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Synopsis:

This project presents the development of
an algorithm for assigning tasks to a fleet
of decentralised Autonomous Guided Ve-
hicle (AGV)s also known as a fleet man-
ager. The task assignment is done by us-
ing a Genetic Algorithm (GA) to handle
the multiple travelling salesmen problem
(mTSP). The mTSP is a problem defi-
nition, which closely resembles the chal-
lenge faced in this project thereby making
it a prime target to test the GA against.
The GA is inspired by evolution and is di-
vided into five parts; initial population, fit-
ness function, selection process, breeding
and mutation. These parts are iterated
through for several generation. In this case
the GA is programmed to optimise the se-
quence of tasks present in a pick and place
environment over time. Furthermore, de-
centralisation methods are explored for al-
gorithm optimisation, and it was shown
that it could be used as such conceptu-
ally. The project ended out with a GA
that was within 20% of the global mini-
mum 90% of the time. However, the de-
centralisation did not work as intended the
methods were therefore simulated to see
the effectiveness.



1 Summary

This project presents the development of an algorithm for solving the challenges in-
volved with setting up a fleet manager to assign tasks to a fleet of decentralized AGVs
along with insuring that the sequence in which the tasks occur is optimal. Task assign-
ment is a part of a fleet manager, which can be further split into four stages: The high
level fleet manager of which task assignment is a part of, scheduling which schedules tasks
on minute to minute basis, an routing algorithm for traffic control and at last a path
planning algorithm for generating a path between the different tasks in the environment.

A use case was provided by a company and was used to focus the project by supplying
requirement specifications, constraints and a close approximation of a real factory envi-
ronment constructed for pick and place objectives using Autonomous Guided Vehicles
(AGVs). With respect to the use case related works concerned with similar challenges
were explored leading to the choice of using a Genetic Algorithm to solve the presented
challenge. An genetic algorithm is inspired by the concept of evolutionary theory, mainly
the ability of an organism to adapt and improve over time through consecutive gener-
ations. In computer science evolution is imitated mathematically by representing the
genes of the organism as a sequence of numbers, the order of which represents a solution
to specific problem, like deciding in which order a set of cities/tasks should be visited in
order to minimise distance travelled. To improve the solution over time a fitness function
is included to asses multiple solutions, ordering them from best to worst. Along with
the fitness function a selection method is introduced which job it is to select the best
solutions for mixing or mating in the case of a biological analogy. The process of mat-
ing two solutions to find a better one is referred to as performing a crossover operation
since the genes in both parent solutions are inherently crossed to form a new hopefully
better solution. At last a process know as mutation is added to the process in order
to introduce small tweaks to the new solutions doing runetime since using the crossover
operator alone can lead to inadequate solutions. The methods covered so far is what
makes up the backbone of a genetic algorithm. Throughout this report the core genetic
algorithm was modified in order to accomplish the final goal of developing an Genetic
Algorithm (GA) that could solve the challenges presented in this project. While a GA
capable of doing tasks allocation between multiple AGVs was created, decentralisation of
approach was only tested in concept since a full implementation could not be completed
due to a software issue faced late in the project.
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Preface

This report was written by Group 1062 of 10th-semester Robotics from Aalborg Uni-
versity. The report focuses on the design, modelling and implementation of a decen-
tralised genetic algorithm for a fleet of Autonomous Guided Vehicles.

Alexander Schøn Staal Ditte Damgaard Albertsen

Rasmus Finderup Thomsen

5



Project Structure

The following report is structured in chapters that documents the main components
that influenced the development of the decentralised genetic algorithm in this project.
The main chapters that form the foundation of this report are Related works, Genetic
Algorithm, Problem Formulation and System Design, Modelling and Testing.

Reading directions:

• It is recommended to first go through the list of abbreviations. Abbreviations are
defined in the order they appear in the report, and are gathered on page 7.

• The citation style of this report is IEEEtran. Citations are referred to by [1], [2]
and correspond to references in the bibliography. The order of the citations is based
on their appearance in the report.

• Tables, equations and figures are referenced with numbers related to the order and
the chapter in which they appear in.

• The List of Figures/Tables that are not made by the authors of this report, are
referenced below them.

• Sources are written in order of appearance throughout the report in the Bibliogra-
phy.

• Reference list of figures and tables are on the last pages of the report.
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Abbreviations List

AGV Autonomous Guided Vehicle

AI Artificial intelligence

ANN Artificial Neural Network

BFS Breadth-First Search

CNN Convolutional Neural Network

CNP Contract Net Protocol

DNN Deep Neural Network

DPX Distance Preserving Crossover

DRL Deep Reinforcement Learning

GA Genetic Algorithm

GNN Graph Neural Network

JSSP Job Shop Scheduling Problem

MB Market-Based

ML Machine Learning

mTSP Multiple Travelling Salesman Problem

RL Reinforcement Learning

OX1 Order Crossover

PMX Partially Mapped Crossover

RDO Research and Development Objective

RODAA Resource-Oriented, Decentralised Auction Algorithm

TCX Two-part crossover

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem
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2 Introduction

As a company grows so does its demands for storage space and workers capable of
completing the ever increasing number of work orders. However, some work orders/tasks
are often tedious or even dangerous for humans to perform, thereby making it a prime
candidate for automation. Furthermore, through automation of repeating tasks the ef-
ficiency of production can often be drastically increased, which among other benefits
drives the automation of many industries in the modern age. [1]

For this project the focus is aimed towards constructing a fleet manager for the allo-
cation of tasks between multiple AGVs working together in an environment resembling
an industrial setting. The environment is described in a use case that is used throughout
this project as a reference for developing the algorithm that serves as the solution to the
fleet management problem. The description of the use case can be found in section 2.1.
The project does not undertake the remaining processes involved with task execution as
illustrated on Figure 2.1, those being scheduling the time at which the tasks are executed,
routing traffic for deadlock avoidance and planning a concise path between tasks. The
project will instead solely focus on the effective distribution of the tasks among agents
and the order in which they should be completed.

Fleet Management

Scheduling

Routing

Path

Figure 2.1: The main components of managing a fleet include a high level fleet manager,
which assigns tasks to specific agents in the fleet. The tasks are then scheduled on a
minute basis, and then a routing algorithm is used for traffic control. At last a path
between tasks is planned for each agent.

The challenges of allocating tasks for multiple robots can be classified as a Multiple
Travelling Salesman Problem (mTSP)[2], where the goal for each salesmen/robot is to
not only select a number relevant tasks with respect to resource constraints, but to
also determine the order tasks should be completed, to improve efficiency or decrease
distance travelled. To solve the mTSP a branch of search algorithms called GA[3] is
used to approximate the most optimal solution to the mTSP. Exploring, setting up and
tuning a GA to solve the mTSP and in extension the challenges of fleet management
with respect to the use case is the aim of the project. Through this report, the concept
and architecture behind GA’s is explored and the most suitable candidate for solving the
presented problem is selected and modified to suit the needs of the project.
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The report is structured as follows. Following this introduction and the definition
of the use case the current related works within the branch of research that focuses on
genetic algorithms is covered in chapter 3. In chapter 4 the core concepts behind GA’s is
covered along with different approaches and techniques for constructing the algorithm.
Following the chapter, the primary goals and research objectives of the project is covered
in chapter 5, which leads into the description of the system architecture for the modified
genetic algorithm used to accomplish the goal of the project and the tests performed on
the GA in chapter 6. Further discussion of the test results can be found in chapter 7.
After the discussion the results of the project is covered in chapter 8, which is followed
by a coverage of possible improvements to the algorithm in chapter 9.

2.1 Use Case

1

2

3

2
1

3

2

6

4

5

3

2
11

Station
1 AGV

Figure 2.2: Example of a production layout with multiple AGVs, where all the task are
transportation of goods between the colour coded stations. The colour of the stations rep-
resents which stations are connected and the coloured dotted lines illustrates the travelling
route. The small black dotted lines represents the road the AGVs have to travel on in the
production hall where most of the stations are positioned.

The illustrated production layout in Figure 2.2 is used to test the result of this
project to determine the usefulness on a near realistic case. Three AGVs works together
on completing all the tasks in the environment. The tasks in this case are pick and place
assignments between the different stations, which are colour coded to represent connected
tasks.

A different part of the fleet management system controls the movement of the AGVs,
since this project solely focuses on solving the task assignment problem. The output
of the task assignment algorithm is a set of ordered tasks, which make up the route
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to each station. Obstacles, such as other AGVs and static structures are not taken into
consideration in this route. The AGVs for the sake of simplicity will move with a constant
velocity of 0.7m/s To be able to validate the developed algorithm a number of pick and
place tasks have been made that resembles that of a realistic production facility setup,
these pick and place assignments are defined below:

Red
Station 1 - 2: Move 93 pallets per day
Station 2 - 3: Move 93 pallets per day

Blue
Station 1 - 6: Move 8 pallets per day
Station 2 - 6: Move 6 pallets per day
Station 3 - 6: Move 12 pallet per day
Station 4 - 6: Move 5 pallets per day
Station 5 - 6: Move 3 pallets per day

Green
Station 1 - 2: Move 45 pallets per day

Black
Station 1 - 2: Move 10 pallets per day
Station 1 - 3: Move 2 pallets per day

The solution generated by the GA should be optimised with respect to resource
constraints and task completion time. For this project the resource constraints takes the
form of the battery level for each AGV, which when fully charged lasts around 8 hours.
It is a requirement that each AGV should be set to charge when the battery level reaches
30% to avoid shutting down and blocking a route for other machines. To be effective, the
optimised route from the GA must not deviate more than 20% from the global minimum,
and must be able to repeat this result 90% of the time. There are in total 277 task to
be carried out over 24 hours, which on average is 12 tasks per hour. All tasks in the
system are static, meaning that no new tasks are added doing run-time
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3 Related Works

This chapter presents the analysis of the problem presented in the introduction and its
related works. This related works section is used to explore possible or similar solutions to
challenges faced in this project and give an overview of what topics have been investigated
in the past. The challenge of assigning multiple mobile robots to do pre-defined tasks
can be generalised to other popular research problems. Among these are:

Travelling Salesman Problem (TSP): It considers the challenge of having a given
number of n cities, which have to be visited by a salesman once, and finding the
shortest path of doing this. Another characteristic is that the salesman has to start
and end in the same depot. [4]

Vehicle Routing Problem (VRP): It is a generalisation of the TSP. It defines
the problem of finding the shortest route for multiple vehicles, with capacity con-
straints, to traverse in order to deliver to a given set of customers. All the vehicles
have a shared depot, which they return to upon completion. [5] If the capacity of
the VRP vehicle is sufficiently large and the size is not restricting, it is basically
the same as mTSP.

Multiple Travelling Salesman Problem (mTSP): This is a generalisation of TSP
and a relaxation of VRP, where m salesmen have to visit a set number of n > m
cities, travelling the shortest path. The individual mi salesman has, like TSP,
a home depot it has to return to. The depot is the same for all m1,m2, ...,mi

salesmen. [6]

Job Shop Scheduling Problem (JSSP): It defines the problem where jobs are as-
signed to resources at particular times. Specifically, a given set of n jobs J1, J2, ..., Jn
of varying processing times, which have to be scheduled for m machines with vary-
ing processing power. The goal is to minimise the makespan, which is the total
length of the schedule. [7]

All of the above problem definitions are categorised as combinatorial optimisation
problems, with few definitions separating them. However, the most fitting definition for
the problem researched in this report is either VRP or mTSP. TSP only applies to a
single agent setup, and JSSP mostly focuses on problems with stationary machines and
time intervals. On the other hand, VRP and mTSP are both routing problems with
many of the same variations. These variations include: [8, 9]

Multiple depots: Instead of one depot, the multi-depot mTSP has a set of depots,
where a number of mj salesmen are assigned at each one j.

Fixed charges: If the number of salesmen/vehicles in a problem is not fixed, then each
agent is usually associated with a fixed cost incurring whenever this salesman is
used in the solution.
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Time windows: Associated with each city/node is a time window during which it
must be visited in the tour.

In summery, VRP and mTSP are similar in that they both define routing problems,
and have some of the same variations defined for them. The difference is mainly that the
plain VRP is a constrained form of mTSP, which is why the challenge in this report is
defined as a mTSP from this point onward.

3.1 Market-Based Approaches

The principle behind Market-Based (MB) approaches is based on the idea that mul-
tiple agents can, through a common contact or link communication, distribute tasks or
resources in order to optimise an overall objective function. The distribution of tasks/re-
sources for this approach is mainly inspired by the concept of auctions, meaning that each
agent can bid on a particular task, the bid being a representation of how capable or fit
the individual agent is to take and execute the presented task. The fitness of a particular
individual can take the form of a cost value that can be calculated based on multiple
factors such as distance from the task, battery level in case of a robot application or the
current workload already assigned to an agent. After each agent has presented a bid it
is up to a central system or a selected agent to act as an auctioneer that selects the best
suited bidder for the task [10].

While the underlying concept behind auctions remains the same in MBs, the way is
which the auction is designed can wary depending on which architecture best suits the
problem at hand. Two auction designs relevant to solving the mTSP are the Contract
Net Protocol (CNP) [10] and the Resource-Oriented, Decentralised Auction Algorithm
(RODAA) [11]. When using the CNP for solving the mTSP the auction process can be
split into four stages, those being the announcement stage, submission stage, selection
stage and the contract stage.

1. Announcement stage:
If the mTSP is centralised a central system or network takes up the position of an
auctioneer and announces the tasks that are to be distributed, for a decentralised
approach the position of the auctioneer is taken by one of the agents.

2. Submission stage:
Here each agents starts by calculating their own fitness which is based on multiple
factors represent how suited they are to take up the current task being presented
by the auctioneer. Upon finishing the calculation each agent communicates it’s
fitness/bid to the auctioneer.

3. Selection stage:
After all bids from the agents are received the auctioneer chooses the best suited
agent to receive the announced task according to defined optimisation strategy.
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4. Contract stage:
In the final stage the selected agent inserts the task into it’s schedule and thereafter
the four stages are repeated until no tasks remain to be distributed.

The primary benefit of using CNP is the ability to include it in both a centralised and
decentralised approach and that the number of agents can be increased and decreased
doing run-time. The latter is achievable due to tasks only being distributed among the
agents posting bids doing the submission stage. While, the CNP approach is relatively
straightforward it is implemented with the assumption that the connection between the
auctioneer and bidders are maintained from the initial to final stage. While the way in
which the fitness score is calculated and the agent is selected can differ based on the
problem being solved, it is assumed that the task being "sold" to the most fitting agent
will be executed. The CNP approach is not constructed around the idea that the selected
agent could shut down or get stuck, thus resulting in the allocated task not being com-
pleted. These issues among others are what form the basics for the RODAA algorithm
covered in [11].

Like CNP, RODAA is heavily inspired by the concept of auctions. However, the al-
gorithm is built solely around a decentralised approach to solving the mTSP along with
additional constraints. In RODAA the constraints take the form of limited resources,
a max time limit on auctions and that the fitness score for each agent is probabilistic.
RODAA can, like CNP be broken down into multiple stages/processes, which takes the
form of a bid generation stage, multihop auction stage, and a task execution stage.

1. Bid generation stage:
In RODAA the auctioneer is referred to as a customer requesting a service, while
the bidders are referred to as labours willing to perform the service. In this stage,
the customer requests a service, and the labours within the effective range of the
customer calculate a probabilistic value based on its currently available resources.
The value represents the individual agents’ probability of being able to execute the
task.

2. Multihop auction stage:
Doing the bid generation stage, the customer and labours within range construct
an ad-hoc network structured as a Breadth-First Search (BFS)-tree for dynamic
communication. Doing the multihop auction stage this network is used to effectively
allocate the requested service to the best fitting agent. It is important to note that
communication with the selected agent is maintained until service completion or
service failure due to an exceeded time constraint, agent shut down or other issue.
Should a problem occur the customer has the ability to reassign the service to
another agent.

3. Task execution stage:
The selected agent monitors its resources throughout the execution stage, after the
it receives its task. Should the resources drop below the estimated level the agent
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has the ability to, based on probability, decide whether or not to continue executing
the assignment or go to a charging station.

While the RODAA algorithm requires additional layers like an ad-hoc network and
hard constraints to function as intended, the approach does address many of the chal-
lenges inherent in mTSPs. RODAA is especially relevant when physical machines are
involved, since it sets up communication between moving agents, calculates the risk of an
unscheduled shutdown, deals with uncertainty and the organisation of teamwork. How-
ever, as mentioned in [11] RODAA was tested successfully in a simulation environment
but is yet to be tested with physical robots.

3.2 Learning-Based Approaches

This section focuses on learning based approaches for solving the challenge present
in this project. Generally learning based approaches are referred to as Machine Learning
(ML) and are seen as part of Artificial intelligence (AI). ML is defined as computer
algorithms which improve automatically through experience. First a model is build based
on sample data, also called "training data", in order to make predictions and decisions
without being programmed to perform a specific task. Data is introduced to the model
iteratively, in order for it to learn and adapt to new situations over time. The ML family
contains several subfamilies of algorithms, such as Reinforcement Learning (RL) where
the focus is on having the agent take actions which maximise a cumulative reward.
Another area is Artificial Neural Network (ANN), which are algorithms designed to
simulate the way human brains analyses and processes information. ANN contains three
types of layers, an input layer where each component of the state is passed, a hidden
layer where the core processing of the input states takes place, and finally an output layer
consisting of the actions that can be taken in the environment. If the Neural Network
architecture consists of more than one hidden layer, it is called a Deep Neural Network
(DNN) [12]. The concepts and methods used for ANN can also be applied or combined
with other architectures, such as RL called Deep Reinforcement Learning (DRL). DRL
is generally used when the state and action space becomes too large [13]. Other similar
approaches include: Convolutional Neural Network (CNN) designed for computer vision,
and Graph Neural Network (GNN) designed for working directly on graph structures.
However, the mTSP is rarely researched in the machine learning domain, mainly due to
difficulties such as the explosive increase in the search space as the number of agents and
tasks increase. Furthermore, the lack of data with ground truth optimal solution also
presents a problem, since it is computationally expensive and time consuming to get the
optimal solution for the mTSP. [14]

In relation to learning based approaches, the most relevant work include a pooling
network [15], a structured prediction [16], and a RL approach [14] for solving mTSP.

The pooling network [15] aims to solve the mTSP by trying to minimise the sum
of the travelled distance (MinSum). By using pooling operations, the network gets a
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hidden representation of the path for the kth agent from the ith to the jth vertex. The
size of this representation is m × n × n, where m and n are the number of agents and
cities respectively. To decode the representation, they implement beam search under the
constraint, that a city (except the depot) is allowed to be visited only once, by exactly
one agent.

A hierarchical structured prediction approach for generalisation is introduced in [16].
It focuses on agent-task assignment and works on a grid world environment for up to
fifteen tasks and eight agents. However, this task-assignment should be regarded as
a relaxation of mTSP, since it only matches cities to agents and does not care about
the travel order. Their solution learns pairwise scores between agent-task and task-task
on relative small-sized data. The scores are later combined with a quadratic inference
procedure to generate solutions. On the other hand, this way of finding the solutions are
also computationally expensive. This is especially true when the number of agents or
tasks increases, which only allows the approach to be trained and used in small instances.

A reinforcement learning approach for optimising mTSP over graphs is proposed in
[14]. They construct an architecture consisting of a shared GNN and a distributed policy
network to extract a common policy for mTSP. Furthermore, a two step approach is
implemented, where RL is used to learn an allocation of agents to vertices, and a regular
optimisation method is used to solve the individual agent’s associated TSP. A S-samples
batch training method is introduced to reduce the variance of the gradient. Other exam-
ples of GNN based solutions are [17] and [18], which both are DRL solutions of the JSSP.

However, out of the solutions mentioned above only [17] focuses on making a decen-
tralised system. This seems to be because the combination of ML and mTSP is a fairly
new research area, with papers being published in the last couple of years. In [17], they
design a fully distributed learning scheme with a decentralised state and action space
and an individual reward structure per agent. Research has been done on decentralised
systems without mTSP [19, 20]. A class of decentralised RL algorithms, where a relation-
ship is established between the society (global policy) and the agent (actions) at different
levels of abstractions are proposed in [19]. In [20], given a game, each agent knows the
system dynamics and their own reward function. Furthermore, each agent receives their
own current reward at time step k and is able to deduce the previous controls of other
agents but has no access to the current controls, actual rewards, their reward functions
or other agents’ control laws.

A more common method that is being used to solve the TSP and mTSP is a meta-
heuristic method called GA. GA is part of a sub category of AI referred to as com-
binatorial optimisation algorithms and is inspired by evolution. It works by improving
sub-optimal solutions over multiple generations. Each generation consists of a set of
solutions to the mTSP where the best solutions among them are combined and mutated
to form new ones for the next generation. This process is further explained in Chapter
chapter 4.

A GA is developed in [21] as a clustering method for finding the minimum distances
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between tasks in the different clusters with different starting/end points. This was made
in a decentralised system that used a marked-based method to trade tasks between
the robots. A solution in [22] that also worked with a decentralised system, used a
GA in parallel between the robots, to find the shortest distance while keeping track of
completion time. Through this approach the robots would attempt to use their resources
in the most optimal way by splitting the computation out and share the findings while
executing tasks.

In the paper [6], the GA is being used to optimise task order and allocation, but also
to generate the optimal number of agents needed to complete the assigned tasks. The
paper also introduces an optimised auction-based task allocation method. The papers
[23, 24] focuses on the effectiveness of the GA, where [24] looks at the parameters and
how they affect the optimal solution and [23] tests different crossovers, which results in
the creation of a new crossover. Along with a new crossover the paper additionally looks
into the idea of not initialising the algorithm with a random population.

3.3 Summary

While MB solutions are practical when having multiple decentralised robots in a
dynamic environment where tasks are added doing run-time, they struggle when the
order of the tasks to be completed plays an important role. This challenge is addressed
through the use of combinatorial optimisation methods where a GA is implemented
alongside the MB in order to optimise the order in which tasks are completed.

ML solutions are not as researched as other solution methods. This is mainly due
to the increase in search space resulting from the size of the state and action space, and
the lack of labelled data, since it is computationally expensive to solve for the optimal
solution, especially for large task sets. However, some have tried to solve the mTSP with
ML methods, among those are multiple GNNs. These methods perform satisfactory
or in some cases better than meta-heuristic methods. On the other hand, the better
performing GNN method also used regular optimisation methods to solve the individual
agent’s TSP, while using RL to assign tasks to agents [14]. In terms of decentralised
system solutions, it seems to be a an unsaturated research area within RL. However [17]
proves it is feasible to solve a decentralised mTSP modelled system.

Within the field of GA there exits multiple approaches for solving the mTSP, thereby
leaving room for customisation. It is for this reason along with the the problem state-
ment that GA is the algorithm of choice to solve the task assignment challenge for a
decentralised fleet of AGVs. While a combinatorial method can be applied to solve the
mTSP it is redundant due to the static nature of the task set, thereby making it more
straightforward to find a solution solely using an GA
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4 Genetic Algorithm

This chapter looks into the different aspects of the genetic algorithm, and some of
the different ways it can be defined in a mTSP context.

When dealing with a combinatorial problem like TSP or mTSP, optimisation algo-
rithms like GA can be used to rapidly compute a solution compared to a brute-force
approach. GAs are based on evolutionary theory, where two organisms mix their genes
in order to make a new offspring, this process is referred to as breeding. With each new
offspring there exits a chance of mutation of its genes. In terms of GA, mutation is
defined as either adding to, removing from or switching genes in the gene pool. When
applied in computer science, genes takes the form of numbers, the order of which can
define a solution to specific problem, like the problem of deciding in which order a set
of cities should be visited in order to minimise distance. Compared to a gradient de-
cent algorithm it is the role of breeding to take large steps towards the global minimum
while mutation on the other hand is used for small adjustments/steps. In the algorithm
mutation is also used to avoid converging to a local minimum. When implementing the
algorithm in practice the first set of solutions generated by the GA are sub-optimal.
The strength of the algorithm comes from the ability to evaluate the current solutions,
select those evaluated to be the most optimal and feed them back into the algorithm in
a iterative loop. Each iteration of this loop is referred to as generating a new generation.
This process is illustrated in Figure 4.1.

Initial Population Fitness Function Selection Process Crossover Mutation

Figure 4.1: A GA can be divided up in five main functions: Initialisation of parameters
and the creation of an initial population. The fitness function calculating the individuals
fitness score, and based on that the selection function chooses the individuals to be mated
in the crossover. The offspring then have a chance of being mutated. This process is then
repeated for multiple generations.

4.1 Initial population

A population is defined as a set of solutions in a generation, and in this report a
single solution is referred to as an individual. An individual contains genes (tasks),
split between different chromosomes (AGVs). There are different techniques for defining
an individual in an implementation context. The most common methods includes: One
individual technique, two individual technique, two-part individual technique, and multi-
chromosome technique.

One individual technique represents a solution for the mTSP using a single individual
of length n, where n is a permutation of n genes. The individual is split into m sub-routes
by a divider representing the shift from one chromosome to the next. An example of this
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can be seen in Figure 4.2, where n = 10 and m = 3. In the example one AGV performs
tasks 4, 5 and 7, a second AGV performs tasks 2, 8 and 9, and a third performs tasks 1,
3, 6 and 10. All tasks are performed in the order in which they appear. [25, 26]

4 5 7 0 2 8 9 0 1 3 6 10 0

AGV 1 AGV 2 AGV 3

Figure 4.2: In one individual technique an individual contains a list of integers repre-
senting specific tasks. A specific AGV’s task list is indicated by a divider, which indicate
the split from one AGV’s task set to another.

Two individual technique uses two individuals of length n to represent a solution.
One individual represents a permutation of n genes, while the other indicates the genes
assigned to a chromosome, with a value ranging from 1 to m. In the example shown in
Figure 4.3 tasks 4, 5, and 7 is performed by the first AGV in that order, tasks 2, 8 and
9 is performed by the second AGV in that order, and tasks 1, 3, 6 and 10 is performed
by the third AGV in that order. [25, 26]

1 2 3 4 5 6 7 8 9 10

3 2 3 1 1 3 1 2 2 3

Tasks

AGVs

Figure 4.3: Two individual technique employs two lists to describe the assignments of
tasks to AGV 1, 2 and 3. The placement of the task corresponds to the specific AGV in
the individual containing the AGV list.

The two-part individual technique of length n+m represents a solution in two parts.
The first part of the individual of length n contains a permutation of n tasks, and
second part of the individual of length m gives the number of tasks assigned to each
AGV. The values assigned to the second part of the individual are constrained to be m
positive integers, where their sum is equal to the total number of n tasks. For example
is Figure 4.4 the first AGV performs tasks 4, 5 and 7, the second performs tasks 2, 8 and
9, and the third performs tasks 1, 3, 6 and 10. [25, 26]
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4 5 7 2 8 9 1 3 6 10

AGV 1 AGV 2 AGV 3

3 3 4

Tasks Tasks per
AGV

Figure 4.4: The two-part individual technique represents its individuals in two parts. One
part indicate the task order, while the other indicates the number of tasks assigned to each
AGV.

Multi-chromosome, as the name implies makes use of multiple separated chromosomes
to define the solutions for the set of tasks. Here an individual is represented as a set of m
routes, i.e. there is no ordering among the routes. The length of a chromosome depends
on the number of tasks assigned to the AGV, where the length of the first chromosome is
defined as k1 and the second as k2, and so on. The sum of the length of the chromosomes
must be

∑m
i=1 ki = n, where n is the total number of tasks to be performed. An example

of a multi-chromosome setup can be seen on Figure 4.5, where ten tasks are divided
among three AGVs. One AGV is assigned tasks 4, 5 and 7, another is assigned tasks 2,
8 and 9, and the last is assigned tasks 1, 3, 6 and 10. [25, 26]

4 5 7 2 8 9 1 3 6 10

AGV 1 AGV 2 AGV 3

Chromosome 1 Chromosome 2 Chromosome 3

Figure 4.5: Multi-chromosome individuals is a nested list containing multiple lists con-
sisting of the task for each AGV.

All of the above mentioned techniques suffer from redundant solutions, meaning that
several individuals represent the same solution. However, the multi-chromosome repre-
sentation has no redundancy other than the inherent redundancy in representing indi-
vidual routes. The redundancy mainly occur due to the representation of the mTSP,
because routes are represented by linear permutations, whereas in reality they are circu-
lar permutations. For example, all the three linear permutations 10, 5, 3; 5, 3, 10 and 3,
10, 5 correspond to the same circular permutation, and hence are the same route. The
disadvantage of this redundancy is that the representation space (space containing all
possible individuals) is larger that the problem space (space of all possible solutions to
the problem). This means that the GA has to search a larger space, since GA works
in representation space. This can have consequences for the time it takes to converge.
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However, the redundancy is reduced to a minimum for mTSP instance where all AGVs
have to start and end at the same task called the home location. [26]

When initialising a population it is important to keep in mind that the diversity of
the population should be maintained otherwise it could lead to premature convergence.
Furthermore, an optimal population size needs to be found, since a large population
size slows down computation, while a small population might not be optimal for a good
mating pool. There are two primary methods to initialise a population in a GA. One is
random initialisation, where the initial population contains completely random solutions.
The other is a heuristic initialisation, where a known heuristic for the problem is used
for the initial population. [27] However, when the entire population is initialised using
a heuristic, it can result in a population with similar solutions and low diversity. On
the other hand, random initialisation effects the initial fitness of the population, but it
has a high diversity. Therefore, a population with few heuristic solutions mingled with
an otherwise randomly generated population, might be favoured compared to the two
extremes. [26, 27, 28]

4.2 Fitness function

The fitness function is defined as a function, which takes in a candidate solution as an
input and outputs a score representing how "fit" that particular individual is with respect
to the defined problem. This calculation is done for each individual in the population
for each generation, and could therefore slow down computation time if not sufficiently
setup. [28] An example of a fitness function with respect to minimising the travel distance
for multiple AGVs can is seen in Eq. (4.1):

fitness =
1∑m

j=1

∑nm
i=1(dij(ni, ni+1))

(4.1)

dij(ni, ni+1) =
√

(x1 − x2)2 + (y1 − y2)2 (4.2)

Where Eq. (4.2) is the distance between the previous and current task defined by an
x and y coordinate, m are the AGVs, mj is a specific AGV, n are the tasks, and ni is a
specific task for AGV mj . The same concept can be applied to fitness calculations with
respect to time.

4.3 Selection process

Selection is the process of selecting parents (individuals) from the current population
for the mating pool, based on the fitness values. The selection step is crucial for the
convergence rate of the GA, since good parents contain gene combinations, which can
be mixed in order to drive individuals towards better solutions. However, it is also a
balancing act where good individuals are wanted, but too many of them leads to a loss of
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diversity, since the same gene pattern occurs in similar solutions. A population populated
by extremely fit solutions mostly result in what is known as premature convergence or
convergence at a local minimum. The most known selection methods are the ones listed
below, where the most used method for mTSP is tournament selection. The selection
methods described solve the diversity problem by adding an element of randomness to
the selection process, thus insuring a more diverse mating pool. [23, 29, 30, 28]

Roulette Wheel Selection
Roulette Wheel selection is an implementation of fitness proportionate selection.
Here each individual is represented with a probabilistic value proportional to the
fitness score. The value defines the likelihood of a particular individual being
selected. An illustration of this can be seen in the pie chart in Figure 4.6, where
ten individuals are weighted based on their fitness scores.

Individual 1

19%

Individual 2

8%

Individual 3

12%
Individual 4

10%

Individual 5

17%

Individual 6

15%

Individual 7

1%
Individual 8

9% Individual 9
4%

Individual 10
5%

Figure 4.6: Each individual in the population is assigned a probabilistic value proportional
to their fitness score. A higher fitness score increases the likelihood of being selected.

Tournament Selection
In tournament selection a set number of randomly chosen individuals from the
population are ranked based on their relative fitness score. The best ranked indi-
vidual among the chosen set is passed to the mating pool. This process can be seen
illustrated in Figure 4.7.
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12 2 0 20 3 7 18 10 4 21

4 5 7 2 8 9 1 3 6 10

Fitness
value

Individual

4 7 1

1

K agent
random
selected

The best
individual

Figure 4.7: Illustration of tournament selection. Based on a defined selection size, a
number of individuals are randomly selected for the tournament, where the most fit one
carries over. Thus repeats this action until the population is filled again.

Stochastic Tournament
The Stochastic Tournament is a combination of the two selection methods above.
Roulette Wheel is used to select the individuals that thereafter are used as the
input for tournament selection.

Elitist selection
Elitist selection is used in combination with other selection methods to guarantees
that the solution quality obtained by the GA does not decrease from one generation
to the next. This is done by allowing a set number of individuals with the best
fitness scores from the current population to carry over to the next unaltered. On
Figure 4.8 an example of Elitist selection can be seen.

12 2 0 20 3 7 18 10 4 21

4 5 7 2 8 9 1 3 6 10

Fitness
value

Individual

4 7 1
K best

selected
individual

10

Figure 4.8: In elitist selection, a defined number of the most fit individuals proceed directly
to the next generation unaltered. In this example individual 1, 4, 7, and 10, have the best
fitness scores, so these individual are guaranteed a spot in the next generation.
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4.4 Crossover

The crossover function also known as breeding, has one of the biggest influences on
the next generation since its job is to merge two individuals together to form a new,
hopefully more optimal solution. This process can be done in numerous ways, each with
their own benefits and drawbacks. [31]

Each crossover attempts to mimic nature mathematically by taking some parts of
the first individual, and combining it with a second. The two individuals involved in
this process is known as a parent pair, and the result of the crossover is referred to as
the offspring of parent one and two. The most promising crossover methods found in
literature for solving the mTSP are described below and are tested in section 6.4 to find
the most suitable candidate for this project’s problem definition.

The papers researching solutions for mTSP using GA, used several different crossover
methods including: Two-part crossover (TCX)[32, 33, 34, 23], Distance Preserving Crossover
(DPX)[35], Order Crossover (OX1)[36, 37], and Partially Mapped Crossover (PMX)[35,
23, 38]. However, among them TCX was mentioned more frequently than the others and
described to be the most promising one based on the literature [32, 33, 34, 23].

In order to give an overview and understanding of how the different crossovers works,
an example of each of the four crossovers can be seen below.

Two-part crossover (TCX)

The TCX makes one offspring, which can be seen in the illustration in Figure 4.9.
The TCX is made in five steps and works as follows, utilises the two-part individual
technique shown in Figure 4.4 for defining the individuals:

1. Two parents from the mating pool are chosen, where the first part of the parents
is the task sequence, while the second part indicates the number of AGVs and how
many tasks they are assigned. An illustration of this type of individual can be
seen in Figure 4.4. Figure 4.9 shows this technique in use, where the orange boxes
are the second part containing the AGVs. Illustrating that task 1, 2, 8, and 6 is
assigned to the first AGV, and the remaining five are assigned to the second AGV
for the first parent.

2. A random sequence within the number of tasks assigned to the AGV is chosen
(illustrated in blue). The number of chosen tasks per AGV is used as the basis
of the task assignment in the offspring in step 5. This is illustrated by the dotted
boxes in the figure. For example in step 2 task 1 and 4 is chosen from the first
AGV, and task 2, 5 and 9 is chosen from the second, which is two tasks chosen
from AGV one and three for the second.
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1 4 8 6 2 5 9 3 7

2 9 5 1 8 7 6 4 3

4 5

8 1

1 4 8 6 2 5 9 3 7 4 5

2 3

8 6 3 7 8 7 6 3

2 9 5 1 8 7 6 4 3 8 1

1 4 8 6 2 5 9 37

3 1

2 3 3 1 5 4

1 4 8 6 2 5 9 37 5 4

1

2

3

4

5

Figure 4.9: The number of AGVs and how many task they have assigned is illustrated
with orange boxes and the number inside (task). (1) two parents are selected, (2) a
random sequence from each AGV is chosen. Both sequences are coloured blue. (3) the
remaining tasks from parent 1 are ordered based on appearance in parent 2, ending up
in two sequences coloured green. (4) a new task sequence is constructed based on the
previous steps. (5) a number of tasks are assigned to each AGV based on the number of
tasks in each sequence constructed in previous steps.

3. The leftover tasks from parent 1 are then ordered in respect to their order of
appearance in parent 2. They are then split up into two sequences based on how
they are arranged in parent 2. Sequence 1 consist of tasks 8, 7, 6 and the second
sequence consists of task 3. Both sequences are represented by the colour green.

4. The sequences that were derived in step 3 (illustrated in green) are used in the off-
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spring. The task sequence for the offspring is reconstructed from the first randomly
chosen sequence from step two which is coloured in blue. The first green sequence
from step 3 is then added. After that the second sequence from step 2 is added,
and at last the second green sequence is joined. This makes up the new task list
for the offspring.

5. The number of tasks in each blue and green sequence is then combined to define
how many tasks each AGV should have.

Distance Preserving Crossover (DPX)

The DPX produces only one offspring, as illustrated in Figure 4.10. As the title
implies, the DPX tries to preserve the shortest distances while breeding. The DPX is
made in three steps, that works as follows:

1 6 7 8 2 5 9 3 4

2 9 5 1 8 7 6 4 3

1

2

3

6 7 8 8 7 6

5 9 9 5

3 4 4 3

1 1

2 2

3 4 8 7 6 2 5 9 1

Figure 4.10: Sequences that are present in both parents are illustrated with the colours
blue, red and green, where the colourless is defined as remainders. Two arrangements of
the sequences can be seen in step 2. A random number is then chosen in step 3 to define
a starting point and the rest of the offspring is constructed by adding the sequences with
the lowest distance to the end of the first sequence.
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1. Two parents from the mating pool are chosen, here the algorithm finds sequences
in the first parent that either are the same or mirrored in the other parent. These
are illustrated in blue, green and red. The tasks without a connection are defined
as remainders.

2. This step shows the different arrangements the sequences can have which will highly
influence the shortest distance found as this creates two possibilities to get a short
distance.

3. A random number between 1 and 9 is selected to define a starting point of the
offspring. In Figure 4.10 the starting number was chosen to be 3 and the sequence
with the number 3 as the start will be chosen. The sequence that has a starting
number with closest distance to number 4 will be the next one etc. until the
offspring is fully defined.
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Partially Mapped Crossover (PMX)

The PMX produces two offspring and is fairly simply. An example can be seen in
Figure 4.11, that shows it split into three steps. It works as follows:

1. Two parents from the mating pool are be chosen.

2. A random sequence size and position is chosen, which is the same for both parents.
This sequence is illustrated with blue. The sequences are then positioned in the
same place in the offspring, where they are mirrored. This means that the sequence
from parent 1 is used in offspring 2 and vice versa.

3. The rest of the tasks in parent 1 go to offspring 2 in the same order, where the
arrows in step 2 show that the two numbers are connected. As shown in the example
in Figure 4.11 an already occurring number is changed to its connected number.

1 6 7 8 2 5 9 3 4

2 9 5 1 8 7 6 4 3

1

2

3

1 6 7 8 2 5 9 3 4

2 9 5 1 8 7 6 4 3

2 6 5

8 2 5

9 3 4

1 9 7

1 8 7

6 4 3

Figure 4.11: The sequences are illustrated with blue, which is moved directly to the off-
spring where sequence from parent 1 goes to parent 2, while the sequence from parent 2
is inserted into parent 1. The arrows shows connection to be swapped around if a reoc-
curring number should happen when the rest of the opposite parents tasks are moved to
the offspring
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Order Crossover (OX1)

The OX1 is derived from OX and does also have an OX2. However, the OX1 is still
the most used of these three. An example of the steps making up the OX1 can be seen
in Figure 4.12 and is further explained below:

1 4 8 6 2 5 9 3 7

4 1 2 8 7 6 5 3 9

1

2

3

1 4 8 6 2 5 9 3 7

4 1 2 8 7 6 5 3 9

8 6 2 5

2 8 7 6

4 1 2 8 7 6 5 3 9

8 6 2 5 4 1 3 97

1 4 9 3 78 6 2 5

2 8 7 6 1 4 5 9 3

4

Figure 4.12: OX1 produces two offspring. (1) Two parents are chosen. (2) A random
sized sequence and position is chosen. (3) The sequences from parent 1 (blue) and 2
(orange) is defined as the beginning of offspring 1 (green) and 2 (purple). (4) The rest
of offspring are constructed, based on the order of the other parent.

1. Two parents from the mating pool is chosen where parent 1 is coloured blue and
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parent 2 orange when looking at Figure 4.12.

2. A random sized sequence and position is chosen. The sequence size and position is
the same for both parents and is illustrated with grey.

3. The sequences from step 2 is then placed as the start of the each offspring.

4. The remaining missing numbers in offspring 1 (green) is taken from parent 2 (or-
ange) and vice versa for offspring 2 (purple) in the same arrangement they appear
in the parent. If the number is already there it will just skip it at take the next
number.

4.5 Mutation

Mutation is used to maintain and introduce diversity in the population and is gener-
ally defined as a small random tweak in a individual. A balanced mutation probability
is important for its usefulness. If the probability is too high, the GA is reduced to a
random search. On the other hand, if it is too small it has no impact. Mutation is the
part of GA, which is related to the exploration of the search space. On Figure 4.13 to
Figure 4.18 some of the most commonly used mutation operators are shown. The figures
include examples of how sequence inversion (Figure 4.13), transposition (Figure 4.14),
insertion (Figure 4.15), sequence transposition (Figure 4.16), chromosome contraction
(Figure 4.17), and chromosome partition works (Figure 4.18). The first half are in-route
mutations where the mutations only affect a single chromosome in an individual while the
last three are categorised as cross-route mutations that can affect two chromosomes in
the individual. Cross-route mutations are especially effective at determining the optimal
number of agents needed for performing a certain number of tasks, because they change
the task size per AGV. On the other hand, in-route mutations’ purpose is to prevent
premature convergence by applying randomness, and/or apply small tweaks an AGV’s
route. [39, 40, 28]

41 28 6 5 21 46 8 5

Figure 4.13: Sequence inversion: Randomly selects a sequence of tasks in an chromo-
some and inverts them.

22



Robotics - Group 1062 10. Semester project

41 28 6 5 21 48 6 5

Figure 4.14: Transposition: Randomly Swaps two genes.

41 28 6 5 21 46 8 5

Figure 4.15: Insertion: Moves one random task to a random placement in the chromo-
some.
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Figure 4.16: Sequence transposition: Swaps a random sized sequence of genes from
one chromosome with another randomly sized sequence from a second chromosome this
can optimise the number of task per AGV

81 26 4

7

10 9 14

11

5 12 13 3

81 26 4

710 9 14 11

5 12 13 3

Figure 4.17: Chromosome contraction: Merges two random chosen chromosomes
together which can be used to test the amount of AGVs needed to complete the tasks
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Figure 4.18: Chromosome partition: A chromosome is split in half, in a random place
to create two new chromosomes. This does the opposite of the chromosome contraction
by testing with increasing the amount of AGVs needed.

4.6 Summary

Knowing GA is the solution method to be used in this project, the general architec-
ture for a mTSP solved with an with GA is explored in this section. The architecture
design can be split up into five building blocks: The initialisation of the starting popu-
lation which is either based on random or heuristic generation. Fitness calculation and
selection, where each individual in the population is given a fitness score based how
good they are at solving the problem, and depending on that score each individual is
either selected for the crossover process or disregarded. Crossover is used for combining
two solutions with good traits, into a potentially better offspring populating that makes
up the next generation. The fifth building block is mutation, where a small random
tweak is applied to an individual thereby introducing diversity and preventing premature
convergence. These five blocks are iterated throughout usually hundreds of generations
to optimise, in this case, the order of the tasks assigned to the agents. However, each
block can be solved by several different techniques as presented throughout the different
sections in this chapter. For example four crossover methods are mentioned, but there
exist even more which are not listed, and because of the large impact the crossover tech-
nique has on the solution together with the mutation all the crossovers described in this
chapter, will be tested to explore which one is best suited for the specific GA constructed
in this project. The GA structure described in this chapter is also the one, that forms
the basis of the structure developed in chapter 6.
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5 Problem Formulation

This chapter focuses on defining the problems, which the project aims to solve. The
specific problems are described in the use case in chapter 2, which explains the specifica-
tions of the AGVs and the environment in which they work. The requirements defined
there are directly used for defining the validation parameters where possible. However,
not all the problems stated in chapter 2 can be explored in this report or is relevant
for the context. The problems are narrowed down and defined in the problem state-
ment, and further detailed in the research and development objectives. The main take
away from the introduction in chapter 2 is the problem that arises when having multiple
AGVs, in this case three, working together to solve a pre-defined number of (12) tasks
per hour. The AGVs are performing the tasks in a factory environment, where only
static structures and other AGVs are present.

The task assignment system should be decentralised as specified by the company
providing the use case. The reason for this is the desire for a system, which allows for
easy implementation of more or fewer AGVs during the task assignment phase along with
providing the ability to select a specific number of AGVs based on the user’s needs. As
specified in chapter 2 the tasks assignment problem will be solved using a GA. However,
other solution methods are also presented in the state of the art analysis in chapter 3
along with the added problem of decentralisation. Among the three methods (marked-
based, machine learning and genetic algorithm) MB and GA are the most explored in
regards to the classic mTSP. However, among the two MB is more commonly used in
a decentralised context, either in combination with other methods or by itself, which
makes the decentralisation of GA an interesting research area. Furthermore, the general
structure of a GA is described in chapter 4.

The final problem statement is defined based on the problems presented in the in-
troduction and the knowledge gained by analysing related works in chapter 3 together
with the general architecture of a GA. The final problem statement is therefore defined
as follows:

"How can a genetic algorithm be used to solve a task allocation problem for
multiple decentralised AGVs transporting goods between several workstations
in a static environment, while taking the battery level into consideration?"

5.1 Research and Development Objectives

The Research and Development Objective (RDO)s described in this section are de-
fined as goals for the research group to work towards and build upon to reach the final
objective.

RDO1: Develop a GA framework for a centralised mTSP setup

This first step of the project focuses on the development of a GA framework for
solving the mTSP, and is centralised for simplicity, since the general GA framework is
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also useful in RDO2. This framework is the foundation which is modified throughout
the other objectives, and is defined as a mTSP, where n > 1 AGVs have to perform
m > n tasks. The product of this algorithm is a sequence of tasks to be performed by
each agent, and the output is based on the minimisation of the travelled distance for
each agent. All the agents start and end at the same station, and after initialising the
algorithm no more tasks are added to the task list.

RDO2: Incorporate decentralisation capabilities in the mTSP frame-
work developed in RDO1

The goal of decentralising the system is to reduce the dependency on a central system
for task allocation between agents. While the available tasks are still communicated
through a central system it is up the agents to determine the most optimal distribution
of them. Furthermore since each agent has a copy of the algorithm the estimation process
can be run in parallel, thereby improving efficiency.

RDO3: GA-agent resources and constraints design

The goal here is to modify the GA to manage resources, during optimisation of
the AGVs’ routes. Resources takes the form of power level which is depleted through
travelling and task handling. The main problem here is the introduction of a constraint,
which is only present in certain scenarios, e.g. low battery for one or more of the AGVs.
The charging task is not like the other constant tasks. It is similar in that the low
powered AGVs has to travel to and from it, but on the other hand it only has to do so
depending on the battery level, meaning that the charging task is only optimised around
if a certain condition is met and is therefore mostly removed from general optimisation.

RDO4: Modelling, testing, and validation

The goal is to finish modelling the GA with the most fitting methods for the initial
population, fitness calculation, selection process, crossover, and mutation. Furthermore,
the hyperparameters are also tested to find the best fit for the developed GA. The GA
is validated against the requirements defined below and the problem statement

5.2 Requirements specification and assumptions

The requirements are mainly given from the company who provided the use case in
section 2.1, or taken directly from it.

1. The algorithm must find a solution for three decentralised AGVs, which have to
perform 12 tasks per hour on average, while driving with a maximum velocity of
0.7m/s. It is assumed that the task list is static, meaning that no new tasks are
introduced during run time. Furthermore, it is also assumed that the path planning
and navigation between tasks is handled by separate algorithms. However, the
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full extend of requirement cannot be tested, since it requires a good estimate of
the execution part of the fleet manager. Instead an estimate of those parameters
are given as constants. The route produced by the algorithm is made with the
assumption of it being an obstacle free environment. Meaning the distance between
tasks is defined as the euclidean distance between the two.

2. The algorithm must when estimating the optimal order and distribution of tasks
take the battery level into account. When the battery level reaches less than 30%
of the maximum capacity the AGV must recharge. The 30% was required by the
company, to make sure that the battery level is large enough to make it to the
charging station. It is assumed that all AGVs can recharge at the charging station
at the same time.

3. The optimised route from the GA must not deviate more than 20% from the global
minimum, and must be able to repeat this result 90% of the time as specified
by the company. In other words, the algorithm must have a 80% accuracy and
90% repeatability. The nature of n-hard problems like mTSP makes it next to
impossible to brute force the global minimum, but an close estimate is found by
running the algorithm several hundred time and use the best minimum found there
as the estimated global minimum, if the produced map looks satisfactory.
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6 System Design, Modelling and Testing

The system architecture described in this chapter is derived from the knowledge
gained in the related works analysis in chapter 3, the understanding of GA solidified
in chapter 4, and the requirements defined in chapter 5. Several solutions to similar
challenges are explored in chapter 3 for not only the chosen solution method GA, but
also machine learning and marked-based approaches. The main take away from chapter 3
is that marked-based and genetic algorithms seem to be more explored than learning-
based solutions, and this is mostly prevalent when looking at decentralised solutions.
Furthermore, a combination of marked-based and genetic algorithm are also presented
as a way to solve the decentralisation problem. Knowing GA is the algorithm of choice
chapter 4 describe the general setup of such an algorithm. The five building blocks is
presented and examples of implementations in regards to mTSP are given. These five
building blocks are also used as the GA’s main structure in this implementation which
is explained throughout the rest of the report, and can also be seen as the backbone of
the overall system architecture shown in Figure 6.1. This chapter include the design,
modelling and testing of this project solution to the decentralised mTSP.
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Figure 6.1: The system architecture is build around the GA, which outputs the best es-
timated solution. The decentralised AGVs communicate with each other and selects a
master, which then compare their results and communicates it to the slaves.

Figure 6.1 shows a solution architecture of a decentralised GA. It is of a master/slave
structure with the GA as its backbone. A master is chosen to handle the decision
making. The AGVs work together to produce an optimal solution, by establishing a
communication link sending their results to the master who compared them. The master
then outputs the optimised solution, based on the comparison. The optimised solution
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is obtained by the GA.

6.1 Initial population

A population is a set of solutions to a problem where each new generated population
is referred to as the next generation. The initial population defines the initial and future
stages of the algorithm, such as how the individuals in the population are constructed,
and the size of the population. It can also have an impact on the convergence rate, based
on how random the initial population is, but before initialising it the individuals have to
be defined. The most common individual constructions are described in section 4.1, and
based on the straightforward implementation the multi-chromosome setup is chosen. It
is simple to implement and use, since it can be represented as a nested list with Python,
where each AGV’s task sequence are lists within another list.

Based on the conclusions found in section 4.1, a diverse near random initial population
is preferred to hypothetically get the best results. However, in this case a completely
random population is preferred, because of the implemented heuristics based crossover
(DPX) in this project. The crossover is chosen and described in section 6.4. The chosen
crossover uses euclidean distances between tasks to determine the sequence in which
the two parents task lists should be combined. However, this also drives the GA to an
premature convergence, which results in a need for randomness in the other GA functions,
such as the initial population.

Initially a clustering method like k-means was considered as a way to determine the
initial number of agents. However, since the use case uses a specific number of agents to
arrive at the solution, a way to find the most optimal number of agents is not necessary in
this case. Clustering methods for the tasks are more fitting for determining the optimal
number of agents, or/and as an initial heuristic for assigning tasks, located in the same
area, to a specific number of agents. Furthermore, if this direction was chosen additional
mutations has to be implemented too for optimising it, to make sure other agent sizes
are tried out, as k-means can only be used as an initial estimate.

The population size is one of the most important parameters to consider in a GA.
Usually a "small" population size is said to lack diversity and so guide the algorithm to
a poor solution. On the other hand, a "large" population size could make the algorithm
expend more computation time to find a solution. A middle ground has to be found,
where the trade-off is considered, so that the population size has just "enough" individuals
to produce a "good" solution expending the least amount of computation time. There are
various methods for estimating the optimal population size. Usually the best population
size is estimated by using the empirical method, which entails testing the algorithm with
different sizes. The result of this can be seen in Table 6.6, where different crossover
methods is tested with various parameters and population sizes of 50 and 100. Those
sizes are chosen based on initial testing results, and they show that the best fitting
population size depends on the crossover. The main difference between the two sizes is
the computation time. In regards to the chosen crossover DPX 50 is concluded to be the
most fitting population size. However, as mentioned above DPX has a fast convergence
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rate, and a possible solution to that is tested out by initialising the GA with an initially
large population of 250, 500, 750, and 1000. It is theorised that by having a larger
initial population there is a bigger change of getting more diverse individuals and for the
population to contain better individuals in that initial population.

Initial Population Size Initial Selection Size Mean Distance Mean Time (s)
250 50 3080 206
500 50 3142 232
750 50 3193 357
1000 50 3117 532
250 100 3109 151
500 100 3121 249
750 100 3202 355
1000 100 3122 549
250 150 3122 183
500 150 3172 233
750 150 3152 352
1000 150 3136 529
250 200 3151 174
500 200 3147 250
750 200 3119 411
1000 200 3138 577

Table 6.1: The results were generated by running the algorithm with the different combi-
nations of initial population and selection size in the first generation ten times, with the
centralised version of the GA. The best combinations are highlighted by green

It is tested by running the first generation with a population size of 250, 500, 750 and
1000, and initial selection sizes of 50, 100, 150, and 200 in the centralised setup of the
algorithm. After running the first generation with those parameters they are reset to the
optimal population and selection size of 50 and 5 found in section 6.5. The algorithm is
run ten times for each combination of population and selection size. The initial selection
size is tested along the initial population size, since the optimal selection size is heavily
affected by the population size. A detailed description of the implemented selection
method and its parameters can be seen in section 6.3. The results of the test can be
seen in Table 6.1. These results has to outperform the baseline shown in Table 6.7, since
it is tested with the same parameters beside the initially large population and selection
size. Both are tested with a population size of 50, selection and elite size of 5 and 15
respectively, and a mutation rate of 90 %.

The results of the test are shown in Table 6.1, with the best combination of parameters
highlighted in green. As expected there is a correlation between a high initial population
size and a rise in computation time. The computation time used with an initial population
size of 250, 500, 750 and 1000 is 178.5, 241, 368.75, and 546.75 on average respectfully.
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Compared to the baseline this increase in computation time does not yield a significant
lowered distance. Weighting a low mean distance higher than a low computation time
means that the best result produced by the introduction of an initially large population
is a mean distance of 3080 with a population size of 250, and computation time of
206. However, compared to the baseline it does not show a significant difference. The
baseline has a mean distance of 3120.75 and an average time of 179.60, which gives a
positive difference of 19.25 at the cost of 6.4 seconds. However, that difference is not
deemed significant enough to justify the added complexity added to the code to arrive
at that result, especially not with the implemented decentralisation method described
in section 6.6, increases accuracy and repeatability while maintaining a relatively low
run-time. Same can be concluded of the other combinations of population and selection
size.

In summary, using the multi-chromosome technique for constructing individuals a
population of 50 individuals is randomly generated, based on the algorithm shown in
algorithm 1. The algorithm outputs a randomly generated population, based on the
parameters population size, number of AGVs, and the tasks that need to be performed.
New individuals are generated and what they contain is based on the number of AGVs
and the number of tasks which should be assigned to each AGV. The number of indi-
viduals generated depends on the population size. After generating the population the
individuals have to be evaluated to see if they are fit to produce newer and better solu-
tions. The individuals are evaluated using a fitness function, which can be seen in the
section 6.2.

Algorithm 1: The algorithm outputs the population based on the wanted pop-
ulation size, the tasks to be performed, and the number of AGVs.

Input : Population size, task list and number of AGVs
Output: Initial population
Number of tasks for each AGV = TaskList/number of AGVs
for number of individuals wanted in population do

for number of AGVs - 1 do
for number of tasks for each AGV do

Selected_task = randomly selected task from task set
Append Selected_task to temporary list and remove from task set

end
Append temporary list to individual
Reset the temporary list

end
Append individual to population
Reset individual
return Population

end
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6.2 Fitness function

The fitness function is used to determine how good an individual is at solving the
defined problem. A high fitness score is preferred, meaning an individual with a higher
fitness score than another is considered to be a better solution candidate. The fitness
score is calculated by a fitness function, which is designed based on a goal. In this case,
the goal is to find the shortest combined path all AGVs have to travel to perform all
tasks. Furthermore, each task must only be performed the exact number of times it is
present in the task list. With the problem in mind a fitness function is designed. In
this case either total distance or time is a fitting measure of fitness, since the minimised
time spent or distance travelled both solve the same problem. Distance is chosen as the
fitness measure in this algorithm, since distance calculation has to be implemented in
both cases, so one might as well use distance alone for it, without the added calculation
of travel time. This leads to the definition of the fitness function, which is the sum of
the distance travelled for each agent. The equation can be seen in Equation 4.1, and the
implemented algorithm can be seen in algorithm 2. The algorithm takes in the current
population as an input, and outputs a sorted list, the same size as the population, of
indexes associated with a specific individual in the population and its fitness value. The
fitness score is calculated trough several steps. First the euclidean distance between the
individual’s current task and its next, based on that the fitness value is calculated by
taking the inverse of the total distance, since a high fitness score has to represent a low
total distance . After calculating the fitness score it is stored in a list variable together
with its associated index number describing which individual it belongs to. This is done
for all individuals in the population.

With the fitness scores calculated it can from then on be used to determine, which
individual contains the better sequence of tasks compared to others. The method in
which these individuals are selected can be seen in the next section (section 6.3).

Algorithm 2: The fitness function takes in the current population and the
home_station, and outputs a sorted list containing an individual index and its
corresponding fitness value

Input : Current population and home_station
Output: List of sorted indexes of each individual’s fitness
for number of individuals in population do

Calculate euclidean distance between current task and the next
Calculate fitness
Store fitness in FitnessList

end
return Sort FitnessList based on highest fitness score

6.2.1 Battery constraint concept

The use case described in section 2.1, specify a need for battery constrained AGVs.
An algorithmic concept solution to this is given in algorithm 3 as an altered fitness
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function, where a charging task is added to an AGV’s task list if a battery threshold is
exceeded. The battery threshold is defined to be 30% in the use case. However, it was
not possible to get the specific number of this in regards to travel distance, instead an
arbitrary threshold of 1500 is given. This means that an AGV can travel a distance of
1500 before reaching the "battery threshold", after which a charging task is added. The
fitness function is most suited for the implementation of the constrain, since it already
goes through every AGV and calculates its travel distance iteratively, which is the same
process needed for determining where a charging task should be introduced. Furthermore,
the charging task placement in the task list cannot be optimised in the same manner as
a normal task, since an AGV is required to charge if it reaches the battery threshold.
This makes it ideal to implement in the fitness function, since after placing the charging
task the fitness score can be directly calculated. The charging task can then be removed,
so its placement cannot change. This method is the same one used for taking the home
station into account, when calculating an AGV’s total travel distance.

Algorithm 3: The fitness function takes in the current population and the
home_station, and outputs a sorted list containing an individual index and its
corresponding fitness value. If the battery threshold is exceeded a charging task
is added to the AGV where the threshold was exceeded in the task list.

Input : Current population and home_station
Output: List of sorted indexes of each individual’s fitness
for number of individuals in population do

Calculate euclidean distance between current task and the next
if Combined distance of an AGV > battery threshold

Add charging task to AGV’s task list at the point where the threshold
was exceeded

end
Calculate fitness
Store fitness in FitnessList
Remove charging task from AGV’s task list

end
return Sort FitnessList based on highest fitness score
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6.3 Selection

The selection function takes the fitness score from the fitness functions into account
when selecting the individuals for the next generation. The selection function can be
done with different methods as explained in section 4.3, but in overall the fitness scores
is being used to define how big of a likelihood an individual has to be chosen as a par-
ent. An hyperparameter is here used to define a specific number of the best individuals,
called elites which will be carried over to the next generation without being subject to
a crossover operation. Out of the elites the best one is chosen and is in this project
referred to as a king which makes sure that the best solution is saved until a new king
is found. The tournament selection and roulette wheel method were implemented along
with the initial setup of the GA. Here the tournament selection showed to generally give
the best results for the use case of this project along with being highly customizable and
straightforward to implement, so no further testing were performed. The tournament
selection will therefore be the chosen selection method for this project. The tournament
selection process can be seen illustrated in Figure 4.7 and further details can be found
in section 4.3. The implemented code can be seen in algorithm 4, where the selection is
defined as a function, that takes the Population, the ranked population and the prede-
termined hyper parameters elite size and selection size as input. A selection pool is made
to hold a copy of a randomly mixed ranked population list, where the selection pool is
then used to make a temporary_sub_list in the second for loop of a random sample with
the size of the Selection Size. The one with the highest score is then found and added to
selectionResults. In the first for loop the elites are added to a list called selectionResults
which will be filled in the second for loop with the rest of the tournament winners until
the specified population size has been reached.

Algorithm 4: The Selection function uses the ranked list to generate the elites
and the rest of the list is found by taking the individual with the highest score
and add it to the selectionResult which will be passed along to the crossover.

Input : Population, Ranked Population, Elite Size and Selection Size
Output: List of the elites and all the tournament winners
selectionResult list;
A copy of a random mixed Ranked Population is added to selection_pool;
for number of Elite_Size do

Adds elites to selectionResult;
end
for Number of Population without Elites do

Temp_list = random_sample(of selection_pool, with a selections size);
Highest in Temp_list is added to selectionResult;

end
return selectionResult
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6.4 Crossover

A GA optimises a solution by running through multiple generations of evaluating
individuals, and based on that selecting the most fit individuals. The selected individuals
are used to produce new and hopefully better individuals by combining them, which is
the job of the crossover method. Four crossover techniques were presented in section 4.4,
and are tested in this section. To get comparable results the different combinations of
parameters, such as elite size, population size, and selection size, are tested along with
the four crossovers. Those parameters are tested along with the crossover, since they
can heavily influence the performance. The crossover with the best result is used for
further testing with in mutation section 6.5 and then decentralisation, which is detailed
in section 6.6.

All the crossover tests are repeated ten times in order to see identify a pattern and
get an average. One of the hyper parameters tested are population sizes of 50 and
100, meaning 50 or 100 individuals are generated each generation. The two sizes were
chosen, based on initial testing which showed that a population size of 150 could have
a computation time as long as half an hour for no significant lowered mean distance.
The elite size is also tested with the other parameters in an interval of 5− 10− 15. The
elite size control how many individuals go through the crossover unaltered. The last
parameter to be tested along with the others is the selection size, which is the sample
size of the population from where the most fit individual is selected. No mutation is
used in order to note how the crossover methods perform without, such that the results
with mutation can be compared later. The tests are done for 25 tasks, three AGVs, and
map size of 500x500. The tasks placements are randomly-generated within the map, and
stay the same throughout all the tests. A parameter called breakpoint is introduced to
be able to use computation time as a comparable variable, when discussing the different
crossover methods. The breakpoint terminates the algorithm if the best optimised route
has stayed the exact same a defined number of generations. By having the breakpoint
the results also show how fast the algorithm is at optimising the route, instead of only
showing how fast the algorithm is in general. The tests are performed with a breakpoint
of 100, which was found to be satisfactory during initial testing, since in most cases the
best individual would not change from that point onward. The four crossovers that are
tested are detailed in section 4.4. The best crossover is chosen based on its ability to
produce the lowest distanced route repetitively, using minimal computation time through
multiple generations. In order to evaluate how good the crossovers are they should be
compared to the global minimum. However, the method of brute forcing the best solution
by calculating the travel distance for all possible permutations of routes is not possible,
since number of permutations for 25 tasks is equal to 25! which might take way to long.
This is why combinatorial optimisation techniques are preferred. Instead an estimate
of the global minimum is found by running the algorithm repeatedly, with the various
crossovers and noting the best route for each iteration. The global minimum is then
estimated to be the best route found, and the result of this is shown in Figure 6.2 with
the accompanying distance of 2744.
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Figure 6.2: An illustration of the estimated shortest route of 2744 consisting of 25 tasks
divided between three agents. The three agents are each defined by a different colour.

Two-part crossover (TCX)

The TCX is noted to be the most promising crossover among the four, based on the
analysis in section 4.4, and should be able to produce a consistent low distance route
compared to the others. In Figure 6.3b, two examples out of 180 tests showcase the
general behaviour the crossover produces, which is a decrease of the shortest distance
and an even diversity in the population throughout the process. The dark orange coloured
run is the average representation of the expected outcome, where the decrease in distance
happens over time in multiple steps. The light brown, on the other hand, showcases a
"lucky" run, where a desirable sequence is discovered early in the process. However,
progress in the lucky run is sparse and not as significant as the average run, this is most
likely due to the chance of finding a shorter path decreasing when closer to the global
minimum.

The dark orange is the most common result of the TCX, where it gradually finds a
better solution over the course of generations and the outlier is one of the lucky runs
that randomly generate a good solution early on and then has small less frequent im-
provements, but this does not happen often enough to be reliable. In Figure 6.3a the
population diversity can be seen showing each population tries out both bad and good
combinations.
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(a) (b)

Figure 6.3: (a) visualises an example on how the population diversity of the TCX through
each generation and where (b) shows the Shortest distance that gradually decreases till a
minimum has been found

Elite size Selection size Population size Mean distance Time (s) Population size Mean distance Time (s)
5 5 50 4196.06089 152.5 100 3745.53 651
5 10 50 3912.022416 180.9 100 3813.084 615
5 15 50 3922.991023 156.5 100 3751.892 609.8
10 5 50 3937.134656 168.8 100 3771.317 784.9
10 10 50 3943.845701 159.7 100 3672.426 648.1
10 15 50 3991.946112 179.7 100 3651.103 964.1
15 5 50 3834.136248 160.4 100 3679.085 577
15 10 50 3749.840178 164.5 100 3736.728 560.4
15 15 50 3872.362693 175.6 100 3705.333 757.5

Table 6.2: An overview of the results, comprised to a give a better perspective on how the
different combinations perform. The best results are marked in green for both populations

The different mean results of the tuning test for the population size of 50 and 100
can be seen in Table 6.2, where the ones marked in green are those with the parameters
that created the best results and are those used in section 6.5 to fine tune the mutation
parameter. It can be seen together with Figure 6.4 that the results are concentrated
between 3700 and 4000, which is roughly 1000 meter longer routes compared to the
global minimum.
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Figure 6.4: The TCX is tested with the experiment parameters, and the different combi-
nations’ results are shown on the right. The solutions generated by the crossover mostly
varies between the distance values 3,400 - 4,400. [41]

Distance Preserving Crossover (DPX)

The DPX as the name applies produces a result with respect to a distance heuristic,
however from the algorithm in section 4.4 it can be expected that very few changes will
happen after a while as there is only limited solutions the population can have without
the mutation. As can be seen on Figure 6.5a, the population deviation goes rapidly to a
local minimum without any further changes. This also keeps the local shortest distance
until the break point is met, as can be seen in Figure 6.5b.

(a) (b)

Figure 6.5: (a) shows the population diversity does not change much after 20 generations
where (b) shows the Shortest distance are found equally quickly and stays with it to the
break point is met. [41]

The two examples from Figure 6.5b and Figure 6.5a, show one of the most common
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results (red) and one outlier (blue). The differences are not that significant and are
within a distance of 100. This is also supportet by the data tabulated in Table 6.3 where
both test with a population on 50 and 100 does not change that much in distance. The
only real difference is the computation time, which is to be expected by the difference in
population sizes.

Elite size Selection size Population size Mean distance Time (s) Population size Mean distance Time (s)
5 5 50 3623.912 70 100 3578.326 278.6
5 10 50 3626.91 69.5 100 3564.422 280.2
5 15 50 3624.381 70.5 100 3564.902 277
10 5 50 3614.952 72.3 100 3586.846 307.3
10 10 50 3600.094 71 100 3586.785 272.1
10 15 50 3609.714 70.8 100 3573.452 274.7
15 5 50 3589.424 70.7 100 3568.154 275.9
15 10 50 3631.004 72.6 100 3590.447 281.1
15 15 50 3615.924 71.9 100 3589.836 277.8

Table 6.3: The DPX’s results does not differ that much from each other, however the best
tuning parameters are marked with green for each population size.

The best test tuning parameters can be seen in Table 6.3 highlighted with green,
these two result are the ones that will be tested along with mutation which might have
a positive influence on the results by making some small changes, thus decreasing the
chance of being stuck in a local minimum. In Figure 6.6 all the results from the test
are visualised. It shows that the results are very distorted which might be due to the
algorithm rapidly finding one of the local minimums. All the results are place between
3,400 - 3,800.

Figure 6.6: Illustration of the entire parameter tuning test results, which shows the results
landing between an interval of 3,400 - 3,800. [41]
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Order Crossover (OX1)

The result of the different tests OX1 went through are show in Figure 6.8. As can
be seen in Figure 6.7 the two examples shown are the more common example depicted
with purple and light brown for the outlier. The Figure 6.7a shows how the popula-
tion like TCX changes through the generations, meaning that the OX1 is capable of
doing small adjustments itself and might after a sufficient amount of generations find the
global minimum. Here mutation process could still help by making a even more diverse
population.

(a) (b)

Figure 6.7: The population diversity in (a) does have a steady diversity in its population
that shows the crossover is able to mix its population without mutation. In (b) the decrease
of the common (purple) example has a more gentle slope compared to the outlier (light
brown). [41]

The Figure 6.7b shows that the outlier (light brown) quite quickly finds a good
combination of tasks for a local minimum whereas the most common (purple) gradually
decreases and finds a local minimum rapidly and gets ended by the breakpoint. The
effect of having a greater population size can be seen in Table 6.4 where most of the
mean distances for a population size of 100 are under 3600 in comparison to the ones
with a population size of 50, which all are above 3600. The best parameter connections
and results are marked with green, and are carried over to the mutation testing.

Elite size Selection size Population size Mean distance Time (s) Population size Mean distance Time (s)
5 5 50 3672.757 240.9 100 3596.934 971.8
5 10 50 3722.639 237.9 100 3715.333 688.2
5 15 50 3836.004 192.1 100 3596.935 1055.8
10 5 50 3806.552 226.5 100 3651.52 780.3
10 10 50 3730.854 199 100 3596.572 819.2
10 15 50 3774.442 216.1 100 3592.275 706.5
15 5 50 3871.489 188.2 100 3643.754 775.2
15 10 50 3751.735 225.5 100 3635.855 884.3
15 15 50 3722.749 208.5 100 3528.868 874.3

Table 6.4: The different combinations of parameters for the OX1 are tested, and the best
combination for a population size of 50 and 100 are highlighted with green.

Something worth noting in the computation time is that a population size of 100
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takes around three times as much time compared to a population size of 50. The result
interval of the entire tuning test can be seen in Figure 6.8, where the OX1 is more
focused between 3500 and 3750, which is still quite far from the global minimum, which
the mutation could help improve.

Figure 6.8: The results of the tests for all the different combinations of tuning parameters
are visualised here. The results are concentrated in the 3,400 - 4,300 interval. [41]

Partially Mapped Crossover (PMX)

The PMX, in case of coding and understanding is quite straightforward to implement
as can be seen in section 4.4. The PMX highly resembles the DPX in terms of population
diversity, which can be seen in Figure 6.9a as it also finds the local minimum around
generation 20. The rapid convergence might be due to most of the population being
identical and that no diversity is created without mutation.

The two examples in Figure 6.9 shows the common result as brown and the outlier
with grey, which both reach the breakpoint rapidly, due to no diversity in the population.
The outlier is the best result out of all 180 tests made and is not very common, which
is why the the mean value gives a better picture of the overall test, these results can be
seen in Table 6.5.
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(a) (b)

Figure 6.9: (a) shows the population diversity does not change much after 20 generations
where (b) shows the Shortest distance are found equally rapidly and stays with it to the
breakpoint is met. [41]

Elite size Selection size Population size Mean distance Time (s) Population size Mean distance Time (s)
5 5 50 4850.346 76.9 100 4398.954 308.5
5 10 50 4793.079 77.4 100 4246.167 315.4
5 15 50 4684.526 75.8 100 4492.333 305.7
10 5 50 4810.021 77.8 100 4505.411 312.4
10 10 50 4946.287 75.8 100 4384.484 308.9
10 15 50 4931.558 76 100 4502.359 309.3
15 5 50 4703.754 77.1 100 4324.158 302.7
15 10 50 4849.593 76.9 100 4405.402 309.8
15 15 50 4691.766 75.9 100 4498.618 305

Table 6.5: The green highlighted combinations are the best hyperparameters derived
through testing all the possible combinations of tuning parameters for PMX.

As can be seen in the table the once with a population size of 50 is quite high and
lays around 4800, whereas with 100 they lay around 4400. The difference here might
be the greater diverse population made in every generation. Due to the fact that the
local minimum are found rapidly the computation time cannot give the best image of
how fast it would go with mutation, but it shows like the others a difference of when the
population are increased. The best result and parameters are marked with green.
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Figure 6.10: Illustration of all the results from the PMX crossover tuning, which is not
very focused and far from global minimum. All the results are spread out between an
interval of 3,800 - 5,800. [41]

The distortion of all the results from the tuning test can be seen in Figure 6.10, where
the focus is quite wide as it goes from 4200 to 5000. the high results might be the fast
settling or that the crossovers algorithm itself does not works very well without mutation.

In Table 6.6 the best hyperparameters can be seen for each crossover to be test
tuned with the mutation as the ones most likely to give a good result. The DPX with
a population of 50 has the shortest distance, however it does rely on the mutation to
create enough diversity together with PMX. This could mean that the mutation needs
to happen in almost every generation in order to make population diverse enough to
produce a good result. A mixing of two crossovers could also work to benefit by for
example shifting the crossover with the generation if the mutation is not diverse enough.
The OX1 also shows to be quite good as it is the second shortest with a population of
50 and actually beats DPX with a distance of 100. In terms of distance the PMX has
the worst score, but could show to be much better with the mutation.
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Crossover Elite size Selection size Population size Mean Distance Time (s)
TCX 15 10 50 3749.84 164.5
DPX 15 5 50 3589.42 70.7
OX1 5 5 50 3672.76 240.9
PMX 5 15 50 4684.53 75.8

TCX 10 15 100 3651.10 964.1
DPX 5 10 100 3564.42 280.2
OX1 15 15 100 3528.87 874.3
PMX 5 10 100 4246.17 315.4

Table 6.6: Summery of all the best results and hyperparameters to be tested with mutation,
with both population sizes.

6.5 Mutation

The mutations as described in chapter 4 provides small random changes to the indi-
vidual, that can happen at some point in the process of finding the shortest path. The
different mutation operations will be chosen randomly, so that each mutation method
have an equal chance to be used. The introduction of the mutation to the individual will
be seen as a hyperparameter of how likely a certain individual will be to mutated. This
hyperparameter will be referred to as the mutation rate. The new parameter is going
to be tested in this section, spanning from 10 % to 100 % as it has already been tested
in the previous section with a mutation rate of 0 %. Each test are repeated 10 times
following the trend set in previous tests. The mutation methods used are

• Sequence inversion

• Transposition

• Insertion

• Sequence transposition

The chromosome contraction and chromosome partition will however not be used in these
test as the amount of AGVs are fixed to three. The mutation rate will be tested with
the desired parameters for each crossover found in the previous section. The breakpoint
is set to a 100 generations, the generation maximum to 500 generations and the task
number will remain at 25 tasks. However as the population rate was not that conclusive
in the previous section and can also have an effect on the chosen method in section 6.6
the mutation will therefore continue to be tested on a population rate of 50 and 100. The
mean value of the 10 repeated test are used to determine the best method and mutation
rate together with the time spend. However, the time spend are not weighted as high as
the distance, due to the fact that the program is going to be distributed between multiple
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agents and the computation time will therefore decrease depending on the solution chosen
in section 6.6.

In Table 6.7 it can be seen that both DPX and PMX works well with a higher
mutation rate than OX1 and TCX, along with getting relatively close to each other in
terms of the distance. However the DPX shows the best result (marked in green) with a
population of 50 and a mutation rate on 90%

Population 50 DPX OX1 PMX TCX
Mutation rate Mean distance Time (s) Mean distance Time (s) Mean distance Time (s) Mean distance Time (s)

0.1 3438.12 153.40 3638.52 288.60 3567.10 256.00 3747.05 163.40
0.2 3437.79 153.60 3562.36 279.30 3474.92 268.60 3754.57 193.60
0.3 3417.77 199.60 3592.42 260.10 3314.67 218.10 3769.90 180.80
0.4 3422.52 152.90 3646.19 265.30 3441.12 257.50 3851.31 145.70
0.5 3449.18 119.50 3636.52 278.60 3423.94 246.40 3864.69 167.40
0.6 3466.68 129.10 3788.82 228.90 3197.92 281.00 3930.18 156.90
0.7 3276.99 153.80 3789.52 235.50 3178.33 268.70 3993.36 132.30
0.8 3194.04 192.00 3986.12 204.90 3299.36 278.70 4132.18 118.40
0.9 3120.75 179.60 3821.71 214.10 3445.83 262.00 4103.57 123.70
1 3123.67 207.60 4075.28 200.80 3285.42 282.40 4088.06 144.30

Table 6.7: Mutation test results of the GA algorithm with a population of 50. The best
result for each crossover is marked in green where the shortest distance weights higher
than the time spend

In Table 6.8 it can be seen that DPX still works well with a higher mutation rate
than the others OX1 and TCX, but also interesting to see that the PMX works best with
a lower mutation rate than in Table 6.7 and still gets quite close to the previous result in
relation to distance, but takes more time to compute. However the DPX still shows the
best result (marked in green) with a population of 100 and a mutation rate a bit higher
on 100%.

Population 100 DPX OX1 PMX TCX
Mutation rate Mean distance Time (s) Mean distance Time (s) Mean distance Time (s) Mean distance Time (s)

0,1 3435,31 572,30 3480,30 859,20 3452,59 979,50 3841,70 670,40
0,2 3423,08 544,40 3446,44 765,30 3414,36 849,80 3814,05 707,70
0,3 3381,44 609,20 3441,48 755,00 3199,59 1014,90 3862,36 610,20
0,4 3408,72 536,70 3598,27 698,60 3439,13 850,70 3877,75 632,50
0,5 3385,55 606,20 3550,19 636,30 3265,51 834,90 4021,05 692,30
0,6 3252,56 607,70 3570,21 612,30 3344,20 777,40 3831,25 789,50
0,7 3096,97 723,00 3445,24 721,80 3314,20 874,80 3958,71 601,30
0,8 3082,58 681,60 3640,06 663,20 3361,19 912,60 4039,14 599,00
0,9 3120,55 639,00 3766,62 607,70 3411,27 997,60 4181,00 540,00
1 3087,15 546,90 3756,83 566,10 3370,72 941,10 4046,33 699,70

Table 6.8: Mutation test results of the GA algorithm with a population of 100. The best
result for each crossover is marked in green where the shortest distance weights higher
than the time spend.

This also makes some sense when looking at the Figure 6.11a which shows that the
DPX needs an external mixer as it uses a distance heuristic to find the shortest route as
illustrated in Figure 4.10 and described in section 4.4. This will happen to all individuals
in the population and after one generation the local minimum is found and very few to

45



Robotics - Group 1062 10. Semester project

no changes will happen before mutation is introduced as seen in Figure 6.11b. Whereas
OX1 and TCX crossover also does some mixing that creates new results every time the
PMX more or less follows DPX when no mutation rate is introduced.

(a) (b)

Figure 6.11: Illustration of how important mutation is for the DPX in order to make a
more diverse population which creates even more possibilities to find the shortest distance.
[41]
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Figure 6.12: All four graphs are derived with a population size of 100. (a) span the largest
interval, while (b) has two clear separate cluster that show the effect of different mutation
rates. [41]

When looking at the data shown in Figure 6.12 it can be seen clearly that both the
PMX and especially the DPX are more concentrated with some outliers. When looking
at Figure 6.12b it can be seen that there is a turning point around 60% where it gets
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closely fixed to 3100, whereas in Figure 6.12d all the tests are fixed between 3300 - 3500,
with some outliers where some of them goes directly towards the global minimum at
2744. This however cannot be trusted as much as the DPX as it is show to have more
consistency and accuracy than the others. Due to the fact that the DPX gives the best
result out of the four crossovers, it will be the chosen crossover method for this project.

6.6 Decentralisation

As briefly mentioned in section 3.1 there exits the possibility of decentralising the
algorithm by assigning the task of finding an solution to the given problem to the AGVs
operating in the environment instead of assigning it to a central system. The main benefit
of decentralisation is to avoid the problems that inherently comes with having a single
point that connects every part of the system, the primary problem being an accidental
shutdown of the central master leading to a fleet of unguided AGVs.

In the case of this project, when using this approach it is up to the AGVs to cooperate
in order to find a solution to the mTSP by first setting up a communication link and
thereafter using a protocol to share and explore the different solutions generated by the
GA covered in chapter 4. For the project, two methods of decentralising were discussed.
The primary goal of the discussion was to decide which approach best complimented the
underlying centralised GA algorithm covered throughout this chapter.

6.6.1 Method 1: Split and Compare

This method works by utilising the internal processing power of each machine con-
nected together in a network cluster to run multiple GA algorithms in parallel. Here a
single AGV acts as a master that distributes work out among all other connected AGVs
referred to as workers while still handling some of the workload itself. Each algorithm
run in parallel returns a population of n solutions to the mTSP that are then compared.
Following the comparison the best population among them is picked and improved upon
by feeding it through the same process again for a set number of generations. This
approach can be split into three steps those being setup, split and compare.

Setup
Here a select number of GA algorithms are chosen to be run in parallel along
with a specification of hyperparameters such as elite and selection size. Before the
algorithm moves on, it is assumed that the network cluster is already initiated by
a master through some secondary process.

Split
An initial population is generated to be fed into each of the multiple algorithms
chosen to be run in parallel. Following the GA setup the master distributes/splits
out the task of processing among all AGVs connected to the network cluster while
still contributing to the task of processing.
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Compare
Upon finishing and returning the populations generated by the GA’s running in
parallel to the master, the process of comparing each population takes place. Here
each population is assigned a fitness score which is stored in a list and thereafter
compared to all other scores in the same list. The best score among them is picked
and the population from which it was generated is identified. The population with
the best score is then fed back into the "split" process, taking the same role as the
initial generation.

Parallel GAs Single GARepeats Distance Runtime (s) Generation Distance Runtime (s) Generation
1 3072 262 291 3121 1762 287
2 3.088 529 384 3.231 912 167
3 3.080 401 299 3.069 1083 188
4 3.071 349 388 3.062 1649 281
5 3022 463 349 3065 2314 395
6 3.023 319 355 3.000 1574 253
7 3.231 323 237 3.080 1527 273
8 3.069 273 303 3.071 1273 212
9 3.088 376 280 3.083 883 157
10 3072 172 190 3088 948 169
11 3093 184 202 3071 1358 240
12 3220 274 300 2968 1497 238
13 3.088 417 297 3071 1638 269
14 2839 360 402 3080 1556 248
15 3.055 446 335 3088 1187 200
16 3080 203 226 3062 1258 211
17 3.071 348 254 3080 1648 208
18 2998 369 413 3071 1995 338
19 3507 111 120 3071 1367 226
20 3072 217 239 3071 1645 276

Mean 3092 319,8 293,2 3075,15 1453,7 241,8

Table 6.9: An overview of the test results from method 1. On the left side of the table are
the results generated by the three GAs running in parallel while the results from the single
GA running on a separate machine is shown to the right. Each parallel GA runs with a
population size of 50 and a mutation rate of 90% while the single GA uses a population
size of 150 with the same mutation rate as the other algorithms. Where the distances is
pretty close compared to the run time

The primary goal of this method is to improve the precision and consistency of the
underlying GA by comparing multiple individually processed populations on a generation
by generation basics. By splitting up this task through parallel processing and cloud
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computing an otherwise slow algorithm can be sped up greatly compared to running a
single GA algorithm with a considerable larger population size. The method was tested
by comparing the results of running three GAs in parallel on one machine while running
a single GA on another. The three GAs running in parallel used a population size of 50,
mutation rate of 90%, breakpoint of a 100 generations and max limit of 500 generations.
The single GA running on the separate machine however ran a population size of 150
to approximate running a GA without the inclusion of the three algorithms running
in parallel. Mutation rate, breakpoint and generation limit mirrors that of the first
machine. To better approximate the effectiveness of the algorithm, the system was run
for 20 iterations. The result of the test are presented in Table 6.9

6.6.2 Method 2: Run and Compare

AGV 2
Master

Setup

GA

If breakpoint

New Population

Compare

True

False

AGV 3

GA

If breakpoint

New Population

True

False

AGV 1

GA

If breakpoint

New Population

False

True

Ready Ready

Best estimated
solution

Figure 6.13: In the process illustrated above the master takes care of the initial setup
which includes setting up the parameters that defines how the GA in should run. Upon
completing the setup the parameters along with a ready signal is sent to all agents con-
nected to the master which initiates a GA running on both the master and all connected
AGVs. Upon the completion of each GA running separately the best individual from each
generation along with a fitness score is sent back to the master for comparison. Through
this comparison the best estimated solution is selected for execution
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The method works by running separate GAs on different machines from start to
finish, only comparing the last generation in order to select the best solution among
them which is then distributed to all AGVs in the system for execution. This method
consists of three steps those being setup, run and compare. This process can be seen
illustrated in Figure 6.13

Setup
First an AGV is selected to act as the master. The job of the master is to initialise
the parameters specifying how the GAs should operate which it sends along with
a ready signal to all AGVs connected to the master.

Run
Upon receiving the ready signal from the master, the master along with all con-
nected AGVs begins their own GA with the specified parameters.

Compare
Upon completing a select number of generations each AGV sends back the best
individual found in its population along with its associated fitness score to the
master. The master then compares each individuals fitness score and then selects
the best solution among them. The best solution is then send back to all the AGVs.

Distance Generation Runtime Distance Generation Runtime Distance Generation Runtime Distance Generation Runtime
Repeats AGV 1 AGV 2 AGV 3 The Best

1 3093 378 255 3137 220 138 3121 344 143 3093 378 255
2 3217 295 191 3114 353 231 3088 216 91 3088 216 231
3 3137 238 161 3106 164 104 3089 361 152 3089 361 161
4 3184 437 297 3104 302 194 3543 132 55 3104 302 297
5 3231 205 138 3088 311 206 3466 136 55 3088 311 206
6 3231 238 162 3076 280 186 3088 195 81 3076 280 186
7 2896 309 212 3088 361 240 3120 278 111 2896 309 240
8 3080 380 255 3220 212 139 3104 254 112 3080 380 255
9 3200,42 345 233 3095 274 187 3013 293 122 3013 293 233
10 3114 223 150 3115 247 161 3088 411 184 3088 411 184
11 3264 206 138 3121 348 238 3095 182 79 3095 182 238
12 3088 286 192 3088 208 150 3121 274 111 3088 208 192
13 3048 332 226 3.104 314 215 3231 232 93 3048 332 226
14 3090 263 183 2982 400 273 3114 254 103 2982 400 273
15 3071 228 156 3120 292 199 3120 288 111 3071 228 199
16 3088 335 224 3088 328 217 3095 390 153 3088 328 224
17 3111 186 123 3080 410 271 3115 282 116 3080 410 271
18 3077 274 181 3087 214 143 3003 382 161 3003 382 181
19 3088 305 203 3080 296 193 3058 304 132 3058 304 203
20 3114 281 185 3.088 290 196 3121 241 94 3.088 290 196

Mean 3121 287 193 3099 291 194 3140 272 113 3061 315 223

Table 6.10: An overview of the test results from method 2 using a populations size
of 50 and a mutation rate of 90% for three individual GAs running on three separate
machines/AGVs

Like method 1 the goal of this approach is to improve precision and consistency in the
result by selecting a solution among a bigger sample space. However since each algorithm
is run separately there exits no correlation between them like in the previous method
which could decrease the chance of ending in a collective local minimum. In order to test
the method, three machines each with their own processing specs were used to imitate
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the process that should run on the AGVs presented in the use case section 2.1. Each
machine was tasked with completing a full run of the GA using a population size of 50,
mutation rate of 90%, a breakpoint of 100 generations and max generation limit of 500
generations. Upon completion the result is returned for comparison in order to find the
best among them. This process was repeated 20 times in order to converge to a better
final estimate of how the method compares to the baseline set by the test presented in
Table 6.8 which can be found in section 6.5. The result of the method 1 test is presented
in Table 6.10 below:

Algorithm 5: A GA consists of five functions and outputs an individual with
the lowest overall distance. The first function generates an initial population
and is only performed once. After that a fitness score is calculated for each
individual, and it is used as the basis of the selection process. The selected
individuals are combined in a crossover function, and later mutated. The last
four are iterated through a given number of generations.

Input : Task list, population size, maximum number of generations, and
number of AGVs

Output: Optimised task order for each AGV
Establish connection to AGVs in range
Select a master among available AGVs
Create initial population based on input parameters.
for number of generations do

Calculate fitness of individuals in the population
Select individuals to form a mating pool the same size as the population
Combine two randomly sampled individuals from the mating pool and
combine them with a crossover function
Randomly mutation some individuals

end
if master then

Compare best individuals from all AGVs
else

Send best individual to master
end
return Individual with lowest overall distance
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7 Discussion

The selection method was not tested in the same way as the crossover and mutation as
the tournament selection showed to be best among those tested initially, it was therefore
kept throughout future iterations of the algorithm. It could however be beneficial to
apply the same testing to the selection methods in order to insure that it truly was the
best one chosen for the project. From the testing of the different crossover methods it
could be seen that the DPX and PMX behaved in the same manner without mutation
by rapidly converging to a local minimum but with a difference of 1000 in their mean
distance value. Whereas the TCX and OX1 both were capable of creating a more diverse
population while testing different combinations they were more or less equal in terms of
mean distance values.

However, in the end DPX came out with the best result in the case of distance and
runtime with a population of 50 due to its rapid convergence. Whereas the OX1 beats
the DPX in distance it is comparatively slower. In terms of distance and time the DPX
is the overall winner even though no mutation was applied which also contributes to the
short processing time.

When the crossover was provided with mutation the focus of the DPX and PMX
became clear and showed to be more reliable around a specific point, whereas the TCX
did not make as much progress as the others, which can be seen in Figure 6.12. The
PMX managed to hit global minimum most often, but is not reliable enough to be used
as the main crossover as the best results can be interpreted as outliers since they are
not present with specific hyperparameters. They seem to appear randomly for mutation
rates between 10% and 70%, and only seven global minimum solutions were produced
out of 100 tests total.

However, a combination of DPX and PMX might be able to push the DPX further
down towards the global minimum, which is a process further explored in 9. As it can be
seen in Table 6.7 and Table 6.8 the DPX needs a high mutation rate to produce a good
result, which also could mean that changing few genes around is not enough to create
a diverse population. More aggressive mutations might benefit DPX. A combination
with another crossover like TCX could also make enough diversity to get the DPX to the
global minimum.

An idea for adding diversity and accuracy to the algorithm was tested. In the first
generation of the algorithm an initially large population size was generated either of size
250, 500, 750 and 1000. The theory was that the increase in search space would improve
the chances of selecting better individuals, and in general include more diverse solutions.
However, the results shown in Table 6.1 does not show a significant difference when
compared to the baseline results from Table 6.7. The initially large population results
only show a slight positive difference of 19.25 at the cost of 6.4 seconds. To get better
results, multiple generations of larger populations could be a way to do it. However, this
will always come at the cost of computation time.
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Through the testing of the two decentralisation methods covered in section 6.6 it can
be seen that both in terms of distance lies in close proximity to the baseline set by the
test illustrated by Table 6.8 along with the single GA using a large population seen in
Table 6.9. However, where the two methods truly shine is in regards to processing time.
Here the process of running multiple GAs in parallel like in Method 1 or initiating multiple
instances of the GA on different machines as done in Method 2 can greatly increase the
accuracy and consistency of the algorithm, while still allowing for a relatively small
population size that decreases processing time. When it comes to directly comparing the
two decentralisation methods however the task of picking a particular approach is not
nearly as straightforward since both methods are closely matched in both distance and
processing time. The approach covered in Method 2 outperforms Method 1 by a small
margin yet is important to note that only three GAs were run in parallel in the test
performed for Method 1. This was primarily due to the fact that a comparison with a
single GA was needed to put the process of parallelisation into perspective, if more GAs
were chosen to run in parallel the population size on the corresponding algorithm would
have to increase as well, resulting in drastically increased processing time. As seen on
the right side of Table 6.9 the process of running the algorithm a single time from start
to finish with an population of 150 already took on average 24 minutes. Furthermore,
due to what is suspected to be a software incompatibility issue, the network cluster was
unable to connect the PCs used to emulate the AGVs in the system, thereby resulting
in Method 1 not being able to be tested to its full capability.

A battery constraint concept was given in subsection 6.2.1, and it was tried imple-
mented in the algorithm. However, the results were poor. The developed task list did
include the charging task, and it was included in the fitness score of the individual, but
its representation in the map and the overall performance of the algorithm suffered for
it. It is most likely due to implementation errors, but they were not studied or fixed
because the focus was elsewhere.
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8 Conclusion

This project has investigated the challenges associated with developing a GA for solv-
ing a task assignment problem for multiple decentralised AGVs. The case was provided
by a company interested in the use of AI to control fleets of their AGVs. The algorithm
developed in this project goes one step towards that goal.

The project work was separated into four research and development objectives which
are defined in section 5.1. The first objective was to develop a GA framework for a
centralised mTSP setup. This objective was completed in steps starting with the devel-
opment of a simple GA used to solve a TSP. Following the successful implementation,
the GA research was focused towards upgrading the TSP to a mTSP using the under-
lying source code as a foundation. In order to make a functional implementation of a
mTSP the initial population, fitness, selection and mutation function were modified to
work for multiple agents, the crossover was however completely replaced. This was done
in order to make it compatible with the multi-chromosome representation described in
section 4.1. Upon the implementation of the new crossover the GA for solving the mTSP
was completely functional.

The second objective was to incorporate decentralisation capabilities into the mTSP
framework. Here multiple approaches to setting up a communication link between AGVs
were explored, ultimately resulting in the two methods described in section 6.6. Doing
the implementation of the framework that was needed to establish a connection between
the AGVs, a software problem was encountered that halted the implementation. It was
therefore decided to instead focus on the parallelisation aspect that was meant to be part
of the "split and compare" method along with emulating a connected system for the "run
and compare" method.

The third objective was to design and introduce resource constraints, in the form
of battery limitations. A concept solution was developed, but the tests did not show
satisfactory results which could mark requirement 2 as fulfilled.

To fully finish the GA most of the algorithm except for fitness and selection due
to that fitness is hard to improve upon as it only calculates the distances. The use
of tournament selection was decided upon, during initial testing throughout completing
RDO1, however this approach to selection needs some more testing like the other steps in
the GA has undergone to ensure that it truly is the best method suited for this project.

In regards to decentralisation the chosen method is the "split and compare" method
covered in section 6.6 primarily due to its potential when paired with other machines
connected in a network cluster or a single machine capable enough to run multiple GAs
in parallel without a significant slowdown. Furthermore, since the method functions on
a generation to generation basis, different selection, crossover and mutation operators
can be initiated and changed during the iterative process allowing for multiple ways to
further push the generated result towards the global minimum. Due to the software
issue encountered in the project, requirement 1 can not be fully defined as fulfilled, but
through testing it was proved that the underlying concept performs just as good if not
better than a classic GA.
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The DPX and PMX crossover tested with both a population of 50 and 100 where
the only two to have a mean distance within requirement 3 specifying that the results
should be within 20% of the global minimum. However, DPX was the only one to also
be within the 90% repeatability. Based on this performance the DPX crossover operator
was the chosen method for this project’s GA solution. With this in mind requirement 3
is concluded as fulfilled.

In conclusion, RDO1 and RDO4 were completed, while RDO2 was conceptually com-
pleted, RDO3 was however less so. Furthermore, the first and last requirement was
fulfilled, while the second was not.
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9 Future Works

• While the DPX crossover operator covered in section 6.4 yielded good results when
using a high mutation rate it still has the tendency to get stuck in local minimums
appearing close to the global one. This illustrates that the current mutations
might not have the power alone to improve the algorithm which leads to the idea
of combining the current crossover with another, the primary candidate for this
second crossover is PMX. Since PMX were the only crossover method to ever
arrive at the global minimum the idea would be to initially use DPX to rapidly
converge to a local minimum close the global one and then switch to PMX to nudge
the algorithm a few steps in the right direction or at least get unstuck.

• While setting up the networking infrastructure needed to connect the different
AGVs in the system a software problem was encountered. This problem halted
the implementation of decentralisation which led us to only being able to test
the parallel processing that was meant to work in tandem with the possibilities
connected agents could have provided. For future work one of the first things to
be addressed would be the networking issue.

• As the resource constraints were not properly integrated into the system a future
goal would be to reevaluate the implementation and improve upon it in order to
create functional algorithm that optimises with respect to battery level, number of
AGVs and travel time.

• For validating the final solution future work should go towards implementing the
solution in a fully realised 3D environment created through the use of Webots. This
environment should mirror the one detailed in the 2.1.

• Subjecting each selection method to a round of testing could help improve the
algorithm by maybe pointing out a better alternative to the tournament selection
process used in this project.
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