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In this project, scattering problems with per-
fect electric conductors are numerically modelled
using the the Green’s Function Surface Inte-
gral Equation Method (GFSIEM). The developed
method is tested by comparison between the ana-
lytic result of a current on a sphere with the sim-
ulated result. Then scatterers in the form of per-
fect electric conductors in the shape of boxes with
rounded corners and edges are examined in free
space with an incident electromagnetic field. Here
the scattered far-field and the surface currents are
examined. Furthermore, the configuration is anal-
ysed with the scatterers atop a silicon layer of in-
finite extent. It was found that the method pro-
vides accurate simulations of the surface currents
and differential scattering cross sections of differ-
ent geometries, both in free space and on dielectric
substrates, with limitations at short wavelengths.
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Preface
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Readers Guide

All aberrations throughout this project will be presented in the nomenclature, while less common

aberrations furthermore will be presented in the text the first time it is used like aberration of

word (AoW).

References within this report can be found throughout, where they will be denoted as e.g. Sec.

A,B and Eq. (A,B), where A is a reference to the parent chapter in which e.g. the equation

appears, while B represents the equations order of appearance within said chapter.

Citations to external sources used within this project has been cited as follows: [source, x. 1-2],

where source is a number indicating the location of the source in the bibliography and x. 1-2 is an

index of a number of pages or chapters used from the source. The references are typically located

at the beginning of a section, indicating that the whole section is based on this/these reference(s).

When this is not the case, references are located as they are utilized.
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Nomenclature

CW Continuous Wave

DSCS Differential Scattering Cross Section

EFIE Electric Field Integral Equation

FEM Finite Element Method

GFIEM Green’s Function Integral Equation Method

GFSIEM Green’s Function Surface Integral Equation Method

LHS Left Hand Side

MFIE Magnetic Field Integral Equation

PCA Photoconductive Antenna

PEC Perfect Electric Conductor

PMC Perfect Magnetic Conductor

RHS Right Hand Side

RMSE Root-Mean-Square Error
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Chapter 1

Introduction

This project concerns itself with modelling of terahertz radiation scattering on metal antennas,

and this chapter will therefore review different ways of modelling such radiation. Furthermore it

will review different types of antennas along with different ways of generating terahertz radiation.

In Ch. 2 the theory behind the simulations will be presented, where different structures are

concerned, which are all based on Fig. 2.1. Though, for all structures the first thing to be

derived is the Green’s tensor for the given structure, as it is essential in the Green’s function

integral equation method, where an integral including said Green’s tensor is used in order to find

the surface current of the scatterer(s) in question. From the surface current the far-field can be

derived, which in turn is used to obtain the differential scattering cross section.

In order to accurately simulate these structures a finite element mesh is used, which will therefore

be described in Ch. 3, along with a review of the implementation of the presented theory and the

methods used to numerically calculate the surface current.

In Ch. 4 both the surface current and the differential scattering cross section will be simulated and

discussed for all structures, however, within this chapter simulations of a spherical scatterer in free

space will also be presented and compared to analytically obtained results, in order to evaluate

the accuracy of the numerically obtained results for the previously mentioned structures.

Lastly, an overall conclusion to this project will be presented in Ch. 5.

1.1 Modelling of Terahertz Radiation
Terahertz radiation is the part of the electromagnetic spectrum ranging between infrared radiation

and microwave radiation, with wavelengths ranging from around 1mm to 100µm. For many years

the spectrum was known as the "terahertz gap", as it is only relatively recent that practical

technologies for generation and detection of terahertz radiation have been developed. Since the

90’s, the field of terahertz radiation and spectroscopy has seen rapid development as terahertz

radiation shows great promise for a variety of applications. These include biological uses such as

determining vira[1] or detecting specific sugar molecules[2], security issues such as detection of

explosives[3] and use in nondestructive testing[4], particularly in the aerospace industry[5].

This report is focused on modelling optical antennas for use in the terahertz regime using the

Green’s function surface integral equation method, which may also be known as the method of
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moments, which is a useful method as only the surface of a scatterer needs to be taken into

consideration in order to obtain information about the field surrounding the scatterer. In this

project a finite element approach is used, where the surface is divided into triangular patches

which will be referred to as elements, where a set of mesh points are defined. Now, the solution

space of the current, which is solved for in the integral equation, is constrained to a piecewise

polynomial expansion on each element. In order to due this, the integral equation is solved for

each mesh point, which is in contrast to a typical Galerkin formulation[6, Ch. 8], where instead of

solving the problem for a sample of mesh points, one would integrate over the individual elements

with a set of basis functions. The Galerkin method with the integral equation would then require

a double integral which would be more time consuming but with the advantage of softening the

singularities. As this is not the approach used in this project, singularities have been carefully

taken into consideration.

1.2 Antennas
This section is based on [7, ch. 13]

In general an antenna is a device designed to efficiently convert radiation to localized energy and

vice versa. The most common and well known type of antenna is the radio wave antenna used in

most telecommunication. Radio wave antennas consists of metal wires, which can be treated as

perfect conductors. Running a current through the wires induces an electromagnetic field, which

then, in turn, can induce a current in another antenna wire. The principle is the same in optical

antennas, however, some considerations must be taken.

In contrast to radio wave antennas, optical antennas were originally designed for microscopy[8]. At

optical frequencies, metal nanowires, the main component of optical antennas, cannot be thought

of as perfect conductors, since the typical diameters of the wires are smaller than the skin depth

of the metal they are comprised of. This results in the electromagnetic field fully penetrating the

wires and inducing a volume current instead of pure surface currents as in radio wave antennas.

Noble-metal nanowires can also support plasmon modes with wavelengths that are shorter than

for free space, which at optical frequencies will dominate the behavior of the antenna. These

considerations result in some key design differences between optical and radio wave antennas. One

of the major differences between optical and radio wave antennas is the way an emitter or a receiver

is connected to the antenna, as the small size of the optical antennas prevents them from being

wired in a traditional way. Instead, optical antennas incorporate interconnects in their design.

As the terahertz spectrum lies between the optical and the radio spectrum, the terahertz antenna

may share properties from optical as well as radio antennas. Here the terahertz frequency may

be regarded as small in comparison to optical frequencies, thus, by using the Drude model for

the metal scatterer in the low frequency limit, the permittivity of the scatterer may be assumed

negative infinite[9], which will therefore be assumed for the scatterers in this project. This implies
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that the scatterer is assumed to be a perfect electric conductor and is thereby equivalent to the

modelling of the scattering by a regular radio antenna.

1.3 Terahertz Generation and Technology
Among the technologies that have managed to breach the terahertz gap is the photoconductive an-

tenna (PCA)[10]. Here a DC voltage is applied between a metal dipole acting as an antenna placed

on a photoconductive substrate, such as a semiconductor, where a short pulse in the timescale of a

femtosecond, with energy higher than the band gap, is used to excite carriers in the antenna gap,

resulting in a photocurrent driving the antenna. By ensuring a small lifetime for the carriers, the

temporal dependence of the current is determined by the properties of the photoconductor which,

by design, should result in a pulse lasting in the order of picoseconds with a significant part of

the radiation in the terahertz spectrum. Similarly, a PCA may be used as a terahertz detector

based on the currents that are controlled by the terahertz radiation rather than an applied DC

voltage. By assuming an expression for the generated current in the gap between the contacts, the

corresponding terahertz radiation for a PCA may be modelled with the Green’s function surface

integral equation method, however this has been out of the scope for this project.

An example of a continuous terahertz source is with photomixing[11], where the terahertz radiation

originates from two continuous wave (CW) lasers that are slightly detuned to excite a modulated

photocurrent, which may be coupled to an antenna in order to produce CW terahertz radiation.

In [12] the prospects of using a compact cylindrical microlens is examined, while in [13] a cylindrical

gradient index mircolens is optimised in order to collimate the generated terahertz radiation and

out-couple it from the semiconductor substrate in which it propagates. According to [14], the

radiated power may be amplified by utilising an array of terahertz emitters. This may either be

done by aligning discrete PCA components or by a single die integrated approach with an array

on the same substrate.
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Chapter 2

Theory

As was previously stated in Ch. 1, the aim of this project is to model terahertz antennas, also

referred to as scatterers, and their ability to manipulate terahertz radiation in various setups, and

it is therefore important to consider the physical laws that govern these phenomena. This chapter

will therefore present the derivation of important equations used in the modelling of the behavior

of electromagnetic waves in nano-optical setups. In order to do this the general wave equation

will first be derived in Sec. 2.1 before relevant equations regarding the structure of interest will

be presented, where the Green’s function integral equation method , or GFIEM, and the Green’s

function surface integral equation method , or GFSIEM, is used.

The Structure of Interest

The theory within Sec. 2.2 and throughout the rest of this chapter will be regarding a structure

as seen in Fig. 2.1, which is similar to the structure of a PCA. Here two metal scatterers with

ε1
ε2

ε3

Figure 2.1: Illustration of the structure of interest.

permittivity ε2 can be seen on top of an infinite homogeneous substrate with permittivity ε3,

however, one could easily imagine an expansion of this structure by the addition of even more

scatterers, while considering only a single scatterer would significantly simplify the structure, in

turn simplifying the calculations which will be presented within this chapter. This structure is

then further surrounded by a media with permittivity ε1, which is often considered to be that of

vacuum, that is ε1 = 1.

Within this chapter the problem of evaluating the structure in Fig. 2.1 will be split into different

subproblems. Firstly, the simplest version of this structure possible will be presented in Sec. 2.2

and Sec. 2.3, i.e. a single scatterer completely surrounded by a homogeneous media which can

easily be achieved by applying ε1 = ε3. Then a single scatterer on top of an infinite substrate
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surrounded by an otherwise homogeneous media will be described in Sec. 2.4 before multiple

scatterers will be considered in Sec. 2.5.

2.1 Derivation of the General Wave Equation
The content and derivations within this section are based on [15, Sec. 2.1].

In order to derive the general wave equation for both the electric- and the magnetic field, the

macroscopic Maxwell equations in matter[15, Ch. 2.1, Eq. 2.1-2.4]

∇ ·D(r, t) = ρ(r, t), (2.1a)

∇ ·B(r, t) = 0, (2.1b)

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1c)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (2.1d)

can be used. Here D = ε0E + P is the electric displacement for a linear, local and isotropic

media, where P is the induced polarisation density. If the displacement field is evaluated within

the frequency domain rather than within the time domain it can be found that D = ε0εE, where

ε(r, ω) is the dielectric constant. Furthermore, B = µ0H is the magnetic induction field for a

non-magnetic material, ρ and J are the free charge- and current density, respectively, while E and

H are the electric- and the magnetic field, respectively.

By assuming that the time dependence for both the electric- and the magnetic field is on the form

e−iωt, the differential terms in Eq. (2.1) can be evaluated. If the fields are then evaluated in the

frequency domain D and B can be replaced by their equivalent expressions in terms of E and H

and the Maxwell equations can be rewritten into

∇ · (ε(r)E(r)) =
ρ(r)

ε0
, (2.2a)

∇ ·H(r) = 0, (2.2b)

∇×E(r) = iωµ0H(r), (2.2c)

∇×H(r) = J(r)− iωε0ε(r)E(r), (2.2d)

where the frequency dependence has been omitted.

By isolating H in Eq. (2.2c) and inserting this into Eq. (2.2d), and likewise isolating E in Eq.

(2.2d) and inserting this into Eq. (2.2c), results in a general wave equation for both the electric-

11



Group 5.325 A, FYS10
2. Theory

and the magnetic field on the form

∇×∇×E(r) = iωµ0 (J(r)− iωε0ε(r)E(r))

⇒ −∇×∇×E(r) + k2
0ε(r)E(r) = −iωµ0J(r), (2.3a)

∇× 1

ε(r)
∇×H(r)−∇× 1

ε(r)
J(r) = −iωε0 (iωµ0H(r))

⇒ −∇× 1

ε(r)
∇×H(r) + k2

0H(r) = −∇× 1

ε(r)
J(r). (2.3b)

These wave equations have to be fulfilled within both the scatterer and the surrounding media,

however, the fields across the interface between these two have to be continuous and some boundary

conditions for both the electric- and the magnetic field should therefore be considered. A more in

depth derivation of these boundary conditions can be found in App. A, where they in Eq. (A.3)

are found to be1

n̂ · (ε2E2(r)− ε1E1(r)) =
ρs(r)

ε0
, (2.4a)

n̂ · (H2(r)−H1(r)) = 0, (2.4b)

n̂× (E2(r)−E1(r)) = 0, (2.4c)

n̂× (H2(r)−H1(r)) = Js(r), (2.4d)

where ρs(r) and Js(r) are the free surface charge- and current density respectively, while n̂ is

the surface normal vector, which always points away from the scatterer and into the surrounding

media. Furthermore, it should be noted that the boundary conditions in Eq. (2.4a) and Eq.

(2.4b) relate to the transverse field components while the boundary conditions in Eq. (2.4c) and

Eq. (2.4d) relate to the tangential field components.

2.2 Green’s Function for a Homogeneous Medium
The content and derivations within this section are based on [7, Sec. 2.12 and Sec. 2.13] and [15,

Sec. 6.2 and Sec. 9.1].

In order to accurately find both the electric- and the magnetic field one can use Green’s functions,

where it is useful to first introduce the dyadic Green’s function, as the electric- and the magnetic

field can be expressed as volume integral equations including said Green’s tensor as seen in Eq.

(2.22). From these equations the electric and magnetic field integral equations for a perfect con-

ductor, Eq. (2.64) and Eq. (2.65) respectively, can be found, which in turn are used to derive the

surface current in Eq. (2.75). However, before it can be introduced the mathematical basis behind

it should be presented.

1From this point on the notation Ei(r) will be used instead of E(r) in region i. This notation will further extend
to the magnetic field along with the permittivity.

12



2.2. Green’s Function for a Homogeneous Medium Aalborg University

2.2.1 Mathematical Basis of the Dyadic Green’s Function

If one is presented with an inhomogeneous differential equation on the form

LA(r) = B(r), (2.5)

where L is a linear operator, A(r) is an unknown response of the system and B(r) is a known

source function, causing the inhomogeneity, that is B(r) 6= 0, then the task of solving this equation

can be rather difficult. However, by using that L is linear it is known that a general solution to

Eq. (2.5) can be expressed as the sum of the complete homogeneous solution, A0, and a particular

inhomogeneous solution. In order to find such an arbitrary inhomogeneous particular solution,

when A0 is known, one can use the special inhomogeneity, δ(r− r′), for which it is known that

L
←→
G(r, r′) =

←→
I δ(r− r′). (2.6)

Here
←→
G(r, r′) is the dyadic Green’s function, also referred to as the Green’s tensor, where r is the

point of evaluation and r′ is the position of the field source, while
←→
I is the unit dyad. If it is then

assumed that
←→
G(r, r′) has been found, then Eq. (2.6) can be rewritten by multiplying by B(r′)

from the right and afterwards integrating over the volume of interest, which yields∫
V

L
←→
G(r, r′)B(r′)d3r′ =

∫
V

←→
I B(r′)δ(r− r′)d3r′ = B(r). (2.7)

By inserting Eq. (2.5) into this equation, it is straight forward to find an expression of A(r) on

the form

A(r) =

∫
V

←→
G(r, r′)B(r′)d3r′. (2.8)

2.2.2 Derivation of the Green’s Function from the Electric- and the

Magnetic Field

In order to find the unknown response of the system by solving Eq. (2.8),
←→
G(r, r′) has to be

known, though, it has yet to be found. In order to find this dyadic Green’s function one can use

either the electric- or the magnetic field, however, within this section both fields will be used in

order to achieve an expression for both fields that is dependent on
←→
G(r, r′). It should further be

noted that the Green’s functions which will be derived here are only valid in a single region at a

time, hence ε(r) is a region dependent constant, due to each region being homogeneous.

Firstly, the electric- and the magnetic field can be rewritten into the form

E(r) = iωA(r)−∇ϕ(r), (2.9a)

H(r) =
1

µ0
∇×A(r), (2.9b)

where B(r) has been expressed using a time-harmonic vector potential, A(r), as B(r) = ∇×A(r),

and ϕ(r) is a scalar potential, introduced when removing∇× in the electric field, since∇×∇ϕ(r) =
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0. These fields can then be inserted into Eq. (2.2d) yielding

∇×∇×A(r) = µ0J(r)− iωµ0ε0ε (iωA(r)−∇ϕ(r)) . (2.10)

As neither A(r) nor ϕ(r) are uniquely defined, the Lorenz gauge condition can be used such that

ϕ(r) =
1

iωµ0ε0ε
∇ ·A(r), (2.11)

and Eq. (2.10) can then be written on the form

∇×∇×A(r) = µ0J(r) + k2
0εA(r) +∇∇ ·A(r). (2.12)

Then the vector identity, ∇×∇× = −∇2 +∇∇· , can be used to further rewrite this expression

into the Helmholtz equation (
∇2 + k2

0ε
)
A(r) = −µ0J(r). (2.13)

A similar expression can be found for ϕ(r) by inserting Eq. (2.9a) into Eq. (2.2a) yielding

∇ (ε (iωA(r)−∇ϕ(r))) =
ρ(r)

ε0

⇒ ∇ε · (iωA(r)−∇ϕ(r)) + ε∇ · (iωA(r)−∇ϕ(r)) =
ρ(r)

ε0
. (2.14)

By then inserting Eq. (2.11) into this expression one finds that(
∇2 + k2

0ε
)
ϕ(r) = −ρ(r)

ε0ε
. (2.15)

It is easily seen that all three scalar equations in Eq. (2.13) (Ax(r), Ay(r) and Az(r)) and the

scalar equation in Eq. (2.15) are all on the form(
∇2 + k2

0ε
)
f(r) = −g(r), (2.16)

where the scalar Green’s function appropriate for this inhomogeneous differential equation, g(r, r′),

will satisfy (
∇2 + k2

0ε
)
g(r, r′) = −δ(r− r′). (2.17)

By realising that Eq. (2.16) is on the same form as in Eq. (2.5) one can by the same logic presented

in Sec. 2.2.1 find an expression for A(r) and ϕ(r) on the same form as in Eq. (2.8), hence

A(r) = µ0

∫
V

g(r, r′)J(r)d3r′, (2.18a)

ϕ(r) =
1

ε0ε

∫
V

g(r, r′)ρ(r)d3r′. (2.18b)

However, in order to find A(r) or ϕ(r) from these integrals, g(r, r′) has to be known. It can be

shown[16, Sec. 6.4] that

g(r, r′) =
e±ik0

√
ε|r−r′|

4π |r− r′|
, (2.19)

for a homogeneous three-dimensional media, where the sign denotes the direction of propagation

of the spherical wave; that is ′+′ denotes a wave propagating away from the singularity, while

14
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′−′ denotes a wave that propagates towards it. From this point on only the radiating boundary

condition will be considered, ensuring only outwards propagating waves, where the fields vanishes

as the distance to the singularity increases.

While g(r, r′) is sufficient when the electric- and the magnetic field is expressed in terms of a

vector- and a scalar potential, the dyadic Green’s function has to be considered when this is not

the case. The reason why g(r, r′) is insufficient in this case is that a source current in one direction,

e.g. in the x-direction, will cause an electric- and a magnetic field with components in all three

directions (x, y and z), as can be seen in Eq. (2.2c) and Eq. (2.2d), while the same source current

will only lead to a vector potential with a single component in the same direction as the source

current, as seen in Eq. (2.13).

In order to determine
←→
G(r, r′) for the electric- and the magnetic field, Eq. (2.3a) and Eq. (2.3b)

should be considered respectively. These can be recalled as

−∇×∇×E(r) + k2
0εE(r) = −iωµ0J(r),

−∇×∇×H(r) + k2
0εH(r) = −∇× J(r),

for a homogeneous material. Similarly to Eq. (2.17) it can be found that the dyadic Green’s

function appropriate for these differential equations satisfies

−∇×∇×
←→
G(r, r′) + k2

0ε
←→
G(r, r′) = −

←→
I δ(r− r′), (2.20)

where E(r) and H(r) can be found to be

E(r) = iωµ0

∫
V

←→
G(r, r′)J(r′)d3r′, (2.21a)

H(r) =

∫
V

(
∇×

←→
G(r, r′)

)
J(r′)d3r′, (2.21b)

by the same arguments presented in order to derive Eq. (2.18). However, as mentioned in Sec.

2.2.1 the general solution is the sum of a homogeneous solution and a particular inhomogeneous

solution, as the ones just found, and the general solution of E(r) and H(r) can therefore be

expressed as

E(r) = E0(r) + iωµ0

∫
V

←→
G(r, r′)J(r′)d3r′, (2.22a)

H(r) = H0(r) +

∫
V

(
∇×

←→
G(r, r′)

)
J(r′)d3r′, (2.22b)

which are also known as the volume integral equations.

The last step in order to be able to accurately determine the electric- and the magnetic field from

these equations is to find an expression for
←→
G(r, r′). In order to do this the Lorenz gauge in Eq.
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(2.11) is used in Eq. (2.9a), yielding

E(r) = iωA(r)− 1

iωµ0ε0ε
∇∇ ·A(r)

= iω
(

1 +
1

k2
0ε
∇∇·

)
A(r). (2.23)

If then a single component of Eq. (2.20) is considered, e.g.

−∇×∇×Gx(r, r′) + k2
0εGx(r, r′) = −δ(r− r′)Ix, (2.24)

and compared to the wave equation for the electric field, it is easily recognised that G(r, r′) = E(r)

if J(r) = (iωµ0)−1δ(r− r′)nx. If this current is then used in Eq. (2.18a) it can be found that

A(r) = µ0

∫
V

g(r, r′)
1

iωµ0
δ(r− r′)Ixd

3r′

=
1

iω
g(r, r′)Ix, (2.25)

which can then be used in Eq. (2.23), yielding

Gx(r, r′) =

(
1 +

1

k2
0ε
∇∇·

)
g(r, r′)Ix. (2.26)

The dyadic Green’s function can therefore be expressed as

←→
G(r, r′) =

(
←→
I +

1

k2
0ε
∇∇

)
g(r, r′), (2.27)

where ∇ · (g(r, r′)
←→
I ) = ∇g(r, r′) has been used.

2.2.2.1 Validation of the Green’s Functions

Up until this point g(r, r′) and
←→
G(r, r′) from Eq. (2.19) and Eq. (2.27) respectively, have been

assumed to be solutions to Eq. (2.17) and Eq. (2.20), however, it has yet to be validated.

In order to prove that Eq. (2.19) is in fact a solution to Eq. (2.17) it should first be shown that

(∇2 + k2
0ε)g(r, r′) = 0 for r 6= r′. (2.28)

To ease the calculations, the singularity of the Green’s function is set at the origin, r′ = 0, without

loss of generality as this corresponds to a translation of the coordinates. When evaluating Eq.

(2.28) it is useful to know that ∇r = r
r , where r = |r|, and ∇2r = 2

r when r is three-dimensional.

If Eq. (2.28) is then evaluated one term at a time it can be found that

∇g(r,0) =

(
ik0

√
ε− 1

r

)
r

r
g(r,0). (2.29)

By then using the chain rule for a vector product, ∇ · (fA) = ∇f ·A + f∇ ·A, it can further be

found that

∇2g(r,0) =

(
−k2

0ε−
ik0
√
ε

r
− ik0

√
ε

r
+

2

r2

)
g(r,0) +

(
ik0

√
ε− 1

r

)
2

r
g(r,0)

=

(
−k2

0ε+
2

r2
− 2

ik0
√
ε

r
+ 2

ik0
√
ε

r
− 2

r2

)
g(r,0) = −k2

0εg(r,0), (2.30)

hence Eq. (2.28) is satisfied when g(r, r′) is given as in Eq. (2.19), where r 6= r′ as the derivatives

16
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are not defined at this point.

Next, the value at the singularity should be evaluated by integration, which must yield −1 if the

singularity is contained in order to verify Eq. (2.17). By choosing a sphere of radius R in the

limit of R → 0 centered around the singularity for integration, this can be shown to be true by

evaluating each term separately. By first evaluating the first term, using Gauss’s theorem (Eq.

(A.1a)), it can be found that

lim
R→0

∮
S

∇eik0
√
εr

4πr
· r̂d2r = − lim

R→0

∮
S

1

4πr2
d2r = −1, (2.31)

where it has been used that the surface area of a sphere with radius r is 4πr2. Then the second

term of Eq. (2.17) can be evaluated as

k2
0ε lim

R→0

∫
V

eik0
√
εr

4πr
d3r = k2

0ε lim
R→0

∫ R

0

rdr = k2
0ε lim

R→0

R2

2
= 0, (2.32)

hence Eq. (2.17) is satisfied.

Now, in order to show that Eq. (2.27) is in fact a solution to Eq. (2.20),
←→
G(r, r′) is substituted

into said equation while using the identity ∇× (∇×A) = ∇∇ ·A−∇2A, hence(
∇2 −∇∇ ·+k2

0ε
)(←→

I +
1

k2
0ε
∇∇

)
g(r, r′)

= (∇2←→I −∇∇ ·
←→
I + k2

0ε
←→
I +

1

k2
0ε
∇2∇∇− 1

k2
0ε
∇∇2∇+∇∇)g(r, r′)

=
(
∇2←→I + k2

0ε
←→
I
)
g(r, r′). (2.33)

As it has just been shown that (∇2 + k2
0ε)g(r, r′) = −δ(r − r) it is immediately obvious that

−∇×∇×
←→
G(r, r′) + k2

0ε
←→
G(r, r′) = −

←→
I δ(r− r′), hence Eq. (2.27) satisfies Eq. (2.20).

However,
←→
G(r, r′) has yet to be explicitly determined, which can be done by analytically evaluating

Eq. (2.27) where Eq. (2.19) has been inserted. If the second term in Eq. (2.27) is evaluated one

term at a time, and it is used that ∇R = R
R , where R = |R| = |r− r′|, and ∇∇R = 1

R

←→
I − RR

R3 , it

can be found that

∇g(r, r′) =

(
ik0

√
ε− 1

R

)
R

R
g(r, r′). (2.34)

By then using that ∇(fA) = (∇f)A + f(∇A), it can further be found that

∇∇g =

([
ik0

√
ε

(
ik0

√
ε− 1

R

)
− 1

R

(
ik0

√
ε− 1

R

)
+

1

R2

]
RR

R2

+

[
ik0

√
ε− 1

R

] [
1

R

←→
I − RR

R3

])
g(r, r′)

=

([
−k2

0ε−
2ik0
√
ε

R
+

2

R2

]
RR

R2
+

[
ik0

√
ε− 1

R

] [
1

R

←→
I − RR

R3

])
g(r, r′)

=

([
−k2

0ε−
3ik0
√
ε

R
+

3

R2

]
RR

R2
+

[
ik0
√
ε

R
− 1

R2

]
←→
I

)
g(r, r′), (2.35)
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yielding

←→
G(r, r′) =

([
1 +

i
k0
√
εR
− 1

k2
0εR

2

]
←→
I −

[
1 +

3i
k0
√
εR
− 3

k2
0εR

2

]
RR

R2

)
g(r, r′). (2.36)

2.2.2.2 The Far-Field of the Dyadic Green’s Function

Up until this point the electric- and magnetic field just at the surface of the scatterer has been

considered, however, as mentioned in Ch. 1 an antenna is used to receive and emit a signal. In

the case where the antenna is used for emitting signals the far-field is of interest, since this is the

detectable signal.

In the far-field
←→
G(r, r′) can be expressed in spherical coordinates where the unit vectors are defined

as

r̂ =
r

r
,

θ̂ = x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ,

ϕ̂ = −x̂ sinϕ+ ŷ cosϕ.

In the limit of far-field where r′ is close to the center of the sphere compared to r most terms in

Eq. (2.36) vanishes due to R being large, hence

←→
G(ff)(r, r′) =

(
←→
I − RR

R2

)
g(r, r′). (2.37)

By then using that

R = |r− r′| =
√

(r− r′) · (r− r′) =
√
r2 − 2r · r′ + r′2 ≈ r − 2rr̂ · r̂′

2r
r′ = r − r′ · r̂, (2.38)

where r � r′ has been used in order to make a second order Taylor expansion, and r′ = r′r̂′ has

been applied, along with
←→
I = r̂r̂ + θ̂θ̂ + ϕ̂ϕ̂, it can be found that

←→
G(ff)(r, r′) =

(
θ̂θ̂ + ϕ̂ϕ̂

) eik0
√
εr

4πr
e−ik0

√
εr′ ·̂r, (2.39)

when Eq. (2.19) is inserted, as RR
R2 in the far-field reduces to r̂r̂.

When considering the far-field it is furthermore relevant to consider the scattering cross section,

as it represents the cross sectional area for which the field is prevented from propagating forward.

The scattering cross section reveals how well the incident field couples with the corresponding

metal nanoparticle, e.g. the antenna, resulting in surface currents that are dissipated in the form

of a scattered far-field. The scattering cross section can be much larger than the physical cross

section of the scatterer, which is evident in the case of resonant metal nanoparticles in which case

the field couples well with the scatterer. The scattering cross section is obtained by normalising

the scattered power by the incident power per unit area, and represents how much the scatterer

influences the incident field. In the case of no absorption, the differential scattering cross section

(DSCS) for an incident plane wave propagating along −ẑ with the incident field Ei may be written

18



2.2. Green’s Function for a Homogeneous Medium Aalborg University

with respect to the electric field as

∂σ

∂Ω
(r) =

|E(ff)
scat (r)|2

|E0|2
r2 for θ < π/2 (2.40a)

∂σ

∂Ω
(r) =

n3

n1

|E(ff)
scat (r)|2

|E0|2
r2 for θ > π/2 (2.40b)

where n1 and n3 are the indices of refraction above and below the scatterer respectively, which

comes from the magnitude of the Poynting vector going as |S| = n|E|2, while E
(ff)
scat (r) is the field

scattered by the antenna. The scattering cross section is then given by integrating over the DSCS

over the upper half of a unit sphere

σ =

∫ π/2

0

∫ 2π

0

∂σ

∂Ω
(r) sin θdϕdθ. (2.41)

2.2.2.3 Reciprocity

The theorem of reciprocity states, in general, that the source and detector of an electromagnetic

system may be interchanged without affecting the physical situation. To derive the theorem two

spatially separate volumes V1 and V2, with current densities J1 and J2, respectively, are considered.

For simplicity only monochromatic fields are considered, where J1 induces E1 and H1, while J2

induces E2 and H2. The Maxwell curl equations for the two fields (Eq. (2.1c) and Eq. (2.1d)) are

then given by

∇×E1 = iωB1, (2.42a)

∇×H1 = −iωD1 + J1, (2.42b)

∇×E2 = iωB2, (2.42c)

∇×H2 = −iωD2 + J2. (2.42d)

Multiplying Eq. (2.42a) by H2, Eq. (2.42b) by E2, Eq. (2.42c) by H1 and Eq. (2.42d) by E1, all

from the left, and then subtracting the sum of Eq. (2.42c) and Eq. (2.42d) from the sum of Eq.

(2.42a) and Eq. (2.42b) yields

(H2 · ∇ ×E1 −E1 · ∇ ×H2) + (E2 · ∇ ×H1 −H1 · ∇ ×E2)

= iω(H2 ·B1 −H1 ·B2)− iω(E2 ·D1 −E1 ·D2) + (E2 · J1 −E1 · J2). (2.43)

By using that ∇ · (A × B) = (∇ × A) · B − A · (∇ × B), along with the scalar product being

commutative, in this case Hi · (∇×Ej) = (∇×Ej) ·Hi, the LHS can be rewritten as

LHS = ∇ · (E1 ×H2 −E2 ×H1). (2.44)

The first two terms on the RHS cancel, since H2 ·B1 = H1 ·B2 and E2 ·D1 = E1 ·D2, and Eq.

(2.43) therefore reduces to

∇ · (E1 ×H2 −E2 ×H1) = (J1 ·E2 − J2 ·E1), (2.45)

which is known as the Lorentz reciprocity theorem.
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When integrating Eq. (2.45) over a spherical volume with a large radius, assuming that all objects

and sources are finite in size, so that the far-fields are transverse to the surface normal of the

volume, making the LHS vanish, and furthermore applying Gauss’s theorem, the following is

obtained ∫
V1

J1 ·E2d
3r =

∫
V2

J2 ·E1d
3r. (2.46)

The fields E1 and E2 can then be expressed in terms of their source currents by means of the

Green’s tensor,
←→
G, using Eq. (2.21a) which leads to

←→
G(r1, r2) =

←→
G(r2, r1). (2.47)

From this it can be seen that the theorem of reciprocity, implies that the Green’s tensor is sym-

metric and is therefore unaffected by interchanging the source and detector.

2.3 Surface Integral Equations
The content and derivations within this section are based on [15, Sec. 9.1].

While the current density can be found using the volume integral equations from Eq. (2.22),

only the surface current density is relevant due to the approximation that the antenna is a perfect

electric conductor , or a PEC, as mentioned in Ch. 1. While the surface current density can be

found from the total current density, it significantly simplifies the calculations if it is instead found

using surface integral equations, as this only requires a mesh on the surface of the antenna rather

than a mesh of the entire volume. A further explanation of the finite element mesh used in this

project will be given in Sec. 3.1.

2.3.1 Derivation of the Surface Integral Equations

Consider a situation as illustrated in Fig. 2.2, where a scatterer with dielectric constant ε2 is

embedded in a homogeneous region with dielectric constant ε1. Furthermore, the region inside the

scatterer is designated Ω2, the region outside it is designated Ω1, and the scatterer is illuminated

by an incident field E0(r). The vector wave equation for the electric field in a homogeneous region,

Ωi, with the associated dielectric constant εi, was found in Eq. (2.3a), while the Green’s tensor

for the same homogeneous medium was found in Eq. (2.20). These can be recalled as

−∇×∇×E(r) + k2
0εiE(r) = −iωµ0J(r), r ∈ Ωi,

and

−∇×∇×
←→
Gi(r, r

′) + k2
0εi
←→
Gi(r, r

′) = −
←→
I δ(r− r′),

respectively, and from these the surface integral equations will be derived.

By multiplying the vector wave equation for the electric field by
←→
Gi(r, r

′) from the right and

multiplying the equation for the Green’s tensor by E(r) from the left before then subtracting the
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E0

n1^

n2=n^ ^

n1,∞^

S1
S1,∞
S2

Ω2
Ω1
ε1 ε2

(r)

Figure 2.2: Illustration of a three-dimensional scatterer within an otherwise homo-
geneous medium. S1 and S2 denotes a line just outside and inside the scatterer
respectively, while S1,∞ represents a spherical line surrounding both media infinitely
far away from the scatterer. This illustration is inspired by [15, Fig. 9.1].

newly achieved equation for the Green’s tensor from the newly achieved vector wave equation

yields

(−∇×∇×E(r)) ·
←→
Gi(r, r

′) + E(r) ·
(
∇×∇×

←→
Gi(r, r

′)
)

= −iωµ0J(r) ·
←→
Gi(r, r

′) + E(r)δ(r− r′). (2.48)

Now the LHS and the RHS can be integrated with respect to r over region Ωi, which for the RHS

yields

RHS = −E0,i(r
′) + E(r′), r′ ∈ Ωi, (2.49)

where the incident field in the region is defined from Eq. (2.21a) as

E0,i(r
′) = iωµ0

∫
Ωi

←→
Gi(r

′, r) · J(r)d3r, (2.50)

and the property of reciprocity from Eq. (2.47),

J(r) ·
←→
Gi(r, r

′) =
←→
Gi(r

′, r) · J(r), (2.51)

has been utilized.

The integral over Ωi of the LHS can, using the vector property∇·(A×B) = (∇×A)·B−A·(∇×B),

be written as

LHS =

∫
Ωi

[
−∇ ·

(
{∇ ×E(r)} ×

←→
Gi(r, r

′)
)
− (∇×E(r)) ·

(
∇×

←→
Gi(r, r

′)
)

−∇ ·
(
E(r)×

{
∇×

←→
Gi(r, r

′)
})

+ (∇×E(r)) ·
(
∇×

←→
Gi(r, r

′)
)]
d3r

=

∫
Ωi

−∇ ·
[(
{∇ ×E(r)} ×

←→
Gi(r, r

′)
)

+
(
E(r)×

{
∇×

←→
Gi(r, r

′)
})]

d3r, (2.52)
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where it in the first term of Eq. (2.48) has been used that A = ∇×E(r) and B =
←→
Gi(r, r

′) while

it in the second term has been used that A = E(r) and B = ∇×
←→
Gi(r, r

′).

Applying Gauss’s theorem, Eq. (A.1a), one can convert Eq. (2.52) to a surface integral over the

surface of Ωi, designated ∂Ωi, hence

LHS =

∮
∂Ωi

−n̂i ·
[
{∇ ×E(r)} ×

←→
Gi(r, r

′) + E(r)×
{
∇×

←→
Gi(r, r

′)
}]

d2r, (2.53)

where n̂i is the surface normal vector pointing out from Ωi. Using the vector property A·(B×C) =

(A×B) ·C, Eq. (2.53) can then be further rewritten as

LHS =

∮
∂Ωi

−
[
(n̂i × {∇×E(r)}) ·

←→
Gi(r, r

′) + (n̂i ×E(r)) ·
(
∇×

←→
Gi(r, r

′)
)]
d2r. (2.54)

Now the LHS from Eq. (2.54) can be combined with the RHS from Eq. (2.49), however, before

doing so it is convenient to introduce the electric- and the magnetic surface current densities of

the surface of Ωi, which are defined as

Js,i(r) ≡ −n̂i ×H(r), r on ∂Ωi, (2.55a)

Ms,i(r) ≡ n̂i ×E(r), r on ∂Ωi, (2.55b)

respectively. By these definitions, along with ∇ × E(r) = iωµ0H(r) form Eq. (2.2c), Eq. (2.48)

yields

E(r′) = E0,i(r
′) + iωµ0

∮
∂Ωi

Js,i(r) ·
←→
Gi(r, r

′)d2r −
∮
∂Ωi

Ms,i(r) ·
(
∇×

←→
Gi(r, r

′)
)
d2r. (2.56)

Though, here E0,i, E and the integrals depend on r′ and for convenience this should therefore be

rewritten such that E0,i, E and the integrals instead depend on r. While this is straightforward

for E0,i, E and the first integral due to the reciprocity condition, previously applied to find Eq.

(2.49), the coordinates in the second integral are not as easily interchanged. It can be seen in Eq.

(2.36) that
←→
G(r, r′) does not depend on neither r nor r′ independently. Instead it depends on R,

where it can be recalled that R = |R| = |r− r′|, hence

∇×
←→
Gi(r, r

′) = −∇′ ×
←→
Gi(r

′, r). (2.57)

Inserting Eq. (2.57) into the reciprocity condition in Eq. (2.51), yields

Ms,i(r) ·
(
∇×

←→
Gi(r, r

′)
)

=
(
∇′ ×

←→
Gi(r

′, r)
)
·Ms,i(r)

= −
(
∇×

←→
Gi(r, r

′)
)
·Ms,i(r), (2.58)

which allows for Eq. (2.56) to be rewritten as

E(r) = E0,i(r) + iωµ0

∮
∂Ωi

←→
Gi(r, r

′) · Js,i(r′)d2r′ −
∮
∂Ωi

∇×
←→
Gi(r, r

′) ·Ms,i(r
′)d2r′, (2.59)

which is known as the surface integral equation for the electric field.
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2.3.1.1 Green’s Function Surface Integral Equations for a Scatterer Embedded in a

Homogeneous Region

For a dielectric or metal scatterer that is not a PEC, (or a perfect magnetic conductor, PMC), the

tangential electric- and magnetic field must be continuous across the surface of the scatterer. The

electric and magnetic currents will therefore be identical on both sides of the scatterer surface,

hence for convenience Eq. (2.55a) and Eq. (2.55b) can be redefined in terms of only one of the

surface normal vectors, in this case the outward normal vector, leading to Js,i being replaced by

Js, and Ms,i being replaced by Ms. While this change does not affect Eq. (2.55a) and Eq. (2.55b)

outside the scatterer, it leads to a change in signs inside the scatterer, due to the opposite sign of

n̂.

Furthermore it can be shown that the integrals on the RHS in Eq. (2.59) vanishes when integrating

over the spherical surface denoted by S1,∞ in Fig. 2.2 due to the Green’s tensor satisfying the

radiating boundary condition, as briefly described in Sec. 2.2.2. Lastly it should be noted that,

as can be seen in Fig. 2.2, an incident field will only be present in region Ω1, hence E0,2 = 0 and

E0,1 will therefore be replaced by E0.

From Eq. (2.59) it can then be seen that the electric field outside the scatterer in a homogeneous

medium at position r ∈ Ω1, is given by the integral over the outer surface of the scatterer, denoted

as S1 in Fig. 2.2, hence

E(r) = E0(r) + iωµ0

∮
S1

←→
G1(r, r′) · Js(r′)d2r′ −

∮
S1

∇×
←→
G1(r, r′) ·Ms(r

′)d2r′, (2.60)

while the electric field inside the scatterer at position r ∈ Ω2, is given by the integral over the

inner surface of the scatterer, denoted as S2, yielding

E(r) = −iωµ0

∮
S2

←→
G2(r, r′) · Js(r′)d2r′ +

∮
S2

∇×
←→
G2(r, r′) ·Ms(r

′)d2r′. (2.61)

The electric- and magnetic surface currents on the surface of the scatterer are equal to the ones

inside the scatterer, and are therefore given by

Js(r) = n̂×H(r), r on scatterer surface, (2.62a)

Ms(r) = −n̂×E(r), r on scatterer surface, (2.62b)

where n̂, once again, is the surface normal vector pointing into Ω1, which in Fig. 2.2 is denoted

as n̂2.

By letting the position r approach the scatterer surface from both sides, the surface currents can

be obtained from Eq. (2.60) and Eq. (2.61), which leads to the electric field integral equations
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outside and inside the scatterer respectively

−Ms(r) = n̂×E0(r) + iωµ0

∮
S1

[n̂×
←→
G1(r, r′)] · Js(r′)d2r′ −

∮
S1

[n̂×
←→
G1(r, r′)] ·Ms(r

′)d2r′,

r infinitesimally outside scatterer surface, (2.63a)

−Ms(r) = −iωµ0

∮
S1

[n̂×
←→
G1(r, r′)] · Js(r′)d2r′ +

∮
S1

[n̂×
←→
G1(r, r′)] ·Ms(r

′)d2r′,

r infinitesimally inside scatterer surface. (2.63b)

Similar expressions can be found using the magnetic field by applying Eq. (2.2c), however, this

will only be shown for a PEC in Sec. 2.3.1.2.

2.3.1.2 Derivation of the Surface Current for a Perfect Electric Conductor Using

the Magnetic Field Integral Equation

Up until this point a scatterer that is not a PEC has been considered, however, if it is a PEC,

as is the case for terahertz antennas, the electric- and the magnetic field are both zero just inside

the surface of the scatterer, and all the way through, causing the tangential component of E(r) to

vanish, which leads to Eq. (2.63a) being equal to Eq. (2.63b), hence Ms = 0. Eq. (2.60) therefore

reduces to

E(r) = E0(r) + iωµ0

∮
S1

←→
G1(r, r′) · Js(r′)d2r′, (2.64)

which is known as the electric field integral equation, or EFIE, while Eq. (2.61) becomes irrelevant.

Thus, from this point on it will be implicit that the integral is over S1.

In Eq. (2.62a) it can be seen that the electric surface current is defined using the magnetic field,

and Eq. (2.2c) should therefore be applied to Eq. (2.64) in order to obtain the magnetic field

integral equation, or MFIE,

H(r) = H0(r) +

∮
∇×

(←→
G(r, r′) · Js(r′)

)
d2r′, (2.65)

which has been multiplied by 1
iωµ0

. This expression can then be written in terms of Js(r) by using

Eq. (2.62a), yielding

Js(r) = J0(r) +

∮
n̂×∇×

←→
G(r, r′) · Js(r′)d2r′, (2.66)

which can be further rewritten using that ∇ ×
←→
G(r, r′) = ∇ ×

←→
I g(r, r′) from Eq. (2.27), along

with ∇× (
←→
I g(r, r′)Js(r

′)) = ∇g(r, r′)× Js(r
′) due to ∇ only affecting the unmarked coordinates

and g(r, r′) being a scalar. This leads to Eq. (2.66) being expressed as

Js(r) = J0(r) +

∮
n̂× (∇g(r, r′)× Js(r

′)) d2r′, (2.67)

which can then again be rewritten by the vector identity A× (B×C) = B(A ·C)−C(A ·B) as

Js(r) = J0(r) +

∮
(∇g(r, r′) [n̂ · Js(r′)]− Js(r

′) [n̂ · ∇g(r, r′)]) d2r′. (2.68)
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If then the expression for g(r, r′) from Eq. (2.19) is inserted the integrand can be found to be(
ik0

√
ε− 1

R

)
eik0
√
εR

4πR

(
R

R
[n̂ · Js(r′)]− Js(r

′)

[
n̂ · R

R

])
, (2.69)

where it has been used that ∇R = R
R , as was the case in Sec. 2.2.2.1.

In order to then evaluate the scalar products, when the surface and the surface current density

are smooth, Js(r′) and R
R in the first and second term respectively can be Taylor expanded on the

surface with respect to R. This leads to 0th order terms orthogonal to n̂, hence the scalar product

vanishes for these terms, leaving the most divergent terms proportional to 1
R . Fortunately, the

integral in Eq. (2.68) yields a finite contribution as in the limit R → 0 the contribution from

an arbitrarily small circle around the singularity is bounded. However, in this case, the term

proportional to 1
R2

R
R [n̂ · Js(r′)] vanishes as the opposite points on the circle will cancel each other

for a smooth surface, though this is not the case for the other term. This term may be written as

eik0
√
εR

4πR2
Js(r

′)

[
n̂ · R

R

]
=

eik0
√
εR

4πa22(1− cos θ)
Js(r

′)

[
r̂ · a(1− cos θ)r̂ + a sin θp̂

a
√

2(1− cos θ)

]

=
eik0
√
εR

4πa223/2
√

1− cos θ
Js(r

′), (2.70)

where it has been used that R = a(1− cos θ)r̂+a sin θp̂ and R = a
√

2(1− cos θ) for a sphere with

radius a such that r = ar̂ and r′ = a cos θr̂+ a sin θp̂, where n̂ = r
|r| and n̂ · p̂ = 0. An illustration

of the connection between r, r′ and θ can be seen in Fig. 2.3.

Figure 2.3: Illustration of the points r and r′ with the angle θ between them.

In the vicinity of the singularity Eq. (2.70) reduces to

lim
r′→r

eik0
√
εR

4πa223/2
√

1− cos θ
Js(r

′) =
1

8πθa2
Js(r), (2.71)

where cos θ has been Taylor expanded to the 2nd order. When integrating this over a small circle

around the singularity, using a fixed θ, a radial density can be found to be Js(r)
4a , which at the

limit infinitely close to the singularity is constant, so this contribution from the singularity is not

significant, and will thus be ignored.

Finally, one should consider that r′ is chosen infinitesimally outside the scatterer, such that the

function is defined when r′ approaches r, in which case n̂ · RR is nonzero. If instead of integrating

around the singularity one integrates over it, then the integral over the LHS in Eq. (2.70) can be
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written as ∫
limr′→r

eik0
√
εR

4πR2
Js(r

′)

[
n̂ · R

R

]
d2r′, (2.72)

where 1
R2 n̂ · RR d

2r′ = dΩ corresponds to a projection onto a unit sphere, leading to the integral

being rewritten in terms of the solid angle as

1

4π

∫
limr′→r

Js(r)dΩ. (2.73)

Integrating over an infinitesimally small area, in which the singularity is located, corresponds to

integrating over a half sphere, as r′ is infinitesimally close to the surface of the scatterer. The

integral in Eq. (2.73) therefore becomes

1

4π

∫ π/2

0

∫ 2π

0

sin θJs(r)dθdϕ =
1

2
Js(r). (2.74)

This contribution from the singularity may then be subtracted from the original expression in Eq.

(2.68) yielding

1

2
Js(r) = J0(r) +

∫
(∇g(r, r′) [n̂ · Js(r′)]− Js(r

′) [n̂ · ∇g(r, r′)]) d2r′, (2.75)

where the integral is over the entire scatterer surface, as in Eq. (2.68), with the exception of the

singularity.

The result in Eq. (2.75) can now be utilised to model the surface current of a scatterer particle in

a homogeneous medium, e.g. a vacuum. The implementation and the numerical solving of these

integrals is explained in depth in Sec. 3.2.

2.4 Layered Structure
The content and derivations within this section are based on [15, Sec. 6.3].

In Fig. 2.1 the structure of interest throughout this report was shown as multiple scatterers on

top of an infinite substrate, however, since Sec. 2.2 and Sec. 2.3 only considered a structure

with a scatterer in a homogeneous media, a scatterer on top of an infinite substrate has yet to be

discussed, which is therefore the aim of this section. Due to the small size of the terahertz antenna,

it is likely to be integrated on the surface of a substrate, which e.g. is the case for a PCA, hence

why the substrate must be taken into account for the scattering problem.

2.4.1 Green’s Function For a Layered Structure

The scalar Green’s function that satisfies the radiating boundary condition and the dyadic Green’s

tensor in a homogeneous media were in Sec. 2.2.2 found in Cartesian coordinates, and can be
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recalled from Eq. (2.19) and Eq. (2.27), respectively, as

g(r, r′) =
eik0
√
ε|r−r′|

4π |r− r′|
,

←→
G(r, r′) =

(
←→
I +

1

k2
0ε
∇∇

)
g(r, r′).

In the case of a homogeneous medium Cartesian coordinates suffice, however, in the case of a

second substrate the calculations can be simplified by using cylindrical coordinates instead. The

reason for this is that the wave number does not depend on its orientation within the xy plane,

hence an integral in Cartesian coordinates over both kx and ky can be replaced by a single integral

over kρ in cylindrical coordinates. In order to find g(r, r′) in cylindrical coordinates it should first

be expressed as a plane-wave-expansion, which, using the Weyl expansion, yields[15, Eq. 6.53]

g(r, r′) =
i
2

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

eikx(x−x′)eiky(y−y′)eikz,1|z−z
′|

kz,1
dkxdky, (2.76)

where kz,1 =
√
k2

1 − k2
ρ, k1 = k0

√
ε1 and kρ =

√
k2
x + k2

y. How this expression is derived can be

found in App. B, where this expression is written in Eq. (B.7).

This can then be converted into cylindrical coordinates, and thereafter reduced by using the 0th

order Bessel function, yielding

g(r, r′) =
i

4π

∫ ∞
0

J0(kρρr)eikz,1|z−z
′|

kz,1
kρdkρ. (2.77)

By then inserting this into the expression for the direct dyadic Green’s tensor in free space and

applying the relations between Cartesian and cylindrical coordinates for the unit vectors, the direct

dyadic Green’s tensor can be found to be

←→
G(d)(r, r′) =

i
4π

∫ ∞
0

[
ρ̂rρ̂r

(
J0(kρρr) +

k2
ρ

k2
1

J ′′0 (kρρr)

)
+ (ẑρ̂r + ρ̂rẑ)

ikz,1kρ
k2

1

z − z′

|z − z′|
J ′0(kρρr)

+ ẑẑ
k2
ρ

k2
1

J0(kρρr) + ϕ̂rϕ̂r

(
J0(kρρr) +

k2
ρ

k2
1

J ′0(kρρr)

kρρr

)]
eikz,1|z−z

′| kρ
kz,1

dkρ, (2.78)

where kρ, ϕk, ρr and ϕr are defined such that

kx = kρ cosϕk, ky = kρ sinϕk,

x− x′ = ρr cosϕr, y − y′ = ρr sinϕr,

while

ρ̂r = x̂ cosϕr + ŷ sinϕr,

ϕ̂r = −x̂ sinϕr + ŷ cosϕr.

By then assuming that the interface between the homogeneous media and the infinite substrate is

in z = 0 one can find the incoming, the reflected and the transmitted electric field. This is done by

taking the scalar products of the direct Green’s tensor with the unit vectors and then dividing the

field contributions into s- and p-polarisation for which the corresponding reflected and transmitted
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field contributions are determined with the Fresnel equations. Finally, the Green’s tensors in

reflected and transmitted form are reassembled by adding the corresponding unit vector that was

initially used. These will respectively be referred to as the indirect and the transmitted Green’s

tensors and are given as

←→
G(i)(r, r′) =

i
4π

∫ ∞
0

{
r(p)(kρ)

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

+ ϕ̂rϕ̂r
J ′0(kρρr)

kρρr

k2
z,1

k2
1

+

ρ̂rρ̂rJ ′′0 (kρρr)
k2
z,1

k2
1

− (ẑρ̂r − ρ̂rẑ)
ikρkz,1
k2

1

J ′0(kρρr)

)

−r(s)(kρ)

(
ϕ̂rϕ̂rJ ′′0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1(z+z′) kρ

kz,1
dkρ, (2.79a)

←→
G(t)(r, r′) =

i
4π

∫ ∞
0

{
t(p)(kρ)

ε1

ε2

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

− ϕ̂rϕ̂r
J ′0(kρρr)

kρρr

kz,1kz,3
k2

1

−ρ̂rρ̂rJ ′′0 (kρρr)
kz,1kz,3
k2

1

−
(
ẑρ̂r + ρ̂rẑ

kz,3
kz,1

)
i
kρkz,1
k2
z,1

J ′0(kρρr)

)

−t(s)(kρ)
(
ϕ̂rϕ̂rJ ′′0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1z

′
e−ikz,3z kρ

kz,1
dkρ. (2.79b)

A more in-depth derivation of these expressions can be found in App. C, with an outset in Eq.

(2.76).

2.4.2 The Far-Field Green’s Tensor

As was the case for a homogeneous media it is essential to be able to find the far-field radiation

patterns and the DSCS for a layered structure. In order to calculate these, the far-field Green’s

tensor is needed, which will thus be derived with an outset in the indirect and the transmitted

Green’s tensor in Eq. (2.79).

First, consider the zz-component of the indirect Green’s tensor. In the far-field, z is very large

and thus the integration interval can be reduced to 0 ≤ kρ ≤ k1, as if kρ > k1 then kz,1 must be

completely imaginary, since k2
1 = k2

z,1 +k2
ρ, and the exponential term will go to zero and terminate

the integral. By then converting the coordinates into spherical coordinates, and using the Bessel

function for large input arguments the integral variable may be substituted for the angle α where

kz,1 = k1 cosα and kρ = k1 sinα. It is then found that the only contributions from the integral are

for α ≈ θ or α+θ ≈ π due to fast variations of a complex exponent. The exponent may resultingly

be Taylor expanded, such that the integral may be determined analytically resulting in

G(i,ff)
zz =

eik1r

4πr
e−ikρr′·ρ̂eikz,1z

′
r(p)(kρ)

k2
ρ

k2
1

. (2.80)

Now the indirect far-field Green’s tensor can be obtained from Eq. (2.79a) by using that ϕ̂r ≈ ϕ̂

and ρ̂r ≈ ρ̂ in the limit of far-field. The ϕ̂rϕ̂r term from the p-polarised part of the indirect

Green’s tensor and the ρ̂rρ̂r term from the s-polarised part vanishes faster than 1
ρ in the far-field
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since they go as 1
ρ3/2

, while the remaining terms can be approximated in a similar fashion as the

zz-component stated above. Thus the indirect far-field Green’s tensor can be expressed as

G(i,ff)(r, r′) =
eik1r

4πr
e−ikρρ̂·r′eikz,1z

′
(
r(s)(kρ)ϕ̂ϕ̂− r(p)(kρ)θ̂

(
ẑ
kρ
k1

+ ρ̂
kz,1
k1

))
, (2.81)

where kρ = k1 sin θ and kz,1 = k1 cos θ.

For the transmitted Green’s tensor a far-field approximation can be found by a similar approach,

where the integration interval in Eq. (2.79b) is reduced to 0 ≤ kρ ≤ k3, where k3 = k0
√
ε3, as

the integrand, once again, will vanish for kρ > k3 when z � 0, due to the exponential term. This

yields the expression for the far-field transmitted Green’s tensor,

←→
G(t,ff)(r, r′) =

eik3r

4πr
e−ikρρ̂·r′eikz,1z

′ kz,3
kz,1

(
t(s)(kρ)ϕ̂ϕ̂+

t
(p)
1,3(kρ)

ε1

ε3

[
ẑẑ
k2
ρ

k2
1

+ ρ̂ρ̂
kz,1kz,3
k2

1

+

(
ẑρ̂+ ρ̂ẑ

kz,3
kz,1

)
kz,1kρ
k2

1

])
. (2.82)

Like what was the case for the derivation of the Green’s tensors in Sec. 2.4.1, a more in-depth

derivation of the far-field Green’s tensors can be found in App. C.1.

2.4.3 The Magnetic Field Integral Equation for a Layered Structure

For a layered structure, the MFIE for a scatterer in a homogeneous media in Eq. (2.66) can be

restated with the inclusion of the indirect Green’s tensor for the electric field from Eq. (2.79a) as

Js(r) = J0(r) +

∮
n̂×∇×

(←→
G(d)(r, r′) +

←→
G(i)(r, r′)

)
· Js(r′)d2r′, (2.83)

which, as previously done in Sec. 2.3.1.2, may be rewritten in order to obtain an expression similar

to Eq. (2.68), hence

Js = J0(r) +

∮
{∇g(r, r′) [n̂ · Js(r′)]− Js(r

′) [n̂ · ∇g(r, r′)]

+n̂×∇×
←→
G(i)(r, r′) · Js(r′)

}
d2r′. (2.84)

In order to evaluate this, one has to find the curl of the indirect Green’s tensor, which has been

done in App. C.2, where it in Eq. (C.42) was found that

∇×G(i) =
i

4π

∫ ∞
0

(
r(s)(kρ)

{
−kρJ ′0(kρρr)ẑϕ̂r − ikz,1J ′′0 (kρρr)ρ̂rϕ̂r + ikz,1

J ′0(kρρr)

kρρr
ϕ̂rρ̂r

}
+r(p)(kρ)

{
−kρJ ′0(kρρr)ϕ̂rẑ− ikz,1

J ′0(kρρr)

kρρr
ρ̂rϕ̂r + ikz,1J ′′0 (kρρr)ϕ̂rρ̂r

})
× eikz,1(z+z′) kρ

kz,1
dkρ. (2.85)
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2.4.3.1 Evaluation of Singularities

The asymptotic behaviour of the integrand in Eq. (2.85) when kρ → ∞ will now be examined

using the asymptotic expansion of the Bessel function[15, Eq. C.8]

Jm(x)→
√

2

πx
cos
(
x− mπ

2
− π

4

)
, x→∞, (2.86)

which has the upper boundary of
√

2
πx for all m. The Fresnel reflection coefficients in the limit of

kρ →∞ then go as

r(s)(kρ) =
kz,1 − kz,3
kz,1 + kz,3

→
− 1

2
k20
k2ρ

(ε1 − ε3)

2− 1
2
k20
k2ρ

(ε1 + ε3)
→ k2

0(ε3 − ε1)

4k2
ρ

, (2.87a)

r(p)(kρ) =
ε3kz,1 − ε1kz,3
ε3kz,1 + ε1kz,3

→ ε3 − ε1

ε3 + ε1
, (2.87b)

where it has been used that

kz,i =
√
k2

0εi − k2
ρ → ikρ

(
1− 1

2

k2
0εi
k2
ρ

)
, (2.88)

which has been obtained by using a Taylor expansion. This Taylor expansion can furthermore

be used to find that the exponential term in Eq. (2.85) in this limit will go as e−kρ(z+z′). This

causes the integral to go to zero as the remaining factors of the integrand only goes as powers of

kρ, hence the exponent dominates. However, this does not hold if z + z′ = 0, in which case it will

be determined whether the integral is bounded, which is equivalent to examine whether the tails

of the integral at kρ → ∞ is bounded as the integrand itself is bounded. In the case where it is

not bounded it will lead to a singularity which has to be accounted for in order to avoid errors in

the numerical evaluations of the integral.

By using the identity[17, p. 160, Eq. 27.90]∫ ∞
0

Jn(bx)e−axdx =
(
√
a2 + b2 − a)n

bn
√
a2 + b2

, (2.89)

for n ≥ 0, the integrals may be approximated by using the results for the limit kρ � k0 throughout

the entire integration interval in order to capture the singular behaviour of the tails of the integrals.

By inserting the expressions for the reflection coefficients from Eq. (2.87), the s-polarised ẑϕ̂r

component is seen to go as∫ ∞
0

J ′0(kρρr)

kρ
e−kρ(z+z′)dkρ =

∫ ρr

0+

∫ ∞
0

J ′′0 (kρρ
′
r)e
−kρ(z+z′)dkρdρ

′
r, (2.90)

which can be found by differentiating and integrating with respects to ρr, where the limits used in

the integral ensures that the upper limit yields the expression on the LHS, while the lower limit
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yields 0, since J ′0(0) = 0. This can then be rewritten using Eq. (C.37b) and Eq. (2.89), yielding

LHS =
1

2

∫ ρr

0+

∫ ∞
0

(J2(kρρ
′
r)− J0(kρρ

′
r))e

−kρ(z+z′)dkρdρ
′
r

=
1

2

∫ ρr

0+

(
(R̃′ − (z + z′))2

ρ′2r R̃
′

− 1

R̃′

)
dρ′r

= − R̃− (z + z′)

ρr
, (2.91)

where R̃ =
√
ρ2
r + (z + z′)2, while the integral has been solved computationally. From this it can

be seen that the integral is discontinuous and bounded when R̃ approaches 0.

For the s-polarised ρ̂rϕ̂r term, a similar procedure is used, where the antiderivative wrt. ρr is

taken to act as an inverse function to the derivative, where C is an integration constant, due to a

singularity as R̃→ 0, such that∫ ∞
0

J ′′0 (kρρr)

kρ
e−kρ(z+z′)dkρ =

∫ ∫ ∞
0

J ′′′0 (kρρr)e−kρ(z+z′)dkρdρr

=
1

4

∫ ∫ ∞
0

(−J3(kρρr) + 3J1(kρρr))e−kρ(z+z′)dkρdρr

=
1

4

∫ (
− (R̃− (z + z′))3

ρ3
rR̃

+ 3
R̃− (z + z′)

ρrR̃′

)
dρr

=
1

2
ln(R̃+ z + z′)− z + z′

2(R̃+ z + z′)
+ C, (2.92)

where the recurrence relation in Eq. (C.38) has been used in order to find an expression for

J ′′′0 (kρρr). In this case it can be seen that the singularity when R̃→ 0 is logarithmic.

For the s-polarised ϕ̂rρ̂r term it can, by the same approach as the one used for the s-polarised

ρ̂rϕ̂r term, be found that∫ ∞
0

J ′0(kρρr)

k2
ρρr

e−kρ(z+z′)dkρ = −
∫ ∞

0

J2(kρρr) + J0(kρρr)

2kρ
e−kρ(z+z′)dkρ

=
1

4

∫ ∫ ∞
0

(J3(kρρr) + J1(kρρr))e−kρ(z+z′)dkρdρr

=
1

2
ln(R̃+ z + z′) +

z + z′

2(R̃+ z + z′)
+ C (2.93)

where an expression for J
′
0(kρρr)
kρρr

has been found using Eq. (C.37a) along with the recurrence for-

mula Jm+1(x) = 2m
x Jm(x)−Jm−1(x), while the last integral can be solved with the trigonometric

substitution ρr = (z+ z′) tan(u). Here it can be seen that this term results in a similar singularity

as the s-polarised ρ̂rϕ̂r term.

In conclusion, the ẑϕ̂r term of the indirect Green’s tensor for s-polarisation is almost well behaved

with no singularity, however it does contain a discontinuity, while the ρ̂rϕ̂r and ϕ̂rρ̂r term in the

limit of R̃ → 0 go respectively as ±k
2
0(ε3−ε1)

32π ln(R̃ + z + z′), when the constants from the indirect

Green’s tensor and the reflection coefficient for s-polarisation has been taken into account.

Now the terms for p-polarisation are examined, where it is helpful to recall from Eq. (2.87b) that
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r(p) does not depend on kρ in the limit where kρ →∞. If first the ϕ̂rẑ term is evaluated it can be

found that ∫ ∞
0

kρJ ′0(kρρr)e−kρ(z+z′)dkρ =
∂

∂ρr

∫ ∞
0

J0(kρρr)e−kρ(z+z′)dkρ

=
∂

∂ρr

1

R̃

= − ρr
R̃3

, (2.94)

which includes a singularity for z + z′ = 0 going as 1
ρ2r
.

By a similar procedure, the ϕ̂rρ̂r term is evaluated as∫ ∞
0

kρJ ′′0 (kρρr)e−kρ(z+z′)dkρ = − ∂

∂ρr

∫ ∞
0

J1(kρρr)e−kρ(z+z′)dkρ

= − ∂

∂ρr

R̃− (z + z′)

ρrR̃

=
1

ρ2
r

(
1− z + z′

R̃

)
− z + z′

R̃3
, (2.95)

which includes a singularity going as 1
ρ2r

for z + z′ = 0, as well as a singularity for ρr = 0 going as
1

(z+z′)2 .

Lastly, the ρ̂rϕ̂r term is evaluated using the defining differential equation for Bessel functions

given by (C.40a) for J0 such that∫ ∞
0

kρ
J ′0(kρρr)

kρρr
e−kρ(z+z′)dkρ = −

∫ ∞
0

kρ(J ′′0 (kρρr) + J0(kρρr))e−kρ(z+z′)dkρ

=
∂

∂ρr

∫ ∞
0

J1(kρρr)e−kρ(z+z′)dkρ +
∂

∂z

∫ ∞
0

J0(kρρr)e−kρ(z+z′)dkρ

=
∂

∂ρr

R̃− (z + z′)

ρrR̃
+

∂

∂z

1

R̃

= − 1

ρ2
r

(
1− z + z′

R̃

)
(2.96)

which, like the previously two terms, has a singularity that goes as 1
ρ2r

for z + z′ = 0.

As has been shown multiple singularities arise when z+ z′ = 0 for both polarisations, and in order

to avoid these the scatterer has been placed slightly above the substrate such that z + z′ > 0.

2.5 Multiple Scatterers
In Fig. 2.1 the figure of interest within this project was illustrated with two scatterers on top of a

substrate, however, there is no set limit on the number of scatterers that may be considered. One

example of a structure where two antennas are placed on top of a substrate is, as mentioned in

Ch. 1, a PCA.

While the equations up until this point has only considered a single scatterer they can easily be

extended to multiple scatterers, where the derivation of the MFIE is almost the same, where,

similarly to Eq. (2.52), the LHS for a PEC may be written as the integral over multiple scatterers,
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yielding

LHS = −
∫
∑
i Ωi

∇ ·
[(
{∇ ×E(r)} ×

←→
G(r, r′)

)
+
(
E(r)×

{
∇×

←→
G(r, r′)

})]
d2r

= −
∑
i

∮
∂Ωi

n̂i ·
[
{∇ ×E(r)} ×

←→
G(r, r′) + E(r)×

{
∇×

←→
G(r, r′)

}]
d2r, (2.97)

where Gauss’s theorem from Eq. (A.1a) has been used. In the case of multiple scatterers in a

homogeneous medium
←→
G(r, r′) =

←→
G(d)(r, r′), while in the case of a layered structure

←→
G(r, r′) =

←→
G(d)(r, r′) +

←→
G(i)(r, r′) for z + z′ ≥ 0 and

←→
G(r, r′) =

←→
G(t)(r, r′) for z + z′ < 0. From this, the

surface current can be found by a similar approach as was used in Sec. 2.3.1, yielding

Js(r) = J0(r) +
∑
i

∮
∂Ωi

n̂×∇×
←→
G(r, r′) · Js(r′)d2r′. (2.98)

In the case where the scatterers are evenly displaced from one another by ∆r, such that k1∆r � 1,

the current at r may be assumed independent from the currents of the other scatterers, in which

case they are uncoupled such that

J0(r) = J0(r + ∆r)⇒ Js(r) = Js(r + ∆r), (2.99)

which is the case if the incoming field is a plane wave propagating perpendicular to ∆r when a

scatterer is located at r and r+∆r with the current of each scatterer corresponding to that of just

a single scatterer. In this case, the far-field may be derived from Eq. (2.60), which can be recalled

for a PEC as

E(r) = E0(r) + iωµ0

∮
←→
G(r, r′) · Js(r′)d2r′.

By only considering the scattered field and replacing the Green’s tensor by the far-field Green’s

tensor, from Eq. (2.39) for a homogeneous medium, and from Eq. (2.81) from Eq. (2.82) for a

layered structure, then the far-field for N scatterers can be written as

E
(ff)
scat (r) = iωµ0

∮
∑N
i=1 ∂Ωi

←→
G(ff)(r, r′) · Js(r′)d2r′

=


iωµ0

∮
∂Ω

(←→
G(d,ff)(r, r′)

∑N−1
n=0 e−ink1∆r·̂r

+
←→
G(i,ff)(r, r′)

∑N−1
n=0 ein(−kρρ̂·∆r+kz,1ẑ·∆r)

)
· Js(r′)d2r′ for z + z′ ≥ 0

iωµ0

∮
∂Ω

(←→
G(t,ff)(r, r′)

∑N−1
n=0 ein(−kρρ̂·∆r+kz,1ẑ·∆r)

)
· Js(r′)d2r′ for z + z′ < 0

where the sum over the scatterers has been interchanged with a single scatterer, due to their

surface current being equal to one another, however, the Green’s tensor is displaced by a phase

factor, and it is therefore necessary to sum over these. In the case of ∆r being confined in the xy

plane, the far-field simplifies to

E
(ff)
scat (r) = iωµ0

N−1∑
n=0

eink1r̂·∆r

∮
∂Ω

←→
G(ff)(r, r′) · Js(r′)d2r′. (2.100)

due to the phase factor being equal for all three Green’s tensors. For all purposes within this report

this is the case, while it is furthermore the case for any layered structure where all scatterers are
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placed on the surface of the interface between the two media. Here it is seen that when N is large,

one should achieve resonance when k1r̂ ·∆r = m2π with m ∈ N, which is only the case for m = 0

if λ1 > ∆r, in which case r̂ ⊥ ∆r.
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Chapter 3

Method

In Ch. 2 relevant theory regarding the evaluation of terahertz antennas using the GFIEM and

the GFSIEM was presented, and while the actual evaluation of said antennas will be presented in

Ch. 4 this chapter will present the methods used in the modelling and numerical calculations that

allows for accurate models of the scatterers. Within this chapter one will therefore find a detailed

description of the finite element mesh that is used, where the current is expanded in polynomials

defined on each element with corresponding parametric variables and tangent vectors dependent

on the geometry. Furthermore, the implementation of the MFIE with the approximation of the

integrals used in order to find the surface current will be covered.

3.1 Finite Element Mesh
The content and derivations within this section are based on [6, Ch. 8] and [15, Sec. 4.2.1, Sec.

8.3 and Sec. 8.4].

When computing integrals numerically, in this case in order to determine the surface current, it

is useful to approximate the solution space in which the exact solution can be reasonably approx-

imated. This can be done by subdividing the computational domain into smaller elements and

providing each element with a number of polynomials, which will be further discussed in Sec. 3.1.2.

This is known as the finite element method, FEM. One of the advantages of using a FEM is that

the distribution of elements and mesh points for the surface are entirely customisable, which allows

for a good representation of the scatterer surface. This is in contrast to e.g. a finite difference

method, where the mesh points are evenly distributed in a grid with each point representing a

portion of space that may be shared with different media.

As an example of the use of FEM, the surface of a particle can be approximated by dividing it

into triangles and using linear expansion functions, hence 1st order polynomials. Each triangle on

the surface, denoted k, has three corners, denoted r
(k)
n , n = 1, 2, 3, and the position on the triangle

can then be parameterised by

r(k)(u1, u2) =

3∑
n=1

r(k)
n fn(u1, u2), 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1− u1, (3.1)
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where the 1st order polynomials in two dimensions are given as

f1(u1, u2) = 1− u1 − u2, (3.2a)

f2(u1, u2) = u1, (3.2b)

f3(u1, u2) = u2. (3.2c)

Furthermore, a linear expansion of the surface current on the triangle can be expressed as

Js(r
(k)(u1, u2)) =

3∑
n=1

Jk,nfn(u1, u2), (3.3)

where the coefficient Jk,n represent the value of Js at the corners of the triangle k. The functions

Js on the entire particle surface can then be expressed as

J(r) =
∑
k

3∑
n=1

Jk,nfn(r), (3.4)

where r = r(k)(u1, u2) is a position on the particle surface and

fk,n(r) =

fn(u1, u2), r ∈ k

0, otherwise
. (3.5)

An approach for approximating a cylindrical surface with triangles is to generate a two-dimensional

mesh and then map this onto a three-dimensional surface. Consider a rectangle in the (t1, t2)-plane

within the region 0 ≤ t1 ≤ 2πa and 0 ≤ t2 ≤ H, where a is the radius of the cylinder, while H is

its height. The rectangular region can then be mapped onto a cylindrical surface using the rule

r(t1, t2) = r0 + x̂a cos

(
t1
a

+ ϕ0

)
+ ŷa sin

(
t1
a

+ ϕ0

)
+ ẑt2. (3.6)

Likewise, the surface of a quarter of a half-sphere can be mapped from two dimensions to a three-

dimensional surface by expressing a position on said surface as

r = rc + ẑa cos

(
t1
a

)
+ a sin

(
t1
a

)
ρ̂(t1, t2), (3.7)

where

ρ̂(t1, t2) = x̂a cos

(
t2

a sin t1
a

+ α0

)
+ ŷa sin

(
t2

a sin t1
a

+ α0

)
. (3.8)

It should be noted that the notation used within this introduction is the same as the notation used

in Sec. 3.2, due to its simplicity compared to the notation used in the remainder of this section,

however, it does not provide the same level of detail, hence why another notation has been used

throughout the rest of this section.

3.1.1 Parameterisation of Triangular Elements

Every triangular element of the surface mesh can be parameterised as r(u1, u2) such that r(0, 0) =

r1, r(1, 0) = r2 and r(0, 1) = r3, where r1, r2 and r3 corresponds to the corners of the triangle,

and 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1 with u1 + u2 ≤ 1.
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3.1.1.1 Parameterisation of Planar Elements

On a planar surface, the position on the element can be written as

r(u1, u2) = r1 +
∂r

∂u1
u1 +

∂r

∂u2
u2, (3.9)

given that the partial derivatives are constant. In this case, the derivatives may then be written

with finite differences as

∂r

∂u1
=

r2 − r1

u1,2 − u1,1
= r2 − r1,

∂r

∂u2
=

r3 − r1

u2,3 − u2,1
= r3 − r1, (3.10)

since u1,2 = 1, u1,1 = 0, u2,1 = 0 and u2,3 = 1, as can be seen in Fig 3.1. Thus the position on the

planar element can be expressed as

r(u1, u2) = r1 + (r2 − r1)u1 + (r3 − r1)u2, (3.11)

which can be found to be equal to Eq. (3.1) when the two-dimensional polynomials in Eq. (3.2)

are inserted. Furthermore it can be seen in Fig. 3.1 that each element has two local orthonormal

u1

u2

t(l)

t(l)

^

^

1

2

r1
u1=u2=0

r2
u1=1,u2=0

r3 u1=0,u2=1

^

^

Figure 3.1: An example of a triangular mesh element. t̂
(l)
1 is defined along ∂r

∂u1
and

t̂
(l)
2 is defined perpendicular to t̂

(l)
1 .

tangential vectors, t̂(l)
1 and t̂

(l)
2 , which may be defined as

t̂
(l)
1 =

dr
du1∣∣∣ drdu1

∣∣∣ (3.12a)

t̂
(l)
2 = t̂

(l)
1 × n̂, (3.12b)

where

n̂ =
dr
du1
× dr

du2∣∣∣ drdu1
× dr

du2

∣∣∣ . (3.13)

Here the superscript (l) indicates that the tangential vectors are local, hence they are defined for

each element.

3.1.1.2 Parameterisation of Cylindrical Elements

An element on a cylindrical surface oriented in e.g. the z direction can be parameterised as

r(u1, u2) = a cosϕx̂ + a sinϕŷ + zẑ, (3.14)
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where the position is dependent on both z and ϕ, which can be expressed in similar manner as for

a planar element as ϕ
z

 =

ϕ1

z1

+

 ∂ϕ
∂u1

∂ϕ
∂u2

∂z
∂u1

∂z
∂u2


u1

u2

 , (3.15)

where the derivatives are set constant as the cylinder surface can be thought of as a wrapped up

planar surface, with finite differences ∂ϕ
∂u1

= ϕ2−ϕ1

u1,2−u1,1
= ϕ2−ϕ1 and likewise for ∂ϕ

∂u2
, ∂z
∂u1

and ∂z
∂u2

.

3.1.1.3 Parameterisation of Spherical Elements

The shape of a triangular element on a sphere is defined by the geodesics which is the shortest

path, between the corner points. Here the geodesics are given by great circles and the geodesic

between r1 and r2 may be parameterised with uniform speed as

r(τ) = r1 cos γτ + w sin γτ (3.16)

where γ is a constant that determines the speed of the parameterisation and τ is an arbitrary

parametric variable, while r1 and w are orthogonal, which may be ensured by

w = n̂× r1, (3.17)

where n̂ = r1×r2
|r1×r2| , while γ is the angle between r1 and r2 such that r(1) = r2, hence

γ = sin−1

(
|r1 × r2|

a2

)
. (3.18)

This can further be done for the remaining two sides of the element by a similar approach.

While this is sufficient on the boundary of the element it does not suffice within the triangle and

a subtriangle can therefore be introduced, as seen in Fig. 3.2. For a subtriangle u1 and u2 are

r1 r2

r3

r3,s

r2,sr1,s

rc

u1=u2 1-u1=2u2

1-u2=2u1

u1^

u2^

Figure 3.2: Here the subtriangle is shown with corners r1,s, r2,s and r3,s, located
along u1 = u2, 1 − u1 = 2u2 and 1 − u2 = 2u1 respectively with the relative arc
length, s, from the center of the element, rc.

expressed as variables s(u1, u2) and t(u1, u2), where s determines the distance between the center
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of the element, rc, that is when u1 = u2 = 1
3 , and the corners of the subtriangle, that is s ∈ [0; 1],

while t expresses where along the edge of the subtriangle a given point u1, u2 is located.

Like what was done for the element the geodesic for the subtriangle can be parameterised as

ri,s = rc cos γcis+ wci sin γcis (3.19)

where ri,s corresponds to a subtriangle corner for i ∈ {1, 2, 3} while

rc = a
r1 + r2 + r3

|r1 + r2 + r3|
. (3.20)

Here wci and γci can be expressed similarly to w and γ in Eq. (3.16).

The position on the boundary of the subtriangle may then be expressed, similarly to Eq. (3.16),

with respect to s and t as

r(s, t) = ri,s cos γijt+ wij sin γijt, (3.21)

where

i =


1, if u1 ≥ u2 ∧ 1− u1 > 2u2

2, if 1− u2 ≥ 2u1 ∧ 1− u1 < 2u2

3, if u1 < u2 ∧ 1− u2 ≥ 2u1

, (3.22a)

j = mod(i, 3) + 1. (3.22b)

Now it can be recalled that s = 1 at the element edge and s = 0 at the center, while t, like τ , can

be found requiring it to be 0 or 1 at the subtriangle corners such that

s(u1, u2) =


1− 3u2, if i = 1

1− 3(1− u1 − u2), if i = 2

1− 3u1, if i = 3

, (3.23a)

t(u1, u2) =


u1−u2

s , if i = 1

2u2−(1−u1)
s , if i = 2

1−u2−2u1

s , if i = 3

. (3.23b)

As an example, the described parameterisation is compared to the parameterisation of a planar

triangle projected onto the surface of the sphere along a line connected to the center of the sphere,

as can be seen in Fig. 3.3. Here the rather exaggerated element is a quarter half sphere, while

the 11 × 11 points are evenly distributed along u1 and u2. As it is evidently seen, the points are

significantly more evenly distributed for the parameterisation where subtriangles has been used,

as can be seen in Fig. 3.3b, compared to the projected parameterisation, seen in Fig. 3.3a.

It should be noted that in a case where both s and t are varied, the speed of the parameterisation

in Eq. (3.21), that is | ∂r∂u1
| and | ∂r∂u2

|, is not uniform unlike in the case of a planar or cylindrical
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(a) (b)

Figure 3.3: A comparison between a) a projected parameterisation and b) a param-
eterisation using subtriangles, both for a unit quarter halfsphere.

element, or a geodesic path on a spherical element. This is due to Gauss’ Theorema Egregium[18,

Ch.10], which states that the Gaussian curvature is conserved for a local isometry1, which implies

that the mapping from a sphere to a plane is not a local isometry, since the Gaussian curvature

for a sphere is positive, while it is zero for a plane.

3.1.2 Polynomials

As was described in the beginning of Sec. 3.1, the surface of a particle can be divided into elements

which is then provided with an mth order polynomial. In the given example 1st order polynomials

in two dimensions were used, where the mesh points were evenly spaced and for any m > 0 it

was required that every corner had an associated mesh point, however, by using a higher order

polynomial, the surface current could be approximated more accurately. This is due to the increase

in mesh points as the order of polynomial is increased, as can be seen in Fig. 3.4. Here a two-

dimensional triangular element can be seen for the first four orders of polynomials, hence from the

0th order to the 3rd order. However, this can easily be extended into the mth order polynomial

by adding more mesh points and while these points in this figure is evenly spaced, this is not a

requirement. Besides the order of polynomial the dimension of the polynomials also affects the

number of mesh points, however, this will be further discussed in Sec. 3.1.2.1, Sec. 3.1.3 and App.

D.

By choosing a basis of polynomials on each element that are 1 in their corresponding mesh point

and 0 in the remaining mesh points, e.g. the ones presented in Eq. (3.2), the surface current may

simply be determined everywhere on the surface by summation over these polynomials, where each

polynomial is weighted by the current in the associated mesh point. The polynomials along the u1-

axis for the 1st, 2nd and 3rd order has been plotted and can be seen in Fig. 3.5, while the polynomial

for the 0th order has been omitted due to it being 1 everywhere on the element. Here it can be seen

that the number of polynomials increase as the order increases, however, it can further be noted

1A local isometry is a mapping where the metric, that is the distance between any two points, is preserved.
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(a) 0th order polynomial (b) 1st order polynomial

(c) 2nd order polynomial (d) 3rd order polynomial

Figure 3.4: Triangular two-dimensional elements for the four first orders of polyno-
mials, where the mesh points for each polynomial and their coordinates, (u1, u2), can
be seen. It should be noted that while the mesh point in Fig. 3.4a is centered within
the element, this is not a requirement, as the current in this case will be constant
over the entire element due to the single mesh point.

that some polynomials are mirror images of each other, e.g. the polynomial that takes on the value

1 in ( 1
3 , 0) and the polynomial that takes on the value 1 in ( 2

3 , 0) for the 3rd order. In general

this may be explained by reflective- and rotational symmetry. Let f(ν1,ν2) denote the polynomial

that is 1 in mesh point (ν1m ,
ν2
m ), where νi is an index that indicates the position of the mesh

point in the ui direction, then due to reflective symmetry f(ν1,ν2)(u1, u2) = f(m−ν1,ν2)(1− u1, u2),

f(ν1,ν2)(u1, u2) = f(ν1,m−ν2)(u1, 1 − u2) and f(ν1,ν2)(u1, u2) = f(ν2,ν1)(u2, u1) must hold. Hereby

rotational symmetry also follows by the use of two reflections.

Furthermore it can be seen for the 3rd order polynomials that some polynomials take on the value

1 more than once, however, since it is only 1 in a single mesh point, while it is 1 in some other

point that is not a mesh point, this does not conflict with its definition.
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(a) 1st order polynomials

(b) 2nd order polynomials (c) 3rd order polynomials

Figure 3.5: Plots of the polynomials along the u1-axis for the a) 1st, b) 2nd and c) 3rd

order polynomials. The coordinate in the legend denotes the associated mesh point
in which the polynomial takes on the value 1, while it can be seen that it is 0 in the
remaining mesh points.

3.1.2.1 One-Dimensional Polynomials

One-dimensional polynomials only depend on a single parameter, e.g. u1, and will therefore present

itself as a line, where the subscripts i on u and ν can be omitted, hence u1 can be denoted simply

as u. Higher-order one-dimensional polynomials of the mth order, also referred to as degree m,

can be obtained by defining m+ 1 mesh points on each element, were two of the points are at the

ends of the element. If the mesh points are denoted uν , where ν = 0, 1, . . . ,m and ordered such

that uν = ν
m , hence the first mesh point will be in u0 = 0, while the last mesh point will be in

um = 1, and it is furthermore required that the polynomial functions must equal 1 at one mesh

point and zero at all other points, as has been described previously, then the polynomials can be

constructed as

fν(u) =

m∏
j=0,j 6=ν

(uj − u)

m∏
j=0,j 6=ν

(uj − uν)
, ν = 0, 1, . . . ,m, x0 ≤ x ≤ xm. (3.24)

These polynomials are said to be defined in element 1, due to the placement of the first and the

last mesh point being at u = 0 and u = 1, respectively, however, they can easily be defined to

any interval corresponding to element k, e.g. element 2 which will range from u = 1 to u = 2, by
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scaling the input as

fk,ν(t) =

fν
(

t−t(s,k)
t(e,k)−t(s,k)

)
, t(s,k) ≤ t ≤ t(e,k)

0, otherwise
, (3.25)

where t is the distance from the start of element 1 and the indices s, k and e, k represent the start

and end of the kth element, respectively. Using these higher-order polynomials, the tangential

current along a surface parameterised by s can be expanded as

J(s(t)) =
∑
k

m∑
ν=0

Jk,νfk,ν(t), (3.26)

similarly to what was done in Eq. (3.4).

3.1.3 Two-Dimensional Polynomials

In this report it is only necessary to consider the two-dimensional polynomials as the GFSIEM is

used in order to calculate the current on triangular surface elements, however, if the volume was

considered rather than the surface, three-dimensional polynomials would be required. A detailed

general description of how the polynomials can be expressed in higher dimensions can be found in

App. D, and will therefore not be covered in this section, however, while the 1st order polynomials

were determined as shown in Eq. (3.2), the 2nd order polynomials can be found by using Eq.

(D.10), yielding

f(0,0)(u1, u2) = 2(1− u1 − u2)

(
1

2
− u1 − u2

)
, (3.27a)

f(1,0)(u1, u2) = 4u1(1− u1 − u2), (3.27b)

f(2,0)(u1, u2) = 2u1

(
u1 −

1

2

)
, (3.27c)

f(0,1)(u1, u2) = 4u2(1− u1 − u2), (3.27d)

f(1,1)(u1, u2) = 4u1u2, (3.27e)

f(0,2)(u1, u2) = 2u2

(
u2 −

1

2

)
. (3.27f)

In Fig. 3.6 the polynomials in Eq. (3.27a) and Eq. (3.27b) have been plotted, where it can be

seen that they only take on the value of 1 in a single mesh point, and 0 in all other mesh points,

as was the case in Fig. 3.5. While this is only two of the polynomials, the remaining polynomials

will be similar to these two, due to rotational symmetry, where Eq. (3.27a), Eq. (3.27c) and Eq.

(3.27f) take on the value of 1 in the corners, while Eq. (3.27b), Eq. (3.27d) and Eq. (3.27e) take

on the value of 1 inbetween two corners.
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(a) (b)

Figure 3.6: Graphic plots of the 2nd order polynomials in a) Eq. (3.27a) and b) Eq.
(3.27b).

3.2 Implementation
Within this section and throughout the rest of this report a new notation will be adopted, where

ν1, . . . , νN will be noted as a single index, n = 1, . . . , Nm, in which the mesh points on an element

may be enumerated, such that the polynomial coefficients for the current may be written as Ji,k,n,

where i refers to one of the two components in the two-dimensional case, the tangential vectors as

t̂i,k(r) and the polynomial as fk,n(r), where the u1, . . . , uN dependence is implicitly defined if r

is located on the element and is otherwise set to zero. Furthermore, the current may be labelled

with just two indices as Ji,p, with p referring to a global reference to a mesh point by demanding

that the current is continuous between elements, so the coefficients for a point must agree on

surrounding elements.

In order to solve the integral equation for the surface current in Eq. (2.75), the surface of the

scatterer is discretised into a number of triangular elements on which mesh points r1, . . . , rM are

defined, as described in Sec. 3.1, where M is the total number of mesh points. In order to store

which point belongs to which element, a connectivity function T (k, n) = q is defined, which maps

the enumeration of the element, k, and the enumeration of the point on the element, n, to the

global reference of the point q. This function is simply implemented as a two-dimensional array

with entry k, n being q.

By Eq. (2.75), the integral equation for the current on the surface of a scatterer can be recalled as

1

2
Js(r) = J0(r) +

∫
(∇g(r, r′) [n̂ · Js(r′)]− Js(r

′) [n̂ · ∇g(r, r′)]) d2r′,

where the unmarked coordinates will be referred to with the global references, while the marked

coordinates will be referred to with the local references.

Due to the hairy ball theorem[19, p. 77], which states that a sphere, and thereby any shape

homeomorphic to a sphere, does not have a nonvanishing continuous tangential vector field, one
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may define continuous local tangential vectors t̂
(l)
i (r′) and local currents J (l)

i,k,n on each element,

instead of using their global components. The global reference to quantities may then be stored in

the mesh points with the global tangent vector t̂(g)
i,q and current J (g)

i,q , and the local surface currents

may then be related to the global surface currents as

J
(l)
i,k,n = t̂

(l)
i,k,n ·

2∑
j=1

t̂
(g)
j,k,nJ

(g)
j,k,n, (3.28)

where the short-hand notation t̂
(l)
i,k,n = t̂

(l)
i (rT (k,n)) has been utilised, hence

J
(l)
1,k,n = t̂

(l)
1,k,n · (̂t

(g)
1,k,nJ

(g)
1,k,n + t̂

(g)
2,k,nJ

(g)
2,k,n) (3.29a)

J
(l)
2,k,n = t̂

(l)
2,k,n · (̂t

(g)
1,k,nJ

(g)
1,k,n + t̂

(g)
2,k,nJ

(g)
2,k,n). (3.29b)

The surface current may then be expressed with polynomials as in Eq. (D.11), hence

Js(r
′) =

∑
k,n

fk,n(r′)
(
t̂
(l)
1 (r′)J (l)

1,k,n + t̂
(l)
2 (r′)J (l)

2,k,n

)
. (3.30)

By inserting this expression into the integral equation for the surface current, and then replacing

the expressions for J (l)
i,k,n by Eq. (3.28), before applying the scalar product with t̂

(g)
i,p , it can be

found that

t̂
(g)
i,p ·

(
1

2
Js(r)− J0(r)

)
=∑

j,k,n

∫
Ωk

n̂ ·
[
t̂
(l)
1 (r′)

(
t̂
(l)
1 (r′) · t̂(g)

j,k,n

)
+ t̂

(l)
2 (r′)

(
t̂
(l)
2 (r′) · t̂(g)

j,k,n

)]
t̂
(g)
i,p · ∇g(rp, r

′)

− n̂ · ∇g(rp, r
′)
[(

t̂
(g)
i,p (r) · t̂(l)

1 (r′)
)(

t̂
(l)
1 (r′) · t̂(g)

j,k,n

)
+
(
t̂
(g)
i,p · t̂

(l)
2 (r′)

)(
t̂
(l)
2 (r′) · t̂(g)

j,k,n

)]
fk,n(r′)J

(g)
j,k,nd

2r′

=
∑
j,k,n

J
(g)
j,k,n

∫
Ωk

κi,j,n(rp, r
′)d2r′. (3.31)

In order to obtain a matrix equation, Js is related to J0 by a matrix consisting of the integrals in

Eq. (3.31). Here, the ith component of the integral equation may be related to the contribution

from the jth component of Js from the integral through the block matrix K(i,j), where the total

matrix is accordingly stated as

K =

K(1,1) K(1,2)

K(2,1) K(2,2)

 , (3.32)

where for one of the block matrices, entry p, q is given by

K(i,j)
p,q =

∑
k,n

T (k,n)=q

∫
Ωk

κi,j,n(rp, r
′)d2r′, (3.33)

where the sum is over every element that is constituted by point q for which J (g)
i,q has a contribution.

A matrix equation for the integral equation can then be obtained using that AJ = J0, where
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A = 1
2I −K, hence  1

2I −K
(1,1) −K(1,2)

−K(2,1) 1
2I −K

(2,2)


J(1)

J(2)

 =

J(1)
0

J
(2)
0

 , (3.34)

where J
(j)
q = J

(g)
j,q and J

(i)
0,p = J

(g)
0,i,p.

While this matrix equation can straight forwardly be used in order to find J0 it is still, as indicated

by the integral equation, the current Js that is unknown. In order to find the current from this

matrix equation one can use Eq. (2.62a) in order to analytically find an expression for J0, which

for a plane wave is given as

J0 = n̂×H0eik·r, (3.35)

while A can be found numerically, as will be described in Sec. 3.2.1, and Js can then be found by

inversion.

3.2.1 Numerical Integration

As briefly mentioned in Sec. 3.2 the matrix A in Eq. (3.34) can be found numerically, which will

be the aim of this section.

The integrals in Eq. (3.33) can be solved numerically by submeshing each element into even smaller

elements, due to the use of the FEM, where the local tangential vectors are calculated in the center

of each subelement. An example of such submeshing can be seen in Fig 3.7.

Figure 3.7: An element of the scatterer surface submeshed into smaller triangular
elements with their respective centers in the shown dots.

This allows for efficient numerical integration thus the integral in Eq. (3.33) can be replaced by
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the following sum,∑
s,k

n̂(rp) ·
(
t̂
(l)
1 (r′s,k)(̂t

(l)
1 (r′s,k) · t̂(g)

j,k,n) + t̂
(l)
2 (r′s,k)(̂t

(l)
2 (r′s,k) · t̂(g)

j,k,n)
)
t̂i,p · ∇g(rp, r

′
s,k)

− n̂(rp) · ∇g(rp, r
′
s,k)

(
t̂
(g)
i,p · t̂

(l)
1 (r′))(̂t

(l)
1 (r′s,k) · t̂(g)

j,k,n) + (̂t
(g)
i,p · t̂

(l)
2 (r′s,k))(̂t

(l)
2 (r′s,k) · t̂(g)

j,k,n)
)
As,k,

(3.36)

where r′s,k represents the point in the middle of subelement s on element k, and As,k is the area

of the subelement as will be described in Sec. 3.2.1.1. As discussed in Sec. 2.3.1.2, the singularity

of the integral can be neglected and is thus ignored in this numerical calculation.

3.2.1.1 Area of Triangular Subelements

The area of subelement s of element k, used in Eq. (3.36), can be expressed as

As,k =


1
2 |
dr
du ×

dr
dv |, for a triangle on a plane or a cylinder,

(A+B + C − π)R2, for a triangle on a sphere,
(3.37)

where A, B and C are the angles at the corners of the triangle, found by the spherical law of

cosines, cosA = cosα−cos β cos γ
sin β sin γ , and likewise for B and C, through cyclical permutations, while R

is the radius of the sphere the mesh is defined upon.

û

ŵ

v̂

C
α

β

γ

B

A

Figure 3.8: Illustration of triangle on a spherical surface.

The spherical law of cosines can be shown by letting û, v̂ and ŵ denote unit vectors from the

center of a unit sphere to the corners of a triangle on the surface of the sphere. Then û · û = 1,

û · v̂ = cosα, û · ŵ = cosβ and v̂ · ŵ = cos γ. The vectors resulting from the cross products û× v̂

and û× ŵ have the lengths sinα and sinβ, respectively, and the angle between them is C, thus

sinα sinβ cosC = (û× v̂) · (û× ŵ) = (û · û)(v̂ · ŵ)− (û · v̂)(û · ŵ) = cos γ − cosα cosβ. (3.38)

The distance between two points on a spherical surface corresponds a cos θ where a is the radius

and θ is the angle between two points r1 and r2, while the center of the jth subelement on element

k may be found by

rc =
r1,j,k + r2,j,k + r3,j,k

|r1,j,k + r2,j,k + r3,j,k|
a, (3.39)

where ri,j,k is the ith corner point in the jth subelement on the kth element. Here the corner points
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themselves are contained in a list, where another connectivity function Tsub is used to relate the

local subelements and subpoints to the global subpoints.

3.2.2 Implementation of the Indirect Green’s Tensor

As described in Sec. 2.4.3.1 singularities occur for both s- and p-polarisation when R̃→ 0, however,

in order to avoid them they can be subtracted from the original expression for the indirect Green’s

tensor in Eq. (2.79a).

By combining the terms derived in Eq. (2.92) and Eq. (2.93) the s-polarised indirect Green’s

tensor can be found, while the p-polarised indirect Green’s tensor can be found by combining Eq.

(2.94), Eq. (2.95) and Eq. (2.96), which yields

∇×G(i,s) ≈ ε3 − ε1

32π
k2

0 ln(R̃+ z + z′)(ρ̂rϕ̂r − ϕ̂rρ̂r) (3.40a)

∇×G(i,p) ≈ 1

4π

ε3 − ε1

ε3 + ε1

(
ρr

R̃3
ϕ̂rẑ−

1

ρ2
r

(
1− z + z′

R̃

)
(ϕ̂rρ̂r + ρ̂rϕ̂r) +

z + z′

R̃3
ϕ̂rρ̂r

)
, (3.40b)

near the singularity. These expressions for the singularities, may be separated from the remaining

indirect Green’s tensor which should then be well behaved. Then the Green’s tensor may be

determined by tabulating and interpolating the well behaved part and then adding the singular

terms separately. Here it should be noted that the discontinuity found for the zϕ-component for

s-polarisation in Eq. (2.91) has not been subtracted as this does not prevent discontinuities in the

tabulation.

For the tabulation, values are determined in a triangular lattice with ρr

z + z′

 =

 ∆ρr 0

∆z/2 ∆z


t1
t2

 (3.41)

for t1 ∈ N and t2 ∈ Z, where ∆ρr is the discretisation relative to ρr, while ∆z is the discretisation

relative to z + z′. Here the first and second column in the 2 × 2 matrix corresponds to the first

and second lattice vector, respectively.

For the interpolation, one may define cells with lattice points corresponding to points at mt1 and

mt2, where m can be recalled to be the order of the polynomial, however, the value of m chosen

for the interpolation does not have to be the same m used in order to find the current. Given a

position, (ρr, z + z′), one may find the coefficients for the corresponding lattice vectors asa1

a2

 =
1

m

 ∆ρr 0

∆z/2 ∆z


−1  ρr

z + z′

 , (3.42)

where in the case ρr and z+z′ are zero, a small value is added to ρr in order to avoid tabulating at

the singularity. The limit with z+z′ = 0 and ρr → 0 is specifically chosen as this case is prevalent,

which is relevant as the integrals may be discontinuous around the origin.
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Now a cell may be subdivided into two triangles, for which the value on the triangle may be

determined by the polynomials, in the same manner as the current has been interpolated with the

tabulated values corresponding to mesh points on an element as seen in App. D. In order to find

these polynomials u1 and u2 have to be found and may be determined asu1 = mod(a1, 1), u2 = mod(a2, 1), if mod(a1, 1) + mod(a2, 1) ≤ 1

u1 = 1−mod(a1, 1), u2 = 1−mod(a2, 1), if mod(a1, 1) + mod(a2, 1) > 1

, (3.43)

depending on which triangle is in question.

In Fig. 3.9 and Fig. 3.11 the s- and p-polarised components of the indirect Green’s tensor are

shown respectively, where in both figures the first row is the terms where the singularities have

been included, where an upper limit has been set for the colorbar to 1, while they in the last

row have been subtracted. For both polarisations it can be seen that the expressions without

(a) zϕ-component (b) ρϕ-component (c) ϕρ-component

(d) ρϕ-component (e) ϕρ-component

Figure 3.9: Plots of the different terms of the indirect Green’s tensor for s-polarisation
before (a - c) and after (d - e) the singularities have been subtracted. It should be
noted that the discontinuity found in the zϕ-component has not been subtracted.

singularities are well behaved compared to the expressions where the singularities are included,

due to the more even distribution, however, in order to see this for s-polarisation Fig. 3.10 has to

be consulted, in order to see the singularity in the lower left corner from the plots in Fig. 3.9b

and Fig. 3.9c. This is furthermore a confirmation that the derived analytic expressions for the

singularities are correct.
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(a) ρϕ-component (b) ϕρ-component

Figure 3.10: Zoom in on the singularities in the lower left corner for s-polarisation.

(a) ϕz-component (b) ρϕ-component (c) ϕρ-component

(d) ϕz-component (e) ρϕ-component (f) ϕρ-component

Figure 3.11: Plots of the different terms of the indirect Green’s tensor for p-
polarisation before (a - c) and after (d - f) the singularities have been subtracted.
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Chapter 4

Results and Analysis

Within this chapter the results from the different simulations obtained for different PEC antennas

in different structures, using the theory from Ch. 2 along with the implementation described in

Ch. 3, will be presented and analysed. This chapter will be split into sections based on the shape

of the scatterer and the environment surrounding it. It should be noted that the incident field has

been normalised to 1 V
m and is propagating in the z-direction and polarised along the x-direction for

the calculations for the current on a spherical scatterer, and in the −z-direction, with polarisation

along the −x-direction for all other calculations. All far-field plots presented in this chapter show

differential scattering cross sections, normalised by dividing with (4a)2 for the spherical antennas,

where a is the radius of the sphere, and (2l)2 for the box-antenna, where l is the length of the box.

4.1 Differential Scattering Cross Section of a Dipole
The most common type of antenna is the dipole antenna [20, pp.21], and it is therefore interesting

to compare the far-field radiation patterns of the antennas produced within this report to that of

a dipole antenna.

The far-field can be expressed by Eq. (2.21a) as

E(d,ff)(r) = iωµ0

∮
←→
G(d,ff)(r, r′) · J(r′)d3r′, (4.1)

where for a dipole at the origin J(r′) = δ(r′) ddtp, with p = pp̂ being the dipole moment. Thus

E(d,ff)(r) = ω2µ0p
←→
G(d,ff)(r,0) · p̂

= ω2µ0p(θ̂θ̂ · p̂ + ϕ̂ϕ̂ · p̂)
eik0
√
εr

4πr
. (4.2)

Fig. 4.1 shows the far-field radiation pattern from a dipole, calculated by taking the absolute value

of E(d,ff), yielding ∣∣∣E(d,ff)(r)
∣∣∣ =

ω2µ0p

4πr

√
(θ̂ · p̂)2 + (ϕ̂ · p̂)2. (4.3)

Here ϕ̂ = ŷ cosϕ sin θ − x̂ sinϕ sin θ and θ̂ = ẑ sin θ + ŷ sinϕ cos θ + x̂ cosϕ cos θ, hence∣∣∣E(d,ff)(r)
∣∣∣ =

ω2µ0p

4πr
|sinα| , (4.4)

where α is the angle between p̂ and r̂.
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Figure 4.1: The far-field radiation pattern of a dipole which is placed in the x-
direction, which can be seen to take on the form of a torus. Here the units are
arbitrary.

4.2 Evaluation of the Spherical Scatterer in Free Space
In all the results involving the analytical solution of the surface current for a spherical scatterer

in free space, the summations in Eq. (E.15) are approximated by 30 summations as discussed in

App. E, while all numerical results for the surface current has been obtained using Eq. (2.75).

4.2.1 Comparison of Parameters

In this section, different parameters used when calculating the numerical surface current are ex-

amined. In order to do this, the numerically obtained results should be compared to an analytical

solution in order to evaluate the accuracy of the numerical results, which is possible for a sphere.

Furthermore, plots of the θ- and ϕ-components will be presented for different combinations of

parameters, where in all plots with fixed wavelength it has been used that λ
a = 4, while ϕ = 0 for

the θ- component, and ϕ = π
2 for the ϕ-component.

m # Elements # Subelements Faceted Normalised Error Normalised Time

Reference Combination

2 480 121 No 1 1

Table 4.1 – continued on next page
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Table 4.1 – continued from previous page

m # Elements # Subelements Faceted Normalised Error Normalised Time

Varying the Order of the Polynomial, m

0 480 121 No 14.70 0.09

1 480 121 No 3.57 0.13

3 480 121 No 0.98 3.76

Varying the Number of Elements

2 48 121 No 8.56 0.01

2 208 121 No 2.06 0.18

2 800 121 No 0.55 2.72

Varying the Number of Subelements

2 480 25 No 1.89 0.23

2 480 441 No 0.90 3.56

2 480 961 No 0.83 7.29

Faceted Elements

2 480 121 Yes 1121 0.99

Table 4.1: The results from numerical simulations made in order to test which com-

bination of parameters results in the best result for the least amount of computation

time.

In Tab. 4.1 different parameter combinations, their errors, calculated as the RMSE deviation from

the analytical result, and their associated computation time are shown. Here the compared points

correspond to the ones at the element vertices, edge midpoints and face midpoints in the case of

480 elements. The error and computation time are both normalised by dividing with the values

of the chosen reference configuration. To give an idea of the actual computation time to find the

current, the reference configuration for a sphere took 1.7 hours to complete on one of the applied

personal computers, while it took 8.5 hours to complete the current for a box-shaped scatterer

in a homogeneous media for the same combination. If the reference combination is compared to

the analytical results, as can be seen in Fig. 4.2, it is clear that the numerical result for this

combination does correspond to the analytically obtained results, thus the results obtained using

this combination are assumed to be accurate. Here the numerical result is achieved by finding the
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element and its corresponding parametric variables, given a position on the sphere, from which

the current may be find.

(a) θ-component (b) ϕ-component

Figure 4.2: The numerically obtained surface current of a spherical scatterer using
the reference combination, compared to the analytical results for said scatterer.

Before looking further into the relevance of the different parameters, and how they affect the

normalised error and computation time, the computation time should be evaluated further.

The time needed for calculating the surface current, is dependent on the number of integrals over

elements in Eq. (3.33) that must be solved, which is in turn dependent on the number of elements,

Nk, the total number of mesh points Np, and the amount of points on each element, Nm, hence

#integrals = 4NpNmNk, (4.5)

where the factor 4 arrives due to the four combinations of the contribution from the two com-

ponents of Js to the two components of the integral. The time needed to compute each integral

is proportional to the amount of subelements, Nsub. Thus the time, t, needed to complete the

calculations is

t ∝ 4NpNmNkNsub. (4.6)

The number of points on each element can be determined by considering the Euler characteristic,

χ = V +F −E, where V is the number of vertexes, F is the number of faces and E is the number

of edges of the triangulation of a surface. For a sphere or a box it holds that χ = 2, and in this

case F = Nk. Each edge is shared by two elements and each element has three edges, which leads

to the relation 1
3E = 1

2Nk ⇒ E = 3
2Nk, thus V = 2 + 1

2Nk. For m 6= 0, the total amount of mesh

points Np can be expressed as

Np = V + E(m− 1) +

((
m+ 2

2

)
− 3m

)
Nk, (4.7)

where the second term represent the points along the edges of the elements and the third term

represent the interior points on the elements. Substituting the expressions for E and V into Eq.
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(4.7) yields

Np = 2 +
1

2
Nk +

3

2
Nk(m− 1) +

((
m+ 2

2

)
− 3m

)
Nk. (4.8)

Thus Np = O(Nkm
2), as

(
m+2

2

)
= 1

2m
2 + 3

2m+ 1.

In the case where m = 0, then Np = Nk as each element will only have a single unshared point, as

seen in Fig. 3.4a.

From this it can be seen that the worst case computation time can be found to be

t = O(N2
km

2NmNsub), for m 6= 0, (4.9a)

t ∝ N2
kNmNsub, for m = 0. (4.9b)

Now, the results presented in Tab. 4.1 can be discussed. First off, it is noticeable that the faceted

model has a normalised error that is more than a 1000 times worse than the reference combination,

and almost 80 times worse than the otherwise poorest combination, where 0th order polynomials

are used. When Fig. 4.3 is considered it becomes even clearer how poorly the model using faceted

(a) θ-component (b) ϕ-component

Figure 4.3: The numerically obtained surface current as calculated by a model with
faceted elements compared to the analytical result.

elements relate to the analytical results, and it must therefore be concluded that this model is

inferior to the models using curved elements.

Secondly, it can be seen that the polynomial degree does affect the normalised error quite signifi-

cantly. From Fig. 4.4 it is easily observed that both a model using 2nd order and 3rd polynomials

fit the analytical result considerably in comparison to the models using 0th and 1st order polyno-

mials. A part of the reason for the poor performance of the first order polynomials for the complex

valued currents is, that unlike in the case of real numbers, the magnitude of a sum of complex

numbers is equal to or less than the sum of the magnitudes. As a result, the magnitude of the

current dips between each mesh point, as shown in Fig. 4.4b. This could potentially be accounted
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(a) m = 0 (b) m = 1

(c) m = 2 (d) m = 3

Figure 4.4: A comparison of the θ-component of the surface current, where the nu-
merical results are calculated using different degrees of polynomials.

for by linearly varying the phase and the amplitude of the current separately, however, this has

not been prioritised, since a higher order polynomial has been used.

This is also what can be deducted from the normalised error in the table, however, it is furthermore

relevant to discuss the computation time. In order to predict the normalised computation time

from the equations presented previously, Eq. (4.6) can be used, hence

normalised time =
t

t0
=

NpNmNkNsub

Np,0Nm,0Nk,0Nsub,0
, (4.10)

where t0 is the computation time for the reference combination, and Np can be found using Eq.

(4.8), or by Np = Nk if m = 0. This yields the normalised computation times

m = 0 : 0.08,

m = 1 : 0.13,

m = 3 : 3.75,

which is relatively close to the normalised computation times presented in the table. To summarise,

one should use polynomials of at least 2nd order to obtain the most accurate results, however, while
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a further increase in the degree of the polynomial does not significantly decrease the normalised

error it does increase the normalised computation time considerably, thus polynomials of the 2nd

order is the most cost effective.

Next, the numerical results using different numbers of elements can be evaluated. From Fig. 4.5

(a) Number of elements = 48 (b) Number of elements = 208

(c) Number of elements = 480 (d) Number of elements = 800

Figure 4.5: A comparison of the θ component of the surface current calculated using
different numbers of elements.

it can be seen that even the model using only 48 elements can be used to produce decent results,

while a model using 208 elements, or more, will produce results that seemingly correspond to the

analytical results. However, by consulting the table it can be seen that the normalised error does

get approximately twice as good every time the number of elements is increased by approximately

two. The reason why the plots and the table do not seem to correspond is likely due to the

normalised error being calculated for multiple values of ϕ, while the plots only uses ϕ = π
2 , thus,

a small error in one direction that can barely be seen in the plots may result in a noticeable error

when summed up over all directions.

When the normalised computation time is considered, it could be predicted by Eq. (4.9a) that

the computation time would depend on the number of elements squared, hence the normalised
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computation times could be predicted to be

Nk = 48 : 0.01,

Nk = 208 : 0.19,

Nk = 800 : 2.78,

which is slightly larger than the values in the table, however, these predicted values are the worst

case normalised computation times, thus it would be expected that the values from the table would

be less than the predicted values. In summary, while the reference combination uses 480 elements

it might be sufficient to use 208, as the difference between the normalised error for these two is

a factor of two, while the difference in normalised computation time is a factor of five. However,

in this project the additional accuracy has been valued higher than the longer computation time,

hence why the number of elements in the reference combination has been chosen to be 480.

Lastly, the number of subelements on each element is considered. In Fig. 4.6 it can be seen that

(a) Number of subelements = 25 (b) Number of subelements = 121

(c) Number of subelements = 441 (d) Number of subelements = 961

Figure 4.6: A comparison of the θ component of the surface current calculated using
different numbers of subelements.

already at a small number of subelements the numerical model seems to match with the analytical

result. However, as was discussed when the number of elements was varied the values for the
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normalised error from the table does not entirely correspond to what is seen in the plots when few

subelements are used, likely due to similar reasoning. Though, from both the plots and the table

an increase in the number of subelements beyond 121 does not suggest that the normalised error

should improve significantly.

From Eq. (4.9a) it was predicted that the normalised computation time would depend linearly on

the number of subelements, hence the normalised computation time could be predicted to be

Nsub = 25 : 0.21,

Nsub = 441 : 3.64,

Nsub = 961 : 7.94,

which, like what was the case when the number of elements was varied, is larger than the values

from the table, however, once again these predicted normalised computation times are the worst

case computation times, thus this is expected. To summarise, at least 121 subelements, as in the

reference configuration, should be used, however, due to the significant increase in computation

time it has, for the purpose of this report, been deemed sufficient to use 121 subelements.

In conclusion, the values of the parameters used in the reference combination have been appropri-

ately chosen for this project in order to obtain the most accurate results that are still cost effective

with regards to the computation time.

4.2.2 Evaluation of the Surface Current

Figure 4.7: The surface current on a spherical scatterer where the arrows indicate the
direction of the current.

The calculated surface current for a spherical scatterer is shown in Fig. 4.7, where the arrows

indicate the direction of the current at an arbitrary phase and the color indicates the magnitude.
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The distribution of the current is symmetrical, and there are two ’node points’, where the current

runs to and from.

In Fig. 4.7 and in all subsequent surface current plots, the absolute value of the current is shown

as constant within each element, which is not the case, as a weighted average is used from the

current defined at the mesh points on the element. Here mesh points placed on the edges of the

element are weighted 8/3 times as heavily since this corresponds to how much greater the average

value of the corresponding polynomial is on the element.

4.2.3 Evaluating the Stability as a Function of the Wavelength

In Sec. 4.2.1 the ratio between the wavelength of the incoming light and the radius of the sphere was

chosen such that λ
a = 4, however, it should be noted that it can be difficult to calculate the surface

current accurately if this ratio becomes small. This is due to an increase in the frequency, thus

the numerical calculations become more "rough" as it struggles to process the rapid oscillations,

as can be seen from Eq. (2.19), where it can be recalled that the exponential term goes as

g(r, r′) ∝ eik0
√
ε|r−r′|,

hence the phase is proportional to k0. Though, this instability can be reduced by increasing the

number of elements and/or the number of subelements.

In order to test this, results from simulations of varying wavelengths will be conducted with

different numbers of elements and subelements. In this case, the error is measured only in points

corresponding to the element vertices for 480 elements as opposed to what was done in Sec. 4.2.1

in order to limit computation time.

Figure 4.8: The error of a spherical scatterer compared to the analytical results for
differing wavelengths.
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From Fig. 4.8 it can be seen that the model for all three combinations of the number of elements

and subelements used is relatively stable down to a ratio of around 0.6, after which the error spikes

greatly. Furthermore, it is seen that increasing the amount of subelements offers little to no change

in stability, while the number of elements, seem to have some positive effect on the stability of the

method at low wavelengths, however the instability is still large.

4.2.4 Evaluation of the Differential Scattering Cross Section

The results from the simulations of the far-field for a spherical scatterer are shown in Fig. 4.9, for

the ratios 4, 8 and 64 between the wavelength of the incident field and the radius of the scatterer,

where it can be seen that the far-field radiation patterns do depend on this ratio. This result is

somewhat consistent with those found in e.g. [21], though in the article the far-field is found to

resemble a dipole, i.e. a torus, for small spheres, as discussed in Sec. 4.1, however, the results

from our model seem to converge to a contorted torus, which is likely due to the simulation in this

report being made for a perfectly conducting sphere, unlike the scatterer in the article.

From these far-field radiation patterns it can be seen that a small scatterer relative to the wave-

length seem to scatter more of the incident field back relative to any other direction, while for a

relatively large scatterer, the scattered field seems to propagate forward.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: The far-field of a spherical scatterer with wavelength to radius ratio of 4,
8 and 64, and scattering cross sections 0.0073, 0.0691 and 1.1666 ·10−5 for a) and b),
c) and d), and e) and f), respectively.

4.3 Evaluation of a Single Box-shaped Scatterer in Free Space
A more realistic terahertz antenna is a box antenna, which in this case is approximated to assume

the shape of a rounded box. The box is constructed by replacing the edges with cylinders and the

corners with quarter spheres, thus the height of the box is dictated by the radius of the sphere

used when constructing the box. This section explores the results from the simulations of such a
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box both in a homogeneous medium. For all simulations made in this section, where the relative

wavelength has been held constant, the box has dimensions l = 20a, w = 5a and h = 2a, where a

is the rounding radius.

4.3.1 Evaluation of Resonance

In order to find the optimal wavelength, i.e. when the scattered field is maximised, for a give

antenna, it is worth looking at which relative wavelength resonances occur given a normal incident

field. Naturally, for a thin wire one would expect resonances for ratios l = nλ2 for odd integers n

as the opposing currents will largely cancel the fields for the even cases, hence the resonances are

expected to be strongest for small n.

In Fig 4.10 the scattering cross section of antennas with varying ratios is plotted. It is seen that

the scattering cross section seems to peak at a ratio of around 2.4, indicating a resonance. If

interpreted as the n = 1 peak, this would correspond to an effective length of l∗ = 2.4
2 l = 1.2l.

The second resonance appears to peak about a ratio of 0.7, which may be interpreted as the n = 3

peak with an effective length l∗ = 3·0.7
2 = 1.05l, which is closer to the expected length. This is

likely due to the antenna not being a thin wire but a rounded box, hence an effective length may

be defined, as will be further discussed in Sec. 4.3.2.

Figure 4.10: The normalised scattering cross section as a function of the ratio between
the wavelength of the incoming light and the length of the antenna. Here, the length
of the antenna has been held constant and the wavelength has varied.

4.3.2 Evaluation of the Surface Current

In Fig. 4.11a, the calculated surface current on a box in resonance is shown. The direction of the

current changes as the phase varies. The current along the path represented by the black line,

which wraps all the way around the antenna, is illustrated in Fig. 4.11b. Here it can be seen that

63



Group 5.325 A, FYS10
4. Results and Analysis

(a) (b)
la

(c)

Figure 4.11: a) The surface current of a box antenna at wavelength to length ratio 2.4,
b) the current density along the path shown in Fig. 4.11a, where the large resonance
corresponds to the top of the box and the smaller one to the bottom, and c) cross
section of the antenna at the path shown in Fig. 4.11a.

the current takes the form of half a sinusoidal wave on each side of the antenna. The effective

length of the antenna can be calculated by multiplying the normalised distance between the node

points, i.e. where the current changes direction, in this case 0.553 for the large resonance, with

the path length of the entire revolution, given by L = 2(l − 2a) + 2πa = 0.9l + πl
10 . In Fig. 4.11c

the geometry of the path is illustrated. This results in an effective length given by

l∗ = 0.553 · L = 1.168l,

corresponding nicely to around half of the resonance wavelength at λ = 2.4l, which fits nicely,

although a more accurate location of the peak could be obtained with more data points for the

scattering cross section.

4.3.3 Evaluation of the Differential Scattering Cross Section

In Fig. 4.12 the far-field for two antennas of different length has been modelled. It is seen that

the far-field is dependent on length of the antenna and for short antennas the radiation pattern

resembles that of a spherical scatterer. Furthermore it can be seen that the pattern tends fairly

quickly towards a torus shape, which is somewhat to be expected as a longer antenna can be

approximated as a thin wire antenna, which acts as a dipole since for a thin wire the induced

current can only run along a single direction.
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Figure 4.12: The far-field of box antennas with length to wavelength ratio 1/16 and
7/16, and scattering cross sections 8.90 · 10−4 and 0.349, respectively.

4.4 Evaluation of a Single Box-shaped Scatterer on a Layered

Structure
In this section, the box antenna is examined when placed on a substrate with a refractive index

n = 3.4 corresponding to that of silicon[22] in the case of terahertz radiation. Due to numerical

instability of the indirect Green’s tensor, the scatter is placed a
100 above the substrate. The ratio

chosen for examination is λ
l = 2.4 in order to be able to compare this surface current with the

corresponding result without a substrate shown in Fig. 4.11b.

4.4.1 Evaluation of the Surface Current

(a) (b)

Figure 4.13: a) The surface current of a box antenna placed on a dielectric substrate,
at wavelength to length ratio 2.4 and b) the current along the path shown in Fig.
4.13a.

In Fig. 4.13 the current for a substrate is shown to have a rather different behaviour than without

the silicon substrate. Rather than having nodes at the endpoints, the current seems to make a

full oscillation around the box with a minimum on the midpoint of the face in contact with the

substrate, where the current instead goes to zero on the side of the box. Despite these differences,

the maximum current density between the two cases are relatively close.
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4.4.2 Evaluation of the Differential Scattering Cross Section

(a) (b)

Figure 4.14: The differential scattering cross section of a box antenna placed on a
dielectric substrate is seen a from the side and b zoomed in around the top where
the backscattered part is shown.

In Fig. 4.14 it can be seen that most of the scattered field is coupled into the substrate with just

9.95% of the energy scattered backwards. Most of the transmitted power is at an angle of 16.85°

from the substrate normal. The meshing of the DSCS is quite rough for the transmitted part and

could have been calculated more accurately, however, due to time constraints, and highly time

consuming computation as described in Sec. 4.2.1, this has not been feasible.

4.5 Evaluation of Multiple Box-shaped Scatterers

4.5.1 Comparison Between Two Coupled and Two Duplicated Scatterers

In this section, results from simulations of different approaches are compared. One approach

involves calculating the surface current on a single box and then duplicating said box as an ap-

proximation of a coupled system. The other approach involves calculating the coupled system

directly, however, this approach is around four times as time consuming as the duplication ap-

proach, as there are twice the the amount of points that must be integrated over, which can be

calculated as in Sec. 4.2.1.

4.5.1.1 Evaluation of the Surface Current

From Fig. 4.15 it can seen that the current for a coupled system is larger and more concentrated

around the middle of the antenna with a slight inclination towards the side that is facing the other

antenna. The current distributions are, however, very similar for the two cases, but the coupled

case has a larger current density roughly scaled by 23.6
19.5 = 1.21. To determine whether or not the

duplication approximation is viable it is also necessary to examine the differential scattering cross

section.
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(a) (b)

Figure 4.15: The surface current of a) duplicated box antennas and b) coupled box
antennas.

4.5.1.2 Evaluation of the Differential Scattering Cross Section

Figure 4.16: The differential scattering cross section of a) duplicated box antennas
and b) coupled box antennas. Here the scattering cross section is 0.164 for two
duplicated antennas and 0.630 for the coupled antennas

In Fig. 4.16 it can be seen that the magnitude of the scattering differential cross section of

the duplication approximation is 26.0% of that of the coupled antennas. With the field being

proportional to the current, while the scattering cross section being proportional to the field

squared, the coupled case may be expected to have a DSCS scaled by (23.6/19.5)2 = 1.47. This

is seen in the z-direction, where they are respectively 0.278 and 0.401, which have a ratio of 1.45,

which is in good correspondence. However, this match is not as good in other directions as seen

by the scattering cross sections as the coupled case has a wider DSCS, which may due to to less

cancellation of the fields, likely due to a translational asymmetry.

Thus the duplication approximation can be said to be give a similar pattern as the coupled case,
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albeit with a lower magnitude.

4.5.2 Multiple Box Antennas on a Layered Structure

4.5.2.1 Evaluation of the Surface Current

Figure 4.17: The surface current on two coupled box antennas on a dielectric sub-
strate.

For the case of two coupled antennas placed on a dielectric substrate, where the ratio λ
l = 2 in

order to compare with the corresponding configuration with no susbstrate. Here It is seen that the

surface current is greatly increase as opposed to the coupled case without a substrate seen in Fig.

4.15. Otherwise, the current distribution looks similar as for a single scatterer on a substrate.

4.5.2.2 Evaluation of the Differential Scattering Cross Section

Here around 21.6% is scattered away form the substrate, while the rest is transmitted into the

substrate. Most of the transmitted power is at an angle 16.9° from the substrate normal exactly as

in the case for a single scatterer, while the smaller secondary lobes are about at an angle of 39.4°

from the substrate normal.

4.5.3 Evaluation of the Differential Scattering Cross Section for Multiple

Duplicated Scatterers

This section focuses on exploring the effects on the differential scattering cross section of multiple

box antennas, both by multiple evenly distributed antennas and two antennas at varying distances.

For all calculations the duplication approximation has been used in order to save on computation

time, which is fair as the patterns will be roughly same, but the magnitude of the differential
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(a) (b)

Figure 4.18: The differential scattering cross section of two coupled box antennas on
a dielectric substrate seen a from the side and b zoomed in around the top where the
backscattered part is shown.

scattering cross section will be somewhat smaller.

4.5.3.1 Evaluation of the Differential Scattering Cross Section Dependence of the

Number of Scatterers

(a) 1 (b) 2

(c) 3 (d) 4

Figure 4.19: The differential scattering cross section of 1-4 duplicated box antennas
placed a distance of λ/2 from each other.
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From Fig. 4.19 it can be seen that when the amount of antennas is increased the differential

scattering cross section becomes more narrow and more directionalised, which means that it is

possible to direct the field in a specific direction, which is a useful property for an antenna. For

even numbers of antennas destructive interference is observed in the y-direction, however for uneven

numbers there will always be an antenna contribution that is not cancelled by another antenna.

4.5.3.2 Evaluation of the Differential Scattering Cross Section dependence of the

Distance Between the Scatterers

(a) λ (b) 3λ
2

(c) 2λ (d) 5λ
2

Figure 4.20: The differential scattering cross section of 2 duplicated box antennas
placed a varying distance of λ to 5λ/2 apart.

The results in Fig. 4.20 corresponds very well to the theoretical results obtained in Sec. 2.5, as there

is constructive interference in the z-direction in every case as this is when r̂ ⊥ ∆r. Furthermore

the only cases where there is a contribution along in y-direction is for distances of integer times

λ. The angles of the lobes can be determined by considering the scalar product k1r̂ ·∆r = n2π ⇔

n = ∆r
λ cosα ⇔ α = cos−1 nλ

∆r . In the simulation the angle can be determined by determining

the coordinates at the tip of the lobe in the yz-plane and using α = tan−1 z/y. Theoretically

the second lobe, i.e the 1st order, in Fig. 4.20c should appear at the angle α = cos−1 1
2 = 60°,
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since ∆r = 2λ, while for the simulation the angle is α = tan−1 16.5/10 = 58.8°, which is a fair

correspondence.
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Chapter 5

Conclusion

In this report, the Green’s Function Surface Integral Equation Method has been examined and

implemented to obtain a method for calculating the surface current and far-field radiation patterns

for different scatterers in different geometries.

Within the theory, the Green’s tensor for the different geometries was found and used in order to

obtain the surface current for the scatterer(s) in question. In the process of deriving an expression

for the Green’s tensors for the layered structure, multiple singularities were found, which could be

subtracted and solved analytically.

In the far-field limit, modified Green’s tensors were found and in turn used to find the surface

current and differential scattering cross section, which were modelled and evaluated for a number

of scattering problems.

Based on the simulations of the spherical PEC scatterer it has been observed that the GFSIEM is

able to produce highly accurate results when the numerically obtained results are compared to an

analytic solution. Here different simulation parameters were investigated and evaluated on their

effect on the normalised error and computation time in relation to a reference configuration.

It was found, however, that the method is quite unstable at wavelengths small in comparison to

the geometry in consideration, with little success in improvements by increasing the simulation

parameters.

For the surface current on the antennas in free space it was found that current assumes the form

of two standing waves, one large on the side facing the incident field and a second smaller one

on the opposing side. Resonance was observed, when the wavelength corresponded to twice the

path length between the two nodes of the current wave facing the incident field. Furthermore it

was found that the surface current for multiple antennas was greater for coupled cases than for

corresponding uncoupled atennas, otherwise the current distributions were fairly similar, albeit

with some minor differences.

For antennas placed on a dielectric substrate, the surface current was found as a single standing

wave along the antenna.

For antennas in free space the incident was observed to be scattered approximately evenly forwards

and backwards. For the antennas on a dielectric substrate it was seen that most of the scattered

fields of the antennas are coupled into the substrate.
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Appendix A

Boundary Conditions

The derivation of the boundary conditions presented here is based on [7, Sec. 2.10].

In Sec. 2.1 the general wave equations (Eq. (2.3))

−∇×∇×E(r) + k2
0ε(r)E(r) = −iωµ0J(r),

−∇× 1

ε(r)
∇×H(r) + k2

0H(r) = −∇× 1

ε(r)
J(r),

were derived using Maxwell’s equations. Within said section it was further discussed that boundary

conditions had to be in place in order to ensure continuity of both the electric- and the magnetic

fields across interfaces. These boundary conditions can be found by applying Gauss’s theorem and

Stokes’ law ∫
V

∇ ·Ad3r =

∮
S

n̂ ·Ad2r Gauss’s theorem, (A.1a)∫
S

∇×A · n̂d2r =

∮
L

n̂ ·Adr Stokes’ Law, (A.1b)

to the Maxwell equations presented in Eq. (2.2), which yields∮
S

n̂ ·E(r)d2r =
1

ε0

∫
V

ρ(r)

ε(r)
d3r, (A.2a)∮

S

n̂ ·H(r)d2r = 0, (A.2b)∮
L

n̂ ·E(r) · n̂dr = iωµ0

∫
S

H(r)d2r, (A.2c)∮
L

n̂ ·H(r)dr =

∫
S

(J(r)− iωε0ε(r)E(r)) · n̂d2r. (A.2d)

In order to derive the appropriate boundary conditions from these equations it is useful to consider

a single interface between the scatterer and the surrounding media, as can be seen in Fig. A.1.

In Eq. (A.2a) and Eq. (A.2b) a volume integral has to be evaluated on the RHS and Fig. A.1a

is therefore considered for the evaluation of these two equations, while Fig. A.1b is used in the

evaluation of Eq. (A.2c) and Eq. (A.2d) due to the surface integral on the RHS.

If the expressions in Eq. (A.2) are evaluated for l → 0, the boundary conditions can be found to
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be

n̂ · (ε2E2(r)− ε1E1(r)) =
ρs(r)

ε0
; ρs = ρl, (A.3a)

n̂ · (H2(r)−H1(r)) = 0, (A.3b)

n̂× (E2(r)−E1(r)) = 0, (A.3c)

n̂× (H2(r)−H1(r)) = Js(r) ; Js = Jl. (A.3d)

V

n̂
l

a

(a)

n̂

S

l

(b)

Figure A.1: Illustration of a single interface between the scatterer and the surrounding
media. a) a box-shaped volume (V = al) with equal parts on each side of the interface
and b) a plane perpendicular to the interface with equal parts on each side of the
interface. Inspired by [7, Fig. 2.1].
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Appendix B

Weyl Expansion

In this appendix, the Green’s function, g(r, r′), from Eq. (2.19), which can be recalled as

g(r, r′) =
eik0
√
ε|r−r′|

4π |r− r′|
,

is expressed in cylindrical coordinates by using the Weyl expansion. From its defining wave equa-

tion in Eq. (2.17), an eigenvalue problem may be stated as

(∇2 + k2
0ε1)Eλ(r) = λEλ(r) (B.1)

which may be rewritten such that

(∇2 + k2)Ek(r) = 0, (B.2)

where k2 = k2
0ε1 − λk, with the solution Ek = eik·r. Now the Green’s function may be expressed

as

g(r, r′) = −
∫
Ek(r)Ek(r′)∗

(2π)3λk
d3k, (B.3)

which can be shown to be a solution to the wave equation by applying the differential operator

from the LHS of Eq. (B.1) to this expression, then using Eq. (B.2) before lastly using the inverse

Fourier transform,

1

(2π)3

∫
eik·(r−r

′)dk3 = δ(r− r′). (B.4)

Now, by factorising λk and adding a small imaginary term in the denominator, the Green’s function

may be stated as

g(r, r′) =

∫ ∞
−∞

eik(r−r′)

(2π)3
(
kz −

(√
k2

0ε1 − k2
ρ + iα

))(
kz +

√
k2

0ε1 − k2
ρ + iα

)d3k, (B.5)

in the limit of α → 0+, where it has been used that k2 = k2
ρ + k2

z . Focusing on the integral over

kz, the integrand goes to zero at infinity as long as the real part of ikz(z − z′) remains negative,

hence for e.g. z > z′, the integration path may be extended into the complex plane with an upper

semicircle in order to form a closed path, such that the pole kz =
√
k2

0ε1 − k2
ρ + iα is enclosed

within the path if α is chosen in the positive limit. As the integrand is holomorphic, i.e. complex

differentiable in the neighbourhood of every point of its domain, the residue theorem may be
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applied, which for first order poles located at z1, . . . , zn inside a closed path, C, yields[15, p. 381]∮
C

f(z)dz = 2πi
n∑
j=1

lim
z→zj

(z − zj)f(z), (B.6)

for a function f , in which case Eq. (B.5) yields

g(r, r′) =
i
2

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

eikx(x−x′)eiky(y−y′)eikz,1|z−z
′|

kz,1
dkxdky, (B.7)

from its pole when integrating over kz, which is known as the Weyl expansion of the green’s

function. Here the correct pole was obtained by choosing α in the positive limit resulting in the

radiating boundary condition being satisfied. If z < z′ the opposite sign pole is obtained, so the

exponent remains the same if z and z′ are interchanged, hence the absolute sign.
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Derivation of the Green’s Function for a Layered

Structure

In Sec. 2.4.1 an outset was taken in the expression for g(r, r′), which was derived in App. B, Eq.

(B.7), which can be recalled as

g(r, r′) =
i
2

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

eikx(x−x′)eiky(y−y′)eikz,1|z−z
′|

kz,1
dkxdky,

which in turn could be used in order to derive, first the direct Green’s tensor, presented in Eq.

(2.78), and from that the indirect and the transmitted Green’s tensors, presented in Eq. (2.79).

This appendix will aim to provide the reader with a more in-depth derivation, following [15, Sec.

6.3].

By applying

kx = kρ cosϕk,

ky = kρ sinϕk,

x− x′ = ρr cosϕr,

y − y′ = ρr sinϕr,

to the expression for g(r, r′), it can be converted into cylindrical coordinates as

g(r, r′) =
i
2

1

(2π)2

∫ ∞
0

∫ 2π

0

eikρρr cos(ϕk−ϕr)eikz,1|z−z
′|

kz,1
kρdkρdϕk, (C.1)

by using cos(ϕk − ϕr) = cosϕk cosϕr + sinϕk sinϕr. Next the definition of the 0th order Bessel

function,

J0(x) =
1

2π

∫ 2π

0

eix cos θdθ,

can be used in order to further reduce the expression for the scalar Green’s function in order to

obtain

g(r, r′) =
i

4π

∫ ∞
0

J0(kρρr)eikz,1|z−z
′|

kz,1
kρdkρ, (C.2)

where it has been used that the integral is independent of ϕr, since the integral is over a full period.

The direct dyadic Green’s tensor in cylindrical coordinates can then be obtained by inserting this

cylindrical expression for the scalar Green’s function into the expression for the dyadic Green’s
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tensor in free space, yielding

←→
G(d)(r, r′) =

(
←→
I +

1

k2
1

∇∇
)

i
4π

∫ ∞
0

J0(kρρr)eikz,1|z−z
′|

kz,1
kρdkρ. (C.3)

By using that
←→
I = ρ̂rρ̂r + ϕ̂rϕ̂r + ẑẑ along with the relations between Cartesian and cylindrical

coordinates for the unit vectors,

ρ̂r = x̂ cosϕr + ŷ sinϕr,

ϕ̂r = −x̂ sinϕr + ŷ cosϕr,

x̂ = ρ̂r cosϕr − ϕ̂r sinϕr,

ŷ = ρ̂r sinϕr + ϕ̂r cosϕr,

and the gradient in cylindrical coordinates being given as

∇ = ẑ
∂

∂z
+ ρ̂r

∂

∂ρr
+ ϕ̂r

1

ρr

∂

∂ϕr
,

the direct Green’s tensor can be explicitly determined, as was done in Sec. 2.2.2.1. However,

while the two gradients does not affect each other in Cartesian coordinates, this is not the case in

cylindrical coordinates as ρ̂r is a function of ϕr, hence

∂

∂ϕr
ρ̂r =

∂

∂ϕr
x̂ cosϕr + ŷ sinϕr

= −x̂ sinϕr + ŷ cosϕr = ϕ̂r, (C.4)

which leads to

∇∇ =

(
ẑ
∂

∂z
+ ρ̂r

∂

∂ρr
+ ϕ̂r

1

ρr

∂

∂ϕr

)(
ẑ
∂

∂z
+ ρ̂r

∂

∂ρr
+ ϕ̂r

1

ρr

∂

∂ϕr

)
(C.5)

= ẑẑ
∂2

∂z2
+ ẑρ̂r

∂

∂z

∂

∂ρr
+ ẑϕ̂r

1

ρr

∂

∂z

∂

∂ϕr

+ ρ̂rẑ
∂

∂ρr

∂

∂z
+ ρ̂rρ̂r

∂2

∂ρ2
r

+ ρ̂rϕ̂r
1

ρr

∂

∂ρr

∂

∂ϕr

+ ϕ̂rẑ
1

ρr

∂

∂ϕr

∂

∂z
+ ϕ̂r

1

ρr

(
ϕ̂r

∂

∂ρr
+ ρ̂r

∂

∂ϕr

∂

∂ρr

)
+ ϕ̂rϕ̂r

1

ρ2
r

∂2

∂ϕ2
r

. (C.6)

By using that ∂
∂ϕr

g(r, r′) = 0, the second term in the direct Green’s tensor can be found as

∇∇g(r, r′) =

[
ẑẑ

∂2

∂z2
+ (ẑρ̂r + ρ̂rẑ)

∂

∂z

∂

∂ρr
+ ρ̂rρ̂r

∂2

∂ρ2
r

+ϕ̂rϕ̂r
1

ρr

∂

∂ρr

][
i

4π

∫ ∞
0

J0(kρρr)eikz,1|z−z
′|

kz,1
kρdkρ

]

=
i

4π

∫ ∞
kρ=0

[
−ẑẑk2

z,1J0(kρρr) + (ẑρ̂r + ρ̂rẑ) ikz,1kρ
z − z′

|z − z′|
J ′0(kρρr)

ρ̂rρ̂rk
2
ρJ ′′0 (kρρr) + ϕ̂rϕ̂r

kρ
ρr
J ′0(kρρr)

]
eikz,1|z−z

′| kρ
kz,1

dkρ, (C.7)
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hence the direct Green’s tensor in its entirety is given as

←→
G(d)(r, r′) =

i
4π

∫ ∞
0

[
ρ̂rρ̂r

(
J0(kρρr) +

k2
ρ

k2
1

J ′′0 (kρρr)

)
+ (ẑρ̂r + ρ̂rẑ)

ikz,1kρ
k2

1

z − z′

|z − z′|
J ′0(kρρr)

+ ẑẑ
k2
ρ

k2
1

J0(kρρr) + ϕ̂rϕ̂r

(
J0(kρρr) +

k2
ρ

k2
1

J ′0(kρρr)

kρρr

)]
eikz,1|z−z

′| kρ
kz,1

dkρ, (C.8)

where it in the ẑẑ-component has been used that the ẑẑ-component of
←→
I can be written as ẑẑk

2
1

k21

along with k2
ρ = k2

1 − k2
z,1.

Now it is assumed that the interface between the homogeneous media and the infinite substrate is

in z = 0, such that

εref =

ε1, z > 0

ε3, z < 0

. (C.9)

The Green’s tensor can then be constructed for this structure and with z′ > 0, where the incident

field for z′ > z > 0 is given by

Ei,z(r) =
←→
G(d)(r, r′) · ẑ

=
i

4π

∫ ∞
0

(
ẑJ0(kρρr)

k2
ρ

k2
1

− ρ̂r
ikz,1kρ
k2

1

J ′0(kρρr)

)
eikz,1(z′−z) kρ

kz,1
dkρ, (C.10)

which can be thought of as a sum of p-polarised waves propagating towards the interface, due

to ẑ component. The reflected1 and transmitted fields for each wave are then given by Fresnel

reflection, hence, the reflected and transmitted fields can be written as

Er,z(r) =
i

4π

∫ ∞
0

r(p)(kρ)

(
ẑJ0(kρρr)

k2
ρ

k2
1

+ ρ̂r
ikz,1kρ
k2

1

J ′0(kρρr)

)
eikz,1(z′+z) kρ

kz,1
dkρ, (C.11a)

Et,z(r) =
i

4π

∫ ∞
0

t(p)(kρ)
ε1

ε3

(
ẑJ0(kρρr)

k2
ρ

k2
1

+ ρ̂r
ikz,3kρ
k2

1

J ′0(kρρr)

)
eikz,1z

′
e−ikz,3z kρ

kz,1
dkρ,

(C.11b)

where

r(p)(kρ) =
E

(p)
r

E
(p)
i

=
ε3kz,1 − ε1kz,3
ε3kz,1 + ε1kz,3

, (C.12a)

t(p)(kρ) =
n3

n1

E
(p)
t

E
(p)
i

= 1 + r(p)(kρ), (C.12b)

are the Fresnel reflection and transmission coefficients for p-polarised light. Here the transmission

coefficient is unconventionally, but conveniently, defined as the components of the field may be

related as

E
(p)
t⊥ = E

(p)
t sin θ3 =

n1

n3
E

(p)
i t(p) sin θ3 =

ε1

ε3
t(p)E

(p)
i sin θ1 =

ε1

ε3
t(p)E

(p)
i⊥ (C.13a)

E
(p)
t‖ = E

(p)
t cos θ3 =

n1

n3
E

(p)
i t(p) cos θ3 =

n1

n3
t(p)E

(p)
i‖

cos θ3

cos θ1
=
ε1

ε3

kz,3
kz,1

t(p)E
(p)
i‖ , (C.13b)

1Er represents the reflected field by the dielectric media on which the antenna is placed and should not be
mistaken as being equal to Escat, presented in Sec. 2.2.2.2, which is the scattered field by the antenna itself.
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where ‖ refers to the component parallel to the interface while ⊥ to the perpendicular component,

and θ refers to the propagation angle from the interface normal, as can be seen in Fig. C.1. Here

Snell’s law, that is n1 sin θ1 = n3 sin θ3, and kz,i = k0ni cos θi has been used.

Ei
(p) Er

(p)

Et
(p)

z

n1

n3

θ1

θ3

Figure C.1: Illustration of the incident and the transmitted electric field.

Now, consider the incident field in the x̂-direction, given by

Ei,x(r) =
←→
G(d)(r, r′) · x̂ = E

(s)
i,x(r) + E

(p)
i,x(r), (C.14)

where both the s- and p-polarised components of the field are divergence-free, they satisfy the

wave equation and are given by

E
(s)
i,x(r) =

i
4π

∫ ∞
0

(
ϕ̂r sinϕrJ ′′0 (kρρr)− ρ̂r cosϕr

J ′0(kρρr)

kρρr

)
eikz,1(z′−z) kρ

kz,1
dkρ, (C.15a)

E
(p)
i,x(r) =

i
4π

∫ ∞
0

(
ϕ̂r sinϕr

k2
z,1

k2
1

J ′0(kρρr)

kρρr
− ρ̂r cosϕr

k2
z,1

k2
1

J ′′0 (kρρr)+

ẑ cosϕr
−ikz,1kρ

k2
1

J ′0(kρρr)

)
eikz,1(z′−z) kρ

kz,1
dkρ, (C.15b)

where the recurrence relation J ′′0 (x) = −J0(x)− 1
xJ
′
0(x) has been utilised, while it can be recalled

that x̂ = ρ̂r cosϕr − ϕ̂r sinϕr. Now the total x-component of the field can be written as

Ex(r) =

E
(s)
i,x(r) + E

(p)
i,x(r) + E

(s)
r,x(r) + E

(p)
r,x(r), z > 0

E
(s)
t,x(r) + E

(p)
t,x(r) z < 0

, (C.16)

where, like for the z-component, the reflected and transmitted field can be found by Fresnel
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reflection as

E(s)
r,x(r) =

i
4π

∫ ∞
0

(
ϕ̂r sinϕrJ ′′0 (kρρr)− ρ̂r cosϕr

J ′0(kρρr)

kρρr

)
r(s)(kρ)eikz,1(z+z′) kρ

kz,1
dkρ, (C.17a)

E(p)
r,x(r) =

i
4π

∫ ∞
0

(
−ϕ̂r sinϕr

k2
z,1

k2
1

J ′0(kρρr)

kρρr
+ ρ̂r cosϕr

k2
z,1

k2
1

J ′′0 (kρρr)+

ẑ cosϕr
−ikz,1kρ

k2
1

J ′0(kρρr)

)
r(p)(kρ)eikz,1(z+z′) kρ

kz,1
dkρ, (C.17b)

E
(s)
t,x(r) =

i
4π

∫ ∞
0

(
ϕ̂r sinϕrJ ′′0 (kρρr)− ρ̂r cosϕr

J ′0(kρρr)

kρρr

)
t(s)(kρ)eikz,1z

′
e−ikz,3z kρ

kz,1
dkρ,

(C.17c)

E
(p)
t,x(r) =

i
4π

∫ ∞
0

(
kz,3
kz,1

(
ϕ̂r sinϕr

k2
z,1

k2
1

J ′0(kρρr)

kρρr
− ρ̂r cosϕr

k2
z,1

k2
1

J ′′0 (kρρr)

)
+

ẑ cosϕr
−ikz,1kρ

k2
1

J ′0(kρρr)

)
t(p)(kρ)

ε1

ε3
eikz,1z

′
e−ikz,3z kρ

kz,1
dkρ. (C.17d)

The Fresnel reflection and transmission coefficients for s-polarisation are given by

r(s)(kρ) =
E

(s)
r

E
(s)
i

=
kz,1 − kz,3
kz,1 + kz,3

, (C.18a)

t(s)(kρ) =
E

(s)
t

E
(s)
i

= 1 + r(s)(kρ), (C.18b)

while they for p-polarisation can be recalled from Eq. (C.12).

A similar approach, as the one used for the x-component, can be taken for the incident field in the

ŷ direction, where

Ei,y(r) =
←→
G(d)(r, r′) · ŷ. (C.19)

Thus, by collecting the expressions for the different directions, an expression for the dyadic Green’s

tensor for a two-layer structure is obtained

←→
G(r, r′)


←→
G(d)(r, r′) +

←→
G(i)(r, r′), z > 0, z′ > 0

←→
G(t)(r, r′), z < 0, z′ > 0

, (C.20)

where the incident and the transmitted Green’s tensor are given as

←→
G(i)(r, r′) = Er,xx̂ + Er,yŷ + Er,z ẑ, (C.21a)
←→
G(t)(r, r′) = Et,xx̂ + Et,yŷ + Et,z ẑ, (C.21b)
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which can furthermore be written as

←→
G(i)(r, r′) =

i
4π

∫ ∞
0

{
r(p)(kρ)

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

+ ϕ̂rϕ̂r
J ′0(kρρr)

kρρr

k2
z,1

k2
1

+

ρ̂rρ̂rJ ′′0 (kρρr)
k2
z,1

k2
1

− (ẑρ̂r − ρ̂rẑ)
ikρkz,1
k2

1

J ′0(kρρr)

)

−r(s)(kρ)

(
ϕ̂rϕ̂rJ ′′0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1(z+z′) kρ

kz,1
dkρ, (C.22a)

←→
G(t)(r, r′) =

i
4π

∫ ∞
0

{
t(p)(kρ)

ε1

ε2

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

− ϕ̂rϕ̂r
J ′0(kρρr)

kρρr

kz,1kz,3
k2

1

−ρ̂rρ̂rJ ′′0 (kρρr)
kz,1kz,3
k2

1

−
(
ẑρ̂r + ρ̂rẑ

kz,3
kz,1

)
i
kρkz,1
k2
z,1

J ′0(kρρr)

)

−t(s)(kρ)
(
ϕ̂rϕ̂rJ ′′0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1z

′
e−ikz,3z kρ

kz,1
dkρ. (C.22b)

C.1 The Differential Scattering Cross Section Green’s Tensor
In Sec. 2.4.2 the far-field Green’s tensors were derived from the Green’s tensors in Eq. (2.78) and

Eq. (2.79), however, this appendix will provide a more detailed derivation than was provided in

the Sec. 2.4.2.

First, consider the zz-component of the indirect Green’s tensor in Eq. (2.79a), hence

G(i)
zz =

i
4π

∫ ∞
0

J0(kρρr)
k2
ρ

k2
1

r(p)(kρ)eikz,1(z+z′) kρ
kz,1

dkρ. (C.23)

As stated in Sec. 2.4.2 z is large in the far-field and the integration interval can therefore be

reduced to 0 ≤ kρ ≤ k1. By then applying the coordinate transformations,

z = r cos θ, ρ = r sin θ, 0 < θ ≤ π

2
, (C.24a)

x = ρ cosϕ, y = ρ sinϕ, (C.24b)

kz,1 = k1 cosα, kρ = k1 sinα, (C.24c)

the integral reduces to

G(i,ff)
zz ≈ i

4π

∫ π
2

α=0

J0(kρρr)
k2
ρ

k2
1

r(p)(kρ)eikz,1(z+z′)kρdα. (C.25)

For large input arguments, the Bessel function can be approximated as

J0(x) ≈
√

2

πx
cos
(
x− π

4

)
, x� 1, (C.26)

hence

G(i,ff)
zz ≈ i

4π

∫ π
2

α=0

√
2

πkρρr
cos
(
kρρr −

π

4

) k2
ρ

k2
1

r(p)(kρ)eikz,1(z+z′)kρdα, (C.27)

where it can be found that

cos
(
kρρr −

π

4

)
eikz,1z ≈ 1

2

(
ei(kρρ+kz,1z)e−iπ4 e−ikρr′·ρ̂ + ei(−kρρ+kz,1z)ei

π
4 eikρr

′·ρ̂
)
, (C.28)
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by using that ρr may be approximated as ρr ≈ ρ − r′ · ρ̂ when a point r′ is near the origin and

another point r lies a great distance from the origin, by similar arguments as in Eq. (2.38), along

with the trigonometric identity cos(x) = eix+e−ix

2 . By then using the coordinate transformations

in Eq. (C.24) the RHS of this expression can be found to be

RHS =
1

2

(
eik1r(sinα sin θ+cosα cos θ)e−iπ4 e−ikρr′·ρ̂ + eik1r(− sinα sin θ+cosα cos θ)ei

π
4 eikρr

′·ρ̂
)
, (C.29)

which can further be rewritten as

RHS =
1

2

(
eik1r cos(α−θ)e−iπ4 e−ikρr′·ρ̂ + eik1r cos(α+θ)ei

π
4 eikρr

′·ρ̂
)
, (C.30)

where the trigonometric identity cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b) has been utilised.

For large k1r, the phase of eik1r cos(α∓θ) may oscillate quickly, resulting in cancellation of the

integrand, however, this is not true at the extrema, that is when α ≈ θ and α + θ ≈ π, due to

slower oscillations around these points, and it is therefore possible to use a Taylor-expansion in

order to get

eik1r cos(α∓θ) ≈ eik1re−ik1 1
2 r(α∓θ)

2

. (C.31)

It should be noted that since α ≤ π/2, α+ θ ≈ π can only occur for θ = π/2.

For now, consider the case where 0 ≤ θ < π/2, then the integral in Eq. (C.27) reduces to

G(i,ff)
zz ≈ ieik1r

8π

√
2

πk1r sin2 θ
e−iπ4 r(p)(kρ)e−ikρr′·ρ̂eikz,1z

′ k3
ρ

k2
1

∫ π
2

0

e−i 12k1r(α−θ)
2

dα, (C.32)

where, kρ ≈ k1 sin θ and kz,1 ≈ k1 cos θ since α ≈ θ in the far-field. Furthermore, this integral

includes only the first term on the RHS of Eq. (C.30), since θ < π/2 and thus α + θ 6= π. This

integral can then be extended to the integration interval from −∞ to∞, since the extension parts

are vanishing, as discussed above, hence the integral can now be evaluated using the identity∫ ∞
−∞

e−ax
2

dx =

√
π

a
, (C.33)

yielding the far-field Green’s tensor component,

G(i,ff)
zz =

eik1r

4πr
e−ikρr′·ρ̂eikz,1z

′
r(p)(kρ)

k2
ρ

k2
1

, (C.34)

which is the expression in Eq. (2.80). For θ = π/2, the same result is obtained even though both

terms on the right-hand side of Eq. (C.30) must be utilised. This is because the terms enter with

half weight as the limits are only reached from one side, so the terms are weighted half.

The coordinate transformations used in order to derive the far-field transmitted Green’s tensor are

on the form

z = r cos θ, ρ = r sin θ, π/2 < θ ≤ π (C.35a)

kρ = k3 sinα, kz,3 = k3 cosα, (C.35b)

which leads to the expression in Eq. (2.82).
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C.2 Curl of the Indirect Green’s Tensor for the Electric Field
In order to obtain the surface current in Eq. (2.84) one has to find the curl of the indirect Green’s

tensor for the electric field from Eq. (2.79a), which can be recalled to be

←→
G(i)(r, r′) =

i
4π

∫ ∞
0

{
r(p)(kρ)

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

+ ϕ̂rϕ̂r
J ′0(kρρr)

kρρr

k2
z,1

k2
1

+

ρ̂rρ̂rJ ′′0 (kρρr)
k2
z,1

k2
1

− (ẑρ̂r − ρ̂rẑ)
ikρkz,1
k2

1

J ′0(kρρr)

)

−r(s)(kρ)

(
ϕ̂rϕ̂rJ ′′0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)}
eikz,1(z+z′) kρ

kz,1
dkρ,

and can furthermore be split into an s- and a p-polarised part as

G(i,s)(r, r′) =
i

4π

∫ ∞
0

−r(s)(kρ)

(
ϕ̂rϕ̂rJ ′′0 (kρρr) + ρ̂rρ̂r

J ′0(kρρr)

kρρr

)
kρ
kz,1

eikz,1(z+z′)dkρ

G(i,p)(r, r′) =
i

4π

∫ ∞
0

r(p)(kρ)

(
ẑẑJ0(kρρr)

k2
ρ

k2
1

+ ϕ̂rϕ̂r
J ′0(kρρr)

kρρr

k2
z,1

k2
1

+ ρ̂rρ̂rJ ′′0 (kρρr)
k2
z,1

k2
1

−(ẑρ̂r − ρ̂rẑ)
ikρkz,1
k2

1

J ′0(kρρr)

)
kρ
kz,1

eikz,1(z+z′)dkρ.

Here it can be recalled that k1 = k0n1, kz,1 =
√
k2

0ε1 − k2
x − k2

y, kρ =
√
k2
x + k2

y and the subscript r

indicates that that the cylindrical coordinates have been defined with respect to relative distances.

In order to find the curl of this, it is useful to evaluate each of the six terms separately, where it

is used that

∇ = ρ̂r
∂

∂ρr
+ ϕ̂r

1

ρr

∂

∂ϕr
+ ẑ

∂

∂z
(C.36)

in cylindrical coordinates. Upcoming, the derivatives of J0 will be used, which may be evaluated

as

J ′0(kρρr) = −J1(kρρr), (C.37a)

J ′′0 (kρρr) =
1

2
(J2(kρρr)− J0(kρρr)), (C.37b)

by using the recurrence relation

∂

∂x
Jn(x) =

Jn−1(x)− Jn+1(x)

2
, (C.38)

along with

J−n(x) = (−1)nJn(x). (C.39)

It should further be noted that J ′′′0 (kρρr) can be derived using the defining differential equation

for the Bessel functions

J ′′0 (x) = −J0(x)− 1

x
J ′0(x) (C.40a)

J ′′′0 (x) = −J ′0(x) +
1

x2
J ′0(x)− 1

x
J ′′0 (x). (C.40b)
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Evaluating the curl of the seven terms of the indirect Green’s tensor, in the order from left to

right, starting with the s-polarised part, yields

Term 1 : ∇×
(
r(s)(kρ)ϕ̂rϕ̂rJ ′′0 (kρρr)eikz,1(z+z′)

)
= r(s)(kρ)eikz,1(z+z′)

(
−ikz,1J ′′0 (kρρr)ρ̂rϕ̂r + kρ

(
J ′′0 (kρρr)

kρρr
+ J ′′′0 (kρρr)

)
ẑϕ̂r

)
= r(s)(kρ)eikz,1(z+z′)

(
−ikz,1J ′′0 (kρρr)ρ̂rϕ̂r + kρ

(
−J ′0(kρρr) +

J ′0(kρρr)

(kρρr)2

)
ẑϕ̂r

)
,

(C.41a)

Term 2 : ∇×
(
r(s)(kρ)ρ̂rρ̂r

J ′0(kρρr)

kρρr
eikz,1(z+z′)

)
= r(s)(kρ)eikz,1(z+z′)

(
ikz,1

J ′0(kρρr)

kρρr
ϕ̂rρ̂r − kρ

J ′0(kρρr)

(kρρr)2
ẑϕ̂r

)
, (C.41b)

Term 3 : ∇×

(
r(p)(kρ)ẑẑJ0(kρρr)

k2
ρ

k2
1

eikz,1(z+z′)

)

= −r(p)(kρ)
k3
ρ

k2
1

J ′0(kρρr)eikz,1(z+z′)ϕ̂rẑ, (C.41c)

Term 4 : ∇×

(
r(p)(kρ)ϕ̂rϕ̂rJ ′0(kρρr)

k2
z,1

k2
1kρρr

eikz,1(z+z′)

)

= r(p)(kρ)
k2
z,1

k2
1

eikz,1(z+z′)

(
−ikz,1

J ′0(kρρr)

kρρr
ρ̂rϕ̂r + kρ

J ′′0 (kρρr)

kρρr
ẑϕ̂r

)
, (C.41d)

Term 5 : ∇×

(
r(p)(kρ)ρ̂rρ̂rJ ′′0 (kρρr)

k2
z,1

k2
1

eikz,1(z+z′)

)

= r(p)(kρ)
k2
z,1

k2
1

J ′′0 (kρρr)eikz,1(z+z′)(ikz,1ϕ̂rρ̂r −
1

ρr
ẑϕ̂r) (C.41e)

Term 6 : ∇×
(
−r(p)(kρ)ẑρ̂r

ikρkz,1
k2

1

J ′0(kρρr)eikz,1(z+z′)

)
= r(p)(kρ)

ik2
ρkz,1

k2
1

eikz,1(z+z′)

(
J ′′0 (kρρr)ϕ̂rρ̂r −

J ′0(kρρr)

kρρr
ρ̂rϕ̂r

)
, (C.41f)

Term 7 : ∇×
(
r(p)(kρ)ρ̂rẑ

ikρkz,1
k2

1

J ′0(kρρr)eikz,1(z+z′)

)
= r(p)(kρ)

−kρk2
z,1

k2
1

J ′0(kρρr)eikz,1(z+z′)ϕ̂rẑ, (C.41g)

where kρ
kz,1

has been disregarded since taking the curl does not affect this fraction. Combining

these terms, and reintroducing kρ
kz,1

, then yields

∇×G(i,s) =
i

4π

∫ ∞
0

r(s)(kρ)

{
− kρJ ′0(kρρr)ẑϕ̂r − ikz,1J ′′0 (kρρr)ρ̂rϕ̂r

+ ikz,1
J ′0(kρρr)

kρρr
ϕ̂rρ̂r

}
eikz,1(z+z′) kρ

kz,1
dkρ, (C.42a)

∇×G(i,p) =
i

4π

∫ ∞
0

r(p)(kρ)

{
− kρJ ′0(kρρr)ϕ̂rẑ− ikz,1

J ′0(kρρr)

kρρr
ρ̂rϕ̂r

+ ikz,1J ′′0 (kρρr)ϕ̂rρ̂r

}
eikz,1(z+z′) kρ

kz,1
dkρ, (C.42b)

where it has been used that k2
ρ + k2

z,1 = k2
1.
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Appendix D

Higher-Dimensional Polynomials

While one-dimensional polynomials only depended on a single parameter, a polynomial of N

dimensions depend on N parameters, e.g. a two-dimensional polynomial, as described in Sec.

3.1.3, with the parameters u1 and u2, as has been used for the mesh elements shown in Fig. 3.4.

In this more general case with an N -dimensional polynomial of degree m defined on an element of

dimension N , the number of polynomials, Nm, may be counted as choosing m out of N +1 objects

with replacement and without regard to order, expressed as

Nm =

(
N +m

m

)
, (D.1)

since each term of a polynomial, up to a constant, can be written as m products of 1, u1, . . . , uN .

Here the considered element is an N -dimensional simplex, where for the kth element, a parame-

terisation r(k)(u1, . . . , uN ) is used analogously to the two-dimensional case defined in Eq. (3.1), in

which case 0 ≤ ui ≤ 1 for all i and
∑
i ui ≤ 1 on the element.

By extrapolating the method for generating mesh points for the one-dimensional case, the mesh

points may be evenly distributed along each parameterisation variable with points

r
(k)
(ν1,...,νN ) = r(k)

(ν1

m
, . . . ,

νN
m

)
, for νi ∈ {0, . . . ,m} ∀ i,

N∑
i=1

νi ≤ m, (D.2)

where the total number of points corresponds to choosing N+1 out of m objects with replacement

and without regard to order, which is equal to Nm on the element.

Consider the subset of polynomials that can be expressed as a product of linear factors, i.e. a

polynomial expressed as

f(u1, . . . , uN ) =

m∏
j=1

(
a0,j +

N∑
i=1

ai,jui

)
, (D.3)

then the zeros of a linear factor are along an N −1-dimensional plane, e.g. for the polynomial that

is 1 in the mesh point (0.0) in Fig. 3.4b the zeros of the linear factor can be found along the line

through the mesh points (1, 0) and (0, 1). As the polynomial only has a zero if at least one of its

factors does, the set of zeros of the polynomial is then the union of the zeros of the linear factors.

In order to define a basis of polynomial functions of degree m on an N -dimensional element, a

polynomial is, as previously stated, defined for each mesh point such that its value is 1 in that
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point and 0 in the remaining points, hence

f(ν1,...,νN )

(
ν′1
m
, . . . ,

ν′N
m

)
=

N∏
i=1

δνi,ν′i . (D.4)

In order to construct such a polynomial with linear factors, the union of the planes of zeros of the

m factors must intersect all mesh points except for rν1,...,νN . Now it will be shown that such linear

factors can be found.

For the linear factors, Pi,η(ui), the following m(N + 1) functions are considered, where

Pi,η(ui) = ui −
η

m
, i ∈ {1, . . . , N + 1}, η ∈ {0, . . . ,m− 1}, (D.5)

where, for ease of notation, it will be used that uN+1 = 1−
∑N
i=1 ui. In this case, the zeros intersect

the mesh points if

Pi,η

(νi
m

)
=
νi − η
m

= 0, for νi = η, i ∈ {0, . . . , N + 1}, (D.6)

where νN+1 = m −
∑N
i=1 νi. In Fig. D.1 such an example is shown with m = 2 with two linear

factors intersecting all mesh points with the exception of r2,0.

u2

P1,0

P1,1

r2,0u1

Figure D.1: The zeros of the linear factors P1,0 and P1,1 are shown with dashed lines
on the triangular element, where it can be seen that they intersect every mesh point
with the exception of r2,0.

If the product of linear factors at r(ν1,...,νN ) for all i is then evaluated from η = 0 to η = νi − 1 it

is evident from Eq. (D.6) that

N+1∏
i=1

νi−1∏
η=0

Pi,η(ui) 6= 0. (D.7)

From this it is seen that the total number of products from the inner sequence product results

in polynomials of the νth
i order, while the outer sequence product results in polynomials of the

(νi + 1)th order, hence the order of the resulting polynomial is given by

N∑
i=1

νi +m−
N∑
i=1

νi = m. (D.8)

Now, consider a mesh point, r(ν′1,...,ν
′
N ), that is not a zero of the product of linear factors at
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r(ν1,...,νN ), then it follows that ν′i ≥ νi for all i, hence

m−
N∑
i=1

ν′i ≥ m−
N∑
i=1

νi ⇒
N∑
i=1

ν′i ≤
N∑
i=1

νi, (D.9)

with the only solution ν′i = νi for all i proving that r(ν1,...,νN ) is the only nonzero mesh point of

this polynomial. By rescaling, the basis polynomials can therefore be defined on an element by

f(ν1,...,νN )(u1, . . . , uN ) =

N+1∏
i=1

νi−1∏
η=0

Pi,η(ui)

N+1∏
i=1

νi−1∏
η=0

Pi,η(νi/m)

. (D.10)

However, arbitrary polynomials of the mth order can not be expressed by these basis polynomials

as only polynomials of linear factors has been considered in the derivation of this expression. The

surface current on element k of the scatterer may then be written for the ith component of the

current as

Js,i(r
(k)(u1, . . . , uN )) = t̂i,k(u1, . . . , uN )

∑
ν1,...,νN

Ji,k,(ν1,...,νN )f(ν1,...,νN )(u1, . . . , uN ) (D.11)

where Ji,k,(ν1,...,νN ) corresponds to the ith component of the current in direction t̂i,k(ν1m , . . . ,
νN
m )

located at r(k)(ν1m , . . . ,
νN
m ).
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Appendix E

Analytic Scattering from a Spherical Particle

In this appendix spherical coordinates will be utilized.

Consider a plane wave propagating in a medium with the dielectric constant ε1 and a particle of

radius a with the dielectric constant ε2, which is placed with its center in the origin. For this

geometry the dielectric function is given by

ε(r) =

ε1, r > a

ε2, r < a

. (E.1)

The incident electric field will be chosen to propagate along the z-axis and be polarized along the

x-axis. Using spherical wave functions, the incident field can be expressed as

E0(r) = x̂E0eik0
√
ε1z = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)

(
m(1)
o,n,1(r)− in(1)

e,n,1(r)
)
, (E.2)

where the spherical wave functions are defined as

m(1)
o,n,i(r) =

cosϕ

sin θ
P1
n(cos θ)jn(k0

√
εir)θ̂ − sinϕ

dP1
n(cos θ)

dθ
jn(k0

√
εir)ϕ̂, (E.3a)

n(1)
e,n,i(r) = n(n+ 1) cosϕP1

n(cos θ)
jn(k0

√
εir)

k0
√
εir

r̂ + cosϕ
dP1

n(cos θ)

dθ

[k0
√
εirjn(k0

√
εir)]

′

k0
√
εir

θ̂

− sinϕ

sin θ
P1
n(cos θ)

[k0
√
εirjn(k0

√
εir)]

′

k0
√
εir

ϕ̂, (E.3b)

where the subscript o and e denotes that the function is odd or even, respectively, while the sub-

script i = 1 indicates the area outside the particle, while i = 2 is inside the particle. Furthermore

has the short-hand notation [xjn(x)]′ ≡ d
dx [xjn(x)] been utilized, where

jn(x) =

√
π

2x
Jn+1/2(x) (E.4)

is the spherical Bessel function and Pmn is the Legendre function of the first kind, given by

Pmn (x) = (1− x2)m/2
dm

dxm
Pn(x), (E.5)

with the Legendre polynomial

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (E.6)

The field inside inside the spherical particle can be expressed as

E(r) = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)

(
cnm

(1)
n,2(r)− idnn

(1)
n,2(r)

)
, r < a, (E.7)
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while the field outside of the particle can be found as

E(r) = E0(r) + Escat(r), r > a, (E.8)

where the scattered field can be expressed as

Escat(r) = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)

(
anm

(2)
o,n,1(r)− ibnn

(2)
e,n,2(r)

)
. (E.9)

Here, m(2)
o,n,i(r) and n(2)

e,n,i(r) are defined to be identical to m(1)
o,n,i(r) and n(1)

e,n,i(r) from Eq. (E.3)

and , except that the spherical Bessel function should be replaced by the spherical Hankel function,

hn(x) =

√
π

2x

(
Jn+1/2(x) + iYn1/2(x)

)
=

√
π

2x
H(1)
n+1/2(x), (E.10)

where Yn is the Bessel function of the second kind, and H(1)
n is the Hankel function of the first

kind.

The expansion coefficients can be obtained from the continuity of the tangential component of the

electric and magnetic field across the particle surface. They are given by [15, pp. 392]

an = −
jn(k0

√
ε2a)[k0

√
ε1ajn(k0

√
ε1a)]′ − jn(k0

√
ε1a)[k0

√
ε2ajn(k0

√
ε2a)]′

jn(k0
√
ε2a)[k0

√
ε1ahn(k0

√
ε1a)]′ − hn(k0

√
ε1a)[k0

√
ε2ajn(k0

√
ε2a)]′

(E.11a)

bn = −
ε1jn(k0

√
ε1a)[k0

√
ε2ajn(k0

√
ε2a)]′ − ε2jn(k0

√
ε2a)[k0

√
ε1ajn(k0

√
ε1a)]′

ε1hn(k0
√
ε1a)[k0

√
ε2ajn(k0

√
ε2a)]′ − ε2jn(k0

√
ε2a)[k0

√
ε1ahn(k0

√
ε1a)]′

(E.11b)

cn = −
jn(k0

√
ε1a)[k0

√
ε1ahn(k0

√
ε1a)]′ − hn(k0

√
ε1a)[k0

√
ε1ajn(k0

√
ε1a)]′

jn(k0
√
ε2a)[k0

√
ε1ahn(k0

√
ε1a)]′ − hn(k0

√
ε1a)[k0

√
ε2ajn(k0

√
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dn = −
jn(k0

√
ε2a)[k0

√
ε1ajn(k0

√
ε1a)]′ − jn(k0

√
ε1a)[k0

√
ε2ajn(k0

√
ε2a)]′

n1

n2
jn(k0

√
ε2a)[k0

√
ε1ahn(k0

√
ε1a)]′ − n1

n2
hn(k0

√
ε1a)[k0

√
ε2ajn(k0

√
ε2a)]′

. (E.11d)

In the case of a PEC, where ε1 � ε2,

an =
jn(k0

√
ε1a)

hn(k0
√
ε1a)

(E.12a)

bn =
[k0
√
ε1ajn(k0

√
ε1a)]′

[k0
√
ε1ahn(k0

√
ε1a)]′

. (E.12b)

The magnetic field can be obtained by utilising Eq. (2.2c) and that∇×m = kn and∇×n = km[23,

Ch. 26]

H0 = −i
√
ε0

µ0
n1E0

∑
n

in
2n+ 1

n(n+ 1)
(n(1)
o,n,i(r)− im(1)

e,n,i(r)), (E.13a)

Hscat = −i
√
ε0

µ0
n1E0

∑
n

in
2n+ 1

n(n+ 1)
(ann

(2)
o,n,i(r)− ibnm

(2)
e,n,i(r)), (E.13b)

where

m(1)
e,n,i(r)) = − sinϕ

sin θ
P 1
n(cos θ)jn(k0

√
εir)θ̂ − cosϕ

dP 1
n(cos θ)

dθ
jn(k0

√
εir)ϕ̂, (E.14a)

n(1)
o,n,i(r) = n(n+ 1) sinϕP 1

n(cos θ)
jn(k0

√
εir)

k0
√
εir

r̂ + sinϕ
dP 1

n(cos θ)

dθ

[k0
√
εirjn(k0

√
εir)]

′

k0
√
εir

θ̂

+ cosϕP 1
n(cos θ)

[k0
√
εirjn(k0

√
εir)]

′

k0
√
εir

ϕ̂, (E.14b)

where it is once again the case that m(2)
e,n,i(r) and n(2)

o,n,i(r) are defined to be identical to m(1)
e,n,i(r)
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and n(1)
o,n,i(r) where the spherical Bessel function should be replaced by the spherical Hankel func-

tion.

To obtain the surface current, Eq. (2.55b) is used. The total magnetic field is the sum of the two

expressions in Eq. (E.13) and in spherical symmetry n× ϕ̂ = −θ̂ and n× θ̂ = ϕ̂, so the ϕ̂ and θ̂

components of the surface current are given as

Jϕ(θ, ϕ) = −i
√
ε0

µ0
n1E0

∑
n

in
2n+ 1

n(n+ 1)

(
sinϕ

k0
√
εir

dP 1
n(cos θ)

dθ
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[k0
√
εirjn(k0

√
εir)]

′

+an[k0
√
εirhn(k0

√
εir)]

′]+ i
sinϕ

sin θ
P 1
n(cos θ)[jn(k0

√
εir) + bnhn(k0

√
εir)]

)
(E.15a)

Jθ(θ, ϕ) = i
√
ε0

µ0
n1E0

∑
n

in
2n+ 1

n(n+ 1)

(
cosϕ

k0
√
εir

P 1
n(cos θ)

sin θ

[
[k0
√
εirjn(k0

√
εir)]

′

+an[k0
√
εirhn(k0

√
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√
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√
εir)]

)
.

(E.15b)

In Fig E.1 the error obtained for varying numbers of summations in the analytical solution for the

surface current. It is seen that in this case the current seems to converge so that for more than

30 summations the error does not vary, however, the relative error should converge for all values

of λa , where it should be noted that a small relative wavelength should need more summations in

order to converge compared to a large relative wavelength.

Figure E.1: The relative error between varying numbers of summations in the ana-
lytical solution for a sphere, where θ = 0, ϕ = 0 and λ

a = 1.
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E. Analytic Scattering from a Spherical Particle

E.1 Scattering Cross Section
When the relative wavelength is varied the extinction and scattering cross sections are used, and

can be expressed in terms of the expansion coefficients as

σext = − 2π

(k0
√
ε1)2

∞∑
n=1

(2n+ 1)Real{an + bn}, (E.16a)

σscat = − 2π

(k0
√
ε1)2

∞∑
n=1

(2n+ 1){|an|2 + |bn|2}, (E.16b)

where the absorption cross section is the difference between the two

σabs = σext − σscat. (E.17)

E.2 Legendre Polynomials
The Legendre polynomials are defined as solutions to Legendre’s differential equation [24]

d

dx

[
(1− x2)

dPn(x)

dx

]
+ n(n+ 1)Pn(x) = 0, (E.18)

with Pn(1) = 1. The derivatives of the Legendre polynomials can be evaluated using the recurrence

relation

x2 − 1

n

d

dx
Pn(x) = xPn(x)− Pn−1(x). (E.19)

The derivative needed for the analytic solution of a spherical scatterer is of the associated Legendre

polynomial given by P1
n(x) =

√
1− x2 d

dxPn(x). In the case of x = cos θ,

d

dθ
P1
n(cos θ) =

n

sin2 θ
P1
n(cos θ)− n cos θ

sin2 θ
Pn−1(cos θ)− n

sin2 θ
(n cos θ (cos θPn(cos θ)

−Pn−1(cos θ))− (n− 1) (cos θPn−1(cos θ)− Pn−2(cos θ)))

= n
1− n cos2 θ

sin2 θ
Pn(cos θ) + 2n(n− 1)

cos θ

sin2 θ
Pn−1(cos θ)− n(n− 1)

sin2 θ
Pn−2(cos θ).

(E.20)

In the limit as θ goes to zero the derivative of the Legendre polynomial becomes

d

dθ
P1
n(cos θ) = cos θ

d

d cos θ
Pn(cos θ) + sin θ

d

dθ

d

d cos θ
Pn(cos θ). (E.21)

It can be seen from Eq. (E.18), by utilising the chain rule, that at x = 1 it follows that
d

d cos θPn(cos θ) = n(n+1)
2 and as θ → 0, sin θ → 0 and cos θ → 1 and thus the second term

vanishes and the derivative reduces to

lim
θ→0

d

d cos θ
P1
n(cos θ) =

n(n+ 1)

2
. (E.22)

For the limit θ → π the derivative, again by using the chain rule on Eq. (E.18) along with the

property of parity, Pn(−x) = (−1)nPn(x), becomes

lim
θ→π

d

d cos θ
Pn(cos θ) = −(−1)n

n(n+ 1)

2
, (E.23)

94



E.2. Legendre Polynomials Aalborg University

and the derivative of the associated Legendre polynomial in the limit θ → π then yields

lim
θ→π

d

d cos θ
P1
n(cos θ) = (−1)n

n(n+ 1)

2
. (E.24)
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