the θ’s are shown in (2.34) to (2.37).

θ1 =
1

w ·∆x
(2.34)

θ2 =
1− γ3 ·∆x
γ2 ·∆x

θ1 (2.35)

θ3 =
1

γ2 ·∆x
θ1 (2.36)

θ5 = Cd
√

2gθ1 (2.37)

3The spectrum of a matrix is the set of its eigenvalues
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2.2. General Model AAU

Then examining A2 we see that A2 will have all positive entries as long as (θ2 +θ3)∆t < 1

and (θ5 + θ3)∆t < 1. We therefore assume (θ2 + θ3)∆t < 1 and (θ5 + θ3)∆t < 1. This
assumption has turned out to hold during the identification processes, which yielded stable
systems, see chapter 4 Model Parameter Identification. Furthermore the assumptions are
an indirect result of a physical property of the system, called: the conversion of mass.

Applying (2.32) to find the upper bound for eigenvalues of A2 yields the row and column
sums:

4∑
j=1

|aij | = r1 = |1− θ2∆t|+ θ3∆t

r2 = r3 = θ2∆t+ |1− (θ2 + θ3)∆t|+ θ3∆t = 1

r4 = θ2∆t+ |1− (θ5 + θ3)∆t|

4∑
i=1

|aij | = c1 = |1− θ2∆t|+ θ2∆t = 1

c2 = c3 = θ3∆t+ |1− (θ2 + θ3)∆t|+ θ2∆t = 1

c4 = θ3∆t+ |1− (θ5 + θ3)∆t| ≤ |1− θ5∆t|

Keep in mind that we assumed (θ5 +θ3)∆t < 1 together with θ1, θ2, θ3, θ5 > 0. This allows
c4 to be reduced. With the row and column sums found we restate the expression for
spectral density of A2:

max{|λ| : λ ∈ σ(A)} ≤ min[max(1, r1, r4), max(1, c4)] (2.38)

Assuming: (θ2 + θ3)∆t < 1

(θ5 + θ3)∆t < 1

θ1, θ2, θ3, θ5 > 0

We can see from (2.38) that we can only ensure the marginal stability by placing the
requirements on either row sums r1 and r4 or the column sum c4. That results in the
following sets of sufficient conditions for ensuring marginal stability of A2:

Sufficient Condition 1: (2.39)

θ5 + θ3 ≥ θ2,

θ2 ≥ θ3,

And Sufficient Condition 2: (2.40)

θ5∆t ≤ 1,

Assuming: (2.41)

(θ2 + θ3)∆t < 1,

(θ5 + θ3)∆t < 1,

θ1, θ2, θ3, θ5 > 0.

Ideally the sufficient conditions would have been expressed as a relation ∆t
∆x . This is because

the ∆t
∆x relation is what typically results in instability when discretizing partial differential
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2. Modeling

equations. We could therefore for the sake of argument decompose the θ parameters into
their components. The general components are however not what we choose to identify in
chapter 4, and a ∆t

∆x relation is therefore of no use to us.

For the sake of completeness we include a short appendix on the Consistency and
Convergence of the pipe equations which make up A2. See Appendix B.

18



Simulation- and
Emulation-Setup 3

In this chapter, we will present an emulation and a simulation setup. Both setups are
structured to similarly the Two Tank Topology presented and modeled in the last chapter.
This will allow the parameters of the general model to be identified on both setups. The
identification is presented in chapter 4 Model Parameter Identification.

Though a conclusion on the validity of a control scheme can be reached using a simulation,
the behavior observed in emulation is considered to be closer to the behavior of a real
network. Generally, the emulation of a system comes with extra challenges compared
to the simulation of a system. These challenges can, for example, be handling: sensor
imprecision, none ideal actuators, and minor changes in the emulation environment.

The emulation setup is created using the AAU Smart Water Lab. The purpose of emulating
the Two Tank Topology is: To show that parameter identification and control can be made,
on systems subject to real-world imperfections.

The simulation setup is created according to a real-life sanitation network located in
Fredericia - Danmark. We created the simulation setup with the purpose of verifying
the validity of the parameter identification on a system on real-world scale. Note that we
elected not to implement any of the MPCs on the simulation setup.

3.1 Simulation Setup - Fredericia Network

Federecia is a city located in the region of southern Jutland in Denmark. Information about
the cities drainage network has been provided by the local utility company "Frederecia
Spildevand og Energi A/S."

A subset of Frederecias main sewer line is considered in this thesis, as it closely resembles
the Two Tank Topology. A depiction of the main sewer line (in blue), is shown in
Figure 3.1a and a zoomed version depicting the section of interest is shown in Figure 3.1b

The sewer line subsection consists of three tanks, 19 manholes, 19 pipe sections, and two
pumps. The two pumps are used to empty the tanks located at either end of the network
subsection. The middle tank acts as a buffer.

The max flow which the pump located at the rightmost tank can provide is 1m
3

s and the
max inflow the wastewater treatment plant (WWTP) can handle is 1.8m

3

s . The inflow to
the treatment plant dictates the max flow of the leftmost pump. The pipe sections all have
a diameter of 1.6m except one, which has a diameter of 1.5m. The slope profile of the
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3. Simulation- and Emulation-Setup

(a) City and surrounding area, the red
box indicates the location of the area

shown in Figure 3.1b

(b) Section of interest. The read arrows
denote inflow locations, the orange
marks denote the tanks and the blue
line denotes the main sewer line.

Figure 3.1: Fredereica Danmark - Yellow marks industrial area, gray area
marks residential area.

network is depicted in Figure 3.2, and except for two pipe sections, all of the pipe sections
have a bed slope of around 0.0024mm .

In a real scenario, a rain event would cause inflows into the network at many locations
along the pipe. We, however, elect to ignore these lateral inflows in the identification part
of the project. We elect only to consider inflows a the location indicated by the rightmost
red arrow in Figure 3.1b. The inflow locations (red arrows) in Figure 3.1b correspond to the
locations at which the network subsection, in Figure 3.1b, is connected to the remaining
part of Fredericias main sewer line.

The network subsection is simulated using EPA SWMM and pySWMM. EPA SWMM is
a program used for simulating single rain events or long-term hydrologic processes, such
as sewage routing. The simulation tool is configured to use a high fidelity model based on
the full Saint Venant equations.

Figure 3.2: Slope profile of the Fredericia network section.
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3.2. Emulation Setup - AAU Water Lab AAU

Though the high fidelity model is sound, a few key points have to be kept in mind when
the model is being used as a substitute for a real system:

• The water level measurements in each pipe section are averages of the water level.
This is opposed to a real system, where the water level is measured at a single location
in a pipe section.

• The result of the simulations is a numerical approximation of the solution to a partial
differential equation. This means that the simulation results are not exact solutions.

• The system simulated is only as good as the information provided. A physical system
has small irregularities which can add additional dynamics. These cannot always be
captured by a simulation.

Therefore it can be advantageous to emulate a setup as well as simulating it. In the next
section, the emulation setup of the Two Tank Topology is presented.

3.2 Emulation Setup - AAU Water Lab

The AAU Smart Water Lab is a modular lab located at the Aalborg campus of Aalborg
University. The lab is used to emulate different water utility networks, such as sanitation
networks and drinking water distribution networks.

The purpose of emulating the Two Tank Topology is to show that parameter identification
can be done, not only in simulation but also under real-world conditions. Furthermore,
emulating a control setup lends extra validity to results obtained and theoretical analysis
completed as part of this thesis.

To emulate the Two Tank Topology, see Figure 2.1, which consists of two tanks, two pumps,
and a gravity pipe, we have to use supporting equipment. To provide water, as inflow into
tank 1, and to provide lateral inflow, we need a buffer tank. Furthermore, to catch water
at the outlet simulating the Waste Water Treatment Plant, we need a buffer tank. The
entire network, with buffer tanks and additional pumps, is shown in Figure 3.3.

The AAU Smart Water Lab consists of a Central Control Unit (CCU) and a number of
Local Units (LU). Each LU serves to emulate a specific element in a real-world water
distribution network. When combined, multiple LUs can be used to emulate a network
section.

To create the setup shown in Figure 3.3 two types of LUs have to be employed. These
are the Pumping Station and the Consumer Unit. Two Pumping Units are used to create
the Two Tank Topology, and two Consumer Units are used as buffer/auxiliary tanks. In
appendix Appendix C an overview of the LUs full physical structure can be found.

3.2.1 Water lab control

The AAU Smart Water Lab is constructed as a centralized control scheme. A Central
Control Unit (CCU) transmits pump and valve references to the individual LUs and the
LUs return flow and level measurements. The LUs are controlled locally by a Raspberry
PI running a "virtual" codesys PLC on top of Ubuntu. While virtual PLC is set up the
same for all LUs, each type of LU has a different number of ADCs and DACs. The number
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3. Simulation- and Emulation-Setup

Figure 3.3: Schematic of the two tank lab setup with sensors indicated.
Pressure sensor (P), Level sensor (H) and Flow sensor (F).

of ADCs and DACs is determined by the function of the LU. A description of the AAU
Smart Water Lab Software/Hardware interconnections are shown in Figure 3.4.

Figure 3.4: AAU Smart Water Lab Software/Hardware interconnections

Figure 3.4 shows the CCU being "split" into two different entities, a server, and a client
entity. The client is responsible for updating the pump and control values on the LUs
as well as collecting data. The server’s responsibility is to calculate the control action.
Having the CCU split into two entities allows the control action and data sampling to
happen asynchronously. This will prove an advantage later. More on the specific sampling
and control timing is presented in subsection 7.2.6 The Control System Software Setup.
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3.2. Emulation Setup - AAU Water Lab AAU

3.2.2 Pump control

The CCU controls the pumps on a specific LU through communication with the LUs PLC.
A value between 0 and 100 can be transmitted to a LU corresponding to a percentage of
a pump’s max output.

However, the flow at the max output depends on a lot of factors, such as the resistance
of the pipes and the pressure on the feeding side of the pump. Therefore there is no
static relationship between the "output max percentage" and flow. An example of how
flow changes independent of pump output percentage setting is shown in Figure 3.5a.
Figure 3.5a specifically shows the flow produced by a pump being actuated using an on/off
controller, where the pump is either running at 100% or 0%. In spite of the pump running
at 100% it can be seen that the flow produced decreases with time.

Not only is the flow/percentage relation changing, but there is also a discontinuity in the
relation. This discontinuity is shown in Figure 3.5b. It can be seen that at low pump
settings the pump does not produce any flow. The exact point at which the relation
is discontinues is however unknown, as this point like the flow/percentage relation is
dependant on a number of factors.

To try and compensate for the changing dynamics, a PI controller is implemented for each
pump in the system. The PI controller is implemented at the top of the control hierarchy
on the CCU. Though implementing the controllers on the CCU adds extra dead time to
the control loop, compared to a similar implementation directly on each LU, it allows for
faster implementation and easier reconfiguration. The PI controllers are tuned manually
since their design is not the main focus of this project.

Baseline parameters for the PI controllers were established by tuning the controllers to a
first-order model with dead time, fitted to the systems step response. The baseline P and I
parameters were then used in the real system’s controllers, where they were tweaked based
on the observed behavior when operating around the discontinuity.

(a) A pump is actuated at using on off
control. The two settings are 100% and

0%.

(b) Graph illustrating the discontinuity
in the flow/percentage relation of the
pumps used to emulate the Two Tank

Topology.

Figure 3.5: Dynamics of pumps in the AAU Smart Water Lab
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The P and I parameters were found, along with approximate values at which the
discontinuity is located. The resulting values are shown in table 3.1 and table 3.2.

Pump Name Starting Point(%) Flow at Starting Point (L/min) Flow at 100% (L/min)

Pump 1 45 3.4 8.3

Pump 2 40 5.4 19.5

Aux pump 1 45 4 9.5

Aux pump 2 55 3.5 12.5

Table 3.1: Minimum and maximum flow values

Pump Name Proportional Coefficient Intergral Coefficient

Pump 1 0.1 0.3

Pump 2 0.145 0.61

Aux pump 1 0.15 0.45

Aux pump 2 0.1 0.4

Table 3.2: P and I coefficient used in pump controllers
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Model Parameter
Identification 4

In section 2.2 General Model we developed a parametrized model describing the Two
Tank Topology. The final state space description is shown in (2.27). For the particular
implementation of the Two Tank Topology, parameters for the system have to be identified.
Note that the tank parameters φ1 and φ2 are the only parameters in the system that have
a direct physical meaning. This is because they are defined as the inverse of a tank’s area
φi , 1

Ai
. We assume that this parameter is known and need not be estimated.

The gravity pipe parameters θ are highly correlated, and calculating them reliably from
system observations is hard. Therefore the parameters of the gravity pipe will be identified
using level and flow data. This approach will be tested and validated with a model in the
high-fidelity simulation software EPA-SWMM as well as using the experimental lab setup
described in the previous chapter. This chapter aims to formulate parameters estimation
for the gravity pipe such that our approximated state space model matches the behavior
captured in an actual system. In the following section, we describe the gravity pipe
parameters identification, and later we present the results along with the validation of
the models.

4.1 Gravity Pipe Model Identification

We consider a subsystem of the Two Tank Topology shown in (2.27) consisting of the
gravity pipe and the second tank for the purpose of identifying the pipe parameters. This
part of the network is independent of the first tank since the boundary condition on the
pipe inflow is defined by pump 1, see subsection 2.1.3 Pipe boundary conditions. On the
other hand, the pipe outflow is dependant on the tank state in the submerged flow case.
In the free-flow case, it is beneficial to know the pipe outflow, and it can be estimated with
the tank equation (2.15) if a flow measurement is not directly available.

The parameter identification is defined as a constrained linear least square program. Let
θ , {θ1, θ2, θ3, θ4, θ5} denote the parameters of our linear pipe model. The pipe inflow Qin
and the tank outflow Qout, in (2.27) represented as QFP1 and QFP2 respectively, are given
for each time step. Let Ns denote the number of level sensors along the gravity pipe. We
define Nx (Nx ≥ Ns) to be the number of pipe sections after discretization. The number
of pipe sections after discretization is equal to the number of pipe states in the general
model. We assume that the ideal response to Qin can be obtained which yields the water
level measurement values hj , j ∈ {1, 2, ..., Ns} as well as the tank water level hT2 value at
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4. Model Parameter Identification

times ti, i ∈ {0, 1, ..., Nt}. Nt defines the time frame.

It is important to note that we consider two boundary conditions, which yield two different
model descriptions for the system. It is required that a single measurement set describes
only one of the two scenarios since a switch model is out of the scope of this thesis.
Consequently, this means that we have to develop two separate parameter identification
procedures, one for each case. Then when we are faced with one of the two boundary
cases, we use the appropriate identification method. First the generalized parameter
identification problem is formulated in (4.1), (4.2) and (4.3). Then in the following text,
the two different dynamics representations for (4.2) are elaborated on.

The estimated parameters θ and the initial states ht0 , ht0T2 are found by solving the opti-
mization problem:

 θ∗

ht0

ht0T2

 = arg min
θ,ht0 ,h

t0
T2

Nt∑
i=0

(htiT2 − ĥtiT2)2
+

Ns∑
j=1

(
htij − ĥ

ti
j

)2


︸ ︷︷ ︸

J

(4.1)

s.t.[
ĥ
ti+1

ĥti+1
T2

]
=

[
A(θ)

H(θ)

][
ĥ
ti

ĥtiT2

]
+

[
B(θ) 0Nx×1

0 −φ2∆t

][
Qtiin
Qtiout

]
+ ∆(θ) (4.2)

θ1, θ2, θ3, θ5 > 0, (4.3)

where ĥ ∈ RNx is the vector of states, Qin and Qout are the input signals. The system
dynamics are represented by the state space equation (4.2) where A(θ) ∈ {A1(θ),A2(θ)},
A1,A2 ∈ RNx×Nx+1 and B(θ) ∈ RNx are on the form shown in (4.4). In the above
problem, the number of pipe sections Nx and time frame Nt are fixed and given. The
system matrix A(θ) can have two different forms depending on the boundary condition
for the last pipe section, see subsection 2.1.3. The matrix with index 1 describes the
free-flow case while the matrix with index 2 describes the submerged flow case.

A1 =


1− θ2∆t θ3∆t 0 0 · · · 0

θ2∆t 1− (θ2 + θ3) ∆t θ3∆t 0 · · · 0
...

. . .
0 · · · 0 θ2∆t 1− (θ5 + θ3) ∆t 0

 , (4.4a)

A2 =


1− θ2∆t θ3∆t 0 0 · · · 0

θ2∆t 1− (θ2 + θ3) ∆t θ3∆t 0 · · · 0
...

. . .
0 · · · 0 θ2∆t 1− (θ5 + θ3) ∆t θ5∆t

 , (4.4b)

B =

[
θ1∆t

0TNx−1

]
. (4.4c)

The vector H(θ) ∈ {H1(θ),H2(θ)}, H1,H1 ∈ RNx+1 in equation (4.2) is the mapping
of the system states to the tank water level ĥT2. Like the A(θ) matrix it can have
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two expressions from (4.5), with 1 representing the free-flow case and 2 representing the
submerged flow case.

H1 =
[
0(1×Nx−1) φ2

θ5
θ1

∆t 1
]
, (4.5a)

H2 =
[
0(1×Nx−1) φ2

θ5
θ1

∆t 1− φ2
θ5
θ1

∆t
]
. (4.5b)

The matrix ∆(θ) ∈ {∆1(θ),∆2(θ)}, where ∆1,∆2 ∈ RNx , represents a constant offset in
transition of states. Similar to the A(θ) and H(θ) matrices it has a different expression
depending on the boundary condition, shown in (4.6). The indices are assigned the same
way as in (4.4) and (4.5).

∆1 =
[
−θ4∆t 0Nx−2 θ4∆t 0

]T
, (4.6a)

∆2 =
[
−θ4∆t 0Nx−2 (θ4 − θ5To)∆t φ2

θ5
θ1
To∆t

]T
, (4.6b)

where To represents the level at which the pipe enters the tank. That level has to be
subtracted from total tank water level if we want to describe the backflow from the tank,
see subsection 2.1.3 and specifically Figure 2.3. Notice also that when the pipe enters at
the bottom of the tank, To = 0, the two matrices ∆1,∆2 are equivalent. The constrains
in (4.3) restrict the parameters θ1, θ2, θ3, θ5 to be positive. This is imposed based on the
physical insight of the parameters and also in order for our system stability considerations
to hold.

The stated estimation problem can be computed using the Gradient-based search algorithm
[30]. To estimate the parameters and the initial states we use the nlgreyest toolbox
in MATLAB. It implements a set of different numerical, iterative search methods for
parameter estimation. The Adaptive subspace Gauss-Newton search method was used in
the following estimations.

4.2 System Identification Results

This section presents the results of applying our method of parameter identification on
three different cases. In order to have a quantitative measure of the goodness of the
identification, we first perform a benchmark experiment. For this purpose, we created a
simple, ideal case of the Two Tank Topology using the simulation software EPA-SWMM.
It solves the full Saint-Venant equations to simulate the flow in a gravity pipe. The goal is
to identify our simplified linear model with the high fidelity (HI-FI) simulation. The test
model is depict in Figure 4.1.

In this test we consider the inflow and the outflow pumps (FP1, FP2 ), four pipe sections
(P1-P4 ) and the downstream tank(T2 ). It is important to note that at the pipe outlet,
the free-flow condition is created; see subsection 2.1.3 Pipe boundary conditions. Meaning
the outflow borders above the T2 maximum level. That way, in normal operation, as well
as in the case of the tank overflow, the water is never flowing back into the pipe. The
parameters of the specific elements are shown in the table 4.1. The rest of the network is
used to make sure that there is enough water in the system to run a simulation and can be
chosen arbitrarily. The inlet flow Q1 enters the sewer at N1 and we observe the outflow
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4. Model Parameter Identification

Figure 4.1: Test network in EPA-SWMM. The T1-3 are tanks, FP1-3 are the
pumps. P1-4 are the discrete pipe sections. N1-4 are junctions where the

water level is measured.

Q2 from the downstream tank Figure 4.2b. The outflow Q2 consists of a constant flow
provided by FP2 that removes water from T2 and the additional flow which captures the
tank overflow (in particular around times t = 110 min, t = 200 min and 260 min). It can
be seen that in cases of tank overflow, the Q2 flow in Figure 4.2b increases instantaneous.
Additionally we capture the water levels at each node (N1 to N4 ) and the water level in
T2.

Since the goal is to use one model in all scenarios for inlet flow, the system is excited with
a randomized sequence of flows shown as Q1 in Figure 4.2b. The intention is to capture
as many relevant dynamics in the data as possible.

The validation of the identified model is shown in Figure 4.2a. The five hours prediction
with identified parameters is compared with the captured measurements. It can be seen
that we obtained a sufficiently good approximation.

Figure 4.3 shows the residual analysis of the identified model with respect to the
identification data set. Figure 4.3a show the residuals for each pipe section and the last
tank while Figure 4.3a shows the distribution of the residuals. The residuals are scaled
to the maximum depth value and calculated as ri = hi−ĥi

max(hi)
100 [%]. This normalization

is convenient if we want to compare it with the results of further experiments. Once
we successfully solved the parameter estimation for the simple simulation we proceed to
apply the same procedure to the Fredericia network subsection described in section 3.1
Simulation Setup - Fredericia Network.

Element/Property Inital depth Max depth Invert. Elev. Coefficient

Tank 1 (T1) 2.5 3 0 150

Tank 2 (T2) 0 1 0 200

Length Max depth Inlet offset Slope

Pipe 1-4 (P1-P4) 400 0.5 0 1
200

Table 4.1: Element settings in EPA SWMM.
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(a) Estimated model prediction. (b) Input flows.

Figure 4.2: Model validation.

(a) Residuals. (b) Residuals distribution.

Figure 4.3: Residual analysis.

4.2.1 Results of the Fredericia network simulation identification

As in the previous experiment, we have a similar configuration of the network with a
downstream tank and four level measurements that are approximately equally spaced along
the main sewer line. The placement of the sensors is shown in Figure 4.4. Although we in
this part of the network have nineteen measure points available (19 manholes, section 3.1
Simulation Setup - Fredericia Network), we choose to go with four measurements in order
to match the conditions we are able to emulate in the AAU Smart Waterlab. We will
consider only four pipe sections (states in our model) for the initial validation, which we
measure. The number of states affects the quality of the identification. Therefore we will
perform the identification multiple times on the same data but with a different number of
states, shown in section 4.2.1 Augmented model. Since we have the data for the dimensions
of the network, we can fix the tank parameter φ2 = 1

A , where A = 10.011 [m2] and only
estimate the parameters of the pipe θ.

Unlike in the previous experiment, we observe a different boundary condition at the end
of the pipe. Namely, the pipe enters the tank at its bottom (with an offset of 0 [m]), as
shown in Figure 4.5a.
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Figure 4.4: Sensor placement on the Fredericia network.

The last pipe also enters the tank at a steeper angle compared to the rest of the network,
see Figure 3.2, and we made the assumption when deriving the model that the slope of
the pipe was approximately the same along its entire length. Since the outflow tank is not
a retention tank, it has a small volume compared to the volume of the pipe sections in the
network. The volume of the tank in the operating range 0 - 2.7 [m] is ∼ 27 m3 and the
volume of the last pipe section before the tank is ∼ 54 m3). This volume difference makes
the tank dynamics a lot faster than the dynamics of gravity pipe, which amplifies a highly
nonlinear behavior at the boundary. All these observations account for a large discrepancy
between our estimated model and the HI-FI simulation.

We propose a solution: We consider the last pipe in the network as extended storage to-
gether with the tank, making a new tank. This consideration makes our newly created tank
a nonlinear system since the area is now a nonlinear function of the water level. However,
we elect not to model a nonlinear tank, but we instead approximate the tank as having
a linear description with the same capacity. Therefore we added the last pipe’s volume
to the tank and scaled the area of the tank from 10.011 [m2] to 29.94 [m2]. That way,
we have the same capacity in the operating range ( 0 - 2.7 [m]), but it is approximated
with a linear function. The dynamics of the new tank are also slower now since the area is
increased almost three times. However, since we want the optimal match of the dynamics,
we do not fix the parameter φ2 in the estimation.

(a) Before approximating the last pipe. (b) After approximating the last pipe.

Figure 4.5: Approximating the end-part of the network structure.
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Now Pipe 18 from Figure 4.5b is the last pipe section in the network. It is joined with
the new tank with an inflow offset of 1.1 m. When the water level in the tank is under
this level, the free flow dynamics apply. But the new tank still has a much smaller volume
than the volume of the sewer line. For a comparison, the new tank volume is 80 m3 and
the volume of Pipe 18 is 40 m3. This means that it is likely that the tank will fill above
1.1 m.

Consequently, the pipe is constantly filling backward as the tank is filling. However, our
model with the backflow boundary condition should be able to capture these dynamics.
The limitation to the model is that it works as long as the pipe is not entirely filled nor
completely empty. We constrain ourselves to only consider the backflow condition at the
boundary. Therefore we define an operating range for the tank to be 1.1 to 2.7 [m] during
the simulation.

In summary, the goal of the identification in this section is to try to identify the backflow
effect from the tank into the pipe together with the rest of the pipe dynamics described in
subsection 2.1.1 Gravity pipe. The model validation is shown in Figure 4.6b. The five-hour
prediction with estimated parameters is plotted against the validation data for compar-
ison. Some unestimated nonlinearities in the last section and the tank are obvious, but
the model captures the general trend. The tank linear approximation with constant area
reflects on the tank dynamics, which can be seen in Figure 4.6b, bottom plot. We also
calculate the residuals for a comparison. Residuals show the unmodeled dynamics in the
system.

If we closely observe the model response in Figure 4.6b, we can conclude that the delays
between sections are not well captured. Our model propagates the flow faster through
the network, which results in smoothening of later states. In particular, states number
two and three are smoothened. The reason for that is that our model, by having only
four states, inherently does not capture the delay of more than one time step between
each measurement. It can be seen in Figure 4.6a that with initial parameters, which are
calculated based on the physical properties of the system, the dynamics are well predicted
but without delay. Therefore in the following subsection, we will augment our model with
unmeasured states to account for the delay. It is important to note that in the simulation,
the pipe level is averaged along each section, which results in less delay between each
sensor. In a real-world system, this delay to the sensor is much more pronounced.

Augmented model

In this section, we analyze improvement in the linear model’s fit by adding more states.
Note that the number of sensors and their placement in the network will still stay
unchanged. The accuracy of the model on the same data, with a different number of states,
is shown in Figure 4.8a. By adding more states, the model prediction accuracy increases
since those augmented states now account for the delay between the sensors. However,
after a certain threshold, for example, Nx = 16, the model improvement is not significant
compared to its computational demand. The apparent reason for that is our choice of
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(a) Initial model. (b) After parameter estimation.

Figure 4.6: Fredericia model estimation.

(a) Residuals. (b) After removing the last pipe.

Figure 4.7: Changing the end-part network structure

the sampling time, ∆t = 10 [s]. This sampling time is chosen in order to capture the
fast dynamics of the tank and the last pipe, which are coupled. Comparing the sampling
time to the gravity pipe routing delay, one augmented state is not significant enough to
capture the actual delay. We calculated the full pipes routing delay to be approximately
15 minutes, which is equal to 3 minutes between each sensor.

The improvement in model accuracy is measured using Root Mean Squared Errors
(RMSEs) and shown in Figure 4.8b. The RMSEs are calculated as:

RMSE =
1

hmax

√∑Ns
n=1

∑Nt
t=0(ĥtn − htn)2

Ns ·Nt
, (4.7)

where Ns is the number of sensors, Nt is time frame. The RMSEs are scaled with the
maximum possible water level in the pipe. In the calculation shown in Figure 4.8b the
fourth state is not included. The numerical instability caused by the simulation can make
RMSE particularly large for a certain set of measurements. The other reason for not
including the tank state is that since it is the boundary state, it is not affected by the
delay because it has a different expression from former states. In other words, it has an
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(a) Model accuracy for different Nx. (b) RMSE for different Nx.

Figure 4.8: Model accuracy improvement by additional states for the
Fredericia experiment.

extra free parameter (parameter θ5) which defines its dynamics. The comparison of the
model predictions with four and 16 states are shown against each other in Figure 4.9. The
improvement of the prediction is obvious, especially in states 2 and 3, but it comes at the
price of having a high number of states.

(a) 3 [h] prediction with Nx = 4. (b) 3 [h] prediction with Nx = 16.

Figure 4.9: Model prediction with different number of states.

4.2.2 Results of the AAU Smart Water Lab emulation identification

In this subsection, we present the gravity pipe parameter identification results in the AAU
Smart Water Lab. An overview of the lab setup is shown in section 3.2 Emulation Setup
- AAU Water Lab, Figure 3.3. For the parameters identification, we use the two tanks
and a gravity pipe. Each tank is equipped with inflow and outflow pumps. We collect the
flow measurements from the pumps and the level measurements from the tanks. Along
the gravity pipe, we have four level sensors, which are used to collect level data.

The mentioned measurements which are used for identification are collected in the

33



4. Model Parameter Identification

experiment with sampling time ∆t = 0.5 [s]. The simple control for the experiment
is built in MATLAB Simulink and executed in real-time. The results of the parameter
identification on 1 hour data is shown in Figure 4.10a and the first 300s segment is depicted
in Figure 4.10b. The model with four states is used in the estimation (Nx = 4).

(a) 1 [h] prediction. (b) 300 [s] prediction.

Figure 4.10: Model validation for the waterlab experiment.

On the Figure 4.11a the residuals of the model are plotted, and in Figure 4.11b the
distribution of the residuals is shown. Unlike the previous experiments in simulation,
the residuals are composed both from a model prediction uncertainty and measurement
uncertainty. In the lab experiment, we have the same challenge with the delay prediction

(a) Model residuals. (b) Distribution of residuals.

Figure 4.11: Waterlab residual analysis.

as in the Fredericia network described in the previous section. The model, having only
four states, can not predict the delay between sensors. Therefore we have to augment
the model with additional states between each sensor. The improvement of the model
relative to the number of states is shown in Figure 4.12a. The improvement is not that
significant, especially in the later states. The RMSE comparison is shown in Figure 4.12b.
The improvements are even less significant when compared to the Fredericia model. Note
that adding augmented states cannot completely compensate for the delay, even with a
high number of augmented states. We find that the delay is inversely proportionate to
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the average flow intensity in the pipe. The higher the flow, the smaller the delay and
vise versa. That would mean that with different flow conditions, the number of needed
states would be changing, making the model nonlinear and hard to use. The other possible
solution would be to model the delay separately into Nx additional states and keep the
number of level states minimal. However, this approach is not implemented in this work,
but it is considered a possible solution if better predictions are required.

(a) Model accuracy for different Nx. (b) RMSE for different Nx.

Figure 4.12: Model accuracy improvement by additional states for the lab
experiment.

4.3 Summary

In this chapter, we formulated a data-driven parameter identification method for the lin-
ear gravity pipe model. Although it is a data-driven method, the estimation was based
on an actual physical model. The big advantage of using a physical model instead of a
heuristic model is that the intuition in the model behavior is preserved. The models used
are relatively simple and linear, making them easy to use in a control application. The
identification was tested on data, from both a simple simulation setup and a more com-
plex real network simulation setup, with more complex dynamics. We also tested it on an
emulated network in the AAU Smart Water Lab. Both implementations of the identifica-
tion method, in simulation and emulation, showed that presented parameter identification
is feasible. Though only simple linear models were used, the identification process pro-
duced good results. The models could be improved in regard to predictions of transport
delay. Capturing the transport delay has been identified as the most significant limita-
tion of these linear models. Using residual analysis, the model uncertainties were provided,
which will be useful in a Kalman Filter implementation shown in chapter 5 State estimator.

The biggest advantage of this parameter identification method is that it can easily be
implemented for larger networks since it is based on the data gathered from the network.
The model is also based on the water level measurement in the gravity pipe, which is more
readily available and more accessible than the equivalent flow measurements. We elected
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to use long free-running model predictions since we plan to use the linear model of the
AAU Smart Water Lab in Model Predictive Control.

During the remainder of the thesis, we extended the presented parameter identification
framework. A discussion of the changes can be found in section 8.1 System Identification.
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State estimator 5
As this thesis aims to explore the viability of Model Predictive control in real-world
sanitation networks, it is worth considering the possibility of having states that are not
directly measurable. Though a sanitation system would ideally have many high-quality
sensors supporting control efforts, this is rarely the case in the real-world, as money
becomes a factor. Therefore, a state estimator becomes a requirement, and we elect to
present a possible approach to creating one.

The two most common estimators used in linear system theory are the Luenberger Observer
and the Kalman filter. These two estimators are similar in the way they estimate unknown
states. There is, however, one key difference in the assumptions used to create them:
The Kalman filter assumes measurements and models to be imperfect and, therefore,
compensates for this. The Luenberger Observer, on the other hand, assumes an ideal
model and ideal measurements.

Figure 5.1: Illustration of the Two Tank Topology, with the disturbance
inflows.

In practical applications, i.e., in non-simulation cases, the measurements obtained from a
system will contain measurement noise. Even in the AAU Smart Water Lab, which is a
controlled environment, sensor noise is a significant fact that should be taken into account.
It is also worth noting that most systems cannot be described perfectly by linear system
theory. Therefore it is safe to assume that any linear model will introduce model noise.

In real-world sanitation systems, tank levels would almost always be measured.
Furthermore, the measurement noise present on these measurements is likely to be
insignificant. Therefore we choose to focus on creating a Kalman filter for the pipe sections
exclusively.

37



5. State estimator

However, before we begin, we make an addition to the description of the four pipe state,
state space model presented in section 2.2 General Model. We add a disturbance inflow
ud

n. The disturbance inflow enters the Two Tank Topology, in tank 1 and in the middle
of the gravity pipe. The disturbance inflows points of entry are described by Bd in (5.1)
and shown in Figure 5.1.

xn = Axn−1 + Bun + Bdud
n + ∆

⇓

xn = Axn−1 + Bun +



φ1∆t 0

0 0

0 θ1∆t

0 0

0 0

0 0


[
und1

und2

]
+ ∆ (5.1)

In order for us to evaluate the Kalman filter in this chapter, we will assume that we have
full knowledge of the disturbance inflow ud

n. This is, of course, not the case in real life
since the inflows into a sanitation network would be determined by rainfall and wastewater
production. The exact mechanics of how knowledge of ud

n is obtained for use in a control
situation will be presented in chapter 7 Controlling the Two Tank Topology.

This chapter will present three main things: an introduction to the Kalman filter, an
analysis of the model noise and measurement noise affecting the emulation and simulation,
and finally, a qualitative evaluation of the constructed Kalman filter.

5.1 The Kalman Filter Algorithm

In this section, a short intro to the Kalman filers structure is given. The Kalman filter
algorithm can be said to have three steps. To continuously estimate the system states,
these three steps are run repeatedly, using old estimates of state and error covariance. The
Kalman filter can be thought of as an algorithm and has the mathematical description
[31]:

1. Prediction Step:

x̂n− = Ax̂n−1 + Bun + Bdud
n + ∆, (5.2)

Pn
− = APn−1AT + Q, (5.3)

2. Kalman Gain Step:

Kn = Pn
−CT (CP−

nCT + R)−1, (5.4)

3. Estimation Step:

x̂n = x̂− + Kn(zn −Cx̂n−), (5.5)

Pn = Pn
− −KnCPn

−. (5.6)

Where A, B, C and ∆ are system matrices, Q and R are noise covariance matrices, x̂n−,
Pn
−, Pn and Kn are variables used internally in the filter, zn and un are inputs into the
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filter and x̂n is the output from the filter. Note that n is the time index and (·)− refers to
a predicted value and that ·̂ refers to an estimated value.

Description of the Kalman filter’s steps:

• In the Prediction step a prediction of the state x̂n− and error covariance Pn
− is

made. This is done base on the model matrices from the Two Tank Topology A, B,
Bd and ∆ as well as the expected inputs un and ud

n. Furthermore, the predicted
error covariance Pn is dependant on the variance of the model noise Q. Where model
noise is the mismatch between the model and the real system.

• In the Kalman Gain Step the Kalman gain is computed. This is done using the
previously calculated predicted error covariance Pn

−, the system matrix C, and the
variance of the measurement noise R.

• Lastly the Estimation Step updates the previously made predictions x̂n− and Pn
−

to estimates x̂n and Pn. This is done using the predictions and the Kalman Gain
Kn as well as the measurement from the real system zn.

There is an important difference between the predicted state and the estimated state. The
predicted state x̂n− is a "guess" based only on a model, made before any measurement
is made. The Estimated state x̂n is the "guess" adjusted based on measurements. This
adjustment is made using the weighting error between the expected measured value Cx̂n−
and the actual measurement zn by the Kalman gain Kn. A similar process is done for the
prediction of error covariance Pn

− and the estimate of error covariance Pn.

5.2 Noise Model

For us to use the Kalman filter algorithm, the two noise covariance matrices Q and R need
to be determined. The derivation of the Kalman filter is based on the assumption that the
measurement noise V ∼ N (0,R) and the model noise with covariance W ∼ N (0,Q).
In practical applications, this assumption does not change that Q and R are often
used as tuning parameters and adjusted manually until the desired fit is reached. This
adjustment is made knowing that increasing the entries of R will place more weight on the
measurements while increasing Q will place more weight on the model. While this method
of determining Q and R is valid, we will use a more analytical approach in this thesis.

Knowing that the Two Tank Topology with disturbance inflow and noise can be express
as:

xn = Axn−1 + Bun + Bdud
n + ∆ + wn (5.7a)

zn = Cxn + vn, (5.7b)

where zn is a measurement of the systems output, and assuming that the C from general
model developed in section 2.2 General Model is exact. Where wn = W(j) 1 can be said
to be the additive model noise and vn = V(j) can be said to be the additive measurement
noise.

In section 4.2 System Identification Results a measure for the fit of the model is found,
using residuals. If these residuals are the difference between one step predictions and

1Meaning that wn is a single realization of the random variable W at an arbitrary point j
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measured values then the distributions of these would be exactly the distributions of the
sum of model and measurement noise W + V. The rest of this chapter will be dedicated
to the analysis of the noise observed in the AAU Smart Water Lab.

5.2.1 Noise model of the AAU Smart Water Lab

Observing the combined noise distributions shown in Figure 5.2a it can be noted that
they seem to be normally distributed. These distributions are obtained by comparing lab
measurements to one step predictions found using our four pipe model ri = |xi − x̂i|. The
measurements and one step predictions are shown in Figure 5.2b.

(a) Distribution combined model and
measurement noise.

(b) One-step predictions.

Figure 5.2: Noise identification data. With high sensor precision.

Though the combined distribution of the model and sensor noise U = W + V is
approximately normal, separating the distribution U into its two terms does not seem
straightforward. We do, however suggest one approach, knowing that both W and V have
zero mean and that they are then completely defined by their covariance matrices.

We start with the assumption that the noise observed on a sensor is independent of the noise
observed on the other sensors. Meaning that the off-diagonal entries of the measurement
noise covariance matrix R will be zeros, as shown in (5.8).

R =


σ2
v1 0 0 0

0 σ2
v2 0 0

0 0 σ2
v3 0

0 0 0 σ2
v3

 (5.8)

This means that any of the entries on the off-diagonal of U’s covariance matrix must be
the result of model uncertainties. Therefore we elect to find the off-diagonal entries of the
model covariance matrix Q by looking at cov(U). Note that cov(U) is the sample model
covariance of the residuals ri = |xi − x̂i|. This yields equation (5.9).
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Q =


σ2
W1 −0.0425 0.0483 −0.0121

−0.0425 σ2
W2 −0.0141 0.0124

0.0483 −0.0141 σ2
W3 0.0314

−0.0121 0.0124 0.0314 σ2
W4

 · 10−5 (5.9)

We still have to determine the variances of both W and V. We cannot find the variances
based on the data presented in Figure 5.2. However, we notice that the residuals of the
gravity pipe states are almost exclusively between −0.01 dm and 0.01 dm.

This leads us to run an experiment where we in software truncated measurements to have
a precision of 0.01 dm or 1 mm. This yields the truncated data results with the new
residual distribution shown in Figure 5.3a.

(a) Distribution combined model and
measurement noise, with truncated

measurements.

(b) Three step process applied to create
the measurement distribution.

Figure 5.3: Noise identification data. With high sensor precision.

As can be seen from the distributions of the truncated data set, the noise is distributed
around points with modulus 1mm. Knowing the level sensors used in the pipes have a
precision of 1 mm, leads us to make an assumption on the lab noise: The means of
the points around modulus 1mm is determined by the measurement noise V, while the
distributions around these means are determined by the model noise W.

We, therefore, elect to manipulate the truncated distributions shown in Figure 5.3a to
create a distribution for the model noise W, which aligns with the assumption on the Lab
Noise. For each pipe state a three step process is applied to the residual data:

1. The residual data is partitioned into sections of size 0.01 dm.
2. Then, the sum of each partition is placed in its middle. The reason for placing

the sum of each partition in its middle lies in the middle representing a possible
measurement value.

3. Lastly, a continuous normal distribution is fitted to the data.

The process described in the above three points is depicted in Figure 5.3b. The three step
process yields the distributions of the model noise W shown in Figure 5.4.
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5. State estimator

Figure 5.4: Resulting distributions from applying the three process.

The variances of the model noise σ2
Wj for j ∈ {1, 2, 3, 4} can be inserted into the model

noise covariance matrix Q, yielding (5.10). Note that Q already contains the off-diagonal
sample covariances.

Q =


0.1855 −0.0425 0.0483 −0.0121

−0.0425 0.2415 −0.0141 0.0124

0.0483 −0.0141 0.1231 0.0314

−0.0121 0.0124 0.0314 0.0427

 · 10−5 (5.10)

Having found the covariance matrix Q and knowing U = W + V we can use the
relation cov(U) = cov(W) + cov(V) = Q + R for independent variables such that we
get cov(U)−Q = R. The result is shown in (5.11).

R =


0.1137 0 0 0

0 0.1388 0 0

0 0 0.0882 0

0 0 0 0.1698

 · 10−4 (5.11)

With this, we have characterized the model noise in (5.10) and measurement noise (5.11),
on the AAU Smart Water Lab, using a four pipe state version of the general model. In
the next section, a qualitative analysis of the Kalman filter’s performance is evaluated.

5.3 Resulting Filter

With the covariances for the noise in the lab experiments found, a Kalman filter can be
created and in this section a qualitative analysis of one will be presented.
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5.3. Resulting Filter AAU

The Kalman filter is used as an estimator on the same data sets used to identify the noise
models. Two state measurements were however removed from the measurment set to check
the quality of the Kalman filter as an estimator. The removed states are pipe states 1 and
3.

The resulting Kalman gain and error covariance for the estimator was found after having
applied the Kalman filter:

K =


0.0602 0.0145

0.3215 0.0121

0.0284 0.1534

0.0148 0.1566

 , P = 10−4


0.2105 0.0084 0.0498 0.0025

0.0084 0.0446 0.0039 0.0021

0.0498 0.0039 0.0875 0.0261

0.0025 0.0021 0.0261 0.0266


Figure 5.5a shows the estimate of the lab states. The advantage of implementing a Kalman
filter, over a Luenberger Observer as an estimator can be seen in the estimation of the lab
states. As not only does the Kalman filter estimate the unmeasured state, but it also
removes the high frequency sensor noise from the measured states. Note that we added,
the free running result, to give the reader a frame of reference. The free running model is
shown in Figure 5.5b.
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5. State estimator

(a) Kalman Filter used for state estimation of pipe state 1 and 3.

(b) Free running predictions with lateral inflow.

Figure 5.5: Figures for qualitative analysis of Kalman filter performance.
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Controller Design 6
Having presented the topics which enable us to do Model Predictive control, this chapter
starts by presenting the setup of an optimization program for both a "Standard" Model
Predictive Controller (MPC) and a Stochastic Model Predictive Controller (SMPC). The
SMPC utilizes chance constraints; therefore, we call it the Chance Constrained MPC (CC-
MPC).

Since control of the tank level, with overflow prevention in mind, will be an important
control objective, we elect to illustrate the CC-MPC framework on a single tank example,
see section 6.3 Single tank SMPC. Besides illustrating the CC-MPC performance, the goal
of the single tank example, in particular, is to emphasize the important challenges in the
control of the sanitation networks. We will start with a presentation of MPC structure
and formulation, and thereafter we gradually expand the standard structure as we identify
new challenges.

6.1 Model Predictive Control

The "standard" MPC is a deterministic controller designed under the assumption that
there is no uncertainty in the system model, measurement, or input. Particularly for
sanitation networks, it would mean that the rain inflows into the network are perfectly
known at each step of the optimization horizon. Generally, for any system described by a
linear set of system equations, it would mean that the matrices A B and C would always
be exact. Both these assumptions are quite optimistic, but often a standard MPC provides
good results despite these assumptions. This is due to its receding horizon implementation.

General for all types of MPCs is that they are represented as an optimization problem,
consisting of a cost function and a constraint set. The constraint set making up a part
of an MPC includes the dynamics of the system the controller is created for. In our case,
these dynamics are the ones derived in chapter 2 Modeling.

The fact that dynamics are described by a linear model allows us to formulate the MPC
problem as a quadratic program. This is convenient, as the solution to quadratic program
can be guaranteed to have a global minimum [32]. The classical formulation of a quadratic
cost MPC includes the terms shown in (6.1). Though depending on the application of the
MPC, the cost function might include other terms or neglect to include some of the terms
shown in (6.1).

J = min
u

Hp∑
k=1

∥∥∥zk − zrefk

∥∥∥2

Qk

+

Hu−1∑
k=0

‖∆uk‖2Rk
. (6.1)
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This formulation of the MPC is based on the one presented in [32,p. 55-56 & 74-75].
The cost function from (6.1) consist of the quadratic penalty Rk on the change of the

controller action ∆uk, at each time step k. The
∥∥∥zk − zrefk

∥∥∥2

Qk

term defines the penalty

for the deviation of the output zk from a desired reference zrefk .

Remark: the notation zk is an implicit shorthand for the notation ẑ(n+k|n) which means
the prediction of z at time n+ k made at time n. We are aware that this notation differs
from the notation used for the previous chapters of this thesis. We, however elect to use
the notation as we believe it is suitable for an MPC description. The time between the
time indices k is defined as Tmpc, Hp ∈ R≥1 is the prediction horizon and Hu ∈ R≥0 is the
control horizon. When an MPC is used with the general model of the Two Tank Topology
Tmpc = ∆t.

In the classical MPC formulation, the constraint set is obtained by describing the dynamics
of the controlled system. In the case of a system described by linear dynamics, the
constraints are linear. A linear system described by a standard state space formulation
with known disturbance can be formulated as shown in (6.2), (6.3) and (6.4).

xk+1 = Axk + Buk + Bdudk , (6.2)

zk = Cxk, (6.3)

∆uk = uk − uk−1. (6.4)

The formulation of the bounds presented in (6.2), (6.3) and (6.4), is very close to the form of
the linear description of the Two Tank Topology, which was presented in section 2.2 General
Model, where udk

is a forecast of the water inflow into the first tank and middle pipe section.
The bounds on system states and inputs form the linear inequality constraints, called box
constraints. For a deterministic setup, the box constraints have the following form:

xk ≤ xk ≤ xk, (6.5)

uk ≤ uk ≤ uk, (6.6)

∆uk ≤∆uk ≤ ∆uk. (6.7)

For the system presented in section 2.2, these bounds would be determined by the tank
sizes, pipe sizes, and pump capacities. In general, other system specific constraints might
also be included.

The above equations serve as an outline for a standard MPC formulation. In the following
section, we are expanding the base framework to a Stochastic MPC. To that end, we
introduce the uncertainties found in a sanitation system and explore one way of handling
them in the SMPC.

6.2 Stochastic Model Predictive Control

So far, we only presented the deterministic MPC problem. Due to the strict assumptions
on knowledge of the system, it makes sense to extend the standard MPC program by
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6.2. Stochastic Model Predictive Control AAU

taking a system’s model uncertainties into account, such as prediction uncertainty and
model uncertainty.

We now assume that our model, measurements and disturbance predictions are uncertain.
We elect to handle uncertainty as stochastic additive uncertainty. The predicted model
uncertainty, denoted as wk and the predicted measurement uncertainty vk are random
vectors that follow a zero mean Gaussian distribution, W ∼ N (0,Σw) and V ∼ N (0,Σv).
Additionally, we formulate the disturbance prediction as consisting of a mean disturbance
dk,mean which is deterministic and a additive stochastic part dk,uncertain ∼ N (0,Σdk),
resulting in the disturbance vector udk = dk,mean + dk,uncertain.

The presence of stochastic uncertainty requires a reformulation of the deterministic MPC
program from the previous section. In the deterministic case, the optimum is obtained
by minimizing the cost of a known system. Since the actual system is unknown in the
stochastic case, the optimal cost has to be obtained by minimizing the expected cost. The
reformulation is shown in (6.8) and (6.9).

J = min
u
E

Hp−1∑
k=0

∥∥∥zk − zrefk

∥∥∥2

Q
+‖∆uk‖2R

 (6.8)

= min
u

Hp−1∑
k=0

∥∥∥µzk − zrefk

∥∥∥2

Q
+ tr(QΣzk) +‖∆uk‖2R (6.9)

where tr() is the trace operator. The derivation of (6.9) from (6.8) can be found in
Appendix D. Notice that the obtained cost function is deterministic in terms of the mean
µzk and variance Σz of the output, rather than dependant on the actual output zk.

The equality constraints also have to be reformulated. This is done in the same way as
the reformulation of the cost function; by describing the expected behavior of the state
E[xk+1] and output E[zk]. Taking all the uncertainties described at the beginning of the
section, into account the mean system dynamics can be presented as shown in (6.10) and
(6.11).

E[xk+1] = µxk+1 = Aµxk + Buk + Bddk,mean, (6.10)

E[zk] = µzk = Cµxk, (6.11)

As the variance Σzk at each time step is a part of the cost function (6.9) the state variance
dynamics has to be described as well. This is done in (6.12), (6.13) and (6.14).

Σxk+1 = AΣxkA
T + BdΣdkBd

T + Σw, (6.12)

Σzk = CΣxkC
T + Σvk. (6.13)

Σdk+1 = f(Σdk, k), (6.14)

The dynamics of the disturbance variance Σdk+1 can, in principle, take any form, as long
as they are not a function of the optimization parameter uk or the states xk. If the
disturbance variance for example take the form shown in (6.14) the variance can be pre-
calculated and the term tr(QΣzk) can be assumed constant. Note that the variance of the
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state in this MPC problem is described by a linear open loop state space equation (6.12).
That means that the variance of zk grows and settles for stable systems as k increases.
This is unavoidable, and we quickly grow unsure of our prediction.

One solution for lowering this growth in uncertainty is to introduce a so-called: Closed
Loop Tube Control Policy [33]. The idea is to utilized a controller υk = −K(xk − µxk) in
a closed loop setting to drive the variance towards a steady state. This makes the control
action on the system Υk = uk + υk. For the tube control policy υ to drive the variances
towards a steady state, it is required that all additive uncertainties have constant variances
at each time step k in the prediction horizon Hp. The µxk is the prediction of the state,
while the xk is the actual state value at time k. This means that the tube controller drives
the states towards the mean dynamics. Introducing the controller yields the following
closed loop variance dynamics:

Σxk+1 = (A−BK)Σxk(A−BK)T + BdΣdkBd
T + Σw, (6.15)

Σdk+1 = f(Σdk, k),

Σzk = CΣxkC
T + Σvk.

A tube controller also makes the implemented input Υk a random variable, since it is
dependant on xk, which is a random variable. Therefore if we penalize the implemented
input we have to expand the cost function from (6.9) in order to account for uncertainty
of the Υ policy. The redefined cost is shown in (6.16).

J = min
u

Hp−1∑
k=0

∥∥∥µz|k − zrefk

∥∥∥2

Q
+ tr(QΣz|k) +

Hu−1∑
k=0

∥∥µ∆uk

∥∥2

R
+ tr(RΣ∆Υ|k), (6.16)

where the tr(RΣ∆Υ|k) term, like the tr(QΣz|k) term, is independent of chosen optimal
control policy, determined by the MPC. Both trace terms can be assumed constant and
therefore they can be neglected from the cost function.

The feedback matrix K can be found using standard LQR control synthesis. In the MPC
framework the tube controller action is implemented on top of the MPC’s optimal control
action as υ0 = −K(x0−µx0). The x0 is the initial state condition for the MPC optimization
problem, and the µx0 is the prediction of the initial state condition from the previous MPC
iteration.

We choose not to expand tr(RΣ∆Υ|k) term in this chapter. The tube policy with LQR
tuning is implemented later the CC-MPC for the lab experiment, see subsection 7.2.4 The
Chance Constrained Model Predictive controller used in a second solution.

With the cost function and equality constraints converted to fit in a stochastic framework,
we are only missing a description of the inequality constraints. In principle, the box
constraints presented in section 6.1 could simply be described in terms of their mean
values. But as the focus of the thesis is control of sanitation networks, such an approach
could result in large wastewater overflows if the disturbance forecast has high uncertainty.
Instead, we choose to utilize chance constraints, which are presented in the following
section.
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6.2. Stochastic Model Predictive Control AAU

6.2.1 Chance constraints

Authors presenting the Stochastic MPC usually refer to chance constraints as the method
for constraining a system. The chance constraints define the constraint on the probability
of deterministic constraints being true.

P(xk ∈ X ) ≥ α, (6.17)

where the set X represents a set of possible values for xk, which define the deterministic
boundaries [11]. The result of the probabilistic constraint is a tightening of the determinis-
tic set that will guarantee for any states realizations that the states are inside the set with
α probability. For sanitation networks, this for example, allows us to put a probabilistic
bound on wastewater overflows, even under large uncertainties in a forecast.

Consider now that the set X represents all possible realizations of states x that are in-
side the box constraint defined in (6.5). In other words, the set X is an intersection of
n = dim(x̄) + dim(x) halfspaces as:

X =
{

xk|hTj xk ≤ bj ,∀j = 1, 2, ..., n
}
, (6.18)

where hj ∈ Rdim(x) is a vector that selects a single state in x and bj ∈ R+ is a correspond-
ing deterministic bound [11]. According to [11] and using Boole’s inequality the chance
constraint (6.17) can be defined as a sum of the individual half space chance constraints as:

P(xk ∈ X ) ≤
n∑
j=1

P(hTj xk ≤ bj). (6.19)

Now we proceed with deriving a single chance constraint for the upper bound deterministic
constraint. The rest are derived analogously. The selected state hTj xk has to remain under
the deterministic bound hTj x̄k with αj probability:

P(hTj xk ≤ hTj x̄k) ≥ αj , (6.20)

where the left side of the inequality defines a cumulative distribution function (CDF) of
hTj xk. For normal distributions it is dependant only on the mean hTj µxk and variance
hTj Σxkhj of the random variable, as in (6.21) [11].

P(hTj xk ≤ hTj x̄k) = φ

hTj x̄k − hTj µxk√
hTj Σxkhj

 , (6.21)

where φ(x̄) , P(x ≤ x̄) is the CDF of a standard normal distribution with x ∼ N (0, 1).
Now substituting (6.21) into (6.20) we obtain the expression (6.23) for chance constraint
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tightening as:

φ

hTj x̄k − hTj µxk√
hTj Σxkhj

 ≥ αj , (6.22)

m
hTj x̄k − hTj µxk√

hTj Σxkhj
≥ φ−1(αj),

m

−hTj µxk ≥ −hTj x̄k +
√

hTj Σxkhjφ
−1(αj),

m

hTj µxk ≤ hTj x̄k−
√

hTj Σxkhjφ
−1(αj)︸ ︷︷ ︸

tightening term

, (6.23)

where φ−1(αJ) is the inverse cumulative distribution function of a standard normal
distribution [11]. Notice that we obtained a deterministic constraint on the expected
value of the state. The initial boundary on the states x̄k is tightened each step by the
term −

√
hTj Σxkhjφ

−1(αj). If the uncertainty in our prediction grows, the result will be
the increase in tightening of the states. This tightening will make sure that the state
predictions stay in deterministic bounds (6.5) for any realization of the disturbance with
α · 100% certainty. On the other hand this tightening can cause the infeasibility of the
optimization problem.

For example, in the application where the chance constraints is used for tightening the
upper bound of a retention tanks level, heavy inflows may cause infeasibility. This is
because during some heavy inflow scenarios, even with a maximum outflow, the tank level
can not be kept under the tightened constraint generally. If the tightening is larger, then
the range of tightened state (x− x), the state constraints will become ill-posed.

In the rest of the chapter, we aim to illustrate the concepts of SMPC through an example
application to a single tank.

6.3 Single tank SMPC

In the modeling chapter, subsection 2.1.2 Retention tank, we have described the single tank
dynamics as a flow integration. To validate and prove the concepts from previous sections,
we will restate the model with specific parameters. The configuration that we consider in
this section is depicted in Figure 6.1. From that, we can derive a simple discrete state
space equation describing the tank level h, shown in (6.24).

hk+1 = hk +
∆T

A
(dk − uk − qof |k), (6.24)

where d is the inflow disturbance, u is the controlled outflow and qof is the flow that is a
result of the tank overflow. Model parameters ∆T and A denote respectively the sampling
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time and the tank cross-sectional area. The parameters of the state space model are shown
in table 6.1.

Figure 6.1: Single tank system used
for concept validation.

Parameter Value
A 1

B , ∆T
A 1

Bd , ∆T
A 1

C 1

∆ 0

Σw 0

Σv 0

Ad 1

∆d 0

Σd0 0.0045

Σx0 0

Table 6.1: Single tank model
parameters.

It is important to specify what inflow disturbance we consider in this setup. For the sake
of providing an application example, we declare that the inflow disturbance represents
the collected rain runoff that enters the tank combined with the wastewater flow from a
connected adjoining network. At this point, we do not form the pattern of the disturbance
inflows to resemble flows observed in a real network, as it is not a focus of this section.´An
attempt at creating realistic data patterns for use in emulation will be presented in sub-
section 7.1.1 Disturbance design. It is assumed that we can obtain an uncertain inflow
forecast at any time k for N steps in the future, i.e., the N steps disturbance prediction
is known at any time k. The uncertainty of a prediction is assumed to be normally dis-
tributed with constant variance Σd = Σd0 = 0.0045, see (6.14) and table 6.1.

We can now formulate an MPC optimization problem. The MPCs objective is to minimize
the overflow of the tank. The cost function punishes deviation from a reference in tank
level as well as the control action, the pumped outflow, simulating a cost to running the
pumps. The uncertainty, which is propagated from disturbance into the state, results in the
stochastic cost function. We therefore use the expected cost, which is defined as shown in
(6.9) with tr(QΣhk) = QΣhk . The final formulation of the expected cost is shown in (6.25).

J = min
u
E

Hp−1∑
k=0

Q(hk − href |k)2 +Ru2
k


= min

u

Hp−1∑
k=0

Q(µhk − href |k)
2 +QΣhk +Ru2

k, (6.25)

where µhk represents the mean tank dynamics and Σhk represents the state prediction
variance. The mean dynamics and variance dynamics are stated in (6.26) and (6.27).
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µhk+1
= µhk + φ(dk,mean − uk − qof |k), (6.26)

Σhk+1
= Σhk + Σd, (6.27)

where φ = ∆T
A is the tank parameter. The dk,mean represents a rain forecast and qof |k is

the overflow at time k. We also have to specify physical constraints on the system. The
tank level µhk and the pump flow uk is constrained as:

2 ≤µhk ≤ 5, (6.28)

0 ≤uk ≤ 0.03, (6.29)

−0.03 ≤∆uk ≤ 0.03. (6.30)

When the tank level is operated close to the upper bound, for example in the heavy rain
scenarios, the controller can potentially underperform due to stochasticity in the input
and therefore cause unnecessary overflow. In order to prevent that, we define the chance
constraint on the upper bound according to (6.23). The acceptable constraint violation is
chosen to be 5%. The volume constraint is reformulated with a chance constraint tighten-
ing as:

2 ≤ µhk ≤ 5−
√

Σhkφ
−1(0.95). (6.31)

The −
√

Σhkφ
−1(0.95) represents a tightening factor of the physical constraint defined in

(6.28). The upper level bound is now dependent on the uncertainty of the prediction at
each step throughout the horizon length. If we now calculate the uncertainty at each time
step according to (6.27) with the assumed uncertainties defined in the beginning, we obtain
the more conservative or "tighter" upper constraint as showed in Figure 6.2a. The longer
the horizon is, the more uncertain the prediction becomes, since no local controller is used
to control the variance dynamics in (6.27).

(a) Upper level constraint tightening for
Hp = 24 step prediction horizon.

(b) Level prediction with chance
constraint tightening.

Figure 6.2: Constraint tightening.
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In Figure 6.2a the chance constrained upper level bound is showed in red, with the predic-
tion horizon length of 24 steps. This tightening will result in a more conservative controller
action near the upper bound. To demonstrate this, we perform an experiment where the
reference is set to be close to the upper bound. The result is shown in Figure 6.3. The level
reference that the controller is trying to follow is href = 4.7. Notice that in the Figure 6.3
bottom plot, the level is always below the reference and does not follow it. The controller
is more cautious around the physical upper bound and does not allow the level to grow.

Figure 6.3: Single tank controller conservatives due to chance constraint
tightening.

In Figure 6.2b a single MPC prediction step is depict, specifically the prediction step at
k = 652. We know from before that the prediction has to stay under the tightened con-
straint thorough the entire prediction horizon. In fact, the MPC performs such that the
tightened constraint is never violated. At this point, one can argue that this "underper-
formance" in reference tracking can be reduced if we allow more aggressive control action
∆u. While this is a valid argument, which is also verified in Appendix E, keep in mind
that the presented experiment in Figure 6.3 is an artificial setting with the main purpose
to outline the conservatives of the CC-SMPC.

6.3.1 Feasibility concerns

So far, we only considered a tank system under normal conditions. This setup means
that the disturbance’s volume is generally smaller than the maximum volume that can
be removed from the system. That way it is unlikely for the system to break the defined
bounds (6.31) and thus result in an unfeasible optimization. However, in a realistic setup,
the tank would occasionally operate under harder conditions. During certain heavy rain
scenarios, overflow of the tank is inevitable. Therefore, we have to expand the current
SMPC setup to handle these scenarios and ensure feasibility.
The standard way of ensuring feasibility is with a slack variable. The use of slack variables
is common in research dealing with tank overflows, and we suggest the reader refer to the
following paper for more details [8].
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With slack variables implemented for the level constraint in (6.31), the upper bound can
relaxed for a high cost to ensure feasibility. This implies that the slack variable becomes
the new optimization variable that has to be included in the objective function, with a high
cost, compared to other objectives. A redefined cost function and level chance constraint
with slack variable are stated in (6.32) and (6.33) and (6.34) respectively.

J = min
u,Sub

Hp−1∑
k=0

Q(µhk − href |k)
2 +QΣhk +Ru2

k + CubSub|k, (6.32)

2 + Sub|k ≤ µhk ≤ 5−
√

Σhkφ
−1(0.95) + Sub|k, (6.33)

0 ≤ Sub|k, (6.34)

where Cub is the costs of using the slack Sub. For cost Cub applies Cub � Q in order to
achieve the desired behaviour. In case of an overflow the slack is added from both sides
of the constraint, thereby conserving the physical tank volume [8]. Notice that the slacks
enter the cost function linearly. The reason is that for the quadratic function, a square of
very small value is even smaller. In an MPC notion, it is cheap to use very little amounts
of slack all the time. The slack is also constrained to only take positive values. Otherwise,
because of the linear cost the cost function will be reduced indefinitely. In Figure 6.4 an
example with two overflow scenarios captured with a slack variable is shown, in pink.

Figure 6.4: Slack varaible capturing overflow.

Although this method of using slack variables has proven to be useful in most MPC appli-
cations for overflow prevention, it has some flaws when applied in a CC-SMPC framework.
In the following subsection, we present why this method can be insufficient. We also fur-
ther improve the method to compensate for the insufficiency.

6.3.2 Problems with using the conventional slack variable approach

The biggest reason why the previous method for overflow handling is insufficient with
chance constraint problem is that the slack Sub captures both chance constraint relaxation
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√
Σhkφ

−1(0.95) and the actual overflow. This is not well illustrated in the example shown
in Figure 6.4. This is because the tightening

√
Σhkφ

−1(0.95) at k = 0 is always 0, see
Figure 6.2a.

In general, when the measurement uncertainty is present in the system this is not the case,
see variance dynamics at (6.12) and (6.13).
In summary, the problem with combining overflow with CC relaxation is that the slack
captures both overflow and volume tightening. Additionally, the CC relaxation and the
overflow have the same cost. It would be beneficial if we can specify a different cost for
CC relaxation and overflow. Intuitively a constraint relaxation, although it increases the
risk of an overflow, is not as harmful as an actual overflow.

Another consideration that is especially valid for MPC of sanitation network research is
that by adding the slack variable on both sides of the constraint (6.33), the tank level is
raised beyond actual physical values. This can cause problems in cases when the tank is
a part of a bigger model, in particular at the end of the gravity pipe with a submerged
flow, check subsection 2.1.3 Pipe boundary conditions. Since the pipe model depends on
the tank level, the pipe model would break or behave strangely. A workaround for this
problem can be built, but it would ruin the integrity of the presented models.

6.3.3 Solution to conventional slack variable problem

In this section, we proceed with an alternative construction of a CC-SMPC with overflow
capturing.

First we keep the Sub slack variable, but in a slightly altered configuration. We only intend
to use this slack variable to relax the chance constraint. We therefore place an upper
constraint on the slack variable that is the maximum of the chance constraint tightening
factor

√
Σhkφ

−1(0.95), shown in (6.35).

0 ≤ Sub|k ≤
√

Σhkφ
−1(0.95). (6.35)

Second, the volume that is contained in the slack variable has to remain in the tank and
should not be removed as an overflow. Therefore in (6.33) we include the slack only in the
upper bound, as:

2 ≤ µhk ≤ 5−
√

Σhkφ
−1(0.95) + Sub|k. (6.36)

We have lost the ability to handle the overflow, and the optimization becomes unfeasible
if overflow happens. In order to solve the infeasibility problem we utilize the flow qof |k
presented in the original model, see (6.24). At the same time, we remove the level that
corresponds to the overflow. That way, the model will not end up in an unfeasible state
value. We elect to consider qof |k as another controller variable. It thus has to be included
as an optimization variable in the CC-MPC problem. The cost function is therefore ex-
panded with these new variables, as shown in (6.37).
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6. Controller Design

J = min
u,Sub,qof

Hp−1∑
k=0

Q(µhk − href |k)
2 +QΣhk +Ru2

k + CubSub|k + Pkqof |k, (6.37)

where Pk is the cost on an overflow variable qof |k. In this configuration, the controller
itself will "define" the overflow amount. Therefore we have to be careful to set the proper
cost on the overflow variable. Generally, it should apply that Pk � Cub � Q. The only
problem with this solution is that in some combination of Pk and Q and the current state
hk, an optimal solution can result in an early overflow qof . This is unwanted behavior, as
we only want overflow if it is inevitable. We can observe such unwanted behavior in the
example, shown in Figure 6.5.

Figure 6.5: Controller wants to use overflow prematurely in order to reduce
the level.

Despite a very large cost on overflow, the controller uses overflow prematurely to remove
some water from the tank. We can see in Figure 6.5 that the overflow (in light blue)
increased before the actual tank level (in red) reached a physical maximum. Since this
does not resemble a real-world behavior, the solution is "meaningless". Notice that the
controller predicts a decrease in level, shown in blue in Figure 6.5, due to the premature
overflow.

We conclude that only requiring that overflow has a relatively high cost compared to every
other objective in (6.37) is insufficient. Therefore we elect to choose Pk as a time dependant
linearly decreasing function. That way, using the overflow variable is the cheapest at the
end of the prediction horizon. It is still the most expensive variable to use at each time
step. The requirements on the overflow variables cost Pk can be written as:

Pk � Cub � Q, ∀k = 0, ...,Hp − 1, (6.38)

∆Pk = −C, ∀k = 0, ...,Hp − 2, C ∈ R+, (6.39)

∆Pk , k 7→ Pk+1 − Pk. (6.40)
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6.3. Single tank SMPC AAU

With these requirements on Pk, we expect overflow at k = 0 to happen only if necessary.
To validate our expectation, we use the same experiment setup for the single tank as we
used in the example shown in Figure 6.5. The prediction at the same time n = 598 is
depicted in Figure 6.6a. Unlike in the previous example, the overflow is actually predicted
when the level reaches maximum. At n = 607, overflow happens and is captured in qof ,
see Figure 6.6b.

(a) Overflow prediction in the future. (b) Actual overflow captured in qof .

Figure 6.6: Decreasing cost on overflow variable

This method of considering the overflow as an optimization variable together with time
dependant cost function provides the desired behavior for our tank CC-MPC. The full
experiment from which the examples on figFigure 6.6a and Figure 6.6b has been taken is
shown in Figure 6.7.

Figure 6.7: Overflow captured in an optimization variable qof

6.3.4 Final formulation of Single Tank CC-SMPC

Finally, in this section, we summarize all the takeaways from previous sections to create
a final CC-SMPC formulation for the single tank setup. The CC-MPC optimization pro-
gram is formulated as a quadratic optimization program:
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6. Controller Design

J = min
u,Sub,qof |k

Hp−1∑
k=0

Q(µhk − href |k)
2 +QΣhk +Ru2

k +R′∆u2
k + CubSub|k + Pkqof |k,

(6.41)

s.t.

µhk+1
= µhk + φ(dk,mean − uk − qof |k), (6.42)

Σhk+1
= Σhk + φ2Σd + Σw + Σv, (6.43)

µhk ≤ µhk ≤ µhk + Sub|k −
√

ΣhkΦ−1(α), (6.44)

uk ≤ uk ≤ uk, (6.45)

∆uk ≤ ∆uk ≤ ∆uk, (6.46)

∆uk , k 7→ uk+1 − uk. (6.47)

Equation (6.42) represents the mean system dynamics, in this case the mean tank dynam-
ics. It is used for predicting the future states’ values under expected (mean) disturbance.
The uncertainty of the mean model prediction is described with the variance dynamics
(6.43). In equations (6.44), (6.45) and (6.46) the system constraints are defined on the
states µh, the controller action u and the change of the controller action ∆u. In partic-
ular, the equation (6.44) defines a chance constraint on the upper level bound muhk . It
accounts for an uncertainty of predictions by tightening the constraint on the level, see
subsection 6.2.1 Chance constraints and section 6.3 Single tank SMPC. The objective
function J is optimized for the controller action u, the chance constraint relaxation slack
variable Sub and the overflow capturing slack variable qof . Considering overflow prevention
as a main requirement for the CC-MPC, the overall tuning recommendation is specified in
(6.48) and (6.49).

Pk � Cub � Q, ∀k = 0, ...,Hp − 1, (6.48)

∆Pk = −C, ∀k = 0, ...,Hp − 2, C ∈ R+, (6.49)

∆Pk , k 7→ Pk+1 − Pk. (6.50)

The cost Pk on an overflow variable must be higher than the cost on other objectives. It
is also necessary to make the cost P a time-dependant cost for the overflow capturing to
work properly. The cost Pk is a non-constant function that decreases with k. According
to (6.49) it is also a linear function. Note as well that the two slack variables enter the
objective function linearly.
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Controlling the Two Tank
Topology 7

This chapter presents a comparison of the CC-MPC and standard MPC control strategies
implemented for the Two Tank Topology and tested in the AAU Smart Water Lab. The
main focus of the comparison study is the minimization and prevention of overflow, in
addition to outflow smoothing and equal use of tank storage. The control strategies
represent the integration of all the methods that are presented in previous chapters.

The comparison is based on a set of lab experiments. We aim to design these lab
experiments to emulate realistic scenarios in a sanitation network as close as possible.
That includes the careful design and scaling of disturbances. The Water Lab configuration
and scale are described in subsection 7.1.2 Lab scaling.

The chapter starts with a description of the control problem, as well as a description of
the disturbance design. Thereafter a description is given of how the model, Kalman filter,
MPC, and CC-MPC have been set up to handle the control problem. Lastly, a discussion
of the experimental results is given.

7.1 The Control Problem

In the previous chapter 2 and chapter 4, methods for modeling and identifying sanitation
networks have been presented. Both chapters have been concerned with the network
topology we have dubbed the Two Tank Topology again shown in Figure 7.1.

The Two Tank Topology is comprised of two tanks that are collecting wastewater and the
rain. The two tanks are connected with a gravity pipe used for the transport of wastewater.
The gravity pipe is considered a passive element because the water volume pumped into
it is only routed by gravity.

The system is subject to wastewater inflows which are introduced into the first tank and
into the middle of the gravity pipe. The inflows can be described as a combination of the
household discharge and the rain runoff.

When a sewer system has to rout both household discharge and rain water in a combined
system, the likelihood of overflow is increased compared to when a sewer system uses
separate pipes for the two. This is because wastewater treatment in a treatment plant is
a biological process in which a bacterial culture has to be slowly grown. For the bacterial
culture to grow, the treatment plant needs a slowly chancing inflow of wastewater [2].
When the two inflow types are combined into a single system, heavy rain events can cause
the treatment plant to have a lack of capacity. This increases the likelihood of overflow as
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7. Controlling the Two Tank Topology

untreated wastewater "backs up" the sewer system. Wastewater overflow is unwanted, as
it can lead to major problems such as contamination of drinking water or damaging public
and private property.

Figure 7.1: An illustration of the Two Tank Topology

The inflows of wastewater into a combined system can, from a control perspective, be
considered as a disturbance. Thankfully weather forecasts are provided for real-world
systems, and these can be used to "predict" the effect heavy rain will have on a system.

Based on just presented observations, we define two objectives for control of combined
sewers, stated in prioritized order as:

1. Minimize the overflow in the network and
2. Provide constant flow towards a Waste Water Treatment Plant.

Overflow avoidance and minimization can be identified as the main objective for a
controller.

We elect to consider the disturbances observed in a real-world combined sewer as the ones
we want to emulate using the Two Tank Topology in the AAU Smart Water Lab. In order
to state the control problem in full, we need a description of the inflow from household
discharge and rain runoff for the lab. We have designed these descriptions for the control
problem in the next subsection.

7.1.1 Disturbance design

In real-world sanitation networks, the household discharge has a relatively consistent,
periodic shape with a period of 24 hours. Therefore a sufficiently good prediction of
wastewater discharge can be made based on the historical data. One such set of data is
shown in Figure 7.2, with a single day measurement outlined in red.

Rain inflow, on the other hand, is more complex to predict. Rain inflow depends on a
lot of parameters, such as the shape and size of the catchment area and the rain intensity
in that area. Rain intensity prediction can be provided by meteorological institutes [34].
However, identifying the dynamics that translate rain intensity to inflow in a sanitation
network, called catchment dynamics, is a field of research in itself. We elect not to dive

60



7.1. The Control Problem AAU

Figure 7.2: Wastewater flow from residential areas for a period of 7 days.

into the topic of catchment dynamics in this thesis. Rather we choose to design the inflows
based on simple reasoning and assumptions about the rain disturbances.

Our approach to designing the inflow disturbances for the lab can be summarized in two
steps:

• First, we design a time series forecast for each type of disturbance separately.
• Then, based on the original time series, we created a number of realizations for each

of the two disturbance inflows. These realizations are also called ensembles.

If we were to get actual rain intensity forecasts provided by a meteorological institute, they
would usually be provided as ensembles. The forecast ensembles would likely be provided
along with a probability for each realization to occur.

Disturbance due to household discharge

Household discharge ensembles are created using the data set that we already presented
earlier as a starting point. From this starting point we elected to create nine more
ensembles by altering the data sets basic shape. The ensembles are created by adding
nine different realizations of the Gaussian random process X = [X1, X2, ..., XN ]T of
uncorrelated samples with zero mean µX = 0 and constant sample variance ΣX1 = ΣX2 =

... = ΣXN
= ΣX, where N is the length of the ensemble data set. The variance of the

random process X is calculated based on the average "daily" variance over 30 days of data
extracted from data set in Figure 7.2. From there, to ensure a conservative prediction, the
variance ΣX is increased by a factor of two. Two arbitrary days of household discharge
ensembles are shown in Figure 7.3.

Figure 7.4 shows a seven day mean prediction with the uncertainty window, shown in grey,
around it. It can be observed that the mean conserved the two peek daily shape and that
the highest uncertainty is present around these peeks.

Notice that until now we did not specify the scale of the axis in ?? and Figure 7.4, but
rather presented the shapes in general. In Figure 7.4 we specify the scale on both axes as
it is used in the lab experiment. The scale in Figure 7.4 is introduced to give a general
idea of the values of the uncertainty and the range of the signal. The scaling of the lab
emulation is expanded upon in subsection 7.1.2 Lab scaling.

Disturbance due to rain inflow

At the beginning of subsection 7.1.1 Disturbance design we stated that creating a rain
inflow prediction is a challenging task. Unfortunately, unlike the wastewater disturbance
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Figure 7.3: Ensemble of 10 predictions for wastewater disturbance with the
mean.

Figure 7.4: The 7 days mean wastewater disturbance prediction with an
uncertainty window.

design, we do not have a historical measurement of the rain inflows. In case when these
measurements are available, [35] proposed a method for forecasting a multi-step prediction
of rain runoff.

For our application, we elect to design the rain disturbance inflow directly. The rain inflow
is designed manually with prior assumptions on the shape of the storm event. For example,
the storm event equates to the "sudden" increase of the inflow. In Figure 7.5 ensemble
realizations are presented for the rain inflow, together with a mean prediction of the rain
inflow.

The Figure 7.5 shows two storm events. Notice by observing the mean prediction together
with two outlined realizations that a rain event does not assume any particular shape.
Also, the length and intensity vary from one event to another, and so do the dry times
in between. The rain predictions have more variation compared to the wastewater dis-
turbance. The start and end time is fixed for all of the realizations. However, since the
forecasts have different shapes, we declare that these shapes will have to mimic the uncer-
tainty in a storm start time. Note that some forecasts peek immediately at the start, while
for some others, it takes some time until they reach the peak intensity. Also, there are
no completely dry weather predictions within the rain events. The rain and wastewater
disturbances are combined and scaled for the lab setup. The complete, scaled version of
the disturbance to the first tank is showed in Figure 7.6. The mean disturbance given to
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Figure 7.5: Ensemble of 10 predictions for rain inflow disturbance with the
mean prediction.

the MPC is plotted in black, while the actual disturbance implemented in the experiments
is plotted in red. The uncertainty window is also shown around the mean.

Figure 7.6: The 14 days combined disturbance to the tank 1. Black is the
prediction given to MPC, red is actual disturbance and grey overlay show the

uncertainty of the prediction.

In Figure 7.7 a single dry day with only wastewater disturbance present is presented along-
side the wet day where a rain event occurs. It can be seen that for those two particular
days, the mean is very precise on the dry day, which is expected because the uncertainty
is very small. On the wet day, the volume of the actual rain is smaller than the predicted
volume. Based on that, we can expect the performance of the MPC and CC-MPC is
affected by this difference in volume on the wet days. We do not expect to see a huge
difference in performance between MPC and CC-MPC on dry days.

In summary, we have designed two disturbance sets comprised of wastewater from
households and rain runoff. One disturbance enters the first tank, and the second
disturbance enters in the middle of the pipe. The disturbances that are designed in
this section are used in both of the experiments that follow. One out of 10 realizations
is implemented on the system, and both controllers, MPC and CC-MPC, receive the
same mean disturbance prediction. The CC-MPC additionally requires the variance of the
disturbance prediction for the chance constraint implementation.
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Figure 7.7: Dry and wet day side by side comparison of prediction
uncertainty. Dry day is from 3.25 to 3.455 and wet day is from 3.455 to 3.7.

7.1.2 Lab scaling

In this subsection, we describe how scaling of the disturbances and pumps in the lab is
conducted. Both flow values and time values are scaled. We specify the scale of the lab so
that they compare to real-world time and dimensions. It is important to have some idea
about the scale of the emulated system since in the disturbance design, we have a notion
of a single day.

The sampling time in the lab is set to 0.5 s and the average flow that can be moved through
the system in steady state is 8 L

min . Because the pumps in the lab cannot operate with
low flows, which is described in section 3.2 Emulation Setup - AAU Water Lab, the lower
bound on pumps is subtracted from the calculation of the effective volume moved in time.

With this in mind, knowing the lower bound is set to 4 L
min we elect the lowest upper bound

for a pump which is 8 L
min . This is done to have a conservative estimation and produces an

effective flow range of 4 L
min . The 4 L

min effective flow range means that our retention tank
in the lab with 25L volume can be emptied in ∼ 6 minutes, at the fastest.

We assume that a reasonable time for emptying a real-world retention tank is
approximately one-third of the day. Based on that assumption, we chose the scale of
18 min in the lab to represent a single day, 24 hours. That means that in one simulated
day the simulation advances 2160 steps. We are running the experiments for 12 real-world
hours. With scaling, this amounts to ∼ 40 days in lab time.

Another scaling consideration has to do with the pump bounds. We already mentioned
the problem with lower bound on the possible flow operation, limiting the range of flows
for possible disturbance implementations. For that reason, all the signals, including the
disturbances presented in this section, have a constant offset. The disturbance intensities
are scaled such that the wastewater component of the disturbance takes up 30% to 40%

of the pumps operating range. The last 60% to 70% is reserved for the rain events. Based
on that, pump 1 and pump 2 are bounded such that on dry days, where only wastewater
disturbances are present, the tanks can be kept at a level reference. This way, the overflow
can occur only due to rain events.
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7.2 Solutions to the Control problem

Stating the control problem in general terms leads to the following objectives for a control
system.

1. Minimize the overflow in the network and
2. Provide constant flow towards a Waste Water Treatment Plant.

We would, however like to extend these two objectives with a third:

3. Balance the wastewater along with the available storage.

This is to help further counteract the effect of the disturbance inflows resulting from heavy
rain events. It is critical to develop a balancing strategy, such that the wastewater is
distributed equally in the network if possible, even if there is no anticipated rain event in
the near future. Otherwise, we expect the poor wastewater distribution can result in an
undesirable spillage of the waste.

With the Two Tank Topology set up as shown in Figure 7.1 these objectives directly
translate to objectives for the standard MPC and the CC-MPC. The numerical values
resulting from the weighted importance of each objective will be presented in the MPC
and CC-MPC framework. This can be found in subsection 7.2.3 and subsection 7.2.4 of
this chapter.

Figure 7.8: The Control system stated as a block diagram.

The MPCs do, however not solve the control problem by themselves, which is why we
present the control setup for the Two Tank Topology, shown in Figure 7.8. The control
system contains a plant model, an observer, and a controller. The plant is modeled using
a linear stochastic model, the observer is implemented using a Kalman filter, and the
controller used is either the MPC or the CC-MPC.
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The theory and examples for each of these control system components have been presented
in previous chapters. However, as they pertain to the coming tests, the specifics will be
presented later in this section.

All but one of the variables shown in Figure 7.8, should be known to the reader, but
they will quickly be recapped: n is the time index. A, B, Bd, and C are deterministic
system matrices describing the Two Tank Topology, where un is the control variable. wn

and vn are stochastic model and measurement uncertainty, Kn is Kalman gain, and Pn

is error covariance. Lastly und is the disturbance inflow, or as seen later the predicted
disturbance inflow, see subsection 7.1.1 Disturbance design. The one variable which has
not been presented yet is the input uncertainty an which is an additive noise term added
to the control signal.

The rest of this section is dedicated to describing how the system model and Kalman filter
is set up to help solve the control problem. This is followed by a short description of how
the control system is implemented in software on The AAU Smart Water Lab. The section
ends with a description of the CC-MPC, and MPC.

7.2.1 The Model used in the solution

In chapter 4 Model Parameter Identification, a model of the gravity pipe in the Two Tank
Topology with four discrete pipe sections was identified. Observing the results of that
chapter, it can be seen that increasing the number of discrete pipe sections decreases the
RMSE of the residuals found by comparing the model to measurements.

This would initially lead to the assumption that one should aim for a model with an
arbitrarily high number of pipe sections. This is, however not the case. That is because
whenever the model is used in an MPC framework, the computational load increases with
an increased number of states. In both the MPC and Kalman filter, we choose to use a
system model where the pipe is considered to have eight sections. This choice is made as
we believe that eight pipe sections is a good compromise between complexity and precision.

Figure 7.9: Distribution of sensors and lateral inflow ud2 along discrete
sections of the gravity pipe. Where S• denotes the sensed states and A•

denotes the augmented states.
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As mentioned in the introduction to the Kalman filter chapter, it is possible to extend the
Two Tank Topology model to include lateral inflow in the gravity pipe. This is convenient
as we stated the control problem as having exactly such an inflow. This leads to a system
description which is an extension of (2.27), shown in (7.1).

xn+1 = Axn + Bun + Bofuof
n + Bdud

n + ∆. (7.1)

Here the state vector xn ∈ R10×1, the system matrix A ∈ R10×10, the input matrices
B, Bof , Bd ∈ R10×2, while the control inputs u, uof ∈ R2×1, and disturbance ud ∈ R2×1.
Note that (7.1) deviates from (2.27). By having the input matrix B split into two matrices
B and Bof . The overflow control input and overflow input matrix is shown in (7.2).

Bof · uof |k =



φ1∆t 0

0 0

0 0

0 θ1∆t

0 0
...

...
0 0



[
uof1|k
uof2|k

]
. (7.2)

As the lab only contains four level sensors in the gravity pipe, see chapter 3 Simulation- and
Emulation-Setup, and as the pipe model now includes eight states, we have to choose the
arrangement of the sensors. We chose the arrangement shown in Figure 7.9. In section 8.1
System Identification a discussion of the choices sensor locations and inflow location is
presented.

The increase in pipe states from four to eight, requires a new description of the output
matrix C ∈ R6×10. Knowing that we can measure the tank levels as well as four pipe levels
yields the output equation shown in (7.3).

zn = Cxn =



1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1





hnT1

hnP1
...

hnP8

hnT2


. (7.3)

With all these new considerations in mind, an updated version of the identification process
was performed. This yielded the parameters presented in table 7.1 and a visual comparison
of measurements and a free-running model, using the parameters is shown in Figure 7.10.

θ1 θ2 θ3 θ4 θ5 φ1 φ2

0.0578 0.1378 1.000 · 10−4 -0.0051 0.1000 0.2037 0.2037

Table 7.1: The resulting parameters from the system identification of the
eight state pipe model.
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Figure 7.10: Results of parameter identification with augmented model.

In subsection 2.2.1 Stability of the General Model two sufficient conditions for stability were
found. The conditions are again stated here (7.4) and (7.5) along with the assumptions
on the θ parameters in (7.6). It can be seen that sufficient condition 1 is not upheld.

Sufficient Condition 1: (7.4)

θ5 + θ3 ≥ θ2,

θ2 ≥ θ3,

And Sufficient Condition 2: (7.5)

θ5∆t ≤ 1,

Assuming: (7.6)

(θ2 + θ3)∆t < 1,

(θ5 + θ3)∆t < 1,

θ1, θ2, θ3, θ5 > 0.

Therefore we have to make sure that the second sufficient condition is. This is done by
selecting ∆t such that it adheres to the inequalities specified in (7.5) and (7.6).

∆t <
1

θ5
= 10s, (7.7)

∆t <
1

(θ2 + θ3)
= 7.2499s, (7.8)

∆t <
1

(θ5 + θ3)
= 9.99s. (7.9)

As 7.2499s ends up being the upper bound on ∆t, we have to choose one below. We elect
∆t = 5 as this makes future calculations for the MPCs easier. In the next section, we
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present a method for extending the results found in chapter 5 to the new system model,
which now includes eight states.

7.2.2 The state estimator used in the solution

In chapter 5 State estimator we obtained a description of the measurement noise and model
noise present in the AAU Smart Water Lab when a four pipe state model is used. We
furthermore chose to implement a Kalman filter for the pipe states rather than for every
state.

In this section we continue with this approach. The general model including stochastic
noise is shown in equations (7.10a) and (7.10b).

xn = Axn−1 + Bun + Bdud
n + ∆ + wn (7.10a)

zn = Cxn + vn, (7.10b)

Where for the four pipe state model C = I ∈ R6×6. Extending the model from four to eight
pipe states, the measurement noise should remain unchanged while the model noise should
not. This section will therefore be used to develop a covariance Q describing the model
noise for the eight pipe state model. Developing this covariance Q can, however not be
done using the same approach as in chapter 5. This is simply because the before-mentioned
approach relies on having measurements available for all states.

Therefore, a creative solution is needed, and we choose to explore two empirical approaches
that take a starting point in the model noises from the four state model. From chapter 5 we
have the covariance matrices shown in (7.11) describing the model noise relation between
pipe states, in the four state model.

Q =


0.1855 −0.0425 0.0483 −0.0121

−0.0425 0.2415 −0.0141 0.0124

0.0483 −0.0141 0.1231 0.0314

−0.0121 0.0124 0.0314 0.0427

 · 10−5, (7.11)

The two approaches for developing a covariance matrix Q for the eight state model are
based on two different assumptions:

• The first approach simply acknowledges that we have a sparsity of information in
regards to the model noise. Therefore leaving the entries in the covariance matrix
where no data is available as equal to zero. The sparse covariance matrix is shown
as Qs in (7.12).

• The second approach relies on the physical intuition of the pipe. Each state in the
pipe can roughly be described as a time-delayed version of the previous pipe state.
Therefore, it is not a far stretch to assume that the model noise between two adjacent
pipe sections is similar. If we, therefore, populate the entries in the covariance matrix
where no information is yet obtained, with the noise information from an adjacent
pipe section, then we obtain Qf which is shown in (7.13).
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As the two matrices have been created empirically, it is prudent to check if they satisfy
the requirements for covariance matrices. We know that covariance matrices should be
symmetric and positive semi-definite.

Qs =



0 0 0 0 0 0 0 0

0 0.1855 0 −0.0425 0.0483 0 −0.0121 0

0 0 0 0 0 0 0 0

0 −0.0425 0 0.2415 −0.0141 0 0.0124 0

0 0.0483 0 −0.0141 0.1231 0 0.0314 0

0 0 0 0 0 0 0 0

0 −0.0121 0 0.0124 0.0314 0 0.0427 0

0 0 0 0 0 0 0 0


· 10−5. (7.12)

Qf =



0.1855 0.1855 −0.0425 −0.0425 0.0483 0.0483 −0.0121 −0.0121

0.1855 0.1855 −0.0425 −0.0425 0.0483 0.0483 −0.0121 −0.0121

−0.0425 −0.0425 0.2415 0.2415 −0.0141 −0.0141 0.0124 0.0124

−0.0425 −0.0425 0.2415 0.2415 −0.0141 −0.0141 0.0124 0.0124

0.0483 0.0483 −0.0141 −0.0141 0.1231 0.1231 0.0314 0.0314

0.0483 0.0483 −0.0141 −0.0141 0.1231 0.1231 0.0314 0.0314

−0.0121 −0.0121 0.0124 0.0124 0.0314 0.0314 0.0427 0.0427

−0.0121 −0.0121 0.0124 0.0124 0.0314 0.0314 0.0427 0.0427


· 10−5. (7.13)

Both Qf and Qs can be confirmed to be symmetric by simple visual inspection. However,
checking for positive semi-definiteness can be done in multiple ways, such as Cholesky-
factorization or inspection of the Eigenvalues. If we observe the eigenvalues:

σ(Qs) =



0

0

0

9.4 · 10−24

2.6 · 10−07

1.1 · 10−06

1.8 · 10−06

2.7 · 10−06


, σ(Qf ) =



−7.3 · 10−22

3.8 · 10−38

1.0 · 10−22

5.3 · 10−22

5.3 · 10−07

2.2 · 10−06

3.6 · 10−06

5.5 · 10−06


.

It can be observed that one of the eigenvalues of Qf is negative; therefore, it cannot be a
covariance matrix. We, therefore, elect to use Qs as the covariance matrix for the model
noise in the eight pipe state Kalman filter.

The Kalman filters ability to estimate the state can be seen in Figure 7.11a and
Figure 7.11b. The measured states seem to be low pass filtered, while non-measured
states seem to behave as we would expect by acting as delayed versions of the measured
pipe states.

Having found an adequate covariance matrix describing the model noise W, we proceed
with a presentation of the of the MPC followed by a presentation of the CC-MPC. These
are the controllers which will be used to solve the control problem.
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(a) Kalman state estimates for the eight
pipe sections.

(b) The filtering effect exhibited by the
Kalman filter on pipe state two hp2.

Figure 7.11: The effect of the Kalman filter on the eight pipe state model

7.2.3 The Model Predictive controller used in a solution

In this section, our realization of a standard MPC is presented. This controller is used
in conjunction with the model and Kalman filter presented in this section to provide part
of the results presented in section 7.3 Results. The structure of the MPC is identical to
the structure presented in section 6.1 Model Predictive Control, except that it features the
ability to handle overflow using the control variable uof .

The MPC formulation is presented as a cost function J and as a set of constraints:

J = min
u,uof

Hp∑
k=1

∥∥∥zk − zrefk

∥∥∥2

Q
+
∥∥∥uof |k

∥∥∥
Pk

+
Hu−1∑
k=0

‖∆uk‖2R (7.14)

s.t

xk+1 = Axk + Buk + Bdud|k + Bofuof |k, (7.15)

zk = Cxk, (7.16)

∆uk = uk − uk−1, (7.17)

uof |k ≥ 0. (7.18)

Hu = Hp (7.19)

x ≤ xk ≤ x, (7.20)

u ≤ uk ≤ u, (7.21)

∆u ≤∆uk ≤ ∆u. (7.22)

Where the system model matrices A, B, Bd, and C are presented as the eight pipe
state model previously in this section. The bounds for x and u come from the physical
limitations of the lab, with the exception of x. The lower bound for the pipe states are
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decreased from 0 to −0.5 in order to avoid problems with feasibility. The bounds are listed
below:

x =



1.5

−0.5
...
−0.5

1.5


[dm], x =



6.99

0.5
...

0.5

6.50


[dm], u =

[
0.057

0.1

] [
L

s

]
, u =

[
0.13

0.22

] [
L

s

]
,

∆u =

[
0.0083

0.0011

] [
L

s

]
, ∆u =

[
−0.0083

−0.0011

] [
L

s

]
.

The values for the bounds on ∆u as opposed to the bounds on u and x are chosen as
part of the MPC design. The upper and lower bound on the slew rate of pump 2 ∆u2

is chosen to make large flow variations into the treatment plant impossible. The number
0.0011 is calculated to allow the pump to turn fully on from the lower bound u2 to the
upper bound u2 in 9 minutes in lab or 12 hours in real-life. The upper and lower bound
for the slew rate of pump 1 ∆u1 was selected empirically.

The three objectives presented in the section 7.2 Solutions to the Control problem, have
been included in the MPC using the three terms in the cost function (7.14). The
output minus reference term zk − zref

k is meant to ensure balanced storage, and the
∆uk is meant to penalize changing outflows from tank 2, in order to provide smooth
outflows to a treatment plant. Lastly, overflow handling is implemented similarly to the
method presented in subsection 6.3.3, where expected overflow is removed from the model
predictions using the Bofuof |k-term. The use of uof |k is incentivised using the decreasing
cost matrix Pk, as shown in (7.23).

The cost matrices are selected such that Q and R remain significantly lower than Pk as
to ensure the correct function of overflow prediction and control uof |k. Secondly, focus is
placed on smoothing the outflow to the treatment plant. This smoothing is weighted such
that there is a relation between Q and R entries is 1/5. This results in the cost matrices
shown in (7.23) and (7.24).

Pk =

[
1000 · (Hp− k) 0

0 1000 · (Hp− k)

]
, (7.23)

Q =

[
10 0

0 10

]
R =

[
0 0

0 50

]
. (7.24)

In subsection 7.1.2 Lab scaling we mentioned that 18 minutes of real time is scaled as to
correspond to 1 day simulation time. With this in mind a suitable prediction horizon Hp
should be picked along with a suitable model time step ∆t - Note from subsection 7.2.1
The Model used in the solution that ∆t is the parameter in A and B.

72



7.2. Solutions to the Control problem AAU

Knowing that the value ∆t = 5s leaves us to pick the prediction horizon Hp. Ideally, we
would have as long of a prediction horizon as possible; there is, however a piratical upper
limit, stemming from the maximum computation time, see subsection 7.2.6 The Control
System Software Setup.

When selecting Hp we choose to rely on two values from the review paper: [1], which we
verified empirically during the commissioning of the lab and during Ad-Hoc testing. From
the paper and testing, we determined that predictions of no less than half a day should
be used when trying to smooth the outflow from tank 2. While predictions of 3 hours are
sufficient for overflow prevention. Note this is for "real-world systems," so the values have
to be scaled as explained in subsection 7.1.2.

As one of the objectives is to smoothen the outflow as well as prevent the overflow, we
elect to go with the 12 hour prediction. This leads us to the following calculation for the
number of prediction steps in the horizon Hp.

Hp =
(second per simulation day) · days

∆t
(7.25)

⇓

Hp =
(18 · 60) · 1

2

5
= 108

In the next section a framework for the CC-MPC is presented. CC-MPC will in conjunction
with the model and Kalman filter be used to further develop the results in section 7.3.

7.2.4 The Chance Constrained Model Predictive controller used in a
second solution

The CC-MPC shares a large part of its description with the MPC presented in the
previous section. The nominal controller structure of CC-MPC, which does not consider
uncertainties, has a description identical to the MPC. This includes the control objectives,
main dynamics, and the design parameters, such as the prediction horizon Hp and the
cost matrices Q,R,P. We do, however, extend the nominal formulation of the CC-MPC,
such that we take three kinds of uncertainty into account: the model uncertainty Vk, the
measurement uncertainty W and the input uncertainty A.

With this in mind our description of the CC-MPC optimization program used to solve the
MPC problem is summarized below. The cost function of the CC-MPC is shown in (7.26).

J = min
u,uof ,Sub

Hp−1∑
k=0

∥∥∥µz|k − zrefk

∥∥∥2

Q
+ tr(QΣz|k) +

∥∥∥uof |k

∥∥∥
Pk

+
∥∥∥Sub|k

∥∥∥
O

(7.26)

+
Hu−1∑
k=0

∥∥µ∆uk

∥∥2

R
+ tr(RΣ∆Υ|k)

The cost function now include three additional terms: tr(RΣz|k), tr(RΣ∆Υ|k) and∥∥∥Sub|O

∥∥∥. The two trace terms are a consequence of having to express the the cost function
as expected cost. This way of expressing the cost function is introduced in subsection 6.3.4.
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The optimization variable Sub|k is introduced for the CC-MPC setup, in subsection 6.3.1
Feasibility concerns. Sub in an optimization variable that is used to cancel the effects of the
chance constraints in the case when chance constraints result in an unfeasible optimization
problem. The cost matrix O in

∥∥∥Sub|k

∥∥∥
O

is selected such that it is bigger than R and Q

but still much smaller than the last entry of Pk.

The equality constraints and variance dynamics of the CC-MPC are summarized below.

µxk+1 = Aµx|k + Bµuk + Bdµud|k, (7.27)

µzk = Cµx, (7.28)

µ∆u|k = µu|k − µu|k−1, (7.29)

Σx|k+1 = (A−BK)Σx|k(A−BK)T + BΣaBT + BdΣdBd
T + Σw, (7.30)

Σz|k = CΣx|kC
T + Σv|k, (7.31)

ΣΥ = KΣxkK
T + Σa, (7.32)

Σ∆Υ = K[(A + BK− I)Σx(A + BK− I)T

+ Σw + BΣaBT + BdΣdBT
d ]KT + 4Σa, (7.33)

Υk = uk + υk. (7.34)

The system model matrices A, B, Bd, and C are the same as the ones presented for the
MPC. The variance dynamics are used to define the chance constraints for the tank states,
as in 6.3.4.

The chance constraints for the tank states and for the control action are shown below. The
deterministic bounds on the expected state µx, input µu and slew rate µ∆u are the same
as in the MPC formulation.

hTj µx ≤ hTj µx|k ≤ hTj x̄ + hTj Sub −
√

hTj Σx|khjφ
−1(0.95) for j ∈ {1, 10}, (7.35)

hTj Sub ≤
√

hTj Σx|khjφ
−1(0.95) (7.36)

µx ≤ µx|k ≤ µx, (7.37)

µu ≤ µuk ≤ µu −
√

qTj ΣΥ|kqjφ
−1(0.95) for j ∈ {1, 2}, (7.38)

µ∆u ≤ µ∆u|k ≤ µ∆u, (7.39)

where the hj represent the selector matrix that select the tank states in (7.35). Likewise,
the qj matrix is the selector matrix for control variables in (7.38).

Notice that in the chance constraint formulation, the square root function is used to define
the tightening of the deterministic constraints. An important implementation detail is
that the variance dynamics can be precalculated before every CC-MPC iteration. That is
because the variance dynamics cannot be affected by the optimal policy u. Consequently,
the terms

√
hTj ΣΥ|khjφ

−1(0.95) and
√

hTj Σx|khjφ
−1(0.95) get predetermined values

before the CC-MPC optimization problem is computed. The input disturbance variance
Σd is different for every iteration of the CC-MPC problem.

Notice that we employ the tube controller, introduced in 6.2, in order to settle the state
variance dynamics propagation in (7.30). The tube controller is a state feedback controller,
which makes its contribution a random variable. We have to make sure that the tube
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controller policy can be implemented on top of the CC-MPC’s policy. Therefore, we have
to expand the CC-MPC’s control action constraint to form a chance constraint.

The tube controller is implemented as an LQR controller and tuned in accordance with
Bryson’s rule [25]. Bryson’s rule is shown in equations (7.40) and (7.41).

QLQR|ii =
1

(maximum acceptable value of xi − µx|i)2
, for i ∈ {1, 2, ..., 6} (7.40)

RLQR|jj =
1

(maximum acceptable value of υi)2
, for j ∈ {1, 2} (7.41)

We selected the maximum allowed flow for the LQR to be 0.5 L
min , while the maximum

deviation of the state from the mean is set to 0.1 dm. The computed K matrix is show in
(7.42).

K =

[
−7.8 5.2 5.5 5.5 5.4 5.1 4.9 4.7 4.6 1.3

−1.4 −10.5 −12.0 −13.7 −15.5 −17.6 −20.0 −22.6 −25.6 −07.9

]
·10−2. (7.42)

To express the variance dynamics, we need a description of the variances for the input
noise Σa, the model noise Σw, the sensor noise Σv and the variance of the forecast Σd.
We have already identified the variance of the two noise terms Σw = Q and Σv = R as
part of the Kalman filter design. In the next subsection we find expressions for the two
remaining terms.

7.2.5 Calculation of input and forecast uncertainty

We know that the distribution of the input noise A can be found by observing the difference
between the actual inputs and the input reference for the pumps. This difference results
in the residual distribution shown in Figure 7.12a.

Fitting a zero mean normal distribution to it we get the value for the covariance matrix
Σa shown in Figure 7.12a.

(a) Distributions of input uncertainty an
for each pump

Σa =

[
0.0666 0

0 0.1955

]
· 10−3. (7.43)
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Let’s look at the definition of chance constraints in our SMPC constraint formulation
(7.35). We notice that the deterministic upper bound is tightened with a term that is
dependant on the variance of states Σxk at each time step k. We already presented how
the tightening increases due to variance propagation dynamics. In (7.30), even for stable
(A−BK) the variance increases to a certain point because of the additive uncertainties
from other components in the system, like Σa, Σw and Σd. If we assume that the
disturbance uncertainty Σd is constant for the entire prediction horizon, then the variance
on tank states will eventually converge.

If we look back to the disturbance prediction in Figure 7.6, we can see that the uncertainty
of the prediction changes with a resolution of 0.5 s. However, we elected to run the
controller with the constant uncertainty of disturbance forecast for the entire prediction
horizon. Therefore, on each MPC iteration, the Σd is recalculated by averaging the
uncertainty of the disturbance forecast, Hp steps in the future.

7.2.6 The Control System Software Setup

In chapter 3 Simulation- and Emulation-Setup we outlined the hardware and software
setup used in the AAU Smart Water Lab. Now having explained the setup of the MPCs,
we outline the computational constraints.

In Figure 7.13 the timing of the software running on the Central Control Unit (CCU)
is shown. From chapter 3 we see that the CCU is divided into two entities: the "The
sensor/actuator - Client" setup in Simulink and the "MPC - Server" setup in Matlab. The

Figure 7.13: Timing of the server and client execution.

reason for doing this is that the lab is set up so that the "The sensor/actuator - Client"
has to run at a high frequency of 2Hz in order to allow PI controllers to function. If
the MPCs were to run at the same frequency it would require the control outputs to be
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computed in less than 0.5s. This is simply not possible for any reasonably complex model
with a reasonable prediction horizon Hp.

The MPCs are instead computed asynchronously. The timing is determined by the model
step size ∆t = 5s, decided upon in the model subsection of this section. The MPC runs
with a period of 5s, meaning every 5s the client pushes new measurements to the MPC,
using Modbus, where after 1s later the client requests the solution to the MPC problem.
This allows the MPC to use up to close to 1s for computing the control inputs.

The upper bound on the computation time could be increased. This does potentially lower
the performance. The decrease in performance would be caused by the states deviating
from the measurements in the time it takes the MPC to compute the new control input.
Compensating for this deviation in the states is possible, but we believe that having the
1s upper limit on computation is reasonable for our system and Hp [32].

7.3 Results

In this sections we start by introducing the experiment setup, that we created in order to
test the MPC and the CC-MPC. Further we evaluate the performance based on three cri-
teria, specified in section 7.2 Solutions to the Control problem. The intention is to use the
results of the two individual experiments for a comparison of the controllers in section 7.4
Comparison of Results.

The experiment is designed to simulate ∼ 40 real days where there is approximately 15

rainy days with different rain intensities. This equates to a ∼ 13 hour long experiment with
the scale specified in subsection 7.1.2 Lab scaling in mind. The disturbance inflow (both
rain and wastewater disturbance) is same for all the experiments. The initial conditions are
also the same. The gravity pipe is initialized empty and both of the retention tanks star
at a reference. The two tanks operate in the range from 150mm to 700mm. The 150mm

lower bound is due to the way the lab is constructed. The lower bound is a requirement in
order for lab to work properly, since it is only an offset in the measurement, it might as well
be ignored. The reference zref

k for both tanks is set to 300mm. The reason for setting the
reference higher then the lower tank bound is that we intended to leave the room such that
we can observe the cautious behaviour of the controllers in the anticipation of a coming
rain event. This is the expected behaviour according to authors’ intuition of the controllers.

The disturbances enter into the first tank and into the middle of the gravity pipe. The
outflow pump of the first tank, pumps the water into the pipe and the outflow pump of
tank two pumps the water into the buffer tank, used to simulate a Waste Water treatment
Plant (see Figure 7.14). The buffer tanks provide water for disturbance pumps. This way
the water is circulating through the system. The overview of a lab setup is presented
before in section 3.2 Emulation Setup - AAU Water Lab, Figure 3.3. In the event of
overflow, the overflow volume flows into external tanks and is removed from the system
for the rest of the experiment. We can therefore use the level measurements from the
external tanks to compare with the overflow prediction that is done in the MPC. Since the
measure of the overflow is not available in a real-world sanitation network, the external
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Figure 7.14: Illustration of the Two Tank Topology with each component
named

tanks measurements are only used for validation of the MPCs predictions.

The exact operating range for all the pumps are specified in Table 3.1. In the following
figures, used for presenting the final results of the experiments, (Figure 7.15, Figure 7.16,
Figure 7.19 and Figure 7.20) the reference signals are plotted in blue, while the actual
measurements are plotted in red. The d1 reference, d2 reference, q1 reference and q2 ref-
erence are the reference signals for a local PI pump flow controllers. The d1 reference, d2

reference are the disturbance flow references ud that where presented in subsection 7.1.1
Disturbance design, while q1 reference and q2 reference are the control signals computed
by either MPC controller u. The T1 and T2 references are the tank references mentioned
above (300mm).

In the following sections, we present the results of each of the two individual experiments.
First the standard MPC and then the CC-SMPC. The general overview of experiment
results are presented in the same way for both the experiments. The general results
consist of 2 graphs each, where the first graph represents the tank 1 inflow, level and
outflow respectively and the second graph represents the tank 2 inflow, level and outflow.
In addition results from particularly interesting events are presented as well.

MPC experimental results

The overview of the entire experiment is showed in Figure 7.15 and Figure 7.16. In this
section we will comment on the standard MPCs ability to minimize overflow, its ability
to keep the outflow from tank 2 slowly varying and its ability to balance the wastewater
along the available storage.

By observing the tank levels in Figure 7.15 and Figure 7.16 we can see that no overflow
happened in either of the tanks during the experiment. The physical bounds of both tanks
are plotted as the green dashed lines.

Since no overflow happened during this experiment, we have to evaluate the performance
of the MPC on its behaviour up to and during rain events that could potentially cause
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Figure 7.15: MPC results overview, tank 1 inflow, level and outflow plots.

overflow. This is done by looking at the tank levels. We choose to inspect the results
during the two heaviest rain events. The fist rain event happened from 1.5 · 1040.5s to
1.8 · 1040.5s and the second rain event happened from 4.3 · 104 0.5s to 4.8 · 104 0.5s. It is
important to take into account that the prediction horizon is only half a day, while both
of the rain events last for approximately 1, 2 days.

The first rain event is depict in Figure 7.17. The Figure 7.17a shows the MPC’s prediction
right before the rain event starts, and Figure 7.17b shows the predictions in the middle
of the rain event. The disturbance predictions "d1 and d2 prediction" show the forecast
prediction for the entire horizon while "d1 and d2 flow" show the actual disturbance which
is implemented in the lab. Based on the forecast, the MPC solves for the optimal control
action uk, for "q1 and q2 prediction" which represent the action of the pumps. The
predicted optimal tank levels trajectory is depicted in "T1 and T2 prediction".

If we observe Figure 7.17a; plot (row, col) = (1, 2); we can see that the MPC under
predicts the actual disturbance significantly. This under prediction causes the controller
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Figure 7.16: MPC results overview, tank 2 inflow, level and outflow plots.

to expect, that it can keep the tank level at the reference. It therefore it does not act
aggressive preemptively to minimize the level of the tank in the future. The none-aggressive
behaviour can be seen on the slope of pump 2s prediction when compared to the slope of
the implemented action (look at Figure 7.17a; plot (3, 2)).

In Figure 7.17b the performance of the MPC during the same rain event, only a few pre-
diction steps in the future is shown. The MPC now predicts the maximum action on pump
2. In both cases, pump 1 is the pump that varies its action in order to optimize the storage
of the water in the system. The variations in pump 1 allows pump 2 to avoid large changes
in the inflow to the treatment plant.

The second rain event observed is depict on the Figure 7.18. At this event, the predictions
forecast is much better, which results in better state trajectory predictions. It can also
be seen that the MPC empties the tanks below the reference before the rain event starts.
In both tanks the level is brought to the lower bound, before the rain starts. The level is
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(a) MPC predictions before the rain start.

(b) MPC performance in the middle of the rain event #1

Figure 7.17: Rain event number 1. The predictions of the MPC and
predicted action.

depicted as red in Figure 7.18; plot (2, 1) and (2, 2). This is expected behaviour in cases
where high inflow is anticipated.
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We can see on both pump 2 plots that the reference tracking in not working satisfyingly.
The chattering behaviour observed is due to the buffer tank balancing algorithm.
Unfortunately, the balancing interferes with the dynamics of pump 2, which makes the
local PI controller perform poorly. We chose not to address this problem. Therefore, we
can not conclude on the performance of the MPC on the criterion of smooth outflow.

However, we can evaluate the MPC on the reference provided to pump 2, plotted in blue.
Where the MPC performance is good. For most of the experiment pump 2’s flow is kept
relatively constant. We expect we would be able to further improve the outflow smoothing
performance with a longer prediction horizons, i.e. one and a half to two days. We were
not able to test this hypothesis because of the computational limitations. This is further
discussed in section 7.4 Comparison of Results.

CC-MPC experimental results

In the previous section, we evaluated the performance of the standard MPC. We now
present the results of the CC-MPC from the same experimental setup. This means that
the initial conditions are the same and the implemented disturbances and disturbance
forecasts are the same. First, the general overview of the experiment is presented in
Figure 7.19 and Figure 7.20. Later, we focus on a specific segments of the experiment in
order to analyze the performance of the controller. The performance is evaluated on: its
ability to minimize overflow, its ability to keep the outflow from tank 2 slowly varying and
its ability to balance the wastewater along the available storage.

Figure 7.18: Rain event number 2. The predictions of the MPC and
predicted action. The cautious action.
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Figure 7.19: CC-MPC results overview, tank 1 inflow, level and outflow plots.

On the middle plots in Figure 7.19 and Figure 7.20, the tank levels are depict. We can
observe that for certain rain events both tanks have their entire capacity utilized. This
inevitably leads to overflow. A very obvious overflow happened around 2.35·104 [0.5s] and
9.25 · 104 [0.5s] in tank 1, see Figure 7.19. Therefore we elect to analyze the performance
of the CC-MPC by looking at the results around these particular rain events. Additionally,
we compare the overflow predictions made by the MPC to the actual overflow which is
measured using the external tanks.

First, we analyze the rain event that starts around 1.5 · 104 [0.5s]. This rain event is a
combination of two successive heavy rainy days. System behaviour for the entire two day
span is showed in Figure 7.24. The figure also shows the CC-MPCs predictions at four
instances. In 3 out of 4 predictions the controller received a forecast which has a rain
inflow, lower than the implemented inflow.

83



7. Controlling the Two Tank Topology

Figure 7.20: SMPC results overview, tank 2 inflow, level and outflow plots.

We have previously noted that the knowledge of uncertainty reduces the tank level
constraints, making the CC-MPC more conservative. This means that the CC-MPC
becomes more conservative the more the uncertain predictions are. The tightening on
the constraints around 1.5 · 104 [0.5s] is depict in Figure 7.21. The tightening on the
state is not significant, only 2% to 3% of the level range. This is due to the use the LQR
controller, along with the MPC. The result of using the LQR controller is a reduction in
the tightening of tank level constraints, while the LQR controller tries to drive the states
towards the MPC’s predicted state trajectories. Because the LQR controller is controlling
a portion of both pumps range, this range has to be reserved from the MPC, see (7.38).

This reservation results in a decrease in the maximum control signal which the MPC
is allowed to supply, showed in Figure 7.21. However, since the level tightening is
insignificant, when the system is operating at the tank reference, the CC-MPC does not
act cautiously. By cautiously we mean that the CC-MPC would drive the state below the
reference in order to prepare for the coming heavy inflow.
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Some cautious action can be seen before and in the first prediction that is plotted in Fig-
ure 7.24. But this is only due to the fact that the CC-MPC predicts that it will be able
to hold the reference in the future, by performing this action.

After the first prediction, the second pump is already saturated to the maximum value that
the MPC can provide (which is around 12.3 L

min). This means that the conservativeness
which the chance constraints provides can not be utilized in order to further help in the
prevention of the coming overflow. Because by the time the CC-MPC predicts the potential
overflow it is already applying maximum outflow using pump 2. So it is left to pump 1

to act optimally in order to balance the sewer. Pump 1 can however only try to prevent
overflow until it is also providing its maximum outflow similarly to the pump 2. Taking
all this into account, the conclusion is that the overflow at 2.35 · 104 [0.5s] happens due
to the fact that with maximum outflow at all times, the pumps are not able to remove
enough volume from the tank and the overflow is inevitable.

Figure 7.21: Tightening of tank constraints and control pump flows due to
uncertainties of the model and predictions.

In regards to outflow smoothing using pump 2, we can conclude that there is not much
variation for periods of time longer then a single day, which is wanted behaviour. Pump
1 on the other hand is allowed to vary more and thereby perform finer control on both
tanks. The same problem of poor local PI control, experienced for by the standard MPC
is present in this experiment. The cause is also the same.

We analyze how accurate the CC-MPC is at estimating and predicting the overflow. In
Figure 7.22 the overflow event described before is depicted. This time the figure is extended
to include overflow estimation and prediction on the bottom most plot. Each plot shown in
Figure 7.22 respectively shows: the rain forecast that caused the overflow, a prediction of
tank 1’s level reaching the upper bound, the optimal action for pump 1 and the predicted
overflow.

On the overflow plot in Figure 7.22 , the red signal represents the actual overflow volume
measured using the external tank. The blue signal represents a one step solutions for the
CC-MPC overflow variable. In other words it represents what the MPC estimates as the
overflow during the experiment. The black signal represents a single prediction of the
overflow from around 2.22 · 104 [0.5s]. It is important to note here that the estimated
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overflow (blue) and the predicted overflow (black) are both the solution of the MPCs
optimization problem.

We can see from Figure 7.22 that even though the rain inflow is underpredicted for most
of the horizon, the MPC tends to overestimate the overflow volume (blue) significantly.
The prediction of the overflow (black) is even worse, but that is due to the tightening of
the upper bound of the control inputs u, caused by the LQR controller. The tightening
can be seen the second bottom most plot in Figure 7.22. The length and dynamics of
an actual overflow event should not be considered, because we do not take into account
the dynamics between internal and external tank when we calculate the actual overflow
volume (showed in red). Even though the overflow estimated from MPC can not be used
for a precise measure, it can still serve as a indication that the overflow event happened
and as a rough estimate of the overflow volumes.

Figure 7.22: The overflow prediction during the rain #1 scenario.

7.4 Comparison of Results

In this section a comparison of the MPC and CC-MPC will be conducted. This comparison
will take offset in the results presented in the previous section. The reason we can compare
the two MPCs based on the results, lies in the fact that the experiments used to produce the
results were set up with the same initial conditions and using the same inflow disturbances.
However to compare the two controllers properly, a extra experiments have been conducted,
as this will help to showcase the specific features of each controller.
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The control objectives which were presented in section 7.2 Solutions to the Control problem,
will be the comparison criteria. As a good measure the objectives are listed again:

1. Minimize overflow in a network.
2. Avoid fast varying flow to a Waste Water Treatment Plant.
3. Balance wastewater along available storage.

As the results from the experiment utilizing the standard MPC did not exhibit any overflow,
one could be tempted to immediately conclude that the standard MPC is superior with
regards to overflow prevention. We however suspect that the superiority of the MPC shown
in the results has to do with our experiment and design choices. Elaborating on this we
expect that a combination of three factors lead to the MPC outperforming the CC-MPC:

• Low uncertainty of the disturbance predictions.
• "Short" prediction horizon Hp.
• The use of the LQR controller in the CC-MPC.

Optimally we would re-do the experiments taking these three facts into account. Re-
running experiments to test for longer Hp and higher uncertainty, would however require
a major rework of the current control and software setup, and would require much
consideration on experiment design. Instead we choose to argue base on the currently
available information.

The tightening of the tank levels upper bound x, can be seen in Figure 7.21 and is due
to the chance constraints presented in (7.35). In order for the tightening to have an effect
on the control u in anticipation of a rain event, assuming the system is operating the the
reference, the tightening has to decrease the upper bound significantly. This phenomenon
is showcased in 6.3, and again shown in figure.

Observing the first of the four predictions in Figure 7.24, we can see that the MPC does
not predict the tank to approach the upper bound. This is due to a to small Hp. If the
Hp had been larger both the CC-MPC and the standard MPC would have been able to
preemptively start emptying tank one. In the case where the CC-MPC had a significant
tightening of the upper bound the CC-MPC would start to preemptively empty the tank
before the standard MPC. Thereby outperforming the standard MPC. But as we have
neither a "significant" decrease in the upper-bound nor a long enough Hp for our system,
no performance benefits can be observed for the CC-MPC.

The tightening of the upper bound using the CC-MPC, is as little as 2−3%. This means by

Figure 7.23: The significant tightening of the upper bound that affects the
control action.
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the time the tightening is relevant to the CC-MPC, it is already pumping at full capacity.
Observing the last of the four predictions in Figure 7.24, where the MPC predicts the
overflow, the tightening is activated. However when the tightening becomes active the
MPC cannot use this in order to calculate the better action, since it is already providing
the maximum outflow.

Figure 7.24: Overflow scenario #1 with SMPC predictions and optimal
control actions.

The tightening is a result of the variance dynamics Σx|k+1, show in (7.30). The variance
dynamics are a function of the system dynamics and the uncertainties in the system:
Σa, Σd, Σw and Σx|k. In order to have additional tightening of the tanks upper bound
the inputs would have to be more uncertain, compared to the dimensions of the system.
It is however not prudent to increase uncertainty in a system simply to make a specific
controller perform better.

We have now touched upon what we could do in order to make the CC-MPC perform better
in the comparison, specifically by looking a Hp and the effect the uncertainties have on
the tightening of the tanks upper bound. We are however also aware that the implemented
LQR controller helps to decrease the variance of the system, at the cost of some of the
CC-MPCs pump control range. By observing and comparing the two results, we conclude
that the biggest contributing factor to the fact that the standard MPC outperforms the
CC-MPC, comes from this loss of control range (see Figure 7.24 and Figure 7.21).

As testing the hypothesis that: "the use of the LQR controller is responsible for the
overflow" does not require a major reconfiguration of the control structure or experimental
setup, we have elected to test it. In order to allow the CC-MPC to control the entire
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range of u, like the standard MPC, we simply remove the LQR controller. Note, that
an additional benefit of removing the LQR controller is that the tightening of the upper
bound is increased. As shown in Figure 7.25.

In Figure 7.26 and Figure 7.27 the results of running the experiment using the CC-MPC
with out the LQR controller is shown. From the results we can see that the CC-MPC
was able to avoid overflow, but that the performance was still worse than the standard
MPC. Even without the LQR the tightening of the upper bound still did not increase to a
point where they provided a performance benefit. Inspecting the control signals closely the
CC-MPC without LQR and the standard MPC, output very similar signals. We therefore
assume the difference in performance comes down to variations in the laboratory setup.

7.5 Conclusion

Based on the experiments presented the use of the CC-MPC for overflow prevention in
sanitation networks, cannot be concluded to have any benefits over using the standard
MPC. It can be speculated that the CC-MPC might yield performance benefits if used on
a very uncertain sanitation system with a long prediction horizon.

When using the CC-MPC for control of a sewer system the addition of an LQR control
policy, seems to degrade performance. The LQR control policy have been shown to be
useful in other applications, such as in the control of a race car, see [11]. For a race car,
being conservative with regard to its control inputs, such as speed, prevents the car from
slipping out in the corners, which are considered very uncertain scenarios. Because the
LQR controller results in an decrease in the control input it means that the CC-MPC has
a decreased ability to counteract overflow.

Figure 7.25: The tightening of the tank upper bounds with no LQR
contribution.
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Figure 7.26: CC-MPC results overview without the LQR contribution. Tank
1 inflow, level and outflow plots.
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Figure 7.27: CC-MPC results overview without the LQR contribution. Tank
2 inflow, level and outflow plots.

91





Discussion of the work 8
This chapter presents a discussion on several topics from the thesis, which we believe
required a further comment. These topics include:

• noise identification,
• changes to the identification process,
• model capabilities,
• model stability,
• overflow estimation and
• disturbance design.

8.1 System Identification

In this section, we discuss the quality of our system identification framework, developed
in chapter 4 Model Parameter Identification. We further discuss what changed to
accommodate the altered system that we used in the control section of the thesis. We
also summarize the limitations and challenges of our identification approach. As we only
used the AAU Smart Water Lab model in the control section, this model will be the focus
of the discussion.

First, let us recap the lab parameter identification from subsection 4.2.2 Results of the AAU
Smart Water Lab emulation identification. In the subsection, we estimate the parameters
of a gravity pipe. The parameter estimation method is a data-driven optimization problem
that iteratively finds the best fit of the model parameters to the measurements gathered
from the system. The tank parameters are considered known since they directly represent
a physical value, the area of the tank, which is easily obtainable from the lab schematics
in Appendix C.

In Figure 8.1a and Figure 8.1b a results of the parameter identification are presented.
It shows a free-running prediction in red and actual measurements in blue. Figure 8.1a
depicts the original parameter identification, where it is important to notice that we use
the level of tank 2 as a reference measurement. The tank level is the bottom-most plot.
Using the tank level as a measurement in system identification is not a good approach for
two reasons:

• The effect of integration caused by the tank model is present in the free running
model which makes the model fit worse.

• The framework assumes there is a tank at the pipe outlet. This makes the
identification approach less general.
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Because of these two reasons, we elected to change the framework slightly. The change
switched the identification process to use the pipe’s outflow as the last reference data set
rather than the tank level. The outflow of the pipe is depicted in the bottom-most plot in
Figure 8.1b.

In the lab setup, we had to estimate the outflow based on the tank measurements and
the tank outflow. This does not lead to a better estimation of the pipe outflow, as the
outflow estimate is only good as the data provided. Thus we can argue that the new
implementation did not achieve better precision. The new framework is more general as it
is independent of boundary element at the output of the gravity pipe.

(a) The original identification method (b) New parameter estimation.

Figure 8.1: Comparison of updated parameter estimation framework.

If we closely observe Figure 8.1b, we can see that the measurements of the pipe states h2,
h3 and h4 look different from the corresponding states on the Figure 8.1a. It appears that
there is a constant offset in all three state measurements. Furthermore, the dynamics of
the first pipe section no longer clearly translates through the rest of the data set, as it
does in Figure 8.1a. The reason for this is that the new experiment, which we elected to
use for the model synthesis in the section 7.2 Solutions to the Control problem, is subject
to a lateral disturbance between the sensors measuring h2 and h3.

The lateral disturbance defines the majority of the dynamic behavior of the states h2, h3,
and h4. This disturbance affects the level and the flow in the pipe section that comes before
the inflow point. This is an interesting observation. We elect to call this phenomenon "the
backflow effect".

One of the original reasons for choosing the Diffusion Wave model lies in the fact that
we expected it to be able to model this backflow effect. Unfortunately, using our linear
Diffusion Wave model, we were not able to capture this effect in state h2 to a satisfying
degree. At this time, we do not have a solid argument to prove that it is impossible to
capture this effect with a linear version of the Diffusion Wave model. Therefore, we did
not introduce the backflow effect in any of the previous chapters. Instead, we elected to
proceed with the linear Diffusion Wave model through the thesis. The obvious alternative
to using the Diffusion Wave model would have been using the linear Kinematic Wave model
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from [8].

We co-authored a paper where the same problem of capturing the backflow phenomenon in
the same setup has been researched [15]. The paper presents a comparison of the nonlinear
Kinematic Wave model and the nonlinear Diffusion Wave model. The comparison focuses
explicitly on capturing the backflow phenomenon. The paper showed that it is possible to
capture the backflow effect using a nonlinear Diffusion Wave model.

Since the backflow effect is always measured at the second sensor in the AAU Smart Wa-
ter lab, we had to find a way to include this behavior in our linear Diffusion Wave model.
We had to make a workaround using our linear model to capture the effect. We did this
by modeling the disturbance inflow as if it entered into state h2. That yields the model
prediction, showed in Figure 8.1b, which we consider satisfactory.

We already mentioned that the tank parameters are considered known and that they are
not a part of the system identification. We discovered that the flow sensors which are used
in the lab are not very precise and have a constant negative deviation from the actual flow
value. We, therefore, chose to trust the level sensors in the tank instead. The incorrect flow
measurements did not cause a problem in the identification of the pipe. This is because
the data-driven method compensates for the flow discrepancy in the parameters. For more
information on the flow discrepancy, see section 8.4 Overflow Estimation

The flow discrepancy does, however affect the tank models. This is because the tank
parameters are not considered as part of the identification problem. The flow discrepancy
can be seen when correlating the tank’s inflow and outflow with the tank’s volume change.
If we want to make the entire system robust to this flow error, we would have to include
both tanks’ parameters in the parameter estimation.
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8.2 Model Considerations

In subsection 2.2.1 Stability of the General Model we found two sets of sufficient conditions
for marginal stability of the discretized gravity pipe with any number of discrete pipe
sections. These two sets of sufficient conditions are listed in (8.1) and (8.2). Both sets are
subject to the same assumptions on parameter relations specified below in (8.3).

Sufficient Condition 1: (8.1)

θ5 + θ3 ≥ θ2,

θ2 ≥ θ3

And Sufficient Condition 2: (8.2)

θ5∆t ≤ 1

Assuming: (8.3)

(θ2 + θ3)∆t < 1,

(θ5 + θ3)∆t < 1,

θ1, θ2, θ3, θ5 > 0.

Sufficient Condition 1: (8.4)

θ5 + θ3 ≥ θ2,

θ2 ≥ θ3

And Sufficient Condition 2: (8.5)

∆t ≤ a3 ·∆x
Assuming: (8.6)

∆t <
a1∆x2

b1∆x+ 2
,

∆t <
a2∆x2

b2∆x+ 1
,

θ1, θ2, θ3, θ5 > 0.

As mentioned, in subsection 2.2.1 Stability of the General Model we typically consider the
relation ∆t

∆x , when considering the stability of a discretized partial differential equation.
The sufficient conditions are expanded from (8.2) and (8.3) and reduced to include the
terms ∆t and ∆x. This yields a restatement of the sufficient conditions shown in (8.5) and
(8.6).

Notice that we did not expand the first sufficient condition (8.4). This is simply because
∆t is not a part of the two equations making up the condition. Additionally we have
throughout the identification process found, that the first sufficient condition does not
hold. Because the relation θ5 + θ3 ≥ θ2 does not hold. Note that we have not proven that
(8.4) does not hold, rather we have found the result empirically. To illustrate the result
we have depicted three identification results in Table (8.1).

- 4 State Mode 8 State Model 12 State Model

θ1 0.034 0.057 0.080

θ2 0.086 0.137 0.194

θ3 0.0065 0.0001 0.0001

θ4 -0.002 -0.005 -0.007

θ5 0.055 0.100 0.100

Table 8.1: Estimated parameters for different number of model states.

Sufficient Condition 2 in (8.5) and the general assumptions in (8.6), have been expanded.
The expansion is done using the general variables a and b. Here we observe that we get
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three increasing functions, as shown in Figure 8.2. This fits well with our intuition. We
would expect that longer pipe sections, would result in slower dynamics, and therefore
allow for a larger ∆t.

Figure 8.2: ∆t
∆x relation functions.

In chapter 2 Modeling we created the generalized parameters θ based on physical
parameters. One could imagine that the most straightforward approach to system
identification is identifying the physical parameters themselves. This is, however, not
possible because we have more physical parameters than we have equations. It may,
however, still be possible to find a physical interpretation for two of the generalized
parameters.

• θ1 = 1
w·∆x can be interpreted as a conversion factor between level change pr second

and flow.
• and θ5 = Cd

√
2gθ1 can be interpreted as free-flow factor which determine the relation

between the level in the last pipe section and the pipe outflow.

We are aware of the width of the actual gravity pipe in the AAU Smart Waterlab. Therefore
we can roughly estimate the value of ∆x, assuming that the system identification process
identifies the system parameters, such that they represent a combination of the physical
values. There is, however no guarantee. We can try to calculate ∆x based on three models
with 4, 8 and 12 pipe section states. We would expect ∆x to be halved when going from
4 pipe states to 8 pipe states, and we would further expect a reduction of ∆x of around
one third from 8 til 12 pipe states. We investigate this using (8.7).

∆x =
1

w · θ1
, (8.7)

For 4 states: ∆x = 50.64 dm,

For 8 states: ∆x = 34.60 dm,

For 12 states: ∆x = 24.42 dm.

The results are roughly as we expect, taking into account that we are taking the diameter
of a round pipe, which in the model is being approximated by a square pipe. We therefore
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conclude that the above results indicate that the parameter identification is estimating the
physical parameters indirectly.

8.3 Noise Identification

Noise identification for the AAU Smart Water Lab was done in two different chapters of
this thesis. These chapters are: chapter 5 State estimator, section 7.2 Solutions to the
Control problem. The noise identification presented in both chapters was based on the
assumption that the model used had a ∆t = 0.5. It follows that the model noise found is
unique to the model with that specific ∆t.

The implementation details of the control system were outlined in subsection 7.2.6 The
Control System Software Setup. In that section, we highlighted that the "CCU client" and
"CCU server" operate at different frequencies, meaning the MPCs and the Kalman filter
operate at different frequencies. The execution period for the Kalman filter is 0.5s while
the execution periods of the MPCs are 5s.

Therefore, we have made a mistake in assuming that the noise models identified for the
Kalman filter could be used directly in the CC-MPC. Figure 8.3 shows the combined model
and measurement noise in the case of ∆t = 0.5 and ∆t = 5, for a pipe model with four
states.

It can be seen that the pipe residuals in Figure 8.3b have a much higher variance than the
pipe residuals shown in Figure 8.3a. If we were to use the higher variance models when
calculating the variance dynamics for the CC-MPC, we expect that it would increase
the constraint tightening. For a detailed explanation of the impact additional constraint
tightening can have on control performance, refer to section 7.4 Comparison of Results.

(a) Original noise identification of
combined sensor and measurement noise.

(b) New noise identification of combined
sensor and measurement noise.

Figure 8.3: Comparison of residual distributions, between original results,
and new results using the correct ∆t.

98



8.4. Overflow Estimation AAU

8.4 Overflow Estimation

Figure 7.22 in the result section depicts the CC-MPCs overflow estimation and the actual
overflow measures found using the external tanks in the lab setup. There is a significant
difference between the estimated overflow and the actual overflow. We aim to explain the
discrepancy in this section.

We know the tanks discrete state space equations are described by (8.8) and (8.9).

hn+1
j = φ∆t(Qnin −Qnout) + hnj ,

⇓
hn+1
T1 = φ1∆t(und1 − (un1 + unof1)) + hnT1, (8.8)

hn+1
T2 = φ2∆t

(
θ5

θ1
· hP8 − (un2 + unof2)

)
+ hnT2, (8.9)

where n is the time index, Qnin and Qnin are the in and outflows, hn+1
j is the water level in

tank j, unof is the overflow control input and un is the control input to the pumps. In the
event of an overflow, we assume that the change in the state is zero, meaning that we can
solve for the overflow variable in both state space equations by equating hn+1

j = hnj . This
yields (8.10) and (8.11) as the equations for overflow.

unof1 = (und1 − un1 ) (8.10)

unof2 =

(
θ5

θ1
· hP8 − un2

)
, (8.11)

This makes sense intuitively. However, when we consider that the terms in both overflow
equations are subject to uncertainty, the discrepancy in the overflow estimation becomes
apparent. With uncertainty, the overflow equations become (8.12) and (8.13).

unof1 =
(
dmean1|0 + duncertainty1|0 − (un1 + an1 )

)
(8.12)

unof2 =

(
θ5

θ1
· xP8 + vn4 − (un2 + an2 )

)
, (8.13)

where uncertainties come in the form of actuation noise an, uncertainty in the inflow
forecast ud|k = dmean|k + duncertainty|k, described in section 6.2 Stochastic Model
Predictive Control, and measurement noise vn. Even if these uncertainties are small
compared to the in and outflows, they end up causing a significant difference in the
estimated overflow volume. This is because, the overflow volume is calculated as an
integration of the two overflow variable uof .

An example of overflow estimation for tank 1 was created in lab, using the standard
MPC. We elected to give the MPC a forecast without uncertainty, in hopes to eliminate
duncertainty’s effect on the overflow estimation. The overflow volume is found based on
three different methods. The result of each method is shown as a function of time in
Figure 8.4. The first overflow calculation is done based on the level of the external tank
(yellow) using the equation Voverflow = ∆hT1 · AreaT1. We assume that this is accurate.
The overflow estimated by the standard MPC (red), seems to be under estimating. We
expected this and it can be because of two reasons:

• it is either because of measurement uncertainty on the flow sensors,
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• or because of the input uncertainty an.

As the standard MPC does not take the input uncertainty into account, this could be a
possible factor. However if we calculate the overflow volume, based on the actual flow
measurement of the disturbance pump 1 and pump 1, we get even worse results (blue).
The calculation using the pump measurements is a integration of the difference between
the pump inflow and pump outflow at at every time step. We can therefore conclude
that the poor overflow estimation is likely due to uncertain flow measurements. It is not

Figure 8.4: Three different methods used for calculating the overflow.

rare that flow sensors provide "poor" readings, even in a laboratory environment. For
this reason, the question arises: How can overflow estimation be done without using flow
sensors? The short answer is that in the AAU Smart Water Lab it cannot. However, in
the real-world, a level sensor gate combination is often used. The idea is that a tank can
be drained by the use of a gate, and the level sensor can be used to precisely estimate the
volume before the gate is used. However, the gate setup does present a problem if it is to
be used in conjunction with the MPC descriptions presented in this thesis. This is because
the binary states of the gate, either open or closed, would lead to a mixed integer problem.

8.5 Disturbance design

In this section, we discuss our design of the disturbances for the lab experiments and how
the uncertainties of the created disturbances are taken into account in the CC-MPC. We
also specify the downsides of the approach taken to disturbance design in the thesis and
present potential improvements. Additionally, we restate the considerations about the
prediction horizon Hp.

In subsection 7.1.1 Disturbance design we described our approach to designing the
disturbances for the lab experiment. The approach is again summarized here. The
disturbance inflows consist of both domestic wastewater and rain water. We designed
each of the disturbances separately before combining them into a single disturbance used
in the lab. We end up with 10 ensembles for each disturbance in the system. The mean
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signal found from the ensembles represents the disturbance forecast, while the variance
between the ensembles defines the uncertainty of the forecast.

The rain inflow disturbances designed were not based on data. The rain inflow ensembles
are designed manually with certain assumptions on how the storm event should be observed
in the sanitation network. The variations between the ensembles are also created manually.
An unrealistic assumption was made during the ensemble’s creation. This assumption was
that for every ensemble for a single rain event started at the same time and that there
were no dry predictions for that particular rain event.

The limiting factor for disturbance design in the lab is the pumps’ operating range. The
rain inflow should be implemented on top of the wastewater discharge. For this reason,
we reserved the 40 % of the range for wastewater inflow and the rest of the range for the
rain inflows. In reality, the rain inflows are much higher than the wastewater inflows. In
conclusion, the rain design should preferably be based on the actual data. We have been
very restricted on obtaining real-world ensemble forecasts. The is because the forecasts
were is simply not available in the precision we would need for use in a MPC framework.

In subsection 7.2.5 Calculation of input and forecast uncertainty we describe that we use
a constant value for the disturbance variance Σd at every step in the prediction horizon
Hp. This value is calculated such that for the entire prediction Hp ahead, the variance
is averaged. Then the average variance is used in the state variance dynamics. Instead
of averaging, we could have taken the actual variance at each step k for the calculation
of state variance dynamics. This would yield a nonlinear state variance propagation,
which would result in different chance constraint tightening, than the one showed in the
experimental results. The comparison of the tightening of the chance constraints with
and without uncertainty averaging is shown in Figure 8.5. The tightening is compared at
1.5 · 104 [0.5s] before the first overflow event which is shown in Figure 7.24.

Figure 8.5: Comparison of the tank level tightening with averaging Σd and
with actual Σd.

We can see that during the uncertain prediction, the tightening on the second tank grows
significantly, compared to the tightening with average variance. We specifically chose to
compare the two tightenings at 1.5·104 [0.5s], because of the very uncertain rain prediction
in the middle of the pipe, see Figure 7.24. Furthermore, we expected the CC-MPC to
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perform better than the standard MPC at this specific point in time.

The tightening reaches the 50% of the tank range towards the end of the prediction hori-
zon, while previously, it was only at 2 to 3% of the tank range. For a detailed explanation
of the impact additional constraint tightening can have on control performance, refer to
section 7.4 Comparison of Results.

The tightening in Figure 8.5 is calculated for Hp = 12 hours. This is equal to 108 steps
in the lab experiment, when the step length is equal to 5s. In section 7.4 Comparison of
Results we stated that for better performance in regards to outflow smoothing, as well as
for the better overflow handling, we would require a longer prediction horizon Hp. We
also speculated that the longer Hp would improve the performance of the CC-MPC. Now,
with the new tightening calculation, shown in Figure 8.5 and a longer Hp, it is even more
apparent that the CC-MPC would be able to make use of the tightened constraint within
the prediction horizon.

The satisfying length of the prediction horizon would be Hp = 24 hours. In the
experimental setup, the single-day prediction horizon is equal to a 216 step prediction.
Currently, we cannot achieve this Hp in the experiments due to computational time
constraints. Namely, the computational time for solving the MPC problem is limited to 1

second. With 108 steps prediction horizon, the computational time is between 0.5 and 0.8

seconds. We empirically validated that a longer than half-day prediction horizon is not
feasible with a current experimental setup. The solution to the computational constraints
would be the increase in the MPC’s period from 5s to 10s. That would enable us to
increase the allowed computational time. However, this updated implementation would
require a significant rework of the experimental setup and is left for future development.
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Conclusion 9
The purpose of this thesis was to compare the performance of a stochastic MPC scheme to
the standard deterministic case, when used for overflow prevention in sanitation networks.
In this thesis, we chose to use chance constrained MPC for comparing against the standard
MPC scheme. These MPCs were implemented and tested in the AAU Smart Water Lab
emulation environment. The purpose of using an emulation environment rather than a
simulation setup was verifying that both MPC could work in a system subject to real-
world inaccuracies.

Both MPCs had the same three operational objectives which they were compared upon.
These three objectives are shown below in prioritized order:

1. Minimize overflow in a network.
2. Avoid fast varying flow to a Waste Water Treatment Plant.
3. Balance wastewater along available storage.

Along with designing the MPC control scheme, the following has been developed in the
project as a supporting framework:

• A data-driven modelling framework, relying on the Diffusion Wave approximation
of the nonlinear Saint Venant partial differential equations describing gravity flow
inside the pipes,

• a grey-box system identification method, utilizing the level measurements taken
inside the network, moreover incorporating the simplified, physically-based model
structure of the pipes,

• furthermore a noise identification method to describe model- and measurement noise
later utilized in state estimation with a Kalman filter.

We found that the diffusion wave model worked well for describing the flow through a
gravity pipe. With the data driven parameter identification approach we were able to
identify the parameters in the diffusion wave model. The parameter identification approach
worked well for the Two Tank Topology, when all states in the model were measured. The
identification approach does however require care when used to identify the diffusion wave
model if the model contains unmeasured states. The Kalman filter was implemented and
functioned using noise models derived based on an empirical approach. The Kalman filter
was used in order to enable the use of MPCs which included models with unmeasured
states.

The standard MPC has already been proven to be useful in control of sewer systems, we
therefore elected to extend it to take the stochastic nature of sewer systems into account e.g
rain events. The comparison of the standard MPC and the CC-MPC, did not yield a clear

103



9. Conclusion

conclusion on which is overall better in overflow prevention in sanitation networks.Based
on our observations, the CC-MPC has a use in control sanitation networks if the available
model is subject to large uncertainties and if computational resources allow for a long
prediction horizon. However if computational resources are limited, or if a good predictions
of disturbance inflow is available, we have not seen a reason to use the CC-MPC over the
standard MPC. This is because the added complexity of the CC-MPC might actually
decrease performance, due to being too conservative in critical situations, which can lead
to overflow risk events.
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1. Problem statement 

Open-channel hydraulic systems, e.g. Urban Drainage Networks (UDNs), are among the most vital 
infrastructures within the urban water cycle. More specifically, combined UDNs carry domestic wastewater 
and rain run-off towards treatment plants, where the sewage is treated before it is discharged to the 
environment. Knowing the flow in such systems is essential to optimize storage and thus avoid intermittent 
overflows [1]. However, an issue with UDNs is the lack of flow measurements, although optimization-based 
control typically relies on flow balances within the network. Hence, a possible way to build control models 
and reconstruct system states is to utilize cost-efficient level sensors and to support the control with online 
estimation algorithms.  

Another issue with the control of UDNs is the presence of hydrological and meteorological phenomena, 
implying  that the system processes are influenced by disturbances, stochastic in their nature. The main goal 
of the regulation of UDNs is to minimize the effect of these disturbances (e.g. rain infiltration, domestic 
sewage and groundwater infiltration), over a system which under normal operation would not require any 
action. Hence, control needs to be robust towards weather forecasts and towards the uncertainty of the rain-
runoff dynamics [2].  

A third issue with the control of UDNs is the fact that they are increasingly being pushed to their capacity 
limits. This is partly due to changing weather conditions, resulting in increased amount and more frequent 
high-intensity rain events, for which standard control strategies (e.g. On/Off level control) and the old 
infrastructure are not prepared.   

2. Project tasks  

The project plan can include the following tasks, depending on whether it is a semester project or long thesis:  

1. System identification:  
System identification (Grey-box) of gravity pipes, relying on the physical laws described by the Saint-
Venant hyperbolic Partial Differential Equations. The test and performance assessment of different 
system identification and sensor setup configurations can be carried out. It is anticipated that the 
fusion of level sensor data and pump discharge flow data is used to obtain model parameters. Some 
results on this subject are available in [3].  

2. State estimation: 
Full state observability in sewer applications is typically not available, hence only some subsets of 
states are measured. In this practical setup, the unmeasured states need to be computed consistent 
with the measured states and outputs. This mainly regards the issue of limited number of level 
sensors along the gravity channels. If time allows, the State Estimation Problem (SEP) can be 
extended to Moving Horizon Estimation (MEH), which suits well the proposed MPC framework. 
Studies on SEP and MEH problems within sewer applications can be found in [4]. 

3. Stochastic Model Predictive Control:  
Although standard MPC methods offer a certain degree of robustness to system uncertainties due to 
their receding-horizon implementation (i.e. rainfall precipitation, rain-runoff dynamics), stochastic 
MPC is a natural extension to deal with the uncertainties systematically [5].  

A. Project Proposal
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In this project, uncertainty is introduced on inflows to pumping stations due to both rainfall runoff 
and to some periodic domestic waste water activities. In [6] and [7], three form of stochastic MPC 
approaches have been implemented on drinking water distribution and hydrogen-based microgrid 
applications. It is a suggestion in this project to try to implement one or more approaches (i.e. Multi-
Scenario(MS) MPC, Tree-based(TB) MPC and Chance-Constrained(CC) MPC) and compare their 
performances on the proposed UDN application. An MS-MPC study on a drainage network case study 
can be found in [8]. 

4. Multi-objective optimization: 
Control in UDNs is typically proposed as a multi-criteria optimization with conflicting objectives. It is 
a possibility to investigate and analyze the operational objectives and the choice of weighing 
parameters regarding the optimization. The operational objectives consist of: overflow prevention, 
smoothing of treatment plant inlet flow and equal use of available storage. For more detailed study 
in the systematical design of optimization in sewer networks, consult [9]. 

An idea of the implemented control on the AAU Smart Water lab is shown in Figure 1. 

 

Figure 1- An idea of a closed-loop control loop where SMPC abbreviates Stochastic Model Predictive Control, moreover the red 
arrows denote the points where uncertain system disturbances enter the system. 

Prerequisites:  

1. Basic understanding of the modeling of hydraulic systems, such as drinking water distribution 
and open-channel hydraulic networks. (The knowledge gained by the 8th semester course: 
“Modeling of Mechanical and Thermal Systems”.) 

2. Basic knowledge in Model Predictive and Optimal Control. (The knowledge gained by the 8th 
semester course: “Optimality and Robustness”.) 

3. Experimental setup 

The topology of the network considered in the 
project is shown in Fig. 1. Urban drainage systems 
typically consist of many storage elements such as 
gravity pipes, retention tanks, catchment areas and 
one or several outlet points leading to the treatment 
plant. The most common actuators in these types of 
networks are pumps and gates.  

Figure 2 – Sketch of the proposed network topology. 

AAU
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In this project, a network with two retention tanks are considered, connected by a gravity pipe, where the 
stored sewage volumes are controlled by pumps. Furthermore, this topology can be modified along with the 
points where the disturbances enter the system. An illustration of the laboratory setup is shown in Figure 3. 

 

Figure 3- Modular Water Laboratory at Aalborg University. 

The laboratory work consists of the following tasks:  

1. Configuring the test setup, if necessary, small commissioning tasks. 
2. Collect level, and if needed, flow data from the network for system identification. 
3. Implementation and real-time test of basic on-off controllers for later comparison with MPC. 
4. Implementation and real-time test of the developed SMPC/SEP/MEH algorithms. 
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Consistency and
Convergence of The
General Pipe Model B

A finite difference scheme used for approximating partial differential equations is said to be
consistent if the resulting partial difference equation approaches the differential equation
as ∆x, ∆t → 0. This implies that consistency is the condition on the numerical scheme
[22,pages. 43-45].

Convergence refers to the approach of the solution of an approximating set of linear
difference equations to the solution of a linear partial differential equation as ∆x, ∆t→ 0.
This implies that convergence is the condition on the numerical solution [22,pages. 46-48].

The analysis of consistency is straight forward as backward and central finite differential
approximations were used for creating the difference equations describing the pipes.
These three differential approximations are simply the limit definitions of the derivatives,
excluding the limit term. We know that the limit definition of a partial differential is given
as:

∂f(x, t)

∂x
= lim

∆x→0

f(x+ ∆x, t)− f(x, t)

∆x
. (B.1)

Leading to the definition of the second partial derivative as a derivative of derivatives:

∂2f(x, t)

∂x2
= lim

∆x→0

f(x+∆x,t)−f(x,t)
∆x − f(x,t)−f(x−∆x,t)

∆x

∆x
,

m
∂2f(x, t)

∂x2
= lim

∆x→0

f(x+ ∆x, t)− 2f(x, t) + f(x+ ∆x, t)

∆x2
.

Comparing these with the difference equation describing the pipe, see (B.2) and see
subsection 2.1.1 Gravity pipe, it can be seen that introducing the limits yields the
differential equation.

hn+1
j − hnj

∆t
=

1

γ3 · w
(
hnj−1 − 2 · hnj + hnj+1

∆x2
+ γ3

hnj − hnj−1

∆x
) (B.2)

⇓

lim
∆x,∆t→0

hn+1
j − hnj

∆t
= lim

∆x,∆t→0

1

γ3 · w
(
hnj−1 − 2 · hnj + hnj+1

∆x2
+ γ3

hnj − hnj−1

∆x
)

m
∂h(x, t)

∂t
=

1

γ2 · w
(
∂2h(x, t)

∂x2
+ γ3

∂h(x, t)

∂x
)
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B. Consistency and Convergence of The General Pipe Model

This means that the finite difference scheme used is consistent. This does however not
ensure that the numerical solutions of the difference equation are correct. For that we need
to prove convergence. This can be done using Lax’s stability theorem which states: "If a
linear finite difference equation is consistent with a properly posed initial-value problem
then stability is necessary and sufficient for convergence of φ to Φ as mesh lengths tend
to zero" [22]. Where φ is the numerical solution of the approximated difference equation,
and Φ is the solution of the partial differential equation.

In the case of the gravity pipe portion of our system, in subsection 2.2.1 Stability of the
General Model named A2 , Lax’s stability theorem cannot be directly applied. This is
because while consistency has been proven, but we do not have a condition on stability.
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Derivation of Cost
Function for a Stochastic

MPC D
From the classical formulation of an MPC we take the expectation of the cost function
yielding:

J = min
u

E

 Hp∑
k=1

∥∥∥zk − zrefk

∥∥∥2

Qk

+
Hu−1∑
k=0

‖∆uk‖2Rk

 (D.1)

= min
u

Hp∑
k=1

E

[∥∥∥zk − zrefk

∥∥∥2

Qk

]
+
Hu−1∑
k=0

E
[
‖∆uk‖2Rk

]
(D.2)

It is possible to show that the expectation of a quadratic form random variable, can be
rewritten in terms of its mean and variance, see the hand written note in this appendix

E
[
‖X‖2Q

]
=‖µX‖2Q + tr(QΣX), (D.3)

see the hand written note in this appendix. Then if we assume that zk is a random variable
while the control input uk and reference zref

k is deterministic:

J = min
u

Hp∑
k=1

∥∥∥µzk − zrefk

∥∥∥2

Qk

+ tr(Q · var(zk − zrefk )) +
Hu−1∑
k=0

E
[
‖∆uk‖2Rk

]
(D.4)

= min
u

Hp∑
k=1

∥∥∥µzk − zrefk

∥∥∥2

Qk

+ tr(Q ·Σzk) +
Hu−1∑
k=0

‖∆uk‖2Rk
(D.5)

If we on the other hand assume that there is uncertainty in the way we apply the control
input:

J = min
u

Hp∑
k=1

∥∥∥µzk − zrefk

∥∥∥2

Qk

+ tr(Q ·Σzk) +
Hu−1∑
k=0

∥∥µ∆uk

∥∥2

Rk
+ tr(R ·Σ∆uk

)
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D. Derivation of Cost Function for a Stochastic MPC

We want to re-express the expectation of a quadratic random variable, in terms of a trace.

E
[
‖X‖2Q

]
= E[X>QX︸ ︷︷ ︸

scalar

] (D.6)

The matrix vector product written on general form:

QX =
n∑
j=1

xjqj (D.7)

Where qj is a column vector. This means that the vector vector product can be expressed
as:

X>QX =
n∑
i=1

xi

n∑
j=1

xjqj,i =
n∑
i=1

n∑
j=1

xixjqj,i (D.8)

This means:

E
[
X>QX

]
=

n∑
i=1

n∑
j=1

E
[
xixj

]
qj,i

=
∑∑(

σqi,j + µiµj

)
qj,i

=
∑∑

σj,j · qi,j +
∑∑

µjqj1i

=
∑∑

σi,jqi,j︸ ︷︷ ︸
Definition of trace

+µ>Qµ

= tr(QΣ) + µ>Qµ (D.9)
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Supplementary
experiment E

Figure E.1: Single tank controller conservatives due to chance constraint
tightening, supplementary example

This example supports the section 6.3 Single tank SMPC, where we present the conser-
vatives of SMPC when the system is operated near the physical upper bound. There we
conclude with a high reference tracking setup that the controller underperforms and is not
able to follow the high reference. In this example it is obvious that a controller reasonably
follows the reference most of the time. The difference is in the objective function. Two
objective functions can be seen on (E.1) and (E.2).

J1 =

Hp−1∑
k=0

0.01(µhk − href |k)
2 + 0.01Σhk + 40u2

k, (E.1)

J2 =

Hp−1∑
k=0

0.01(µhk − href |k)
2 + 0.01Σhk + 0.4u2

k, (E.2)

where J1 is the objective function for the example presented in section 6.3 Single tank
SMPC and J2 is the objective function for Figure E.1. The control action in the later is
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E. Supplementary experiment

more aggressive. We can see that if we compare Figure E.2 with Figure 6.2b.

Figure E.2: Level prediction with more aggressive controller

The purpose of this supplementary example is to support the idea that the conservatives of
a SMPC presented in the main part can be reduced with more aggressive action. However,
we can still observe cautious behaviour around 600 and 1200 steps where controller
preemptively lowers the level before the high disturbance arrives. But, we consider this
example not as representative of the phenomena as the one that is presented in the
section 6.3 Single tank SMPC.
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