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Summary

This report investigates how a Danish district heating plant should calculate the optimal

bids in multiple deregulated electricity markets with marginal pricing auctions while

assuming the district heating plant to be a price-taker. This research is crucial in the

context of a transition to a 100% renewable energy system, as sector coupling between

the electricity and district heating sector is regarded as a cost-efficient way to integrate

large shares of fluctuating renewable energy in the Danish energy system. One of the

barriers for succesfully coupling these sectors is the lack of bidding methods able to handle

large uncertainties in the operational planning. Assens District Heating is selected as an

instrumental case and four different bidding methods are compared: price-independent

bidding, a single bid method derived from the price-independent bidding method but with

an upper limit on the bidding price, the state-of-the-art heat unit replacement bidding

method currently used in the operational planning tool, energyTRADE, and at last a

method based on scenario generation and Sample Average Approximation techniques.

Sample Average Approximation is a way to deal with stochastic optimization problems

by finding the optimal decision across a number of likely scenarios instead. Forecasts and

scenarios are generated using Monte Carlo simulation and a Markov Chain by training

multiple transition matrices on historical data for aggregated solar irradiation, ambient

temperatures, wind speeds and spot prices in Nord Pool Spot. Regulating prices are

generated using Monte Carlo simulation and regresssion on historical data. The methods

are modelled as a multi-stage mixed-integer linear program with a 5 days rolling planning

horizon. The model constitutes a realistic bidding framework that simulates the real

operation and bidding in sequential electricity markets under uncertainty. The results

show that the method based on Sample Average Approximation is able to calculate bids

that lead to both techno-economic optimal operation of the district heating plant, but

also an operation that provides better sector coupling between the electricity and district

heating sector, as electricity is purchased and sold according to price signals from the

electricity markets. The results also show that participating in multiple electricity markets

can lower the operational expenses of the district heating plant significantly, and that

suboptimal bids made in the day-ahead market can be made up for by placing bids in the

regulating market afterwards.

iii



Acknowledgements

This project has been made in close collaboration with EMD International following my

internship in the autumn of 2020. I would like to express my deepest gratitude to all the

people at EMD International who have influenced my project in one way or another.

I am especially thankful for being introduced to this extremely interesting topic by my

supervisor, Anders N. Andersen. This project would not have been possible without the

guidance and resources that you provided me with.

Marta Irena Murkowska, I am grateful for your help and the ongoing discussions we

have had during this project.

Lasse Svenningsen, thank you for taking your time to discuss the complexities of modelling

time series forecasting.

Marc Roar Hintze & Dennis Dolleris, thank you for allowing me to use Assens District

Heating as a case study and thank you for showing me around the plant for some hands-on

experience on what is being modelled.

iv



Contents

Summary iii

1 Introduction 1

1.1 Towards a 100% renewable energy system . . . . . . . . . . . . . . . . . . . 1

1.2 Trends in the district heating sector . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Operational complexities of renewable district heating . . . . . . . . . . . . 3

1.4 Assens District Heating as a case study . . . . . . . . . . . . . . . . . . . . 6

1.5 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical framework 8

2.1 Electricity markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Day-ahead market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Intra-day market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Regulating market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Settlement prices for imbalances . . . . . . . . . . . . . . . . . . . . 11

2.2 Stochastic unit commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Heat unit replacement method . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Methodology 17

3.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Interaction with the electricity markets . . . . . . . . . . . . . . . . 18

3.2.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Heat demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.4 Energy conversion units . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.5 Simulation of the operation . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.6 MILP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.7 Economic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.8 Choice of solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Scenario generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Generation of spot prices and weather data . . . . . . . . . . . . . . 32

3.3.2 Generation of regulating prices . . . . . . . . . . . . . . . . . . . . . 36

3.4 Compared bidding methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results for the simple case 40

4.1 Bidding in the day-ahead market only . . . . . . . . . . . . . . . . . . . . . 40

4.2 Including the regulating bids . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



5 Results for the full case 49

5.1 Bidding in the day-ahead market only . . . . . . . . . . . . . . . . . . . . . 49

5.2 Including the regulating bids . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Discussion 57

7 Conclusion 60

Bibliography 61

vi



Chapter 1

Introduction

1.1 Towards a 100% renewable energy system

To mitigate the consequences of human-induced climate change, Denmark is committed

to become carbon-neutral by 2050, which entails a net-zero emission of greenhouse gasses

[1]. The biggest source of greenhouse gas emissions is the use of fossil fuels in the con-

sumption of energy, causing 60% of the Danish emissions [2]. It is therefore necessary to

replace the use of fossil fuels with renewable alternatives such as wind power, solar power,

and biomass, which on the contrary to fossil fuels are replenishable sources of energy with

significantly lower emissions of greenhouse gasses [3]. A large amount of renewable en-

ergy has already been integrated into the Danish energy system. From 2000 to 2019 the

share of renewable energy in the final energy consumption increased from 10% to 35%,

with biomass and wind power being the two main contributors [2]. Biomass is typically

used for CHP production, which accounts for 18% of the Danish electricity production

[2]. However, it is controversial whether the use of biomass is truly a low-emission source

of energy [4], and at the same time biomass is a limited resource [5, 6]. It is therefore

expected that a future 100% renewable energy system in Denmark will be based on mainly

wind power and solar power [7], as a combination of these is the most cost-competitive

alternative to fossil fuels [8]. While wind power and solar power are low-emission sources

of energy, they introduce a new challenge to the energy system. Fossil fuels are a con-

venient source of energy, as they have a high energy density, can be stored easily, and

dispatched at need. Wind power and solar power on the other hand are fluctuating and

non-dispatchable sources of energy, which are subject to changing and uncertain weather

conditions. Since electricity must be consumed and produced at once, and because elec-

tricity is extremely expensive and inefficient to store [9], flexibility in the surrounding

energy system is necessary to accommodate large shares of fluctuating renewable energy

[10]. Due to the amount of flexibility required and the timeline it is needed for, demand

response in the traditional energy consumption will have a negligible effect on the ability

to integrate renewable energy [10]. Solutions to increasing the flexibility of the system

instead focus on inter-regional and cross-sectoral integration.

Inter-regional integration takes advantage of the difference in the fluctuations of renewable

energy, as well as the difference in available renewable energy sources, between distant ge-

ographical areas [8]. Norway, as an example, has unlike Denmark access to a large source
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of renewable hydro power, which is subject to very different fluctuations than wind power,

being the dominant resource in Denmark. Inter-regional grid connections exploit this to

allow a more efficient and flexible use of the renewable energy sources, by exporting excess

renewable electricity production to regions with deficit renewable electricity production.

Denmark is already rapidly expanding the transmission capacity to the neighboring coun-

tries. Between 2021 to 2023 this transmission capacity is planned to be increased from

7,000 MW to 10,000 MW [11], with connections to The United Kingdom, Netherlands,

Germany, Sweden, and Norway. Inter-regional integration alone, however, cannot create

the flexibility necessary in a 100% renewable energy system [12].

Cross-sectoral integration increases the flexibility of the system by exploiting the synergies

between the different sectors in the energy system, such as the electricity, gas, heating,

transportation, and industrial sectors. This concept is also known as Smart Energy Sys-

tems, where a holistic approach to integration of renewable energy is taken, which proves

to be much more cost-effective than transforming each sub-sector of the energy system

individually [8, 9, 13]. Arguably one of the most important synergies lies between the

electricity and district heating sector, as excess electricity can be converted to heat with

power-to-heat technologies such as electric boilers and heat pumps [10, 14]. Storage of

heat is about 100 times cheaper than storage of electricity [7], and because the losses from

charging, storing, and discharging thermal storages are low, power-to-heat production

and heat consumption can be decoupled [14]. This creates a significant flexible electricity

demand, which can accommodate integration of large shares of renewable energy in the

electricity sector in a cost-effective way [15]. At the same time, district heating is already

integrated with the electricity sector, as the use of CHP is much more fuel efficient than

producing heat and electricity separately [16]. The integration of the electricity and dis-

trict heating sector can therefore provide flexibility in times of both excess and deficit

fluctuating renewable electricity production. As such, the district heating sector will play

a key role in the transition to a 100% renewable energy system [17].

1.2 Trends in the district heating sector

Heating and cooling demands account for half of the energy consumption in Europe [8, 14],

of which only 10% is supplied by district heating [18]. Denmark therefore holds a unique

position with 64% of the Danish households being supplied with district heating to cover

the demand for space heating and hot water consumption [19]. In a district heating sys-

tem, hot water is heated centrally at a district heating plant and then delivered to the

consumers through a district heating grid consisting of underground piping. The losses

in the district heating grid typically amounts to 20% of the produced heat [9]. However,

the technical advantages of district heating, such as economy of scale and the flexibility of

having a larger portfolio of units to operate, makes district heating socio-economic more

feasible than individual heating solutions despite these grid losses [9]. It is therefore ex-

pected that district heating will continue to supply the majority of the Danish households

with heat [5].
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District heating can be produced from renewable energy sources in two ways [14]: The

first is by direct conversion of renewable energy sources, such as solar heating, CHP, and

heat-only boilers. The second is by conversion of electricity from renewable energy sources

into heat using electric boilers and electric heat pumps. This is also called power-to-heat.

Today, most district heating is produced by direct conversion of biomass, waste, and fossil

fuels. 67% of the district heating produced in 2019 was cogenerated with electricity at

CHP plants, while 27% was produced using heat-only boilers [2]. Solar heating contributed

to 1.7% of the production of district heating, while utilization of excess heat contributed

to 3.2%. Only 1.3% of the district heating in 2019 was produced using power-to-heat, and

this was mostly by using electric boilers [2]. However, major investments are being made

in electric heat pumps in the recent years. Between 2020 and 2021, the combined heat

capacity of electric heat pumps in the district heating sector increased from 104 to 454

MW-heat. Heat pumps are expected to be the key technology to successfully coupling

the electricity and district heating sector [14], as heat pumps use the principle of heat

transfer to utilize low-temperature heat sources such as ambient air to generate higher

temperature heat with a coefficient of performance up towards 500%.

The pull factor for the rapid expansion of power-to-heat in the district heating sector

in recent years can be found in a political agreement from 2020, where the tax on elec-

tricity used for heating applications was lowered from 155 to 4 DKK/MWh-e [20]. At the

same time, the increasing shares of fluctuating renewable energy in the electricity sector is

causing the electricity prices to fluctuate more frequently to very low price ranges, which

heat pumps can exploit to produce very cheap heat. These same trends in the electricity

prices also constitute a push factor, as the feasibility of CHP is being reduced due to

fewer hours with high electricity prices. This challenges the feasibility of district heating

systems, as heat-only production with boilers can be achieved much cheaper in individual

heating solutions [16]. To stay cost-competitive it is therefore necessary for district heat-

ing companies to participate in the sector coupling between the electricity and heating

sector from a techno-economic standpoint. However, an underlying requirement for this

is the ability to successfully operate an increasingly diverse portfolio of energy conversion

units against increasingly uncertain and fluctuating market prices on electricity.

1.3 Operational complexities of renewable district heating

Since the cessation of the triple-tariff in 2007, CHP plants have been required to trade

the produced electricity in the electricity markets [16]. Most electricity is traded in the

day-ahead wholesale market as hourly bids, which occurs daily 12-36 hours in advance of

the production hour. When the day-ahead market is cleared, the supply and demand is

matched and the most expensive production unit that is activated determines the market

price in that hour. This is also called a marginal pricing auction [21]. A district heat-

ing plant is therefore not only required to determine the most optimal operation of their

energy conversion units. In order to consume or produce electricity, the district heating

plants are also required to find the optimal bids to place in the day-ahead market, which in

return leads to this optimal operation, before having knowledge about the clearing prices.
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This makes the operation of district heating systems a stochastic optimization problem,

as a decision now depends on uncertain information about the future. At the same time,

energy conversion units may have starting costs or ramping periods, and thermal storages

can allow the production and consumption of heat to be offset by days or even weeks

[14]. To complicate the matter further, there exist additional electricity markets such as

the intraday market or the balancing market, where the district heating plant can cover

their losses from lost bids in the day-ahead market or earn profit by providing balancing

services to the electricity grid.

It is not only the market clearing prices for electricity, which are uncertain for the district

heating plant in the operational planning stage. Uncertain weather conditions such as the

ambient temperature has impact on both the COP of air source heat pumps as well as

the heating demand from the consumers. Many district heating plants have also included

solar heating in their portfolio of units [22], which is subject to fluctuating heat produc-

tion. A new trend among district heating companies is to expand the portfolio of units

to include wind turbines and photovoltaics as well. This allows the district heating plant

to avoid costly grid tariffs imposed by the TSO and DSO. The electricity produced by

these units are consumed by power-to-heat units at the district heating plant, and thus

only enters the electricity grid when the power-to-heat units are not operated. Such a

concept is also called private wire operation, referring to the electricity cables between the

units being owned by the district heating plant. Examples include Hvide Sande District

Heating [23], which owns a nearby wind farm. The wind farm is operated in combination

with a portfolio of units including natural gas boilers, natural gas CHP, an electric boiler,

solar heating, as well as thermal storages. Assens District Heating purchased a nearby

1.3 MW-e wind turbine in 2017. In 2021 they are expanding their portfolio of units to

also include a 2.3 MW-e electric heat pump and 5.4 MW-e photovoltaics [24]. These units

will be operated together with the existing biomass boilers, biomass CHP and thermal

storages. Fjerritslev District Heating is in the planning stage of investing in a wind farm

with a rated capacity of 8 MW-e. The power produced by the wind turbines will be used

to produce heat using the existing electric boiler, which will be operated together with

two biomass boilers and a thermal storage [25].

While such hybrid district heating plants with a wide array of different energy conver-

sion units might prove techno-economic feasible, the complexity of operating these plants

also increases vastly, as the optimal operation and bids in the electricity markets depend

on so many uncertainties. This is a barrier that can hinder not only a cost-effective dis-

trict heating sector, but also an efficient coupling of the heating and electricity sectors

[14]. This barrier can especially be difficult to overcome for the smaller and more decentral

district heating plants, as they do not have the manpower and resources to cover the costs

of finding optimal bidding strategies. These plants therefore rely on the existing tools on

the market and how well these are able to cope with the uncertainties and complexities

in renewable district heating systems.

To the knowledge of the author, energyTRADE [26] is the only commercial tool that

exists for modelling and calculating the optimal operation and bids in the electricity mar-
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kets for a district heating plant. It assists the plant owner in every step of the process,

from collecting forecasts of electricity prices and weather data, to calculating and sub-

mitting bids, and finally creating a production plan of the optimal operation, considering

the won bids. The bids are calculated in energyTRADE using the heat unit replacement

method [27], which has proven to be extremely accurate at finding the optimal bids in

multiple electricity markets for a traditional district heating plant with a portfolio of CHP

units and heat-only boilers. However, the method struggles with finding the optimal bids

for the emerging complex district heating plants with private wire operation, uncertain

renewable energy production, and a combination of both power-producing and power-

consuming energy conversion units.

Other methods have been proposed in existing literature. In [28], the authors propose

a bidding strategy for a virtual power plant, that calculates monotonously increasing

bidding curves using stochastic optimization and scenario generation. While this is a

computationally demanding method, they conclude that it is compatible with the bidding

framework in the day-ahead market. However, the concept of a virtual power plant is

different from a district heating plant, as the latter also has to take account for a demand

for heat that needs to be covered. In [29] stochastic optimization is used to calculate

monotonously increasing bidding curves in a similar way, but for a Danish district heating

plant that contains a wind farm, solar collectors, CHP, an electric boiler, and gas boilers.

They find that stochastic optimization is suitable for calculating bids considering the un-

certainty of the renewable energy production and the market prices, when compared to

a simple single bid method relying on a single forecast. They also conclude that partici-

pating in the balancing market allows the district heating plant to reduce the operational

costs by 8%. However, the study does not consider the starting costs and ramping periods

of the energy conversion units, and the district heating plant chosen as a case study does

also not include a heat pump. Furthermore, the study was conducted using data from

2017. The regulatory framework around power-to-heat and the amount of fluctuating re-

newable energy in the energy system has changed since then, impacting the market prices

in both the day-ahead market and balancing market. Finally, the study only compares

the suggested method to a single bid method.

The aim of this project is to analyze the limitations of the current state-of-the-art bidding

method currently used in energyTRADE and compare it to a stochastic optimization ap-

proach. This has not been studied before. The contribution of this project is furthermore

to apply the stochastic optimization approach in a different and more recent context than

the previous studies. To evaluate the methods, Assens District Heating is chosen as a case

study.
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1.4 Assens District Heating as a case study

Assens District Heating is chosen as a case study, as it includes many of the complexities

described earlier. Assens is a small city in southern Denmark with a population of 6,060.

The district heating system was established in 1960 using oil boilers as the production

units. In the 80s the oil boilers were supplemented by coal and woodchip boilers and

in 1999 Assens District Heating invested in a 20 MW-heat CHP plant using biomass

as fuel. Since then, the district heating in Assens has been almost entirely based on

renewable energy sources. The plant does not own an electric boiler, but EnergiFyn owns

and operates a thermal storage and an electric boiler nearby from which Assens District

Heating purchases heat. Assens District Heating includes a 172 MWh-heat thermal storage

in their portfolio. In 2017 Assens District Heating bought the nearby 1.3 MW-e wind

turbine from a wind turbine association. To secure against decreasing and fluctuating

electricity prices, a 2.3 MW-e electric heat pump using ambient air as heat source is being

put into operation in spring 2021, as a supplement to the biomass CHP. This heat pump

is expected to supply about half of the approximately 90,000 MWh-heat produced at the

district heating plant every year. To avoid costly grid tariffs and to supply renewable

electricity to the heat pump, 5.4 MW-e photovoltaics are additionally being put into

operation in the summer of 2021. The combination of a heat pump and photovoltaics is

a pioneering way of utilizing solar energy, as most district heating plants have invested

in solar heating. What is also extraordinary is that half of the photovoltaics are facing

east, and the other half is facing west. While this reduces the annual energy production,

it increases the amount of hours with electricity production, allowing more load hours on

the electric heat pump without having to purchase electricity form the grid. This large

portfolio of diverse energy conversion units, including power-to-heat, CHP and private

wire operation of fluctuating renewable energy makes the optimal operation and bidding

into the electricity markets an extremely complex task. Assens District Heating therefore

serves as an excellent case to analyze.

1.5 Research question

The importance of coupling the district heating sector and electricity sector has been

underlined from a system-perspective, as power-to-heat and thermal storage can provide

a very cost-effective way to utilize excess electricity from fluctuating renewable energy

as well as providing grid balancing services. It is from the techno-economic perspective

of a district heating plant also necessary to supplement heat-only boilers and CHP with

power-to-heat to stay competitive with individual heating solutions, as the amount of

hours with low electricity prices increases with the increasing integration of fluctuating

renewable energy. Furthermore, a tendency to produce renewable electricity using pri-

vate wire operation is emerging among district heating plants to avoid costly grid tariffs.

These trends combined increases the complexity of operating the district heating system

and participating in the electricity markets to the extent where state-of-the-art bidding

tools are unable to find the optimal bids. The research in this report is focused on ana-

lyzing how to find these optimal bids. To delimit the problem, it is assumed that Assens
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District Heating is a price-taker in the electricity markets, which is a reasonable simplifi-

cation as the electric capacity of the production units play a negligible role in the larger

Danish electricity system. The research question guiding this report is therefore as follows:

Research question: How can the optimal bids in the electricity markets be calculated

for Assens District Heating as a price-taker?

A set of sub-questions are also formulated to further guide the research. It has been

claimed that the current state-of-the-art bidding method is incapable of calculating the

optimal bids for a complex district heating plant such as the one in Assens. It is sought

to also explain why that is the case.

Sub-question #1: What are the limitations of the heat unit replacement method?

Furthermore, it is also sought to analyze how the calculated bids impact the operation of

the district heating plant, compared to the optimal operation in hindsight. By analyzing

this, a better understanding of the bidding methods and their strengths and limitations

can be achieved.

Sub-question #2: How does the operation in a bidding framework differ from the

operation with perfect information?

At last, the coupling of the district heating and electricity sector is not only important

for utilizing excess renewable electricity production. The district heating sector can also

provide flexibility for grid balancing services by participating in the subsequent electricity

markets. It is therefore sought to analyze whether the bidding methods can accommodate

this flexibility and to which extent it lowers the operational costs of the district heating

plant.

Sub-question #3: What does Assens District Heating achieve by participating in mul-

tiple electricity markets?
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Chapter 2

Theoretical framework

2.1 Electricity markets

2.1.1 Day-ahead market

87% of the purchased electricity and 76% of the sold electricity in Denmark is being traded

in the day-ahead market, also known as the spot market [21]. The day-ahead market is

operated by Nord Pool Spot and allows trading of electricity within and between many of

the European countries, including all the Nordic and Baltic countries [30]. To trade in the

day-ahead market, a balance responsible party can submit single hourly bids consisting of

a quantity of electricity and a corresponding price, or block bids, consisting of a quantity of

electricity across multiple hours and a corresponding average price [31]. It is also possible

to place price-independent bids, which consist of only a quantity of electricity. Such bids

are always won, no matter the spot price. The day-ahead market is cleared once per day

12 - 36 hours in advance of the hour of operation. Before 12:00 the balance responsible

parties must submit their bids for the coming day. Nord Pool Spot then couples the

market by matching the demand and supply of electricity [31]. This follows a marginal

pricing auction, where the most expensive bid won determines the price for all the bids

that have been won. However, there is imposed a lower limit of -500 EUR/MWh-e and

an upper limit of 3,000 EUR/MWh-e [31]. The marginal pricing mechanism helps ensure

that the production units with the least marginal costs are put into operation first, which

is also known as the merit-order-effect [32]. In Figure 2.1, it can be seen how the marginal

pricing auction ensure that renewable energy production with low marginal costs is put

into operation first, while still being paid the same price for the produced electricity as

the most expensive unit activated to meet the demand for electricity.
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Figure 2.1. The merit-order-effect as a result of marginal pricing auctions [33]

Nord Pool Spot reveals the realized spot price an hour after gate closure at 13:00. A bid

cannot be partially won, and a bid is therefore either won or lost. In the case of electricity

sale, the bid is won if the realized spot price is higher than or equal to the submitted bid.

In the case of electricity purchase, the bid is won if the realized spot price is lower than or

equal to the submitted bid. Block bids follow the same principle, using the average price

across the block instead [31].

While Nord Pool Spot includes many countries, the transmission capacity between coun-

tries and the regions within them sets a limit on the energy that can be traded. The

countries participating in the day-ahead market are therefore divided into multiple price

areas, in which the market price is settled taking the transmission limits between them

into account. Denmark is divided into two price areas: DK1, which consists of Jutland

and Fyn, and DK2 which consists of Zealand [31].

2.1.2 Intra-day market

After the day-ahead market has been realized, trading can occur in the intra-day market.

Until one hour before operation, the balance responsible parties can place hourly bids or

block bids in the intra-day market using what is known as the Shared Order Book [34].

The intra-day market is not an auction like the day-ahead market but matches buyers

and sellers in a bilateral trade on a first come first serve basis. The price is settled using

pay-as-bid and hourly bids can be partially accepted [31]. Only 2% of the total electricity

trade is being traded in the intra-day [21], however this amount is expected to increase

as more fluctuating renewable energy is integrated into the European electricity systems

[31].

2.1.3 Regulating market

Imbalances from the planned production and consumption of electricity will inevitably

occur. It is the responsibility of the TSO, which in Denmark is Energinet, to maintain
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the stability of the transmission grid. This is achieved by activating reserve capacity [35].

There exist three types of reserves: primary, secondary, and tertiary.

The primary and secondary reserves are similar in the sense that they are both acti-

vated automatically or by Energinet. Their purpose is to provide ancillary services for

respectively short-term and medium-term deviations in the stability of the grid. Balance

responsible parties can bid the availability of their units into these reserves for a fixed

period of time [35].

The tertiary reserves are manual reserves, which the balance responsible parties can ac-

tivate on behalf of Energinet to provide more long-term ancillary services. Many of the

imbalances that arise from for example the uncertainty of fluctuating renewable energy

production can be determined more accurately as the hour of operation is approaching.

Tertiary reserves are therefore activated in each price area pro-actively to avoid or limit

the use of the more expensive primary and secondary reserves [35]. The tertiary reserves

make up for 70% of the ancillary services activated by Energinet [35]. To participate as a

tertiary reserve, the balance responsible parties can place bids in the regulating market.

A distriction can be made between availability bids, where energy conversion units are re-

served as stand-by capacity, and activation bids, where a won bid always results in a trade

of electricity. A balance responsible party can place both availability bids and activation

bids. If an availability bid is won, the balance responsible party must place the bidded

amount as activation bids [36].

Two types of situations can occur in the system: either the sum of imbalances leads

to a surplus of energy or a deficit of energy. When there is a surplus of energy, down

regulation is activated, which is achieved by producing less or consuming more electricity.

When there is a deficit of energy, up regulation is activated, which is achieved by produc-

ing more or consuming less electricity. In the regulating market, balance responsibility

parties can place both types of regulating bids. Gate closure for the regulating market is

45 minutes before the hour of operation and only hourly bids can be placed with a mini-

mum capacity of 5 MW-e [36]. When Energinet activates regulating power, the principle

of marginal pricing is used for all the accepted bids. However, the price for up regulation

can never be lower than the spot price, and the price for down regulation can never be

higher than the spot price [36].

In some hours both up regulation and down regulation may be activated in the same

price area to avoid local congestion in the grid. In this case, two different regulating

prices are calculated using marginal pricing [36]. Sometimes local congestion can also

lead to special regulation, where the marginal pricing mechanism is disobeyed to avoid

interfering with the regulating settlement price in the entire price area. Special regulation

is settled as pay-as-bid. Almost all special regulation in Denmark occurs in the DK1 price

area due to technical problems in the transmission grid of northern Germany [36].
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Figure 2.2. The different ancillary services and electricity markets in relation to when they
play a role in balancing the grid [37]

In Figure 2.2, the different ancillary services and electricity market are placed on a timeline

to give an overview of when they play a role in balancing the grid. The primary reserves

are used to provide immediate ancillary services for the next couple of minutes. If the

imbalance persists, the secondary reserves are activated, until the cheaper tertiary reserves

can be manually activated. The intra-day market plays a role in balancing the grid and

matching supply and demand for the next hour and until the first hour that has not yet

been realized in the day-ahead market.

2.1.4 Settlement prices for imbalances

The imbalances that the balance responsible parties are not able to avoid by trading

in the subsequent electricity markets after the day-ahead market, may cause the need

for Energinet to activate the primary, secondary or tertiary reserves [35]. When the

hour of operation has passed, the actual consumption and production of electricity is

measured. If no regulating power was activated in this hour, the imbalance price is equal

to the spot price [36]. If regulating power was activated, a two-price settlement model

is used for production and consumption imbalances separately. In the two-price model,

imbalances that contribute to the system imbalance are settled with the regulating price,

while imbalances that decreases the system imbalance are settled with the spot price. This

asymmetrical model leads to an income for Energinet, which is used to cover the costs for

primary and secondary reserves [36]. However, by the end of 2021, the two-price model is

expected to be replaced with a one-price model instead [38]. This will create symmetrical

imbalance prices, allowing consumption and production imbalances to cancel each other

out.

2.2 Stochastic unit commitment

The unit commitment problem is a decision problem concerning the optimal on/off state

of a portfolio of energy conversion units. In the traditional formulation of this decision

problem, the objective is to minimize the fuel costs while meeting a required demand for
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energy and taking account for various constraints such as reserve capacity, starting costs

and ramping periods of the units. An example of a basic unit commitment problem can

be seen in expressions 2.1 to 2.3:

min
∑
g∈G

∑
t∈T

cg · pg,t (2.1)

s.t.
∑
g∈G

pg,t ≥ dt, ∀t ∈ T (2.2)

pg,t ∈ {0, 1}, ∀g ∈ G, t ∈ T (2.3)

In expression 2.1, the objective function is to minimize the generating costs, c, for all gen-

erating units in G over all time periods in T . The first constraint in equation 2.2 requires

the sum of the generated power, p, by all generating units to be greater than the demand,

d, for all time periods in T . In expression 2.3, the output of all the generating units are

constrained to be binary values in all time periods.

One of the most widely used approaches for solving unit commitment problems is by

using mixed-integer linear programming [39]. The mixed-integer part refers to the possi-

bility of combining continuous and integer decision variables in the problem formulation.

Modelling the on/off state of an energy conversion unit is a binary decision variable,

which is a subset of integer decision variables that can only take the values 0 or 1. Using

mixed-integer linear programming for solving the unit commitment problem is a widely

used approach because it allows a simple formulation of the problem, it is able to secure

global optimality or an optimal solution within a specified tolerance gap, and because a

wide array of commercial and non-commercial solvers exist, that are specialized at solv-

ing mixed-integer linear problems in a computationally efficient way [39]. The traditional

unit commitment problem and the methods for solving it has played a crucial role in min-

imizing the amount of fossil energy used in the energy system by scheduling the energy

conversion units in the most fuel-efficient way [39].

In modern deregulated energy markets, the energy conversion units do not only need

to be scheduled to reduce operating costs, but they also must participate in the com-

petitive markets by placing bids for production or consumption. This has led to the

reformulation into a profit-based unit commitment problem, where the objective instead

is to maximize the revenue from participating in the market [39]. The profit-based unit

commitment problem is on the contrary to the traditional cost-based unit commitment

problem often a mixed-integer non-linear problem, which is significantly harder to solve.

Another complexity of the profit-based unit commitment problem is the uncertainty of

the market prices, which are often not known when the decision must be made. This

makes the profit-based unit commitment problem a stochastic unit commitment problem,

referring to the uncertainty of one or more parameters in the problem formulation. In

expressions 2.4 and 2.5, the traditional unit commitment is problem is reformulated into

a stochastic unit commitment problem.
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min
∑
g∈G

∑
t∈T

pg,t ·mt − pg,t · cg (2.4)

pg,t ∈ {0, 1}, ∀g ∈ G, t ∈ T (2.5)

In the reformulation, the requirement for covering a certain demand has been removed.

Instead, a revenue for producing, m, has been added in the objective function. The rev-

enue for producing expresses the uncertain market price, which is not yet realized when

the decision must be made. The stochastic unit commitment can therefore not be solved

in this form.

A widely used approach is to instead reduce the stochastic unit commitment problem

to a deterministic problem, by using a forecast for the uncertain market price and assume

this forecast to be entirely correct [40]. The formulation in expressions 2.4 and 2.5, can

then be solved, since the revenue, m, is now assumed to be known. If the forecast is

capable of accurately predicting the realized market prices, this approach may produce

good solutions [41].

Another, but less used approach, is to solve the stochastic unit commitment problem

using scenario-generation [42]. While the market price may be uncertain, we may have

an idea about the distribution of this random variable by analyzing historical data. Us-

ing this knowledge, alternative scenarios for the market price can be generated. Each

of these scenarios result in a deterministic equivalent to the stochastic unit commitment

problem. These deterministic equivalents can then be combined into one huge determin-

istic unit commitment problem, for which a global optimal solution can be found using

mixed-integer linear programming. The reformulation of the stochastic unit commitment

problem into a deterministic problem using scenario generation can be seen in expressions

2.6 and 2.7:

min
∑
s∈S

∑
g∈G

∑
t∈T

pg,t ·ms,t − pg,t · cg (2.6)

pg,t ∈ {0, 1}, ∀g ∈ G, t ∈ T (2.7)

In the reformulation, a sum over the scenarios, S, is included in the objective function,

while the revenue, m, is made specific for each scenario S and for each time period in T .

In this formulation of the problem, the decision variables are not specific to each scenario.

This means that the optimal schedule of the units is the one that results in the highest av-

erage value across all scenarios. In other words, the solution maximizes the expected value.

When the generated scenarios, S, are only a sample of all possible outcomes, this tech-

nique is known as Sample Average Approximation [43]. It is rarely practical to generate

all possible scenarios of the future. For a planning horizon of 24 hours, where the hourly

spot price is assumed to take either a low, medium, or high value in each hour indepen-

dently, a total of 324 (282 billion) unique scenarios exist, which makes the mixed-integer

13



linear problem intractable. An important attribute of solutions resulting from Sample Av-

erage Approximation is that they are almost never optimal in hindsight. The solution is

instead a balanced solution that in hindsight is never the best but also never the worst [41].

The approach of using a single forecast can be seen as a subcategory of the scenario-based

approach, where only one scenario is generated. The generation of multiple scenarios and

the combination of their deterministic problems into one large unit commitment problem

therefore incorporates more knowledge into the decision problem. If the uncertainties of

the stochastic variables are small, the extra computational burden of the scenario-based

approach may not be worth the slightly improved solution. However, as more fluctuating

renewable energy is being integrated into the portfolio of units of the decision-maker as

well as in the surrounding system, the difference in the solution quality of the two ap-

proaches will diverge [42].

An important assumption when formulating stochastic unit commitment problems is the

number of stages in the problem [39, 42]. A stochastic unit commitment problem may

constitute of multiple uncertain variables that are realized at different time periods in the

planning stage. The simplest form of stochastic unit commitment problems is a two-stage

model. In the first stage, a decision has to be made with the variables still being uncer-

tain. Once the decision has been made, the problem moves to the second stage where the

uncertain variable is realized. An example of this could be the bidding into the electricity

as the first stage problem. Once the bids have been submitted, the electricity price is

realized the problem moves on to the second stage, where the decision is then to find the

optimal operation of the energy conversion units, considering the bids won. Stochastic

unit commitment problems can have any number of stages, with different uncertain vari-

ables being realized at different stages. These types of problems are called multi-stage

problems. However, the problem can quickly become intractable with multiple stages.

2.3 Heat unit replacement method

The state-of-the-art heat unit replacement method [27] that is currently being used to

calculate optimal bids for district heating plants in sequential electricity markets in ener-

gyTRADE is a special instance of the stochastic unit commitment problem. The heat unit

replacement bidding method does not use scenario decomposition and relies on a single

forecast for finding the optimal schedule of the units. Instead, it exploits a structure of

the problem to allow for calculating bidding curves and placing bids even in hours that

the model does not expect to win. This is achieved by iteratively solving variations of

the same deterministic unit commitment problem with different constraints for the units.

The underlying assumption in the heat unit replacement method is that the demand for

district heating can always be covered by heat-only boiler production, which have opera-

tion costs independent from the uncertain electricity price.

The first step of the heat unit replacement method is to solve the traditional unit com-

mitment problem for a given planning horizon considering heat-only production on the
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boilers only, by restricting the trade on the electricity markets. An important assumption

is that the energy content in the thermal storage at the end of the planning horizon must

be equal or higher than the energy content in the beginning of the planning horizon. This

formulation avoids defining the costs of discharging the thermal storage. The first step

results in an optimal dispatch of the heat-only boilers independent of the market prices.

In the second step, the heat-only boilers are constrained to produce at least the same

amount of heat as in the first step in all hours, while trading on the electricity markets

is at the same time allowed. This makes it more feasible to produce heat on the CHP in

hours with high forecasted electricity prices. However, because the heat-only boilers are

constrained with a minimum operation, there is no room for CHP production. In the unit

commitment problem, the most expensive heat-only boiler is then disabled, restricting any

production of heat on this unit. This creates a deficit heat production, which the CHP

must cover, regardless of whether it is more cost-effective than the disabled boiler. The

heat production from the CHP may not occur in the same hour as the replaced heat, as

the CHP can utilize the thermal storage to operate according to the forecasted electricity

prices. This principle is then repeated in an iterative way, replacing the most expensive

boiler until either all heat-only boilers have been disabled or until the problem becomes

infeasible.

In the third step, the bids are calculated. Each of the solutions from the iterative unit

commitment problems in step 2 contain an increasing amount of CHP production. The

bidding prices for these productions are found using the costs of operating the CHP mi-

nus the opportunity cost of not operating the CHP. The opportunity cost is the operating

costs of the heat-only boiler that the CHP replaced, as the heat must be produced in one

way or another.

The heat unit replacement bidding method has proven to place very competitive bids

for traditional district heating plants with a combination of CHP units and heat-only

boilers. The method produces a bidding curve that can have as many steps as the number

of heat-only boilers that can be replaced. The method furthermore places bids in hours

that are not expected to be won, while never placing bids that would result in higher

operating costs than producing heat on the heat-only boilers.

The method can be extended to enable participation in sequential electricity markets

using the principle of changed opportunities in the spot market. The bidding price is here

found for a single hour by comparing the objective value between the optimal unit commit-

ment problem, and the unit commitment problem where the CHP unit has the opposite

state. The difference in the objective values corresponds to the changed opportunity in

the spot market. If the opposite state of the CHP resulted in less heat being produced, a

down-regulation bid was placed, and the heat would have to be produced by a heat-only

boiler or the CHP at a later point, where the spot market has not yet been realized. If

the opposite state of the CHP resulted in more heat being produced, an up-regulation bid

was placed, and less heat would have to be produced by the heat-only boilers or the CHP

at some point in the future instead. The bid in the sequential electricity markets is in
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other words calculated such that the change in unit commitment does not lead to a lower

expected objective value in the planning horizon.

While the heat unit replacement bidding method is very competitive for calculating bids

for a traditional district heating plant, the method relies on exploiting a certain struc-

ture of the problem, namely that units can be divided into heat-only producing units

independent of the market, and market-dependent heat producing units. However, for a

district heating plant such as the one in Assens, units that produce only power also exist,

and the addition of power-to-heat units allow for both purchasing and selling electricity.

It therefore becomes impossible to distinguish between market-dependent and market-

independent units, and it also becomes impossible to define the opportunity cost of not

operating a unit. Because the underlying structure of the problem can no longer be ex-

ploited in the same way, it leads to having to place price-independent bids instead which

are very sensitive to bad forecasts.
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Chapter 3

Methodology

3.1 Case study

As described in section 1.4, Assens District Heating is chosen as a case study. A case

study can help the researcher achieve context-dependent knowledge that a more general

and theoretical approach cannot [44]. Knowledge obtained from conducting a case study

can also be generalized to the general phenomena, when using a proper strategy for se-

lecting the case [44]. The type of case that Assens District Heating constitutes in this

report can be classified as both an instrumental case and an extreme case. It is an instru-

mental case in the sense that it is not an understanding of the case itself that is the most

important objective of the research, but the fact that it facilitates an understanding of a

larger and more complex problem [45]. Without an instrumental case it would be difficult

to analyze different bidding methods, which due to their relation to technology and the

energy market frameworks are inherently context-dependent already. The case is also an

extreme case in the sense that Assens District Heating is an unusual district heating plant

acting as a frontrunner in the transition to a 100% renewable energy system. Because it

is an extreme case, it serves well for testing the limits of a bidding method, as extreme

cases are especially good for obtaining new information [44].

While Assens District Heating constitutes the only case in this report, a simplified and

hypothetical variation of the case is also studied. In this hypothetical case, hereafter re-

ferred to as the simple case, the district heating plant is reduced to only containing wood

chip boilers, an electric heat pump and a thermal storage. The purpose of this case is

to have a case which the heat unit replacement bidding method can be applied to, such

that the limitations of the method can be shown, and such that the competitiveness of the

other bidding methods can be validated before applying them the case of Assens District

Heating. The simple case therefore also acts as an instrumental case, but it is not an

extreme case. The bidding methods are first applied to the simple case and analyzed in

this more comprehensible context, before scaling the problem and analyzing the full case

of Assens District Heating, hereafter referred to as the full case.
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3.2 Mathematical modelling

It is not possible to test the bidding methods in practice at a real district heating plant

by trial and error. To compare the different bidding methods, a mathematical model of

the district heating plant in a sequential electricity market bidding framework is instead

developed. A mathematical model is a simplified abstraction of a real-world phenomenon,

and it can be used to predict the outcome of different decisions [46]. This is illustrated in

Figure 3.1.

Figure 3.1. The relation between mathematical modelling in the conceptual world and the real
world phenomenon [46]

As it can be seen in Figure 3.1, mathematical modelling starts with an interpretation of

the real world, using observations. These observations are used to formulate a model in

the conceptual world. If the model replicates the most important attributes of the real-

world phenomenon, testing different input data on the model can create predictions about

what would happen in the real world. Following this methodology, it is possible to test

various bidding methods on a mathematical model of a district heating plant. To simulate

the operation of a district heating plant in an electricity market bidding framework, a

number of assumptions are made in the interpretation of the real-world phenomena into

an operational planning model.

3.2.1 Interaction with the electricity markets

It is assumed that the district heating plant is a price-taker that can place bids in the

day-ahead market and activation bids on the regulating market. Assens District Heating is

located in the DK1 price area. Only one extra electricity market is considered to keep the

model simple. Activation bids on the regulating market is chosen, as this is the most used

ancillary service by Energinet [36] and because historical data about this market can be

acquired. The minimum bidding amount on the regulating market is disregarded. Special

regulation is not included in the model, and in the case of both upward and downward

regulation in the same hour, bids are only accepted for the dominant direction in the price

area.

If the operational planning model places bids that end up causing imbalances, a one-

price settlement method is used, as Energinet will begin to use this approach by the end
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of 2021 [38]. The imbalance settlement price is the regulating settlement price for the

dominant direction in the system. If no regulating power is activated, imbalances are

settled with the spot price.

The model is discretized into hourly time steps to resemble the hourly bids in the day-

ahead-market. It is assumed that regulating bids are activated for an entire hour at a

time. Bids are submitted to the day-ahead market every day after the operation of the

11th hour and before the operation of the 12th hour begins. In other words, the bids are

submitted at exactly 12:00 which is gate closure for the day-ahead market. The market

is then coupled instantaneously, and the spot price is realized for the following day, still

before the operation of the 12th hour has begun. This assumption is made to simplify the

model formulation. Likewise, regulating bids are placed just before the hour of operation

and realized at once.

3.2.2 Data collection

The data for the realized spot market prices, regulating prices, up regulation amount

and down regulation amount are obtained from [47]. The weather data for aggregated

irradiance, wind speed and ambient temperatures are obtained from [48], for the

coordinates 55.22N, 9.84E. Data about the efficiency and capacity of energy conversion

units as well as the economic data such as tariffs, fuel costs etc. are derived from the

energyPRO-model provided by Assens District Heating. It is expected that the plant

manager has the most accurate information about these important parameters.

3.2.3 Heat demand

The operation of the district heating grid is not included in the model. In this report, the

heat demand therefore refers to the heat being fed into the district heating grid from the

district heating plant. The heat demand is modelled using degree-hours calculated from

the ambient temperature with a reference of 17◦C. The annual demand is assumed to be

96,000 MWh-heat, with 60% of the heat demand being degree-hour dependent to cover

the space heating demand. The remaining 40% of the demand is degree-hour independent,

covering grid losses and hotwater consumption. For a specific hour, the heat demand, d,

depending on the ambient temperature, ta, is calculated as follows:

d = 0.9517
MW
◦C

·max(17◦C − ta, 0
◦C) + 4.3836MW (3.1)

3.2.4 Energy conversion units

The model is formulated as a mixed-integer linear program, and all the units must therefore

be modelled in linear or integer terms. It is assumed that all the units are operated for
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whole hourly time steps, and that the units have no ramping periods. For the simple

model, the following units are assumed to be included in the portfolio of operating units:

• A thermal storage with a capacity of 80 MWh-heat

• Three woodchip boilers with a combined capacity of 17 MW-heat

• An electric heat pump with a capacity of 3.5 MW-e, operated using ambient air as

heat source

For the full model of Assens District Heating, the following units are assumed to be

included in the portfolio of operating units:

• A thermal storage with a capacity of 172 MWh-heat

• Three woodchip boilers with a combined capacity of 17 MW-heat

• An electric heat pump with a capacity of 2.3 MW-e, operated using ambient air as

heat source

• An electric boiler with a capacity of 15 MW-e

• A woodchip CHP plant with a capacity of 20 MW-fuel

• A wind turbine with a rated capacity of 1.307 MW-e

• Photovoltaics with a capacity of 5.4 MW-e, where half is facing east, and half is

facing west

An overview of all the units in the full case and how they are interconnected can be seen

in Figure 3.2.
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Figure 3.2. An overview of the full case with Assens District Heating

For the thermal storage, heat losses are not included in the model. At the beginning of

the simulation, the thermal storage starts being half full. At the end of the simulation, the

thermal storage must again be exactly half full. This constraint is made to avoid issues

comparing multiple simulations, as it is difficult to set a value on the energy left in the

thermal storage.

The woodchip boilers are modelled with a continuous decision variable, allowing any pro-

duction of heat within the specified capacity. The fuel consumption is not modelled and

a cost of producing heat is instead used.

The electric heat pump is also modelled with a continuous decision variable, allowing

any consumption of electricity within the specified capacity. The corresponding heat pro-

duction is modelled using a Lorentz-COP with a constant efficiency of 39.6%. The heat

source is equal to the ambient temperature and is cooled by 5◦C. The heat sink is the

return temperature of 35◦C, which is heated to the forward temperature of 70◦C. The

reader is referred to [49] for the exact calculation methodology used.

The electric boiler is modelled with a continuous decision variable, allowing any con-

sumption of electricity within the specified capacity. The corresponding heat production

is calculated using a constant efficiency of 99%.
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The woochip CHP plant is modelled by dividing it into a base load and a production

load. The base load is assumed to always be operated, consuming 1.92 MW-fuel, and pro-

ducing 1.44 MW-heat. Electricity is also produced, but this is used for self-consumption.

The production load is modelled using a continuous decision variable to determine the

fuel consumption, with a minimum operation load of 25% of maximum capacity. A binary

decision variable defines whether the production load is on, and a start-up is assumed to

incur a cost of 500 DKK, expressing the costs in man-power and reduced efficiency during

the ramping, which in return is not modelled. The CHP can be operated as a CHP unit

or in bypass-mode, producing heat-only. It is assumed that any combination of these two

modes is possible within the same hour, with the capacity for fuel consumption being the

common constraint. The domain of the continuous decision variable for fuel consumption

can be seen in Figure 3.3.
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Figure 3.3. The domain of the fuel consumption of the CHP and the corresponding heat and
power production

In Figure 3.3, the red dot depicts the heat production for base load operation. The pro-

duction load can be increased for a starting cost of 500 DKK as the grey arrow shows.

This allows a continuous fuel consumption between 6.44 and 20 MW-fuel. The CHP can

be operated producing heat and power, shown with the red and black lines, or producing

bypass-heat only, shown with the orange line. While this model is a simplification of a

typically non-linear CHP plant, Assens District Heating is only an instrumental case for

studying the bidding method. This simplification is therefore sufficient, while still express-

ing the complexity that binary decision variables and interdependency of operation hours

entail.

22



The wind turbine is modelled using data about windspeed, a power curve and a binary

decision variable, allowing the wind turbine to be fully curtailed. The power curve used

is shown in Figure 3.4:
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Figure 3.4. The power curve of the wind turbine relative to the wind speed

The photovoltaics are modelled with the state-of-the-art method used in energyPRO. The

reader is referred to [50] for the exact calculation methodology used. The power output

is based on the aggregated irradiance and ambient temperature, using an inclination of

35◦. The photovoltaic module has a maximum power of 240 W, a temperature coefficient

of -0.38%/◦C and a nominal cell operating temperature of 45◦C. Aggregated losses from

the module are assumed to be 10%, and no effects of array shading are included. Half the

photovoltaics are facing east, with a -90◦ deviation from south, and half the photovoltaics

are facing west, with a 90◦ deviation from south.

3.2.5 Simulation of the operation

It is desired to analyze the bidding methods in a simulation period with recent data, to

perform the analysis in a context with as much renewable energy integrated in the energy

system as possible. Therefore, the simulation is carried out using data from 2020. It is

however not possible to simulate more than a couple of weeks of operation due long com-

putation times and a limited time frame to perform the analysis. A week in each season

could be simulated to represent the seasonal effects on the operation of the district plant.

However, this would lead to four very small samples, where the variations between the

bidding methods would not develop enough to create significant deviations in the oper-

ation. Four consecutive weeks from October 1st 2020 to October 29th 2020 are instead

chosen, as the solar irradiance is still significant at this time of the year, while the ambient

temperature is low enough to cause a degree-hour dependent heat demand.

A planning horizon of five days is used in the simulation. The planning horizon is the

amount of time that the model looks ahead when placing bids in the electricity markets
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and performing the optimal unit commitment. A long planning horizon leads to a more

optimal unit commitment, as the optimal bids for the coming day are then placed while

considering future conditions. This allows the district heating plant to for example fill

up the thermal storage in preparation for a peak load. However, a long planning horizon

also considerably increases the computational burden. A five days planning horizon is

assumed to strike a balance between computational speed and optimal operation, based

on the findings in [27].

The model is formulated as a three-stage mixed-integer linear program, which is solved

for each hour in the planning horizon. In between the stages, new data is revealed or

generated. The simulation is initialized as follows:

1. First stage MILP: The simulation starts on 30th of September at 12:00. Calculate

and place bids into the day-ahead market for the 24 hours in the following day.

2. The spot price as well as which bids are won for the 24 hours the following day is

instantly revealed.

3. The time is then fast-forwarded to the beginning of the simulation period at 00:00

on October 1st.

4. Generate scenarios and prognoses for the spot prices for all timesteps in the planning

period where the market has not been cleared yet.

The following loop of actions are then repeated until the time is 00:00 on October 29th:

1. The actual weather data is revealed for the coming hour.

2. Using these values, generate scenarios and prognoses for weather data for the

planning horizon.

3. Generate scenarios and prognoses for the spot prices for all timesteps in the planning

period where the market has not been cleared yet, using the last known value as a

starting point.

4. First stage MILP: If the current time is 12:00, calculate and place bids in the

day-ahead market for all 24 hours in the following day.

5. If the current time is 12:00, the spot price as well as which bids are won for the 24

hours the following day is instantly revealed.

6. Generate scenarios for regulating bids in both directions for the coming hour

7. Second stage MILP: Calculate and place bids in the regulating market for the

coming hour.

8. The regulating price and direction is then instantly revealed and it is known whether

the bids are won.

9. Third stage MILP: Calculate the unit commitment and optimal operation of the

coming hour.

10. Calculate the costs of imbalances that occured from this optimal operation.

11. Update the initial energy content in the thermal storage and the initial unit

commitment variable defining whether the CHP is on or off.

12. Increment time by 1 hour
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The same MILP formulation is used for all the analyzed bidding methods, as the heat

unit replacement bidding method or a simple price independent bidding method can be

understood as a stochastic unit commitment problem with 1 scenario. The same MILP

formulation is also used for every stage in the three-stage MILP. The difference between

the stages lies in which of the parameters that are uncertain and therefore expressed with

prognoses or scenarios to create a deterministic problem, and which of the parameters

that have obtained the actual real values.

3.2.6 MILP formulation

Sets

T set of time periods in the planning horizon

X set of time periods in the planning horizon including the previous hour

S set of scenarios

Variables

TSs,t s ∈ S, t ∈ X thermal storage content

HPs,t s ∈ S, t ∈ T unit commitment for heat pump

WCBs,t s ∈ S, t ∈ T unit commitment for woodchip boiler

EBs,t s ∈ S, t ∈ T unit commitment for electric boiler

WTs,t s ∈ S, t ∈ T unit commitment for wind turbine

CHP on
s,t s ∈ S, t ∈ X binary unit commitment for CHP

CHP start
s,t s ∈ S, t ∈ T whether CHP is started

CHP fuel
s,t s ∈ S, t ∈ T continuous unit commitment for CHP fuel consumption

CHP prod
s,t s ∈ S, t ∈ T continuous unit commitment for CHP production

CHP bypass
s,t s ∈ S, t ∈ T continuous unit commitment for CHP bypass

gridimport
s,t s ∈ S, t ∈ T imported electricity from grid

gridexports,t s ∈ S, t ∈ T exported electricity to grid

spottrades,t s ∈ S, t ∈ T traded electricity on the spot market

imbalancedeficits,t s ∈ S, t ∈ T imbalance from deficit consumption of electricity

imbalancesurpluss,t s ∈ S, t ∈ T imbalance from surplus consumption of electricity

regdown
s,t s ∈ S, t ∈ T down regulation

regups,t s ∈ S, t ∈ T up regulation
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Parameters
downprice

s,t price for down regulation

upprices,t price for up regulation

spotprices,t spot price

CHP O&M costs for producing heat on heat pump

CWCB O&M and fuel costs for producing heat on woodchip boiler

CEB O&M costs for producing heat on electric boiler

CWT O&M costs for producing electricity on wind turbine

Coil costs for processing oil used in the CHP

CCHP O&M and fuel costs for the CHP

CCHP start costs for increasing CHP load past base load

Ctariff various tariffs and taxes for importing electricity

Cimbalance a constant value of 200 DKK/MWh-e

CHP on
initial initial state of the CHP

TSinitial initial energy content in the thermal storage

f(winds,t) wind power per rated capacity as a function

of wind speed

g(irrs,t, ambients,t) solar power per rated capacity as a function

of aggregated irradiance and ambient temperature

h(ambients,t) heat demand to be delivered to the district heating

grid as a function of ambient temperature

j(ambients,t) COP of the heat pump as a function

of ambient temperature

WCBheat thermal capacity of woodchip boilers

EBheat thermal capacity of electric boiler

EBpower electric capacity of electric boiler

WT power rated capacity of wind turbine

WT power rated capacity of wind turbine

HP power electric capacity of heat pump

CHP
base
fuel fuel consumption of CHP base load

CHP
base
heat heat production of CHP base load

CHP fuel minimum fuel consumption when not in base load

CHP
prod
fuel capacity of fuel consumption when producing CHP

CHP
prod
heat capacity of heat production when producing CHP

CHP
prod
power capacity of electricity production when producing CHP

CHP
bypass
fuel capacity of fuel consumption when producing in bypass-mode

CHP
bypass
heat capacity of heat production when producing in bypass-mode
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Objective

The objective function to be minimized is the sum of operation costs minus revenue

for all timesteps in the planning horizon and for all scenarios. Every scenario has the

same weight. The revenue consists of sale of electricity on the day-ahead market, sale of

electricity on the regulating market, and refunded imbalances for deficit consumption of

electricity. The expenses consist of operation and maintenance costs for the units, fuel

costs, starting costs on the CHP, various tariffs and taxes imposed on import of electricity,

purchase of electricity on the day-ahead market, purchase of electricity as down regulation,

and imbalances for surplus consumption of electricity. The refunded value or expense for

having imbalances is defined in such a way, that it is always more profitable to trade the

correct amount of electricity instead.

min
∑
s∈S

∑
t∈T

[
regdown

s,t · downprice
s,t − regups,t · up

price
s,t (3.2)

+ HPs,t ·HP power · j(ambients,t) · CHP (3.3)

+ WCBs,t ·WCBheat · CWCB (3.4)

+ EBs,t · EBheat · CEB (3.5)

+ WTs,t ·WT power · f(winds,t) · CWT (3.6)

+ CHP
base
fuel · CCHP (3.7)

+ CHP bypass
s,t · CHP

bypass
fuel · CCHP (3.8)

+ CHP prod
s,t · CHP

prod
fuel · CCHP (3.9)

+ CHP prod
s,t · CHP

prod
power · Coil (3.10)

+ CHP start
s,t · CCHP start (3.11)

+ gridimport
s,t · Ctariff (3.12)

+ spottrades,t · spotprices,t (3.13)

− imbalancedeficits,t · (downprice
s,t − Cimbalance) (3.14)

+ imbalancesurpluss,t · (upprices,t + Cimbalance)

]
(3.15)
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Constraints

The first constraints define the domain of the decision variables.

TSs,t ∈ [0, TS], ∀s ∈ S, t ∈ T (3.16)

HPs, t ∈ [0, 1], ∀s ∈ S, t ∈ T (3.17)

WCBs, t ∈ [0, 1], ∀s ∈ S, t ∈ T (3.18)

EBs, t ∈ [0, 1], ∀s ∈ S, t ∈ T (3.19)

WTs, t ∈ {0, 1}, ∀s ∈ S, t ∈ T (3.20)

CHP on
s,t ∈ {0, 1}, ∀s ∈ S, t ∈ T (3.21)

CHP start
s,t ∈ {0, 1}, ∀s ∈ S, t ∈ T (3.22)

CHP fuel
s,t ∈ [0, 1], ∀s ∈ S, t ∈ T (3.23)

CHP prod
s,t ∈ [0, 1], ∀s ∈ S, t ∈ T (3.24)

CHP bypass
s,t ∈ [0, 1], ∀s ∈ S, t ∈ T (3.25)

gridimport
s,t ∈ R≥0, ∀s ∈ S, t ∈ T (3.26)

gridexports,t ∈ R≥0, ∀s ∈ S, t ∈ T (3.27)

spottrades,t ∈ R, ∀s ∈ S, t ∈ T (3.28)

imbalancedeficits,t ∈ R≥0, ∀s ∈ S, t ∈ T (3.29)

imbalancesurpluss,t ∈ R≥0, ∀s ∈ S, t ∈ T (3.30)

regdown
s,t ∈ R≥0, ∀s ∈ S, t ∈ T (3.31)

regups,t ∈ R≥0, ∀s ∈ S, t ∈ T (3.32)

The following constraints model the operation of the CHP. The CHP can only consume

more fuel than it does under base load, if the binary decision variable is commited. If the

binary decision variable is commited, the fuel consumption must in return be higher than

the minimum load. The fuel consumption used for CHP production and for bypass-mode

can never exceed the maximum fuel capacity of the CHP. At last, if the CHP was turned

off in the last hour, a start of the CHP must happen to turn it on.
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CHP fuel
s,t ≤ CHP on

s,t , ∀s ∈ S, t ∈ T (3.33)

CHP fuel
s,t ≥ CHP on

s,t · CHP fuel, ∀s ∈ S, t ∈ T (3.34)

CHP prod
s,t + CHP bypass

s,t = CHP fuel
s,t , ∀s ∈ S, t ∈ T (3.35)

CHP start
s,t ≥ CHP on

s,t − CHP on
s,t−1, ∀s ∈ S, t ∈ T (3.36)

The following constraints define the initial condition of the CHP and the thermal storage,

using the value of the last hour. Furthermore, the thermal storage content of the last hour

in the planning horizon must be equal to the thermal storage content in the first hour.

CHP on
s,0 = CHP on

initial ∀s ∈ S (3.37)

TSs,0 = TSinitial ∀s ∈ S (3.38)

TSs,|T | = TSinitial ∀s ∈ S (3.39)

The following constraints couple the scenarios in such a way, that the bids on the day-

ahead market form a monotonic curve. To clarify this, if the spot price in scenario A is

lower than the spot price in scenario B, then the consumption of electricity in scenario

A must be lower or equal to the consumption in scenario B. If the spot price is identical

between scenario A and B, then the consumption of electricity must be the same in both

scenarios.

spottrades,t ≥ spottrades′,t : spotprices,t < spotprices′,t , ∀(s, s′) ∈ S, t ∈ T (3.40)

spottrades,t = spottrades′,t : spotprices,t = spotprices′,t , ∀(s, s′) ∈ S, t ∈ T (3.41)

The same principles as for the traded electricity on the day-ahead markets is valid for the

trading on the regulating market.

regups,t ≥ regups′,t : upprices,t > upprices′,t , ∀(s, s′) ∈ S, t ∈ T (3.42)

regups,t = regups′,t : upprices,t = upprices′,t , ∀(s, s′) ∈ S, t ∈ T (3.43)

regdown
s,t ≥ regdown

s′,t : downprice
s,t < downprice

s′,t , ∀(s, s′) ∈ S, t ∈ T (3.44)

regdown
s,t = regdown

s′,t : downprice
s,t = downprice

s′,t , ∀(s, s′) ∈ S, t ∈ T (3.45)
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The following constraint defines flow of heat. The energy content of the thermal storage

must be equal to the energy content in the last hour minus the demand, plus the heat

production on the energy conversion units.

TSs,t = TSs,t−1

− h(ambients,t)

+ WCBs,t ·WCBheat

+ EBs,t · EBheat

+ HPs,t ·HP power · j(ambients,t)

+ CHP
base
heat

+ CHP prod
s,t · CHP

prod
heat

+ CHP bypass
s,t · CHP

bypass
heat , ∀s ∈ S, t ∈ T

(3.46)

The following constraint defines the physical flow of electricity. The difference between the

import and export of electricity must be equal to the sum of all consumption of electricity

minus the sum of all produciton of electricity.

gridimport
s,t − gridexports,t = HPs,t ·HP power

+ EBs,t · EBpower

−WTs,t ·WT power · f(winds,t)

− PV power · g(irrs,t, ambients,t)

− CHP prod
s,t · CHP

prod
power, ∀s ∈ S, t ∈ T

(3.47)

The following constraint defines that the difference between the import and export

electricity must be equal to the sum of the traded amount of electricity and the sum

of the imbalances.

gridimport
s,t − gridexports,t = spottrades,t

+ imbalancesurpluss,t

− imbalancedeficits,t

+ regdown
s,t

− regups,t, ∀s ∈ S, t ∈ T

(3.48)
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Third stage MILP only

When there are multiple scenarios in the MILP, it is likely that two different scenarios will

have two different optimal production plans for the coming planning horizon. However,

in the third stage, a decision on the optimal unit commitment across all scenarios must

be taken for the coming hour. The decision variables for the coming hour must therefore

be identical across all scenarios.

TSs,1 = TSs′,1, ∀(s, s′) ∈ S (3.49)

HPs,1 = HPs′,1, ∀(s, s′) ∈ S (3.50)

WCBs,1 = WCBs′,1, ∀(s, s′) ∈ S (3.51)

EBs,1 = EBs′,1, ∀(s, s′) ∈ S (3.52)

WTs,1 = WTs′,1, ∀(s, s′) ∈ S (3.53)

CHP on
s,1 = CHP on

s′,1, ∀(s, s′) ∈ S (3.54)

CHP start
s,1 = CHP start

s′,1 , ∀(s, s′) ∈ S (3.55)

CHP fuel
s,1 = CHP fuel

s′,1 , ∀(s, s′) ∈ S (3.56)

CHP prod
s,1 = CHP prod

s′,1 , ∀(s, s′) ∈ S (3.57)

CHP bypass
s,1 = CHP bypass

s′,1 , ∀(s, s′) ∈ S (3.58)

CHP prod
s,1 = CHP prod

s′,1 , ∀(s, s′) ∈ S (3.59)

gridimport
s,1 = gridimport

s′,1 , ∀(s, s′) ∈ S (3.60)

gridexports,1 = gridexports′,1 , ∀(s, s′) ∈ S (3.61)

imbalancedeficits,1 = imbalancedeficits′,1 , ∀(s, s′) ∈ S (3.62)

imbalancesurpluss,1 = imbalancesurpluss′,1 , ∀(s, s′) ∈ S (3.63)

3.2.7 Economic data

The following constant costs are used in the MILP as derived from the energyPRO-model

from Assens District Heating. These costs are also in concordance with data from [51].

• 216 DKK/MWh-heat produced on the woodchip boilers for O&M

• 15 DKK/MWh-heat produced on the heat pump for O&M

• 5 DKK/MWh-heat produced on the electric boiler for O&M

• 10 DKK/MWh-e produced on the wind turbine for O&M

• 167.32 DKK/MWh-fuel consumed in the CHP for woodchips and O&M

• 3.3 DKK/MWh-e produced on the CHP for oil costs

• 167.1 DKK/MWh-e imported electricity for tariffs and taxes

31



3.2.8 Choice of solver

The mixed-integer linear programs have been programmed in Python and solved using

CPLEX, as this is one of the most competitive commercial solvers available [52]. The

mixed-integer linear programs with just a single scenario such as for the heat unit

replacement bidding method have been solved to global optimum by setting the tolerance

gap to 0%. The tolerance gap specifies how close the found solution needs to be to a

theoretical best solution before the solver stops the optimization. For the mixed-integer

linear programs with multiple scenarios, it has been necessary to increase the tolerance

gap to 1% to retrieve a solution within on average 2 minutes per timestep in the simulation

period.

3.3 Scenario generation

3.3.1 Generation of spot prices and weather data

To model the bidding methods, it is necessary to have prognoses for the spot price, ag-

gregated solar irradiance, ambient temperature, and wind speed. It is crucial that these

forecasts contain uncertainties and errors that would reproduce a real-life context of a

unit commitment problem under uncertainty. However, it has been impossible to collect

such prognoses, as they are sold as commercial products. Therefore, a novel method for

generating forecasts has been developed in this project. The approach uses a combination

of a Markov Chain and Monte Carlo simulation to generate time series in hourly steps, as

this is an often used method for forecasting time series [53]. A Markov model is a set of

states, in which each has a defined probability of switching to each other state. This can

be applied to time series forecasting by using the last known value as a state, for example

the spot price from 23:00 to 24:00, and drawing a random new state for the next hour.

With process is continued until a state has been found for each timestep in the planning

horizon. The same method with slight variations is used to generate scenarios for the spot

price, aggregated solar irradiance, ambient temperature, and wind speed. The following

explains the procedure for generating spot price scenarios.

First, a transition matrix is generated for each hour of the day, to capture daily vari-

ations in the spot price. The transition matrix contains the probabilities of transitioning

from one state to another. The transition matrices are trained on data of real spot prices

from 2018 to 2020. Multiple years are chosen such that outliers play a smaller role, while

data from before 2018 is excluded, such that the matrices do not inherit properties of a

market coupling in an energy system with significantly less renewable energy than in 2020.

Note that the simulation period of October 1st to October 29th, 2020, is included in the

training data, although it is mixed with a large amount of other data. To generate the

transition matrices, the real spot prices are binned into 100 price ranges, which constitute

the state of the spot price in that hour, relative to all the same hours in the training data.

The data is binned such that each state is a percentile. The 24 hourly 100×100 transition

matrices are initialized with zeros in all entries. Starting from 1st of January 2018, the

percentile and therefore state of the electricity price in that hour and the coming hour is
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then found. If the electricity price for example was in the 55th percentile and the coming

hour was in the 57th percentile, then the entry in row 55 and column 57 in the transition

matrix for hours 00:00 – 01:00 is incremented by one. This procedure is followed for all 3

years of training data, whereafter each entry is divided by the sum of the row it belongs

to. Some of the resulting transition matrices are depicted in Figure 3.5.
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Figure 3.5. Transition matrices for the spot price for four selected hours of the day

As it can be seen in Figure 3.5, the transition matrices have a very diagonal structure,

meaning that the electricity price in the next hour is very likely to be close to the electric-

ity price in the previous hour. Each of the 24 transition matrices have a unique structure,

which captures the daily variations in the electricity price. In the transition matrix for

18:00 – 19:00 it can for example see how the data is skewed from the diagonal structure,

such that a state with a high percentile in that hour has a tendency of leading to a state

with a lower percentile in the following hour.

The transition matrices are used to generate scenarios using Monte Carlo simulation on

the Markov Chain, by iteratively generating a new random variable in the time series, us-

ing the percentile in the preceding hour as the lookup row and the entries of the columns

in that row as the probability of generating a new value with the corresponding percentile.

When a Markov Chain of percentiles have been generated for the entire planing horizon,

the percentiles are converted back into actual electricity prices, by drawing a uniformly

distributed random value from that bin. The procedure is repeated for each scenario. To

generate the single forecast to be used for the single-scenario bidding methods such as the

heat unit replacement bidding method, the mean of all the generated scenarios is used for

each time step. The resulting time series of the forecasting method can be seen in Figure

3.6.
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Figure 3.6. Generated scenarios and the single prognosis for the spot price compared to the
real spot price in the same period

As it can be seen in Figure 3.6, the developed forecasting method is able to produce fore-

casts that express many of the characteristics of the actual spot price. Low spot prices,

for example, show a tendency to linger around a spot price of 0 DKK/MWh-e, while only

a few scenarios contain extreme values below 0 DKK/MWh-e. It can also be seen how

the forecasts capture the daily trends in the electricity price with a peak in the morning

and a peak in the afternoon. Finally, it can be seen that using the mean of the gener-

ated scenarios for the single prognosis results in a good approximation of the real spot data.

The picture in Figure 3.6 only shows the generated scenarios for one time step and the 5

days ahead, constituting the planning horizon. All the scenarios originate from the same

common last known value of the spot price. However, as time is incremented in the model,

new scenarios and a new prognosis is generated. In other words, the scenarios and the

prognosis are dynamically being updated as the planning horizon is shifted, and new data

is revealed to the model.

The same procedure as for the spot price is used to generate scenarios and the single

prognosis for aggregated irradiance, ambient temperature, and wind speed. However,

these weather data are assumed to be less uncertain than the spot prices, and therefore

a small change is made to the procedure. This change involves revealing a little informa-

tion about the real values of the future, and the method for generating weather scenarios

is therefore strictly speaking no longer a forecast. The change consists of generating n

random values instead of just one random value in the Monte Carlo simulation. It is then

revealed which one of the n random values or rather states, that is closest to the state of

the real value, and this value is chosen. The approach is therefore still stochastic, but the

scenarios will have a smaller probability of drifting away from the actual value, while this

value is still unknown to the model. The number of n random values to generate in each

time step diminishes linearly as the simulation moves further away from the last known
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value, to reflect that uncertainty increases over time. In the first timestep of the planning

horizon, n, is set to 4, while n linearly decreases to 1 at the last timestep in the planning

horizon.

One final change is also made in the procedure for generating aggregated solar irradi-

ance. As the sun’s movement across the sky is vastly different throughout the year, the

training data is limited to the 4 weeks in October, that the bidding methods are simu-

lated in. To compensate for this reduction in the training data, the transition matrices are

trained on data from 2015 to 2020 instead. The resulting generated scenarios for all the

types of data can be seen in Figure 3.7 for a specific starting point. If time is incremented

by one hour, the scenarios would look slightly different, as the value of the first timestep

in the previous planning horizon is revealed, while the entire planning period is shifted

one hour.
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Figure 3.7. Generated scenarios and the single prognosis for all four types of data compared to
the real values in the same period

As it can be seen in Figure 3.7, the developed method is able to produce scenarios for all

4 types of data, which both resembles the real data, while deviating enough to capture
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the uncertainties in the daily operational planning of the district heating plant. The vast

majority of the real data lies within the upper and lower bounds of the scenarios, and the

single prognosis is an accurate forecast.

3.3.2 Generation of regulating prices

The regulating price scenarios are not generated as time series but as scenarios for the

coming hour only. There is a relationship between the spot price and the regulating price,

as it can be seen in Figure 3.8, showing all up and down regulation prices for the year of

2020 in DK1.

400 200 0 200 400 600 800 1000 1200
Spot price [DKK/MWh-e]

1000

500

0

500

1000

1500

2000

2500

3000

Re
gu

la
tin

g 
pr

ice
 [D

KK
/M

W
h-

e]

Up regulation type A
Up regulation type B
Down regulation type A
Down regulation type B

Figure 3.8. The relation between the regulating price and the spot price in 2020

In Figure 3.8, all the dots below the line, are down regulation prices, while all the dots

above the line, are up regulation prices. Several tendencies can be seen in the regulating

prices. In hours of up regulation, the up regulation price is very spread if the spot price

is greater than 0. However, once the spot price falls below 0, the up regulating price

keeps lingering around 0. For the hours with down regulation, the down regulating price

tends to stay between 0 and the spot price. However, some extreme values are found with

negative down regulating prices, especially when the spot price is also negative or near 0

DKK/MWh-e. While it is difficult to fit a single model to express the relation between the

spot price and the regulating prices, these observations can be used to divide the problem

into sub-problems. As the colors indicate in figure 3.8, the regulating prices are divided

into 4 types:

• Up regulation type A, where the spot price is greater or equal to 0 DKK/MWh-e.

The difference between the spot price and the up regulation price can be described
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as a logarithmic function with a normally distributed error term.

• Up regulation type B, where the spot price is less than 0 DKK/MWh-e. The up

regulation price can be modelled with a normal distribution.

• Down-regulation type A, where the spot price is less than 50 DKK/MWh-e. The

relation between the spot price and down regulation price can be described as a

logarithmic function with a normally distributed error term.

• Down-regulation type B, where the spot price is greater or equal to 0 DKK/MWh-e.

The down regulation price can be described as a linear function of the spot price

with a normally distributed error term, where randomly sampled negative prices are

corrected to 0 DKK/MWh-e with a probability derived from the observations.

By combining these 4 approaches, the regulating price can be modelled as a stochastic

function of the spot price for a given hour. In figure 3.9, the approach is tested against

the real regulating prices for the entire year of 2020.

400 200 0 200 400 600 800 1000 1200
Spot price [DKK/MWh-e]

1000

500

0

500

1000

1500

2000

2500

3000

Re
gu

la
tin

g 
pr

ice
 [D

KK
/M

W
h-

e]

Simulated data
Real data

Figure 3.9. Simulated regulating prices compared to real regulating prices for the year of 2020

As it can be seen in Figure 3.9, simulated data resemble the real data well. The method is

stochastic, allowing generation of multiple random regulating prices for a known spot price.

The spot price for an operation hour is always known when the bids for the regulating

market have to submitted. Scenarios for both down regulation and up regulation prices

can therefore be simulated using this method.
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3.4 Compared bidding methods

To understand how well a bidding method can lead to the optimal unit commitment for

the district heating plant, it is necessary to have a reference to compare against. The ref-

erence is defined as the optimal unit commitment optimized across the entire simulation

period at once, while having perfect knowledge about the future weather conditions and

spot prices. Since the spot prices are known, this leads to a deterministic problem that can

be easily solved. This reference is a lower bound for how well the district heating plant can

be operated. However, if the district heating plant is also participating in the regulating

market, it would not be meaningful to reveal the regulating prices in the reference, as this

would lead to nonsensical and clearly unoptimal bids into the spot market, just to sell this

traded energy in the regulating market right after. It would be the equivalent of knowing

which lottery ticket to purchase. The first reference is therefore not allowed to participate

in the regulating market.

Instead a second reference is made, which uses a rolling horizon with perfect knowledge

about the spot prices and weather data for the coming 5 days. The regulating prices in

this reference are revealed just before gate closure of the regulating market for the corre-

sponding hour, and by knowing this price, a unit commitment problem is solved to find

the optimal quantity of electricity to bid with. This is also a deterministic problem and

would resemble the operation of a district heating plant with access to very good prog-

noses and no information about regulating prices, but an optimal approach for calculating

the optimal bid into the regulating market.

The simplest way to solve the stochastic bidding problem is to place price-independent

bids. This also results in a deterministic problem where only the optimal unit commit-

ment has to be found, using the prognoses for the spot market and the weather data.

Under the assumption that this unit commitment is in fact optimal, price-independent

bids are then placed into the electricity markets, thus guaranteeing this expected optimal

unit commitment. Price-independent bids can however lead to winning bids in hours of

unanticipated extreme prices on the spot market. A method where the price-independent

bids are bounded by an upper limit in the bidding price is therefore also analyzed. This

upper limit is the electricity price at which it would be cheaper to produce heat on the

woodchip boilers. For price-independent bidding methods, it is assumed that the regulat-

ing bids can be calculated by change of opportunity in the spot market, as it is done for

the heat unit replacement bidding method.

The heat unit replacement bidding method is analyzed only for the simple case, as it

is not possible to use the method for Assens District Heating considering their specific

portfolio of units.

Finally, the approach based on scenario-generation and Sample Average Approximation is

analyzed. For the simple case, 70 scenarios are generated for the spot prices and weather

data for each rolling planning horizon in the model. For calculating the bids to be placed

in the regulating market, 70 scenarios for down regulating prices and 70 scenarios for up
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regulation are also generated for each hour. For the full case of Assens District Heating,

the amount of scenarios is reduced to 50. This proved to result in a slightly worse solution

than using 70 scenarios, but was necessary to achieve a faster computation.

The analyzed references and methods in the analysis are named as follows:

• Optimal (reference)

The optimal unit commitment problem on the entire simulation period with perfect

knowledge about all prices and weather data, except the regulating market. No

participation in the regulating market is allowed.

• PF (reference)

The reference with a rolling horizon, where the spot prices and weather data is

known with 100% accuracy (perfect forecasting) for the coming 5 days. Regulating

prices are only known right before a regulating bid has to be submitted.

• PI (realistic bidding method)

The bidding method consisting of placing price-independent bids only.

• PI-L (realistic bidding method)

The bidding method consisting of placing price-independents bids with an upper

limit on the price.

• HURB (realistic bidding method for the simple case only)

The heat unit replacement bidding method.

• SAA (realistic bidding method)

The bidding method based on scenario-generation and Sample Average Approxima-

tion to solve the stochastic unit commitment problem.
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Chapter 4

Results for the simple case

4.1 Bidding in the day-ahead market only

The simple case is the hypothetical case of Assens District Heating, including only the

woodchip boilers, electric heat pump and the thermal storage. The total operational

expenses for the two references and the four analyzed bidding methods can be seen in

Figure 4.1.
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Figure 4.1. The total operational expenses over the analyzed simulation period from 1st of
October to 29th of October. The percentage refers to the relative value between

the corresponding bidding method and the optimal operation.

It is important to note, that the total operational expenses only include the costs that are

included in the model. Some fixed costs, which remain the same no matter the operation,

are not included in the model, and therefore also not in the operational expenses seen in

Figure 4.1.
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An important result that can be seen from Figure 4.1, is that there is no difference between

the two references. Calculating the unit commitment problem at once and calculating it

hour-by-hour with a 5 days rolling planning horizon leads to the exact same optimal op-

eration. It verifies that a planning horizon of this length is sufficient for this case. It also

reveals just how important good prognoses are.

Another notable result, is that price independent bidding with an upper limit performs

equally well as the heat unit replacement bidding method. The heat unit replacement

bidding method places substantially more bids in the day-ahead market than the price

independent bidding method, as the heat unit replacement bidding method also places

bids in hours it does not expect to win. However, this does not seem to lead to a more

optimal operation. The small differences in operational expenses between the last three

methods in Figure 4.1, does not lead to the conclusion that one bidding method is superior

or inferior to another. Stochasticity also plays a role, as the optimal unit commitment

from one method may lead to a lower operational expense by pure luck. However, it can

be seen that Sample Average Approximation is a very competitive method for placing

bids.
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Figure 4.2. Total operational expenses based on their origin.

In Figure 4.2, the total operational expenses can be seen divided on their origin. The by

far majority of all expenses are related to the purchase of electricity on the spot market,

and the taxes and tariffs for importing electricity from the grid. A small proportion is

related to the costs for producing heat on the woodchip boilers. These costs include

variable O&M, taxes and fuel costs. As the costs of producing heat on the woodchip

boiler is a constant, Figure 4.2 can he used to compare the amount of heat being produced

on the woodchip boilers between the bidding methods. The approach based on Sample
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Average Approximation produces a little more heat on the woodchip boilers than the heat

unit replacement bidding method. The price-independent approach without an upper

bidding limit produces substantially less heat on the woodchip boilers, as it wins every

bid submitted, while the other methods only win bids when the spot price is below the

bidding price. In Figure 4.3, the weighted average spot price of all the bids won can be

seen, as well as the average size or quantity of the bids.
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Figure 4.3. Weighted average spot price and average quantity of purchased electricity of all the
won bids.

As it can be seen in Figure 4.3, the price-independent method without upper limits on

the bidding price results in electricity being purchased at an averagely higher price. The

approach based on Sample Average Approximation comes very close to purchasing the

electricity at the optimal price. However, in the Sample Average Approximation method,

the size of the bids are smaller. The average quantity should not be understood as the

total electricity purchased on the day-ahead market, but the average quantity of electricity

purchased for the hours with won bids only. The Sample Average Approximation method

therefore places smaller bids, but at the optimal price. One of the reasons that the Sample

Average Approximation method places smaller bids, is because it contains 70 scenarios

with varying heat demands and COP. If the thermal storage is full, purchasing too much

electricity on the spot market can lead to imbalances, as the electricity simply cannot be

consumed. Some of the scenarios will have both a lower heat demand and a higher COP

than the average scenario, due to higher ambient temperatures. To avoid imbalances,

the Sample Average Approximation method therefore places slightly lower bids than the

maximum electric capacity of the heat pump, to avoid imbalances in just a few of the

scenarios. How this affects the deficit electricity consumption can be seen in Figure 4.4.
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Figure 4.4. Imbalances of deficit electricity consumption, which occurs when more electricity
was purchased than consumed.

The imbalances seen in Figure 4.4 lead to a refund of the purchased electricity. However,

if the regulating price is lower than the spot price, the value of this refund is smaller than

the expense of purchasing the electricity, leading to increased operational expenses. None

of the bidding methods have surplus electricity consumption imbalances, as the woodchip

boilers can always be dispatched, if too little electricity was purchased to supply the heat

demand with the heat pump only.

The approach based on Sample Average Approximation results in bidding curves with

up to the same number of steps as there are scenarios in the model. Although, most

of the bidding curves contain only a few number of steps, as only some of the scenarios

become the tipping points, where bids for additional consumption are submitted. The

heat unit replacement bidding method also produces bidding curves with multiple steps.

These bidding curves contain up to the same number of steps as there are heat-only units

being replaced. In the simple case, three woodchip boilers are replaced. However, as

these woodchip boilers have the same costs, the bidding curves only contain one bid. A

comparison of the bidding curves between these two methods for four selected hours can

be seen in Figure 4.5.
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Figure 4.5. Bidding curves submitted for the heat unit replacement method and the approach
using Sample Average Approximation for four selected hours in the simulation

period.

In Figure 4.5, the heat unit replacement bidding method results in four identical and single

bids with a quantity of 3.5 MW-e and a bidding price of approximately 400 DKK/MWh-e.

This bidding price is the equilibrium at which the heat pump and the woodchip boilers

are equally expensive to produce heat on. In the approach based on Sample Average

Approximation on the other hand, multiple bids are submitted for each hour with different

corresponding quantities and bidding prices. Most notably are the maximum bidding

prices of these bids much lower. For the 3rd of October at 06:00:00, as the green line

in Figure 4.5 depicts, the highest bid submitted is 0.8 MWh-e at a bidding price of 325

DKK/MWh-e. An additional 1.2 MWh-e is then submitted at a bidding price of 280

DKK/MWh-e. Only if the price for electricity is close to 0 DKK/MWh-e is the highest

bid of 3.5 MWh-e won. In Figure 4.6, the bidding curves are visualized in a different

way for a longer time period. The height of the bars represent the bidding quantity and

the color of the bars represent the bidding price. A bidding price of 0 DKK/MWh-e or

lower corresponds to a dark red color, while a bidding price of 400 DKK/MWh-e or higher

corresponds to a dark green color. Bidding prices in between these values are depicted

with a color gradient.
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Figure 4.6. Bidding curves submitted for the heat unit replacement method and the approach
using Sample Average Approximation for a selected time period of 42 hours. The

bidding price is visualized with a color gradient, with dark green depicting a
bidding price at 400 DKK/MWh-e or higher, and dark red depicting a bidding

price at 0 DKK/MWh-e or lower.

As it can be seen in Figure 4.6, the method based on Sample Average Approximation

places bids in far more hours than the the heat unit replacement method does, while it at

the same is time more reluctant to place high bidding prices. This results more load hours

on the heat pump, while being operated at a lower capacity, which explains the trends

seen in Figure 4.3. The advantage of the Sample Average Approximation approach is thus

clear. It places many bids around 0 DKK/MWh-e, which are not expected to be won.

But if these bids are won because the market coupling in the day-ahead market takes an

unexpected turn, they result in very cheap production of heat. The heat unit replacement

bidding method is not capable of submitting such extreme and unlikely bids and instead

focuses on placing fewer, larger and more conservative bids.

In Figure 4.7, actual unit commitment of three of the methods is compared against the

realized spot prices. In the reference with perfect forecasting, the real spot price was used

to plan the unit commitment, and it can be seen how production on the heat pump is

avoided in hours where the electricity price peaks. In the shown time period, no production

on the woodchip boiler occured. It can be seen how the bidding curves submitted in the

approach based on Sample Average Approximation result in a unit commitment that

closely resembles the optimal unit commitment. However, the bids submitted with the

heat unit replacement bidding method result in a few deviations from the optimal unit

commitment. On 7th of October at noon, a local minimum in the spot price of around 250

DKK/MWh-e occurs before the price increases again to around 350 DKK/MWh-e. The

spot prognosis for this time period fails to anticipate this, and no bids are submitted, while

bids are submitted in the adjacent hours. The spot price might be well below the point,

where it is cheaper to operate the woodchip boiler, but the failure to place multiple bids
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in these hours results in electricity being purchased at a price almost 100 DKK/MWh-e

higher than the optimal unit commitment. Another example is October 9th, where a peak

of 400 DKK/MWh-e occurs in the morning. Many bids are won here for a price between

300 and 400 DKK/MWh-e, while the failure to place enough bids results in not operating

the heat pump a few hours later, where the spot price is around 200 DKK/MWh-e.
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Figure 4.7. The unit commitment compared to the spot price for a selected period of time in
the simulation.
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4.2 Including the regulating bids

The regulating bids are not calculated for the optimal reference as this would be

nonsensical, but the optimal operation without participating in the regulating market

is included in the analysis for comparison. In Figure 4.8, the total operational expenses

are shown, when the district heating plant can bid in the regulating market as well.
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Figure 4.8. The total operational expenses over the analyzed simulation period from 1st of
October to 29th of October. The orange bars to the left are the operational

expenses without participating in the regulating market, and the green bars to the
right are the operational expenses while participating in the regulating market as

well.

As it can be seen in Figure 4.8, all of the bidding methods perform very similar when

bids can be placed in the regulating market as well. None of the methods perform as

good as the reference with perfect forecasting, and the method based on Sample Average

Approximation performs slightly better than the other methods. It seems that poorly

submitted bids in the day-ahead market can be made up by placing bids in the regulating

market afterwards. This tendency can also be seen in Table 4.2.

PK PI PI-L HURB SAA

Spot market [MWh-e] 1,949 2,120 1,974 1,976 1,914
Down [MWh-e] 38 2 35 32 39
Up [MWh-e] 191 257 211 211 200

Spot market [DKK] 321,155 405,362 341,604 342,292 318,154
Down [DKK] 7959 352 7553 6615 7891
Up [DKK] -106,863 -150,660 -116,999 -116,999 -110,578

Table 4.1. Traded electricity on the different electricity markets as well as the total expenses
for each of the markets. A negative expense is the same as an income.
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In Table 4.2, it can be seen how a significantly higher amount of electricity is traded on the

day-ahead market for the price-independent method without an upper limit on the bidding

price. However, the amount of revenue made from trading on the up regulating market is

correspondingly higher as well. This trend is occuring in all the data. A down regulation

is the act of purchasing electricity cheaper or equal to the spot price, which requires an

unscheduled start of the heat pump. An up regulation is the act of selling electricity

more expensive than it was purchased for, which requires shutting down scheduled heat

pump operation. The revenue earned on the up regulating market includes a refund for

the electricity purchased on the spot market, which is why this value seems excessive.

By dividing the revenue from the up regulating market with the amount of up regulation

activated, up regulating bids are won with a price of approximately 500 - 600 DKK/MWh-

e. Down regulating bids on the other hand, are won with a price of approximately 200

DKK/MWh-e. This corresponds well with the opportunity cost of producing heat on

the woodchip boiler instead. The ability of the woodchip boiler to replace heat pump

production is what allows the significant amount of up regulation, as it can be seen in

Figure 4.9.
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Figure 4.9. Heat produced on the heat pump and woodchip boilers. The left bar shows the
heat produced without participating in the regulating market, and the right bar

shows the heat produced with participation in the regulating market.

It has now been shown that the approach based on scenario generation and Sample Average

Approximation is a very competitive bidding method, both compared to the optimal

unit commitment, and to the state-of-the-art heat unit replacement bidding method. It

performs well when submitting bids to both the day-ahead market and the regulating

market. However, on the contrary to the heat unit replacement bidding method, the

approach based on Sample Average Approximation can be applied to the case of Assens

District Heating.
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Chapter 5

Results for the full case

5.1 Bidding in the day-ahead market only

For the analysis of the full case of Assens District Heating, the heat unit replacement

bidding method has not been included, as it is unable to calculate a meaningful operation.

The price independent method without an upper limit is also omitted. In Figure 5.1, the

total expenses of the two bidding methods are compared to the optimal operation of the

district heating plant in the two references.
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Figure 5.1. The total operational expenses over the analyzed simulation period from 1st of
October to 29th of October. The percentage refers to the relative value between

the corresponding bidding method and the optimal operation.

As it can be seen in Figure 5.1, the approach using Sample Average Approximation is still

able to come very close to the optimal operation, while this is no longer the case for the

price independent method. It can furthermore be seen that applying a rolling planning

horizon creates a difference between the reference with optimal unit commitment and the

reference with a rolling planning horizon with perfect forecasting. In Figure 5.2, the heat

production and electricity production of the energy conversion units can be seen.
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Figure 5.2. Heat production and electricity production of the energy conversion units at the
district heating plant. A negative production is a consumption of electricity. The

electric boiler and woodchip boilers are not shown, as they produced so small
amounts that it cannot be visualized.

In Figure 5.2, it can be seen that the method based on Sample Average Approximation

leads to the same total amount of produced energy on the different units as the optimal

operation. The price-independent method, on the other hand, ends up producing substan-

tially more heat on the heat pump and operating the CHP correspondingly less. It can

also be seen how the wind turbines and photovoltaics contribute to a significant amount

of the produced electricity. For the optimal operation, the perfect forecasting and the

method based on Sample Average Approximation, slightly more electricity is sold than

purchased. For the price-independent method, significantly less electricity is sold than

purchased.

In Figure 5.3, it can be seen why this occurs. For the optimal operation, electricity is

generally only sold once the spot price is above 300 DKK/MWh-e, and electricity is only

purchased once the spot price is below 150 DKK/MWh-e. This trend is similar for the

approach based on Sample Average Approximation. However, for the price-independent

bidding method, large quantities of electricity are sometimes sold for low spot prices and

large quantities are correspondingly purchased for spot prices up towards 400 DKK/MWh-

e. While a spot price of 400 DKK/MWh-e still allows cheaper heat production on the

heat pump than on the woodchip boiler, it is clearly not feasible to submit such a high

bid.
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Figure 5.3. Won bids traded on the spot market plotted against the realized spot price. A
negative trade of electricity is a sale of electricity, and a positive trade of electricity

is a purchase of electricity.

In Figure 5.4, the bidding curves are visualized for the method based on Sample Average

Approximation. Several observations can be made from the figure. First of all, the large

red spikes are bids submitted for the electric boiler, due to some scenarios in the model

predicting extremely low spot prices. These bids are very rarely won, but the bids are

still submitted because it would result in essentially free heat, if such a market coupling

occured. The ability to place such bids is a significant strength of the Sample Average

Approximation approach. However, as only 50 scenarios are included in model formula-

tion, the chances of extremely low electricity prices occuring are not expressed in every

timestep of the model. This could explain why large bids are only submitted for some

hours. If the number of scenarios in the model was increased, it could be possible that

such extreme bids are placed in every hour.

Second, bids for sale of electricity are rarely submitted during the night, where the spot

price is typically lower than during the day. The reason for this can be explained with

the cost incurred for starting the CHP. It is in other words often the case that none of

the scenarios in the model predict high spot prices for enough consecutive hours to make

starting the CHP feasible.
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Figure 5.4. Bidding curves submitted for the approach using Sample Average Approximation
for a selected time period. The bidding price is visualized with a color gradient,

with dark green depicting a bidding price at 400 DKK/MWh-e or higher, and dark
red depicting a bidding price at 0 DKK/MWh-e or lower.

Third, unlike in the simple case, the size of the largest bid varies a lot between

each timestep. This is due to the electricity production from the wind turbines and

photovoltaics varying throughout the day. The largest bids for purchase of electricity are

determined by the remaining electricity capacity of the heat pump after using the private-

wire operated electricity. For the bids for sale of electricity same trend happens, where the

fluctuating renewable electricity is sold together with the production of electricity from

the CHP. In Figure 5.5, an example of the bidding curve submitted is shown for four

selected hours.
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Figure 5.5. The bidding curves calculated by the approach using Sample Average
Approximation for four selected hours. A negative bidding quantity is a bid for sale

of electricity and a positive bidding quantity is a bid for purchase of electricity.
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In Figure 5.5 it can be seen, that the largest bid submitted depends on the hour of the day.

For the hour of 12:00, depicted by the green line, the largest submitted bid is 6.2 MWh-e.

During the evening 6 hours later, depicted by the red line, the power production from the

photovoltaics is significantly lower, and only bids for 5.2 MWh-e can be submitted. It

can also be seen in Figure 5.5, how the tipping point for selling electricity occurs around

300 DKK/MWh-e, while the tipping point for purchasing electricity occurs below 200

DKK/MWh-e. If the spot price is somewhere in between these two points, the district

heating plant neither sells or purchases electricity.

0

5

10

15

20

PF

2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14
Date

0

5

10

15

20

Un
it 

co
m

m
itm

en
t [

M
W

h-
he

at
] SAA

200

400

600

200

400

600

Sp
ot

 p
ric

e 
[D

KK
/M

W
h-

e]

Thermal storage
Heat pump
CHP
Spot price

Figure 5.6. Unit commitment and the resulting heat production in selected hours.
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Figure 5.7. Unit commitment and the resulting electricity production and consumption in
selected hours.
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In Figure 5.6 and Figure 5.7, the unit commitment for the perfect forecasting reference

and the method based on Sample Average Approximation can be seen for a selected time

period. It can be seen how the CHP is succesfully being operated whenever the electricity

price is high, and that low electricity prices between two peaks results in the electricity

being consumed by the heat pump rather than shutting down the CHP. Electricity is

generally only being purchased during the night when both the electricity price is low and

the photovoltaics are not producing electricity.

5.2 Including the regulating bids

The regulating bids are not included for the price-independent method. This analysis

therefore only compares the method based on Sample Average Approximation to the

perfect forecasting reference. Most interestingly, the Sample Average Approximation leads

to lower total operational expenses than the reference! This can be seen in Figure 5.8.
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Figure 5.8. The total operational expenses for the different bidding methods when including
the regulating market. The yellow bar to the left shows the results without trading

on the regulating market.

For the reference with perfect forecasting, the total expenses amount to 562,355 DKK,

while the same amount for the method using Sample Average Approximation is 558,318

DKK. While it may seem counter intuitive that the realistic bidding method outperforms

the reference, it can be explained by coincidence. The perfect forecasting reference

is only able to predict the next 5 days of spot prices and weather data, and it does

not know the future regulating prices. Based on this, an optimal unit commitment is

calculated. However, this might lead to a production plan that by chance happens to lead

to less available capacity for bidding in the regulating market, than the unit commitment
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calculated using Sample Average Approximation. In other words, the slightly suboptimal

unit commitment calculated by the approach based on Sample Average Approximation is

allowing better participation in the regulating market, for which the prices and volumes

were unknown for both the reference and the bidding method. If new scenarios were

generated for the Sample Average Approximation and the calculations were repeated, a

slightly different unit commitment plan could have led to operational expenses that were

instead higher than the reference. This is the nature of stochastic unit commitment.
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Figure 5.9. Heat production and electricity production of the energy conversion units at the
district heating plant. A negative production is a consumption of electricity. The

electric boiler and woodchip boilers are not shown, as they produced so small
amounts that it cannot be visualized.

In Figure 5.9, the heat production, electricity production and electricity consumption of

the energy conversion units can be seen. The figure is very similar to Figure 5.2, without

participation in the regulating market.
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Finally, in Table 5.1, the traded electricity, and the corresponding revenue and expenses,

for doing so can be seen for each of the electricity markets.

PK SAA

Spot market [MWh-e] -402 -289
Down [MWh-e] 159 170
Up [MWh-e] 200 222

Spot market [DKK] -237,868 -198,951
Down [DKK] 16,874 12,540
Up [DKK] -111,362 -135,732

Table 5.1. Traded electricity on the different electricity markets as well as the total expenses
for each of the markets. A negative expense is the same as an income and a negative

traded volume is sale of electricity.

As shown in Table 5.1, the method based on Sample Average Approximation sells netto

less electricity in the day-ahead market than the reference, with an about 40,000 DKK

lower revenue from this. However, because the electricity was not sold in the day-ahead

market due to slightly suboptimal placement of bids, the capacity for participating in the

up regulating market is higher. The method based on Sample Average Approximation is

able to instead calculate optimal bids for participating in the regulating market, which

makes up for the loss, causing the method to perform better than the reference.

It has now been shown, that Sample Average Approximation can be used to calculate

very optimal bids for Assens District Heating, both when participating in the day-ahead

market only, and when participating in the regulating market as well. However, in the

analysis the minimum bidding quantity of 5 MWh-e for placing bids in the regulating

market was omitted. The proportion of down regulating bids won below 5 MWh-e was

for the Sample Average Approximation 13.1% of the total bids, while 44.2% of the won

up regulating bids were below 5 MWh-e.
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Chapter 6

Discussion

In the analyses, it was shown that the unit commitment resulting from having to place

bids into the unpredictable electricity markets was often leading to higher operational

expenses than the optimal unit commitment in hindsight. For the price-independent bid-

ding method the operation led to 8.5% higher costs, while the method based on Sample

Average Approximation typically led to the expenses being only a few percentages higher

than the optimal unit commitment. A few percentages in difference may not seem like

much, but if one considers the yearly expenses of all the decentral district heating plants in

Denmark, the importance of good state-of-the-art bidding methods is apparent. While the

price-independent bidding method generally performed poorly, an interesting observation

from the analysis of the simple case could be made. By participating in the regulating

market, it was possible to make up for the suboptimal bids placed in the day-ahead mar-

ket. However, a method for placing price-independent regulating bids for the full case was

not analyzed, and it therefore cannot be concluded whether this is valid for all cases.

The benefits of participating in the regulating market was generally significant, leading to

reductions in the total operational expenses by 6-12% across the different analyses. Both

up and down regulating bids were won in all cases. However, the assumption that bids of

any volume can be submitted to the regulating market may challenge these results, as a

large proportion of the bids were below the minimum of 5 MWh-e imposed by Energinet.

Significant revenue could thus be obtained for a decentral district heating plant with small

energy conversion units if these minimum constraints were lowered. Alternatively, the dis-

trict heating plant should pool regulating bids together with other producers or consumers.

It was chosen to simulate the participation in the day-ahead market and the regulating

market with activation bids only, due to rich data about these markets being available.

However, in reality the districting heating plant could also place availability bids in the

regulating market. Special regulation and the intra-day market were not included in the

simulation either. There was a clear advantage of participating in two electricity markets,

as poorly submission of bids in the day-ahead market could be made up for by placing

bids in the subsequent regulating market. The value gained from participating in further

electricity markets could be expected to be even higher. The method based on Sample

Average Approximation presented in this report would not be able to calculate availability

bids or participate in pay-as-bid markets. However, it does not seem improbable that the
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MILP could be reformulated to include this.

The main objective of this report was to find a suitable way to place bids for the studied

case of Assens District Heating. It was not possible to apply the heat unit replacement

bidding method, but the method based on Sample Average Approximation proved to place

extremely competitive bids, both for the simple and the full case. However, a large num-

ber of assumptions were made in the methodology that could impact the results of the

research. It can be questioned whether the proposed method truly is a realistic bidding

method, as it relies on scenarios generated by training data that includes the simulation

period itself. However, it was not the scope of this report to dive into the complex field

of forecasting weather data and electricity markets, yet it was necessary to have forecasts

and scenarios to test the bidding methods. In order for the bidding method to be deployed

at a real district heating plant, the method for scenario generation therefore has to be

improved first.

Another important assumption is the choice of simulation period. The 4 weeks chosen

constitutes a relatively small sample to make grand conclusions about the exact value of

participating in the regulating market. It can also be expected that the different seasons

of the year have different intricacies, that could impact the exact results presented in the

analysis. However, the method based on Sample Average Approximation is very versatile

as it relies on the generated scenarios and not a defined algorithm or decomposition of the

problem by energy units as in the heat unit replacement bidding method. As long as the

method for generating scenarios is able to provide good scenarios for the entire year, it is

expected that the method based on Sample Average Approximation will keep calculating

competitive bids.

While the heat unit replacement bidding method and price-independent bidding methods

are fairly fast to compute, the method based on Sample Average Approximation revolves

around solving a significantly larger MILP. The computational speed is of significant im-

portance in a bidding context, as the plant owner would want to calculate the bids as close

to gate closure for the bidding market as possible, in order to calculate the bids using the

most recent information. In this report, the combination of using 50 scenarios, a rolling

planning horizon of 5 days and a tolerance gap of 1% resulted in a computation time of

roughly 2 minutes per stage in the MILP. This translates to 6 minutes of computation

time for running the entire stochastic unit commitment problem for one timestep, as there

are three stages in the MILP. A computation time of 6 minutes seems reasonable, as it

would easily allow for placing regulating bids every hour, even for a more complex district

heating plant than Assens.

The importance of good state-of-the-art bidding methods can be extended to more than

just lowering the operational costs of the district heating plant itself. The sector coupling

between the district heating sector and the electricity sector relies on the ability of the

district heating plants to respond to price signals and thus provide load flexibility. For the

analysis of the price-independent bidding method it was shown that it resulted in bids for

purchase being made in hours with high spot prices, and bids for sale being made in hours
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with low spot prices. In the references and in the method based on Sample Average Ap-

proximation, this never occurred. A district heating plant should not purchase electricity

when the spot price is high if it can be avoided, as the entire idea behind power-to-heat

is to use excess renewable electricity production. It is assumed that the excess renewable

electricity production is non-existent when the spot price is high. The method based on

Sample Average Approximation also proved to cause the least imbalances between the

traded electricity and the actual consumption and production. This method is therefore

a crucial way to reduce the barrier for a successful coupling of the heating and electricity

sector, thus leading to an energy system that can integrate larger shares of fluctuating

renewable energy for the benefit of a more sustainable future.
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Chapter 7

Conclusion

District heating plants face complex challenges in planning the optimal operation and bids

in the electricity markets, as more uncertainties are introduced in the energy system due

to an increased integration of fluctuating renewable energy. Assens District Heating is

an example of a district heating plant, where the state-of-the-art heat unit replacement

bidding method cannot be used to calculate optimal bids. An approach based on scenario

generation and Sample Average Approximation is used to instead calculate the optimal

bids for this case. Scenarios were generated for ambient temperature, aggregated solar

irradiance, wind speed, spot prices and regulating prices and with these it is possible solve

the stochastic bidding problem in a reasonable time for bids to be placed in the hourly

electricity markets. The approach based on Sample Average Approximation submits a

bidding curve for every hour, rather than just a single bid. This leads to operational

expenses almost as low as for the references with perfect forecasts of the future prices. Of

all the methods analyzed in this report, Sample Average Approximation results in near

optimal operation in all cases and the method generally outperforms the much simpler

price-independent approach. Finally, it is found that Assens District Heating can lower

their operational costs significantly by also participating in the regulating market.
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