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Preface

In recent times, drones are used in a wide range of applications. Many of these,
such as wildfire or flood monitoring, include the classification of certain areas.
Delivering drone images with these specific areas highlighted can provide a lot of
information but leaves the association between the 2D image and the 3d world to
the user. It would therefore be preferable to have a method that connects the infor-
mation gained from the drone images to 3d positions. The authors were confronted
with this challenge during their internship at Robotto, where they developed an
algorithm to autonomously detect and map wildfire. During this internship, a sim-
ple projection from the drone image to an assumed ground plane was used to map
the found fires. The accuracy of this method proved to be unsatisfactory. The aim
of this master thesis is therefore to develop an improved method. For this purpose,
an algorithm was developed that characterizes an area which is visible in many
subsequent drone images as a 3d point cloud. It accomplishes this by tracking
landmarks around the border of the target area and using Kalman filtering to find
the 3d position of the individual landmarks. This algorithm was tested using state
of the art simulation and showed promising results. It digests images subsequently
and starts providing results as soon as possible. This means that, once optimized,
it could run on the fly and provide input to the path planning of a drone. This
differentiates it from alternatives, such as photogrammetry, that require the whole
dataset to start processing.

Beda Berner Rahul Ravichandran
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1 Introduction

In this era of automation and aerial robots, some of the main tasks performed
by drones are surveillance, mapping of areas and inspection. One of the big chal-
lenges in this context is connecting the information that is normally captured as a
2d image with the respective 3D position. While it is useful to see an image where
wildfire is segmented and highlighted, this leaves the user to actually localize the
area according to other features in the picture. Automating this process is not
trivial. For real-time localization of single point targets, such as moving cars or
persons, Kalman filtering has proven to be a good solution. This is widely re-
searched, especially in the context of drone-based surveillance. For mapping static
points or areas, Structure from Motion based photogrammetry can be used to get
a very precise localization. This is a very mature process and a wide variety of
commercial and open source tools are available. It is however very computationally
expensive and needs to be provided with a complete dataset before computation
can start. It can therefore not be run in real time on a drone and interact with the
path planning. During the authors’ internship at Robotto, they were introduced
to the problem of fire area localization and mapping. They developed a simple
algorithm which projects the captured images into an assumed ground plane (de-
scribed in section 2.1). This process is very lightweight and can be run in real time
on a drone. It does however, provide unsatisfactory accuracy even when tested on
flat ground and would perform terrible in uneven areas.

This thesis proposes a new method to 3D localize areas. It leverages data from
multiple subsequent images to gain information about the 3D position of landmarks
that surround the area of interest. This solution was developed for feature sparse
areas, but is equally valid for any area which can be detected and segmented. The
main idea proposed is to create a band around the target area and detect features
inside it. These features are tracked over time and their 3D position is estimated
using Kalman filters.

This thesis is structured as follows. The theory of the algorithm developed at the
internship and the projects done by other researchers in a similar field is explained
in the Problem Analysis Chapter 2. In Chapter 3 Problem formulation, the major
objectives that have to be accomplished throughout the project and the assump-
tions that were made, are listed. This is followed by Chapter 4 Methodology, in
which the theory behind the developed solution is explained. Furthermore, it in-
cludes a description on how the simulation environment was chosen. Chapter 5
Implementation describes the software architecture and Chapter 6 Analysis de-

1



scribes the various tests that were conducted in order to find the best performing
parameters. The subsequent Chapter 7 discusses the results obtained. Finally, the
thesis ends with the conclusion and ideas for further research.
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2 Problem Analysis

Drones are used in many applications such as wildfire monitoring, agriculture, or
surveillance. They provide a top-down view of events on the ground that can
greatly improve the user’s situational awareness. For example fig. 2.1 shows aerial
images of a wildfire. This can be very helpful for firefighters since fire and remaining
hot spots are clearly visible, especially in the thermal channel. For this information
to be of any use, the user has to know where the image contents are located. If
he is very familiar with the area he is working in, he might be able to identify the
location based on landmarks in the image he recognizes. Especially in an urban
area with a high density of unique buildings, this is a valid option. In settings such
as the one displayed in fig. 2.1, this approach is not viable since the landscape is
too ambiguous. A method is needed to connect the information displayed in the
image with an actual (ideally three-dimensional) position. This problem is known
as target localization and good solutions exist for individual targets that are easily
trackable such as cars or people. There are however use cases, in which the object
of interest is not a point target but an area. Examples could be fires bigger than
the one displayed in fig. 2.1, fields, flooded areas etc. In these cases, locating the
area or the area borders is essential.

Figure 2.1: Image of a wildfire taken by a drone (DJI Matrice 300 using a Zenmuse
H20T). The left side shows the Thermal channel which clearly displays the hot
spots. On the right side the color image shows flames and smoke. While fire is
clearly visible, locating this fire in the real world only based on this image would be
very hard. Picture provided by Robotto.
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Figure 2.2: Structure from Motion (SfM) takes information from overlapping im-
ages taken from differnet points of view to create a 3D reconstruction of a subject.
[1]

One of the most popular approaches used to locate areas is Structure from Mo-
tion (SfM) based photogrammetry. This process requires a high number of overlap-
ping images of the area of interest. Based on regions that can be seen in multiple
images and the movement of the camera between the image captures, a 3D recon-
struction of the area can be created. If the original pictures are georeferenced, the
reconstruction can be as well. This method is very mature and a wide variety of
commercial software is available. It is very accurate and widely used in surveying
and agriculture. Since SfM is computationally expensive and needs a high num-
ber of images before it can start processing, it is not suited to be run during a
drone mission. This means it can not be used to influence the behaviour of an
autonomous drone on the fly. Furthermore, it requires the area to stay consistent
during the whole time that is needed to take the images. This makes this method
unsuited for applications in dynamic environments such as wildfire.

During their internship at Robotto, the authors were confronted with the require-
ment for a method that can perform target localization of wildfires during the
flight to influence the autonomous behaviour of the drone. They developed a
simple method to tackle this problem, which is described in the following section.
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2.1 Previous method

2.1.1 Idea

Figure 2.3: The pinhole camera model describes the image taking process. It allows
the projection of a 3D point into the image plane given extrinsic and intrinsic
camera parameters. This process is only reversible, if some information about the
3D point is known. For example if Zw is known. [2]

The main idea of this approach is to invert the image taking process. The pinhole
model [2] is a mathematical model of a camera. It describes how a 3D position is
projected onto the image plane (a visual representation can be seen in fig. 2.3). If
it could simply be inverted, any pixel of the image could be localized in 3D space.
However, as can be seen in fig. 2.3, a pixel position on the image plane defines
a ray of possible 3D positions. Since there is no depth information available, the
3D position associated with the pixel remains ambiguous. An assumption about
the position has to be taken to solve the problem. If the world is assumed to be
an entirely flat plane at a certain altitude, the intersection between the ray and
the ground plane can be found, which will define the 3D position associated with
the pixel. This position will at first be in relation to the camera frame. Since the
camera’s location and rotation are known, it can be transformed into a local or
global reference frame.
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2.1.2 Implementation

First, the transformations between the local coordinate system and the camera
gimbal have to be defined. Vector tL→G defines the translation from local frame
to the gimbal position:

tL→G =

Gx

Gy

Gz

 (2.1)

The rotation matrix RL→G defines the rotation from local frame to the current
gimbal orientation. It can be separated into the static transformation from local
to the gimbal origin pose RL→G0 and the dynamic transformation between gimbal
origin and the actual gimbal orientation RG0→G.

RL→G = RL→G0RG0→G (2.2)

The rotation from local frame to gimbal origin position is equal to a rotation of
90° around z-axis followed by a rotation of 90° around x-axis:

RL→G0 =

cos(π
2
) − sin(π

2
) 0

sin(π
2
) cos(π

2
) 0

0 0 1

1 0 0
0 cos(π

2
) sin(π

2
)

0 sin(π
2
) cos(π

2
)

 (2.3)

Assuming the kinematic chain of the gimbal is yaw->pitch->roll like it is on the
zenmuse H20T:

RG0→G = RyawRrollRpitch

Ryaw =

 cos(ψ) 0 sin(ψ)
0 1 0

− sin(ψ) 0 cos(ψ)


Rroll =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


Rpitch =

1 0 0
0 cos(θ) sin(θ)
0 sin(θ) cos(θ)


(2.4)

where ψ,φ and θ are the yaw, roll and pitch angles.
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The transformations from gimbal frame to local frame tG → L and RG→L can now
be derived easily:

RG→L = (RL→G)−1 = (RL→G)T (2.5)

tG→L = −RG→LtL→G (2.6)

Using these transformations, the intrinsic matrix of the camera A and the pixel
coordinates u,v the local coordinates of the point can be calculated

Xlocal

Ylocal

Zlocal

1

 =

[
RG→L | tG→L

0 0 0 1

]−1

A−1s

uv
1


1

 (2.7)

where s is a scaling variable which decides where on the ray the point is. As
previously described the assumption is taken that Zlocal is known.

A =

fx 0 cx
0 fy cy
0 0 1

 (2.8)

RG→L =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.9)

s can then be calculated as:

s =
(R13R22R31 − R12R23R31 − R13R21R32 + R11R23R32 + R12R21R33 − R11R22R33)fxfy(Gz − Zlocal)

(R22R31 − R21R32)(u− cx)fy + fx(−R12R31v + R11R32v + (R12R31 − R11R32)cy + (R12R21 − R11R22)fy)
(2.10)

Applying s to eq. (2.7) now allows the determination of Xlocal and Ylocal.

2.1.3 Limitations

While this method allows the localization of any pixel in a given picture, it is
limited by the assumptions taken. In real life applications, the identified area is
often not flat and its altitude is not known. The difference between the real altitude
and the assumed altitude can lead to considerable errors as shown in fig. 2.4. This
is especially true, if the gimbal pitch is shallow. The performance of this method
has been evaluated as a part of the thesis in Section 6.11. Furthermore, this method
only uses the information of one single picture. This has its own advantages and
disadvantages. It allows for an instant localization information but also means
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Figure 2.4: Any deviation from the assumed ground plane (light green) will lead to
considerable errors in the localization of the point of interest (errors are displayed
in dotted red). [3]

that no information from other pictures is used to minimize noise and improve
localization accuracy. Merino et al. [4] use a similar method but get altitude
information from a Digital Elevation Model (DEM) and calculate probabilities
over multiple pictures to reduce these errors.

2.1.4 Expectations for the new method

The improvement of the previous method must overcome most of the limitations
listed in the Section 2.1.3. The new method must not assume the location of the
area to be in a flat plane. It should be able to calculate the 3D position of the pixel
instead of 2D position on a plane. The new method must also use information from
multiple views and not just a single image. Although this will not give immediate
results, it should provide a much more accurate 3D estimation of the pixel.

2.1.5 Problems that may arise

To keep track of a certain pixel on the contour of an area, it must have good
features associated with it. These can then be matched between frames to keep
track of it. In some cases, such as uniform areas, good consistent features are
not available. In these cases, feature matching is not possible and hence it is not
possible to keep track of a pixel through multiple frames.
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2.2 Related Works

A review of related literature showed that most of the authors only discuss the issue
related to single point 3D target estimation and not an estimation of an area. Only
Merino et al. [4] address the issue of 3D area localization. Although they follow a
similar strategy to the one done in the internship, they improve the localization
significantly by using information from multiple drones and digital elevation maps.
Moreover, they also generate a probability map of the area location. The drones are
equipped with infrared cameras to detect the fire contour without any hindrance
from smoke. Each individual Unmanned Aerial Vehicle (UAV) estimates the fire
front pixels and fire top pixels and sends it to a central decision system located in
the ground control station. The position of the fire pixels changes more slowly at
the front compared to the top of the fire. The characterisation of the top of the fire
from the front is done by applying a low pass filter over a sequence of consecutive
segmented images. The data from the fire area pixel points are then projected onto
the ground plane by multiple drones and is used to create a probability map of
fire on the ground plane. The results shown in this paper look promising, however
the method used requires additionaly information in form of a Digital Elevation
Model and multiple UAVs

The 3D Area localization can also be viewed as a series of 3D point target localiza-
tion applied to static features in or around an area. Under this premise work on 3D
point target localization will also give a lot of information on improving 3D area
localization. A number of papers have discussed the 3D point target localization
problem both for stationary[5][6] and moving[7][8] targets. Ponda et al. [9] and
Wang et al. [10] discuss optimal trajectories during the drone flight to ensure the
fastest convergence.

Especially interesting is "Unscented Kalman Filter for Vision-Based Target Lo-
calisation with a Quadrotor" by Dena and Aouf [5]. This paper uses Unscented
Kalman Filtering to get an estimate of the 3D position of the target using the
drone location , camera gimbal angles, and the intrinsics of the camera. The au-
thors also suggest that the estimates observed are prone to bias due to noise in
the measurements. They consider the target to be stationary, which is similar
to the problem addressed in this thesis proposal. This makes the state matrix
an identity matrix which is linear, but the target position is calculated using the
gimbal angles of the camera, which makes the measurement model a nonlinear
function of elevation and azimuth from the target. Due to this nonlinearity, the
unscented Kalman filter is used. This estimates the nonlinear function better than
an extended Kalman filter using sigma points.
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3 Problem Formulation

From the analysis done on the algorithm developed during the internship, it was
discovered that the method has its limitations. The most severe one is, it assumes
that the area is flat. This leads to inaccurate 3D localization of uneven areas.
Even when tested on flat ground, small deviations in the measured gimbal pitch
angle lead to big errors (see section 6.11). Therefore, to overcome the limitations
of the previous method, it is proposed to use feature tracking and state estimation
to provide more accurate results (explained in detail in section 4.1). This leads to
the following problem statement:

"Develop an algorithm which performs 3D area localization based on
feature tracking and state estimation"

3.1 Research and Development Objectives

To achieve the set problem statement, some basic goals were set to develop the
base of the algorithm.

1. Choose a suitable simulation environment where feature detection can be
performed.

2. Choose a suitable feature detector and matcher.

3. Add a target area to the simulation and extract its segmented image output.

4. Plan a drone mission to fly around the target area to capture images and
the necessary meta data.

5. Develop a feature tracking algorithm which can track individual features.

6. Develop a state estimation algorithm which is able to estimate the 3D posi-
tion of the tracked features.

10



In order to achieve the set goals, certain assumptions were made regarding the
environment available:

1. The region around the target area is feature rich.

2. The segmented image of the target area is available beforehand.

3.2 Requirements specification

To meet the standards of real world applications, the final simulation results must
meet the following requirements:

1. The feature detection algorithm must be able to detect and track static and
consistent features throughout the mission.

2. The average distance of final localised features to the ground truth of the
boundary of target area, must be within 5m.

3. The algorithm must be able to perform, even when noise is added to simulate
real sensor data.

4. The developed algorithm must be scalable for different camera models, i.e.
the algorithm should function equally well for reduced image resolution.

3.3 Delimitation

Due to the COVID-19 outbreak and the worldwide lockdown, most of this project
has been limited to simulation. Access to the drone was possible only on limited
days due to the restrictions active at the time in Denmark. The drone was therefore
only used for early tests while later work focused on simulation.
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4 Methodology

4.1 Proposed Solution

The objective of the thesis is to improve upon the 3D area localization that was
developed as a part of the internship. As described in Chapter 2, the new method
is expected to calculate the 3D area location and should fuse information gathered
from multiple frames as seen in fig. 4.1.

Figure 4.1: The drone views the area from multiple perspectives.This allows the
estimation of an accurate 3D location for the area.

While exploring possible solutions from previous works on related fields as ex-
plained in Section 2.2, only one paper was found that tackles this specific prob-
lem. Merino et al. [4] solved the problem using a very similar approach to the one
described in section 2.1. They further improved upon it by incorporating a Digital
Elevation Model (DEM) and probability estimation. This relative lack of research
motivated the authors of the thesis to propose a new idea for 3D area localization.
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Figure 4.2: Based on the segmented target area (blue) a band around it is created
(red). In this band notable landmarks are found (green) and tracked over subsequent
images.

The proposed idea is to localize a detected area by searching for static landmarks
around the area of interest. This is accomplished by applying a standard feature
detector like SIFT [11] in a band around the target (see fig. 4.2). Tracking these
landmarks over time and using state estimation such as Kalman filtering, accurate
3D positions for each landmark can be found. These can then be joined, to gen-
erate a good 3D estimate of the area of interest. The use of state estimation to
localize single point targets is well documented in literature for both static [5] [6]
and moving targets [7] [8]. The nonlinear nature of the bearing-only localiza-
tion problem requires the use of nonlinear state estimation such as Extended or
Unscented Kalman filtering.

This proposed idea is implemented as a proof of concept in simulation software to
evaluate its viability.

13



4.1.1 Unscented Kalman Filter

The information gathered about a landmark over multiple frames has to be com-
bined to improve the estimation of its position. This can be solved using a Kalman
filter which is a two step process. First, there is a prediction step where the final
mean and covariance of the state are predicted using a given model. Secondly,
there is an update step where the state is measured using given sensors and their
associated uncertainties. Combining predicted and measured state results in a new
estimate with higher confidence(see fig. 4.3).
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Figure 4.3: Kalman filter uses previous state estimate and the measurement to get
a better estimate of the current state

While the position of the landmark is stationary and therefore linear, the measure-
ments (yaw and pitch) are nonlinear. Therefore, a nonlinear Kalman filter has to
be used. The most widely used nonlinear Kalman filter is the Extended Kalman
Filter (EKF). It models nonlinear behaviour by linearizing around the current
state and estimating a new Gaussian distribution.
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Unscented Transform

The Unscented Kalman Filter (UKF) [12] improves upon this concept by applying
nonlinearity to a low number of particles, the so-called sigma points. These are
chosen to represent the original Gaussian distribution. These points are passed
through a nonlinear function and the output is then used to generate a closer
Gaussian distribution estimate (see fig. 4.4).

Figure 4.4: The above plots show the propagation of mean and covariance through
nonlinear functions using different methods. The left plot shows the propagation
of all the points of the state (Monte Carlo), the middle plot shows the propagation
results after linearising the model (EKF) and the last plot shows propagation of
only the sigma points to estimate the new mean and covariance (UKF). [12]

This so-called unscented transform is performed in a series of steps:

• Calculate the sigma points

• Assign weights to the sigma points

• Transform the points through a nonlinear function

• Compute the Gaussian distribution from the transformed points
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The number of sigma points to choose depends on the dimensionality of the system.
It is 2n+ 1, where n is the dimensionality of the system.

The sigma points and their weights are calculated based on Van der Merwe’s 2004
dissertation [13]. The sigma points are calculated as follows:

U =
√

(n+ λ)Σ (4.1)

X 0 = µ

X i = µ+Ui for i = 1, ...., n

X i = µ−Ui−n for i = n+ 1, ...., 2n

(4.2)

Where every X is one sigma point, µ is the mean of the Gaussian distribution,
λ is the scaling factor which decides how far from mean the sigma points should
be, and Σ is the covariance matrix which is a square matrix of size n. λ can be
calculated as follows:

λ = α2(n+ κ)− n (4.3)
where α and κ are tuning parameters. α is normally chosen as a small positive
value while κ is usually set to zero [12].

Weights for the sigma points are chosen such that the sum of all weights is equal
to one and more weight is given to the points which are closer to the mean. These
weights are calculated as follows:

W µ
0 =

λ

n+ λ

W Σ
0 =

λ

n+ λ
+ (1− α2 + β)

W µ
i = W Σ

i =
1

2(n+ λ)
for i = 1, ...., 2n

(4.4)

where β is a tuning parameter which is normally set to 2 [12].

The resulting Gaussian after passing through the nonlinear function is then calcu-
lated:

µ′ =
2n∑
i=0

W µ
i g(Xi)

Σ′ =
2n∑
i=0

W Σ
i g(Xi − µ′)(g(Xi)− µ′)T

(4.5)

Where, µ′ is the predicted mean, Σ′ is the predicted covariance and g : Rn → Rn

is the state transition function.
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Prediction

A new state x[k + 1] is predicted based on the old state x[k] using the state
transition model:

x[k + 1] = Φ(x[k]) +w[k] (4.6)

Where x[k] is the prior state, x[k + 1] is the current state, Φ(x[k]) is the state
transition model between k and k + 1, w[k] is the process noise.

Since Φ might be nonlinear, unscented transform as described in (4.1) to (4.5) is
used to calculate the predicted mean (µ′) and covariance (Σ′) of state x[k + 1],
where the function g is replaced with Φ.

Update

The measurement z[k] associated with state x[k] can be calculated using the mea-
surement model:

z[k] = h(x[k]) + v[k] (4.7)

Where h : Rn → Rm is the measurement model, v[k] is the measurement noise
and m is the dimension of the measurement.

Since h might be nonlinear, unscented transform as described in (4.1) to (4.5) is
used to calculate the mean ẑ and covariance S of the predicted measurement as
shown below.

Zi = h(Xi)

ẑ =
2n∑
i=0

W µ
i Z i

S = V +
2n∑
i=0

W Σ
i (Z i − ẑ)(Z i − ẑ)T

(4.8)

Where, Z is the transformed sigma points in the measurement space and V is a
diagonal matrix which represents the measurement noise.
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To calculate the error in prediction, it is necessary to calculate the cross-correlation
between sigma points in state space and measurement space:

T =
2n∑
i=0

W Σ
i (X i − µ′)(Z i − ẑ)T

K = TS−1

(4.9)

Where T is the cross-correlation matrix between state space and the measurement
space, S is the predicted covariance matrix and K is the Kalman gain. The final
state and covariance are calculated incorporating the actual measurement z as
follows:

µ = µ′ +K(z − ẑ)

Σ = Σ′ −KSKT
(4.10)

4.1.2 Feature tracking

For the described Kalman filters to work, input in the form of pixel coordinates of
the same landmark over several pictures has to be provided. For this purpose, a
feature detection algorithm is used to find and track notable features over multiple
images. Numerous feature extraction algorithms such as SIFT [11], SURF [14],
ORB [15] and KAZE [16] exist. They vary widely in computational cost and
accuracy depending on the use case. In this application, the feature detection is
going to be used to track individual features. For this reason, high confidence in
the matching is required since outlier removal with techniques like RANSAC is not
possible. Tareen and Saleem [17] compared various feature detectors with multiple
datasets. They show that Scale Invariant Feature Transform (SIFT) has generally
the best matching performance and it is therefore used in this project. This comes
at the cost of relatively high computational requirements. It is therefore important
to limit the number of required features as much as possible.

Feature Extraction

The process of feature extraction can be split in 2 independent parts:

First, distinctive points inside the picture have to be found. This usually involves
finding corners or extrema of some sort. The resulting keypoint contains informa-
tion about the features location and its strength.
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In a second step, a descriptor for the found keypoint is calculated. This is achieved
by describing the area around the point in some way that can later be compared
to other descriptors.

Feature extractors usually consist of both keypoint detection and description.
However, since the 2 processes are independent, they can also be mixed. Oriented
FAST and rotated BRIEF (ORB) is as the name implies, a mixture of keypoint
extractor and descriptor of 2 other algorithms.

SIFT keypoint detection

Based on an original greyscale image, Scale Invariant Feature Transform (SIFT)
approximates a series of images of the same object taken from different ranges,
the so-called scale space. This is accomplished by applying increasing levels of
Gaussian blur and downscaling. Neighbouring images in the scale space are then
subtracted which results in the Difference of Gaussian (DoG). Like the scale
space, the DoG space can be seen as a 3D space in which 2 dimensions are the
pixel position of the image and the remaining one is the amount of blur applied
(the approximated range the image is taken at). Keypoint candidates are now
identified by finding local extrema in this 3D DoG space.

These keypoint candidates are restricted to the pixel grid, which is a problem
especially at higher levels of downscaling. Therefore, the position of the keypoints
is therefore refined to a subpixel level. This is done by creating a local quadratic
model in the space around a given keypoint. The extrema of this local model is
then identified to define the subpixel position of the keypoint. Unstable keypoints
are eliminated by deleting low contrast candidates. This removescandidates with
weak local minima which are not very well defined. Keypoints that lie on edges
are also purged, since they are normally not distinct.

SIFT descriptor

In the first step, an orientation for the descriptor has to be generated to give it
rotation invariance. This is done by finding the predominant direction of gradients
in the area of the keypoint. First, the size of the to be evaluated area is chosen
based on the scale of the keypoint (see green rectangle in.fig. 4.5). The orientation
of the gradient of every pixel in this area is then determined and added to a
histogram of directions (normally with 36 bins for 360 degrees). The contribution
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of every pixel is weighed by the intensity of its gradient and its distance from the
keypoint. The highest bin binmax of the histogram and bins that reach above 0.8 ∗
binmax are then considered the predominant direction of gradients and descriptors
for them are calculated. For this reason, a keypoint may have multiple descriptors
if the direction of gradients in its surroundings is ambiguous.

Figure 4.5: Visualization of the different patches used during the calculation of the
descriptor. σ is the scale of the keypoint.The tuning parameters λori and λdescr are
parameters are normally set to 1.5 and 6 respectively. [18]

In a second step, the actual descriptor is calculated. For this purpose, a square
patch centred on the keypoint and oriented along the keypoints location is taken.
Its size is once again dependant on the scale of the keypoint, but larger than in the
previous step (see the red rectangle in fig. 4.5). This patch is then subdivided into
16 subpatches. For every subpatch, the predominant orientation of gradients is
calculated. This is done in a similar way to the first step, however only 8 bins are
used per histogram. The 16 resulting histograms with 8 bins each are then stored
as the 128 values long feature vector of the keypoint. This vector characterizes the
area around the keypoint and can now easily be compared to other descriptors.
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4.2 Simulation

4.2.1 Environment

Simulation modelling is almost always used when developing robotic systems. It is
used to speed up the overall software development cycle and to reduce the project’s
overall cost. It allows to solve real-world problems in a safe and efficient manner
and provides the ability to analyse the outcome of an algorithm by simulating
various scenarios in a physics simulation environment. The physical interaction
between the robot and the environment can be safely analysed before deploying it
into the real world.

This situation is equally true for testing vision related algorithms, where the simu-
lation environment provides access to a simulated camera. To make it more similar
to that of a real camera, additional noise and distortion can also be easily intro-
duced. Apart from having the ability to test the algorithm in a simulation , it
is also necessary to be able to transfer the algorithm to a real world system with
ease without modifying the structure of the algorithm. For this reason autopilot
software such as PX4 or ardupilot is used to actually control the drone. They
provide both Software In the Loop (SITL) and Hardware In the Loop (HITL)
modes to test the solution in simulation before actually implementing it on a real
drone. SITL is used to simulate the system entirely on a computer and does not
require any hardware. Therefore, it is usually the first step in the development
process, since the hardware is not available initially. In a later stage, HITL runs
the autopilot on the actual flight controller hardware, while physics and control
algorithms are still simulated on the computer.

Both of these methods require a simulation environment which simulates a 3D
world and the necessary physics. One of the most popular software to provide
such an environment is Gazebo. It offers the ability to accurately simulate the
physics of any robotic system and its interaction with the environment. It is com-
patible with Robot Operating System (ROS) and it also has an active community
support which is very helpful in debugging solutions. However, when dealing with
vision algorithms, the simulation should not only posses realistic physics but also
realistic graphics. One of the main problems in using Gazebo is its low visual
fidelity. Focused on physics and good performance, the visual details in the sim-
ulation are not very realistic. This provides a challenge when testing computer
vision algorithms, because the simulation and the real world are not comparable.
The identification of features in the simple images provided by the simulation is
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therefore not representative. One way to get around this issue would be to place vi-
sual markers around the area and detect these. This would however be unrealistic
and cannot be directly transferred into the real world application.

The unsuitability of widely used robot simulators for computer vision tasks has
also been recognised by Microsoft. They developed and subsequently released
AirSim [19] as an open source project. AirSim is based on Epic Games Unreal
Engine 4, which allows for close to photo-realistic visualization in real time. Mainly
developed to help with the generation of machine learning datasets, AirSim allows
the simulation of both quadcopters and cars. The simulation environment can be
created using the Unreal Engine Editor which allows the creation of very detailed
worlds. Moreover, various premade environments with high visual fidelity are
available online. These include realistic lighting and world geometry and should
therefore be suitable for computer vision tasks. AirSim interfaces with the most
commonly used drone autopilots PX4, Ardupilot and, using a wrapper, with ROS.

When comparing Gazebo and Airsim visually, as it is illustrated in fig. 4.6, the
more realistic representation of the world is clearly visible. AirSim is therefore
used as a simulation environment for this project. Building realistic worlds in
Unreal Editor is a very complex and time consuming task. Therefore "Landscape
Mountains" [20] provided by Epic Games is used as a base environment which can
then be modified. Since the flight model of the drone used is not relevant for this
thesis, the default drone delivered by AirSim is used.

(a) Gazebo environment (b) Airsim environment

Figure 4.6: Comparison of Gazebo and AirSim shows the much higher visual fi-
delity of AirSim

22



As mentioned above, both PX4 and ardupilot would be suitable autopilots. They
both interact with AirSim. However PX4 proved to be more stable, which is why
it was chosen for this project. The basic structure of all simulation components

ROS

AirSim

PX4

AirSim ROS 
wrapper

MAVROS

ROS  
codebase

Flight commands

Position 

Images

Gimbal
Gimbal angle

Gimbal target
Gimbal angle

Figure 4.7: This figure shows the data flow between PX4 autopilot, AirSim envi-
ronment and ROS codebase

can be seen in fig. 4.7. AirSim provides its own ROS wrapper which provides the
camera data and gimbal control, but does not provide access to read gimbal orien-
tation or re-position the gimbal. Hence, a gimbal node is introduced in between.
It takes in the angle commands from the algorithm and publishes them to the
AirSim ROS wrapper to actuate the gimbal. Furthermore, it publishes the current
gimbal angles to a ros topic, simulating a sensor. For position data and flight
commands the process is easier since MAVROS can be used to interact between
the ROS codebase and the autopilot.
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4.2.2 Coordinate Systems
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Figure 4.8: This figure displays the coordinate reference frame used for 3D area
localization

• GPS coordinate frame: GPS coordinates are handled in the World Geodetic
System 1984 (WGS 84) reference frame [21]. In fig. 4.8, the x-axis refers to
latitude, the y-axis to longitude and the z-axis to altitude.

• Local coordinate frame: Coordinate frame centred at the start location of
the drone.This is a North-East-Down (NED) coordinate system resulting in
negative z values for positive altitudes.

• Gimbal coordinate frame: The zero position of the gimbal is looking to the
north, parallel to ground. Applying the pinhole camera model [2] results in
a coordinate frame that is centred at the drone position with z-axis pointing
north, x-axis pointing east and y pointing down.
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4.2.3 Communication Architecture

To connect different parts of the system such as the autopilot and the core algo-
rithm, ROS is used. ROS is a flexible open source framework for writing robotic
software. It consists of libraries and tools which simplify the task of creating com-
plex algorithms. ROS also supports communication between different language
codes, using the concept of nodes, topics, publishers and subscribers as seen in
Figure 4.9. Nodes are individual programs which can send and receive data from
a topic. Topics act as a middle ground to help exchange information from one
node to another. Publishers and Subscribers respectively are the means to send
and receive data through a node. ROS has its own data classes that can be used
to exchange data with a topic. It also provides the freedom to create custom data
classes. Each functionality of a robotic system is made as a ROS node which
can send and receive data from topics. For example, in a mobile robot system,
each of the sensors (like lidars, encoders, etc.) are individual nodes which publish
appropriate data to their respective topics. These topics are then subscribed by
the controller node which calculates the required motor input and then publishes
the motors commands to another topic. Motor controller is another node which
subscribes to these commands and sends it to the appropriate motor device. The
advantage of this architecture is that the nodes are completely isolated and are
only connected through topics. This allows the use of different languages (C++
and python) for different nodes based on the ease and the computation speed re-
quired. Apart from this, ROS has a vast community support to help debug any
issues that may arise.

ROS Topic B

Python

ROS
Nodes

Python

ROS
Nodes

C++

ROS
Nodes

ROS Topic A

Publishers

Subscribers

Figure 4.9: This figure describes how nodes communicate with each other using
publisher and subscribers through topics.
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4.2.4 Mission plan

A 3D area localization mission involves performing state estimation on the detected
and matched features from the drone images. While the eventual aim is to perform
this algorithm in real time, during the development, datasets where created first
and then the algorithm was run on these datasets. The mission plan for capturing
such a dataset requires the drone to fly around the target area and collect images
of its boundaries. Apart from this, the information regarding the gimbal angles
and drone position also has to be recorded for every image taken. The first mission
was planned around a lake in the unreal environment as shown in fig. 4.10.

Figure 4.10: Overview of the coastline that serves as a target for the tests. Taken
in Unreal Editor.

To achieve this, a few points along this coastline were extracted manually and the
polyline they define is used as ground truth as shown in fig. 4.11. This ground
truth line is used in calculating the path to be followed by the drones during the
mission.
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Figure 4.11: Manually created ground truth consisting of 37 extracted points and
the polyline they define.

One of the important criteria for a good convergence of the 3D position of a feature
is to view the feature from multiple perspectives. To introduce this variation in
perspective, the paths must have a certain offset to the ground truth along x, y
and z-axis.

The first mission was performed around a lake, which is mostly flat. The drone
follows a set of waypoints that were offset along all 3-axis from the ground truth
line, at a constrained maximum velocity. The gimbal is pointed towards the closest
waypoint on the ground truth line to capture images at regular intervals as shown
in fig. 4.12. This simulates either a computer vision algorithm or a human user
focusing on the area border during the mission.
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Figure 4.12: The drone follows the path denoted by dashed blue line and focuses
the camera onto the boundary of the lake which is denoted by the red line. At every
waypoint, the camera is oriented a point on the ground truth line. This orientation
is denoted by green arrows.

The second mission is planned around a cliff, which is more of a steeper terrain
as shown in fig. 4.13. Similar to the previous mission, a set of waypoints were
calculated around the cliff at an offset. The gimbal is made to focus on the cliff’s
boundary, while the drone follows the waypoints around the area as shown in
fig. 4.14. Here, the drone’s path is represented by the blue line, the gimbal orien-
tation by green arrows and the ground truth of the cliff’s boundary is represented
as a red line.
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Figure 4.13: Overview of the cliff that serves as a target for the tests.The area that
should be localized is of slightly darker colour than the surrounding ground. Taken
in Unreal Editor.
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Figure 4.14: The drone follows the path denoted by dashed blue line and focuses
the camera onto the boundary of the lake which is denoted by the red line. At every
waypoint, the camera is oriented a point on the ground truth line. This orientation
is denoted by green arrows.
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5 Implementation

Based on the ideas and principles described above, a working algorithm has been
developed. It tracks notable landmarks around the target area over a large number
of frames. By applying a Kalman filter to every single landmark, it eventually gets
accurate estimates of numerous points in space around the target area.

Match and Estimate

Purge Landmarks

Add Landmarks

Process new Image

Store Estimation

Figure 5.1: This figure gives an overview of workflow of 3D area localization pro-
cess. The features area detected in Process new Image and are added to LoL in
Add landmarks and are matched with the previous landmarks in Match and Esti-
mate. The worst landmarks are purged in Purge landmarks and the 3D estimate
of landmarks are saved in Store Estimation.
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A simplified flowchart of the algorithm is displayed in fig. 5.1. The algorithm
mainly consists of 4 steps:

1. Process new Image: Acquires new Image, detects the target area, obtains a
mask around it and extracts relevant features.

2. Match and Estimate: Matches the current features with the landmarks.When
a match is found, updates the landmark and its UKF estimation based on
this match.

3. Purge Landmarks : Removes bad or old landmarks. If the to be removed
landmarks satisfy the convergence criteria, their final estimation is stored.

4. Add Landmarks : Adds new landmarks to the LoL

This is an indefinite process and does not have a defined end point. The process
can be run during the entire duration of the drone’s flight time or can be stopped
at any moment. The exact functionality of each block is further explained in detail
in section 5.2 - 5.5.

5.1 Data structure

5.1.1 Features

To keep track of landmarks, their associated features and Kalman filters, the fol-
lowing data structure is used. The landmarks are assembled in a Library of Land-
marks (LoL) which is displayed in fig. 5.2. Each landmark contains all features
associated with it. Every feature consists of keypoints and its corresponding de-
scriptors which will eventually be matched to other features. Features are added
to a landmark every time it is rediscovered in an image (see section 5.4). To keep
track from which image a feature originated, the image index is also stored. This
allows the calculation of metrics such as how often a landmark is seen or when it
was last seen.
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Figure 5.2: Data structure of the LoL. Every Landmark contains information
about the associated features, the frame in which a feature has been found and the
current state of the UKF estimation.

5.1.2 UKF object

Every landmark also has its own UKF filter which estimates the 3D position of
the landmark in the world. To make all information about the UKF filter easily
accessible, it is stored in a so called UKF object class. Every landmark contains
exactly one such object (see fig. 5.2). While every landmark has its distinct filter,
they are all modeled the same. A stationary target is assumed, therefore the state
of the target only consists of its position and has dimension n = 3:

x =

northeast
down

 (5.1)

When applied to the 3D localization of a static target, the state transition model
in (4.6) is linear:

Φ(x[k]) = x[k] (5.2)
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Because the process noise w[k] of a non-moving target is equal to zero, resulting
in an absolutely static state transition.

x[k + 1] = x[k] (5.3)

The measurements taken by the drone consist of the bearing from the drone to the
target point expressed as yaw and pitch in the drone frame as shown in fig. 5.3.
The measurement space therefore has dimension m = 2.

Z

Y

X

Target

Target bearing

Figure 5.3: The bearing from drone to target can be expressed as yaw angle ψtarget
and pitch angle θtarget. The angles are applied in order yaw → pitch.

z =

[
ψtarget

θtarget

]
(5.4)

Since the measurement is expressed as the absolute bearing between the drone and
the target, h is also dependent on drone position p:

h(x) = f(x− p)

f(r) =

[
arctan(ry/rx)

− arctan(rz/
√
r2
x + r2

y)

]
(5.5)
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The measurement model is nonlinear and therefore an unscented transform as
described in (4.8) has to be applied. The measurement noise V has to be chosen
according to the measurement errors expected. For the simulation tests performed
with the simulated errors described in section 6.2.1, the following setting was used:

V =

[
(0.5◦)2 0

0 (0.5◦)2

]
(5.6)

To select the proper sigma points which define the variance of the state, it is
necessary to choose the appropriate tuning parameters as described in (4.1) to
(4.5). The tuning parameters chosen after experimentation were:

α = 0.7

β = 2

κ = 0

(5.7)

The above-described implementation of the UKF filter is done with the help of the
filterpy library [22].
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5.2 Process new Image

Process 
new Image

Acquire Image

Detect Area of
Interest

Acquire Mask around
the Area of Interest

Extract N strongest
features in masked

area

Match and Estimate

Extracted
features

Add Landmarks

Figure 5.4: The Process new Image block takes in the image, extracts features
around the target area and sends it to Match and Estimate block.

The algorithm starts by acquiring a new image from the camera. The image is
segmented to get a binary mask of the target area. Segmenting an image depends
on the type of area to be segmented and can be achieved by using either simple
color segmentation or complex machine learning algorithms. The segmentation
is an input for the developed algorithm and how it is created does not affect
the result. When the algorithm is applied to the simulation setup described in
section 4.2, the segmentation is provided by the AirSim. It segments every object
by its unreal engine object class (see fig. 5.5).
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Figure 5.5: The AirSim segmented image output assigns a unique color to ob-
ject classes in the simulation environment. It is not a result of applying image
processing techniques.

The detected area is dilated by performing morphological operations as shown in
fig. 5.6. The dilated area is subtracted from the initial segmented area to get a band
around the target area as shown in fig. 5.7. This band is the Area of Interest (AoI),
in which new features are detected and matched continuously. By selecting a small
AoI around the target area, the performance of the feature matching algorithm is
improved. This is because, it restricts the detection of features to a limited region
as shown in fig. 5.8. Furthermore, the AoI width is a tuning parameter, which
determines the amount of features found and how close the 3D position estimates
are to the boundary of the target area. Once the mask of the AoI around the
target area is calculated, SIFT feature detection algorithm is performed to find
the best features. In the first iteration the number of features detected is Lmax.
Here, Lmax defines the size of landmark library and is user defined. However,
in subsequent steps a much larger number of features have to be extracted to
match with the existing landmark library. The number of features should be high
enough that a majority of the landmarks in the library can be matched and low
enough so the matching process can be accomplished in a reasonable time. During
the experiments, 10Lmax proved to be a good value. The extracted features are
then passed to Match and Estimate for updating the position of the landmarks.
The only exception is the case of the first iteration.Since the landmark library is
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Figure 5.6: In this figure, the white pixels represent the target area, black pixels
represent the background and the grey area represents the dilated region.

empty, the extracted features go directly to Add Landmarks without performing
any action in Match and Estimate and Purge Landmarks.
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(a) RGB Image

(b) Segmented target area

(c) Final output image

Figure 5.7: The RGB image (a) is first segmented to get a mask of the water area
(b). This mask is subtracted from a dilated version of itself to get a band around
the water (c).
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(a) 116 features detected within the masked area

(b) 500 features detected throughout the image

Figure 5.8: In (a) the detection of features are restricted to the AoI and this in
turn helps the feature matching process. Whereas in (b) the features are calculated
all over the image which might lead to more false positives during feature matching.
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5.3 Add Landmarks

The purged Library of Landmarks (LoL) received from Purge Landmarks is up-
dated using the new features extracted from Process new Image. The LoL maxi-
mum size Lmax is given by the user. Using this and the current size L of the LoL,
the number of new landmarks Lnew to add is calculated as:

Lnew = Lmax − L (5.8)

In the first iteration the LoL is empty. Therefore, the best Lmax landmarks are
selected from all the new features and are added as new landmarks into the library.
Once a new landmark is added, the initial 3D position estimate is calculated
using the method explained in section 2.1, with height assumed to be zero. This
estimate is added into the UKF object of the landmark. The flowchart of the
adding landmarks process is displayed in fig. 5.9.

Add Landmarks

Add initial position estimate
assuming height=0m

Process new Image

Purge Landmarks

Features extracted from New
Image, Purged Library of
Landmarks

Select the strongest Features

Add new landmarks into
Landmarks library

Determine the number of
landmarks to be added

Figure 5.9: Flowchart of the Add Landmarks process.
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5.4 Match and Estimate

5.4.1 Match

Purge Landmarks

Match and Estimate

Process new Image

Features extracted from New
Image (M)

Library of
Landmarks

Have all landmarks in the LoL
been matched with the new Image?

Match next landmark Li
to M

no How many matches are
there?

Find the feature in M
with most matches

>1

Remove the feature
from M

0

yes

1

Update the Kalman
estimation for Li

Add the matched
feature in M to Li

Is the current 
UKF estimate of 

the landmark close to 
the found feature 

position?

no

yes

Figure 5.10: Flowchart of the Match and Estimate process.

Every landmark in the LoL is then individually matched with the features ex-
tracted in the previous step. Since every landmark holds at most a few hundred
features, the extracted features from the Image are limited to a few thousand.
Therefore the matching process is not computationally expensive. For this reason
and because a fairly low amount of matches are expected, a brute force matcher
is used in this process. This provides for every landmark feature descriptor l the
two best matching image feature descriptors m1, m2. How well an image feature
matches the given landmark feature can be expressed by calculating the distance
s(l,m):

s(l,m) = ‖l−m‖ (5.9)
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To decide if l and m1 are a legitimate match, distance ratio r between the best
and second best match is calculated:

r =
s(l,m1)

s(l,m2)
(5.10)

The lower r is, the higher the probability that l and m1 are a correct match.
Values close to 1 indicate that the match between l andm1 is not unique, but due
to randomness. In the original SIFT paper, Lowe [11] suggests using r < 0.8, as
it eliminates 90% of false positives while only discarding 5% of positive matches.
These are good values for comparing two images with 1000s of matches which
allow the use of techniques such as Random Sample Consensus (RANSAC) to get
rid of outliers. However, when comparing a landmark to an image, only a few
matches are expected. These therefore need to be more reliable. For this reason,
the threshold used in this algorithm is r < 0.5, which should discard approximately
97% of false matches [11].

Especially for a young landmark with a low number of stored features, there will
often be only one match. With older landmarks however, there will often be
multiple matches. If matching performance was perfect, all landmark features
would match with the same image feature. In reality however, it is possible that
the matching is not unanimous. In this case, the image feature with the most
matches is declared the true match for that landmark (see fig. 5.11).

This whole process works very well as long as there is an actual match in the
new image. If there is none, mismatches can not be eliminated by the majority
of good matches and the system may produce false matches. To get rid of the
most outrageous outliers, it is checked if the found feature is at least in the general
direction of the estimate provided by the UKF filter. This is accomplished by
calculating the Mahalanobis distance d [23] between the UKF estimate and the
feature to be added.

y = z − ẑ
d =

√
yTS−1y

(5.11)

The Mahalanobis distance measures the distance between a point and a distribu-
tion in the measurement space and expresses it in terms of standard deviation.
From eq. (5.11), z is the measurement of the feature which is represented as a
point, ẑ and S represents the distribution of the current UKF estimated measure-
ment.
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Landmark feature descriptors

l1

l2

l3

l4

l5

Image feature descriptors

i3

i2

i1

i4

m1

m2

Figure 5.11: For every landmark feature descriptor li the best (m1) and second best
(m2, only displayed for l1) matching image feature descriptor is found. Depending
on the quality ratio between those two, m1 is declared a real match (straight line) or
a mismatch (dotted line). Since there is still the possibility of a false positive match
(between l5 and i4), the number of real matches every image feature descriptor gets
is counted and the most frequently matched one is declared the absolute match
between the whole landmark and this image (in this case i3).

Since d is expressed in standard deviations, a feature is almost guaranteed to be
an outlier if |d| > 3 and can therefore be discarded. If a match has passed all
checks, the image feature will be added to the landmark it matches. This means
that the size of a landmark increases with every match found.
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5.4.2 Estimate

Once a new feature is added to a landmark, the information about its position must
also be added to the landmarks UKF filter. Each feature contains information
about its position in an image as pixel coordinates u, v. The UKF filter however
requires information in its measurement space, which are bearings from the drone
to the target position. First, u and v are reprojected into the focal plane:ufvf

1

 = A−1

uv
1

 (5.12)

Where A is the intrinsic matrix of the camera.

v1

v2

v3Feature Camera

Focal Plane

Figure 5.12: Calculation of yaw (ψimg) and pitch (θimg) from the pixel coordinates.

The 3 vectors displayed in fig. 5.12 can now be defined:

v1 =

0
0
1

 v2 =

uf0
1

 v3 =

ufvf
1

 (5.13)
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ψimg and θimg can then be calculated. They are the yaw and pitch angles from the
camera center axis to the target.

ψimg =

{
arccos( v1·v2

‖v1‖·‖v2‖) uf ≥ cx

− arccos( v1·v2

‖v1‖·‖v2‖) uf < cx

θimg =

{
arccos( v2·v3

‖v2‖·‖v3‖) vf ≤ cy

− arccos( v2·v3

‖v2‖·‖v3‖) vf > cy

(5.14)

Where cx and cy are the principal point offsets stored in the intrinsic matrix as
can be seen in (2.8). This assumes the order of rotations to be yaw first and pitch
second.

Applying these rotations after each other results in the rotation matrix from gimbal
frame to the target RG→T :

RG→T =

 cos(ψimg) 0 sin(ψimg)
0 1 0

− sin(ψimg) 0 cos(ψimg)

1 0 0
0 cos(θimg) sin(θimg)
0 sin(θimg) cos(θimg)

 (5.15)

The total rotation matrix from local frame to the target RL→T can then be calcu-
lated:

RL→T = RL→GRG→T (5.16)

Where RL→G is the rotation matrix from local frame to gimbal frame. Its calcula-
tion can be seen in (2.2) to (2.4). Since (2.4) is dependant on the kinematic chain
of the gimbal, it has to be modified depending on the gimbal used:

RG0→G =

{
RyawRrollRpitch Zenmuse h20T
RyawRpitchRroll AirSim

(5.17)

The measurement z can now be calculated:

z =

[
ψtarget

θtarget

]
=

 arctan
(

RL→T
1,2

RL→T
0,2

)
arctan

(
RL→T

2,2

(RL→T
1,2 )2+(RL→T

0,2 )2

)
 (5.18)

z is then used to update the UKF filters estimation as described in (4.10).
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5.5 Purge Landmarks

Purge Landmarks

Match and Estimate

New library of landmarks

Features extracted from New
Image , Purged Library of
Landmarks

yes

Is the size limit
of the library of landmarks reached?

Remove the landmarks

no

Has the UKF estimate converged for
any of those landmarks ? yes

no

Store

Store the final
estimates of  those
landmarks in a list.

Select bad and old
landmarks to be

removed

Add Landmarks

Figure 5.13: Flowchart of the purging Landmarks process.

This is the final step of the algorithm. Its purpose is to avoid slowing down the al-
gorithm with an ever increasing number of landmarks. As the drone moves through
an area, landmarks are detected, matched and their positions are estimated. Most
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of the landmarks tracked are lost as the drone moves, since the features go out
of frame. These features have to be discarded in order to make space for new
features. The purging process is done only when the LoL is above its purging
threshold Lpurge, which is equal to:

Lpurge = Lmax − T (5.19)

Where T is the turnover rate. This parameter is a user-defined tuning parameter.
It controls the amount of landmarks to be deleted in every iteration and should
be selected based on the speed of the drone and the image acquisition frequency.
Choosing the turnover rate too high, results in the removal of landmarks which are
yet to converge. Choosing it too low would fail to remove all bad landmarks. When
the number of landmarks exceeds the purging threshold, the excess L − (Lpurge)
worst landmarks are selected. The worst landmarks are selected based on their
quality Q, which is determined by the ratio of features it contains to the age of
the landmark.

Q = size(Li)/ age(Li) (5.20)

where Li is the evaluated landmark. By this criteria, the landmarks that do not
have frequent matches, also referred to as bad landmarks, will be queued up for
purging. Furthermore, landmarks that have converged but are now out of frame,
are eventually included for purging. Therefore,the purging process does not just
remove bad landmarks, but also the good ones that have not been seen for a while.
Before they are purged, the landmarks whose position estimates have converged
are stored in a global list as shown in fig. 5.13. This is done to ensure that
the information contained in these converged landmarks is stored before they are
deleted. Converged landmarks are selected and saved based on their low covariance
value. This is evaluated using the covariance matrix given after the UKF state
estimation. First, the eigenvalues e of the covariance matrix are calculated. The
real parts of the eigenvalues describe the variance of the distribution along the three
principle axes. The square roots of these variances are the standard deviations of
the distribution along these axes. The value of the maximum standard deviation
is used as the parameter to evaluate the convergence of the 3D position estimate
of the landmark.

η = max(
√

Re(e)) (5.21)

η is the convergence criteria that is checked for every landmark that is to be
deleted. If it falls below a chosen threshold, the landmark will be added to the
final results. After checking for convergence, all selected features are deleted.
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5.6 Challenges encountered

5.6.1 Synchronization

For the best results, position and angle data associated with a picture must be as
accurate as possible. This can be a challenge since the data for these values follow
different paths. As illustrated in the simulation structure displayed in fig. 4.7.
Pictures are provided by AirSim directly, position data by PX4 and gimbal angles
by a self written ROS script. This information is published at different intervals.
Furthermore, the picture data is heavily dependent on the performance of the
simulation and might not always be published with the same frequency. In initial
experiments, the Image topic was used as a trigger to assemble the information
from the other topics (see fig. 5.14). The Image topic was chosen because it is
published at the lowest frequency and the resulting discrepancies with the other
topics should therefore be the lowest.

Gimbal angle

Picture

Position

Figure 5.14: Information is collected whenever a picture is published. This can
lead to sub optimal data association.

There are 2 main problems with this approach: First, there are situations where a
position or gimbal angle update is published shortly after the picture (see red data
point in fig. 5.14). This new information would fit the actual state of the image way
better than the old information that is used. Secondly, the topics are evaluated
based on when they are received, not when they are created. A slowdown in one
of the pipelines could therefore lead to mismatched data. This is especially true
for the gimbal angle topic, which is calculated based on information depending on
the picture topic. As can be seen in fig. 5.15a, this can lead to bad measurements.
Because of the time differences between measurement and acquisition of the image,
the gimbal angles are trailing the image information by approximately one frame.
While this is not noticeable when gimbal angles change very slowly, it leads to big
spikes when the gimbal is slewed very fast. These big spikes do have an effect on the
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Figure 5.15: Example of target pitch angle from the drone to a Landmark. The
ground truth (GT) is calculated based on the drone position and the known Land-
mark position. The measurement combines information from drone position, gim-
bal angles and image. The spikes in the measurement are a result of mismatched
image and gimbal data when the gimbal is moved sharply.

UKF prediction and slow down the convergence. ROS provides some tools to solve
these problems. Most topics include a timestamp of their creation. Based on these
time stamps ROS ApproximateTime filter can associate data with the smallest
ammount of time difference (see fig. 5.16). Furthermore the timestamps can be
manually set. This allows topics that are calculated based on information received
from other topics to share the original timestamp. Applying these techniques

Gimbal angle

Picture

Position

Figure 5.16: ROS ApproximateTime filter is used to synchronize the data depend-
ing on their creation time stamp. While this will introduce some latency since the
filter has to wait for some topics, the data will be synchronized much better.

resulted in better results and faster convergence of the UKF prediction. This can be
seen when comparing fig. 5.15a and 5.15b. The differences between measurement
and GT are generally lower and the UKF prediction converges more steadily.
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5.6.2 Numerical problems

One of the problems faced during UKF are numerical issues during the calculation
of sigma points. This calculation involves computing the square root of a matrix
(see (4.1)). This is done using the Cholskey decomposition, which decomposes a
matrix B into a combination of a matrix L and its transpose LT .

B = LLT (5.22)

Applying the Cholskey decomposition presupposes a positive semidefinite matrix.
A symmetric matrixB with real entries is said to be positive semi-definite if yByT
is positive or zero for all non-zero real values of y. While covariance matrices
generally should be positive semidefinite, this was not always the case with the
matrices numerically calculated by the Kalman filter. This is a common problem
faced by many programmers and discussed in several forums, but with no general
solution. One proposed solution is to ensure matrix symmetry by applying the
following fix:

B = (B +BT )/2 (5.23)

This reduced the occurrence of nonpositive semidefinite matrices but did not com-
pletely solve the problem. Another possible solution is to calculate the closest pos-
itive semidefinite matrix as described by Higham [24]. Even though this worked in
most cases, it also slowed down the process significantly and could not eliminate
all occurrences. During the tuning of the sigma point parameters, the authors
noticed that the value of α had a significant influence on the frequency of these
errors. By choosing a suitable value of 0.7, the observed errors could be completely
eliminated.
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6 Analysis

Simulation

The tests are conducted in the AirSim simulation environment with water as the
target area to be localized. The drone used in this simulation is a standard drone
provided by AirSim, configured with a full-hd 3-axis gimbal camera. The images
and data required are collected through the simulation and stored as a dataset.
The algorithm is then run at a later time on the collected dataset. Since it is
computationally expensive and not yet optimized, it is run at less than real time
speed.

To run the tests, a part of the coastline in the unreal environment is chosen as the
target (see fig. 4.10). 37 points along this coastline were extracted manually and
the polyline they define serves as ground truth (see fig. 4.11).

To evaluate the quality of the resulting estimated landmark positions, the minimal
distance from each landmark to the ground truth polyline is calculated. Low
distances are desirable but because of the nature of the algorithm, a perfect 0 m is
impossible. Since the landmarks are chosen from a band along the ground truth,
they will have a certain distance even if the Kalman estimation is perfect.

The landmarks are further classified into three groups:

• Distance < 10 m: useful landmarks which can be used to estimate the contour
of the target area.

• 10 m < distance < 20 m: landmarks that might have converged to their real
position but are too far away to be useful or landmarks that did not fully
converge.

• distance > 20 m: landmarks that converge to a wrong position (outliers) and
require analysis.
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6.1 Initial results

The results obtained by an initial test of the 3D target localization algorithm are
displayed in fig. 6.1. Although this figure provides a good representation of the
contour of the area, it also presents a lot of outliers (displayed in red). In order
to reduce the number of outliers, the reason for them being present had to be
identified.
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200

300

Figure 6.1: Displays the 3D estimates of the landmarks found around the lake. The
red line denotes the ground truth, green points represent the inliers, yellow points
are one which are considered not useful for 3D area localization and red point are
the outliers.
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6.2 Outlier analysis

In order to analyse the outliers, the information that was used to localize every
landmark, needs to be stored at every frame. This is done by modifying the LoL to
accommodate information about the measurement (target yaw and pitch), predic-
tion (target yaw and pitch), mean of estimation (x,y,z), covariance of estimation
and the Mahalanobis distance as shown in fig. 6.2. This allows to track the history
of every landmark and analyse every single update.

Library of Landmarks (L)

Landmark 1

Measurement

Measurement 1

Measurement 2

...

Mahalanobis dist

Distance 1

Distance 2

...

Original Library

Keypoints

Descriptors

...
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Covar 1

Covar 2
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Prediction

Prediction 1

Prediction 2
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Mean

Mean 1

Mean 2
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Measurement 1
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Covar 2
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Prediction

Prediction 1

Prediction 2

...

Mean

Mean 1

Mean 2
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Figure 6.2: Additional elements are added to the library of landmarks, they are
required to allow analysis of all updates of every landmark.

The outliers are caused by landmarks that are not consistently matched. One such
example can be seen in fig. 6.3. This outlier data is compared with the data plots
of one of the inlier points in fig. 6.4 to find the reason for its inaccuracy.

From fig. 6.3a and fig. 6.3b it can be observed that, at around update cycle 150,
there is jump in the measured pitch and yaw angles. This indicates that there
was a false feature matching at that instant. The feature matcher then follows
the new feature and the estimates converge to a new position as seen in fig. 6.3e.
In fig. 6.3d it can be seen that the miss match leads to a very big mahalanobis
distance since it is very unlikely that the new point is part of the current UKF-
estimate distribution. These kind of outliers can therefore be removed by applying
a threshold criteria on mahalanobis distance as described in section 5.4.1 (this part
of the algorithm was only added as a reaction to the initial tests described here).
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Figure 6.3: Data of outlier which is caused due to false feature matching, where
x-axis represents the iteration number. After an initial phase of convergence a
substantial change in measured pitch and yaw occurs. This leads the estimation
to change a lot and eventually converge to another position. The Mahalanobis
distance of this update is very high which indicates a missmatch.
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Figure 6.4: Data of one of the inliers, where x-axis represents the iteration number.
The estimatiod target converges nicely and no sudded changes in yaw or pitch can
be observed. The mahalanobis distance of all updates stays below 10.
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When this criteria is applied, the number of outliers decreases significantly. The
feature mismatches are completely avoided and the results converge to stable 3D
positions as seen in fig. 6.5

Figure 6.5: Results achieved with the base parameters shown in table 6.1. The red
line denotes the ground truth, green points represent the inliers.

6.2.1 Base parameters

Based on the experience gathered during the development and the initial tests, a
configuration of base parameters is chosen, which can be seen in table 6.1. These
will then be varied to find ideal parameters.

speed convergence band width mahalanobis dist. downsclaing factor

3 m/s 0.25 100 px 10 2

Table 6.1: Baseline configuration for the parameters that will be varied.
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Other parameters such as the waypoints used, the drone altitude and added errors
stay the same over all tests and can be seen in table 6.2. Normally distributed

Altitude (local) SD gimbal yaw SD gimbal pitch SD x SD y SD z

30 m 0.5° 0.5° 0.5m 0.5 m 2 m

Table 6.2: Values of the parameters that will stay fixed

errors with the indicated standard deviations are added to the measurements used
in the algorithm. The values of standard deviation were chosen based on the
estimated accuracy displayed by a DJI matrix 300 during a real test (see. sec-
tion 6.10.2).

These parameters lead to the results which can be seen in table 6.3, fig. 6.5 and
fig. 6.6.

Nr. of Landmarks dist < 10m 10m < dist < 20m dist > 20m avg. dist to GT

809 805 4 0 3.43 m

Table 6.3: Results achieved with the base parameters
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Figure 6.6: This histogram shows the distribution of the landmarks according to
their minimal distance to ground truth. The red line indicates the average value.
To make outliers visible, y-axis is in log scale.
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6.3 Variation of drone speed

The localization algorithm requires tracking of features throughout its flight and
requires a certain amount of time for the UKF estimates to converge. This process
depends on the camera frequency and the speed of the drone.

While capturing datasets, AirSim provides images at a frequency of approximately
6Hz. Varying the speed of the drone leads to variation in the overlap between
images. To test the maximum drone velocity which can still provide satisfactory
results, the performance of the algorithm is evaluated while limiting the drone
maximum velocity to 1, 3, 5 or 10 m/s. These velocity limits are applied to
each axis separately. The output of the algorithm is then evaluated based on the
distance between the landmark and the ground truth line.

6.3.1 Results
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Figure 6.7: Displays the plot for various drone speeds vs the number of landmarks
found. This plot also shows the average distance from the landmark to the ground
truth for different drone speeds.

As can be seen in fig. 6.7, lower drone speed leads to a higher number of landmarks.
The small difference between 5 and 10 m/s might be because the drone does not
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actually fly faster, even though the limits on the controller were set higher. The
base value of 3 m/s seems to be a good tradeoff between the number of landmarks
detected, average distance and drone speed.

6.4 Variation of convergence threshold

A landmark is considered good if it satisfies the convergence criteria (see (5.21)
in section 5.5). It is therefore crucial to choose an optimal threshold to select the
right landmarks.

6.4.1 Results

From fig. 6.8, it can be inferred that at higher thresholds the number of converged
landmarks is higher but their quality is reduced. Values below a threshold of 1
show good results and 0.5 is chosen as a good compromise between the number of
landmarks and their quality.
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Figure 6.8: Displays the plot for convergence threshold vs the number of landmarks
found. This plot also shows the average distance from the landmark to the ground
truth for different band widths.

59



6.5 Variation of AoI band width

The size of the Area of Interest (AoI) band is a crucial tuning parameter for the
algorithm. If it is chosen too small, not a lot of features might be found. If it
is chosen too big, some of the found landmarks might be very far away from the
border and the information gained might therefore be of reduced value. To find
the optimal value, the drone mission is performed around the lake while varying
the width of the band between 10 and 200 pixels. Since the downscaling factor
of the base configuration is 2, the actual band width used by the algorithm varies
between 5 and 100 pixels (see explanation in section 6.7).

6.5.1 Results
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Figure 6.9: Displays the plot for various band widths vs the number of landmarks
found. This plot also shows the average distance from the landmark to the ground
truth for different band widths.

As expected, bigger band width leads to more but lower quality landmarks. The
ideal value seems to be between 25 and 50 pixels where a high amount of good
quality landmarks is present. It has to be said, that these results are related to
the altitude the drone is flying at. If the flight height is changed significantly, the
ideal band width might change.
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6.6 Variation of Mahalanobis distance

The Mahalanobis distance threshold is used during the matching process to de-
termine whether a matched feature belongs to the same landmark or not (see
section 5.4.1). The threshold is varied between 2, the lowest setting that actu-
ally produces some converged landmarks, and 1000 which is basically equal to no
thresholding at all.

6.6.1 Results

As can be seen in fig. 6.10, values between 3 and 4 seem to give the highest amount
of good quality landmarks. Increasing the threshold allows more and more false
matches to occur and therefore lowers the quality of the results. Lowering it below
3 results in the removal of many legitimate matches.
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Figure 6.10: Displays the plot for various mahalanobis distance threshold vs the
number of landmarks found. This plot also shows the average distance from the
landmark to the ground truth for different mahalanobis thresholds. x-axis is dis-
played in log scale.
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6.7 Variation of downscaling factor

The simulated drone is equipped with a full HD (1920x1080) camera. High Defi-
nition images provide more detail, which is advantageous when performing feature
matching. In this test, the input full HD image is downscaled by factors of 2, 4 and
8 to evaluate the performance of the developed algorithm on images with lower
resolution. Since the band width is expressed in pixels at full resolution, it is also
reduced with the downscaling factor (e.g. band width 100 with downscaling factor
4 means that the algorithm uses a band of 25 pixels in the low resolution image).
Choosing the factors as powers of 2 should lead to ideal downscaling results by
avoiding any interpolation between pixels.

6.7.1 Results
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Figure 6.11: Displays the plot for various downscaling factors. vs the number of
landmarks found. This plot also shows the average distance from the landmark to
the ground truth for different image resolutions.

As can be seen in fig. 6.11, a downscaling factor of 2 gives not only the highest
number of landmarks, but also the lowest average distance to ground truth. The
only reason to choose another downscaling factor would be to improve computation
speed which was not evaluated in this test.
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6.8 Best performing parameters

Based on the tests described above, the set of best performing parameters is chosen,
which can be seen in table 6.4.

50

0

50

100

150

200

250
50

0

50

100

150

200

250

50

0

50

100

150

200

250

Figure 6.12: Results achieved with the best performing parameters shown in ta-
ble 6.4. The red line denotes the ground truth.

speed convergence band width mahalanobis dist. downscaling factor

3 m/s 0.5 50 px 3.75 2

Table 6.4: Configuration with the best performing parameters.
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The results obtained by using these parameters can be seen in fig. 6.12, table 6.5
and fig. 6.13. Comparing them with the initial results (see section 6.1), shows
a significant improvement. While the 3D plots look relatively comparable, the
number of landmarks has doubled while the average distance to ground truth has
been reduced by almost 20%.

Nr. of Landmarks dist < 10m 10m < dist < 20m dist > 20m avg. dist to GT

1631 1631 0 0 2.82 m

Table 6.5: Results achieved with the best performing parameters
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Figure 6.13: This histogram shows the distribution of the landmarks according to
their minimal distance to ground truth. The red line indicates the average value.To
make outliers visible, y-axis is in log scale.
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6.9 Cliff mission

The tests described above have all been performed on the coastline mission as
described in section 4.2.4. Since the area to be localized is water, all landmarks
are located in the same plane. This does not demonstrate the 3D capability of
the developed algorithm. Furthermore, all parameters have been tuned on that
example. It is therefore possible, that the parameters do not fit the algorithm in
general, but the mission used to evaluate them.

For this reason, the performance of the algorithm is evaluated using a second
mission with the initial and the best performing parameters. The mission used is
the cliff mission described in section 4.2.4. As can be seen in fig. 6.15, the 3D shape
of the cliff is captured well with both settings. The best performing parameters
once again lead to a shorter average distance to the ground truth. This happens
at the cost of a lower number of converged landmarks. It is therefore a trade-off
between quality and quantity of the resulting data.

Landmarks d < 10m 10m < d < 20m d > 20m avg. d to GT

Initial 468 468 0 0 2.78 m
Best performing 354 354 0 0 1.91 m

Table 6.6: Results achieved with the best performing parameters
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(b) Best performing parameters

Figure 6.14: Comparison of the histograms. y-axis in log scale.
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(a) Initial parameters

(b) Best performing parameters

Figure 6.15: Comparison between the results from initial and best performing pa-
rameters applied to the cliff mission.The red line marks the manually generated
ground truth. Both results capture the 3D shape of the are very well.
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6.10 Influence of static errors

All tests so far have been performed with random, normally distributed errors
added to both gimbal pitch and gimbal yaw measurements (see section 6.2.1).
However, the normal distributions used were centred at the actual measurement.
It is therefore not surprising, that the Kalman filters could easily deal with the
introduced errors. As will be shown in section 6.11, static errors which move the
center of the distribution away from the actual value also pose a real problem.
Tests are therefore performed to evaluate the influence of static offsets on both
the measured gimbal pitch and gimbal yaw angles. The parameters used are the
best performing parameters, mentioned in section 6.8. As in all tests before,
the standard deviations for the distribution of gimbal yaw and gimbal pitch are
0.5◦each.

6.10.1 Yaw offset
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Figure 6.16: With increasing yaw offset the number of landmarks that fully con-
verge diminishes. While the average distance to the ground truth increases steadily,
it stays fairly low even with extreme offsets.

The effects of applying a static yaw offset can be seen in fig. 6.16. While average
distance from the ground truth increases steadily with increasing offset, there
seems to be little impact below 2 degrees. With higher values above 4 degrees,
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the number of converged landmarks decreases sharply. While extreme 10 degrees
of offset eliminate almost all landmarks, the remaining few ones are still relatively
close to the ground truth.

The 3D plot shown in fig. 6.16, displays the results achieved with an offset of 5
degrees. It is visually almost indistinguishable from the one taken without any
offset (fig. 6.12). This shows that the algorithm can compensate for yaw offsets
relatively well. In the case of extreme offsets above 5 degrees, landmarks are
rejected instead of being estimated in a wrong position. This reduces the amount
of available data but still maintains the quality of the result.
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Figure 6.17: A yaw offset of 5 degrees does not affect the results in a visible way
(compare fig. 6.12 for no offset).

6.10.2 Pitch offset

The effects of applying a pitch offset are much more severe. In fig. 6.18 it can
be seen that while the number of converging landmarks stays relatively high, the
average distance to the ground truth greatly increases with increasing pitch offset.
When visually inspecting the results in fig. 6.19, it can be observed that the major
error generated is along the z-axis. The localization in x- and y-axis is not affected
by the addition of pitch offset. The average distance to the ground truth increases
linearly with increasing pitch offset. While the effects are noticeable for all values
tested, small offsets below 2 degrees still produce acceptable results.
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Figure 6.18: With increasing pitch offset the average distance from ground truth
increases greatly. As can be seen in fig. 6.19, this increase is mostly along z axis.
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Figure 6.19: With a pitch offset of 5 degrees, it can be clearly seen, that the results
are offset along the z-axis.
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Real World Test

6.10.3 Used Hardware

The test was conducted with a DJI Matrice 300 provided by Robotto. A DJI D-
Real Time Kinematic (RTK) ground station was used to provide RTK-GPS. The
camera used was the wide RGB lens of a DJI Zenmuse H20T.

6.11 Previous method test

This test was performed to evaluate the accuracy of the previous method as de-
scribed in 2.1. It predates most of the work in this thesis and played a vital role
in the decision to find a new method, instead of improving the old one.

6.11.1 Setup

The test was conducted on a soccer field close to Aalborg University. The RTK
base station and 2 additional markers are placed on the field. They serve as ground
reference points as shown in Figure 6.20. The RTK base station serves as the origin
for the local coordinate system. The ground truth for the Center and Goal markers
was established by using RTK-GPS. These markers were then photographed from
8 predefined positions as seen in Figure 6.21, at an altitude of 10 m, 30 m and 50
m resulting in 72 data points as seen in Figure 6.22. Furthermore, the area of the
test was mapped using automatic mapping missions created with DJI tools. These
images were then used to create a complete 3D reconstruction of the area using
Pix4D. This includes a self-calibration of the camera, which is performed during
bundle adjustment. The intrinsic matrix gained from this calibration was used in
further steps.
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Figure 6.20: The ground reference points used during testing where, the RTK mast
is denoted by red, marker in the center of the field is denoted by green, marker
near the goal is denoted as blue and common reference point on the goal post is
denoted by grey.

Figure 6.21: Camera positions at 10 m,
30m and 50m in NED frame.

Figure 6.22: Data points generated from
different camera positions
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6.11.2 Procedure

The markers are placed at their respective locations and their GPS locations were
recorded by measuring the drone GPS at that location, displayed in Table 6.7.
A mission plan is developed to fly the drone around the football field at different
altitudes - 10 m, 30 m, and 50 m. At each height, the drone is stopped at 8 different
locations. The gimbal is then manually controlled to focus on each individual
marker placed to capture images with metadata information. After acquiring the
image dataset, the pixel locations of every marker visible in the images are recorded
manually. They are stored along with the camera intrinsics and the drone location
at the time of capture.

Marker ID Lat Lon x y relative altitude

RTK ground station R 57.0134748 9.9742011 0.00 0.00 0.00
Backpack "Center" M 57.0131517 9.9740606 -36.55 -8.45 0.00
Backpack "Goal" G 57.0133455 9.9736700 -14.97 -32.12 0.00

Table 6.7: Markers placed on the field.

This data was then used to calculate the location of these markers through the
method explained in section 6.11 and is compared with their respective ground
truths recorded (see Figure 6.23a). This prediction was observed to be very inac-
curate, especially at shallow pitch angles. It was hypothesised that, these might be
static errors due to bad calibration of the gimbal angles. Because of the nonlinear
effect of the pitch angle on the results, errors would be disproportionally amplified
at shallow angles.

Roll Pitch Yaw

Calculated offset 0.60◦ -2.16◦ -0.34◦

Table 6.8: Offset corrections calculated by least squares optimisation.

In order to correct this, least square optimization was used to calculate the static
errors in the gimbal angles by using the RTK position as the reference. The result
of this optimisation produced static offset corrections for each axis which can be
seen in table 6.8. These can then be used to re-calculate the positions of the other
markers as shown in Figure 6.23b.
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(a) Using previous method (b) After least square optimization

Figure 6.23: Prediction of marker locations at different camera positions.

6.11.3 Results

These original results along with the optimised results can be seen in Table 6.9.
The initial results are bad, especially when considering the low altitude and flat
terrain. When least square optimization was used to adjust the gimbal angles,
the results were greatly improved. This proves the initial hypothesis, that the
errors generated were, at least partly, due to static errors in the gimbal angles.
It is therefore necessary to perform an initial calibration around the RTK mast
to calculate the static errors in the gimbal angles at the the beginning of a flight
mission.

While the accuracy reached with least square optimization is satisfactory, it still
has to be taken into account that this test was performed on a flat soccer field.
Any kind of height deviation would negatively impact the results. This is one of
the main reasons, why this approach was not followed up on.

Static error will also occur in the new method developed later during this thesis.
Even though it uses Kalman filtering to eliminate normally distributed errors, the
mean of this normal distribution still has to be accurate.
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original data calibration on RTK data

Marker mean error std deviation mean error std deviation

RTK ground station 8.811 10.727 2.154 1.250
10 m 17.701 14.737 3.111 1.440
30 m 4.299 1.679 1.531 0.961
50 m 3.870 1.858 1.742 0.645

Backpack "Center" 11.051 12.584 2.031 1.372
10 m 21.589 15.985 2.212 1.802
30 m 5.117 3.422 1.832 1.246
50 m 5.128 4.012 2.027 1.051

Backpack "Goal" 6.901 5.651 1.693 0.919
10 m 14.211 4.043 1.866 1.086
30 m 3.591 1.492 1.422 1.065
50 m 3.400 1.215 1.779 0.661

Goalpost "Post" 9.295 10.795 2.213 1.948
10 m 19.090 14.433 3.346 2.760
30 m 5.105 2.847 1.575 1.052
50 m 4.215 2.574 1.754 1.129

Table 6.9: Mean errors and standard deviation of original calculated data points
and the optimised data points
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7 Discussion

The idea proposed by the authors was successfully developed and it produced very
promising results. The analysis of the algorithm helped the authors to calculate
the best parameters for the algorithm. Using these parameters, a clear point
cloud boundary of the area was produced with almost no outliers. To develop
this algorithm, the authors made a few simplifications. These influenced on how
the algorithm is to be developed and how it can be transferred to a real-time
implementation.

One of the major points to be addressed is how the algorithm has been implemented
in the simulation environment. As previously mentioned in Section 4.2.4, the
algorithm is not run directly on the simulation. The simulation was only run only
to collect the necessary data to run the algorithm offline. AirSim by itself takes a
lot computation power, since it simulates high visual fidelity. When added to the
implementation of algorithm, the entire process slows down heavily. Therefore, a
decision was made to run the two processes separately at a decent speed, rather
than running both simultaneously at a slow speed. Moreover, it allows the authors
to test the algorithm on the stored dataset again and again, without the need of
rerunning the simulation. Thereby saving a lot of time.

The second point to be discussed is the transfer of the algorithm to an actual
drone. To facilitate the transfer, some of the basic requirements are:

• Hardware Requirements - The processor available must be capable of running
image segmentation, feature detection and matching simultaneously.

• Area detection and segmentation algorithm - In the current implementation,
the segmented image is received from simulation. Therefore, an additional
area detection and segmentation algorithm is required based on the type of
area selected.

• Path planning - The main focus of the thesis is area localization. The path
planned for the drone in the simulation was calculated assuming a prior
knowledge of the ground truth. In an actual implementation, the path would
have to be calculated dynamically based on the situation.

• SIFT GPU implementation - The slowest part of the algorithm is the feature
detection and matching. This part can be optimized by replacing it with
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a GPU implementation of SIFT like cudaSift [25] and popsift [26]. SIFT
GPU implementation was previously attempted by the authors, but was
later dismissed because it failed to function optimally with the structure of
the algorithm. GPU SIFT optimizes the task of feature detection and match-
ing, assuming, that features are matched between two images. However in
the algorithm, the feature matching is performed between the LoL and an
image. This requires the transfer of information from GPU to CPU and
back, which is a very time consuming process. To incorporate GPU SIFT
into the structure of the algorithm, the entire handling of the LoL would
have to be done on GPU. This is not the objective of the thesis and was
therefore dismissed.

In Chapter 6, the results of the algorithm were tested for various boundary condi-
tions, with addition of noise and the best parameters were calculated for optimal
results. The algorithm is robust and provides satisfactory results even for unopti-
mised parameters. The algorithm performs well for downscaled images and is able
to detect and match features consistently up to a downscaling factor of 8. While
low drone speeds lead to better results, even when tested at the drone’s maximum
speed, the algorithm performed well. Increasing the band width, also increases the
amount of low quality landmarks detected. This is to be expected, as the region
of feature matching increases, more landmarks will be detected. This indicates
that, the algorithm is performing well in finding landmarks and localising them.
However, not all the landmarks are useful in calculating the boundary of the area.
By varying the size of the band width, the boundary calculated would be affected
significantly as seen from fig. 7.1. Therefore, a balance of the number of landmarks
detected and the accuracy of the boundary is necessary while selecting the band
width around the target area.

The main parameter to remove outliers is the Mahalanobis distance. With an in-
crease in the mahalanobis distance threshold, the number of outliers also increases.
The total number of landmarks detected remains almost the same after a certain
value. At high mahalanobis distance thresholds, the feature matcher adds outliers
into the LoL. This leads to further mismatches and the estimation worsens. These
outliers, would certainly be impactful during the calculation of the boundary of
the target area. However,from a visual point of view, even with high mahalanobis
distance the final results can still be visualized satisfactorily.

To have a better and faster convergence of the position estimate, the initial esti-
mate chosen was taken as the 3D reprojection of the pixel values at an assumed
ground plane. This improved the speed of convergence, although the effect was
not documented through tests.

76



Figure 7.1: The figure of the left shows the result with a high offset mask and the
figure on the right shows the result of lower offset mask.

Furthermore, due to the accurately segmented images acquired from the simula-
tion, the effect of an faulty or noisy segmentation on the final results was also not
tested.

Boundaries of an area are best represented as a 3D line. Therefore, it would be
desirable to calculate a 3D line from the generated pointcloud. 3D curve fitting is
still a topic of research and can be a separate project by itself. It is therefore not
implemented.

The final tuned parameters provided a very accurate result for these specific land-
scapes. This might not be true for any area, and the parameters might have to be
tuned again for different circumstances.
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8 Conclusion

The algorithm developed successfully localizes the borders of 3D areas in simu-
lation. The results obtained were tuned and the parameters that produce the
best result were calculated. The final results are accurate and produce almost no
outliers. While most of the tests were performed on an example mission without
altitude changes, a second mission with big height differences was also tested and
the algorithm performed equally well.

The set research and development goals were followed to achieve the final result.
The algorithm performed well in all categories defined in the initial requirements:

1. The feature detector used for the project is SIFT, which is one the best fea-
ture detector algorithms. It is able to detect features consistently throughout
the mission.

2. The final average distance obtained after using the tuned parameters was
2.82m, which satisfies the set requirement.

3. All the tests described above were conducted with the addition of standard
deviation in position and gimbal angles. The Kalman filter corrects for the
noise in the measurement and provides a filtered output.

4. The algorithm was tested for multiple camera resolutions. Although the
number of total landmarks decreased with reduced image resolution, the
outliers still remained to a minimum. Moreover, the average distance was
below 5m even when images downscaled by factor 8 were used. Hence, this
requirement is also satisfied.

The testing of the algorithm on a real dataset was delayed due to infrequent
availability of the drone. The authors therefore directed their full attention on
the simulation implementation. This resulted in an algorithm which performs
exceptionally well in the simulation environment.
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9 Future Works

While the algorithm is working well in simulation, there is a further work to be
done until it can be deployed on a drone:

• The most important next step is to test the algorithm on a dataset captured
on a real drone. This will show if the feature tracking also works as well
on real images and if the data provided by the drone is accurate enough to
provide good localization.

• Using real life data, it has to be established for which use cases the algorithm
is actually suitable. In regard to the use for detecting wildfires, which was the
original inspiration, it would be interesting to conduct tests using thermal
images. These show fire very clearly but are not obscured by smoke.

• If this gives promising results, the algorithm will have to be further optimized
so it eventually can be run directly on a drone. This will require rewriting a
lot of the code so it can be executed on a GPU.

• The output of the algorithm is currently a point cloud. While humans can
easily see the border of the area from the pointcloud, a solution should be
found to extract the border as a 3D line. This would allow further processing
by algorithms such as the path planner of the drone.
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