
Packet Based Time
Synchronisation

Project Report
Group 1073

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg

Copyright © Aalborg University 2021

This report was written in LaTeX using Overleaf licensed to all students at Aalborg University.

Department of Electronic Systems
Fredrik Bajers Vej 7B
DK-9220 Aalborg Ø

http://es.aau.dk

Title:
Packet Based Time Synchronisation

Theme:
Time Synchronisation

Project Period:
Spring Semester 2021

Project Group:
Group 1073

Participant:
Magnus Bøgh Borregaard Christensen

Supervisors:
Petar Popovski
Anders Ellersgaard Kalør
Tomasz Podzorny (CERN)

Page Numbers: 70

Date of Completion:
June 17, 2021

Abstract:

This thesis concludes a nine months re-
search, design and evaluation of a packet
based synchronisation solution for a new
data acquisition system being developed by
the TE-MPE-EP section at CERN. Prior
to this thesis, a synchronisation test sys-
tem was developed applying the IEEE 1588
standard to measure the time difference be-
tween two clocks in a network. In this the-
sis the causes of time drift between disjoint
clocks is thoroughly analysed theoretically.
Subsequently, the theory is applied to iden-
tify and quantify the noise sources present
in our test system. Based on these measure-
ments, it was found that quantisation in
the IEEE 1588 timestamping logic was the
main source of error. Additionally, when
exposed to high network load, timestamp-
ing is distorted by irregularly occurring out-
liers. Finally, to implement synchronisa-
tion, a rudimentary control solution using
the inferred time offsets between the sys-
tem clocks was added. This control proved
effective and demonstrated highly accurate
synchronisation with a time error in the or-
der of 100’s of nanoseconds is attainable;
meeting the design objectives. The results
of the thesis will be implemented in the
coming months.

The content of this report is freely available, but publication (with reference) requires an agreement with
the author.

http://es.aau.dk

Abbreviations

ADEV Allan Deviation

AVAR Allan Variance

CERN The European Organisation for Nuclear Research

CTR Central Time Receiver

DQAME Data Acquisition Board

FDPLL Fractional Digital Phased Locked Loop

FEC Front End Computer

FM Frequency Modulated

HL-LHC High Luminosity Large Hadron Collider

LHC Large Hadron Collider

MAD Median Absolute Deviation

MTIE Maximum Time Interval Error

NIC Network Interface Card

PDV Packet Delay Variation

PI Proportional-Integral

PM Phase Modulated

PPS Pulse Per Second

PTP Precision Time Protocol

TDEV Time Deviation

TE-MPE-EP Technology Department, Machine Protection and Electrical Group, Elec-
tronics for Protection Section

TIE Time Interval Error

TSU Time Stamping Unit

iii

Contents

Abbreviations iii

1 Introduction 1

2 Problem 3

3 Clock Noise Error Sources 6

3.1 Theoretical Aspects . 6

3.2 Practical Considerations . 11

4 Offset Estimation Methods 14

4.1 Pulse Based . 14

4.2 Precision Time Protocol . 16

5 System Overview 19

6 Noise Characterisation 22

6.1 Clock Noise Measurements . 22

6.2 Nominal PTP Noise . 34

6.3 PTP Load Tests . 38

7 Control 49

7.1 Clock Control . 49

7.2 Control . 52

7.3 Steady State Error . 58

7.4 Closed Loop Noise Measurements . 62

iv

Contents

8 Conclusion 68

Bibliography 70

v

Chapter 1

Introduction

The European Organisation for Nuclear Research (CERN) is in the process of developing
the technologies required to upgrade their state-of-the-art particle accelerator, the Large
Hadron Collider (LHC). This upgraded machine, known as the High Luminosity Large
Hadron Collider (HL-LHC) aims to increase the number of particle collision (formally
referred to as luminosity) by a factor of 10 with the goal of increasing the number of
observations of rare particle phenomena. While the actual installation is expected to
commence in 2027, the various engineering sections at CERN are already diligently working
towards this milestone.

One aspect of this upgrade involves the modernization of the data acquisition system used
for monitoring the LHC’s quench detection systems. Currently this system is based on an
old Fieldbus network, and bandwidth limited to 1 kbit/s. To bring the data acquisition
system into the 21st century, the TE-MPE-EP section at CERN is working on a replace-
ment based on Ethernet and IP traffic. It is anticipated that this approach will improve
data acquisition in several key areas, including bandwidth, synchronisation accuracy, and
network flexibility.

While the ultimate goal of the new data acquisition system is the deployment in HL-LHC
for the purpose of quench detection monitoring, there are other activities at CERN that
may benefit from the system. One of these is CERN’s state-of-the-art superconducting
magnetic test facilities, known as SM18. To perform testing, SM18 uses the equipment
developed for quench detection to probe and measure the voltage across magnets. SM18
wishes to take advantage of the new data acquisition system to improve test flexibility and
allow for easy and high precision synchronisation of different test equipment. It is currently
envisaged that deployment of this new system in SM18’s test facilities will begin in the
summer of 2021 with the time synchronisation component from the work covered in this
thesis. The adoption of the acquisition system within SM18 presents a great opportunity
to test, validate, and mature the system before installation in HL-LHC.

The development and deployment of the new data acquisition system is a sizeable under-
taking that requires a broad and multifaceted development effort. Aspects include areas
such as hardware development of the acquisition cards, protocol development, methods
to store the acquired data, and many more. This thesis focuses on the development and
implementation of synchronisation techniques for the data acquisition system’s acquisition
cards.

Synchronisation of the nodes in the data acquisition system is critical to establish co-
herent collection of data from multiple different nodes in the system. Furthermore, to

1

ensure compatibility with CERN’s infrastructure, and allowing for comparison with other
timestamped data collected at CERN, the nodes in the system should be synchronised to
CERN’s central time network.

Key background work into hardware design, choice of synchronisation technology, overall
system setup, and the experimental setup are documented in the previous interim report
[1]. This thesis builds on the foundation of the previous work by thoroughly documenting
the system noise, and taking steps to implement synchronisation techniques on the data
acquisition cards.

The thesis is structured as follows. First, the need for synchronisation to counter clock
errors is explained in chapter 2. Subsequently, fundamental background knowledge on
clock error sources is detailed in chapter 3. Chapter 4 goes on to describe practical
methods that allows for the time offset between two clock to be measured. Chapter 5
introduces the existing system setup, as well as the requirements and constraints that the
system must adhere to. This chapter is inspired by the contents of the previously written
interim report. Following, chapter 5 goes on to identify and quantify key noise present in
the system when no control is applied. This leads into chapter 6, where control is applied
and the quality of the attained synchronisation is measured. Finally, chapter 8 concludes
the thesis.

2

Chapter 2

Problem

This chapter explores how oscillators do not track time perfectly, and why synchronisation
is necessary to ensure the accuracy of long term time tracking.

Initially, an ideal oscillator is considered [2, p. 1]:

v(t) = V0 cos (2π(f0t+ ψ0)) (2.1)

where:

v(t) models an ideal sinusoidal oscillator

t is elapsed time

V0 is the amplitude

f0 is the nominal frequency

ψ0 is the initial phase at t = 0

The above model models the signal level of v(t), and does not inherently track time. To
obtain a metric for elapsed time, the phase of v(t) must be considered:

f(t) = f0t+ ψ0 (2.2)

where:

f(t) is the phase of v(t)

Here f(t) is continuous function of time that can take on any value between [−∞,+∞]. It
represents the unwrapped phase of v(t) and should not be confused with wrapped phase
which is constrained to [0, 2π) (or in this case [0, 1) as f(t) is normalized with respect to
2π). As phase is directly proportional with time, the two units are effectively synonymous.

The above model models an ideal oscillator, however real-life clock implementations are
imperfect and subject to noise, impacting their time and frequency accuracy. These im-
perfections cause a variety of different deterministic and random fluctuations, modelled
by substituting φ0 in equation (2.1) with a random process, φ(t) [2, p. 2] [3, p. 2]:

3

x(t) = f0t+ ψ(t)
f0

= t+ φ(t) (2.3)

where

x(t) is a realistic model of f(t). It is normalized with respect to operating frequency f0.

ψ(t) is a random process modelling all phase deviations from ideal time source, f(t).

φ(t) = ψ(t)
f0

. I.e. it is the frequency normalized ψ(t).

φ(t) causes a clock to deviate from the ideal, thus necessitating periodic re-synchronisation
to maintain accuracy over long-time scales. Figure 2.1 illustrates this principle.

Actual time

T
im

e
m

ea
su

re
d

by
 c

lo
ck

Progressed time vs time measured by clock

Figure 2.1: Illustration of a real clock deviating from an ideal reference, and an example of a synchronised
time signal.

As seen in figure 2.1 synchronisation is achieved by continuously changing the clock fre-
quency of the clock to try and match that of the reference. Such synchronisation requires
the use of some kind of control system that can steer the clock towards the reference. This
is achieved using a control loop, as shown in figure 2.2.

4

+ Offset
Estimator Controller Clock + x(t)f(t)

φ(t)η(t)

Figure 2.2: Block diagram of a controller used for synchronising a clock to a reference. η(t) is propaga-
tion/measurement noise introduced when measuring the value of f(t).

This loop is composed of three distinct parts:

1. A method to estimate how much the clock under test deviates from the reference.

2. A controller that calculates a new target frequency of the clock.

3. A clock with a variable frequency.

Theoretically, such a synchronisation scheme would make it possible to counter all the
fluctuations introduced by φ(t). However, to achieve this would require the use of a control
loop with infinite bandwidth. In practice, clock synchronisation uses discrete control and
the controllable bandwidth of φ(t) is limited by factors such as the synchronisation period
(sample frequency), the degree of control over the clock rate, as well as the accuracy of the
offset estimate between the real and reference clock. The value and behaviours of η(t) limits
the offset accuracy of the offset estimate. This is the noise that is present when measuring
the values of f(t). The type and amount of noise primarily relies on the measurement
method. This is technology dependent and varies greatly. It has previously been decided
to use the Precision Time Protocol (PTP) to facilitate the timestamping and transport
of f(t) to the control loop logic located in the slave clock. This relies on packet based
networking and as such is subject to standard traffic jitter that impacts the measurement
accuracy of f(t). PTP was chosen as it is a mature and well proven technology. Further, it
is supported by industry and can facilitate sub microsecond synchronisation. While a PTP
system is specifically considered in this thesis, all the presented theory is implementation
agnostic and should apply to other technologies.

5

Chapter 3

Clock Noise Error Sources

In this chapter, the clock error sources are described. First, the theoretical aspects of
various deterministic and stochastic error sources are covered. Following, more practical
considerations regarding digital implementations and measurements noise is covered.

3.1 Theoretical Aspects

Generally it can be said that φ(t) models the frequency stability of a clock, where frequency
stability is defined as "The degree to which an oscillating signal produces the same value
of frequency for any interval, τ , throughout a specified period of time" [3, p. 2]. This
definition as well as subsequent characterisation focuses on the frequency fluctuations of
φ(t), i.e. the first derivative of φ(t), φ̇(t) . While this is a good and common way to
describe how φ(t) varies in oscillators, ultimately it is the deviation of φ(t) itself that
matters when it comes to synchronisation.

As φ(t) encompasses the errors found in the behaviour of real clocks, it is impossible to
provide a comprehensive description of φ(t). However, a variety of tools and methods that
allows one to characterise φ(t) to a high degree are available. Generally, φ(t) is considered
as the sum of various deterministic and stochastic components that in principle allows φ(t)
to take on any real value in the range [−∞,∞] [3, p. 9]. The deterministic and stochastic
components are considered separately, and of the two, the deterministic fluctuations are
usually the dominant source of error.

The primary deterministic error source is usually a constant offset in operating frequency
of an oscillator as compared to the designed nominal frequency [3, p. 10]. While an offset
is not a frequency fluctuation, it causes a phase fluctuation in the form of a linear increase
in the phase error. The predominant cause of frequency offset is from variations in the
manufacturing process. For example, in crystal oscillators, variations in crystal cuts will
cause the oscillator frequency to deviate from the nominal [4, p. 7]. In addition to a con-
stant frequency offset, oscillators also undergo a linear drift in operating frequency. Aging
is the prominent cause of linear drift [4, p. 11] and results in a quadratically increasing
phase error. Linear drift is very slow and is usually measured in the timescale of days or
even years.

Characterising the random components of φ(t) is a somewhat more complicated endeav-
our than its deterministic counterparts. Stochastic processes can be characterized in a
variety of ways, however over time it has been found that φ(t) can be well modelled using

6

3.1. Theoretical Aspects

a combination of power law noise processes [3, p. 10]. Power law noise processes are char-
acterized by having a power spectral density that adheres to a power law. Generally, five
distinct power law processes are considered. These power law noise processes are combined
through summations to form a characterization of the frequency spectrum of φ(t):

Sy(f) =
2∑

i=−2
hif

i (3.1)

where

Sy(f) is the single sided power spectral density of the frequency noise of φ(t)

f is frequency

hi is the intensity constant of the ith power law

Each power law is listed in table 3.1 along with their associated single sided frequency
power spectrum, Sy(f).

Table 3.1: Power Spectral Density and Allan Variance of different power law noise processes. [2, p. 31]

Noise Type Sy(f) σ2
y(τ)

White Phase Modulation h2f
2 k1τ

−2

Flicker Phase Modulation h1f
1 k2τ

−2

White Frequency Modulation h0 k3τ
−1

Flicker Frequency Modulation h−1f
−1 k4

Random walk Frequency Modulation h−2f
−2 k5τ

To promote further intuition of the behaviour of the aforementioned power law processes,
a time domain realisation of each of processes is shown in figure 3.1.

7

3.1. Theoretical Aspects

Realisation of Different Power Law Processes

Figure 3.1: Realisation of the five different kinds of power law noise shown in table 3.1.

The exact causes of these distinct noise processes are an ongoing area of study, however
certain relations are known. For example, flicker and white Phase Modulated (PM) noise
appears caused by noisy electronics in the amplification stages of an oscillator, whereas
random walk Frequency Modulated (FM) is often attributed to environmental factors such
as vibration, temperature and humidity [3, p. 38].

When Sy(f) is plotted on a log-log plot, the slope of the spectrum helps identify the
dominating power law noise in each part of the spectrum. Figure 3.2 illustrates this.

8

3.1. Theoretical Aspects

Spectral Density of Power Law Noise's Commonly Found in Oscillators

Figure 3.2: Log-log plot of the power spectral density of the frequency of φ(t). The contribution of the
various power law noise processes is highlighted.

In figure 3.2, Sy(f) is designed such that each of the five power law noise processes has
region of bandwidth where they are the dominating process. This may not be the case
for real oscillators, and it is possible only a subset of the power law noise processes is
observable.

As all the above power law noise processes have a time invariant power spectrum, one may
think that these are weak sense stationary processes. However, random walk and flicker
FM processes clearly do not have a time invariant mean, and as such are non-stationary.
Instead random walk FM and Flicker FM are part of a special class of processes that have
a time-invariant spectrum and auto-correlation yet are not stationary [5].

While Sy(f) completely characterises the stochastic nature of φ(t) this rarely finds use in
practical characterisation of the mid to low frequency behaviour φ(t) of real oscillators.
This is because the presence of non-stationary flicker and random walk processes makes it
difficult to accurately measure Sy(f) due to the processes diverging behaviour as f → 0.
Furthermore, the contributions of these noise processes also cause common statistical
descriptors such as standard deviation to diverge [3, p. 12]. This diverging nature makes
it difficult to rely on such descriptors when characterising oscillators as it is hard to
perform accurate and repeatable measurements. To overcome this, engineers have created
a variety of alternative statistical measures. The most popular of these is the Allan
Variance (AVAR). The definition of AVAR is as follows [2, p. 25] :

σ2
y(τ) = 1

2E
[
(y(t+ τ, τ)− y(t, τ))2

]
(3.2)

where

9

3.1. Theoretical Aspects

σ2
y(τ) is the Allan variance measured at timescale τ

E[] is the expected value over all time, t

y(t, τ) = φ(t+τ)−φ(t)
τ i.e. the average frequency between time t and t+ τ

Analogously to normal variance and standard deviation, the Allan Deviation (ADEV) is
defined as the square root of the AVAR. Equation (3.2), can be interpreted as the variance
of the first difference of y(t, τ), plus some bias. Differencing y(t, τ) makes the time series
data stationary thus allowing σ2

y(τ) to converge.

As this thesis primarily deals with phase deviations as opposed to frequency deviations,
it is often convenient to express the Allan variance in terms of φ(t):

σ2
y(τ) = 1

2E
[
(y(t+ τ, τ)− y(t, τ))2

]
= 1

2E
[(

φ(t+ 2τ)− φ(t+ τ)
τ

− φ(t+ τ)− φ(t)
τ

)2]

= 1
2τ2E

[
(φ(t+ 2τ)− 2φ(t+ τ) + φ(t))2

]
(3.3)

σ2
y(τ) is usually plotted on a log-log plot over a range of τ ’s. This plot is named a "Sigma-

Tau" plot and is exemplified in figure 3.3. Like in the plot of Sy(f), the dominating power
law noise processes are identified from the curve’s varying slope. Similar to Sy(f), each of
the five power law noise processes have a well defined impact on σ2

y(τ). The relationship
between Sy(f) and σ2

y(τ) is shown in table 3.1.

Allan Variance of Power Law Noise Processes

Figure 3.3: Sigma-Tau plot of the Allan Variance φ(t). The contribution of the various power law noise
processes is highlighted.

10

3.2. Practical Considerations

As is evident from figure 3.3 and table 3.1, flicker and white PM noise have a very similar
slope on a Sigma-Tau plot. This can make it hard to discern them and separate their in-
dividual noise contribution. When performing oscillator design, this can render it difficult
to identify noisy components. To overcome this, different variants of AVAR are commonly
used. For example, the Modified Allan Variance allows for easier separation of these two
noise processes. Other variations of AVAR have also been created for purposes such as
improving the statistical significance of measurement, for measuring phase fluctuations
instead of frequency fluctuations, or for taking the second difference of y(t, τ) as opposed
to just the first difference [2][6]. Further details of these variations of AVAR are outside
the scope of this thesis.

3.2 Practical Considerations

Thus far oscillator phase, x(t), and phase error, φ(t) were considered theoretically. How-
ever, as an oscillator provides no inherent way to extract the phase at a given time,
additional processing is required to extract the phase of an oscillators periodic output.
In digital electronic devices this is done discretely where time is tracked through periodi-
cally occurring events in the oscillator waveform, commonly called clock ticks. The time
resolution of each ’tick’ is dependent on the underlying oscillator’s clock frequency. For
example, for a 100MHz clock, each tick corresponds to 10 ns. Mathematically, these clock
ticks are related to the continuous representation phase, x(t), according to:

x̂(t) = bt+ φ(t)cc (3.4)

where:

b cc floors to the nearest value exactly divisible by c. i.e. bxcc = x− (x mod c)

x̂(t) is the quantised phase

Using this model, the previous example is modelled by setting c = 10−8.

Figure 3.4 illustrates the relationship between the oscillator’s continuous behaviour and
discrete clock ticks registered by digital logic.

11

3.2. Practical Considerations

0 10 20 30 40 50 60 70 80 90 100

10
-9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

20

40

60

80

100

120

140

10
-9

Ideal Sinusoidal Oscillator

Figure 3.4: Illustration of how measured time is quantised. In this example v(t) is a 5MHz signal and
φ(t) = 3.18 · 10−9.

If the clock time is measured in between clock ticks, the inherent discretisation of the
clock phase adds quantisation noise to the measured value as compared to continuous
counterpart, x(t). While complex analog circuitry can be added to interpolate between
two clock cycles, thereby largely eliminating the quantisation error, this is rarely used as
it is expensive and the quantisation error added from a pure digital solution is generally
considered acceptable for most applications. Generally, it is preferred to use x(t), as
opposed to x̂(t), when doing mathematical analysis of the phase. This is because the
discontinuities in floor function of x̂(t) complicates mathematical derivations. Thus, all
mathematical results are exclusively derived with respect to x(t). Furthermore, while
all measurements undertaken in this thesis are x̂(t), they are all treated as x(t) unless
specified explicitly.

While x(t) is sufficient for timekeeping, it is not enough to infer the phase error, φ(t).
Ideally, φ(t) is derived by comparing x(t) to an ideal oscillator’s phase:

φ(t) = x(t)− t (3.5)

However, such a device does not exist, and thus another clock must be used as a reference.
As this clock is also affected by phase noise, this will impact the measurement accuracy.
Since the clocks’ phases are measured in relation to each other, the phase error between
clock 1 and 2 is measured. Specifically, the relationship is:

12

3.2. Practical Considerations

φ(t, t) = x2(t)− x1(t)
= (t+ φ2(t))− (t+ φ1(t))
= φ2(t)− φ1(t) (3.6)

where:

φ(t, t) is the phase error between clock 1 and 2, both measured at time t.

φi(t) is the phase error of clock i

xi(t) is phase error of clock i

In most of the scenarios considered in this thesis, one clock, clock 1, initiates at time t1
the reading of another clock, clock 2, which is sampled after a propagation delay at time:

t2 = t1 + η1,2(t1) (3.7)

where

η1,2(t1) ≥ 0 is the time required for the sample signal initiated by clock 1 at time t1 to
propagate to clock 2.

For example, when clock 2 is sampled from a signal emitted by clock 1, the phase difference
is:

φ(t1, t2) = x2(t2)− x1(t1)
= (t2 + φ2(t2))− (t1 + φ1(t1))
= φ2(t1 + η1,2(t1))− φ1(t1) + η1,2(t1) (3.8)

In its simplest form the model of η1,2(t) is a constant representing the signal propagation
delay imposed by the speed of light. However, in more complex implementations, varia-
tions in the systems emitting, receiving, and processing of the sample signal all contribute
to η1,2(t), and ultimately provides it with stochastic properties. Furthermore, it is not
guaranteed that the propagation delay is symmetrical and that η1,2(t) = η2,1(t).

13

Chapter 4

Offset Estimation Methods

Having previously described the source of clock noise, this chapter goes into further detail
on how to practically measure φ(t1, t2). As an introduction to the topic, the widespread
case of using electrical pulses is covered to find φ(t1, t2) is covered. Subsequently, packet
based method are covered in general alongside details specific to the PTP.

4.1 Pulse Based

Perhaps the simplest method to estimate the temporal offset between a reference, clock
1, and a slave clock, clock 2, is to configure the reference clock to emit periodic pulses at
a pre-determined phase and interval. For example, most GPS clocks emit a pulse at the
beginning of every second, known as 1 Pulse Per Second (PPS). The slave clock measures
the arrival time of this pulse and based on a priori knowledge of the pulse’s phase and
interval; it is possible to infer how much the slave lags/leads the reference. figure 4.1
illustrates the basic concept:

Voltage

φ(t1, t2)

1 2 3

1 2 3

t2 t1

Reference Time (s), x1(t)

Slave Time (s), x2(t)

True Time (s), t

Figure 4.1: Illustration of offset found using pulse based synchronisation.

This concept is now described using the mathematical framework established in the prior
sections. We start by defining a pulse, with an emission time in relation to clock 1 being
an exact multiple of some initial phase:

x1(tk1) = tk1 + φ1(tk1) = kτ0 (4.1)

tk1 is the k’th pulse’s actual emission time. (superscript does not refer to exponentiation)

14

4.1. Pulse Based

τ0 is a predetermined pulse period and initial phase.

k is some integer representing the kth pulse

In the following, the constant k will be omitted as only a single pulse will be considered.

Given that t is rewritable in terms of the difference between x1(t) and its phase error:

x1(t) = t+ φ1(t)
⇓

x1(t)− φ1(t) = t (4.2)

It follows that clock 2 can be written in terms of x1(t):

x2(t) = t+ φ2(t)
= x1(t)− φ1(t) + φ2(t) (4.3)

The pulse is detected by clock 2 at time t2 and this is timestamped according to:

x2(t2) = t2 + φ2(t2)
= t1 + η1,2(t1) + φ2(t2)
= x1(t1)− φ1(t1) + η1,2(t1) + φ2(t1 + η1,2(t1)) (4.4)

As the electronic device containing clock 2 has a-priori knowledge of the mathematical
relationship of the pulse emission time in relation to x1(t) it estimates its value as:

x̃1(t1) = bx2(t2)eτ0 (4.5)

where

x̃1(t1) is the estimated value of x1(t1)

b eτ0 rounds to the nearest integer exactly divisible by τ0

If x2(t2) is in the range (x1(t1) − τ0
2 , x1(t1) + τ0

2) then this estimate will be correct, and
the total phase error between x1 and x2 is found as (equivalent to equation (3.8)):

φ(t1, t2) = x2(t2)− x1(t1)
= φ2(t2)− φ1(t1) + η1,2(t1) (4.6)

If on the other hand x2(t2) is not within this range, the estimate will be off by an integer
multiple of τ0.

The error in the offset estimation caused by propagation delay must also be considered.
For small installations where the two sources are connected by short cables, this delay
is usually of negligible significance. In these situations, pulse based offset estimations
offers excellent performance. However, if the two sources are far apart, the propagation
delay may become significant. Additionally, since approximate initial synchronisation is
necessary to ensure high performance another mechanism is necessary for setting the initial
time of the slaves’ clocks. Finally, since pulses are distributed to every slave clock in a
synchronisation network, pulse based synchronisation is often too complex and costly to
rely on for larger installations.

15

4.2. Precision Time Protocol

4.2 Precision Time Protocol

As an alternative to pulse based synchronisation, packet based synchronisation was de-
veloped to allow for synchronisation using the existing infrastructure build for network
communication. Perhaps the simplest way to implement offset estimation through a net-
work would be for the reference clock to periodically broadcast its time to all the slave
clocks in the network. Each slave can then compare the received time with their own time
to derive their offset. Compared to pulse based synchronisation, such a scheme has the
advantage that the initial synchronisation between clock 1 and clock 2 does not matter as
the exact value of x1(t) can be transmitted, and x2 does not need to rely on an estimate.

While simple to implement, this method has a major flaw. Compared to pulse based syn-
chronisation the propagation delay, η(t), is rarely considered insignificant as the addition
of complex networking equipment adds significant processing overheard. Thus, depending
on the network configuration η(t) can easily be in the order of 10’s or 100’s of microseconds.
Here η(t) is refers to propagation delay in general, and the direction is ambiguous.

To overcome this modern packet based synchronisation networks allow the reference and
slave clocks to exchange an additional set of packets from the slave to the master. This is
known as a two-way time transfer scheme and allows slave clocks to estimate the network
propagation delay. Figure 4.2 illustrates these transfers:

Master
Master time = x1(t)

Slave
Slave time = x2(t)

η1,2(t1)

η2,1(t3)

x1(t1)

x2(t2)

x2(t3)

x1(t4)

x2(t2) = x1(t1) + η1,2(t1)

x2(t3) = x1(t4)− η2,1(t3)

Figure 4.2: Visualisation of a two-way time transfers and the four timestamps acquired from the ex-
changes. [1].

In our implementation it has been decided to use the PTP [1], as specified by IEEE 1588.
This protocol defines the packets needed to carry out the two-way time transfer illustrated
in figure 4.2.

To calculate the offset between the master and slave device, a total of four timestamps
are required. Using timestamps x1(t1) and x2(t2), the phase offset plus the propagation

16

4.2. Precision Time Protocol

delay, η1,2(t), can be found.

The second pair of timestamps, x2(t3) and x1(t4), allows the phase offset minus the prop-
agation delay in the opposite direction, η2,1(t), to be determined.

If E [η1,2(t)] = E [η2,1(t)] the propagation delay is said to be symmetrical. When this is
the case, the four timestamps allows the mean propagation delay, E [η(t)], to be estimated:

η̃ = [x2(t2)− x1(t1)]− [x2(t3)− x1(t4)]
2

= [φ2(t2)− φ1(t1) + η1,2(t1)]− [φ2(t3)− φ1(t4)− η2,1(t3)]
2

= φ(t1, t2)− φ(t4, t3) + η1,2(t1) + η2,1(t3)
2 (4.7)

where

η̃ is an estimate of the mean system propagation delay based on timestamps x1(t1),
x2(t2), x2(t3) and x1(t4).

For this estimate to be valid, clock phase noise must be low, i.e. φ(t1, t2) ≈ φ(t3, t4). If
the phase noise of clock 1 and clock 2 in the time interval between t1 and t3 is low, then
it is often an adequate approximation. Furthermore, it is necessary that the jitter/Packet
Delay Variation (PDV) is low compared to the mean value. Otherwise it is not fair to
assume that η1,2(t1) ≈ η2,1(t3), nor that the estimate, η̃, is an adequate approximation
of E [η1,2(t)]. If the PDV is high, more samples are usually combined using advanced
processing algorithms to derive a superior estimate of E [η1,2(t)].

In addition, to short term PDV, long term consistent asymmetry must also be consid-
ered, where asymmetry is defined as the mean difference between η1,2(t) and η2,1(t), i.e.
E [η1,2(t)− η2,1(t)]. If asymmetry is present, it is not possible to accurately compensate
for propagation delay without further knowledge of the asymmetry. Thus, it is critical to
minimize asymmetry if the propagation delay is to be accurately estimated.

Using the propagation delay estimate, η̃, phase error is estimated as:

φ̃(t1, t2) = x2(t2)− x1(t1)− η̃ (4.8)

Thus, once η̃ has been found, the phase error can be derived using only one set of transfers
between clock 1 and clock 2. However, to account for dynamic changes in networks, the
estimate is usually recalculated periodically.

As highlighted earlier, asymmetry and PDV degrade the estimate of the offset between
clock 1 and clock 2. These effects mainly originate from delays in the software/hardware
of the receiver/transceiver’s networking stack as well from packet queuing in networking
switches. Furthermore, the instantaneous PDV is not constant and factors such as net-
working load or the computational load put on the slave/reference clock nodes all affects
the PDV. In addition to specifying the PTP used to transfer timestamps, IEEE 1588
also specifies multiple strategies that can be employed to minimize PDV as well as the

17

4.2. Precision Time Protocol

effect of changing network/processing loads. Principal of which is the use of hardware
timestamping immediately following packet ingress and egress. figure 4.3 illustrates this:

Application
(PTP Code)

OS
MAC

PHY

Timestamp Unit

Network
Figure 4.3: Visualization of where hardware timestamping may be used in PTP [7].

The Time Stamping Unit (TSU) is special built hardware that scans incoming/outgoing
packets. When it detects a PTP packet it timestamps the packets ingress/egress time.
The PTP synchronisation application can then transfer these timestamps to slave devices,
or alternatively use them to estimate time and frequency offset. To minimize PDV the
TSU hardware is located as close to the physical layer as possible. This largely eliminates
timestamping variation.

In addition to timestamping, the IEEE 1588 specifications specifies a variety of switch
types designed to minimize PDV introduced by network switches. In our setup we have
chosen to use E2E (End to End) transparent switches, however, note that other types
exist. These switches measure PTP packet residence time and inserts this time in the
packet before it is re-transmitted. Once received by a device, this residence time can then
be accounted for when calculating η̃ and φ̃(t1, t2).

18

Chapter 5

System Overview

To aid development of the synchronisation network, a development and testing setup has
been deployed. The creation of this setup was a key subject in the previous interim report
[1]. For the sake of completeness, the key elements are reiterated. Following the overview
of the system setup, the expected use cases, networking scenarios, and system require-
ments are detailed. To facilitate understanding, the setup is illustrated in figure 5.1.
Going from left to right in the figure 5.1, reference time is initially received by a GPS
receiver somewhere at CERN. This timing information is processed by CERN’s Central
Time Management system. This system distributes reference time to CERN’s various
equipment, laboratories, and experiments. The central time management system is main-
tained by other sections at CERN and is not discussed further, however it is still relevant
as the acquisition system ultimately derives its time from it. The time from the central
time management system is fed into a Central Time Receiver (CTR) card. This card is a
PCI expansion card and is placed and controlled from a Front End Computer (FEC) in
our laboratory. The CTR card serves as the reference time source in the synchronisation
network. However, as the goal is to synchronise data acquisition nodes using packet based
synchronisation through Ethernet, the CTR cannot directly be used as it lacks a network
interface. Thus, the CTR is used to synchronise the clock of a 1Gbit/s Network Inter-
face Card (NIC) within the FEC. This synchronisation is performed using pulse based
synchronisation, as described in section 4.1. Specifically, the CTR is configured to emit
1PPS signals, and the NIC then proceeds to align its internal clock to the received pulses.
This synchronisation process is controlled by the ts2phc application from the Linux PTP
Project [8]. Following synchronisation of the NIC, the data acquisition nodes can be syn-
chronised through PTP as described in section 4.2. On the FEC side, PTP is managed
by the ptp4l application, another program from the Linux PTP Project. Meanwhile the
Data Acquisition Boards (DQAMEs) rely on a custom implementation of PTP. Finally,
note that the PTP test network under development is flat and only contains a single PTP
compliant switch (Juniper QFX5110-48S). Thus far the complete synchronisation chain
has been accounted for. This resembles the system that will be deployed. However, for
development purposes, functionality has been added to simplify logging, debugging, and
testing. This includes port mirroring on the switch to monitor PTP traffic and the possi-
bility to configure each synchronisation node in the chain to emit periodic pulses which is
to quantify the synchronisation between the nodes.

19

GPS Satellite(s)

GPS Receiver

Central
Time Man-
agement

FEC

Central
Time
Receiver

DQAME Boards

I210 NIC

Switch

PTP
Application
ptp4l

Sync
Application
ts2phc

Voltage

Time
PPS Signals

M

S

M

S

M

S

M

S

Figure 5.1: Detailed illustration of the lab setup [1].

As the setup does not allow for direct interaction with the GPS time or central time
management time, these are ignored and only the CTR, NIC, and DQAME nodes are
further considered. The synchronisation between these three entities can be modelled as
two cascaded control loops. In the first loop, the FEC is synchronised to the central
timing receiver through the use of pulse per second signals. The FEC then uses the PTP
to synchronise the various DQAMEs in the network. This cascaded control system can be
conceptualised as the block diagram in figure 5.2.

20

Grand
Master
Clock

ControllerClock
PTP
Master
Engine

PTP
Slave
Engine

Offset
Estimator Controller Clock

-

Figure 5.2: Conceptual block diagram of the cascaded control loops in the setup.

The first control loop is fully managed by the aforementioned ts2phc application. To
simplify and accelerate development, this off the shelf solution is kept as is and not studied
or optimized further. As no similar readily available solution exists for the DQAMEs, the
second control system used to synchronise the NIC and DQAMEs through PTP is the
primary topic of interest in this thesis.

To allow for proper characterisation of the synchronisation sub-system, the data acqui-
sitions system’s requirements and expected operational behaviour must be considered.
When deployed, it is anticipated that up to 47 DQAMEs will be associated with a NIC.
It is expected that each of these are able to transmit a maximum of 20Mbit/s of data to
the NIC. In the extreme scenario where all DQAMEs transmit at their peak rate, a NIC
will receive 940Mbit/s. On the other hand, the NIC only transmits control and synchro-
nisation packets to devices in the network. Thus, the network load going from the NIC to
its DQAMEs will be minimal. Furthermore, during operation the network remains static.
This constraint greatly simplifies synchronisation, as changes in the propagation delay
caused by dynamic packet routing can be ignored. Finally, while there are no definitive
requirements for the synchronisation performance, development is carried out with the
expectation that the phase error between clock 1 and clock 2, φ(t1, t2), shall not exceed
1 µs.

21

Chapter 6

Noise Characterisation

In this chapter the stochastic properties of the system noise are investigated. First the
clock noise of the NIC and DQAME, φ1(t) and φ2(t) ,is quantified by measuring their
AVAR. Secondly, the nominal PDV, i.e. η1,2(t) and η2,1(t), in the PTP network is found.
Finally, PDV behaviour in non ideal networking conditions is studied by measuring the
frequency and magnitude of outliers.

6.1 Clock Noise Measurements

To quantify the clock noise, present in the synchronisation system, each clock in the system
must be measured. Clock noise is measured using a timestamping counter. Such a device
keeps track of time using an external oscillator. It then timestamps incoming pulses in
relation to its internal time. These timestamps can then be used to infer the total phase
error in relation to the arrival time of the first pulse.

The tests for this thesis were conducted using a TARP TICC time interval counter in
conjunction with a 10MHz FS725 rubidium oscillator as the reference. This reference
oscillator was chosen as it has excellent performance in terms of phase noise. Its one
second Allan variance is reported as approximately 4 · 10−22. The TICC is a two channel
time interval counter. It directly uses the 10MHz reference clock to generate a coarse sense
of time with 100 ns resolution. To increase this, it uses an internal ring oscillator with
a period of 57 ps to interpolate between clock ticks and provide a finer time resolution.
When a pulse is detected on one of its two channels, it is timestamped and can be extracted
through a USB serial port. Due to processing overhead, the device is limited to logging
about 100 timestamps per second per channel. It is critical to note that the TICC is
designed and manufactured by a group of amateur timing enthusiasts. As such, it is
unlikely that it has been subject to the same rigorous testing, validation, and calibration
that one would expect from professional equipment. In spite of this it was chosen as it
is held in high regard within the online amateur timing community, it provides gap free
measurements allowing one to continuously sample over extended periods of time without
dropping samples, and it is cheap.

The TICC is used to measure the stability of the PTP network’s reference and slave clocks.
As all stability should be found in relation to the CTR time, the reference rubidium clock
is synchronised to the CTR using its PPS input. For this to be possible, both the NIC
and DQAMEs are configured to output pulses at 100Hz. This is easily achieved in the
NIC, as the feature is supported by the shipped firmware. For the DQAMEs, this feature

22

6.1. Clock Noise Measurements

had to be implemented from scratch. The implementation relies on the TSU’s comparison
register to emit a pulse for every elapsed 10ms.

An illustration of the entire measurement setup is shown in figure 6.1:

FS725
Rubidium
Clock

FEC

Central
Time
Receiver

I210 NIC

Switch

PTP
Application
ptp4l

Sync
Application
ts2phc

TARP TICC

Voltage

Time
PPS Signals

M

S

M

S

M

S

M

S

10 MHz Ref.

Ch
an
.
A

Ch
an
.
B

Figure 6.1: Illustration of the test setup.

As the final solution will be deployed to multiple locations, deployments will not use the
same exact hardware as what is tested. Thus, operational performance may differ from
the measured results due to manufacturing and environmental variations. To account for
this possible spread in performance caused by equipment variations, two NICs and four
DQAME cards are tested. Ideally a much larger sample size is needed to uncover the
statistical nature of the variations. However due to time constraints this was not possible.
Furthermore, environmental variations were not controlled during tests. As the equipment
being tested needed access to the CERN timing network, all tests were conducted in a
laboratory that facilitated this access. This laboratory is not temperature controlled and is
open to other personnel to work in. Due to the lack of environmental control, it is expected
that there will be variations in the long term behaviour of the clocks, as environmental
variations impact oscillators random walk behaviour.

23

6.1. Clock Noise Measurements

To obtain sufficient data about the oscillator behaviour, all tests were set to run for at least
6 hours. Some ran significantly longer than this, as they were left overnight. Furthermore,
as hundredths of thousands of data points were collected per test, incidentally faulty
measurements occurred. These outliers were removed manually (and subjectively) prior
to further data processing. Finally, to isolate the stochastic component of the measured
phase error, linear and quadratic phase drift was removed through detrending.

6.1.1 TIC Theory of Usage

Before going into further details with the noise tests, this section describes how timestamps
are used to estimate the phase error of a clock. First note that because the measurements
are based on pulses, the measured phases are inherently discrete. This differs from the
continuous time representation covered in previous sections. To build the intuition of how
a timestamping counter is used to measure phase error, we start by defining a sequence of
n pulses, with known triggering time in relation to clock one, i.e. x1(t11), x1(t21), . . . , x1(tn1).
Where t11 < t21 < . . . < tn1 .

Similar to the explanation found in section 4.1, when a pulse from the first clock is detected
by clock two, it is timestamped according to:

x2(ti2) = x1(ti1)− φ1(ti1) + φ2(ti2) + η1,2(ti1) (6.1)

As a discrete sequence of time, ti, is now considered, it is appropriate to simplify notation
to reflect the discrete nature of the following calculations. This new notation simply
indexes a function based on the ith time and kth clock being considered, exemplified here:

jk[i] = j(tik) (6.2)

where

j is some arbitrary time dependent function, such as x1(t), x2(t) or ρ(t)

By differencing the sequence of timestamps, the phase difference between each occurring
pulse, ∆x2[i], can be deduced:

∆x2[i] = x2[i+ 1]− x2[i]
= (x1[i+ 1]− φ1[i+ 1] + φ2[i+ 1] + η1,2[i+ 1])− (x1[i]− φ1[i] + φ2[i] + η1,2[i])
= x1[i+ 1]− x1[i] + φ1[i]− φ1[i+ 1] + φ2[i+ 1]− φ2[i] + η1,2[i+ 1]− η1,2[i]
= ∆x1[i]−∆φ1[i] + ∆φ2[i] + ∆η1,2[i]

(6.3)

where:

∆x1[i] = x1[i+ 1]− x1[i]

∆φ1[i] = φ1[i+ 1]− φ1[i]

24

6.1. Clock Noise Measurements

∆φ2[i] = φ2[i+ 1]− φ2[i]

∆η1,2[i] = η1,2[i+ 1]− η1,2[i]

The total phase difference between the first pulse, and pulse k is then found as the cumu-
lative sum of ∆x2[i]:

x̄2[k] =
i=k−1∑
i=0

∆x2[i]

=
i=k−1∑
i=0

(∆x1[i]−∆φ1[i] + ∆φ2[i] + ∆η1,2[i])

= x̄1[k]− φ̄1[k] + φ̄2[k] + η̄1[k] (6.4)

where:

x̄1[k] =
∑i=k−1
i=0 ∆x1[i]

φ̄1[k] =
∑i=k−1
i=0 ∆φ1[i]

φ̄2[k] =
∑i=k−1
i=0 ∆φ2[i]

η̄1[k] =
∑i=k−1
i=0 ∆η1,2[i]

k ≤ n− 1

The phase error between clock 1 and clock 2 at time t1 and tk, φ̄[k], can now be estimated
as:

φ̄[k] = x̄2[k]− x̄1[k]
= −φ̄1[i] + φ̄2[i] + η̄1[i] (6.5)

In practice a pulse sequence is usually defined with a constant period such that ∆x1[i] =
τ0, ∀i where τ0 is a predetermined pulse period. With this condition, the measured
phase error simplifies to:

φ̄[k] = x̄2[k]− kτ0 (6.6)

Given that we now have a method to find a discrete sequence of the relative phase error
between two clocks, statistical estimators can be used to estimate the underlying stochastic
properties of the process. For example, to estimate the Allan variance of φ̄[k], the sample
mean can be used directly [6, p. 14]:

σ2
y(τ0) = 1

2τ2
0
E
[
(φ(t+ 2τ0)− 2φ(t+ τ0) + φ(t))2

]
⇓

σ2
y(τ0,M) ≈ 1

2τ2
0 (M − 2)

M−3∑
i=0

(φ̄[i+ 2]− 2φ̄[i+ 1] + φ̄[i])2 (6.7)

where

25

6.1. Clock Noise Measurements

M is the number of samples of φ̄[k] to use in the estimate.

Using the same set of φ̄[k] measurements, it is straightforward to conceptualise how to
estimate the Allan Variance for integer multiples of τ0. If σ2

y(jτ0) is to be estimated simply
discard every jth sample of φ̄[k] and use the above equation again. This approach allows
one to estimate the Allan variance of φ̄[k] for a large range of τ , however the statistical
significance of the estimate quickly drops as the majority of samples are discarded for larger
τ values. Modern processing tools instead use the overlapping Allan variance estimator,
which allows more samples to be used in the estimate, thus increasing the statistical
reliability of the measure [6, p. 15]. The mathematical details of the overlapping Allan
variance estimator are not discussed further here, however in the subsequent tests the
estimator is used to estimate the Allan variance of the measured processes.

6.1.2 TICC Noise Floor

Consider figure 6.2. The manufacturers of the TICC claim that its noise floor at the
1-second Allan Variance is at ≈ 4.9000 · 10−22 . But as the TICC is not a professional
device it is appropriate to validate its performance before starting extensive testing. To do
this, the noise floor of both its channels is quantified by measuring the rubidium reference
oscillator with respect to itself. The rubidium reference has a port that emits a 1PPS
signal. These pulses are used as input to the TICC’s two channels. To see how this
configuration allows the noise floor of the TICC to be quantified, consider equation (6.5)
for the case where φ1(t) = φ2(t)

φ̄[k] = x̄2[k]− k
= −φ̄1[i] + φ̄2[i] + η̄1[i]

= −
i=k−1∑
i=0

∆φ1[i] +
i=k−1∑
i=0

∆φ2[i] + η̄1[i]

= −
i=k−1∑
i=0

(φ1(ti+1
1)− φ1(ti1)) +

i=k−1∑
i=0

(φ2(ti+1
2)− φ2(ti2)) + η̄1[i]

= η̄1[i] (6.8)

where:

φ1(t) = φ2(t)

ti1 = ti2 ∀i

η̄1[i] is the measurement noise added by the TICC

This holds because the same oscillator is used for both inputs. For this to be valid in
practice, it is critical that all of the cables used to connect the rubidium clock’s PPS
and 10MHz output to the TICC are of identical length. Otherwise, the difference in
propagation delay will reduce the correlation between the two signals, and it can no longer
be assumed that φ̄1[i] = φ̄2[i]. Figure 6.2 illustrates the exact test setup.

26

6.1. Clock Noise Measurements

FS725
Rubidium
Clock

TARP TICC

Ch
an
.
A

Ch
an
.
B

10 MHz Ref.

1PPS

Figure 6.2: Illustration of the test setup for measuring the TARP TICC’s measurement noise. Note that
the illustration is not to scale, and identical cable lengths were used in the physical setup.

Measuring over 6 hours, the following Allan variances of both channels were found:

Table 6.1: TICC’s estimated Allan Variance. Four decades of observation periods, τ , shown.

τ (s) Chan A Chan B
1 7.66e-21 7.80e-21
10 8.01e-23 8.24e-23
100 8.58e-25 8.71e-25
1000 1.21e-26 1.26e-26

100 101 102 103
10-26

10-25

10-24

10-23

10-22

10-21

10-20
TICC Noise Floor of Channel A and B

Channel A: 23447 pts @ 1Hz

Channel B: 23447 pts @ 1Hz

Figure 6.3: Sigma-Tau plot of the TICC’s Allan Variance.

27

6.1. Clock Noise Measurements

The plot and table show a curve with an approximate slope of -2, indicating that the noise is
either White or Flicker PM noise (likely white). Note that in the last τ decade between 100
and 1000, the estimated AVAR does not quite decease by a decade. This is likely because
these final measurements are less statistically significant. Overall, the measured AVAR
is in line with the noise characteristic one would expect from the measuring equipment.
The values themselves are a bit higher than the advertised Allan variance. However, it
is close enough that the discrepancy could be caused by an imperfect measurement setup
where φ̄1[i] and φ̄1[i] are not perfectly correlated. In any case, as the equipment noise
floor has now been approximated it is appropriate to initiate measurements of the system
noise sources.

6.1.3 NIC Clock Noise

The NIC’s Allan variance is measured for both in the case of it being synchronised to the
CTR and in the case where it is free running. This is to get a sense of how the control
applied by the ts2phc application changes is noise characteristics. Figure 6.4 illustrates
how cases are measured.

FS725
Rubidium
Clock

FEC

Central
Time
Receiver

NIC

Sync Ap-
plication
ts2phc

TARP TICC

NIC

Voltage

Time
PPS Signals

10 MHz Ref.

Ch
an
.
A

Ch
an
.
B

Figure 6.4: Illustration of test setup used to measure NIC noise with and without synchronisation.

28

6.1. Clock Noise Measurements

The estimated Allan Variances are shown illustrated and listed in table 6.2 and figure 6.5
respectively.

Table 6.2: Allan Variance of the two NIC’s (both synchronised and not synchronised). Six decades of
observation periods, τ , shown.

τ (s) NIC 1 RAW NIC 1 Synced NIC 2 RAW NIC 2 Synced
0.01 4.99e-16 1.16e-13 3.23e-16 1.87e-13
0.1 6.06e-18 1.55e-15 3.40e-18 1.68e-15
1 6.14e-19 1.92e-17 3.59e-19 1.90e-17
10 1.58e-18 3.50e-19 9.78e-19 3.03e-19
100 3.00e-17 3.73e-21 2.13e-17 3.28e-21
1000 2.93e-16 4.97e-23 4.55e-16 4.16e-23

10-2 10-1 100 101 102 103
10-24

10-22

10-20

10-18

10-16

10-14

10-12
NIC Allan Variance

NIC 1 Raw: 4364526 pts @ 100Hz

NIC 1 Synced: 2264020 pts @ 100Hz

NIC 2 Raw: 3266378 pts @ 100Hz

NIC 2 Synced: 4441597 pts @ 100Hz

Figure 6.5: Sigma-Tau plot of the NIC’s Allan Variance.

As seen in the above chart and table, it is clear that the synchronisation drastically
improves the NIC’s long term phase noise behaviour, at the price of an increase in short
term instability. These results are partially explained by considering the long and short
term time domain behaviour of the processes. These are illustrated in figure 6.6 and
figure 6.7.

29

6.1. Clock Noise Measurements

0 5 10 15 20 25 30 35 40 45

103

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10-3

NIC 1 Raw: 4364526 pts @ 100Hz

NIC 1 Synced: 2264020 pts @ 100Hz

Figure 6.6: Long term evolution of the phase error of a synchronised and non synchronised NIC.

20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21

-126

-125

-124

-123

-122

-121
10

-9

20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21

-6

-4

-2

0

2

4
10

-9

Figure 6.7: Short term evolution of the phase error of a synchronised and non synchronised NIC.

The plot of the long term behaviour clearly shows how the unsynchronised NIC’s phase

30

6.1. Clock Noise Measurements

drifts over time, while the synchronised counterpart does not. On the other hand, when
considering a more zoomed in view of the two processes in figure 6.7, it is clear that the
synchronised NIC has far more high frequency variations due to its control loop periodically
altering the signal.

6.1.4 DQAME Clock Noise

Given that the NIC was an off the shelf component, it was easy to test as it was not possible
to change or modify its behaviour. However, we have full control over the firmware and
part of the software being used on the DQAMEs. This creates options for optimising
the phase noise. The DQAMEs use an ATSAME54 MCU clocked by an external 40MHz
TCXO. To minimize the effect of clock phase noise, this TCXO would ideally be directly
used to clock the timestamping systems. However, as a higher system clock is required, a
Fractional Digital Phased Locked Loop (FDPLL) is used to increase the system frequency
above 40MHz.

The MCU’s FDPLL has a DIGITAL FILTER setting. This setting provides 16 different
configurations for the FDPLL loop filter. This filter changes the FDPLL settling time and
phase noise. Further details of the other aspect of the system FDPLL are presented in
section 7.1. To find the best performing configuration in terms of phase noise, each of the 16
possible filter configurations were tested. Unfortunately, these tests were performed before
the TICC and stable rubidium reference was acquired, and thus the collected results can
realistically only be used for comparing the phase noise performance of the different filters
configurations. Thus, the extensive results of these measurements have been omitted.
Instead the TICC was used to obtain accurate noise measurements for the chosen FDPLL
configuration, the worst performing configuration, and the raw clock with no FDPLL
configured. Note that all these measurements are made in open loop, and as such the
DQAME boards are not synchronised to any external reference. Figure 6.8 illustrates the
measurement setup for these tests.

FS725
Rubidium
Clock

Central
Time
Receiver

TARP TICC

DQAME

10 MHz Ref.

Ch
an
.
A

Ch
an
.
B

Figure 6.8: Illustration of test setup used to measure DQAME clock noise.

31

6.1. Clock Noise Measurements

The estimated AVAR of these measurements are shown in table 6.3 and figure 6.9.

Table 6.3: Estimated Allan Variance of the best performing FDPLL, no FDPLL, and the worst performing
FDPLL. Six decades of observation periods, τ , is shown. Note that the phase noise measurements of the
configuration with no FDPLL were performed at 50Hz due to a firmware limitation. Therefore, the ADEV
for τ = 0.01 is not estimated for this specific configuration.

τ (s) DQAME2 DQAME2 Noisy FDPLL DQAME2 No FDPLL
0.01 2.4523e-13 7.8969e-12 -
0.1 2.4490e-15 7.9042e-14 7.8202e-19
1 2.4515e-17 7.9164e-16 1.7845e-20
10 2.7187e-19 7.9686e-18 1.0526e-20
100 1.5265e-19 3.9465e-19 3.5456e-20
1000 1.1580e-18 1.4197e-18 1.3019e-18

10-2 10-1 100 101 102 103
10-20

10-18

10-16

10-14

10-12

10-10
DQAME Allan Variance

Chosen FDPLL: 5538496 pts @ 100Hz

Poor FDPLL: 17895006 pts @ 100Hz

No FDPLL : 1107333 pts @ 50Hz

Figure 6.9: Sigma-Tau plot of the DQAME Allan Variance for the best performing FDPLL, no FDPLL,
and the worst performing FDPLL. Note that the phase noise measurements of the configuration with no
FDPLL were performed at 50Hz due to a firmware limitation.

Based on the above data, it is clear that the addition of a FDPLL contributes a significant
amount of clock noise. However, given that a FDPLL must be used to reach the target
clock frequencies the effort to optimize the FDPLL configuration has resulted in a notably
decrease in clock noise as compared to the worst case.

The above tests used to compare raw clock and FDPLL noise were conducted on a single

32

6.1. Clock Noise Measurements

DQAME. To obtain more representable data of the noise across a range of devices, the tests
were repeated on three other boards configured with the chosen FDPLL configuration:

Table 6.4: Estimated Allan Variance of four different DQAMEs using the best identified FDPLL config-
uration. Six decades of observation periods, τ , shown.

τ (s) DQAME 1 DQAME 2 DQAME 3 DQAME 4
0.01 1.86e-12 2.45e-13 2.56e-13 3.03e-13
0.1 1.87e-14 2.45e-15 2.56e-15 3.03e-15
1 1.87e-16 2.45e-17 2.57e-17 3.05e-17
10 1.94e-18 2.72e-19 5.33e-19 3.90e-19
100 3.71e-19 1.53e-19 1.10e-18 1.95e-19
1000 2.33e-18 1.16e-18 4.83e-18 1.34e-18

10-2 10-1 100 101 102 103
10-20

10-18

10-16

10-14

10-12

10-10
DQAME Allan Variance

DQAME1: 4364631 pts @ 100Hz

DQAME2: 5538496 pts @ 100Hz

DQAME3: 4285027 pts @ 100Hz

DQAME4: 3805513 pts @ 100Hz

Figure 6.10: Sigma-Tau plot of the Allan Variance for four different DQAMEs using the best identified
FDPLL configuration.

As seen in the plots, three of the units have very similar behaviour, while unit 1’s per-
formance differs. The reason for this difference is unknown. Ideally the different FDPLL
configurations would be tested on all available DQAMEs to determine if the chosen con-
figuration truly is the optimal configuration across all devices. However, due to time
constraints this was not possible.

33

6.2. Nominal PTP Noise

6.2 Nominal PTP Noise

Having quantified the phase noise of the systems two clocks, the next characterisation
step is to quantify the measurement noise introduced by the PTP network. This section
concerns itself with measurement noise under ideal network conditions where the synchro-
nisation packets are the only traffic present in the network.

To measure measurement noise the FEC/NIC was configured to transmit 32 synchroni-
sation packets per second along with its corresponding x1(ti1) timestamps to a DQAME.
Upon reception of the synchronisation packets, the DQAME then timestamps them with
x2(ti2). Immediately following this, the DQAME creates a new timestamp x2(ti3) and
transmits a delay request to clock 1 instructing it to create timestamp x1(ti4) and transmit
it back to clock 2. The measured bidirectional phase errors between the two clocks at the
ith sample are then found as

φ(ti1, ti2) = x2(ti2)− x1(ti1) (6.9)
φ(ti3, ti4) = x2(ti3)− x1(ti4) (6.10)

The phase error is measured in both directions, to help inform whether the PDV is sym-
metrical.

In parallel to the PTP network measurements, the noise of the NIC and DQAME in
use by the PTP network was measured using the TICC. This addition allows for direct
comparison between the devices clock noise, and the additional noise introduced by the
PTP network. This test is performed in open loop, and no synchronisation is implemented
in the DQAME. Figure 6.11 illustrates the measurement setup.

FS725
Rubidium
Clock

FEC

Central
Time
Receiver

I210 NIC

Switch

PTP
Application
ptp4l

Sync
Application
ts2phc

TARP TICC

DQAME
(Open Loop)

Voltage

Time
PPS Signals

M

S

M

S

10 MHz Ref.

Ch
an
.
A

Ch
an
.
B

Figure 6.11: Illustration of the measurement setup used to quantify the phase noise when measured
through the PTP network.

34

6.2. Nominal PTP Noise

The estimate of the AVAR is found in the same way as described previously in section 6.1.1.
Likewise, prior to calculating the AVAR, φ(ti1, ti2) and φ(ti3, ti4) is first detrended and any
outliers are removed. The estimated AVAR from one of these tests is shown and illustrated
in table 6.6 and figure 6.13 below:

Table 6.5: Allan Variance estimated using data from the PTP network and simultaneously from the
NIC and DQAME using data from the TICC. Six decades of observation periods, τ , is shown. PTP M2S
(Master to Slave) refers to the φ(ti1, ti2) estimate and S2M (Slave to Master) refers to the measurements in
the opposite direction, i.e. φ(ti3, ti4)

τ (s) PTP M2S PTP S2M NIC 1 Synced DQAME1
0.01 - - 1.1555e-13 1.1349e-12
0.1 5.7939e-14 1.8533e-13 1.5477e-15 1.1344e-14
1 5.1079e-16 1.5841e-15 1.9216e-17 1.1370e-16
10 5.9573e-18 1.6268e-17 3.4952e-19 1.6883e-18
100 2.0050e-18 2.1078e-18 3.7260e-21 1.9482e-18
1000 2.4787e-17 2.4788e-17 4.9665e-23 2.4720e-17

10-2 10-1 100 101 102 103
10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10
DQAME Allan Variance

PTP M2S: 723680 pts @ 32Hz

PTP S2M: 723680 pts @ 32Hz

NIC 1 Synced: 2264020 pts @ 100Hz

DQAME1: 2264020 pts @ 100Hz

Figure 6.12: Sigma-Tau plot of the Allan Variance estimated using data from the PTP network and
simultaneously from the NIC and DQAME using data from the TICC.

The estimated Allan variance of the measured PTP noise follows the expected trend. In
the short term, the noise introduced by propagation delay and timestamping is the dom-
inating source. Then over longer timescales, the DQAMEs random walk noise process

35

6.2. Nominal PTP Noise

becomes the dominating contributor. Unexpectedly, however, the PDV is asymmetrical.
It appears that there is approximately introduced twice as much measurement noise when
initiating timestamping from the DQAME as opposed to initiating from NIC. This indi-
cates that measurements initiated by the NIC are more reliable. As measurements in both
directions are needed to estimate the mean propagation delay, this opens possibilities for
using statistical method to find superior propagation delay estimates, as compared to the
averaging method introduced in equation (4.7).

These measurements were repeated with different combinations of DQAMEs and NIC’s.
The resulting estimate of the PTP noise’s Allan variance was remarkably consistent with
the only major deviation being the τ at which the DQAME’s random walk noise would
start to dominate.

In an effort to enhance the PTP network’s contribution to the measured noise, the above
measurements were repeated, but this time using an unsynchronised NIC and a DQAME
relying exclusively on the on-board 40MHz TCXO for its internal clocking (i.e. no FD-
PLL). These changes should lower the clocks contribution to the measured noise. This
should allow for more accurate isolation of the propagation/measurement noise compo-
nent. The results of these measurements are shown below:

Table 6.6: Allan Variance estimated using data from the PTP network and simultaneously from the NIC
and a DQAME using data from the TICC. In these measurements the clock noise was reduced by using
an unsynchronised NIC, and the DQAME was configured to be clocked directly by its TCXO. Six decades
of observation periods, τ , is shown.

τ (s) PTP M2S PTP S2M NIC 1 Synced DQAME1
0.01 - - 3.9444e-16 -
0.1 5.0311e-14 1.8938e-13 4.0457e-18 7.8202e-19
1 6.2418e-16 1.6746e-15 3.8167e-19 1.7845e-20
10 7.0751e-18 1.8641e-17 1.0395e-18 1.0526e-20
100 6.3245e-18 6.4370e-18 6.6885e-18 3.5456e-20
1000 1.2869e-16 1.2869e-16 1.5368e-16 1.3019e-18

36

6.2. Nominal PTP Noise

10-2 10-1 100 101 102 103
10-20

10-18

10-16

10-14

10-12

10-10
DQAME Allan Variance

PTP M2S: 722720 pts @ 32Hz

PTP S2M: 722720 pts @ 32Hz

NIC 2 Raw: 2268609 pts @ 100Hz

DQAME2: 1134324 @ 50Hz

Figure 6.13: Sigma-Tau plot of the Allan Variance estimated using data from the PTP network and
simultaneously from the NIC and DQAME using data from the TICC. In these measurements the clock
noise was reduced by using an unsynchronised NIC, and the DQAME was configured to be clocked directly
by its TCXO.

The above results initially appear rather strange. When comparing the PTP noise between
table 6.6 and table 6.5, it seems that the noise is either unchanged or possibly even slightly
increased for the case of using low noise clock sources. This is the opposite of the expected.
One potential explanation of this result involves consideration of quantisation noise.

Thus far the effect of quantisation noise has mostly been ignored, as it is hard to describe
mathematically, and its effect was thought negligible. However, the above measurements
suggest that it is in fact the dominant source of short term noise in the system. To express
the phase error where quantisation is incorporated, the timestamping resolution of the NIC
and DQAME must be known. These values are hard to known definitively, as neither of
the devices’ datasheets express this directly. In lieu of a more definitive information it
is assumed that the devices timestamping resolution is equivalent to the systems’ clock
period. Thus, the quantised expression for phase difference becomes:

φ̂(ti1, ti2) = x̂2(ti2)− x̂1(ti1)

=
⌊
ti2 + φ2(ti2)

⌋
1

f2

−
⌊
ti1 + φ1(ti1)

⌋
1

f1

(6.11)

where:

b cc floors to the nearest value exactly divisible by c. i.e. bxcc = x− (x mod c)

37

6.3. PTP Load Tests

fi is the clock frequency of clock i

If the noise contributions of φ1(t), φ2(t), and η(t) is sufficiently low, then based on the
above equation, it is clear that their contribution is effectively filtered by the floor func-
tion. In this case, the variation caused by flooring will then become the dominant source of
noise. Quantisation noise also helps explain why the measured noise appeared to increase
when the TCXO on the DQAME was directly used. While the TCXO does have lower
phase noise, its frequency is only 40MHz. The other tests were conducted using a FDPLL
configured to output 100MHz. Thus, the TCXO version had a comparatively lower times-
tamping resolution. Ironically, while the use of a FDPLL to increase the clock frequency
was found to dramatically increase the phase noise of the clock, the added timestamping
resolution may in fact have lowered the overall system noise.

While a possible and seeming plausible explanation, quantisation does not directly explain
why the PDV is asymmetrical. It is speculated that the timestamping resolution of the
devices may differ depending on whether they are receiving or transmitting, however,
at this time it is unknown. Ideally the noise contribution of this resolution limitation
could be calculated exactly to verify that the measured noise does in fact stem from
quantisation. However, due limited knowledge of the hardware behaviour as well as the
inherent discontinuities in the floor function, it is difficult to model quantisation in the
system.

6.3 PTP Load Tests

In the previous sections, measurements were performed under ideal conditions, and outliers
were filtered in post processing to obtain an accurate view of the time and timestamping
stability. However, during normal operations, networking conditions and load can change
dynamically. High load can cause the PDV of PTP packets, i.e. η1,2(t1) and η2,1(t3),
to change. Furthermore, filtering outliers only serves to help determine the underlying
measurement noise and does not provide an accurate picture of the performance during
operation, as any synchronisation scheme will have to account for such event. This section
documents the behaviour of η1,2(t1) and η2,1(t3) for a variety of networking conditions.

To generate network traffic, a Spirent TestCenter 2000 is used. This device is equipped
with two 10Gbit/s interfaces that can be configured to send/receive custom network traffic.
Two distinct networking scenarios are investigated in this section. First, constant data
rate traffic going into the NIC is considered. Three levels of constant load are tested: 0,
10, and 100Mbit/s. It is important to test the behaviour of η(t) when the NIC receives
heavy traffic, as this is a feasible operating scenario. Conversely, measuring timestamping
behaviour when the NIC transmits heavy network load has not been tested, as it is not
expected to occur. Furthermore, the effect of random burst traffic is also not investigated.
While bursty traffic is expected to occur during operation, in the interest of time, these
tests have been omitted. Secondly cross traffic in the switch between devices not related to
the PTP network is examined. For this test, each of the two Spirent TestCenter’s 10Gbit/s
interfaces were configured to transmit 10Gbit/s to the other interface. Thus resulting in
a total of 20Gbit/s per second of cross traffic load. For all the aforementioned tests, the
network traffic generator was configured to send a constant stream of 1024 byte ethernet
frames to the NIC. Furthermore, like the tests in the previous sections, each scenario was

38

6.3. PTP Load Tests

tested for at least 6 hours and PTP was configured to exchange synchronisation packets
at 32Hz.

The tests described in this section are performed using the test setup illustrated in fig-
ure 6.14.

FEC

Central
Time
Receiver

I210 NIC

Switch

Network
Traffic
Generator

PTP
Application
ptp4l

Sync
Application
ts2phc

DQAME
(Open Loop)

Voltage

Time
PPS Signals

M

S

M

S

Figure 6.14: Illustration of the measurement setup used to measure outliers in the PTP network. The
network traffic generator is used to create different network conditions.

To continue the trend of the last two section, the AVAR of the measurement is initially
considered. The Sigma-Tau plots of all measurements are shown in figure 6.15

39

6.3. PTP Load Tests

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

Allan Variance of Load Tests

No Load M2S

No Load S2M

10 Mbit/S M2S

10 Mbit/S S2M

100 Mbit/S M2S

100 Mbit/S S2M

Cross Traffic M2S

Cross Traffic S2M

Figure 6.15: Sigma-Tau plot of the Allan Variance of the load tests.

The graphs clearly show that significantly more noise is present when the NIC is under
load and simultaneously timestamping incoming packets from the DQAME.

To gain further insight into how and why this additional noise manifests itself, the 10Mbit/s
load scenario is further investigated. However, note that similar results are found for the
100Mbit/s, though these have been omitted for the sake of brevity.

First, to obtain a high level overview of the load behaviour, time domain plots of the phase
error estimates are shown in figure 6.16.

40

6.3. PTP Load Tests

0 5 10 15 20 25 30 35 40 45
Elapsed Time - seconds #103

-660

-640

-620

-600

-580

-560

-540

-520

?
(t

)
-
se

co
n
d
s

#10-6 Bidirectional Phase Error at 10 Mbit/s

?(t1; t2) = x2(t2)! x1(t1)
?(t4; t3) = x2(t3)! x1(t4)

Figure 6.16: Line plot of φ(t1, t2) and φ(t4, t3) for all samples collected during the 10Mbit/s load test.
Outliers have not been filtered.

From this graph it is obvious that the estimate made between the slave and master are
significantly noisier than the measurements made in the other direction. However, due
to the high number of samples in this global representation of the data, it is hard to see
exactly what is going on between each sample. To obtain a more detailed view of the
noise, we zoom in on a subset of the data. Furthermore, to eliminate the random walk
behaviour of the data the first of difference of the phase error is considered:

∆φj,k[i] = φ(ti+1
j , ti+1

k)− φ(tij , tik) (6.12)

Figure 6.17 and figure 6.18 graphs ∆φ1,2[i] and ∆φ4,3[i] respectively. To get sense for the
how the network load modifies the samples, data from the scenario with no network load
is also shown. To allow for easier visual comparison an offset has been added to the no
network load data. Further, note the two graphs differing x and y axis scales.

41

6.3. PTP Load Tests

0 0.5 1 1.5 2 2.5 3 3.5
Elapsed Time - seconds #103

-500

-400

-300

-200

-100

0

100

200

300

400

500

"
?

1;
2

-
se

co
n
d
s

#10-9 Zoomed in Illustration of Outliers

10 Mbit/s Load
No Load
Outlier Threshold

Figure 6.17: Line plot of ∆φ1,2[i] of the samples collected within the first 3125 seconds of the 10 and
0Mbit/s load test. Samples outside the region enclosed by the red lines are considered outliers.

0 5 10 15 20 25 30 35
Elapsed Time - seconds

-8

-6

-4

-2

0

2

4

6

8

"
?

4;
3

-
se

co
n
d
s

#10-6 Zoomed in Illustration of Outliers

10 Mbit/s Load
No Load
Outlier Threshold

Figure 6.18: Line plot of ∆φ3,4[i] of the samples collected within the first 31 seconds of the 10 and
0Mbit/s load test. Samples outside the region enclosed by the red lines are considered outliers.

In both of the two graphs, it is clear that the measured ∆φj,k[i] is incidentally polluted by
the occurrence of outliers. Though it is also clear that outliers occur much more frequently

42

6.3. PTP Load Tests

and with higher amplitude in ∆φ4,3[i] as opposed to ∆φ1,2[i]. Outside of these outliers it
seems that the data varies approximately as much as the non loaded scenario.

Until now the AVAR has been used to characterise system noise. However, this was used
under the assumptions that the noise spectrum adhered to a power law. When outliers
are considered, it is clear from the time series that this is not the case. Thus, we turn our
attention to exclusively characterising the outliers using other tools. To do this, the data’s
outliers are extracted and the frequency of their occurrences as well as their magnitude
are partially described.

To quantify outliers, it is first necessary to exactly define what an outlier is. Generally,
outliers are data points that are substantially different from the remaining data set. How-
ever, what ’substantially different’ means is somewhat subjective. One common approach
is to define outliers as data points with values that a more than some number of standard
deviations away from the sample mean of the data. In this thesis it was instead decided
to use the Median Absolute Deviation (MAD) since it was found to provide more consis-
tent performance for different data sets as compared to standard deviation. The mean
and standard deviation main weakness is that the contribution of each individual outliers
directly changes their values. In this regard the Median Absolute Deviation (MAD) is
more robust, as it relies on the median data point, and thus half the observed data points
must be outliers before the estimator is corrupted [9]. Mathematically Median Absolute
Deviation (MAD) is defined as [9]:

MAD = median (|x−median(x)|) (6.13)

Outliers are then defined as any data-point of ∆φi,j [i] that is more than six MAD away
from the median of the dataset. Six was chosen empirically and appears to be a good
compromise between over and under sensitivity. Examples of outlier thresholds are shown
in figure 6.17 and figure 6.18. Due to the differencing each outlier in φi,j [i] becomes two
consecutive outliers in the resulting ∆φi,j [i]. To account for this, only the first occurrence
is counted.

Given that the system relies on discrete samples the fraction of outliers occurrences with
respect to the total number of data points are found to help inform about the frequency
of outlier occurrences. For each of the tested scenarios, this fraction is found for the both
the case when the NIC transmits a synchronisation packet to the DQAME, p1,2, and in
the opposite direction, p2,1. Table 6.7 presents the fractions:

Table 6.7: The fraction of detected outliers compared to the total number of data points. In the fraction
columns the numerator and denominator of the fraction shows the exact number of outliers and the total
number of samples respectively.

Network Scenario p1,2 p3,4

0Mbit/s NIC RX Load 4
722719 = 6.25e− 06 0

722719 = 0

10Mbit/s NIC RX Load 31
1416648 = 2.1883e− 05 14475

1416648 = 0.0102

100Mbit/s NIC RX Load 56
2862664 = 1.96e− 05 262052

2862664 = 0.092

20Gbit/s Cross Traffic 8
2128456 = 3.76e− 06 0

2128456 = 0

43

6.3. PTP Load Tests

The table clearly shows that the fraction of outliers occurring between the DQAME and
NIC depend on the NIC RX load. Interestingly, the fraction seems to almost have a 1:1
relationship to the relative link saturation. At 10Mbit/s the 1G NIC is under 1% load,
which roughly corresponds to the error rate. Similarly, at 100Mbit/s the NIC is under
10% load which is not far off from the resultant outlier rate. Intuitively this relationship
makes sense as the probability of a PTP packet being transmitted at the same time as
a load packet equals the relative load. When multiple packets are destined for the same
destination the packets are queued in the switch thus creating additional propagation
delay. The data also shows that the other direction, i.e. p1,2 also experiences occasional
outliers and thus these must also be accounted for when implementing synchronisation.
However, as these occurrences are exceedingly rare, their occurrence rate is not further
commented.

If the outliers are assumed to be independent and thus adhere to the Bernoulli distribution,
then then the number of samples between each outlier will fit a geometric distribution with
parameter p. To help verify if the prior hypothesis is valid, a histogram of the number of
samples between each outlier found in ∆φ4,3[i] is shown in figure 6.19. Like previously, only
the data from 10Mbit/s scenario is shown. Along with the histogram, the probability mass
function of a geometric distribution parameterised with the measured fraction of outliers,
p4,3 = 0.0102, is also plotted.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N
or

m
al

iz
ed

 P
ro

ba
bi

lit
y

Histogram of Number of Samples Between each Outlier

0 100 200 300 400 500 600
Samples Between Each Outlier

0

500

1000

1500

2000

2500

3000

N
u
m
b
er

of
O
cc
u
rr
en

ce
s

Histogram of Data
Geometric PMF: p = 0:0102

Figure 6.19: Histogram of the number of samples between each outlier in ∆φ4,3[i] for the 10Mbit/s load
test. The histogram is plotted with maximum resolution, i.e. each bin only groups the outliers with the
exact same number samples between them. In addition to the histogram, the Geometric Probability Mass
Function (PMF) for the estimated p is also shown.

Based on the above histogram, it is clear that the data does not adhere to the expected
geometric distribution. Rather it seems there are a number delays that are more frequent
than others. For example, twelve sample delays between an outlier had 2933 occurrences
while the neighbouring options of eleven and thirteen sample delays only had 20 and 8
occurrences respectively. In spite of the lack of geometric fit, the envelope of the histogram
roughly corresponds to the exponential decay that is expected from the geometric distri-

44

6.3. PTP Load Tests

bution. Furthermore, the number of samples between events is not the only way to judge
the frequency of outliers. Another approach is to determine how many outliers occur in a
given interval. For a Bernoulli process, this is described by the binomial distribution where
n is the number of number of samples and p is the probability of an outlier occurring for
a given sample. Figure 6.20 and figure 6.21 shows the histogram of the number of outliers
for n = 32 and n = 1024. Along with the histogram, the equivalent binomial probability
mass function is also displayed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 P
ro

ba
bi

lit
y

Histogram of Number of Outliers in 32 Sample Sequence

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Number of Outliers

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
er

of
O

cc
u
rr

en
ce

s

Histogram of Data
Binomial PMF: n = 32, p = 0:0102

Figure 6.20: Histogram of the number of outlier occurring in a 32 sample interval for the 10Mbit/s load
test. In addition to the histogram, the Binomial Probability Mass Function (PMF) for the estimated p
and chosen n is also shown.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N
or

m
al

iz
ed

 P
ro

ba
bi

lit
y

Histogram of Number of Outliers in 1024 Sample Sequence

0 2 4 6 8 10 12 14 16 18 20
Number of Outliers

0

50

100

150

200

250

300

N
u
m

b
er

of
O

cc
u
rr

en
ce

s

Histogram of Data
Binomial PMF: n = 1024, p = 0:0102

Figure 6.21: Histogram of the number of outlier occurring in a 1024 sample interval for the 10Mbit/s
load test. In addition to the histogram, the Binomial Probability Mass Function (PMF) for the estimated
p and chosen n is also shown.

45

6.3. PTP Load Tests

From the figures it appears that the data closely approximates the binomial distribution
for low n. For the case where n = 1024 the data has still generally retained the same shape
as the binomial probability mass function, albeit more concentrated towards the center.

Having considered the frequency of outlier occurrences, the outlier magnitude must also
be characterised. First, simple statistics, such as the maximum and mean value of the
outliers are collected in table 6.8. Statistics regarding the outlier of ∆φ4,3[i] in the no load
and cross traffic scenario are omitted, as no outliers were observed.

Table 6.8: Simple statistics of the various network scenario’s outlier magnitudes.

Network Scenario Max Mean Median

0Mbit/s NIC RX Load, ∆φ1,2[i] 537e− 9 498e− 9 498e− 9

20Gbit/s Cross Traffic, ∆φ1,2[i] 520e− 9 505e− 9 509e− 9

10Mbit/s NIC RX Load, ∆φ1,2[i] 625e− 9 413e− 9 369e− 9

100Mbit/s NIC RX Load, ∆φ1,2[i] 884e− 9 495e− 9 495e− 9

10Mbit/s NIC RX Load, ∆φ4,3[i] 7.60e− 6 4.25e− 6 4.29e− 6

100Mbit/s NIC RX Load, ∆φ4,3[i] 7.60e− 6 4.15e− 6 4.14e− 6

The low quantity of observed outliers for the majority of the test cases makes it difficult to
make any definitive conclusions. However, it appears that the magnitude of the sporadic
and rarely occurring outliers in the first four scenarios of the table are of significantly
lower magnitude than that of the outliers in φ4,3[i] in the 10 and 100Mbit/s load tests.

To obtain a better understanding of these outliers’ magnitudes, a histogram of the φ4,3[i]
outliers’ magnitude of the 10 and 100Mbit/s load tests is shown in figure 6.22 and fig-
ure 6.23. Histograms have not been plotted for the remaining data, as there are too little
available data to justify it.

46

6.3. PTP Load Tests

Histogram of Outlier Values, 10 Mbit/s Load

0 1 2 3 4 5 6 7 8
Outlier Value #10-6

0

200

400

600

800

1000

1200

1400

N
u
m

b
er

of
O

cc
u
rr

en
ce

s

Figure 6.22: Histogram of the magnitude of all outliers in ∆φ4,3[i] for the 10Mbit/s load test.

Histogram of Outlier Values, 100 Mbit/s Load

0 1 2 3 4 5 6 7 8
Outlier Value #10-6

0

0.5

1

1.5

2

2.5

3

N
u
m

b
er

of
O

cc
u
rr

en
ce

s

#104

Figure 6.23: Histogram of the magnitude of all outliers in ∆φ4,3[i] for the 100Mbit/s load test.

The above histograms show that the outliers are approximately uniformly distributed with
a somewhat higher preference for the maximum of around 8 µs. While currently unknown,
this distribution along with its maximum value is likely related to the 1024 byte frame
length used as the load test packets. The longer the frame of the colliding packet, the

47

6.3. PTP Load Tests

longer a queuing delay should be expected in the switch. Ideally, this test should be
repeated for the average and maximum frame length used in the data acquisition network.
Though as this is currently unknown this has not been investigated further.

Following the results from above, it is evident that outliers have a significant likelihood
of occurrence during operation. If these are not accounted for either through removal or
the use of robust control, synchronisation accuracy will suffer as any outlier can cause
the offset estimate to wander off by several microseconds. It is evident that outliers
are not independent, and thus if outliers are to be removed, further research into their
distribution and correlation is warranted as this can possibly support the development of
detection methods.

Furthermore, load tests were only conducted up to 100Mbit/s which represents 10% of
the maximum link speed. As a load up to 940Mbit/s is be expected, this extreme scenario
should also be investigated. If the outlier fraction continues to scale with the relative
load, this will result in more than 90% of the data samples categorised as outliers. In
this extreme case the MAD is no longer a suitable estimator for detecting outliers in post
processing. This scenario must also be considered in real time implementations.

In addition to a wider range of constant load tests, it would also be relevant to test the
outlier behaviour during random or bursty traffic. Since packet collisions have identical
likelihood of occurrence during random burst loads, occupying the same relative link speed
as an equivalent constant load, it is expected that the fraction of outliers will remain
similar. However, the underlying probabilistic properties of the process may be different
and thus it is worth investigating further.

Finally, it is noteworthy that both the largest and frequent occurrence of outliers occurred
in the packets transferred from the DQAME to the NIC. In the opposite direction outliers
occurred with significantly lower frequency. This is positive, as the packets going from
the NIC to the DQAMEs are the packets that are used to estimate the sample to sample
phase difference, φ[n]. The packets in the opposite direction are used in support of the
estimation of the propagation delay, η̂, and thus outliers in this direction only affect the
estimate of the propagation delay. This can introduce a constant offset in the calculation
of φ[n], however, no additional sample to sample noise will be added.

48

Chapter 7

Control

Having characterised the systems open loop noise performance; the next step is the im-
plementation of control and subsequently to evaluate the controlled system’s steady state
and noise behaviour.

7.1 Clock Control

To facilitate synchronisation between the master and slave, it is crucial that the slave’s
clock is controllable and not just a static, free running entity. To obtain an understanding
of how the clock rate can be changed, the time tracking and timestamping logic of our
DQAME’s TSU is considered.

The TSU’s four key registers are illustrated in figure 7.1

seconds, 48b nanoseconds, 30b sub-ns, 16b

(a) TSU Timer - TIMER Register

ns, 8b sub-ns, 16b

(b) TSU Increment - INC

seconds, 48b nanoseconds, 30b

(c) TSU Stamp - STAMP

seconds, 48b ns, 21b

(d) TSU Compare - COMP

Figure 7.1: Illustration of the structure of key TSU registers.

The TSU’s TIMER register is a 96-bit register that keeps track of time [10, p. 453]. The
48 bits designed to track seconds allows the chip to track time for up to 8.9 million years.
This is adequate for any realistic time tracking need. Furthermore, the sub-second part
of the register is slightly special as it is designed to overflow when the 30 nanosecond bits

49

7.1. Clock Control

are equal to 1 billion, as opposed to 230. Thus, the value of the nanosecond part of the
register translates directly to the conventional base 10 SI perception of nanoseconds.

The TIMER register is directly linked with the TSU increment (INC) register, which
controls how much the TIMER register is incremented every clock cycle. To track time
exactly, the INC register must be set equal to the clock period. Thus, if the input fre-
quency is, say, 10MHz the INC register should be set to 100 ns. In addition to being
incremented every clock cycle, the TIMER register’s upper 78 bits can also be modified
directly. This allows for initialisation of the TIMER register to a starting value, or to be
incremented/decremented by some other value than the one in the increment register.

Outside of tracking time, the TSU’s principal task is the timestamping of PTP packets.
Such timestamps are stored in the TSU STAMP Register. The register stores the upper
78 bits of the timer registers value at the occurrence of the event.

Finally, the compare (COMP) register is a versatile register used to activate a hardware
event or software interrupt whenever its value equals the value in the timer register. This
allows for the activation of events at exact times, a feature which has proven invaluable
during testing and development.

The rate at which the TIMER register is incremented depends on both the input tick rate
and the value in the INC register dictating how much the TIMER register changes per
clock tick. Thus, the effective clock rate can effectively be changed by changing either of
these parameters.

The tick rate is controlled by the system’s main clock. This clock can either be derived
directly from the crystal oscillator used on the PCB, or from a FDPLL multiplying the
crystal oscillator’s frequency to some other value. On our boards, a 40MHz TCXO is used
as the external oscillator. This clock rate is insufficient as it severely limits the maximum
performance of the MCU. Instead an embedded FDPLL is used to multiply the 40MHz
to a higher rate (maximum 120MHz). The FDPLL along with its IO, and configuration
registers is illustrated in figure 7.2.

XIN

XOUT
XOSCn

XIN32

XOUT32
XOSC32K

GCLK_DPLL

DIVIDER

DPLLCTRLB.DIV

DPLLCTRLB.REFCLK

DIGITAL FILTERTDC

DPLLCTRLB.FILTER

DCO CLK_DPLL

RATIO

DPLLRATIO

CK

CKR
CG

Figure 7.2: Fractional Digital Phased Locked Loop (FDPLL) used in the chip [10, p. 702].

As seen in the diagram, the FDPLL is highly configurable. When the external oscillator
(XOSC) is used as an input to the FDPLL the output frequency is controlled by the
DIVIDER and RATIO registers. The DIVIDER register divides the input clock frequency
to a lower frequency. This is necessary as the raw clock rate is much higher than the
maximum supported FDPLL input frequency of 3.2 MHz. The RATIO register controls
the Loop Divider Ratio (LDR) and determines the frequency multiplication factor. The

50

7.1. Clock Control

LDR consist of an integer part and a 5-bit fractional part (LDRFRAC). The final output
frequency is found according to:

fCLK_DPLL = fXOSC
2(DIV + 1) ·

(
LDR + 1 + LDRFRAC

32

)
(7.1)

Due to the presence of two highly configurable degrees of freedom (DIV and LDR) avail-
able, it was initially assumed that modifying the FDPLL parameters during run time
could be a good method to achieve a high degree of frequency control. However, it was
found that following an update of its parameters, the FDPLL takes too long to settle in
on its new target frequency. Furthermore, during testing of this scheme it was also found
the our MCU’s revision had faulty silicone where the FDPLL fails when the input fre-
quency is lower than 400 kHz (This bug is confirmed by the chip’s errata sheet [11, p. 28]).
This limits the maximum value of the DIV configuration and lowers the frequency control
achievable with this method.

Instead, rate adjustment is achieved by modifying the TSU INC register. Thus, to change
the clock rate by some factor, the value of the INC register is simply multiplied by the
desired factor. However, the register only has 24 bits, and the absolute rate adjustment
resolution is limited to ±2−16ns. In isolation, the absolute resolution is not of particular
interest. Rather, the resolution relative to the INC register value is considered. The
relative resolution changes depending on the current value in the INC register. In effect,
relative resolution is higher if the INC value is higher, and vice versa. As the INC value
changes whenever the rate is modified, so does the relative resolution. This is not useful
as a metric, and thus the resolution with respect to the nominal INC value is instead used.
The nominal INC value is the clock period as this sets the timer to track time at a 1 to 1
rate. This approximation is useful as the rate adjustment is expected to stay within a few
percent of the nominal rate. Furthermore, fine resolution generally is only relevant when
the synchronisation is near to to its steady state. At this stage, the INC value should
be very close to its nominal value, and as such the relative resolution approximation is
a good estimator of the true relative resolution at the present INC value. Based on this
definition, the relative resolution is found as:

Relative Resolution = Clock Frequency(Clock Period + Absolute Resolution) (7.2)

where the relative resolution is a dimensionless quantity.

For example, if the clock frequency is 100MHz then the timer’s INC register must be set
to the clock period, 10 ns, to track time at a 1 to 1 rate. At this clock frequency the
relative rate resolution is (100 · 106)(10 + 2−16) · 10−9 = 1 + 1.526 · 10−6. This does not
allow for fine control of the clock. Consider the simple case where a controller in the slave
is configured to exactly match the rate of the reference clock. In the extreme case where
the reference clock rate is exactly between two possible rate adjustment steps, the two
clocks’ rate will differ by a factor of 1 + 1.526

2 · 10−6. This results in a phase drift of ≈
760 ns per second. For a controller to counteract such drift, its sample rate must either be
high, or its complexity must be increased.

To minimize the demand on the controller to accommodate this low resolution, the min-
imum rate adjustment resolution is increased by trading rate range for more resolution.

51

7.2. Control

This is achieved by multiplying the value of the rate register by some power of two, 2r. As
the time stored in the TIMER register is now a factor of 2r larger than the actual time,
any timestamps must be normalised by 2r in post processing. As the timestamp has al-
ready been captured, the additional clock cycles spent on normalizing the timestamp does
not impact the timestamp accuracy. The advantage of this procedure is that it provides
an additional r bits of precision. For the case of a 100MHz input clock, and a default
INC value 10 ns, r is limited to a maximum value of 4. This increases the effective rate
adjustment resolution by a factor of 16 to 95.4 · 10−9. For any r value higher than 4,
the nanosecond increments will not fit in the 8 bits of the nanosecond part of the incre-
ment register. Theoretically it is possible to trade more range in the increment register
by allowing multiplication by an arbitrary integer. However, by limiting the options to
powers of two, the implementation is simplified, as it is possible to take advantage of shift
operations as opposed to having to use multiplication.

7.2 Control

To control the timing registers, a controller must be implemented. The most common
controller used for synchronisation is a simple Proportional-Integral (PI) controller [12,
p. 146]. Such a controller will also be implemented in this thesis. To start controller
design a system model is required. In broad terms systems are either modelled as transfer
functions or state space models. In this thesis, both models are created. First, a transfer
function of the closed loop of the system is found. This is how classical control is usually
modelled and how PI controllers are commonly modelled. Subsequently, an equivalent
State space model is created. State space models are the norm in modern control the-
ory and analysis software, and such a model facilitates the use of more complex control
schemes that may be envisioned in the future. Both of the models only consider the
systems deterministic properties, and thus the various noise and quantisation sources are
unaccounted for.

7.2.1 Transfer Function

A system controlled by a PI controller is composed of a controller K(z) and a plant G(z)
in a closed loop. This is visualised in figure 7.3:

K(z) G(z)

Controller Clock 1

K(z)
x2[n] + φ[n] r[n]

−

x1[n]

Figure 7.3: Block diagram of a closed loop transfer function model where clock 1 is synchronised to clock
2.

To find the transfer function of the closed loop behaviour, the transfer function of both
the controller and the clock block must first be found. These are inferred with respect to
the block’s time domain linear difference equations.

52

7.2. Control

To start, the clock is considered. A clock simply finds the time by integrating the previous
set rate over the observation period. This is equivalent to:

x1[n] = x1[n− 1] + r[n]∆T (7.3)

where:

r[n] is the clock rate.

∆T is the controller sampling rate (not the clock period).

Thus, the clock is modelled as forward Euler integrator with the following transfer function:

G(z) = ∆T
z − 1 (7.4)

The PI controller can be described using the following equations:

ri[n] = ri[n− 1] + φ[n− 1]∆T (7.5)
rk[n] = Kpφ[n] (7.6)
r[n] = rk[n] + ri[n] (7.7)

Resulting in the K(z) transfer function:

K(z) = Kp +Ki∆T
z

z − 1 (7.8)

Having derived transfer function for the Controller, K(z) and the clock, G(z) the closed
loop transfer function is found as [13, p. 37]:

H(z) = K(z)G(z)
1 +K(z)G(z)

= ∆T (Kiz +Kpz −Kp)
z2 + ∆T (Ki +Kp)z − 2z −∆TKp + 1 (7.9)

7.2.2 State Space Model

In a state space model, each changing state of the system is modelled. For a linear time
invariant discrete state space model this is generally described by the following [13, p. 79]:

q[n+ 1] = Aq[n] + Bu[n] (7.10)
y[n] = Cq[n] + Du[n] (7.11)

where:

q[n] is a vector containing m states

y[n] is a vector containing l outputs

53

7.2. Control

u[n] is a vector containing r control inputs

A is a m×m matrix

B is a m× r matrix

C is a l ×m matrix

D is a l × r matrix

The A matrix describes how the current state, q[n], impacts the next state, q[n + 1]].
Similarly, the B matrix relates the current input, u[n] to the change in the next state.
The system output y[n] is related to the current system state, q[n] and system input u[n]
according to matrix C and D respectively.

In the model explored in this thesis, the current system state, q[n], is exactly equal to the
system output, y[n]. Thus only the first equation, equation (7.10), is considered further.

To model closed loop feedback with reference tracking, the control vector, u[n], is set equal
to some reference input, p[n], subtracted from the current state :

u[n] = q[n]− p[n] (7.12)

Figure 7.4 illustrates the interaction between the variables making up the state space
model:

B + z−1

A

p[n] − u[n]

+

q[n+ 1]

Figure 7.4: State Space Block Diagram.

To create a state space model of the system, the system states must first be defined. The
clock is defined by two parameters. Its current phase, x[n] and its rate, r[n]. Therefore
the state vector is:

q[n] =
[
x1[n]
r[n]

]
(7.13)

The reference input vector p[n] only contains the phase information of the reference, clock
2, and the rate information is zero:

p[n] =
[
x2[n]

0

]
(7.14)

54

7.2. Control

Thus the control vector is defined as:

u[n] = p[n]− q[n] (7.15)

=
[
φ[n]
−r[n]

]
(7.16)

To model the difference equations of clock 1 synchronised to clock 2 with a PI controller,
both the states of q[n] are modelled as integrators according to:

x[n+ 1] = x[n] + (r[n] + (kp + ki)φ[n])∆T (7.17)
r[n+ 1] = r[n] + kiφ[n] (7.18)

In matrix form this system is written as:

q[n+ 1] = Aq[n] + Bu[n]
= Aq[n] + B(p[n]− q[n])
= (A−B)q[n] + Bp[n]
= F q[n] + Bp[n] (7.19)

where

q[n] =
[
x2[n]
r[n]

]

p[n] =
[
x2[n]

0

]

u[n] =
[
φ[n]
−r[n]

]

A =
[
1 ∆T
0 1

]

B =
[
(Kp +Ki)∆T 0

Ki 0

]

F = A−B =
[
1− (Kp +Ki)∆T ∆T

−Ki 1

]

The derived state space model is converted into an equivalent transfer function, to verify
that it is equivalent to the previously derived transfer function. To do this the following
equation is used [14, p. 350]:

H(z) = (zI − F)−1B (7.20)

where H(z) is a matrix of transfer functions describing each of the states, q, response to
each of the control states.

When H(z) is evaluated, it is found that the transfer function of the x1[n] state is exactly
equivalent to the derived transfer function:

H1,1(z) = ∆T (Kiz +Kpz −Kp)
z2 + ∆T (Ki +Kp)z − 2z −∆TKp + 1 (7.21)

where H1,1(z) is the transfer function of state q1[n] = x1[n] subject to control signal
u1[n] = φ[n] .

55

7.2. Control

7.2.3 Transient Response

To validate the developed model, the PI controller is implemented on the DQAMEs and
the performance is compared with the derived model. In the tested implementation the
DQAMEs exclusive rely on the x1(t1) and x2(t2) timestamps, and no propagation delay
compensation is performed using the other two timestamps, x2(t3) and x4(t4). Further,
prior to activating the PI control the DQAME sets its internal time equal to the first
x1(t1) timestamp received. This coarsely synchronises the two clocks. If this is not done,
the DQAME’s clock would start at t = 0 and would thus be more than a billion seconds
behind the reference clock’s UNIX time. Such a large phase difference between the two
clocks will drastically increase settling time, and likely cause the controller to fail due
to excessive integral windup past the rate control systems capabilities. The initial phase
equalisation resolves these two issues. Furthermore, the clock rate is initialised as 1.0, i.e.
r[0] = 1. As it is assumed that the clock’s default rate closely resembles the reference
clock rate, this initialisation further helps reducing the settling time.

The PI controller test setup is illustrated in figure 7.5.

FEC

Central
Time
Receiver

I210 NIC

Switch

PTP
Application
ptp4l

Sync
Application
ts2phc

DQAME
(Closed Loop)

Voltage

Time
PPS Signals

M

S

M

S

Figure 7.5: Illustration of the measurement setup used to measure the closed loop behaviour.

As time increases linearly, the system response is tested using the equivalent of a ramp
signal.

56

7.2. Control

Two different PI controller configurations were tested at a sampling rate of 32Hz:

• Kp = 0.5, Ki = 2.134

• Kp = 0.188, Ki = 0.0136

Both of these configurations were determined empirically. The first configuration is pur-
posely underdamped while the second configuration is less damped and represents a more
sensible and robust configuration. These two configurations allow for testing the model for
two very different operating points. The systems response results are shown in figure 7.6
and figure 7.7.

0 5 10 15 20 25 30
Elapsed Time - seconds

-1000

-500

0

500

?
[i
]
-
se

co
n
d
s

#10-6 Closed Loop Measurements, Kp = 0:5, Ki = 2:134

0 5 10 15 20 25 30
Elapsed Time - seconds

-1000

-500

0

500

?
[i
]
-
se

co
n
d
s

#10-6 Closed Loop Simulation, Kp = 0:5, Ki = 2:134

0 5 10 15 20 25 30
Elapsed Time - seconds

-2000

0

2000

?
si

m
[i
]!
?

m
ea

s
[i
] #10-9 Simulation and Measurements Di,erence, Kp = 0:5, Ki = 2:134

Figure 7.6: Measured and modelled system ramp responses. Performed with control parameters: Kp =
0.5, Ki = 2.134, ∆T = 0.03125.

57

7.3. Steady State Error

0 10 20 30 40 50 60
Elapsed Time - seconds

-600

-400

-200

0

?
[i
]
-
se

co
n
d
s

#10-6 Closed Loop Measurements, Kp = 0:188, Ki = 0:0136

0 10 20 30 40 50 60
Elapsed Time - seconds

-600

-400

-200

0

?
[i
]
-
se

co
n
d
s

#10-6 Closed Loop Simulation, Kp = 0:188, Ki = 0:0136

0 10 20 30 40 50 60
Elapsed Time - seconds

-200

0

200

400

?
si

m
[i
]!
?

m
ea

s
[i
] #10-9 Simulation and Measurements Di,erence, Kp = 0:188, Ki = 0:0136

Figure 7.7: Measured and modelled system ramp responses. Performed with control parameters: Kp =
0.188, Ki = 0.0136, ∆T = 0.03125.

From the figures, it is clear that the derived model models the system behaviour well.
This implies that the system dynamics are well understood. Thus, future PI parameters
can easily be tested through simulation before being deployed to hardware. Furthermore,
if necessary, the created state space system model can be expected to facilitate the imple-
mentation of more advanced control schemes.

7.3 Steady State Error

The previous section detailed the PI controller implementation and showed the system
response to the control. However, the previous measurements only considered φ[i] as
measured through the PTP network’s x1(t1) and x2(t2) timestamps. As established earlier
in section 4.2, propagation delay must also be accounted for. Through the use of the
x2(t3) and x1(t4) timestamps it is possible to estimate the propagation delay. However,
this estimate assumes the delay is symmetrical. Thus, any asymmetry will result in the
controlled system having a constant bias/steady state error as compared to the true value.

58

7.3. Steady State Error

To test the validity of the propagation delay estimate, η̂[n] and quantify any present
asymmetry, the PTP offset estimates, φ[i], is compared to the offset measured through
pulse differences. The test setup is illustrated in figure 7.8.

FS725
Rubidium
Clock

FEC

Central
Time
Receiver

I210 NIC

Switch

PTP
Application
ptp4l

Sync
Application
ts2phc

TARP TICC

DQAME
(Closed Loop)

Voltage

Time
PPS Signals

M

S

M

S

10 MHz Ref.

Ch
an
.
A

Ch
an
.
B

Figure 7.8: Illustration of the measurement setup used to compare the system response as measured
through the PTP network and through the TICC.

Unlike in previous test, the timestamps collected by the TICC are not simply considered
in isolation, but rather the timestamps from the two channels are subtracted to find their
phase difference. This measure is referred to as the Time Interval Error (TIE), and its
principle is shown in figure 7.9:

59

7.3. Steady State Error

Voltage

Time Interval Error

1 2 3

1 2 3

TICC Timestamps

CTR Time

DQAME Time

Figure 7.9: Illustration of measuring time error using pulses.

The DQAME pulses are compared to the CTR Pulses as this represents the ultimate source
of time the DQAME should be synchronised to. Thus it would not be as compelling to
find the TIE between the NIC. Each pulse source is configured to emit pulses at 1 second
intervals, as this is the fastest the central time receiver allows. The φ[n] is estimated using
both the pulse TIE and through the x1(t1) and x2(t2) PTP timestamps. The results of
these two estimates of φ[n] is shown in figure 7.10

0 200 400 600 800 1000 1200
Elapsed Time - seconds

-10

0

10

20

30

40

50

60

70

80

90

T
im

e
O
,
se

t,
?
[i
]
-
se

co
n
d
s

#10-6 PTP O,set vs. TICC O,set

TICC Error
PTP Error

Figure 7.10: Plot of φ[n] when estimated through pulses and through the PTP network. Note that
since these measurements were not synchronised, the plots alignment is only approximate as it was made
manually.

From figure 7.10 it is clear that the φ[n] estimate follows the same general trajectory.

60

7.3. Steady State Error

Upon reaching steady state it is seen that the TIE estimate of φ[n] differs from the PTP
measurement by a couple of microseconds. This is expected, as the plotted PTP estimate
does not account for propagation delay.

To see how well the estimated propagation delay matches the measured difference between
the TIE and PTP estimate of φ[n], figure 7.11 zooms in on the steady state region of the
measurements and additionally plots η̂[n].

200 300 400 500 600 700 800 900 1000 1100 1200
Elapsed Time - seconds

-2

-1.5

-1

-0.5

0

0.5

T
im

e
O
,
se

t,
?
[i
]
-
se

co
n
d
s

#10-6 PTP O,set vs. TICC O,set - Steady State

TICC error
PTP error
Estimated propagation delay: 2̂

Figure 7.11: Steady state plot of φ[n] as estimated through pulses and through the PTP network.

Based on the plot in figure 7.11 it is evident that the propagation delay estimate, η̂[n],
accounts for most of the discrepancy between TIE and PTP estimate. However, around
~300 ns of time difference between the two estimates remain unaccounted for. This dif-
ference may partially be attributed to asymmetry in the network propagation delay. The
root course of the asymmetry is as of now unknown. From correspondence with the switch
manufacturer, it is known that the used switch can contribute up to 50 ns of asymmetry.
Furthermore, it is speculated that there may be a systematic error in the timestamping of
packets on the DQAME, as the TSU is located in the device MAC layer and is physically
disjoint from a separate PHY chip managing the physical layer. A specific example of an
unexpected asymmetry source faced during development is the choice of SFP transceiver
used in the switch. During initial testing, the estimated propagation delay, η̂, was signifi-
cantly worse than in the previously presented data - upwards of 1 µs away from the true
offset. Given that the networking hardware was specifically chosen to provide accurate
timestamping this seemed suspiciously high. Following extensive troubleshooting it was
found that the transceiver used to connect the NIC to the switch was not PTP validated
by the switch manufacturer (Juniper). After this transceiver was replaced by a validated

61

7.4. Closed Loop Noise Measurements

transceiver, the propagation delay estimate improved significantly.

Finally, other non-network related sources may also contribute to the observed offset. For
example if a phase offset is present between the NIC and the CTR, this will also affect
the offset between the DQAME and the CTR.

7.4 Closed Loop Noise Measurements

Additional to the propagation delay, the derived model does not consider the stochastic
noise sources of the system. These could possibly be added later to further enhance the
model. However in this thesis it has instead been opted to exclusively measure the closed
loop noise rather than modelling it.

To measure closed loop noise the controlled DQAME clock noise is measured both using
the TICC and through the PTP network. Using both these measurements, the AVAR is
estimated and compared to open loop estimates presented in figure 6.10 and figure 6.12
from chapter 6. The test setup for these tests is illustrated in figure 7.12.

FS725
Rubidium
Clock

FEC

Central
Time
Receiver

I210 NIC

Switch

PTP
Application
ptp4l

Sync
Application
ts2phc

TARP TICC

DQAME
(Closed Loop)

Voltage

Time
PPS Signals

M

S

M

S

10 MHz Ref.

Ch
an
.
A

Ch
an
.
B

Figure 7.12: Illustration of the measurement setup used to quantify the closed loop phase noise when
measured through the PTP network.

Using the above setup data was collected for the case of the DQAME2 board running

62

7.4. Closed Loop Noise Measurements

PI configuration Kp = 0.188, Ki = 0.0136. To ensure only the steady state noise is
analysed, only data after the first 200 seconds was used to estimate the AVAR. Figure 7.13
illustrates the closed loop noise performance and compares it with some of the open loop
measurements conducted in chapter 6.

10-2 10-1 100 101 102 103
10-22

10-20

10-18

10-16

10-14

10-12

10-10
DQAME Allan Variance

PTP M2S OL: 723680 pts @ 32Hz

PTP M2S CL: 1540705 pts @ 32Hz

PTP S2M OL: 723680 pts @ 32Hz

PTP S2M CL: 1540705 pts @ 32Hz

DQAME2 OL: 5538496 pts @ 100Hz

DQAME2 CL: 4823887 pts @ 100Hz

Figure 7.13: Sigma-Tau plot of the Allan Variance of open and closed loop measurements. OL is an
abbreviation for Open Loop, while CL abbreviates Closed Loop.

The above data shows that synchronisation is working, as the random walk noise is elim-
inated. This is demonstrated by the closed loop AVAR curves having a negative slope
throughout all time intervals considered. Furthermore, as the PTP closed loop noise
curves overlap with their open loop counterparts, it is shown that the high frequency PTP
noise is mostly unaffected by the synchronisation. This is not the case for the raw DQAME
clock noise. At low time scales the open and closed loop estimates are roughly equiva-
lent. However, as the observation period progresses past the synchronisation interval (1

32s)
the closed loop noise increases slightly. This increase is attributed to the discretisation
of clocks frequency control described in section 7.1. Indeed, it is found that the closed
loop noise increases significantly if the resolution increasing scheme is not used. A noise
comparison between the schemes is shown in figure 7.14.

63

7.4. Closed Loop Noise Measurements

10-2 10-1 100 101 102 103
10-22

10-20

10-18

10-16

10-14

10-12

10-10
DQAME Allan Variance

PTP M2S CL r0: 723680 pts @ 32Hz

PTP M2S CL r4: 1540705 pts @ 32Hz

PTP S2M CL r0: 723680 pts @ 32Hz

PTP S2M CL r4: 1540705 pts @ 32Hz

DQAME2 CL r0: 5538496 pts @ 50Hz

DQAME2 CL r4: 4823887 pts @ 100Hz

Figure 7.14: Sigma-Tau plot of the Allan Variance of closed loop measurements. The plot compares a
configuration with a high degree of clock control (r = 4) to another configuration with more coarse control
(r = 0). r represents the number of additional bits of precision.

Figure 7.14 shows that while the random walk noise remains eliminated in the case where
clock frequency control is limited, its low frequency noise is further offset than in the high
resolution case. This scenario has sufficient noise that the quantisation effect can be seen
in a phase error plot. Figure 7.15 shows this.

64

7.4. Closed Loop Noise Measurements

0 2 4 6 8 10 12 14 16 18

Elapsed Time - seconds

-50

-40

-30

-20

-10

0

10

20
10-9

Figure 7.15: Phase error of configuration with coarse clock control. Measured at steady state.

Each of the sudden jumps in the shown phase error represents the moment the controller
integral control has accumulated sufficient error to overcome the clock’s frequency discreti-
sation threshold. The relatively high threshold in the default, case where resolution is not
raised, result in the rapid phase change. This also occurs in the modified high resolution
case. However, due to the higher resolution, the effect is much less pronounced.

Thus far, this thesis has mostly relied on frequency noise to describe phase error. However,
frequency noise only indirectly informs us of the phase error. Thus phase deviation is now
considered more directly. Several methods are available for the quantification of phase
error, with one of the most common being the Time Deviation (TDEV). TDEV is closely
related to the ADEV and quantifies how much the phase varies within an observation
period τ . Instead of focusing on TDEV, the Maximum Time Interval Error (MTIE) is
instead investigated. This measure quantifies a measurements maximum time deviation
within observation period τ . MTIE sheds light on the maximum time error variation that
can be expected during operation. This is useful as it helps defining the upper bound of
the synchronisation phase error.

The MTIE in a single observation period of duration τ starting from time t0 is defined as
[15]:

MTIE(τ) = max
t0≤t≤t0+τ

[φ(t)]− min
t0≤t≤t0+τ

[φ(t)] (7.22)

The MTIE over all possible observation periods for a measurement of duration T is further

65

7.4. Closed Loop Noise Measurements

defined as [15]:

MTIE(τ, T) = max
0≤t0≤T+τ

[MTIE(τ)] (7.23)

Using this definition, the MTIE(τ, T) of the synchronised system is plotted and shown in
figure 7.16. The MTIE in figure 7.16 is calculated using the τ [i] values found using the
TICC.

10
-2

10
-1

10
0

10
1

10
2

10
3

30

35

40

45

50

55

60

65

70
10

-9

Figure 7.16: Plot of closed loop MTIE(τ, T).

The MTIE plotted in figure 7.16 are promising and show an MTIE of less than 100 ns
for observation periods up to 1000 seconds. Granted, the calculated MTIE for the longer
observation periods are of less statistical significance than the smaller period, and thus
the MTIE may increase significantly if larger data sets are considered. Furthermore, if
longer intervals are considered the MTIE will also rise, as there is simply a higher chance
that two phase errors will be further apart. The MTIE does not define hard upper limit
for the time error. Instead it is useful in the evaluation of the maximum error that can be
expected in some percentage of measurements (e.g. 99.9%). The calculations required to
find these confidence intervals are not undertaken.

Having evaluated the closed loop synchronisation steady state error and noise performance
separately, some general observation of the overall system performance can be made. It
was found that when the propagation delay estimate η̂ was accounted for, the steady
state offset was around 300 ns. When this is combined with the MTIE measurements, it
is inferred that the total error will generally remain below 400 ns. While more extensive

66

7.4. Closed Loop Noise Measurements

tests and calculations are required to make stronger and more definitive conclusions, the
current results are promising. It seems highly probable that the goal of achieving sub
microsecond synchronisation performance is attainable.

67

Chapter 8

Conclusion

Throughout this thesis, both theoretical and practical aspects of synchronisation were
thoroughly analysed and developed. First, the underlying deterministic and stochastic
error sources inherent in clocks was investigated. Following this, methods allowing for the
distribution of clock phase were analysed in detail. Based on these, the earlier developed
synchronisation test setup was presented. The system noise was first tested in open loop
without the use of synchronisation. Subsequently control was developed, and similar test
were carried out.

The resulting measurements are encouraging and strongly suggest that sub microsecond
synchronisation is attainable. It is likely that even higher precision is achievable within
the current setup, however, further testing is required to make definitive conclusions.

Currently the main source of error is the constant bias present in the phase offset mea-
surements. For further research into enhanced precision, it is advised to investigate the
source of this bias. If it is found that systematic error is the primary culprit, it should
be possible to address, eliminating the extra several hundredths of nanoseconds of error
currently present. If the bias can be accounted for, noise will be the dominating source
of error. Thus, based on the results substantiated throughout this thesis, it would be
possible to reduce the synchronisation error below 100 ns.

However, for such results to materialise in practise, outliers resulting from networking load
must be addressed. In this thesis outliers were only analysed and removed during post
processing and no attempts were made to identify real time methods to detect and remove
outliers. Thus, further work into this topic is critical for any real world implementation
of the synchronisation system aiming to achieve the previously claimed results.

Furthermore, practical real time methods for finding good estimates of the propagation
delay, η̂, has also been omitted in this thesis and needs to be addressed in a final imple-
mentation.

Finally, as mentioned previously in chapter 7, it was discovered that the SFP transceivers
between the NIC and switch was not validated for PTP. This was discovered following the
completions of the open loop noise and load tests in chapter 6. Thus, it is possible that the
collected results are erroneous. Therefore these must using validated SFP transceivers to
validate the results. However, given that the newly acquired transceiver is PTP validated,
it seems plausible a new measurement round with PTP validated equipment will not
worsen compared to the earlier results.

68

In summary, the project’s results are considered a success. While finishing touches are still
required to finalise a deployment ready implementation of the synchronisation system, the
results obtained throughout this thesis are considered excellent. It is expected that in the
coming months the synchronisation system will be implemented and provide the new data
acquisition system being developed by TE-MPE-EP with accurate timestamping.

69

Bibliography

[1] M. Christensen, “QPS Data Acquisition: The Synchronisation Sub-System - Interim
Report,” Aalborg University, Tech. Rep., 2020.

[2] E. Rubiola, Phase Noise and Frequency Stability in Oscillators. Cambridge Univer-
sity Press, 2009.

[3] D. Howe, D. Allan, and J. Barnes, “Properties of Signal Sources and Measurement
Methods,” in Proceedings of the 35th Annual Symposium on Frequency Control, no.
February 1981, 1981, pp. 669–716.

[4] Hewlett-Packard, “Fundamentals Quartz Oscillators,” Hewlett-Packard, Tech. Rep.,
1997.

[5] V. Solo, “INTRINSIC RANDOM FUNCTIONS AND THE PARADOX OF 1/f
NOISE,” SIAM Journal on Applied Mathematics, 1992.

[6] W. J. Riley, Handbook of Frequency Stability Analysis. National Institute of Stan-
dards and Technology, 1994, vol. 31, no. 1.

[7] “Ieee standard for a precision clock synchronization protocol for networked measure-
ment and control systems,” Institute of Electrical and Electronics Engineers, Stan-
dard, 2008.

[8] R. Cochran, “The Linux PTP Project.” [Online]. Available: http://linuxptp.
sourceforge.net/

[9] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute deviation,”
Journal of the American Statistical Association, vol. 88, no. 424, pp. 1273–1283,
1993.

[10] Microchip, “SAM D5x/E5x Family Data Sheet DS60001507G.”

[11] ——, “SAM D5x/E5x Family Silicon Errata and Data Sheet Clarification
DS80000748L.”

[12] J. C. Eidson, Measurement, Control, and Communication Using IEEE 1588.
Springer, 2006.

[13] W. Brogan, Modern Control Theory, 3rd ed. Pearson, 1990.

[14] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and
Design, 2nd ed. John Wiley & Sons, 2001.

[15] S. Bregni, “Measurement of maximum time interval error for telecommunica-
tions clock stability characterization,” IEEE Transactions on Instrumentation and
Measurement, vol. 45, no. 5, pp. 900–906, 1996.

70

http://linuxptp.sourceforge.net/
http://linuxptp.sourceforge.net/

	Front page
	English title page
	Abbreviations
	Contents
	1 Introduction
	2 Problem
	3 Clock Noise Error Sources
	3.1 Theoretical Aspects
	3.2 Practical Considerations

	4 Offset Estimation Methods
	4.1 Pulse Based
	4.2 Precision Time Protocol

	5 System Overview
	6 Noise Characterisation
	6.1 Clock Noise Measurements
	6.2 Nominal PTP Noise
	6.3 PTP Load Tests

	7 Control
	7.1 Clock Control
	7.2 Control
	7.3 Steady State Error
	7.4 Closed Loop Noise Measurements

	8 Conclusion
	Bibliography

