
Simulating avatar self-embodiment using 3-points of tracking.

MICHELLE FLY, Aalborg University, Denmark

Avatar self-embodiment in Virtual Reality (VR) is simulated using the avail-

able tracking data from the VR headset, which most commonly is 3-points

of tracking (The Head Mounted Display (HMD) and two controllers). These

3-points of tracking can accurately represent the head and hands of a user,

however the remaining body such as torso, hips, legs, etc. needs to be sim-

ulated by adding rules for how the avatar should behave. The solution

presented in this paper is based on physics and behavior of a real human

body. The avatar evaluates is balance and determines whether or not it needs

to counteract any imbalance by taking a step by moving the avatar’s feet.

CCS Concepts: • Computing methodologies → Procedural animation;
Virtual reality.
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1 INTRODUCTION
Virtual Reality (VR) in the form of a Head Mounted Display (HMD)

simulates a virtual world that obscures the users real environment,

including the users own body. To accommodate for this many VR

developers simulate the users body to various degrees, e.g. only

the hands using the tracking data from either controller’s or hand

tracking, or a full avatar using the available tracking data fromHMD,

controllers and any additional tracking points to approximate how

a full avatar would act.

Most VR experiences takes place in a first person perspective,

where the user would not be able to view all of their avatar self-

embodiment, thus multiplayer experiences are more likely to use

some degree of full avatar, e.g. VR Chat, Dead and Buried, Rec Room

and Horizon, see figure 1 a, b, c, and d. As seen in figure 1 Rec Room

and Horizon simulates the upper body (head, torso, hands and po-

tentially arms), while VR Chat and Dead and Buried simulates a full

avatar.

This papers focus will be on simulating an avatar using 3-points

of tracking, i.e. HMD and two controllers. The only example of this

seen in 1 is Dead and Buried, which uses 3-points of tracking and

the Software Development Kit (SDK) Final IK to simulate the avatar

self-embodiment [15], while VRChat uses additional tracking points

for hips and feet and Inverse Kinematics (IK) [13].

1.1 Developer tools used to create Avatar self-embodiment
Developers wanting to include avatar self-embodiment in their prod-

uct need to either make their own tool or use an existing SDK.

Root-Motion is a company focused on research and development

of real-time character animation for Unity. They have released two

SDK’s [19];

• Final IK: is a tool for IK which supports VR development with

up to 6-points of tracking.

Author’s address: Michelle Fly, mfly16@student.aau.dk, Aalborg University, Rends-
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(a) VR Chat [14]

(b) Dead and Buried [10]

(c) Rec Room [12]

(d) Horizon [9]

Fig. 1. Example of body simulation in VR
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• Puppet Master: is used for active ragdoll animation, which

allows for a 3D model to be affected by physics in the envi-

ronment. The SDK is not intended for use in VR but have

been modified by some developers, e.g. Disassembly VR [11].

Both of these SDK’s are intended to be used for animating a virtual

model (both bipedal and other creatures). Therefore a developer

would still need to include their own logic for how to balance a full

avatar. Additionally, Puppet Master is not intended for VR develop-

ment, so a developer would have to choose between either including

physics or developing for VR using Final IK.

Deepmotion has made a physics-based solution using inverse dy-

namics and natural joint constraints [6], to simulate a avatar self-

embodiment experience in VR. Deepmotion’s system supports any-

where from one to six points of tracking [5] and allows for physics

based interactions, e.g. grabbing another users arm and pulling on

it, kicking a virtual ball, etc.

While this tool is intended for VR, and includes physics and logic

for how to balance a full avatar, it does not seem that it is available

outside of industry use.

In this paper I want to try to combine some of the logic from Root-

Motion and DeepMotion, i.e. physics is used to determine balance,

while a rudimentary IK and joint connections is used to connect

and move the body parts of the avatar.

2 IMPLEMENTATION OF AVATAR SELF-EMBODIMENT
USING 3-POINTS OF TRACKING

The avatar self-embodiment can be split into two parts, the upper-

and lower-body. Upper-body consist of the trunk, arms and head,

while the lower-body consist of hips and legs, see figure 2.

Fig. 2. Representation of an avatar, upper-body is blue, lower-body is red,
and the feet are orange

The upper-body follows the tracking data from the HMD and con-

trollers, i.e. the head follows the position and rotation of the HMD

and the hands follow the position and rotation of the controllers.

The body parts in between these tracking points, e.g. upper arm

and forearm is moved via IK [8], and the trunk (upper part trunk

and middle part trunk) is linked together via configurable joints.

The lower-body needs to rely on the same tracking data from the

HMD and controllers, without being dragging across the floor. The

body parts are linked together via configurable joints, i.e. the hip

(lower part trunk) is connected to the upper-body and the legs are

connected to the hip. The feet are positioned to stand still on the

ground.

Each frame the avatar evaluates its balance, based on the current

position of Center of Mass (COM), see section 2.1 and the current

position of Center of Pressure (COP), see section 2.2. If the avatar is

imbalanced it will try to counteract the imbalance by taking a step

in order to restore balance, see figure 3. As the avatar will always

aim to have one foot on the ground, the avatar is unable to jump or

run. Furthermore, due to imbalance being corrected by taking a step

and the trunk (both upper, middle and lower) being determined by

the position of the HMD, the avatar is also unable to lean or bend

forward.

Fig. 3. Left side is imbalanced, right side is balanced by taking a step.
COM is an empty black dot, COM on ground is a black dot and COP is a
faded blue dot.
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2.1 Center of Mass
This section is based on [1] and [2].

Center of Mass (COM) is a position in virtual space found by the

mass (m) and position (P) of all body parts of the avatar. It is com-

monly used in biomechanics when analysing sport events or in

studies regarding body posture and balance.

The position changes over time, but the mass remains consistent.

𝑃 (𝑡) = [𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)]

𝐶𝑂𝑀 (𝑡) =
∑𝑁
𝑖=1𝑚𝑖 ∗ 𝑃𝑖 (𝑡)∑𝑁

𝑖=1𝑚𝑖

2.1.1 Assigningweight to bodyparts. To findCOMof the avatar,

the body parts need to have a value similar to that of a real humanoid.

An average human female weighs 61.9 kg and is 1.735 m tall, and an

average male weighs 73 kg and is 1.741 m tall [4]. The percentage

values for each body part, see table 1, can be used to calculate an

accurate weight for each body part at any weight.

Table 1. Percentage values from the article Adjustments to zatsiorsky-
seluyanov’s segment inertia parameters [4]

Average Male

Head: 6.94%

Trunk (Torso): 43.46%

Upper Part Trunk: 15.95%

Middle Part Trunk: 16.33%

Lower Part Trunk: 11.17%

Upper Arm: 2.71%

Forearm: 1.62%

Hand: 0.61%

Thigh: 14.16%

Skank (leg): 4.33%

Foot: 1.37%

Average Female

Head: 6.68%

Trunk (Torso): 45.57%

Upper Part Trunk: 15.54%

Middle Part Trunk: 14.65%

Lower Part Trunk: 12.47%

Upper Arm: 2.55%

Forearm: 1.38%

Hand: 0.56%

Thigh: 14.78%

Skank (leg): 4.81%

Foot: 1.29%

2.2 Center of Pressure
Center of Pressure (COP) refers to the position on the ground where

the ground reaction force, act on the body [2], i.e. both/one of the

feet when standing upright.

In order to keep balance COPmust align with COM on the ground,

e.g. taking a step in the direction of imbalance in order to restore

balance. COP is technically the point where the feet touches the

ground, but for simplicity when evaluating the avatars balance COP

can be determined to be the midpoint between the left and right

foot.

2.3 Balance
In order to maintain balance the avatar must adjust its lower-body

so that COP align with COM projected on the ground. For this

an angle between the imbalance direction and a forward facing

direction from HMD is used to determine how the feet should move

to adjust COP to follow COM projected on the ground.

Fig. 4. The angle 𝜑 between
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝐼𝑚𝐹 and

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑚𝐷 is between 180◦ and -180◦

The faded blue dot is COP and the black dot is Q

Hereafter referred to as;

(1) Q: COM projected on the ground.

(2)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝐼𝑚𝐷 (Imbalance Direction): Vector from COP to Q.

(3)

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑚𝐹 (Imbalance Forward): Vector facing forward in the direc-

tion of the HMD

This enables the avatar to calculate the angle 𝜑 between -180
◦
and

180
◦
, which is used to determine which foot to move, i.e. left/right,

and which direction it should move, i.e. forward/backward, see

figure 4.

Since the angle 𝜑 could determine either the left/right foot should

move, I name the foot that should move Dynamic Foot (𝐹𝐷 ) and the

foot that should remain still Static Foot (𝐹𝑆 ). For example in figure

4, 𝐹𝐷 would be the right foot, and 𝐹𝑆 would be the left foot, see

Algorithm 1.

2.3.1 Adjust Balance. However, before moving 𝐹𝐷 the system

needs to know where 𝐹𝑆 is in relation to Q and COP. The distance

between COP and 𝐹𝑆 determines whether 𝐹𝑆 is getting too far away

from the avatar and would need to be move instead of 𝐹𝐷 , see

Algorithm 2.

•
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
|𝐹𝑆𝐶𝑂𝑃 | <= Threshold; Move 𝐹𝐷

•
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
|𝐹𝑆𝐶𝑂𝑃 | > Threshold; Move 𝐹𝑆

The foots target position is found via the direction and magnitude

for the foot that isn’t moving to Q, see Algorithm 3, as Q is the

desired position of COP. For now let’s assume that 𝐹𝐷 is the moving

foot.

𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑄 + (−
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑃𝐹𝑆𝑄)
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A new target position is calculated any time a foot needs to move

due to imbalance.

2.3.2 Pseudo code. Algorithm 1 is favored towards checking if

the user is moving forward with either the left or right foot, and

will afterwards check if the user is moving backward with.

Algorithm 1 Evaluate Balance

1: 𝜃 = angle between

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐶𝑂𝑀𝐶𝑂𝑃 and

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑟𝑎𝑣𝑖𝑡𝑦

2: 𝜑 = angle between

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝐼𝑚𝐷 and

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝐼𝑚𝐹

3: if 𝜃 > 10
◦ then

4: if 𝜑 is between 0
◦
to 90

◦ then
5: Assign left foot as 𝐹𝐷 , and right foot as 𝐹𝑆
6: Run Function Check Distance
7: else if 𝜑 is between -90

◦
to 0

◦ then
8: Assign right foot as 𝐹𝐷 , and left foot as 𝐹𝑆
9: Run Function Check Distance
10: else if 𝜑 is between 90

◦
to 180

◦ then
11: Assign left foot as 𝐹𝐷 , and right foot as 𝐹𝑆
12: Run Function Check Distance
13: else if 𝜑 is between -180

◦
to -90

◦ then
14: Assign right foot as 𝐹𝐷 , and left foot as 𝐹𝑆
15: Run Function Check Distance
16: else
17: Adjust left AND right foot’s y position to be at ground

height

18: end if
19: end if

Algorithm 2 is favored towards moving the 𝐹𝐷 .

Algorithm 2 Check Distance

Require: 𝐹𝐷 AND 𝐹𝑆

1: if
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
|𝑃𝐹𝑆𝐶𝑂𝑃 | OR

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
|𝑃𝐹𝐷𝐶𝑂𝑃 | < 0.5 then

2: if
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
|𝑃𝐹𝑆𝑄 | <= 0.3 AND 𝐹𝑆 is not moving then

3: Assign Direction =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑃𝐹𝑆𝑄

4: Run Algorithm Adjust Balance for 𝐹𝐷
5: Adjust 𝐹𝐷 AND 𝐹𝑆 y position to be at ground height

6: else if 𝐹𝐷 is not moving then
7: Assign Direction =

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑃𝐹𝑆𝑄

8: Run Algorithm Adjust Balance for 𝐹𝑆
9: Adjust 𝐹𝐷 AND 𝐹𝑆 position to be at ground height

10: end if
11: else
12: if

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
|𝑃𝐹𝑆𝐶𝑂𝑃 | AND

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
|𝑃𝐹𝐷𝐶𝑂𝑃 | >= 0.5 then

13: Reset 𝐹𝐷 AND 𝐹𝑆 by running Algorithm Reset Foot
14: else if

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
|𝑃𝐹𝐷𝐶𝑂𝑃 | >= 0.5 then

15: Reset 𝐹𝐷 by running Algorithm Reset Foot
16: else if

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
|𝑃𝐹𝑆𝐶𝑂𝑃 | >= 0.5 then

17: Reset 𝐹𝑆 by running Algorithm Reset Foot
18: end if
19: end if

Algorithm 3 assumes that a 𝐹𝐷 and 𝐹𝑆 has been assigned.

Algorithm 3 Adjust Balance

Require: Direction AND Q

1: Assign Target Position = Q + -Direction

2: if Foot is not in motion then
3: Run Algorithm Follow Foot Path
4: end if

2.4 Step logic
In order to perform a step, i.e. gradually moving the 𝐹𝐷 from it’s

start position to the target position, the foot needs a path to follow

and a duration for how long it should take.

The average time for one step, also know as a gait cycle, ranges from

0.98 to 1.07 seconds for men [7]. While this source only references

men, it seems that women has a similar time of approximately 1

second pr. step (from looking at videos of people, both men and

women, walking I could count 1 second between starting and com-

pleting a step).

The step logic follows the following rules;

(1) Always have one point of support (i.e. one foot should always

be in contact with the ground)

(2) Complete the step withing 1 second.

In order to always have one point of support the avatar cannot

initiate a new step while either of the feet are in motion.

Using the target position and the current position of the 𝐹𝐷 (before

beginning a step), the 𝐹𝐷 can be set to complete a path within a

time frame of 1 second. The position of the foot in motion is set to

update at each frame using the following equation to move on the

path at time t, see algorithm 4.

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑡] = (1 − 𝑡)2 ∗ 𝑃0 + 2(1 − 𝑡) ∗ 𝑡 ∗ 𝑃1 + 𝑡2 ∗ 𝑃2
• P0 → Start position/Current position

• P1 → Midpoint between P0 and P2, at the height of the mag-

nitude of a step

• P2 → End position/Target position

• t → Time between frames * speed modifier

2.4.1 Speed modifier. The speed at which the foot moves needs

to be at least within one second. The foot’s position moves on the

path at time t, which can be slowed down or sped up by multiply-

ing the time between frames with a speed modifier. The aim is to

increase the speed at which the foot moves, and the speed modifier

value therefore needs to have a value above one.

Furthermore, the speed modifier should behave according to both

the magnitude of a step and the speed of the user’s movement.

𝑆𝑝𝑒𝑒𝑑𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 =𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 + 𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑

The magnitude of a step is generally lower than one. To accommo-

date for this the magnitude is multiplied by 10, as to increase the

value.
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The speed of the HMD is found by tracking the previous and current

position of the HMD each frame and dividing it by the time in

seconds between frames. Similarly this means that the HMD speed

value is generally lower or close to a value of 1 and is therefore also

multiplied by 10.

𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑 =
(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑣𝑖𝑢𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

𝑇𝑖𝑚𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐹𝑟𝑎𝑚𝑒𝑠

The final Speed Modifier;

𝑆𝑝𝑒𝑒𝑑𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟 = (𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∗ 10) + (𝐻𝑀𝐷_𝑆𝑝𝑒𝑒𝑑 ∗ 10)

It is worth noting that multiplying by 10 is not an optimal solution,

but this will be discussed further in section 3.

2.4.2 Reset Foot. To account for any loss of tracking, e.g. the

controllers disappearing from view or any other mistakes during

run time, the legs and feet can be reset for half a second in order to

readjust, see algorithm 5. In order to reset all the logic controlling

the feet whether stationary or dynamic is disabled. This will allow

the foot to fall back to a neutral position before reassigning the

rotation and target position of the foot.

2.4.3 Pseudo code. Algorithm 4 is reliant on the equation in sec-

tion 2.4, and must have an assigned foot as found by algorithm 2,

either 𝐹𝐷 or 𝐹𝑆 , with a target position.

Algorithm 4 Follow Foot Path

Require: An assigned foot AND target position

1: Assign Magnitude as |
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑃𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑇𝑎𝑟𝑔𝑒𝑡 |

2: Assign P0 as current foot position

3: Assign P2 as target position

4: Assign P1 as midpoint between P0 and P1 at the height of the

Magnitude

5: while t < 1 do
6: Increase t by seconds between frames * (Magnitude * 10 +

𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑 * 10)

7: As t increases from 0 to 1 the foot’s path moves from P0

towards P1, then bends to arrive at P2.

8: end while
9: Assign t = 0

Algorithm 5 does not require knowledge of 𝐹𝐷 or 𝐹𝑆 , since it is

activated directly from the left/right foot.

Algorithm 5 Reset Foot

1: Disable control over foot

2: Wait for 0.5 seconds

3: Enable control over foot

4: Set rotation to (0,0,0)

5: Assign target position to foot position

3 EVALUATION

3.1 A short Walk through of the system
When starting up the system the user is presented with a menu

where they can select their gender and weight. This will influence

which model is used (female variant or male variant, see figure 5)

and how the COM is calculated by changing the mass of the rigid

bodies of the model. Additionally, though invisible to the user, the

user’s height is measured via the HMD according to its surroundings,

which is used to manipulate the height of the ground.

(a) Female model variant (b) Male model variant

Fig. 5. Models used for the avatar self-embodiment was found at Mixamo
[3]

After this the user enters an environment with their avatar self-

embodiment. The environment is a simple plane with two mirrors

so the user can see themself, see figure 6. In the environment the

user can move around as long as they have the space for it in their

real environment, and can see how the virtual body behaves in the

mirror or by looking down.

Fig. 6. Virtual Environment

3.2 Alternative solutions to issues regarding model and
user size

The models used where found via Mixamo [3] and tended to simul-

taneously be too large and too small at the same time. Either the legs
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are longer than the user and the arms fit, or the arms are to short

while the height fits. To solve this, the avatar has a fixed size and

the ground is instead moved to fit the height of the avatar according

to the eye position of the HMD, i.e. the height of the user, see figure

7.

Fig. 7. Height of themodel compared to the users height. The red X represent
the eye position of the model and HMD

3.3 Speed modifier alterations
Currently the speed modifier used to increase the speed at which

the foot is moving is based on the magnitude of a step and the

speed of the user multiplied by 10. The value used to multiply the

magnitude and 𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑 was found by trying out different values

until I found something that worked, but could likely have been

solved by using a low pass filter instead.

Furthermore, the speed modifier would likely be more consistent

if it was purely based on either magnitude or 𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑 . If the

𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑 is calculated using the following formula. By increasing

the amount of frames between current and previus frame, for exam-

ple 10 frames between the current and the previus frame,𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑

would likely have a value that could be used as the speed modifier.

𝐻𝑀𝐷𝑆𝑝𝑒𝑒𝑑 =
(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑣𝑖𝑢𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

𝑇𝑖𝑚𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐹𝑟𝑎𝑚𝑒𝑠

3.4 User Feedback
The avatar wasn’t able to be tested statistically due to the global

health restrictions, but was tried by 3 users of both genders with

varying body types, who commented on how the avatar self-embodiment

felt.

The general observation was that the user’s could recognise the

avatar in the virtual environment as a representation of their own

body. Furthermore, if they tried both model variants, they tended

to prefer the model representing their own gender.

All users thought the ground was at an expected height, and

did not seem to notice that it was raised or lowered compared to

their height. However, they noted that when they looked down at

their avatar it felt bigger than they would have expected. One user

pointed out that while their first person perspective seemed too big,

when they looked in the mirror the avatar seemed to be the correct

size.

This might be due to an issue of distance perception accuracy

in VR. Many studies have found that the perception of spatial di-

mensions in VR tend to be skewed, especially in low-fidelity en-

vironments that do not represent their current real environment

[18] [17], and that the view of an avatar self-embodiment can assist

in distance judgement whether it is in first person or third person

[16]. Nevertheless, all three sources still conclude that due to the

low-fidelity there is still a significant underestimation of distances.

3.4.1 Issues with leaning and bending. Since the avatar adjust
for imbalance via taking a step in the direction of imbalance, the

model does not have the ability to lean from side to side while

standing in place, or bending forward without bending the legs, see

figure 8 and 9. This was pointed out by all the users. However, due

to the scope of the project it was never intended for the avatar to

be able to lean or bend down.

(a) User successfully leaning (b) Avatar failing to lean

Fig. 8. User and avatar leaning

(a) User successfully stepping (b) Avatar successfully stepping

Fig. 9. User and avatar stepping
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Additionally, most users were not satisfied with the distance the

legs could be apart, as the avatar would often end in what was

described as "Doing a split" where the feet would be in a wide stand.

The feedback from the users lead to a small revision of the system,

where the threshold for when to move 𝐹𝑆 instead of 𝐹𝐷 was lowered

as to avoid the wide distance between the feet.

4 CONCLUSION
This paper presents one possible way of simulating an avatar self-

embodiment using 3-points of tracking. This is achieved via joint’s

and simulated physics, which controls the lower-body to adjust

for imbalance. The legs are attached to the feet, which follow a

path towards their target position. Thus, the feet are not moved via

physics, but is rather a rudimentary form of Inverse Kinematics.

4.1 Future Work
There are many things that could be done to improve the avatar.

One improvement could be for all of the movement to be controlled

by adding force and torque to the body parts instead of the current

method.

By adding torque and force to the joints connecting the body parts,

the avatar could simulate muscle movement, which would move the

body parts according to the current balance evaluation described in

2.3.

A muscle system could be programmed using the configurable

joint in Unity and adding a torque and force to rotate and position

the body parts correctly. However, it would be a tremendous amount

of work to find all the correct values or limits for the body to function

as intended. It would likely be preferable to train a machine learning

algorithm that could apply the correct values, similar to that of a

walking bipedal robot.
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