
Identification of Cigarette Litter with the use of Outdoor
Mobile Robots

MASTER THESIS
ROBOTICS

Author:
Mathiebhan Mahendran

03th June 2021

Attributions

This report was typeset using LATEX.

Department of Electronic Systems
Robotics

Fredrik Bajers Vej 7
9000 Aalborg
http://www.es.aau.dk

Title:

Identification of Cigarette Litter

with the use of

Outdoor Mobile Robots
Theme:

Master Thesis

Project Period:

Spring 2021

Project Group:

Group 1062b

Participants:

Mathiebhan Mahendran

AAU Supervisor:

Karl Damkjær Hansen

Company Supervisors:

Søren Tranberg Hansen
(Aarhus Municipality)

Niels Jul Jacobsen
(Capra Robotics)

Number of Pages: 88
Date of completion: 03-06-2021

Synopsis:

This thesis presents the current progress
in a two-fold project. The thesis is under
collaboration with SkodRobot (Cigarette
Litter-Robot) project, where several com-
panies are involved. The objective is to
split this project into two tasks where
the first step is to develop an object
detection system for cigarette litter on
sidewalks in public areas, and the sec-
ond step is to make Capra Hircus move
autonomously with the use of coverage
planning of removal of cigarette litter on
sidewalks in public areas. This thesis
presents the first step to make an ob-
ject detection of cigarette litter on side-
walks. The object detection system has
to work in real-time, so the deep learning
technique Tiny-YOLOV4 is chosen where
open-source neural network Darknet is
used. The dataset is also looked upon
for the cigarette litter in order to make
a robust dataset based on data augmenta-
tion and several configurations. It is then
implemented on Nvidia Jetson Nano that
runs inference with the use of Darknet-
ROS. Finally, the object detection system
is implemented on the Capra Hircus where
several tests are done to check the perfor-
mance of the object detection of cigarette
litter.

Preface

This thesis is made as a completion of the Master education in Robotics at Aalborg
University, ending Spring 2021. The aim of this thesis is to develop a system for identify-
ing littered cigarettes in public areas using outdoor mobile robots. The project is under
collaboration with SkodRobot project where several companies are involved i.e. Aarhus
Municipality, Capra Robotics and KK-tech. The outdoor mobile robot is provided by
Capra Robotics in which the outdoor mobile robot will be tested with the vision system
to identify cigarette litter. The vision system is a developed state of the art method which
utilises the deep learning algorithm called YOLO and a new cigarette litter dataset has
been made throughout this thesis. The thesis also relies on concepts of machine learning
(deep learning), tracking, coverage planning, linear algebra and ROS (Robot Operating
System). To understand this thesis, the knowledge within these concepts is required.

Project Structure

The thesis structure is built up from eight chapters, each covering a significant part
of the thesis.

Chapter 1 - This introduces background problem of littering and explains how littering
cigarettes can ruin the environment where the construction of a cigarette will also be
described.
Chapter 2 - The collaboration with SkodProject (Cigarette Litter Robot) Project is
described where several companies are involved to make a outdoor mobile robot (Capra
Hircus) to clean cigarette litter.
Chapter 3 - This presents the current findings of the state of the art methods, i.e.
mobile robots, object detection, tracking and coverage planning.
Chapter 4 - The problem is formulated in this chapter with sections about project
hardware and requirement specification.
Chapter 5 - The methods are described on how to detect and localise (distance estima-
tion) the cigarette litter.
Chapter 6 - The implementation of the cigarette litter dataset, object detection and
mounting on the Capra Hircus is described.
Chapter 7 - The testing of the object detection is done and whether the tests are met
with the requirement specification.
Chapter 8 - This discusses, summarises and concludes the overall results and findings of
the thesis based on the problem formulation, and also states the future plans to improve
the dataset and object detection system.

4

Reading directions:

• The Nomenclature contains a list of abbreviations of terms and phrases used
throughout this report.

• This thesis uses the IEEE referencing style. Citations are referred to by [1], [2] and
correspond to references in the bibliography. The order of the citations is based on
their appearance in the report.

• Tables, equations and figures are referenced with numbers related to the order and
the chapter in which they appear in.

• The List of Figures/Tables that are not made by the authors of this report, are
referenced below them.

• The Appendix contains extra materials that are used in the report, such as test
results, large figures, setup/tools, code and video tests.

5

Nomenclature

Abbreviation Definition
AAU Aalborg University
AMR Autonomous Mobile Robot
FPS Frames Per Second
GPS Global Positioning System
ISO International Organization for Standardization
IMU Inertial Measurement Unit
ROS Robot Operating System
SVM Support Vector Machine
HOG Histogram of Oriented Gradients
SIFT Scale Invariant Feature Transform
SURF Speeded up robust features
FAST Features from accelerated segment test
BRIEF Binary Robust Independent Elementary Features
CNN Convolutional Neural Networks
ANN Artificial Neural Networks
RNN Recurrent Neural Networks
YOLO You Only Look Once
SSD Single-shot detector
CPU Central Processing Unit
GPU Graphics Processing Unit
TPU Tensor Processing Unit
JSON JavaScript Object Notation
XML Extensible Markup Language
ROLO Recurrent YOLO
LSTM Long short term memory
IBVS Image Based Servoing
PBVS Position Based Servoing
CAD Computer Aided Design
CSI Camera Serial Interface
R-CNN Region Based Convolutional Neural Networks
TP True Positive
FP False Positive
TN True Negative
FN False Negative
SSH Secure Shell

6

Contents

1 Introduction 1
1.1 What is a Cigarette Butt? . 1

2 SkodRobot Project 3
2.1 Technology and the Environment . 3

3 State of The Art 6
3.1 Mobile Robots . 6

3.1.1 Indoor Mobile Robots . 7
3.1.2 Outdoor Mobile Robots . 7
3.1.3 Legged Robots . 7
3.1.4 Current Research Projects . 8

3.2 Object Detection and Segmentation . 9
3.2.1 Machine Learning Overview . 10
3.2.2 Neural Network & Deep Learning 10
3.2.3 Object detection and segmentation with CNNs 14
3.2.4 Machine and Deep Learning Tools 16
3.2.5 Comparison between Traditional Machine Learning and Deep Learn-

ing . 17
3.2.6 Datasets . 18
3.2.7 Current Research Projects . 19

3.3 Object Tracking . 19
3.3.1 Types of Tracking . 19
3.3.2 Visual Tracking and Visual Servoing 20
3.3.3 Distance estimation vs. Visual Tracking and Servoing 21

3.4 Coverage Planning . 21
3.4.1 Coverage on Sidewalks . 22

4 Problem Formulation 24
4.1 Project Hardware . 24
4.2 Requirement Specification . 27

5 Methods 29
5.1 Detection of Cigarette Litter . 30

5.1.1 YOLO - How it works . 32
5.2 Localisation of Cigarette Litter . 32

5.2.1 Measuring Size and Distance from Images 33
5.2.2 2D to 3D Monocular Distance . 34
5.2.3 Localising with Convolution Neural Networks 40

7

ROB10-1062b

6 Implementation 43
6.1 Used Datasets . 43

6.1.1 Labelling Tool . 44
6.2 Darknet YOLO . 46
6.3 Nvidia Jetson Nano Setup . 48
6.4 Capra Hircus Setup . 49

7 Testing & Results 50
7.1 Training Results . 50

7.1.1 Testing on Test Images . 52
7.2 Nvidia Jetson Nano Testing . 53
7.3 CSI Camera Lens Testing . 54
7.4 Description of the Video Tests . 56
7.5 Testing Based on Requirements . 57

8 Conclusion 59
8.1 Future Works . 60

Bibliography 62

A Appendix 1 - Teknik og Miljø 71

B Appendix 2 - Darknet Setup 73

C Appendix 3 - DarkMark & DarkHelp 76
C.1 DarkMark Review . 76
C.2 DarkMark Statistics . 78

D Appendix 4 - Darknet Training Results 79

E Appendix 5 - Code, Dataset & Tests 82
E.1 CSI camera Lens Testing . 82
E.2 Distance estimation . 84

List of Figures 85

List of Tables 88

1 Introduction

Littering in today’s society is an ever-increasing global problem. It was not until the
1950s domestic manufacturing industry began to revolutionise and build new solutions
after the Second World War, where manufacturers began to create more litter with high
volumes, such as disposable items and plastic materials[1, 2].

The commonly littered item in the world are cigarette litter, plastic wrappers, bottles,
caps, bags, lids, straws, takeout containers and styrofoam where the worlds number
one most littered item is plastic is cigarette litter. Cigarette litter, in this case, means
cigarette butts, cigarette stubs, cigarette filters and even whole cigarettes that are floating
on waterways and scattered or blown away along roads[1]. 4.5 trillion cigarettes are
littered each year worldwide, which is roughly 38% of all collected litter. Cigarette litter
is not biodegradable and is toxic that leads to pollution, and habitat destruction[3, 4].

It is estimated that 75% of purchased cigarettes that are smoked end up on the
ground and not thrown into a trash can. Cigarettes also consist of around 4000 chemical
substances which produces bad environmental effects such as polluting the environment
and oceans[5].

In Denmark, with an estimated population around 5.7 million, 1.3 million adult
smokers that consume 6.1 billion cigarettes each year (estimated in the year 2016)[6]. The
service employees collected 22,393 cigarette litter at outdoor areas around two institutions
(two institutions was a test) in Aarhus Municipality this year. The expense for manually
picking up cigarette litter is estimated at 3 DKK for each cigarette litter to be collected.
Where in Aarhus Municipality it costs 67,000 DKK for collecting cigarette litter around
these two institutions alone[7, 8].

The optimal solution is to avoid it from the beginning, even though most litterers
do not consider cigarette butts, stubs and filters as litter. So, information campaigns
against litter waste and smoking are essential tools to limiting this problem. However,
there is some negotiation happening to stop pollution, when littering is still a reality.

1.1 What is a Cigarette Butt?

The manufacturing of cigarettes contains three simple components. The three com-
ponents that a cigarette is built up of are tobacco blend, filter and additives such as
nicotine. PVA glue is used to wrap the paper for holding the tobacco blend and the filter
material. The paper consists of three types of components which are wrapping paper,
tipping paper and plug wrap paper. Cigarettes today can vary up to a length of 85mm
to 100mm and have a diameter of 8mm. Whereas filters have a size around 20mm to
30mm long, making an actual cigarette with tobacco blend from 50mm to 80mm[9].

A cigarette butt is the remains of a cigarette after smoking. It is around 30% of
the original length of a cigarette. ISO 3308 (2012) (Routine analytical cigarette-smoking
machine - Definitions and standard conditions) defines a butt length as the "length of
unburnt cigarette remaining at the moment when smoking is stopped." The construction
of a cigarette butt can be seen in Figure 1.1[10].

1

CHAPTER 1. INTRODUCTION ROB10-1062b

Figure 1.1: Construction of a Cigarette Butt[10]

The three major components that are leftover from a cigarette butt are the filter,
unburned tobacco and ash. However, these three leftovers can harm the environment
due to various types of chemicals react and be emitted in the environment. One of the
effects of this is the aging of the cigarette butt that can affect the environment due to
the change in chemical properties[10].

The filter is made of thousands of polymer chains of cellulose acetate, also known as
plastic. The filter is toxic, odourless and tasteless. Meanwhile, a filter in a cigarette tries
to reduce some substances from smoke but does not make it safer to smoke[11].

Tobacco is made of leaves of flue-cured bright leaf, burley tobacco, and oriental to-
bacco. In order to initiate attractiveness of the tobacco to smokers, it is implied that
some additives are added to the unburned tobacco[12].

The additives can vary in behaviour depending on the molecular weight and boiling
point of the additive. Also, the configuration of the cigarette and chemical polarity af-
fects the additive[10].

In this thesis, cigarette butts, cigarette stubs, cigarette filters will be referred to as
cigarette litter. In Chapter 2, SkodRobot (Cigarette Litter Robot) project will be ex-
plored. The aim of the project is to make an autonomous mobile robot identify and
remove cigarette litter in urban/public areas.

2

2 SkodRobot Project

SkodRobot (Cigarette Litter Robot) is a project that will explore the possibilities of
using a mobile robot to automate the collection of cigarette litter. At this present time,
manually picking up cigarette litter costs Aarhus Municipality around 3 DKK every time
a cigarette litter is collected. The purpose is to establish a more efficient and resource-
saving solution for collecting cigarette litter in Aarhus Municipality’s urban space. The
SkodRobot Project is an innovation project based on a Public-Private Partnership. The
project is a collaboration between KK Tech, Capra Robotics and Aarhus Municipality
and is financially supported through the municipality’s Welfare Technology OPI pool[7,
13]. In order to cooperate SkodRobot project, the current methods will be looked upon.
This will mainly focus on Denmark’s process of cleaning up litter.

2.1 Technology and the Environment

In Denmark, every municipality has a Technology and Environment Services for main-
taining public areas. However, the focus is to look into the SkodRobot Project that is
in Aarhus Municipality. The Technology and the Environment in Aarhus Municipality
(Teknik og Miljø - Aarhus Kommune) works with urban development, mobility, na-
ture and the environment, public transport, as well as construction and operation of
roads. They are in charge of cleaning litter and keeping the city clean in public areas in
Aarhus[14]. One of the problems that they are facing with cleaning the public areas are
sidewalks. This is a major concern as in larger areas, the sweeper and blower tool can
be used but it is more difficult to use them in smaller spaces like sidewalks.

Figure 2.1: Sweeper and a blower is used to clean the litter.

3

CHAPTER 2. SKODROBOT PROJECT ROB10-1062b

As seen in Figure 2.1 the current techniques today is to use handheld blowers and
sweeping machines to clean the roads. The sweeper machine works by a vacuum system
where it collects the litter by using water and brushes to make the litter more stable to
easily clean up the litter from the floor.

Figure 2.2: The areas that are payed by the technology and the environment in Aarhus
Municipality to clean the public areas. (Image taken from Teknik og Miljø - Aarhus
Kommune)

4

CHAPTER 2. SKODROBOT PROJECT ROB10-1062b

As seen in Figure 2.2, it shows the paid areas that Technology and the Environment
in Aarhus Municipality are authorised to clean. The different colours represent how
often the areas are cleaned. The rest of the areas that are not coloured are cleaned by
private companies and sometimes are not cleaned effectively. In Appendix A there are
two figures, where Figure A.1 shows where the sweeper machine is used to clean up the
roads, and Figure A.2 shows where litter and weed are cleaned up by hand. Techniques
such as using garden tools on grass areas and brushes to sweep up dirt from ground
surfaces are used by hand. In the next chapter, the state of the art mobile robots will
be looked upon, and what approach is needed to detect and localise cigarette litter will
be explored in further detail.

5

3 State of The Art

This chapter introduces the state of the art mobile robots, object detection, object
tracking and coverage planning as the aim of this thesis is to look into cigarette littering
and how object detection can help. Object tracking will be discussed with the distance
estimation approach. The chapter ends with coverage planning that is discussed to know
how the mobile robot should move in the urban/public area in Aarhus Municipality based
on Chapter 2.

3.1 Mobile Robots

A mobile robot is a machine capable of moving in any given environment[15]. They
are able to move around in any ground surface environment. Mobile robots can also be
"autonomous" (AMR), allowing them to move, navigate and localise in any uncontrolled
environment. Mobile robots can also vary in different types of wheel frames, e.g. differ-
ential wheels and navigation approaches.

The different types of robot navigation are:

• Manual remote or tele-op - The mobile robot can be wired or wireless such that it
can be controlled with a joystick or other remote control device[16].

• Guarded tele-op - This can sense and avoid obstacles, however having the function-
ality to remote control the robot[16].

• Line-following - This is based on painted lines on floors or even an electrical wire
that is buried underneath the ground. The robot is programmed to follow this line
based on the algorithm of the sensors.[16].

• Autonomously randomized - The robot will freely bounce off sensed walls or vice
versa with random movements.[16].

• Autonomously guided - The guided robot will know about where the information
is, how to reach various goals and direct the way. It uses various sensors, e.g. lasers
or cameras, to detect where it is located and based on a path planner, it avoids
obstacles and moves from start to end position[16].

• Sliding Autonomy - This combines multiple navigations approaches so it can also
be controlled via a joystick and move autonomously[15].

There are also many more different types of robot navigation; however, these are
most known for robot navigation.

6

CHAPTER 3. STATE OF THE ART ROB10-1062b

3.1.1 Indoor Mobile Robots

Indoor Mobile Robots have high demand in industrial settings, which add flexibility
to the environment, which means that they can assist workers in the industry and do
the tasks at a faster rate leading to a robust system. The known mobile robots today
are called MiR (Mobile Industrial Robots)[17] and OMRON[18]. The mobile robots
today can also be combined with a collaborative manipulator therefore making it a single
system, e.g., Kuka (youBot, iiwa, quantec and flexfellow)[19], Little Helper is a research
platform from Aalborg University where they have created 8 generations of the single
system plaform[20], Enabled Robotics[21], TIAGo steel (social robot) are also research
platforms[22].

Two examples of cleaning robots called Roomba, a vacuum cleaner, and Braava, a
floor mopper, were made by iRobot[23]. This was designed to explore further into how
effective indoor mobile robots collect trash or litter in households. When looking into
an urban/public area robot that collects garbage for collecting trash/garbage, there is a
robot called the BARYL[24]. It is an autonomous robot that acts like an active trash bin
roaming around and avoiding obstacles; hence this robot does not collect litter efficiently.
In this thesis, the mobile robots that will be in focus are outdoor mobile robots since
littering of cigarettes mostly takes place in outdoor terrain.

3.1.2 Outdoor Mobile Robots

Outdoor mobile robots are less popular compared to indoor mobile robots. This is due
to the uncontrolled environment. There are many factors to be considered when working
outdoor such as avoiding and navigating through different types of obstacles and weather
conditions. As a result of this, the mobile robots needs to be equipped with safety sensors
to work in various environments, and the technology can also vary to enable autonomy.
The advantage of outdoor mobile robots is that it is applicable in indoor applications.
From January 1st 2021, the danish traffic act has allowed "self-driving devices" in public
areas. This will allow Capra Robotics[25], Conpleks[26] and other danish mobile robot
companies to work in outdoor terrain in public areas[27].

Most of the current outdoor mobile robots for clearing litter are research projects.
These platforms have not yet been released in the public domain. This is due to the fact
that robots are not robust compared to human workers at clearing the litter at a certain
time frame hence why it is cheaper to use human employees/workers.

3.1.3 Legged Robots

Legged robots are known as a type of mobile robot that adds more degree of freedom
in flexibility by using powered articulated limbs. These robots are more versatile when
working in different types of terrain and can be used in different types of cases, even for
collecting litter in the environment. The current legged robots today are flexible to many
situations are the Boston Dynamic Spot[28] and ANYmal[29] these robots are currently

7

CHAPTER 3. STATE OF THE ART ROB10-1062b

partaking in research. The number of legs can vary, and there are also some hybrid
solutions to add wheels on the mobile robot.

3.1.4 Current Research Projects

The current research project for clearing litter with outdoor mobile robots will be
explored. Robotech, based in Italy, has designed two robots that can clean and take trash
for citizens in the urban/public areas. Both robots are part of a research project called
DustBot that is funded by the European Commission in the sixth framework programme
(FP6-045299, 2006-2009), and ROBOSWEEP funded by the Tuscany Region (Bando
Unico 2012)[30, 31]. The figures below showcase the two autonomous robots involved in
DustBot. Figure 3.1b, called Dust Cart, is a robot that takes the trash and Figure 3.1a,
called Dust Clean, is equipped with brushes and a container for sweeping and collecting
litter from the surface. Both of the robots work with ROS-based autonomous navigation
system with laser and GPS for localisation and obstacle avoidance[31, 32].

(a) DustClean[31]
(b) DustCart[32]

Figure 3.1: The two robots that are designed and developed by ROBOTECH.

In the paper presented by Jinqiang Baio et al.[33], the authors made a robot for
automatically picking up garbage on the grass. Whereas, in this thesis, the main concern
is to look into littering on the ground however, the approach is similar. This paper only
focuses on the vision aspects of the robot and how the garbage is detected. The mobile
platform uses a robot arm to pick up the garbage from the grass. Thus, the platform
is not robust in all weather conditions. It is suitable for clearing the garbage from the
grass than the one used by the existing road sweeper truck or a vacuum cleaning robot
as this is due to robust navigation it uses[33].

Angosa has developed a mobile robot that can pick up cigarette litter with the use
of a vacuum system[34]. They are now willing to look at other types of litter. They
now have started up a startup company to remove litter from grass areas where the

8

CHAPTER 3. STATE OF THE ART ROB10-1062b

mobile platform is updated and will feature anti-theft protection, autonomous mode, so
it only navigates in grass areas and using intelligent removal abilities with the use of
deep learning. The product is still in its early stages of development and are planning to
launch in 2022[35].

3.2 Object Detection and Segmentation

When identifying and detecting cigarette litter, an outdoor mobile robot needs visual
perception in order to identify and detect cigarette litter. There are many different
approaches to identify and detect cigarette litter with the use of computer vision. In
this thesis, the main approach to solve this is by looking into the subsets of artificial
intelligence as seen in Figure 3.2.

Figure 3.2: The subsets of artificial intelligence[36]

Artificial intelligence is "the theory and development of computer systems able to
perform tasks normally requiring human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages[37]". Although, in this
thesis, the two main systems that need to be outlined and distinguished is machine
learning and deep learning from the subset in Figure 3.2.

9

CHAPTER 3. STATE OF THE ART ROB10-1062b

3.2.1 Machine Learning Overview

Machine learning is the technique in which the computer learns from given data.
This is when the computer figures out what the data means without any complex rules.
Based on the data and machine learning algorithm, it makes a mathematical model pre-
dict what the data is and makes decisions based on the data given[38].

The three main types of machine learning techniques are:

• Supervised Learning - This provides the training data with desired annotation-
s/labels (labelled data). This is when the model has to be trained until it predicts
the data correctly. An example of supervised learning is used for object detection,
image recognition, face & voice recognition[38]. The classic methods for supervised
learning are Regression, Decision trees and Support Vector Machines (SVM).

• Unsupervised Learning - This provides the training data (unlabelled data) only
where the algorithm tries to find clusters of data based on patterns and features[38].
The classic methods for unsupervised learning are clustering: K-means and DB-
SCAN.

• Reinforcement Learning (Reward-Based Learning) - This is based on trial
and error method, where the computer (agent) interacts in a certain environment
and performs actions. Based on the correct actions, it will either be rewarded
or punished. The aim of reinforcement learning is to collect maximum rewards.
Reinforcement learning is mostly used in-game development[38].

There are also other types of machine learning techniques such as semi-supervised
learning, self-supervised learning, feature learning and etc. However, one of the more
advanced learning techniques is to look into deep learning, which is a type of feature
learning.

To be able to detect objects, traditional machine learning uses feature detection, and
extraction techniques such as HOG, SIFT, SURF, FAST, BRIEF and ORB [39] when the
object is detected and extracted from an image it then can be classified with a technique
like SVM.

3.2.2 Neural Network & Deep Learning

Deep learning is the sub-field of machine learning and artificial intelligence. At the
same time, deep learning uses machine learning and mimics the human brains network
of neurons.

10

CHAPTER 3. STATE OF THE ART ROB10-1062b

Figure 3.3: A neural network [40]

As seen in Figure 3.3 shows how a neural network works by consisting features of
input data, weights, summation and adding bias, activation function and output[40]. A
neuron holds a number from 0 to 1. In computer vision, grayscale pixels assume pixel
intensities black = 0 (total absence of black) and white is 1 (real presence of white). An
example could be an image that has 28 x 28 = 784 neurons (pixels).

Figure 3.4: A Neural Network and Deep Neural Network [41]

In Figure 3.4 that shows how the layers "Input, Hidden and Output layers" (One
circle is a neuron). Layers, in this case, means the series of operations. A simple neural
network only consists of one hidden layer, whereas a deep neural network has many
hidden layers where there is no limit. The layers will be described and explained how
they work below:

• Input Layer - The neuron has a feature and it is based on one or many input
features, it is transferred to the hidden layer[42].

• Hidden Layer - This layer looks into the features and associated weights that is
then summed with a bias that is constant. This will then be passed to an activation

11

CHAPTER 3. STATE OF THE ART ROB10-1062b

function. As mentioned earlier, a neuron holds a number from 0 to 1; this is called
activation. Non-linearity is achieved by the activation function. There is no limit
to how many hidden layers can be assembled on the user configuration whether the
model efficient[42].

• Output Layer - Predictions and classifications are based on the information from
the hidden layer[42].

Activation Functions

There are several types of activation functions; hence the three most popular ones
are Sigmoid, Tanh and ReLU. Sigmoid the activation’s should be 0 and 1 (binary).
That takes the weighted sum and inputs a real number range 0 and 1. The negative
number moves to 0, and the positive number moves to 1. The outputs are centred to
0.5. However, Sigmoid is not used nowadays due to the vanishing gradient problem.
That is because the information gets squeezed until it vanishes. So no gradients mean
no learning[43]. Tanh is similar and preferable compared to Sigmoid. The difference is
the range from -1 to 1. The outputs are centred to 0. Thus also has the problem with
vanishing gradient problem[43]. ReLU is one of the most popular activation functions
used today. Works with f (x) = max (0, x), which means that the value is 0 when x is
less than 0 and linear with a slope of 1 when x is greater than 0. This does not have
expensive operations compared to Sigmoid and Tanh. It also learns faster and avoids the
vanishing gradient problem[43, 44].

Figure 3.5: (a)Sigmoid function, (b)Tanh function and (c)ReLU function[45]

Figure 3.5 shows the three types of the functions sigmoid, Tanh and ReLU. There
are many more activation functions, e.g. Leaky ReLU, Maxout, Softmax (used for the
output layer for classification) and ELU, that can be used.

When the hidden layer has found the right features based on the patterns, it is then
classified by the output layer.

Neural Networks is so broad that there can be found many different types of them;
some examples of neural networks are ANNs (Artificial Neural Network), the simplest
form of neural network used for data classification and similar to CNNs (Convolutional
Neural Network). CNNs is widely used for image classification, and RNNs (Recurrent

12

CHAPTER 3. STATE OF THE ART ROB10-1062b

Neural Networks) is widely used for sequence data (audio and text data). Since the
aim is to detect cigarette litter, the type of neural network that will be looked upon is
CNNs[46].

Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is widely used for object detection and track-
ing. As mentioned early the difference between ANNs and CNNs is that CNNs works
with filters (kernels). Where the filters are used to extract the features from input data
and use the convolution operation[46].

Figure 3.6: Pipeline of Convolutional Neural Network (CNN)[47]

As seen in Figure 3.6 shows the pipeline for how a convolutional neural network works.
The general pipeline looks different compared to the general neural network, where all
neurons are connected to each layer. In this case, for CNNs, each layer in a collapsed
network is not connected to all the other neurons in the next layer. This is due to ex-
pensive calculation costs. As can be seen from the image, the car’s input is projected
with a receptive field. CNN works with three channels, ie. RGB 3D pixels based on
image input. The receptive field is part of the image where it is in focus. This is where
the collision operation is used (core - series of point products between the weight matrix
and the input matrix), and essentially, it slides over the image. Looking at the image,
the function learning has three operations (convolution blocks) that run over and over
again, leading to an end where folding + ReLU and pooling is a single folding block,
convolution means that it produces a function card by applying a fixed size filter to the
receptive field. Based on the matrix, it is transferred to the activation function, in this
case, ReLU. Pooling layers reduce the parameters to ensure that the information about
the image is preserved[47].

Then it leads to the classification part, where it then flattens out to a smaller dimen-
sional vector, and the fully connected layer connects neurons from one layer to the next
layer. This leads to a fully connected outer layer where Softmax is then used towards
the end when the fully bonded layer compresses and gives the probability of a particular
class, e.g., the probability of a cigarette litter seen is 82%. There are several various types

13

CHAPTER 3. STATE OF THE ART ROB10-1062b

of architecture for CNNs that exist LeNet, DarkNet, AlexNet, VGGNet, GoogLeNet, and
ResNet[47][48].

3.2.3 Object detection and segmentation with CNNs

Figure 3.7: Pipeline of Object Detection[49]

Image Classification is based on the class/classes that are labelled on the image.
It essentially takes an input image (e.g., an image of a cat and dog) and outputs (e.g.,
image class cat and image class dog) the class, probability, and other metrics. Object
Localisation mainly locates the present object that is recognised with a bounding box.
The bounding box gives the position (height and width). Object Detection merges/-
fuses the image classification and object localisation, where the output image is classified
and localised with a bounding box. Image Segmentation is a further extension for
object detection, where it makes it possible to determine the shape of the object being
detected. It essential provides more detail of the object detected using segmentation.
Under image segmentation, there is instance segmentation and semantic segmentation.
Instance segmentation is where the pixel level of segmentation that identifies the object
and labels it with different colours. Semantic segmentation is the pixel level of segmen-
tation where everything in the image and background is labelled based on class and label
with different colors[49].

Different Strategies to do Object Detection:

The different strategies to do object detection are the sliding windows approach, two-
staged detection framework and one-stage detection framework.

Sliding Window Approach is a fixed window size that goes through the image
and tries to find the desired object. The disadvantage of this approach is that the

14

CHAPTER 3. STATE OF THE ART ROB10-1062b

window size has to be determined, and the use of CNNs computationally expensive
due to the unnecessary details of locations, scales and background information from an
image that is not necessary[50]. Two-stage detection framework as seen in Figure
3.8 there is an input image sent for feature extraction using CNNs where the extraction
of object proposals is where it extracts several regions of interest called object proposals.
Classification and localisation only happen on the object proposals. When looking at the
localisation, the coordinates can be extracted by regression, then maps from image to
coordinates with a neural network after it can train the network for regression with the
ground truth bounding box coordinates with an L2 loss function. It is then passed to the
CNN output to the coordinates of the bounding box. It happens with 1-2 fully connected
layers. Then it gives the boundary box and classified score. While bounding boxes can
be trained with an L2 loss, and class scores can be trained with a Softmax loss. It is
said that the regression head gives the delimitation field, while the classification head
gives the semantic class. The two-stage detection framework is said to be precise and
accurate. The currently known algorithms that use a two-stage detection framework are
R-CNN and Overfeat[51]. The disadvantage of two-stage detection is that the existing
algorithms don’t work real-time[52, 53, 54].

Figure 3.8: Two-stage detection framework

One-stage detection framework as seen in Figure 3.9 the only difference between
one-stage and two-stage detection framework is that it does not require extraction of
object proposals. One-stage detection is known to work in real-time, and the disad-
vantage is that it is not as precise and accurate compared to the two-stage detection
framework. The currently known algorithms that use one stage approach are YOLO
and SSD. The disadvantage of these algorithms is that they have difficulties in detecting
small objects[52, 55].

Figure 3.9: One-stage detection framework

15

CHAPTER 3. STATE OF THE ART ROB10-1062b

Object detection and segmentation with CNNs has been growing fast in recent years.
As seen in Figure 3.10 the timeline of the current state of the art object detection and
segmentation algorithms. The idea is that deep learning algorithms are rapidly being
deployed each year, and the algorithm gets better and better. At the same time, the
ones that coloured in red are still used and known and the ones in black are not used.

Figure 3.10: Current State of The Art Object Detection and Segmentation Algorithms.
The ones in red are still in use and ones in black are not in use[56].

3.2.4 Machine and Deep Learning Tools

There many tools online libraries and tools that are open-source that can be used for
machine learning and deep learning. A summary of known existing tools and frameworks
will be described.

SciKit Learn is the initial steps to learning machine learning. SciKit is an open-
source library for Python programming language that used data mining and data analysis.
It is built upon Matplotlib, NumPy and SciPy. This provides a numerous range of super-
vised and unsupervised learning such as classification, clustering, regression, dimensional
reduction and more[57].

Pytorch is created by Facebook in 2016 and is open source. It is a popular tool
used by academic research. Pytorch is preferred for deep learning due to its flexibility
and speed. It provides tensor computations with high GPUs and building neural net-
works. It provides pre-trained models, low-level API and custom expressions that can
be created[58].

TensorFlow is one of the popular tools used today for machine learning. It was
created by the Google brain team in 2015 and is open source. Similar to PyTorch, it
is more powerful and gives better visualisation capabilities of models, which the models

16

CHAPTER 3. STATE OF THE ART ROB10-1062b

can be made for production for mobile platforms and fast and distributed training which
works with Python and C++[59].

Theano is similar to TensorFlow but used for evaluating mathematical operations,
including multi-dimensional arrays but it is entirely made with Python. It is open-source
and was released in 2007[60].

Keras is a neural network library that works with TensorFlow and Theano, which
are open-source library for machine learning tasks. It is written in Python. It allows fast
prototyping, customisation of layers and can be used on small data[61].

Caffe is mainly used for an academic research project. It has a deep learning frame-
work used for image classification and image segmentation. It is open-source released in
2016[62].

Google Colab is similar to Jupyter notebook (computational notebook) but runs
entirely on the cloud released in 2018. There are no hardware configurations needed and
do not need to install the packages manually. It also supports other machine learning
libraries, e.g., TensorFlow, Keras, PyTorch and more[63].

3.2.5 Comparison between Traditional Machine Learning and Deep
Learning

In order to break down and look into the advantages of machine learning and deep
learning. Table 3.1 shows the comparison of machine learning and deep learning.

Traditional Machine Learning Deep Learning
Training Data Small Large
Training Time Short Long
Choose feature Yes No

Nr. of classifiers available Many Few
Tuning Limited Various of ways

Table 3.1: Differences between Machine Learning and Deep Learning

The advantage of machine learning is that it requires less data, and training is faster.
Hardware isn’t an issue for the machine learning approach since it can be trained both
CPU and GPU. However, deep learning might need a lot of data and takes time to train,
which needs GPU. Thus the accuracy of deep learning is more precise and robust. Deep
learning can be tuned in various ways, and the number of classes of objects it needs to
detect can be many compared to machine learning, e.g. support vector machines (SVM)
which can handle two classes, also known as a decision boundary. For machine learning,
the features need to be chosen, and the feature detector or extraction needs to be given,
whereas deep learning isn’t required as Figure 3.11 shows how feature extraction can
be automated for deep learning, whereas machine learning feature extraction can be an
extremely time-consuming process[46].

17

CHAPTER 3. STATE OF THE ART ROB10-1062b

Figure 3.11: Traditional Machine Learning Vs. Deep Learning[46]

3.2.6 Datasets

Dataset is a collection of data. In this case, the collection of data will be images. The
current known datasets can be seen in Table 3.2.

Dataset Name Total Images Categories Image Size Year Highlights

PASCAL VOC[64] 11,540 20 470 × 380 2005

Covers only 20 categories that are common in everyday life;
Large amount of images for training pictures;
Close to real applications;
Significantly larger intraclass variations;
Objects in stage context;
Multiple objects in an image;
Difficult Samples;

ImageNet[65] 14 millions + 21,841 500 × 400 2009

Large number of object categories;
Multiple occurrences and multiple categories of objects in images;
More challenging than PASCAL VOC;
Images are object oriented
Doesn’t have object segmentation data

MS COCO[66] 328,000 + 91 640 × 480 2014

Even closer to real-world scenarios;
Each image contains multiple instances of objects;
richer information on annotating objects;
Contains object segmentation notation data.

Places[67] 10 millions + 434 256 × 256 2014 The largest annotations dataset for scene recognition;

Open Images[68] 9 millions + 6000+ Varied 2017 Annotated with image level labels;
object instance segmentation, and visual relationship detection

Table 3.2: Popular databases for object recognition[52]

As seen in Figure 3.2 the current known datasets are ImageNet[65], Microsoft Com-
mon Objects in Context (COCO)[66], Open Images[68], PASCAL VOC[64] and Places[67]
that have many images that are labelled for different object. These images are open
source, so they can be used for anything. The datasets contain images of everyday life
in natural environments but in this case, there no images of litter items in their dataset.
There are other private datasets that can be found online; however, some have licence

18

CHAPTER 3. STATE OF THE ART ROB10-1062b

agreements that need to be agreed upon to use them. Kaggle, however, is a community
that has various datasets from different peers. Kaggle has around 50,000 public datasets
used for machine learning purposes[69].

For image annotation, there are several formats. These formats are COCO which is
stored in JSON, allows for five different annotations object detection, keypoint detection,
stuff segmentation, panoptic segmentation, and image captioning. Then there is Pascal
VOC that stores it in an XML file, and the last format tool is YOLO that has .txt format
contains object class, object coordinates, height and width[70].

3.2.7 Current Research Projects

The current research projects for detecting litter will be explored. A blog by A.Kelly
looks into training an AI system to recognize cigarette litter. In this blog, Kelly uses
Mask R-CNN’s approach with a synthetic dataset (2000 images). The use of this blog is
the synthetic dataset that can be used throughout this thesis[71].

Furthermore, a project by K.Demkova looked into the detection of cigarette litter and
made a picker bot with a robot arm. K.Demkova uses Tiny-YOLOV3 and gets an F1
score of 61%. Whereas Tiny-YOLOV3 was able to reach an F1 score of about 82%[72].
As mentioned previously about Jingiang et al. paper that looks into the garbage, whereas
the garbage that is looked upon are different to litter; thus, the approach is similar
to detecting litter[33]. S.Majchrowska has gathered a list of research papers based on
classification, detection and segmentation of various litter, garbage, waste and trash
although the concern of this thesis is cigarette litter hence the machine learning technique
useful[73].

3.3 Object Tracking

When cigarette litter is detected and localised, the next step is to track the position of
the cigarette litter over time; this is called object tracking. Object tracking allows track-
ing an object over a sequence of frames, in this case with the use of object detection[74].
Object tracking also works by applying a unique ID to each tracked objects, allowing to
count the number of objects that are found[75].

3.3.1 Types of Tracking

The problem of object tracking is that it tracks a single object where the object is
localised in the first frame, which is mode-free tracking. Mode-free tracking is good for
a short time, whereas, for the long term, the performance degrades. A detector cannot
be built to detect new images because object appearance is changing over time which is
a short-term tracking problem. Only previous frames can be used, not any new images.
The challenge to making a visual tracking is that its computational load, which there are
many frames to be considered—secondly, the appearances changes over time, e.g., object
dynamics, viewpoint, and lighting. There are also occlusions that need to be determined
in an image with many objects[76].

19

CHAPTER 3. STATE OF THE ART ROB10-1062b

Single Target Tracking and Multiple Object Tracking

The first type of single target tracking is by matching or doing a correspondence
problem. There is no need for an online appearance model, and an example is GOTURN.
The advantage of GOTURN is that there is no online training needed. Tracking is done,
by comparison, so no need for retraining the model for new objects. The disadvantage
of GOTURN is that if an object moves at high speeds and goes out of the bound, it
cannot be recovered. The second type of single target tracking is by appearance learning
problem. This is done by quick online fine-tuning of the network as the appearance
involves how MDNet works. The advantage of MDNet there’s no previous assumption
of the location, and the object can move anywhere. The fine-tuning is not costly, but
the disadvantage is that it is not fast at GOTURN. The last way is by modelling the
temporal prediction problem. An example is ROLO, where there’s a CNN appearance
model (YOLO detection) and LSTM - Long, short term memory (model the motion).
The challenges with multiple object tracking is that there are numerous objects of the
same type that leads to heavy occlusions. The appearance is often very similar. The
Tracking of Multiple Objects which an example is to use the Hungarian algorithm that
works by finding an optimal assignment for a given cost matrix. There’s also Global Multi
Tracking that works offline. There are also other algorithms for deep learning SiamMask,
Deep SORT, TrackR-CNN, Tracktor++, and JDE (Joint Detection and Embedding)[77,
78, 79].

Online and Offline Tracking

Online tracking is when it is useful for real-time applications. It works by processing
the current frame and previous frame by tracking an object with this short information.
However, the past errors cannot be corrected. There will be some drifting where it is
hard to recover from errors or occlusions since the future cannot be determined. An
example of online tracking is using the Kalman filter. Offline tracking allows processing
a collection of frames so the current frames and all the future and past frames can be
recovered. This is not suitable for real-time application. Offline tracking is mostly used
for video analysis—the advantage of offline it is more precise and accurate[78].

3.3.2 Visual Tracking and Visual Servoing

The aim is to track the object (visual object tracking) over time, e.g. the cigarette
litter. Applying visual servoing allows feedback information extracted from a vision sen-
sor to control the robot’s motion, e.g. using object tracking to track the cigarette litter
and using servoing to move to the desired location of the cigarette litter[80].

There are two configurations of the camera one is the eye in hand (closed-loop con-
trol), and the other one is eye to hand (open-loop control). Eye in hand, the robot is
attached to the camera, and eye to hand (stand-along) is fixed in the world. Both ways
can observe the relative position and target of an object.

Visual servoing contains two control strategies: position based servoing (PBVS) and

20

CHAPTER 3. STATE OF THE ART ROB10-1062b

image-based servoing (IBVS). IBVS is the difference between current and desired func-
tions which the control does not involve any pose estimation of the target that works in
2D. The disadvantage of IBVS is working with motions with large rotations. PBVS, how-
ever, can do a pose estimation of the object and get the 3D information. For visual track-
ing and servoing there is a platform called ViSP (Visual Servoing Platform)[80, 81, 82].

3.3.3 Distance estimation vs. Visual Tracking and Servoing

As mentioned earlier in Chapter 2, the Technology and Environment service are
having a problem with cleaning litter from sidewalks. However, for a mobile robot to go
and pick up the cigarette litter, it needs to localise the object. Currently, it is known
that most object detection algorithms have object localisation and image classification,
so X and Y are present, where the aim of distance estimation is to configure the Z-axis
to get the distance of the cigarette litter with the use of the mobile robot’s odometry,
visual tracking and servoing; however, the XYZ is not placed, so it can be said where it
is in the image the object will track the object and do visual servoing towards the target.
One of the disadvantages of visual servoing is it is more computationally heavy than
distance estimation and works slower (hardware limitations). However, the disadvantage
of distance estimation is the calibration of the camera.

3.4 Coverage Planning

Coverage planning determines how the robot should plan its path that it must take,
so it covers the environment and avoids obstacles. Coverage planner determines an
exhaustive walkthrough of the proximity graph and calculates explicit robotic motions
within each cell[83]. In this thesis, the aim is to cover the map area seen in Chapter
2 Figure 2.2 and collect the cigarette litter with the use of object detection. Potential
Fields can also be an approach to do coverage; however, in this case, using potential fields
can lead to computational costs since the robot can get stuck in the local minimum of
the potential field. Since it should be heading towards the target destination that is the
global minimum[84]. To able to cover the entire area, Figure 3.12 shows how a complete
coverage path planner works with an exhaustive walk.

21

CHAPTER 3. STATE OF THE ART ROB10-1062b

Figure 3.12: Complete Coverage[83][85]

The approaches to do complete coverage planning that will be looked upon are various
cell decomposition methods. Cell decomposition consists of adaptive cell decomposition
and exact cell decomposition. Adaptive cell decomposition works by defining a configu-
ration space and marks the objects that are blocked. It then finds the remaining cells by
using, e.g. A* algorithm. Exact cell decomposition, however, works by fixed direction
through the map. Each time a corner occurs, the cells divide, and the cells that are
divided and have a border the edges are connected[85].

Adaptive Cell Decomposition Exact Cell Decomposition

Pros - Limited Assumptions of Obstacles
- Its fast and finds the obvious solution - Its complete and covers the entire area.

Cons
- Doesn’t know/find the optimal path
- Completeness & Computation
- High Dimensions is difficult to use.

- Computational heavy
- Doesn’t scale well in High Dimensions

Table 3.3: Adaptive cell decomposition vs. Exact cell decomposition[86]

Adaptive cell decomposition techniques are using regular cell and tree decomposition
(Quadtree and Octree). Exact cell decomposition techniques are polygonal cell decompo-
sition and trapezoidal decomposition that is based on path planning algorithms. Morse
cell decomposition, boustrophedon decomposition and sensor-based decomposition are
coverage based algorithms. The coverage based decomposition algorithms allow explo-
ration and cleaning[85].

3.4.1 Coverage on Sidewalks

The problem that Technology and the Environment service are having a problem with,
as seen in Chapter 2 is cleaning litter from sidewalks. Sidewalks can vary in different
types of terrain. The aim is to do coverage planning; however, exact cell decomposition
on a narrow path is not efficient since the robot will then move in a zigzag pattern

22

CHAPTER 3. STATE OF THE ART ROB10-1062b

(shoelace pattern) like a robot lawnmower. In order to make a coverage planner that can
solve narrow paths, Bug algorithms can be used. Such as Bug 1 algorithm is complete,
has memory, goes all the way around obstacles. Bug 2 is also complete, goes around
obstacles until it hits them-line (straight line from start to goal), but it does not cover
the area compared to Bug 1. The idea is to make a hybrid coverage planner that can
do exact cell decomposition, e.g. using boustrophedon cell decomposition and Bug 1
algorithm on narrow sidewalks could be a solution to clearing the cigarette litter. The
idea is to start from a start position and end at a goal position where later Dijkstra’s
Shortest Path algorithm could be deployed to make the costs cheaper and finish the task
faster.

A simple approach could also be painting lines on the roads since there is a map, and
essentially, the outdoor mobile robot has to just follow the line and clean up the cigarette
litter with the use of the detection system.

23

4 Problem Formulation

The problem at hand is to make a system that can identify and remove cigarette
litter. However, this procedure will be broken down, so identification of cigarette litter
will be in focus in this thesis. As for removal will be another project and making the
system autonomous using coverage planning.

As for detecting cigarette litter, a vision system is needed. As mentioned earlier in
Chapter 2, the problem that will be investigated is to help KK Tech, Capra Robotics
and Aarhus Municipality with detecting and seek coverage of cigarette litter in outdoor
terrain. One of the problems for Technology and the Environment (Teknik og Miljø -
Aarhus Kommune) is cleaning sidewalks. As for primary cleaning areas, that is, pedes-
trian roads, parks and bigger places, the handheld blowers and sweeping machines can be
used. As for secondary cleaning for smaller roads is to use outdoor mobile robots. The
focus of this thesis is to make the vision system work for the detection of cigarette litter
on sidewalks in urban areas. As for the outdoor mobile robot, the hardware is provided
by Capra Robotics and KK Tech.

"How can an object detection system provide real-time coverage of cigarette lit-
ter on sidewalks in urban/public areas with the use of outdoor mobile robots?"

One of the sub-problem that will be investigated that is analysed in Section 3.2.6.
Datasets like MS COCO, Imagenet and other known datasets for machine-learning re-
search do not have classes for cigarette litter. The dataset for cigarette litter needs to be
developed. "How to develop a robust dataset for cigarette litter?"

4.1 Project Hardware

In this section, the project hardware will be described. The hardware is provided by
Capra Robotics. While, KK Tech is making the hardware (vacuum tool) for collecting
the cigarette litter, which will help in this thesis to solve the type of method is needed
to detect the cigarette litter.

Capra Robotics

For this thesis, the outdoor mobile robot that will be used and tested on is provided
by Capra Robotics ApS. Capra Robotics ApS is a company based in Hasselager, Aarhus,
Denmark. The company has made an outdoor mobile robot that is based on a patented
wheel frame (patent: WO2015197069)[25, 87].

24

CHAPTER 4. PROBLEM FORMULATION ROB10-1062b

Figure 4.1: The generations of Capra Hircus. Generation P1.0 on the far right and P4.0
on the left[25]

.

The outdoor mobile robot that the company have designed and made based on the
unique wheel drive is called Capra Hircus, as seen in Figure 4.1. Hircus is designed to
easily carry different types of load. Due to its flexible chassis and large engine power, it
can be used for numerous types of tasks in uneven terrain, as well as for driving in urban
areas[25]. The company have made several different types of versions of the Hircus. The
recent platform is waterproof, which is P4.0 (Proto 4.0), thus for this thesis, the Hircus
that will be tested on is P3.3G. The difference between the two systems is the body
shape, and P3.3G isn’t viable to rainy days, making it not waterproof. The localisation
of the robot works by internal odometry and GPS sensor.

The hardware for the vision system for the robot is provided by Capra Robotics ApS.

25

CHAPTER 4. PROBLEM FORMULATION ROB10-1062b

Figure 4.2: The hardware is provided by Capra Robotics. (The Black Mounts for the
hardware 3D printed by the Author of this Thesis)

In Figure 4.2 the provided hardware can be seen. An Nvidia Jetson Nano developer
kit with a TP-Link WiFi adapter is provided, and two monocular cameras (CSI camera
and USB camera).

Hardware Specifications
Nvidia Jetson Nano
(Carrier Board B01)

(Fan - NF-A4x10 5V PWM)

Nvidia Maxwell GPU
Quad-Core ARM Cortex-A57 Processor

4GB LPDDR4 Memory
Monocular Camera

(Surveillance Camera Module
for Raspberry Pi)

1080P 30FPS, 720P 60FPS, 5MP
Fish Eye (Lens 10° - 200°)

(IR Night Vision)
HP Webcam HD 2300 (Y3G74AA)

TP-Link WiFi Adapter
USB 2.0

TL-WN722N 150Mbps

Table 4.1: The table shows the specification of the provided hardware for this project.

KK Tech

KK Tech is a company that is located in Odense, Denmark[88]. The company makes
hardware products and tools. In this thesis, the gripper that is made to collect the
cigarette litter is made from KK Tech. Figure 4.3 shows the CAD model of the Capra
Hircus P4.0 with the vacuum system and tool collector for the cigarette litter. As seen

26

CHAPTER 4. PROBLEM FORMULATION ROB10-1062b

in the figure, the tool collector is positioned on the right-hand side of the robot, and
basically, the idea is to collect the cigarette litter on sidewalks.

Figure 4.3: Vacuum system to collect the cigarette litter. On top of the robot is the
vacuum system and on the bottom is the tool to collector the cigarette litter.

4.2 Requirement Specification

The requirement specifications are made based on making a vision system work for
the detection of cigarette litter on sidewalks. The system can detect cigarette litter with
the use of Darknet YOLO. The detection algorithm is built on Nvidia Jetson Nano that
will then be mounted on the outdoor mobile robot. The outdoor mobile robot currently
works remotely with joystick control.

Below are the requirements listed; there are functional and performance requirements.
Where the functional requirement is to test if the robot works as intended, and the
performance requirement tests whether it performs the various tasks as it supposed to
do.

1. Functional requirements

(a) The system must be able to detect cigarette litter in all types of outdoor
terrain in this thesis.

• The specific type of terrain the system has to work is sidewalks. Snow
and night will be excluded from all types of terrain.

(b) The system must detect all types of cigarette litter.

• Since there are many types of cigarette litter that can be found, i.e. filters,
snus and different colour cigarette butts, the system needs to be able to
detect those.

27

CHAPTER 4. PROBLEM FORMULATION ROB10-1062b

(c) The system must detect cigarette litter on sidewalks.

• The aim is to make the mobile robot clean the sidewalks since in Chapter 2
the Technology and Environment Services have trouble cleaning sidewalks
in urban areas.

2. Performance requirements

(a) Correctly classify an object of interest with a precision and recall rate of 95%.

• The recall and precision is set 95%, were 5% can be false classifications.

(b) The system has to detect cigarette litter at human walking speeds (5km)[89].

• The system needs to work in real-time and at a reasonable pace. Whereas
in urban areas, humans will be around, and the robot needs to move
safely, so it doesn’t harm anyone. Also, the detection system needs to
detect cigarette litter in real-time.

28

5 Methods

In this chapter, methods to detect and localise cigarette litter will be explored. Below
Figure 5.1 shows the ideal method to identify and remove the cigarette litter. Hence in
this project, the focus is the identification of cigarette litter. At the same time, navigation
such as obstacle avoidance and removal of the cigarette litter won’t be looked upon.
The choice that was taken was not to do object tracking and servoing since it will be
computationally heavy for the Nvidia Jetson Nano, which Jinqiang Bai et al. [33] does a
similar approach on detecting and removing garbage with a mobile base with a robot arm
gripper. They conduct some experiments, which takes them an average of 60 minutes
to pick up the garbage of 20-50 dropped items (controlled experiment). So the decision
made in this thesis is to look at distance estimation with a monocular camera that will
be discussed in Section 5.2.

Figure 5.1: Method that will be used to detect and remove the cigarette litter

Figure 5.1 works by having a map (GPS) and location (IMU and Odometry) infor-
mation from the mobile robot (Capra Hircus). When the object is detected, the distance
will be measured by a 2D or 3D camera (In this case monocular 2D camera). Based on
the distance, the robot can pick up/vacuum (KK Tech - vacuum system) the cigarette
litter. If it didn’t find distance or the detection of the cigarette litter, it will avoid and
start from the beginning.

29

CHAPTER 5. METHODS ROB10-1062b

5.1 Detection of Cigarette Litter

The approach that will be used to detect cigarette litter is YOLO (You Only Look
Once). The reason why this algorithm is chosen will be explored, and how it works will
be described.

Darknet YOLO

Darknet is an open-source neural network framework written in C and CUDA de-
veloped by Joseph Redmon et al. The framework consists of the You Only Look Once
(YOLO) object detection algorithm. Joseph Redmon was the creator of YOLO V1, V2
(also known as YOLO 9000), and V3 (with different version such as the Tiny-YOLO)[48].
Whereas later, he decided not to continue, and he himself has stopped the computer vi-
sion research due to avoid potential misuse of the algorithm[90].

Alexey Bochkovskiy et al. introduced YOLOV4[91]. Alexey Bochkovskiy is a for-
mer colleague of Joseph Redmon which his repository of Darknet is carried on and is
maintained[92]. Darknet also supports ROS, which will help Capra Robotics (Capra
Hirucs platform) to implement the object detector[93].

Darknet YOLO - Network Design

The initial YOLOV1 classification has 24 convolutional layers followed by 2 fully con-
nected layers. Also, 1 × 1 reduction layers followed by 3 × 3 convolutional layers. It is
inspired by GoogleLeNet[94].

It was later improved with YOLOV2 (YOLO 9000) that has a classification model
called Darknet-19. It has 19 convolutional layers and 5 max pooling layers. That brings
batch normalization, convergence is sped up and regularised model[95].

For YOLOV3 it uses Darknet-53 that has 53 convolutional layers. There was signifi-
cant amount of upgrades to YOLOV3 such as accuracy, precision, speed, and can handle
more classes. With stacked layers there are 106 layers, where the detections are made
in layers 82 at stride 32 (32x32 large objects), 94 at stride 16 (26x26 medium objects)
and 106 at stride 8 (32x32 small objects). Meanwhile, there are no pooling layers for
YOLOV3 and adds extra convolutional layers. This helps from losing low-level features
and helps to detect small objects. The batch of images must contain (n (images), 416
(width), 416 (height), 3 (RGB)). The width and height should be divisible by 32[96].

YOLOV4 however uses CSPDarknet53, CSP stands for Cross Stage Partial Con-
nections that means it separates the feature map into two parts[97]. By build up from
YOLOV3, YOLOV4 was made by SPP additional module, PANet path-aggregation neck,
and YOLOV3 (anchor based) head[91].

Pytorch YOLO (ultralytics) and PP-YOLO

Pytorch YOLO (ultralytics) is implemented by Glenn Jocher[98]. Glenn Jocher in-
troduced YOLOV5 50 days after YOLOV4. The framework is different to the previous

30

CHAPTER 5. METHODS ROB10-1062b

YOLOV1-V4. Whereas YOLOV4 performs slightly better than YOLOV5. The aim of
YOLOV5 is to not bring the best mAP (mean average precision); it tries to ease memory
requirements such as making training faster and speed of inference[99, 98].

PP-YOLO that is by Xiang Long et al.[100]. It can achieve an mAP of 45.2% COCO
dataset which YOLOV4 mAP is 43.5%. The difference is the framework that is used,
which doesn’t use the Darknet53 and is replaced by ResNet[100].

Meanwhile, since there many types of YOLO algorithms that are made and even to-
day, there are newer versions deployed. YOLOV4 is chosen due to ROS support. There
are different variances of YOLOV4, such as Tiny-YOLOV4 that works with a smaller
model. A smaller model (RAM memory), meaning it can give fast inference and use less
computational power for the Nvidia Jetson Nano.

Nvidia Jetson Nano Benchmark on Deep Learning Algorithms

Figure 5.2: Deep Learning Inference (Batch size 1 and FP16 precision) - Nvidia Jetson
Nano Benchmark (10W performance mode)[101]

As seen in Figure 5.2 the benchmarks for different Deep learning algorithms for the
Nvidia Jetson Nano. SSD-Mobilenet-V2 (size resolution of 300x300) shows the greatest
peak for object detection with 39FPS, and with different scale, it gives 27FPS (size reso-
lution 480x272). In comparison, Tiny-YOLOV3 (size resolution of 416x416) gives 25FPS.
Hence with this large size resolution of 416x416, it works similar to SSD-Mobilenet-V2.
Also, since there are other variations of YOLO that are not benchmarked by Nvidia, e.g.
PP-YOLO tiny and Tiny-YOLOV4. Tiny-YOLOV4 is known to work 10% faster than
Tiny-YOLOV3[91]. Which YOLO will be chosen due to its resolution and that cigarette
litter are quite small. Better resolution and working in real-time will be ideal for detect-
ing cigarette litter. Meanwhile, the figure shows ResNet-50 and SSD-ResNet are used for
image classification. OpenPose is used for pose estimation, and Super-resolution used for
image processing, so these can be ignored. The rest of the figure is object detection and
segmentation algorithms.

31

CHAPTER 5. METHODS ROB10-1062b

5.1.1 YOLO - How it works

YOLO is a single-stage detector that is the state of arts one of the fastest object
algorithms. The way YOLO works is it splits the image into SxS grid cells, and for each
cell, it predicts object P(Obj). Based on the predicted object, it makes a bounding box
presented as a black box behind the human on Figure 5.3. Ground truth is the blue
bounding box on Figure 5.3 with a person inside. Based on this, the confidence can be
calculated by P(Obj)*IOU (Intersection over Union). The goal for the confidence score
is that it should be high, so based on the conditional class probability, P(Person) =
P(Person|Obj) = Probability of the object is a person. The position (x, y, w, h) can
be found by the centre of the bounding box, and with the grid cell position can be ob-
tained. However, since there will many bounding boxes appearing to reduce the number
of bounding boxes, it can be controlled by threshold value and non-max suppression[102].
The loss function of YOLO is based on the sum of squared error which is a regression
problem. The components of the loss function are classification loss squared error of the
class conditional probabilities, localisation error (x, y, w, h) is a regression problem to
find the real value, so errors between the bounding box and ground truth and confidence
loss measure the object confidence inside the box[102].

Figure 5.3: YOLO - SxS Grid cell (3x3) with bounding box (black box) and Ground truth
(blue) with the person inside.

5.2 Localisation of Cigarette Litter

In this section, several approaches will be discussed to calculate the distance with a
monocular camera when the cigarette litter is detected. Since then, with a monocular

32

CHAPTER 5. METHODS ROB10-1062b

camera, X and Y can be obtained by the YOLO object detection algorithm. Where the
ideal aim is to measure the distance of the cigarette litter with a monocular camera.

5.2.1 Measuring Size and Distance from Images

Measuring angular size on images from telescopes point of view. This method is
how astronomers measure the size and distance of the object. The method works by
measuring the angular size of a single object, and that angular distance can be obtained
by two objects as seen in Figure 5.4. This works by extending imaginary lines with
human perception[103].

Figure 5.4: Angular Size of a single object (on the right) and Angular Distance of two
objects (on the left)[104]

There is a rule that when an object with an angular size of 1 degree is around 57
times its own size away[103]. The angular size (A) of an object (in degrees) to an entire
circle that is 360 degrees should correspond to the actual size (B) of the object to the
circumference of a circle at that distance from the observer based on both ratios. (Where,
A = Angular size, B = Actual Size, D = Distance, DO = Distance of Object, SO = Size
of Object and DT = Distance to Object).

A

360°
=

B

2πD
(5.1)

Where, the equation 5.1 can be re-written:

DO

SO
=

360°
2(π)(A)

(5.2)

DO

SO
=

57

B
(5.3)

An example might be if the cigarette litter is in a range of 1-degree field of view and
is known to be 5 feet wide. That then means it’s 57∗5 = 285 feet away[103]. This allows
formulating the following equation to solve the distance from the object.

DT = SO ∗ 1°
A
∗ 57 (5.4)

33

CHAPTER 5. METHODS ROB10-1062b

The advantage of this technique it is not computationally heavy. The disadvantage
is that the value that is measured isn’t exact since the cigarette litter size needs to be
configured manually.

5.2.2 2D to 3D Monocular Distance

In order to localise the cigarette litter, the monocular camera (2D camera) needs to
be able to measure distance. In contrast, 2D plane X and Y is known. Whereas to get
the Z plane, the camera model needs to be calculated. The calculations can be done by
looking into the intrinsic’s and extrinsic’s parameters of the camera model. The camera
model can be seen in Figure 5.5. Intrinsics means the inside model of a camera, and
extrinsic means where is the camera in the real world.

The camera model

Figure 5.5: Camera model - 3D Coordinate System of the world on the right and on the
left is the 2D Coordinate System of the image on the screen.

As seen in Figure 5.5 an object is located at the 3D world, and ray light is sent from
the 3D world to the pinhole camera, which is (0, 0, 0), also known as the origin that then
is sent to a 2D screen that displays an image. The coordinate system is meant to be 3D,
so X is pointing up and down, Y is pointing perpendicular to the plane of the camera
model, and Z is right and left. Where f is the focal length (0, 0, f). The aim is to derive
the basic 3D world to 2D world for now.

As seen in the figure, there are two triangles that can be formed based on these
similarities of triangles; the equations can be formed. As the relation can be seen from
the 3D coordinate to the 2D coordinate system.

34

CHAPTER 5. METHODS ROB10-1062b

For x,
x

f
=
X

Z
=> x =

Xf

Z

The same can also be done for y,

y

f
=
Y

Z
=> y =

Y f

Z
(5.5)

Homogeneous coordinates are coordinate for projective geometry. It is essential when
working with a camera and understanding how the 3D world is mapped to the 2D image.
The advantage is that they provide a variety of transformations as a matrix that allows
doing matrix-vector multiplication, and points can be expressed in finite coordinates, e.g.
adding a 1 to the euclidean world gives the homogeneous coordinates[105]. So in matrix
form, it can be written like this (homogeneous coordinates):x′y′

w

 =

f 0 0
0 f 0
0 0 1

XY
Z

 =>
x′ = Xf
y′ = Y f
w = Z

(5.6)

Due to homogeneous coordinates it can be divided by the scale factor w.

x =
x−1

w
=
xf

Z

y =
y−1

w
=
yf

Z
(5.7)

Intrinsic Camera Matrix

The intrinsic camera matrix is the inside model of a camera, so the input is 3D and
output is 2D. xy

w

 =

f 0 0
0 f 0
0 0 1

XY
Z

 (5.8)

As seen in Figure 5.6, for practical case, the origin lies within the centre, which
isn’t the case for computational case for computers. At the same time, a basic image is
generated by a matrix where on the computational origin, the origin lies on the top left.

35

CHAPTER 5. METHODS ROB10-1062b

Figure 5.6: Practical Origin and Computational Origin

So to get Px and Py it can be done with simple translation and that they are homo-
geneous coordinate system it can then be derived like this.

x =
fX

Z
+ Px

y =
fY

Z
+ Py (5.9)

xy
w

 =

f 0 Px
0 f Py
0 0 1

XY
Z

 (5.10)

s is the skew factor where the images are skewed, and the skew factor helps it make
unskewed. xy

w

 =

f s Px
0 f Py
0 0 1

XY
Z

 (5.11)

So x, y and w are homogeneous from equation 5.11 whereas XYZ is not, which
then can be made homogeneous from the following equation. That gives the intrinsic
parameters.

xy
w

 =

f s Px 0
0 f Py 0
0 0 1 0

X
Y
Z
1

xy
w

 =

f s Px
0 f Py
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

X
Y
Z
1

 (5.12)

36

CHAPTER 5. METHODS ROB10-1062b

Based on equation 5.12 the intrinsic camera matrix can be formed:

Xc3x1 = K3x3[I3x3|O3x1]3x4Xw (5.13)

(To compute the intrinsic this is usually done by camera calibration.)

Extrinsic Camera Matrix

The aim of the extrinsic camera matrix is to align the camera and world coordinate
system (3D -> 3D).

Figure 5.7: Part 1 - 3D world coordinates, Camera coordinates and object point coordi-
nates(Xw).

Figure 5.8: Part 2 - Camera coordinates is translated to the 3D world coordinates. Part
3 - Its then rotated with with rotation matrix.

37

CHAPTER 5. METHODS ROB10-1062b

As seen in Figure 5.7 and 5.8 where Part 1 shows the world coordinates related to
the camera coordinates. Where the camera coordinate is related to the point coordinate
(Xw). Where the origin of the camera related to the object point coordinate. Where
later in Part 2 the camera coordinate is translated to the world coordinate with Xc′3x1 =
Xw3x1−C3x1. Since it can be seen in Part 2 that the camera coordinate is not aligned. .It
can be aligned using the rotation matrices that map both world and camera coordinates
as Part 3 is where in 3D there are three ways to rotate XYZ essentially in the fixed 3D
space as seen in equation 5.14.

Rx(θ) =

1 0 0
0 cθ −sθ
0 sθ cθ

Ry(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

Rz(θ) =

cθ −sθ 0
sθ cθ 0
0 0 1

 (5.14)

Xc = RXc′ (5.15)

Xc = R(Xw − C) (5.16)

xcyc
zc

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (

Xw

Yw
Zw

−
Cx

Cy

Cz

) (5.17)

Homogeneous Coordinates can be derived:
xc
yc
zc
1

 =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 0

Xw

Yw
Zw

1

−

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 0

Cx

Cy

Cz

1

 (5.18)

Based on equation 5.18, the extrinsic camera matrix can be formed:[
Xc3x1

1

]
=

[
R3x3 −RC3x4

01x3 11x1

] [
Xw3x1

1

]
(5.19)

Where,
Xc3x1 = R3x3Xw3x1 −RC3x1

1 = 01x3Xw3x1 + 11x1 (5.20)

(The localisation of the camera is the extrinsics.)

38

CHAPTER 5. METHODS ROB10-1062b

2D to 3D with a Monocular camera

As seen on Figure 5.9 diagonal D is the distance that is unknown. H is the height
above the ground where Capra Hircus has the camera mounted. So H is known however
whenever the camera is tilted to aim at the cigarette litter. All that is needed is to
workout angle A relative to H that can calculate D.

D = H ∗ tan(A) (5.21)

Figure 5.9: Capra Hircus - Camera Projecting at the Cigarette litter. Where D is Dis-
tance, A is Angle and H is Height.

The problematic part is how to get this working with an object detector for a specific
object, e.g. a cigarette litter. This leads to configuring the 2D camera to 3D so the
Z plane can be achieved from the monocular camera. Where the projection matrix is
needed, this essentially composed of both intrinsic and extrinsic camera model. The
projection matrix P converts 3D world points to image points[106].

Xi = PXw (5.22)

P = T i
cT

c
w (5.23)

Xi and Xw are pixels coordinates points and 3D world points. T i
c that converts from

world coordinates to camera coordinates and T c
w that convert from camera coordinates

to pixel coordinates and P is Projection matrix[106].

susv
s

 =

P (0, 0) P (0, 1) P (0, 2) P (0, 3)
P (1, 0) P (1, 1) P (1, 2) P (1, 3)
P (2, 0) P (2, 1) P (2, 2) P (2, 3)

Xw
Y w
Zw
1

 (5.24)

Image points (u,v) and scale s that gives different world points (Xw, Yw, Zw). In
order to calculate (Xw, Yw, Zw, 1), Projection P needs to be inverted. Hence, P is not
invertible since the determinant is not equal to 0. So another constraint can be assumed
where the 3D world point lies on another plane in the 3D world, assuming that Zw = 0

39

CHAPTER 5. METHODS ROB10-1062b

in the XY plane. Solving for Zw = 0[106].
u −P (0, 0) −P (0, 1) −P (0, 2)
v −P (1, 0) −P (1, 1) −P (1, 2)
1 −P (2, 0) −P (2, 1) −P (2, 2)
0 0 0 1

s
Xw
Y w
Zw

 =

P (0, 3)
P (1, 3)
P (2, 3)

0

 (5.25)

s
Xw
Y w
Zw

 =

u −P (0, 0) −P (0, 1) −P (0, 2)
v −P (1, 0) −P (1, 1) −P (1, 2)
1 −P (2, 0) −P (2, 1) −P (2, 2)
0 0 0 1

−1

P (0, 3)
P (1, 3)
P (2, 3)

1

 (5.26)

Based on this, the world point and 3D distance can be found.
The advantage of this technique is that it is efficient but is not so accurate. Since

the Capra Hircus needs to be in level with the ground and the suspension needs to be
steady. The camera also needs to be adequately calibrated, which is quite challenging.
Even good calibration with a slight variation of angle position of the camera can lead to
considerable errors in distance calculations[106].

There is also another method that works by selecting any point on the image and
measuring the actual distance of the point, which is called homography. The input
image is parallel, whereas, in the output image, it is not parallel in homography. The
disadvantage is that the points are fixed, and the points need to lie exact so the distance
can be measured[106, 107].

5.2.3 Localising with Convolution Neural Networks

There are two methods that are made by CNN approach for object detection with
distance estimation.

Method 1 M A Haseeb et al.[108] are the creators of DisNet. DisNet is a neural
network-based object detection distance estimation algorithm for monocular cameras.
DisNet uses YOLO and is trained on MS COCO images where it is required to collect
dataset including both inputs and outputs of ground truth of the bounding box. DisNet
has a feature that can also track objects that are detected and prints the distance of the
object. One of the disadvantages of this algorithm is that it is trained with YOLOV3 and
not Tiny-YOLO versions and that the dataset does not contain cigarette litter. However,
this will also lead to computationally costs for the Nvidia Jetson Nano[108]. Thus,
this can be adjusted and trained, so it can work with Tiny-YOLO[109]. The distance
estimation works by 2000 input of feature vectors were extracted for each bounding box.

v =
[
1/Bh 1/Bw 1/Bd Ch Cw Cb

]
(5.27)

Where Bh is the height of the bounding box in pixel, Bw is the width of the bounding
box in pixel, and Bd is the diagonal of the bounding box in pixels. C is the class of an
object (height, width and breadth)[108]. The objects are based on different distances,

40

CHAPTER 5. METHODS ROB10-1062b

and the real distance from a laser scanner was used to calculate the distances from 0-60m.
Based on this, the model was trained based on laser scanner distance measurements and
bounding box size. The drawback seen from this method is that it is artificially made
the numbers based on the laser scanner readings that gives actual results, although when
training, there is a trade-off of accuracy and precision of the object detected estimated
distance[108].

Method 2 M. A. Khan et al.[110] have made an object detection and distance mea-
surement algorithm. It is similar to method 1, however, without tracking. From the
bounding box, which is (x0, y0, width, height). The distance measuring works by do
(distance of object from the lens), di (distance of the refracted image from the convex
lens) and f (focal length or the focal distance) as seen on Figure 5.10.

Figure 5.10: M. A. Khan et al.[110] approach for distance estimation. Image shows how
the image and corresponding angles look when enters through a lens[111]

The green line is the actual distance of the object from the convex length, which is
do where di is how the real image is seen. As seen, there are two right-angle triangles
formed AB where do and di are parallel. Where it can be assumed that do/di = A/B
both have right angle triangles[110, 111]. So the formula can be written as:

do

di
=
A

B
=

f

di− f
(5.28)

1

f
=

1

d0
+

1

di
(5.29)

d = f +
R

r
(5.30)

f =
2 ∗ 3.14 ∗ 180

360
(5.31)

41

CHAPTER 5. METHODS ROB10-1062b

Where they use this formula to derive the distance which is in inches (DIS)[110, 111].

DIS =
(2 ∗ 3.14 ∗ 180)
(w + h ∗ 360)

∗ 1000 + 3 (5.32)

Based on both methods, the disadvantage is that both are trained with the MS COCO
dataset where there are no cigarette litter classes. Also, both methods have a trade-off
with accuracy and precision.

42

6 Implementation

In this chapter the implementation of the object detection of cigarette litter will be
described.

Figure 6.1: Sequence of steps to make the object detection of cigarette litter.

As seen in Figure 6.1, it shows how the pipeline of how the implementation was done
to make the cigarette litter detection work. At first, the datasets of cigarette litter are
collected, as well as the labelling, and data augmentation is described in Section 6.1.
The tool which was used to train YOLO was Darknet as the setup and configuration
of DarknetYOLO will be described in Section 6.2. When the weights are made, it can
then test the inference on Nvidia Jetson Nano, where ROS is used. This is described in
Section 6.3. Lastly, the mounting on the Capra Hircus and how it is controlled will be
described in Section 6.4.

6.1 Used Datasets

As seen in Table 6.1 the different datasets can be seen. Two columns says "Raw Im-
ages (Original) of Cigarette Litter and Images of (Edited) Cigarette Litter". Essentially,
some images were deleted from the "Raw images (Original) of Cigarette Litter" due to
background noise causing distorted and blurred images.

Raw Images (Original)
of Cigarette Litter

Images of (Edited)
Cigarette Litter

A.Kelly Dataset [112]
(Synthetic Dataset) 2200 2186

E.Pacanchique Dataset [113]
(Kaggle Dataset) 2039 2040

SkodRobot Dataset
(Author Dataset) 1335 1294

Total 5576 5522

Table 6.1: Datasets of Cigarette Litter

The Synthetic dataset is artificially made with cigarette litter and random back-
grounds that were found online. The dataset, however, contains labels that were labelled
for Mask R-CNN (JSON label format), which was re-labelled by the author of this thesis,

43

CHAPTER 6. IMPLEMENTATION ROB10-1062b

so it works with YOLO object detection. The Kaggle dataset also had a labelled dataset
which was also modified to YOLO labels that are also found online (Pascal VOC label
format). The Author Dataset is mainly the dataset that is created by the author of
this thesis. The author’s dataset is taken from a mobile phone with 16MP resolution
(HUAWEI P20 lite - ANELX1). It also offers images of snus and not many close up
images of the cigarette litter due to it being taken from a further distance. Whereas, the
Kaggle dataset and Synthetic dataset contains close up images.

6.1.1 Labelling Tool

The labelling tools that is used to annotate the images used in the early stage of this
thesis is the BBOX (Bounding Box labelling tool) labeller. Later, it was then changed
to use DarkMark, which allows data augmentation and works with Darknet.

BBOX Labeller

The labelling tool (.txt) is a straightforward tool that only labels images for YOLO
since it supports any interface such as Windows, Linux and Macintosh. The BBOX
labelling interface can be seen in Figure 6.2.

Figure 6.2: BBOX labeller tool[114]

At first, images from the Synthetic dataset and Kaggle dataset were labelled with one
class called "Cigarette_Butt". It is labelled with a BBOX tool (txt. label format)[114]
since the labelling tool was not efficient in zooming into the image and labelling. It also
does not provide data augmentation, therefore, DarkMark was chosen.

44

CHAPTER 6. IMPLEMENTATION ROB10-1062b

DarkMark and DarkHelp

DarkMark is a tool that only works on Ubuntu systems. It provides image labelling
(.txt and JSON) and data augmentation. DarkMark was used to augment the data and
create new images which includes features rotating the images (90°, 180° and 270°), tiling
the images, crop/zoom of images and resize of images[115]. It was also used to create
four new classes for better feature recognition for the object detector. As seen in Figure
6.3 the four classes are Yellow (Orange)_Butt, White_Butt, Snus and Cigarette_Butt.
These classes were chosen since most of the features of cigarette litter is white and yellow
(orange). In some cases, cigarette butts also consist of both colours. Snus is just an
extra class to see whether it detects the snus; however, snus does have similar features
compared to white_butt.

Figure 6.3: DarkMark labelling tool

DarkHelp is used to analyse the statistics and review of annotated images as seen in
Appendix C. The tools help by counting the number of annotated images and averaging
the size of images that are annotated. DarkMark checks whether the bounding box is
created correctly. It also provides some functions such as DarkHelp::predict(), which
can give a prediction of result and show which is the best class and probability. One of
the unique functions is DarkHelp::annotate() which can automatically annotate the raw
images; however, it needs a trained weight file and cfg (config file) of specific YOLO[116]
where Darknet will be described in the next section.

45

CHAPTER 6. IMPLEMENTATION ROB10-1062b

6.2 Darknet YOLO

To be able to use Darknet, some hardware and settings are required. The machine
requires Nvidia GPU that works with CUDA. In order to get started with Darknet, the
Alexey Bochkovskiy repository was cloned[92]. The repository supports both Windows
and Linux systems (Ubuntu). The training and testing setup can be seen in Appendix
B. The necessary part is to configure the configuration (cfg file) of YOLO. This helps to
train the model with various features by adjusting the settings.

Figure 6.4: Configuration files (Parameter file) for Tiny-YOLOV3 and Tiny-YOLOV4
(not full version)[92]

As seen in Figure 6.4 the cfg file (parameter file) for Tiny-YOLOV3 and Tiny-
YOLOV4 is presented. The whole configuration file is not shown in the figure since
the user does not need to adjust those values, so only the essential parts of the cfg file
are chosen. In the [net] parameter section, the configuration can be set to how the user
prefers.

• batch - The number of samples that will be processed in one batch[92].

• subdivision - The number of mini_batches in one batch, mini_batch = batch/sub-
divisions. e.g., 64/16 = 4 images in one iteration[92].

46

CHAPTER 6. IMPLEMENTATION ROB10-1062b

• width - network size (width), every image will be resized to the network size during
Training and Detection. Must be a multiple of 32[92].

• height - network size (height), every image will be resized to the network size during
Training and Detection. Must be a multiple of 32[92].

• max_batches - classes * 2000 e.g., train for 4 classes max_batches = 8000. This
only the minimum for max_batches, although the user can adjust how long the
training should be[92].

• steps - based on the max_batches 80% and 90% is the steps[92].

There is some data augmentation that is provided by Darknet YOLO such as angle,
saturation, exposure, hue, flip, mosaic, cutmix, mixup and blur that can be applied
throughout training.

For [convolutional] that is above [yolo] must be changed based on the classes that are
used.

• filters [convolutional] - is filters = (classes+5)*3. For Tiny-YOLOV2 the filters =
(classes+5)*5 [92].

• classes [yolo] - the number of classes that is needed to be trained[92].

• random [yolo] - randomly resizes network size after each 10 iterations, when its set
to 1. Otherwise set to 0 it will be faster the training process[92].

The batch and subdivision that was used was 64/64=1 image was processed at a time,
and the height and width were set to resize at 416x416. If these numbers increased, the
system could be more robust, although due to hardware, the processing cannot be done
and will lead to an error stating CUDA ran out of memory. When testing, batch and
subdivisions should be 1 and the threshold value can control the amount bounding boxes
that should appear based on the confidence the cigarette litter is detected.

When the training has begun, there will be a graph that will be outputted via
terminal/command-line.

Figure 6.5: An example how the training output graph will show when training (not
exactly this graph)[117]

47

CHAPTER 6. IMPLEMENTATION ROB10-1062b

As seen in Figure 6.5, it shows the y-axis, which is the prediction error and the x-
axis is the number of iterations where it is assumed that stopping the training at the
early stopping point will give better results on the weights since the error scores start to
degrade and essentially to avoid memorization[117]. The graph helps the user to see how
the training is performing and the user can stop the training at any time.

6.3 Nvidia Jetson Nano Setup

The Nvidia Jetson Nano is used for inference testing of trained YOLO weights. The
setup for the Jetson Nano uses Jetpack 4.5, which is Ubuntu 18.04 with all the GPU
drivers installed. The procedure of the setup can be found on the official website of
Nvidia[118]. To access the Nvidia Jetson Nano headless, it can be done with SSH.
Since Capra Robotics uses ROS on their platforms for communication between different
software, hardware and more, the basic structure of ROS workspace can be seen in Figure
6.6. The object detection algorithm will also need to work on ROS, where ROS allows
nodes to communicate by publishing and subscribing via topic.

Figure 6.6: The structure of a ROS workspace

ROS Melodic is installed since Jetpack 4.5 has Ubuntu 18.04 that supports ROS
Melodic. With the DarknetROS package, Capra Robotics can use or add this package
to their system. DarknetROS was modified with Alexey Bochkovskiy repository, where
originally, Darknet was built upon using Joseph Redmons repository[93].
Other packages were included as seen in Figure 6.7 such as Jetson camera (CSI Camera)
and IP camera (Tested on Mobile Phone Camera). These are driver packages that are
needed for DarknetROS to work with these cameras.

48

CHAPTER 6. IMPLEMENTATION ROB10-1062b

Figure 6.7: Packages used on ROS workspace

Currently, what DarknetROS topics publishes that is necessary and is outputted as
object_detector which publishes the number of detected objects. There is a topic
called bounding_boxes that publishes an array of bounding boxes where position and
size are given in the pixel coordinate system. The last topic is detection_image that
publishes the image of the detected image within a bounding box. The subscriber is the
camera measurements (camera_reading).

6.4 Capra Hircus Setup

On the Capra Hircus, the Nvidia Jetson nano was mounted with the CSI camera.
The power cable of 5V that draws 4A was taken from the inside previous setup of the
Capra Hircus. The odometry and IMU was not used in this implementation since the
aim was to detect cigarette litter and how far they lie. As seen on Figure 6.8, a rubber
tool is mounted that is made to mimic the KK Tech vacuum tool which is duct taped.
This will help to understand where the camera should be mounted. The CSI camera
was also mounted with duct tape. The CSI camera ribbon cable (0.3m) was not long
enough thus, it was mounted near the top of the robot that allows to see the rubber tool.
The Capra Hircus was tested using joystick (remote) control as seen in Figure 6.8. The
joystick controller allows two types of speeds: ’SLOW’ and ’NORMAL’. The ’SLOW’
speed is roughly human walking speed and ’NORMAL’ speed in this case is equivalent to
fast speed. However, the Capra Hircus does not have a speedometer so the speed could
not be measured accurately. The ’SLOW’ speed was chosen since normal human walking
speed is efficient enough for the object detection algorithm to detect the cigarette litter.

Figure 6.8: Joystick Controller and the Nvidia Jetson Nano mounted on the Capra Hircus

49

7 Testing & Results

Testing DarknetYOLO weights was done by a sequence of steps with training results
outcome. To ensure to pick which YOLO to use and make the system robust by several
augmentations, that is described Section 7.1. The Nvidia Jetson Nano was tested based
on its performance with DarknetROS described in Section 7.2. The CSI camera lens was
also tested to see whether it could detect the cigarette litter at sight and provide coverage.
The test is important since the cigarette litter should be within the frame of the camera,
and the camera should be able to see all the cigarette litter described in Section 7.3. The
test videos are also described since to ensure object detection is performing correctly,
visualisation of detection is important where online and offline setups of object detection
are done in Section 7.4. Towards the end of the chapter, it would be tested based on the
requirements setup in Section 4.2.

7.1 Training Results

In this section shows the results of how to make robust dataset. Where every step
taken a new approach was taken to make the object detection algorithm robust.

Step 1 - Training Results with Tiny-YOLOV2, V3 and V4

This training aims to check whether Tiny-YOLO versions have different performance.
Since it is known that Tiny-YOLOV2 is lightweight and fast however it struggles to train
more classes on top. Tiny-YOLOV3 had many upgrades, which is more accurate and
precise. Tiny-YOLOV3 is also said that it can handle more classes. Later Tiny-YOLOV4
has released, which the performance 10% faster and accurate than YOLOV3. So in this
training of Synthetic Dataset and Kaggle Dataset datasets, Tiny-YOLO version performs
well.

Tiny-YOLOV2 Tiny-YOLOV3 Tiny-YOLOV4
A.Kelly Dataset

(Synthetic Dataset)
Best mAP=72.93%
F1-Score=0.62

Best mAP=93.07%
F1-Score=0.85

Best mAP=99.61%
F1-Score=0.96

E.Pacanchique Dataset
(Kaggle Dataset)

Best mAP=59.29%
F1-Score=0.58

Best mAP=80.64%
F1-Score=0.71

Best mAP=94.01%
F1-Score=0.80

Table 7.1: Comparison of Tiny-YOLOV2, V3 and V4 with (Appendix D)

As seen in Table 7.1 the training was done with 1 class (Cigarette_Butt). This is
based on only 80% training and 20% validation data. It can be seen that Tiny-YOLOV4
does outperform all the other Tiny-YOLO versions, where it has better mAP and has
a high F1 Score. The mAP stands for all the AP (Average Precision) values averaged
over different classes. So without testing, each weight on the testing dataset (Author
Dataset) will not show any difference, which Tiny-YOLOV4 is chosen and is known to
be accurate, precise and can handle more classes.

50

CHAPTER 7. TESTING & RESULTS ROB10-1062b

Step 2 - Training Results of Tiny-YOLOV4 with 4 classes

In this training, the datasets were merged (Synthetic, Kaggle and Author Datasets).
So for training 70% (3864), Validation 15% (828) and Testing 15% (828) as seen on Table
7.2. The four classes are Yellow (Orange) Butt, White Butt, Snus and Cigarette Butt as
seen in Appendix C.

Synthetic
Dataset

Esteban
Dataset

Author
Dataset Total

Train (70%) 1530 1428 906 3864
Validation (15%) 328 306 194 828

Test (15%) 328 306 194 828
Total 2186 2040 1294

Table 7.2: The datasets are broken down to 70% training, 15% validation and 15% testing

The training was set at 8000 iteration, which is the minimum iteration needed to
train four classes. It was trained with Random = 1 and Random = 0. Since it is said
that Random = 1 is more accurate and precise, however, the current average loss takes
longer compared to Random = 0; this is due to the fact that Random = 1 there is data
augmentation happening by resizing the images to different sizes per batches. Since the
average loss becomes 0.0XXXX, it means the weight is trained well or when no longer
decreases the training can be stopped[92].

Tiny-YOLOV4

Random = 0
8000 Iterations

Best mAP=58.27%
F1-Score=0.66
current average loss = 0.2136

Random = 1
8000 Iterations

Best mAP=59.27%
F1-Score=0.67
current average loss = 0.3304

Table 7.3: Training based on Random = 0 and Random = 1 (Appendix D)

Step 3 - Training Results of Tiny-YOLOV4 with 4 classes with Data
augmentation

Later Tiny-YOLOV4 was then further implemented with four classes and augmenta-
tion with DarkMark. The type of augmentation are rotations, flip and mosaic. However,
the advantage of Tiny-YOLOV4 is that colour and misc augmentation is done automat-
ically at run time while training by configuring the configuration file. However, flip and
mosaic are also manually configured on the configuration file to add and make new im-
ages. So the focus will be rotating the training and validation images with the use of
DarkMark since the YOLO algorithm is rotation invariant.

51

CHAPTER 7. TESTING & RESULTS ROB10-1062b

Merged Dataset
Train (70%) 15456

Validation (15%) 3312
Test (15%) 828

Total 19565

Table 7.4: Training and validation was augmented 90, 180 and 270 degrees.

For this, the training done will be different since now there are four fixed classes
(will not be changed) made with rotation augmentation. The first weight was to set the
configuration random = 0 to see whether the current average loss had an effect trained for
50000 iterations. After, another weight was made with random 50000 iterations, whereas
the benefit of random=1 is the mAP result. Based on the best mAP result, the more
robust the model was where the current average loss of the training data does give an
impact not compared to the mAP of the validation data.
Later the two ideas were merged, which allows doing transfer learning. So by merging
the configuration settings with random=0 for 50000 iterations trained model and adding
random=1 for another 50000 iterations. This is done and tested. They were also an
additional data augmentation setup that is mixup.

Tiny-YOLOV4

Random = 0
Final mAP = 50.76%
F1 score = 0.56
Current average loss = 0.0716

Random = 1
Best mAP = 74.17%
F1 score = 0.79
Current average loss = 0.4345

Transfer Learning
Best mAP = 77%
F1 score = 0.88
Current average loss = 0.3616

Table 7.5: Final Weights (Appendix D)

7.1.1 Testing on Test Images

The weights were tested on the 15% test images of 828 images. Where there were a
total of 1410 cigarette litter (classes: cigarette butt, white, yellow (orange) and snus).
The four classes are assumed as one since all the litter towards the end needs to be
identified and should be removed (cleaned).
Since all the datasets did not have TN (True Negative) images, the confusion matrix
is not constructed. Thereby the recognition rate cannot be calculated that gives the
accuracy of the model.

52

CHAPTER 7. TESTING & RESULTS ROB10-1062b

TP FP FN
Tiny-YOLOV4 - Random = 0
(50000 iterations) 788 91 531

Tiny-YOLOV4 - Random = 1
(50000 iterations) 985 71 354

Tiny-YOLOV4 - Transfer Learning
(100000 iterations) 1325 47 38

Table 7.6: Results after testing on 15% test images

So instead of making the confusion matrix the recall rate, precision and F1 score can
be calculated. Hence the F1 score gives the accuracy of the dataset.

• Recall rate = TP
TP+FN

• Precision = TP
TP+FP

• F1 score = 2 * precision∗recall
precision+recall

Precision Recall F1 Score
Tiny-YOLOV4 - Random = 0
(50000iterations) 0.89 0.59 0.71

Tiny-YOLOV4 - Random = 1
(50000iterations) 0.92 0.73 0.82

Tiny-YOLOV4 - Tranfer Learning
(100000iterations) 0.97 0.97 0.97

Table 7.7: Precision, Recall and F1 score after testing on 15% test images

As seen Table 7.7 the Tiny-YOLOV4 Random = 0 has the lowest recall, precision and
F1 score. As the model that was done by transfer learning shows a robust model that
has high end recall, precision and F1 score. The model is also robust to false negatives
and false positive as numbers decrease and the true positives increases as seen on Table
7.6.

7.2 Nvidia Jetson Nano Testing

The Nvidia Jetson Nano was bench-marked for using DarknetROS. It was tested
with both CSI camera and USB camera. The results were similar and the results were
averaged based on the two power modes the Nvidia Jetson Nano can handle 5w and 10w
as seen on Figure 7.8.

53

CHAPTER 7. TESTING & RESULTS ROB10-1062b

WxH Tiny-YOLOV4
5w mode

Tiny-YOLOV4
5w mode
(HM)

Tiny-YOLOV4
10w mode

Tiny-YOLOV4
10w mode
(HM)

470 x 470 ±5.4FPS ±6.4FPS ±7.5FPS ±8.6FPS
448 x 448 ±6.0FPS ±7.1FPS ±8.4FPS ±9.7FPS
416 x 416 ±6.6FPS ±7.8FPS ±10.3FPS ±11.8FPS
384 x 384 ±6.9FPS ±8.1FPS ±11.0FPS ±12.6FPS
352 x 352 ±7.5FPS ±9.2FPS ±12.5FPS ±13.7FPS
320 x 320 ±8.7FPS ±10.1FPS ±15.0FPS ±17.1FPS
288 x 288 ±9.2FPS ±11.0FPS ±19.2FPS ±21.1FPS
256 x 256 ±10.3FPS ±12.1FPS ±23.3FPS ±23.3FPS

Table 7.8: Nvidia Jetson Nano - FPS (Frame per second) testing on DarknetROS. (HM
- Headless Mode)

As seen in Table 7.8 the Nvidea Jetson Nano testing was done on DarknetROS as
the WxH (Width x Height) or the resolution is changed the FPS changes. The sizes are
chosen by multiple of 32 since Tiny-YOLOV4 works at that window size. One of the
problems with reducing the window size is that the object detection will read many FP
(False Positives), although it gives fast FPS readings. Nevertheless, the opposite will
happen when the window size is large, the FPS reduces.

7.3 CSI Camera Lens Testing

The CSI camera Lens testing was carried out indoors. It was tested based on the
weights from section 7.1 step 1. These weights are not robust to further distances,
although the aim is to get an understanding of which lens gives the best detection and
distance. The lens and test setup can be seen in Figure E.1 and E.2.

Lens Types 10° 20° 40° 60° 80° 100° 120° 140° 160° 180° 200°
Distance of
Object Detected X X X X X 5cm-55cm X X X 0-20cm 0-18cm

Table 7.9: CSI camera lens testing

As seen in Table 7.9 the X means the lens does not work, where it can be seen that the
100° lens outperforms 180° and 200° lenses. The 100° can also detect more cigarette litter
compared to the rest. It was also compared with the HP webcam that gives a distance
range of 10cm-41cm. Although the limitation with the webcam it runs on CPU, and
there were many distortions that could be fixed with calibration. It was later decided to
use the 100° lens, and further tests were carried in both indoor and outdoor environment.
The Final weights, in this case, is Tiny-YOLOV4 - Transfer Learning (100000iterations).

54

CHAPTER 7. TESTING & RESULTS ROB10-1062b

Indoor with Final Weights

As seen in Figure 7.1 done indoors, the 100° lens does a great job at detecting cigarette
litter and covering the full field view of the camera. Can measure distance of 5cm-205cm.
One of the limitations of the CSI lens is the purple colour of the image. This means there
UV (Ultraviolet) light present, which affects the detection.

Figure 7.1: Indoor Testing of detection and distance

Outdoor with Final Weights

As seen on Figure 7.2 the same weight was used outside. Where one of the drawbacks
was working with sunlight and measure a distance of 5cm-54cm.

Figure 7.2: Outdoor Testing of detection and distance

55

CHAPTER 7. TESTING & RESULTS ROB10-1062b

7.4 Description of the Video Tests

There were eight tests that was done and recorded on video1. Two of the videos show
that system works real-time (online) and rest was done offline. The two videos that work
real-time (online):

• Tiny-YOLOV4 - RealTime Phone: The test was carried out with mobile phone
(HUAWEI P20 lite - ANELX1). The realtime was done by net video cam using
phones IP address that is connected to a local router. The testing was done with
Darknet (will also work with DarknetROS with IPcamera driver package).

• Tiny-YOLOV4 - Capra Hircus Realtime: The test was done using DarknetROS.

Figure 7.3: The real-time test setup for distance measuring.

The setup could not be done headless since the terminal will only appear with
confidence numbers of detected cigarette litter. So the Nvidia Jetson Nano was
hooked to a screen and the mobile robot was placed close as possible to the outdoor
environment. It was tested with 5w mode since the 10w mode of the Nvidea Jetson
Nano started throttling using DarknetROS. The video shows as the resolution size
is decreased the FPS increases.

1https://youtube.com/playlist?list=PLSG9gXgVHC2OKNinlJHKMO8baoJVxkl3G

56

CHAPTER 7. TESTING & RESULTS ROB10-1062b

The offline testing was done with the Capra Hircus (Nvidia Jetson Nano via SSH
connection by recording scenes) and mobile phone (HUAWEI P20 lite - ANELX1 by
recording scenes). Where the Capra Hircus testing was controlled setup (wrong envi-
ronment) of cigarette litter and the mobile phone setup was in the right environment
but wrong equipment used. Although both work with detecting cigarette litter. The six
videos that were done with Capra Hircus and mobile phone was to test the three weights
as seen on Table 7.7. The offline setup of the Capra Hircus is done by SSH connection via
laptop to the Nvidia Jetson Nano, and from there, various scenes were recorded outdoor.

7.5 Testing Based on Requirements

The requirements will be evaluated whether the object detection algorithm could
perform based on the requirements and whether the requirements were met. Tested
based recorded videos2 and test images (Section 7.1.1).

1. Functional requirements

X (a) The system must be able to detect cigarette litter in all types of outdoor terrain.

• Based on tests the detection system does work in all outdoor terrain based on
public areas and sidewalks. It also works on cloudy, rainy and sunny days as
seen on the video tests.

X (b) The system must detect cigarette litter.

• The system detects all the types of cigarette litter i.e. cigarette butts, filters
and even snus as seen on video tests.

X (c) The system must detect cigarette litter on sidewalks.

• The system detects all the cigarette litter on the sidewalks however with some
false positives. Where the false positives is mostly the cylinder of the wheel
(in the gaps) of the Capra Hircus which the system thinks its a white butt
seen on the video tests.

2. Performance requirements

X (a) Correctly classify an object of interest with precision and recall rate of 95%

• The requirement was fulfilled since the precision and recall rate was at 97%
based on results from Section 7.1.1.

X (b) The system has to detect cigarette litter at human walking speeds (5km)[89].
2https://youtube.com/playlist?list=PLSG9gXgVHC2OKNinlJHKMO8baoJVxkl3G

57

CHAPTER 7. TESTING & RESULTS ROB10-1062b

• The object detection system works at any speeds offline (Since the user can
set the FPS of the video). However when it comes to online (real time) the
Nvidia Jetson Nano works at max 5-12FPS with DarknetROS at 5w and at
max 7.5-23FPS with DarknetROS at 10w depending on the resolution.

One of the requirements that was not added was to see if the Capra Hircus benefits from
moving backwards or forwards. The system has delay when it moves forward towards
the cigarette litter whereas moving backwards it performs better than moving forwards
when detecting the cigarette litter as seen on video in real-time of Capra Hircus video
(video name = Tiny-YOLOV4 - Capra Hircus Realtime (Capra Hircus)3).

3https://youtube.com/playlist?list=PLSG9gXgVHC2OKNinlJHKMO8baoJVxkl3G

58

8 Conclusion

The purpose of the SkodRobot (Cigarette Litter-Robot) Project is to identify and
remove cigarette litter in outdoor urban/public terrain, where one of the problems Tech-
nology and the Environment Services in Aarhus Municipality (Teknik og Miljø – Aarhus
Kommune) are having problems is with collecting litter on sidewalks. In this thesis, the
process was broken down into two parts so that the identification of cigarette litter was
looked upon, and the removal of cigarette litter would be another project itself. Based
upon this task, two key questions were formulated in Chapter 4. These questions will
help to summarise the research findings done in this thesis.
The main question which was explored throughout this thesis is: "How can an object de-
tection system provide real-time coverage of cigarette litter on sidewalks in urban/public
areas with the use of outdoor mobile robots?" The object detection system gives a recall
rate, precision and F1-score of 97% that was achieved as well as all the requirements
that were seen in Section 7.5. The system also provides real-time coverage on the Nvidia
Jetson Nano at a rate of 5FPS at 5w and 10FPS at 10w (depending on the resolution or
size) with YOLO as the tests can be seen on Section 7.2. The system works in real-time
with a wired connections setup which a screen was needed for the user to see whether the
object detection system was working correctly in real-time. Although with urban/public
areas, the real-time was not tested due to working headless mode with the Nvidia Jetson
Nano and Capra Hircus was not allowed to be taken to the urban/public areas for test-
ing. Thus, this was tested by offline configuration on urban/public areas on sidewalks
since the test was done with a joystick (remote) control from the Capra Hircus. The
main system Nvidia Jetson Nano was able to detect cigarette litter. It was also tested
via mobile phone and using the training PC to run it in real-time by IP connection.

Another sub-question that was also investigated is "How to develop a robust dataset
for cigarette litter?" This task was done by getting two online datasets that had 4239
images of cigarette litter: 2200 synthetic images from A.Kelly dataset, and 2039 images
of cigarette litter from E.Pacanchique dataset. Based on these datasets, a dataset was
created by the author of this thesis called the SkodRobot dataset. This was because the
online datasets did not have many variations of cigarette litter and most of the cigarette
litter was taken at a close distance. The SkodRobot dataset provides many variations
and dense piles of cigarette litter. Altogether there were 5576 images of cigarette litter,
the author edited it to get 5522 images of cigarette litter due to noise and blurred images.
Later, it was augmented by rotating the images getting to a total of 19565 images. Thus,
the weight was trained with more augmentations as that would also increase the images,
i.e. flip, mosaic and mix up (estimated images of 78260, which can not be seen). This
dataset provides four classes that distinguish cigarette litter as cigarette butt, white butt
and yellow (orange) butt, and snus added as an extra feature to the class. Although
there were not enough images of snus which sometimes overlaps detection of a white
butt (end of the day, every litter needs to found). In Alexey Bochkovskiy[92] repository,
it mentions that a minimum of 2000 images of a certain class is needed to make the
detection robust, whereas for snus, there was only 242 images and a count of 277 snus

59

CHAPTER 8. CONCLUSION ROB10-1062b

in the images were augmented. The rest of the classes were over the minimum after
augmenting them; this can be seen in Appendix C.2. The final weight for Tiny-YOLOV4
which was completed with transfer learning got a precision, recall and F1 score of 97%.
If the model was trained with regular YOLOV4, the model would be more robust but
not faster than Tiny-YOLOV4 (faster meaning FPS).

One of the methods that was not implemented was the localisation (distance estima-
tions) of the cigarette litter. This was achieved by using the monocular camera seen in
Section 5.2. Section 5.2.1 approach was implemented, but it only works on images, and
the accuracy of distance measuring was not the greatest, plus the length of the cigarette
litter had a fixed value of (e.g. 3cm). An image of this can be seen in Appendix E.2. In
Section 5.2.3, the two were tested where method 1 requires training and the model that
is being used is heavy to make inference on the Nvidia Jetson Nano. Method 2, however,
by M. A. Khan et al.[110] is implemented in Pytorch, where the distance estimation only
works on a USB-camera. To make it work on the CSI camera, the Gstreamer did not
work with Pytorch (implemented in Python) since YOLO had trouble resizing the CSI
camera image. The system was not robust and accurate since it could only measure a
maximum distance of 0-12cm. An example of the approach can be seen in Appendix
E.2. The goal of the distance estimation is to make Section 5.2.2 work by not getting
the depth but getting the Z ray; however, since integrating into ROS, there were some
issues, and it required time to implement it.

8.1 Future Works

The SkodRobot project (Cigarette Litter-Robot) is a project that is still under devel-
opment since, at the moment, cigarette litter identification works, although with some
false positives. In this chapter, the key points that were proposed on how to improve the
detection system were that:

• Currently, the object detection algorithm gives some false positives as seen on the
video tests. This can be improved by having images without cigarette litter and
having background images. The system is precise, but to test the model’s accuracy
(recognition rate), TN (True Negative) images are needed. The threshold value can
also be manipulated so the system can be more precise in detecting cigarette litter.
To reduce false positives, the camera’s projection also needs to be pointing towards
the surface since working in an outdoor environment, there would be too much
noise that could resemble the same colour of cigarette litter at further distances.

• Another drawback is that the camera lens that is being used to test the detection
and the distance of the cigarette litter is affected by the ultraviolet light that blinds
the sensor from working outdoors. In order to solve this, an ND filter can be a
suggestion to fix this issue.

• The dataset can also be upgraded with more classes of different types of litter, and
making more features of the types of litter that could make the model more robust
at detecting the specific litter.

60

CHAPTER 8. CONCLUSION ROB10-1062b

• The dataset can be improved by different configurations of the YOLO and doing
transfer learning. However, since the images were only augmented at 90°, 180°, and
270°, using more degrees of augmentations will lead to a robust dataset.

• The dataset can be trained on the map that was provided by Technology and the
Environment Services in Chapter 2 Figure 2.2. Since the mobile robot would work
robustly with known roads or sidewalks, it needs to detect the cigarette litter. It
can be done by taking the mobile robot to urban areas and capture videos or images
at its height. This allows exactly for the mobile robot to know how the roads or
sidewalks are based on the dataset it makes.

• The Nvidia Jetson Nano currently only gives around 10FPS with 10w mode using
DarknetROS which has a resolution size of around 416x416. This can be optimised
by using a TPU (Google Coral) or by using the TensorRT that can give 25FPS, as
seen in Figure 5.2 from the Nvidia Jetson. Whereas, adding more load, e.g. distance
estimation or coverage planning on the Nvidia Jetson Nano, could potential over
drift the system.

• When looking into training, it can be optimised by better hardware which that
could lead to faster training. In this thesis, the training was done by resizing im-
ages of 416x416. By increasing the resolution size, it could benefit a more robust
system. Although Google Colab has already been looked upon with Darknet, where
it provides a suitable cloud server hardware, the problem with Google Colab is the
run-time that stops after 12 hours and importing many images to drive sometimes
breaks the server. When testing the system, the sizing can also be modified, al-
though Nvidia Jetson Nano 416x416 is ideal; otherwise, the system will give an
error saying CUDA ran of memory (Not enough RAM).

• Using IP Camera and a dedicated system could be a possibility to improve the
system since it will work faster in real-time. Hence, instead of using Tiny-YOLOV4,
the normal YOLOV4 version could be used since it is known to be robust compared
to Tiny-YOLOV4.

• The aim is to make Section 5.2.2 distance estimation approach work instead of
getting depth from a monocular camera but to get the ray of Z. Although, Stereo
cameras can also be utilised, DarknetROS has a package and provides distance
estimation and tracking of objects[119].

Since the identification of the cigarette litter is reasonably working, the removal will be
the next step by using coverage planning and making the platform autonomous.

61

Bibliography

[1] A. A, “Solving the global litter problem,” 2016. [Online]. Available: https:
//news.janegoodall.org/2016/06/30/solving-global-litter-problem/

[2] bristolwastecompany, “The history of litter,” N/A. [Online]. Available: https:
//bristolwastecompany.co.uk/history-of-litter/

[3] P. Rubbish, “How litter affects the environment,” 2020. [Online]. Available:
https://www.paulsrubbish.com.au/how-litter-affects-the-environment/

[4] truthinitiative, “5 ways cigarette litter impacts the environment,” 2017.
[Online]. Available: https://truthinitiative.org/research-resources/harmful-effects-
tobacco/5-ways-cigarette-litter-impacts-environment

[5] M. DUNDAS, “Cigarette butts: The world’s most littered item,” 2020. [Online].
Available: https://www.france24.com/en/20200306-down-earth-cigarette-butts-
the-world-s-most-littered-item

[6] “Folketal den 1. i kvartalet efter civilstand, alder, køn, område og tid,” Danmarks
Statistik - (FOLK1A). [Online]. Available: https://www.statistikbanken.dk/folk1a

[7] velfaerdsteknologi, “Skodrobot,” 2021. [Online]. Avail-
able: https://velfaerdsteknologi.aarhus.dk/opi/velfaerdsteknologisk-opi-pulje/
2021-projekter-stoettet-af-velfaerdsteknologisk-opi-pulje/skodrobot/

[8] A. K. Jensen, C. Jørgensen, J. Thygesen, K. Hansen, and M. Tvilling,
“Udvidet producentansvar på cigaretter analyse af mulige organiserings-modeller
i danmark,” Miljøstyrelsen, Odense, Denmark, 2020. [Online]. Available:
https://www2.mst.dk/Udgiv/publikationer/2020/04/978-87-7038-181-9.pdf

[9] C. V. Waterways, “Cigarette filters,” 2021. [Online]. Available: http:
//www.longwood.edu/cleanva/cigbuttfilters.htm

[10] S. E. Dustin Poppendieck, Shahana Khurshid, “Measuring airborne emissions
from cigarette butts: Literature review and experimental plan,” 2016. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8147.pdf

[11] B. Harris, “The intractable cigarette ‘filter problem’,” 2011. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088411/

[12] P. Morris, “How cigarettes are made: A presentation by david e. merrill [parts 1-
2],” 2006. [Online]. Available: https://archive.org/details/haq23e00

[13] S. AARHUS, “Skodrobotten. måske ikke så ringe endda?” 2021. [Online].
Available: https://smart.aarhus.dk/aktuelt/2021/skodrobotten-maaske-ikke-saa-
ringe-endda/

62

https://news.janegoodall.org/2016/06/30/solving-global-litter-problem/
https://news.janegoodall.org/2016/06/30/solving-global-litter-problem/
https://bristolwastecompany.co.uk/history-of-litter/
https://bristolwastecompany.co.uk/history-of-litter/
https://www.paulsrubbish.com.au/how-litter-affects-the-environment/
https://truthinitiative.org/research-resources/harmful-effects-tobacco/5-ways-cigarette-litter-impacts-environment
https://truthinitiative.org/research-resources/harmful-effects-tobacco/5-ways-cigarette-litter-impacts-environment
https://www.france24.com/en/20200306-down-earth-cigarette-butts-the-world-s-most-littered-item
https://www.france24.com/en/20200306-down-earth-cigarette-butts-the-world-s-most-littered-item
https://www.statistikbanken.dk/folk1a
https://velfaerdsteknologi.aarhus.dk/opi/velfaerdsteknologisk-opi-pulje/2021-projekter-stoettet-af-velfaerdsteknologisk-opi-pulje/skodrobot/
https://velfaerdsteknologi.aarhus.dk/opi/velfaerdsteknologisk-opi-pulje/2021-projekter-stoettet-af-velfaerdsteknologisk-opi-pulje/skodrobot/
https://www2.mst.dk/Udgiv/publikationer/2020/04/978-87-7038-181-9.pdf
http://www.longwood.edu/cleanva/cigbuttfilters.htm
http://www.longwood.edu/cleanva/cigbuttfilters.htm
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8147.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088411/
https://archive.org/details/haq23e00
https://smart.aarhus.dk/aktuelt/2021/skodrobotten-maaske-ikke-saa-ringe-endda/
https://smart.aarhus.dk/aktuelt/2021/skodrobotten-maaske-ikke-saa-ringe-endda/

BIBLIOGRAPHY ROB10-1062b

[14] A. Kommune, “Teknik og miljø,” 2021. [Online]. Available: https://www.aarhus.
dk/om-kommunen/teknik-og-miljoe/#2

[15] A. L. André Potenza, Andrey Kiselev and A. Saffiotti, “Towards sliding autonomy
in mobile robotic telepresence – a position paper,” 2021. [Online]. Available:
https://oru.diva-portal.org/smash/get/diva2:1160505/FULLTEXT01.pdf

[16] M. E. College, “Mobile robots module 6,” 2021. [Online]. Available: https://www.
marian.ac.in/public/images/uploads/pdf/online-class/MOBILE%20ROBOTS.pdf

[17] M. M. I. Robots, “Mir a better way,” 2021. [Online]. Available: https:
//www.mobile-industrial-robots.com/en/

[18] OMRON, “Mød omrons serie af autonome mobile robotter,” 2020. [Online].
Available: https://industrial.omron.dk/da/products/mobile-robot

[19] Kuka, “mobility,” 2021. [Online]. Available: https://www.kuka.com/en-au/
products/mobility

[20] Robotics, A. G. . D. of Materials, and P. . A. University, “Robotics and automation
group,” 2013-2018. [Online]. Available: http://robotics-automation.aau.dk/

[21] enabled robotics, “enabled-robotics,” 2021. [Online]. Available: enabled-
roboticshttps://www.enabled-robotics.com/

[22] P. ROBOTICS, “Tiago,” 2021. [Online]. Available: https://pal-robotics.com/
robots/tiago/

[23] iRobot, “irobot,” 2021. [Online]. Available: https://www.irobot.dk/roomba

[24] immersive robotics, “Trash can robot,” 2016. [Online]. Available: http://immersive-
robotics.com/

[25] C. ROBOTICS, “Capra robotics,” 2021. [Online]. Available: https://capra.ooo/

[26] C. I. ApS, “Conpleks innovation aps,” N/A. [Online]. Available: https:
//conpleks.com/

[27] D. T. Institute, “The danish traffic act has changed: Now robots
can be found on the streets,” 2016. [Online]. Available: https:
//www.dti.dk/specialists/now-robots-can-be-found-on-the/43031?fbclid=IwAR3-
4wjY3RTfGCWuv7rFC0uWP3UcbQWs4ywkD6zsrEJcY22BP0UJ3EVLptU

[28] BostonDynamics, “Spot®,” 2010. [Online]. Available: https://www.
bostondynamics.com/spot

[29] anybotics, “Autonomous robots at work. anywhere.” 2020. [Online]. Available:
https://www.anybotics.com/anymal-legged-robot/

63

https://www.aarhus.dk/om-kommunen/teknik-og-miljoe/#2
https://www.aarhus.dk/om-kommunen/teknik-og-miljoe/#2
https://oru.diva-portal.org/smash/get/diva2:1160505/FULLTEXT01.pdf
https://www.marian.ac.in/public/images/uploads/pdf/online-class/MOBILE%20ROBOTS.pdf
https://www.marian.ac.in/public/images/uploads/pdf/online-class/MOBILE%20ROBOTS.pdf
https://www.mobile-industrial-robots.com/en/
https://www.mobile-industrial-robots.com/en/
https://industrial.omron.dk/da/products/mobile-robot
https://www.kuka.com/en-au/products/mobility
https://www.kuka.com/en-au/products/mobility
http://robotics-automation.aau.dk/
enabled-roboticshttps://www.enabled-robotics.com/
enabled-roboticshttps://www.enabled-robotics.com/
https://pal-robotics.com/robots/tiago/
https://pal-robotics.com/robots/tiago/
https://www.irobot.dk/roomba
http://immersive-robotics.com/
http://immersive-robotics.com/
https://capra.ooo/
https://conpleks.com/
https://conpleks.com/
https://www.dti.dk/specialists/now-robots-can-be-found-on-the/43031?fbclid=IwAR3-4wjY3RTfGCWuv7rFC0uWP3UcbQWs4ywkD6zsrEJcY22BP0UJ3EVLptU
https://www.dti.dk/specialists/now-robots-can-be-found-on-the/43031?fbclid=IwAR3-4wjY3RTfGCWuv7rFC0uWP3UcbQWs4ywkD6zsrEJcY22BP0UJ3EVLptU
https://www.dti.dk/specialists/now-robots-can-be-found-on-the/43031?fbclid=IwAR3-4wjY3RTfGCWuv7rFC0uWP3UcbQWs4ywkD6zsrEJcY22BP0UJ3EVLptU
https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
https://www.anybotics.com/anymal-legged-robot/

BIBLIOGRAPHY ROB10-1062b

[30] DustBot, “Dustbot,” 2020. [Online]. Available: http://dustbot.org/

[31] Robotech, “Dustclean,” 2021. [Online]. Available: https://www.robotechsrl.com/
dustclean-en-robot-sweeper/

[32] DustBot, “Dustbot,” 2021. [Online]. Available: https://www.robotechsrl.com/
dustcart-en-urban-robot/

[33] J. B. et al., “Deep learning based robot for automatically picking up garbage
on the grass,” 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1904/
1904.13034.pdf

[34] B. M. Aqid, “Building a smart cigarette cleaning robot in 2 weeks,” 2020.
[Online]. Available: https://bukhorimuhammad.medium.com/building-a-smart-
cigarette-cleaning-robot-in-2-weeks-936db857f310

[35] A. Robotics, “Technologies combined in one robot.” 2020. [Online]. Available:
https://angsa-robotics.com/en-de/roboter/

[36] Laptrinhx, “Artificial intelligence, machine learning, and deep learn-
ing. what’s the real difference?” 2019-2021. [Online]. Avail-
able: https://laptrinhx.com/artificial-intelligence-machine-learning-and-deep-
learning-what-s-the-real-difference-1974627010/

[37] O. Languages, “Oxford languages and google,” 2021. [Online]. Available:
https://languages.oup.com/google-dictionary-en/

[38] B. Kavindra, “What is machine learning - a brief introduction,” 2015-
2021. [Online]. Available: https://www.buddhilive.com/2020/06/what-is-machine-
learning-brief.html

[39] MATLAB, “Feature detection and extraction,” 2021. [Online]. Avail-
able: https://www.mathworks.com/help/vision/feature-detection-and-extraction.
html?s_tid=CRUX_lftnav

[40] N. Kang, “Multi-layer neural networks with sigmoid func-
tion— deep learning for rookies (2),” 2017. [Online]. Avail-
able: https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-
function-deep-learning-for-rookies-2-bf464f09eb7f

[41] F. Vázquez, “Deep learning made easy with deep cognition,” 2017. [Online]. Avail-
able: https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-
403fbe445351

[42] J. Brownlee, “How to configure the number of layers and nodes in a neural
network,” 2019. [Online]. Available: https://machinelearningmastery.com/how-to-
configure-the-number-of-layers-and-nodes-in-a-neural-network/

64

http://dustbot.org/
https://www.robotechsrl.com/dustclean-en-robot-sweeper/
https://www.robotechsrl.com/dustclean-en-robot-sweeper/
https://www.robotechsrl.com/dustcart-en-urban-robot/
https://www.robotechsrl.com/dustcart-en-urban-robot/
https://arxiv.org/ftp/arxiv/papers/1904/1904.13034.pdf
https://arxiv.org/ftp/arxiv/papers/1904/1904.13034.pdf
https://bukhorimuhammad.medium.com/building-a-smart-cigarette-cleaning-robot-in-2-weeks-936db857f310
https://bukhorimuhammad.medium.com/building-a-smart-cigarette-cleaning-robot-in-2-weeks-936db857f310
https://angsa-robotics.com/en-de/roboter/
https://laptrinhx.com/artificial-intelligence-machine-learning-and-deep-learning-what-s-the-real-difference-1974627010/
https://laptrinhx.com/artificial-intelligence-machine-learning-and-deep-learning-what-s-the-real-difference-1974627010/
https://languages.oup.com/google-dictionary-en/
https://www.buddhilive.com/2020/06/what-is-machine-learning-brief.html
https://www.buddhilive.com/2020/06/what-is-machine-learning-brief.html
https://www.mathworks.com/help/vision/feature-detection-and-extraction.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/vision/feature-detection-and-extraction.html?s_tid=CRUX_lftnav
https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/

BIBLIOGRAPHY ROB10-1062b

[43] K. Goyal, “6 types of activation function in neural networks you need to
know,” 2015-2021. [Online]. Available: https://www.upgrad.com/blog/types-of-
activation-function-in-neural-networks/

[44] S. Raval, “Which activation function should i use?” 2017. [Online]. Available:
https://www.youtube.com/watch?v=-7scQpJT7uo

[45] Z. T. et al., “Structural damage detection based on real-time vibra-
tion signal and convolutional neural network,” 2020. [Online]. Avail-
able: https://www.researchgate.net/figure/Activation-function-a-Sigmoid-b-tanh-
c-ReLU_fig6_342831065

[46] A. PAI, “Cnn vs. rnn vs. ann – analyzing 3 types of neural networks in deep learn-
ing,” 2013-2020. [Online]. Available: https://www.analyticsvidhya.com/blog/2020/
02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

[47] S. Saha, “A comprehensive guide to convolutional neural networks,” 2018.
[Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[48] J. Redmon, “Darknet: Open source neural networks in c,” 2013-2016. [Online].
Available: http://pjreddie.com/darknet/

[49] Pawangfg, “Object detection vs object recognition vs image segmentation,” 2020.
[Online]. Available: https://www.geeksforgeeks.org/object-detection-vs-object-
recognition-vs-image-segmentation/

[50] A. Rosebrock, “Sliding windows for object detection with python and opencv,”
2021. [Online]. Available: https://www.pyimagesearch.com/2015/03/23/sliding-
windows-for-object-detection-with-python-and-opencv/

[51] P. S. et al., “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” 2013. [Online]. Available: https://arxiv.org/pdf/1312.
6229.pdf

[52] L. L. et al., “Deep learning for generic object detection: A survey,” 2018. [Online].
Available: https://arxiv.org/abs/1809.02165

[53] R. Gandhi, “R-cnn, fast r-cnn, faster r-cnn, yolo — object detection algorithms,”
2018. [Online]. Available: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-
r-cnn-yolo-object-detection-algorithms-36d53571365e

[54] L. LealTaixe, “Cv3dst - two-stage object detectors,” 2020. [Online]. Available:
https://www.youtube.com/watch?v=6I3m0SsLPo4

[55] ——, “Cv3dst - one-stage object detectors,” 2020. [Online]. Available:
https://www.youtube.com/watch?v=J9LSeOGoNW0

65

https://www.upgrad.com/blog/types-of-activation-function-in-neural-networks/
https://www.upgrad.com/blog/types-of-activation-function-in-neural-networks/
https://www.youtube.com/watch?v=-7scQpJT7uo
https://www.researchgate.net/figure/Activation-function-a-Sigmoid-b-tanh-c-ReLU_fig6_342831065
https://www.researchgate.net/figure/Activation-function-a-Sigmoid-b-tanh-c-ReLU_fig6_342831065
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://pjreddie.com/darknet/
https://www.geeksforgeeks.org/object-detection-vs-object-recognition-vs-image-segmentation/
https://www.geeksforgeeks.org/object-detection-vs-object-recognition-vs-image-segmentation/
https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/abs/1809.02165
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://www.youtube.com/watch?v=6I3m0SsLPo4
https://www.youtube.com/watch?v=J9LSeOGoNW0

BIBLIOGRAPHY ROB10-1062b

[56] ProgrammerSought, “Yolo summary,” 2018-2021. [Online]. Available: https:
//www.programmersought.com/article/34194183439/

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[58] A. P. et al., “pytorch,” 2021. [Online]. Available: https://pytorch.org/

[59] G. B. team, “Tensorflow,” 2021. [Online]. Available: https://www.tensorflow.org/

[60] M. I. for Learning Algorithms (MILA) at the Université de Montréal, “Theano
(software),” 2021. [Online]. Available: https://en.wikipedia.org/wiki/Theano_
(software)

[61] F. Chollet, “Keras,” 2021. [Online]. Available: https://keras.io/

[62] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[63] Google, “What is colaboratory?” 2021. [Online]. Available: https://colab.research.
google.com/notebooks/intro.ipynb

[64] M. E. et al., “The pascal visual object classes challenge: A retrospective,” 2014.
[Online]. Available: https://link.springer.com/article/10.1007/s11263-014-0733-5

[65] O. R. et al., “Imagenet large scale visual recognition challenge,” 2014. [Online].
Available: https://arxiv.org/pdf/1409.0575.pdf

[66] T.-Y. L. et al., “Microsoft coco: Common objects in context,” 2014. [Online].
Available: Tsung-YiLin

[67] B. Z. et al., “Places: A 10 million image database for scene recognition,” 2017.
[Online]. Available: https://ieeexplore.ieee.org/document/7968387

[68] A. K. et al., “The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale,” 2018. [Online]. Available:
https://arxiv.org/pdf/1811.00982.pdf

[69] Kaggle, “Kaggle,” 2019. [Online]. Available: https://www.kaggle.com/

[70] S. Pokhrel, “Image data labelling and annotation — everything you need to know,”
2020. [Online]. Available: https://towardsdatascience.com/image-data-labelling-
and-annotation-everything-you-need-to-know-86ede6c684b1

66

https://www.programmersought.com/article/34194183439/
https://www.programmersought.com/article/34194183439/
https://pytorch.org/
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/Theano_(software)
https://keras.io/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://link.springer.com/article/10.1007/s11263-014-0733-5
https://arxiv.org/pdf/1409.0575.pdf
Tsung-Yi Lin
https://ieeexplore.ieee.org/document/7968387
https://arxiv.org/pdf/1811.00982.pdf
https://www.kaggle.com/
https://towardsdatascience.com/image-data-labelling-and-annotation-everything-you-need-to-know-86ede6c684b1
https://towardsdatascience.com/image-data-labelling-and-annotation-everything-you-need-to-know-86ede6c684b1

BIBLIOGRAPHY ROB10-1062b

[71] A. Kelly, “Training an ai to recognize cigarette butts,” 2018. [Online].
Available: https://medium.com/@aktwelve/training-an-ai-to-recognize-cigarette-
butts-5cff9e11c0a7

[72] K. Demkova, “Emily - the cigarette butt picker bot,” 2018. [Online].
Available: https://medium.com/@aktwelve/training-an-ai-to-recognize-cigarette-
butts-5cff9e11c0a7

[73] S. Majchrowska, “Trash detection - review of useful resources,” N/A. [Online].
Available: https://github.com/majsylw/litter-detection-review

[74] R. GADE, “Advanced robotic perception 4: Tracking,” 2019. [Online].
Available: https://www.moodle.aau.dk/pluginfile.php/1649761/mod_resource/
content/0/ARP4-Tracking.pdf

[75] A. Rosebrock, “Simple object tracking with opencv,” 2021. [Online]. Avail-
able: https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-
opencv/

[76] A. Konushin, “Visual object tracking,” 2021. [Online]. Avail-
able: https://www.coursera.org/lecture/deep-learning-in-computer-vision/visual-
object-tracking-KcPB8

[77] B. Georgievski, “Object detection and tracking in 2020,” 2020. [Online]. Available:
https://blog.netcetera.com/object-detection-and-tracking-in-2020-f10fb6ff9af3

[78] L. LealTaixe, “Cv3dst - object tracking,” 2020. [Online]. Available: https:
//www.youtube.com/watch?v=QtAYgtBnhws

[79] A. e. a. Milan, “Improving global multi-target tracking with local updates,” 2015.
[Online]. Available: https://vbn.aau.dk/ws/files/212438069/eccvws2014.pdf

[80] H. I. Christensen, “Visual servoing,” N/A. [Online]. Available: http://www.
hichristensen.com/CSE291-D-18-Intro-Robotics/pdf/12-visual-servoing.pdf

[81] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing: a generic
software platform with a wide class of robot control skills,” IEEE Robotics and
Automation Magazine, vol. 12, no. 4, pp. 40–52, December 2005.

[82] P. C. et al., “A new partitioned approach to image-based visual servo control,”
2001. [Online]. Available: https://ieeexplore.ieee.org/document/954764

[83] H. Choset., “Robotic motion planning: Cell decompositions,” N/A.
[Online]. Available: https://www.cs.cmu.edu/~motionplanning/lecture/Chap6-
CellDecomp_howie.pdf

[84] Stanford, “Motion planning in robotics,” N/A. [Online]. Avail-
able: https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/
robotics/basicmotion.html

67

https://medium.com/@aktwelve/training-an-ai-to-recognize-cigarette-butts-5cff9e11c0a7
https://medium.com/@aktwelve/training-an-ai-to-recognize-cigarette-butts-5cff9e11c0a7
https://medium.com/@aktwelve/training-an-ai-to-recognize-cigarette-butts-5cff9e11c0a7
https://medium.com/@aktwelve/training-an-ai-to-recognize-cigarette-butts-5cff9e11c0a7
https://github.com/majsylw/litter-detection-review
https://www.moodle.aau.dk/pluginfile.php/1649761/mod_resource/content/0/ARP4-Tracking.pdf
https://www.moodle.aau.dk/pluginfile.php/1649761/mod_resource/content/0/ARP4-Tracking.pdf
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://www.coursera.org/lecture/deep-learning-in-computer-vision/visual-object-tracking-KcPB8
https://www.coursera.org/lecture/deep-learning-in-computer-vision/visual-object-tracking-KcPB8
https://blog.netcetera.com/object-detection-and-tracking-in-2020-f10fb6ff9af3
https://www.youtube.com/watch?v=QtAYgtBnhws
https://www.youtube.com/watch?v=QtAYgtBnhws
https://vbn.aau.dk/ws/files/212438069/eccvws2014.pdf
http://www.hichristensen.com/CSE291-D-18-Intro-Robotics/pdf/12-visual-servoing.pdf
http://www.hichristensen.com/CSE291-D-18-Intro-Robotics/pdf/12-visual-servoing.pdf
https://ieeexplore.ieee.org/document/954764
https://www.cs.cmu.edu/~motionplanning/lecture/Chap6-CellDecomp_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/Chap6-CellDecomp_howie.pdf
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/robotics/basicmotion.html

BIBLIOGRAPHY ROB10-1062b

[85] H. C. et al., “Principles of robot motion,” 2005. [Online]. Available:
https://mitpress.mit.edu/books/principles-robot-motion

[86] K. Choset, “Cell decomposition methods,” N/A. [Online]. Available: http:
//www.ccs.neu.edu/home/rplatt/cs5335_fall2017/slides/cell_decomposition.pdf

[87] M. BENDT, “Wo2015197069 - chassis for vehicle,” 2015. [Online]. Available:
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015197069

[88] kk tech, “kk-tech,” 2021. [Online]. Available: http://kk-tech.dk/?page_id=136&
lang=en

[89] R. C. B. et al., “Effects of obesity and sex on the energetic cost and preferred
speed of walking,” 2006. [Online]. Available: https://journals.physiology.org/doi/
full/10.1152/japplphysiol.00767.2005

[90] Y. Yuan, “Yolo creator joseph redmon stopped cv research due to ethical
concerns,” 2020. [Online]. Available: https://syncedreview.com/2020/02/24/yolo-
creator-says-he-stopped-cv-research-due-to-ethical-concerns/

[91] A. B. et al, “Yolov4: Optimal speed and accuracy of object detection,” 2020.
[Online]. Available: https://arxiv.org/abs/2004.10934

[92] A. Bochkovskiy, “Yolo v4, v3 and v2 for windows and linux,” 2021. [Online].
Available: https://github.com/AlexeyAB/darknet

[93] M. Bjelonic, “YOLO ROS: Real-time object detection for ROS,” https://github.
com/leggedrobotics/darknet_ros, 2016–2018.

[94] J. R. et al., “You only look once: Unified, real-time object detection,” 2016.
[Online]. Available: https://arxiv.org/pdf/1506.02640.pdf

[95] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2016. [Online].
Available: https://arxiv.org/pdf/1612.08242.pdf

[96] J. R. et al., “Yolov3: An incremental improvement,” 2018. [Online]. Available:
https://arxiv.org/pdf/1804.02767.pdf

[97] C.-Y. W. et al., “Cspnet: A new backbone that can enhance learning capability of
cnn,” 2019. [Online]. Available: https://ieeexplore.ieee.org/document/954764

[98] G. Jocher, “Yolov5,” 2020. [Online]. Available: https://ultralytics.com/yolov5

[99] J. S. Joseph Nelson, “Responding to the controversy about yolov5,” 2020. [Online].
Available: https://blog.roboflow.com/yolov4-versus-yolov5/

[100] X. L. et al, “Pp-yolo: An effective and efficient implementation of object detector,”
2020. [Online]. Available: https://arxiv.org/pdf/2007.12099.pdf

68

https://mitpress.mit.edu/books/principles-robot-motion
http://www.ccs.neu.edu/home/rplatt/cs5335_fall2017/slides/cell_decomposition.pdf
http://www.ccs.neu.edu/home/rplatt/cs5335_fall2017/slides/cell_decomposition.pdf
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015197069
http://kk-tech.dk/?page_id=136&lang=en
http://kk-tech.dk/?page_id=136&lang=en
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00767.2005
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00767.2005
https://syncedreview.com/2020/02/24/yolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns/
https://syncedreview.com/2020/02/24/yolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns/
https://arxiv.org/abs/2004.10934
https://github.com/AlexeyAB/darknet
https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1612.08242.pdf
https://arxiv.org/pdf/1804.02767.pdf
https://ieeexplore.ieee.org/document/954764
https://ultralytics.com/yolov5
https://blog.roboflow.com/yolov4-versus-yolov5/
https://arxiv.org/pdf/2007.12099.pdf

BIBLIOGRAPHY ROB10-1062b

[101] Nvidia, “Jetson nano: Deep learning inference benchmarks,” 2021.
[Online]. Available: https://developer.nvidia.com/embedded/jetson-nano-dl-
inference-benchmarks

[102] J. Hui, “Real-time object detection with yolo, yolov2 and now yolov3,” 2018.
[Online]. Available: https://jonathan-hui.medium.com/real-time-object-detection-
with-yolo-yolov2-28b1b93e2088

[103] F. T. G. UP!, “Measuring size from images: A wrangle with angles and image scale,”
N/A. [Online]. Available: https://lweb.cfa.harvard.edu/webscope/activities/pdfs/
measureSize.PDF?fbclid=IwAR3WMf4U1G4JpCmGGRSFByKkLS11_pMj006_
RC1ThUnWUFn7rrtovxjlzec

[104] J. J. GUTIERREZ, “How to measure the angular size of the big dipper,”
2021. [Online]. Available: https://owlcation.com/stem/Angular-distances?fbclid=
IwAR0thZG8iXpYD7-pfHnS_e3zuGUp5SfBw7QFLh-bumSA3zY9sAu7nwchcmA

[105] S. Birchfield, “Homogeneous coordinates,” 1998. [Online]. Available: http:
//robotics.stanford.edu/~birch/projective/node4.html

[106] S. Agarwal, “How do we calculate distances of ob-
jects using monocular cameras?” 2020. [Online]. Avail-
able: https://medium.com/all-things-about-robotics-and-computer-vision/how-
do-we-calculate-distances-of-objects-using-monocular-cameras-67c4822c538e

[107] OpenCV, “Basic concepts of the homography explained with code,” N/A. [Online].
Available: https://docs.opencv.org/master/d9/dab/tutorial_homography.html

[108] M. A. H. et al., “Disnet: A novel method for distance estimation from monocular
camera,” 2018. [Online]. Available: https://project.inria.fr/ppniv18/files/2018/10/
paper22.pdf

[109] G. Jianyu, “Disnet,” 2017. [Online]. Available: https://github.com/guanjianyu/
DisNet

[110] M. A. K. et al., “An ai-based visual aid with integrated reading assistant
for the completely blind,” 2020. [Online]. Available: https://ieeexplore.ieee.org/
document/9234074

[111] P. Paul, “Object-detection-and-distance-measurement,” N/A. [Online]. Available:
https://github.com/paul-pias/Object-Detection-and-Distance-Measurement

[112] Immersivelimit, “Cigarette butt dataset trained weights,” 2015–2021. [Online].
Available: https://www.immersivelimit.com/datasets/cigarette-butts

[113] E. Pacanchique, “Kaggle - cigarette butt,” 2019. [Online]. Available: https:
//www.kaggle.com/estebanpacanchique/cigarette-butt

69

https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmarks
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://lweb.cfa.harvard.edu/webscope/activities/pdfs/measureSize.PDF?fbclid=IwAR3WMf4U1G4JpCmGGRSFByKkLS11_pMj006_RC1ThUnWUFn7rrtovxjlzec
https://lweb.cfa.harvard.edu/webscope/activities/pdfs/measureSize.PDF?fbclid=IwAR3WMf4U1G4JpCmGGRSFByKkLS11_pMj006_RC1ThUnWUFn7rrtovxjlzec
https://lweb.cfa.harvard.edu/webscope/activities/pdfs/measureSize.PDF?fbclid=IwAR3WMf4U1G4JpCmGGRSFByKkLS11_pMj006_RC1ThUnWUFn7rrtovxjlzec
https://owlcation.com/stem/Angular-distances?fbclid=IwAR0thZG8iXpYD7-pfHnS_e3zuGUp5SfBw7QFLh-bumSA3zY9sAu7nwchcmA
https://owlcation.com/stem/Angular-distances?fbclid=IwAR0thZG8iXpYD7-pfHnS_e3zuGUp5SfBw7QFLh-bumSA3zY9sAu7nwchcmA
http://robotics.stanford.edu/~birch/projective/node4.html
http://robotics.stanford.edu/~birch/projective/node4.html
https://medium.com/all-things-about-robotics-and-computer-vision/how-do-we-calculate-distances-of-objects-using-monocular-cameras-67c4822c538e
https://medium.com/all-things-about-robotics-and-computer-vision/how-do-we-calculate-distances-of-objects-using-monocular-cameras-67c4822c538e
https://docs.opencv.org/master/d9/dab/tutorial_homography.html
https://project.inria.fr/ppniv18/files/2018/10/paper22.pdf
https://project.inria.fr/ppniv18/files/2018/10/paper22.pdf
https://github.com/guanjianyu/DisNet
https://github.com/guanjianyu/DisNet
https://ieeexplore.ieee.org/document/9234074
https://ieeexplore.ieee.org/document/9234074
https://github.com/paul-pias/Object-Detection-and-Distance-Measurement
https://www.immersivelimit.com/datasets/cigarette-butts
https://www.kaggle.com/estebanpacanchique/cigarette-butt
https://www.kaggle.com/estebanpacanchique/cigarette-butt

BIBLIOGRAPHY ROB10-1062b

[114] J. Cartucho, R. Ventura, and M. Veloso, “Robust object recognition through sym-
biotic deep learning in mobile robots,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018, pp. 2336–2341.

[115] S. Charette, “Darkmark,” 2019-2021. [Online]. Available: https://www.ccoderun.
ca/darkmark/

[116] ——, “Darkhelp,” 2019-2021. [Online]. Available: https://www.ccoderun.ca/
DarkHelp/api/index.html

[117] P. V. V, “Part-2: Error analysis — the wild west. algo-
rithms to improve neuralnetwork accuracy.” 2016. [Online]. Avail-
able: https://medium.com/autonomous-agents/part-2-error-analysis-the-wild-
west-algorithms-to-improve-neuralnetwork-accuracy-6121569e66a5

[118] NVIDIA, “Getting started with jetson nano developer kit,” 2021. [On-
line]. Available: https://developer.nvidia.com/embedded/learn/get-started-jetson-
nano-devkit

[119] F. G. Ramos, “darknet_ros_3d,” N/A. [Online]. Available: https://github.com/
IntelligentRoboticsLabs/gb_visual_detection_3d

70

https://www.ccoderun.ca/darkmark/
https://www.ccoderun.ca/darkmark/
https://www.ccoderun.ca/DarkHelp/api/index.html
https://www.ccoderun.ca/DarkHelp/api/index.html
https://medium.com/autonomous-agents/part-2-error-analysis-the-wild-west-algorithms-to-improve-neuralnetwork-accuracy-6121569e66a5
https://medium.com/autonomous-agents/part-2-error-analysis-the-wild-west-algorithms-to-improve-neuralnetwork-accuracy-6121569e66a5
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
https://github.com/IntelligentRoboticsLabs/gb_visual_detection_3d
https://github.com/IntelligentRoboticsLabs/gb_visual_detection_3d

A Appendix 1 - Teknik og Miljø

Technology and the environment in Aarhus Municipality (
Teknik og Miljø - Aarhus Kommune)

Figure A.1: A Map that shows where the sweeper machine is used to clean up the roads
in Aarhus Municipality (Image taken from Teknik og Miljø - Aarhus Kommune)

71

APPENDIX A. APPENDIX 1 - TEKNIK OG MILJØ ROB10-1062b

Figure A.2: A map that shows where litter is cleaned up by hand in Aarhus Municipality
(Image taken from Teknik og Miljø - Aarhus Kommune)

72

B Appendix 2 - Darknet Setup

At first AlexeyAB Darknet Repository needs to cloned or forked[92]. The operating
system that was used for training was a Windows 10 machine.

Figure B.1: Windows 10 setup (16.0GB ram and Intel Core i7)

Figure B.1 shows the Windows 10 machine setup for training the Darknet YOLO.

Figure B.2: The files from AlexeyAB Darknet

The necessary files/folder that shall be looked upon as seen on Figure B.2 are data,
cfg, build and Makefile.

• data & cfg folder: is for Ubuntu/Google Colab configurations. data folder con-
tains the training parts which will be discussed later in this thesis and cfg folder is
the configurations files YOLO (and other).

• build folder: is for Windows configurations. Files are quite similar as seen above.
Well the most important files are ‘cfg and data’. Backup is where the weights are
outputted.

• Makefile: is also for Ubuntu/Google Colab configurations. Where e.g., the GPU=1
means its on (GPU=0 its off and maybe not available).

73

APPENDIX B. APPENDIX 2 - DARKNET SETUP ROB10-1062b

When the images are labelled as seen on Section 6.1.1 (how to label the images), there
needs to be two files that needs to be created obj.names and obj.data (essentially two
.txt files) as seen on Figure B.3. Inside the data folder in this case for Windows setup will
be in C:\(path_of_user)\darknet\build\darknet\x64\data. For Ubuntu/Google Colab
it will be in /(pathofuser)/home/darknet/data.

Figure B.3: obj.names contains the class names and obj.data contains the classes, train,
val and backup paths to start training.

There also needs to be a training .txt file and validation .txt file this contains all the
path image files location e.g., 80% for training and 20% for validation can be chosen for
training.

Figure B.4: Example of train and val images paths.

To train darknet YOLOV2, V3 and V4 the pre-trained weights for the convolutional
layers are needed darknet19 for YOLOV2, darknet53 for YOLOV3 and CSPdarknet53
for YOLOV4.

74

APPENDIX B. APPENDIX 2 - DARKNET SETUP ROB10-1062b

Figure B.5: Pre-trained weights for convolutional layers[92]

When everything is set it then needs to be built on an IDE e.g., visual studio where
the ’release and x64’ needs to be set.

To start the training. The following command needs to be typed on the command
line from the path x64: darknet.exe detector train data/obj.data data/yolov3-
tiny.cfg darknet53.conv.74 -map as seen in Figure B.6.
Hence this trains only for Tiny-YOLOV3. To train for other YOLOS the cfg path and
pre-trained weights for the convolutional layers needed to be modified.

Figure B.6: Example command initiated for training.

The -map is the mAP (mean average precision) flag to helps to visualise training
vs validation. There are several commands for testing on images, videos, and live video
feed (webcam) testing. When testing, the threshold value can also be adjusted so that
bounding-boxes do not appear at certain confidence. That can be found on Alexey
Bochkovskiy repository[92].

75

C Appendix 3 - DarkMark & DarkHelp

Figure C.1: DarkMark Review/Statistics on Kaggle and Synthetic Dataset

C.1 DarkMark Review

Figure C.2: Yellow (Orange) Butts

76

APPENDIX C. APPENDIX 3 - DARKMARK & DARKHELP ROB10-1062b

Figure C.3: White Butts

Figure C.4: Snus

77

APPENDIX C. APPENDIX 3 - DARKMARK & DARKHELP ROB10-1062b

Figure C.5: Cigarette Butts

C.2 DarkMark Statistics

Figure C.6: Validation 15%

Figure C.7: Train 70%

Figure C.8: Validation with Rotations 15% (90, 180 and 270 degrees)

Figure C.9: Train with Rotations 70% (90, 180 and 270 degrees)

78

D Appendix 4 - Darknet Training Results

This shows the training outcomes of different weights that was produced during this
thesis. The outcomes show the results that gets printed after a weight has finished doing
its last weight/final weight or iteration (duration). It uses only the training data and the
validation data to get the statics of precision, recall, F1-score and average IOU (printed
on terminal and shows a graph (training vs. validation)).

The training of Tiny-YOLOV2, V3 and V4 was carried out with random = 1 and
with an iteration (duration) of 20000 iterations. Shown Table D.1.

Tiny-YOLOV2 Tiny-YOLOV3 Tiny-YOLOV4

Kaggle Dataset

Last Accuracy mAP = 62.53%
Best mAP = 72.93%

class_id = 0 name = Cigarette_Butt
precision = 0.92
recall = 0.47
F1-score = 0.62
TP=93, FP=8 and FN=107
average IOU=68.35%

Last Accuracy mAP = 87.73%
Best mAP = 93.07%

class_id = 0 name = Cigarette_Butt
precision = 0.99
recall = 0.75
F1-score = 0.85
TP =150, FP=1 and FN=50
average IOU=78.12%

Last Accuracy mAP = 97.88%
Best mAP = 99.61%

class_id = 0 name = Cigarette_Butt
precision = 1.00
recall = 0.92
F1-score = 0.96
TP=184, FP=0 and FN=16
average IOU=80.91%

Synthetic Dataset

Last Accuracy mAP = 53.18%
Best mAP = 59.29%

class_id = 0 name = Cigarette_Butt
precision = 0.96
recall = 0.41
F1-score = 0.58
TP=235, FP=9 and FN=335
average IOU=70.93%

Last Accuracy mAP = 72.28%
Best mAP = 80.64%

class_id = 0 name = Cigarette_Butt
precision = 0.99
recall = 0.56
F1-score = 0.71
TP=317, FP=4 and FN =253
average IOU=76.99%

Last Accuracy mAP = 82.60%
Best mAP = 94.01%

class_id = 0 name = Cigarette_Butt
precision = 0.83
recall = 0.78
F1-score = 0.80
TP=443, FP=89 and FN=127
average IOU = 65.42%

Table D.1: Training Tiny-YOLOV2, V3 and V4

This training was based on whether Random = 1 and Random = 0 affects the training.
The duration that was taken was 8000 iteration which the minimum for 4 classes. The
current average loss also tells how much the dataset has been trained. Shown Table D.2.

79

APPENDIX D. APPENDIX 4 - DARKNET TRAINING RESULTS ROB10-1062b

Tiny-YOLOV4

Random = 0
8000 iterations

Last Accuracy mAP = 53.69%
Best mAP = 58.67%

class_id = 0 name = Yellow_Butt
class_id = 1 name = White_Butt
class_id = 2 name = Snus
class_id = 3 name = Cigarette_Butt
precision = 0.77
recall = 0.58
F1-score = 0.66
TP=784, FP=220 and FN=529
average IOU=62.62%
current average loss = 0.2136

Random = 1
8000 iterations

Last Accuracy mAP = 54.82%
Best mAP = 59.27%

class_id = 0 name = Yellow_Butt
class_id = 1 name = White_Butt
class_id = 2 name = Snus
class_id = 3 name = Cigarette_Butt
precision = 0.86
recall = 0.55
F1-score = 0.67
TP=693, FP=113 and FN=577
average IOU = 75.20%
current average loss = 0.3304

Table D.2: Training of Tiny-YOLOV4

This training was based data augmentation. The duration that was taken was 50000
iteration for random = 1 and 0. It was later decided to continue from the weight trained
with random = 0 to train with random = 1 changing the configuration file for another
50000 iteration. That led to 100000 iterations also known as transfer learning. Shown
Table D.3.

80

APPENDIX D. APPENDIX 4 - DARKNET TRAINING RESULTS ROB10-1062b

Tiny-YOLOV4

Random = 0
50000 iterations

Last Accuracy mAP = 40.76%
Best mAP = 50.76%

class_id = 0 name = Yellow_Butt
class_id = 1 name = White_Butt
class_id = 2 name = Snus
class_id = 3 name = Cigarette_Butt
precision = 0.74
recall = 0.45
F1-score = 0.56
TP=12031, FP=4183 and FN=14932
average IOU=60.04%
current average loss = 0.0716

Random = 1
50000 iterations

Last Accuracy mAP = 73.99%
Best mAP = 74.17%

class_id = 0 name = Yellow_Butt
class_id = 1 name = White_Butt
class_id = 2 name = Snus
class_id = 3 name = Cigarette_Butt
precision = 0.81
recall = 0.78
F1-score = 0.79
TP=21024, FP=4993 and FN=5939
average IOU = 66.48%
current average loss = 0.4345

Transfer Learning
100000 iterations

Last Accuracy mAP = 74.87%
Best mAP = 78.21%

class_id = 0 name = Yellow_Butt
class_id = 1 name = White_Butt
class_id = 2 name = Snus
class_id = 3 name = Cigarette_Butt
precision = 0.89
recall = 0.46
F1-score = 0.60
TP = 12314, FP =1520 and FN =14649
average IOU = 71.54%
current average loss = 0.3616

Table D.3: Training of Tiny-YOLOV4 with Data Augmentation

81

E Appendix 5 - Code, Dataset & Tests

Everything to get started with Darknet, Labelling, Datasets (and weights) and Dark-
netROS is explained in this repository.

Code: https://github.com/Mathiebhan/darknet_ros

Test Video: https://youtube.com/playlist?list=PLSG9gXgVHC2OKNinlJHKMO8baoJVxkl3G

E.1 CSI camera Lens Testing

The setup of the CSI camera lens testing. The lens that CSI camera uses is by
ArduCam.

Figure E.1: CSI Lenses from Arducam

The test setup of the various lens of the CSI camera. The tests were done based on
weights from section 7.1 step 1. This weight only had one class.

82

APPENDIX E. APPENDIX 5 - CODE, DATASET & TESTS ROB10-1062b

Figure E.2: CSI Lens Test Setup

83

APPENDIX E. APPENDIX 5 - CODE, DATASET & TESTS ROB10-1062b

E.2 Distance estimation

The two methods that was tested and implemented to estimate the distance of the
cigarette litter (implementation was not fully done).

Figure E.3: Based on Section 5.2.1 - Measuring Size and Distance from Images

Figure E.4: Based on Section 5.2.3 - Method 2 by M. A. Khan et al.[110]

84

List of Figures

1.1 Construction of a Cigarette Butt[10] . 2

2.1 Sweeper and a blower is used to clean the litter. 3
2.2 The areas that are payed by the technology and the environment in Aarhus

Municipality to clean the public areas. (Image taken from Teknik og Miljø
- Aarhus Kommune) . 4

3.1 The two robots that are designed and developed by ROBOTECH. 8
3.2 The subsets of artificial intelligence[36] . 9
3.3 A neural network [40] . 11
3.4 A Neural Network and Deep Neural Network [41] 11
3.5 (a)Sigmoid function, (b)Tanh function and (c)ReLU function[45] 12
3.6 Pipeline of Convolutional Neural Network (CNN)[47] 13
3.7 Pipeline of Object Detection[49] . 14
3.8 Two-stage detection framework . 15
3.9 One-stage detection framework . 15
3.10 Current State of The Art Object Detection and Segmentation Algorithms.

The ones in red are still in use and ones in black are not in use[56]. 16
3.11 Traditional Machine Learning Vs. Deep Learning[46] 18
3.12 Complete Coverage[83][85] . 22

4.1 The generations of Capra Hircus. Generation P1.0 on the far right and
P4.0 on the left[25] . 25

4.2 The hardware is provided by Capra Robotics. (The Black Mounts for the
hardware 3D printed by the Author of this Thesis) 26

4.3 Vacuum system to collect the cigarette litter. On top of the robot is the
vacuum system and on the bottom is the tool to collector the cigarette
litter. 27

5.1 Method that will be used to detect and remove the cigarette litter 29
5.2 Deep Learning Inference (Batch size 1 and FP16 precision) - Nvidia Jetson

Nano Benchmark (10W performance mode)[101] 31
5.3 YOLO - SxS Grid cell (3x3) with bounding box (black box) and Ground

truth (blue) with the person inside. 32
5.4 Angular Size of a single object (on the right) and Angular Distance of two

objects (on the left)[104] . 33
5.5 Camera model - 3D Coordinate System of the world on the right and on

the left is the 2D Coordinate System of the image on the screen. 34
5.6 Practical Origin and Computational Origin 36
5.7 Part 1 - 3D world coordinates, Camera coordinates and object point co-

ordinates(Xw). 37

85

LIST OF FIGURES ROB10-1062b

5.8 Part 2 - Camera coordinates is translated to the 3D world coordinates.
Part 3 - Its then rotated with with rotation matrix. 37

5.9 Capra Hircus - Camera Projecting at the Cigarette litter. Where D is
Distance, A is Angle and H is Height. 39

5.10 M. A. Khan et al.[110] approach for distance estimation. Image shows how
the image and corresponding angles look when enters through a lens[111] . 41

6.1 Sequence of steps to make the object detection of cigarette litter. 43
6.2 BBOX labeller tool[114] . 44
6.3 DarkMark labelling tool . 45
6.4 Configuration files (Parameter file) for Tiny-YOLOV3 and Tiny-YOLOV4

(not full version)[92] . 46
6.5 An example how the training output graph will show when training (not

exactly this graph)[117] . 47
6.6 The structure of a ROS workspace . 48
6.7 Packages used on ROS workspace . 49
6.8 Joystick Controller and the Nvidia Jetson Nano mounted on the Capra

Hircus . 49

7.1 Indoor Testing of detection and distance 55
7.2 Outdoor Testing of detection and distance 55
7.3 The real-time test setup for distance measuring. 56

A.1 A Map that shows where the sweeper machine is used to clean up the
roads in Aarhus Municipality (Image taken from Teknik og Miljø - Aarhus
Kommune) . 71

A.2 A map that shows where litter is cleaned up by hand in Aarhus Munici-
pality (Image taken from Teknik og Miljø - Aarhus Kommune) 72

B.1 Windows 10 setup (16.0GB ram and Intel Core i7) 73
B.2 The files from AlexeyAB Darknet . 73
B.3 obj.names contains the class names and obj.data contains the classes,

train, val and backup paths to start training. 74
B.4 Example of train and val images paths. 74
B.5 Pre-trained weights for convolutional layers[92] 75
B.6 Example command initiated for training. 75

C.1 DarkMark Review/Statistics on Kaggle and Synthetic Dataset 76
C.2 Yellow (Orange) Butts . 76
C.3 White Butts . 77
C.4 Snus . 77
C.5 Cigarette Butts . 78
C.6 Validation 15% . 78
C.7 Train 70% . 78
C.8 Validation with Rotations 15% (90, 180 and 270 degrees) 78

86

LIST OF FIGURES ROB10-1062b

C.9 Train with Rotations 70% (90, 180 and 270 degrees) 78

E.1 CSI Lenses from Arducam . 82
E.2 CSI Lens Test Setup . 83
E.3 Based on Section 5.2.1 - Measuring Size and Distance from Images 84
E.4 Based on Section 5.2.3 - Method 2 by M. A. Khan et al.[110] 84

87

List of Tables

3.1 Differences between Machine Learning and Deep Learning 17
3.2 Popular databases for object recognition[52] 18
3.3 Adaptive cell decomposition vs. Exact cell decomposition[86] 22

4.1 The table shows the specification of the provided hardware for this project. 26

6.1 Datasets of Cigarette Litter . 43

7.1 Comparison of Tiny-YOLOV2, V3 and V4 with (Appendix D) 50
7.2 The datasets are broken down to 70% training, 15% validation and 15%

testing . 51
7.3 Training based on Random = 0 and Random = 1 (Appendix D) 51
7.4 Training and validation was augmented 90, 180 and 270 degrees. 52
7.5 Final Weights (Appendix D) . 52
7.6 Results after testing on 15% test images 53
7.7 Precision, Recall and F1 score after testing on 15% test images 53
7.8 Nvidia Jetson Nano - FPS (Frame per second) testing on DarknetROS.

(HM - Headless Mode) . 54
7.9 CSI camera lens testing . 54

D.1 Training Tiny-YOLOV2, V3 and V4 . 79
D.2 Training of Tiny-YOLOV4 . 80
D.3 Training of Tiny-YOLOV4 with Data Augmentation 81

88

	Titlepage
	Introduction
	What is a Cigarette Butt?

	SkodRobot Project
	Technology and the Environment

	State of The Art
	Mobile Robots
	Indoor Mobile Robots
	Outdoor Mobile Robots
	Legged Robots
	Current Research Projects

	Object Detection and Segmentation
	Machine Learning Overview
	Neural Network & Deep Learning
	Object detection and segmentation with CNNs
	Machine and Deep Learning Tools
	Comparison between Traditional Machine Learning and Deep Learning
	Datasets
	Current Research Projects

	Object Tracking
	Types of Tracking
	Visual Tracking and Visual Servoing
	Distance estimation vs. Visual Tracking and Servoing

	Coverage Planning
	Coverage on Sidewalks

	Problem Formulation
	Project Hardware
	Requirement Specification

	Methods
	Detection of Cigarette Litter
	YOLO - How it works

	Localisation of Cigarette Litter
	Measuring Size and Distance from Images
	2D to 3D Monocular Distance
	Localising with Convolution Neural Networks

	Implementation
	Used Datasets
	Labelling Tool

	Darknet YOLO
	Nvidia Jetson Nano Setup
	Capra Hircus Setup

	Testing & Results
	Training Results
	Testing on Test Images

	Nvidia Jetson Nano Testing
	CSI Camera Lens Testing
	Description of the Video Tests
	Testing Based on Requirements

	Conclusion
	Future Works

	Bibliography
	Appendix 1 - Teknik og Miljø
	Appendix 2 - Darknet Setup
	Appendix 3 - DarkMark & DarkHelp
	DarkMark Review
	DarkMark Statistics

	Appendix 4 - Darknet Training Results
	Appendix 5 - Code, Dataset & Tests
	CSI camera Lens Testing
	Distance estimation

	List of Figures
	List of Tables

